Sample records for laboratory system development

  1. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel a fuel cell test in the Fuel Cell Development and Test Laboratory. Capability Hubs The Fuel Cell

  2. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema

    None

    2018-05-23

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  3. Improving quality management systems of laboratories in developing countries: an innovative training approach to accelerate laboratory accreditation.

    PubMed

    Yao, Katy; McKinney, Barbara; Murphy, Anna; Rotz, Phil; Wafula, Winnie; Sendagire, Hakim; Okui, Scolastica; Nkengasong, John N

    2010-09-01

    The Strengthening Laboratory Management Toward Accreditation (SLMTA) program was developed to promote immediate, measurable improvement in laboratories of developing countries. The laboratory management framework, a tool that prescribes managerial job tasks, forms the basis of the hands-on, activity-based curriculum. SLMTA is implemented through multiple workshops with intervening site visits to support improvement projects. To evaluate the effectiveness of SLMTA, the laboratory accreditation checklist was developed and subsequently adopted by the World Health Organization Regional Office for Africa (WHO AFRO). The SLMTA program and the implementation model were validated through a pilot in Uganda. SLMTA yielded observable, measurable results in the laboratories and improved patient flow and turnaround time in a laboratory simulation. The laboratory staff members were empowered to improve their own laboratories by using existing resources, communicate with clinicians and hospital administrators, and advocate for system strengthening. The SLMTA program supports laboratories by improving management and building preparedness for accreditation.

  4. Development of space simulation / net-laboratory system

    NASA Astrophysics Data System (ADS)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  5. Development and Operation of a MUMPS Laboratory Information System: A Decade's Experience

    PubMed Central

    Miller, R. E.; Causey, J. P.; Moore, G. W.; Wilk, G. E.

    1988-01-01

    We describe more than a decade's experience with inhouse development and operation of a clinical laboratory computer system written in the MUMPS programming language for a 1000 bed teaching hospital. The JHLIS is a networked minicomputer system that supports accessioning, instrument monitoring, and result reporting for over 3000 specimens and 30,000 test results daily. Development and operation of the system accounts for 6% of the budget of the laboratories which have had a 70% increase in workload over the past decade. Our experience with purchased MUMPS software maintained and enhanced inhouse suggests an attractive alternative to lengthy inhouse development.

  6. Laboratories | Energy Systems Integration Facility | NREL

    Science.gov Websites

    laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing

  7. Energy Systems Sensor Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen

  8. Development of Rhizo-Columns for Nondestructive Root System Architecture Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Johnson, T. J.; Varga, T.; Hess, N. J.; Wietsma, T. W.

    2016-12-01

    Numerical models for root water uptake in plant-soil systems have been developing rapidly, increasing the demand for laboratory experimental data to test and verify these models. Most of the increasingly detailed models are either compared to long-term field crop data or do not involve comparisons at all. Ideally, experiments would provide information on dynamic root system architecture (RSA) in combination with soil-pant hydraulics such as water pressures and volumetric water contents. Data obtained from emerging methods such as Spectral Induced Polarization (SIP) and x-ray computed tomography (x-ray CT) may be used to provide laboratory RSA data needed for model comparisons. Point measurements such as polymer tensiometers (PT) may provide soil moisture information over a large range of water pressures, from field capacity to the wilting point under drought conditions. In the presentation, we demonstrate a novel laboratory capability allowing for detailed RSA studies in large columns under controlled conditions using automated SIP, X-ray CT, and PT methods. Examples are shown for pea and corn root development under various moisture regimes.

  9. The State Public Health Laboratory System.

    PubMed

    Inhorn, Stanley L; Astles, J Rex; Gradus, Stephen; Malmberg, Veronica; Snippes, Paula M; Wilcke, Burton W; White, Vanessa A

    2010-01-01

    This article describes the development since 2000 of the State Public Health Laboratory System in the United States. These state systems collectively are related to several other recent public health laboratory (PHL) initiatives. The first is the Core Functions and Capabilities of State Public Health Laboratories, a white paper that defined the basic responsibilities of the state PHL. Another is the Centers for Disease Control and Prevention National Laboratory System (NLS) initiative, the goal of which is to promote public-private collaboration to assure quality laboratory services and public health surveillance. To enhance the realization of the NLS, the Association of Public Health Laboratories (APHL) launched in 2004 a State Public Health Laboratory System Improvement Program. In the same year, APHL developed a Comprehensive Laboratory Services Survey, a tool to measure improvement through the decade to assure that essential PHL services are provided.

  10. Developing a customised approach for strengthening tuberculosis laboratory quality management systems toward accreditation

    PubMed Central

    Trollip, Andre; Erni, Donatelle; Kao, Kekeletso

    2017-01-01

    Background Quality-assured tuberculosis laboratory services are critical to achieve global and national goals for tuberculosis prevention and care. Implementation of a quality management system (QMS) in laboratories leads to improved quality of diagnostic tests and better patient care. The Strengthening Laboratory Management Toward Accreditation (SLMTA) programme has led to measurable improvements in the QMS of clinical laboratories. However, progress in tuberculosis laboratories has been slower, which may be attributed to the need for a structured tuberculosis-specific approach to implementing QMS. We describe the development and early implementation of the Strengthening Tuberculosis Laboratory Management Toward Accreditation (TB SLMTA) programme. Development The TB SLMTA curriculum was developed by customizing the SLMTA curriculum to include specific tools, job aids and supplementary materials specific to the tuberculosis laboratory. The TB SLMTA Harmonized Checklist was developed from the World Health Organisation Regional Office for Africa Stepwise Laboratory Quality Improvement Process Towards Accreditation checklist, and incorporated tuberculosis-specific requirements from the Global Laboratory Initiative Stepwise Process Towards Tuberculosis Laboratory Accreditation online tool. Implementation Four regional training-of-trainers workshops have been conducted since 2013. The TB SLMTA programme has been rolled out in 37 tuberculosis laboratories in 10 countries using the Workshop approach in 32 laboratories in five countries and the Facility-based approach in five tuberculosis laboratories in five countries. Conclusion Lessons learnt from early implementation of TB SLMTA suggest that a structured training and mentoring programme can build a foundation towards further quality improvement in tuberculosis laboratories. Structured mentoring, and institutionalisation of QMS into country programmes, is needed to support tuberculosis laboratories to achieve

  11. Space Food Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.

  12. Roles of laboratories and laboratory systems in effective tuberculosis programmes.

    PubMed

    Ridderhof, John C; van Deun, Armand; Kam, Kai Man; Narayanan, P R; Aziz, Mohamed Abdul

    2007-05-01

    Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB.

  13. Roles of laboratories and laboratory systems in effective tuberculosis programmes

    PubMed Central

    van Deun, Armand; Kam, Kai Man; Narayanan, PR; Aziz, Mohamed Abdul

    2007-01-01

    Abstract Laboratories and laboratory networks are a fundamental component of tuberculosis (TB) control, providing testing for diagnosis, surveillance and treatment monitoring at every level of the health-care system. New initiatives and resources to strengthen laboratory capacity and implement rapid and new diagnostic tests for TB will require recognition that laboratories are systems that require quality standards, appropriate human resources, and attention to safety in addition to supplies and equipment. To prepare the laboratory networks for new diagnostics and expanded capacity, we need to focus efforts on strengthening quality management systems (QMS) through additional resources for external quality assessment programmes for microscopy, culture, drug susceptibility testing (DST) and molecular diagnostics. QMS should also promote development of accreditation programmes to ensure adherence to standards to improve both the quality and credibility of the laboratory system within TB programmes. Corresponding attention must be given to addressing human resources at every level of the laboratory, with special consideration being given to new programmes for laboratory management and leadership skills. Strengthening laboratory networks will also involve setting up partnerships between TB programmes and those seeking to control other diseases in order to pool resources and to promote advocacy for quality standards, to develop strategies to integrate laboratories’ functions and to extend control programme activities to the private sector. Improving the laboratory system will assure that increased resources, in the form of supplies, equipment and facilities, will be invested in networks that are capable of providing effective testing to meet the goals of the Global Plan to Stop TB. PMID:17639219

  14. Real-Time Rocket/Vehicle System Integrated Health Management Laboratory For Development and Testing of Health Monitoring/Management Systems

    NASA Technical Reports Server (NTRS)

    Aguilar, R.

    2006-01-01

    Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.

  15. Developing Learning Tool of Control System Engineering Using Matrix Laboratory Software Oriented on Industrial Needs

    NASA Astrophysics Data System (ADS)

    Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi

    2018-04-01

    The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.

  16. Critical role of developing national strategic plans as a guide to strengthen laboratory health systems in resource-poor settings.

    PubMed

    Nkengasong, John N; Mesele, Tsehaynesh; Orloff, Sherry; Kebede, Yenew; Fonjungo, Peter N; Timperi, Ralph; Birx, Deborah

    2009-06-01

    Medical laboratory services are an essential, yet often neglected, component of health systems in developing countries. Their central role in public health, disease control and surveillance, and patient management is often poorly recognized by governments and donors. However, medical laboratory services in developing countries can be strengthened by leveraging funding from other sources of HIV/AIDS prevention, care, surveillance, and treatment programs. Strengthening these services will require coordinated efforts by national governments and partners and can be achieved by establishing and implementing national laboratory strategic plans and policies that integrate laboratory systems to combat major infectious diseases. These plans should take into account policy, legal, and regulatory frameworks; the administrative and technical management structure of the laboratories; human resources and retention strategies; laboratory quality management systems; monitoring and evaluation systems; procurement and maintenance of equipment; and laboratory infrastructure enhancement. Several countries have developed or are in the process of developing their laboratory plans, and others, such as Ethiopia, have implemented and evaluated their plan.

  17. Develop virtual joint laboratory for education like distance engineering system for robotic applications

    NASA Astrophysics Data System (ADS)

    Latinovic, T. S.; Deaconu, S. I.; Latinović, M. T.; Malešević, N.; Barz, C.

    2015-06-01

    This paper work with a new system that provides distance learning and online training engineers. The purpose of this paper is to develop and provide web-based system for the handling and control of remote devices via the Internet. Remote devices are currently the industry or mobile robots [13]. For future product development machine in the factory will be included in the system. This article also discusses the current use of virtual reality tools in the fields of science and engineering education. One programming tool in particular, virtual reality modeling language (VRML) is presented in the light of its applications and capabilities in the development of computer visualization tool for education. One contribution of this paper is to present the software tools and examples that can encourage educators to develop a virtual reality model to improve teaching in their discipline. [12] This paper aims to introduce a software platform, called VALIP where users can build, share, and manipulate 3D content in cooperation with the interaction processes in a 3D context, while participating hardware and software devices can be physical and / or logical distributed and connected together via the Internet. VALIP the integration of virtual laboratories to appropriate partners; therefore, allowing access to all laboratories in any of the partners in the project. VALIP provides advanced laboratory for training and research within robotics and production engineering, and thus, provides a great laboratory facilities with only having to invest a limited amount of resources at the local level to the partner site.

  18. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    NASA Technical Reports Server (NTRS)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  19. Implementation of a configurable laboratory information management system for use in cellular process development and manufacturing.

    PubMed

    Russom, Diana; Ahmed, Amira; Gonzalez, Nancy; Alvarnas, Joseph; DiGiusto, David

    2012-01-01

    Regulatory requirements for the manufacturing of cell products for clinical investigation require a significant level of record-keeping, starting early in process development and continuing through to the execution and requisite follow-up of patients on clinical trials. Central to record-keeping is the management of documentation related to patients, raw materials, processes, assays and facilities. To support these requirements, we evaluated several laboratory information management systems (LIMS), including their cost, flexibility, regulatory compliance, ongoing programming requirements and ability to integrate with laboratory equipment. After selecting a system, we performed a pilot study to develop a user-configurable LIMS for our laboratory in support of our pre-clinical and clinical cell-production activities. We report here on the design and utilization of this system to manage accrual with a healthy blood-donor protocol, as well as manufacturing operations for the production of a master cell bank and several patient-specific stem cell products. The system was used successfully to manage blood donor eligibility, recruiting, appointments, billing and serology, and to provide annual accrual reports. Quality management reporting features of the system were used to capture, report and investigate process and equipment deviations that occurred during the production of a master cell bank and patient products. Overall the system has served to support the compliance requirements of process development and phase I/II clinical trial activities for our laboratory and can be easily modified to meet the needs of similar laboratories.

  20. Developing laboratory networks: a practical guide and application.

    PubMed

    Kirk, Carol J; Shult, Peter A

    2010-01-01

    The role of the public health laboratory (PHL) in support of public health response has expanded beyond testing to include a number of other core functions, such as emergency response, training and outreach, communications, laboratory-based surveillance, and laboratory data management. These functions can only be accomplished by a network that includes public health and other agency laboratories and clinical laboratories. It is a primary responsibility of the PHL to develop and maintain such a network. In this article, we present practical recommendations-based on 17 years of network development experience-for the development of statewide laboratory networks. These recommendations, and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of laboratory networks will enhance each state's public health system and is critical to the development of a robust national Laboratory Response Network.

  1. Thermal Storage Process and Components Laboratory | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Process and Components Laboratory Thermal Storage Process and Components Laboratory The Energy Systems Integration Facility's Thermal Systems Process and Components Laboratory supports research and development, testing, and evaluation of new thermal energy storage systems

  2. Baobab Laboratory Information Management System: Development of an Open-Source Laboratory Information Management System for Biobanking.

    PubMed

    Bendou, Hocine; Sizani, Lunga; Reid, Tim; Swanepoel, Carmen; Ademuyiwa, Toluwaleke; Merino-Martinez, Roxana; Meuller, Heimo; Abayomi, Akin; Christoffels, Alan

    2017-04-01

    A laboratory information management system (LIMS) is central to the informatics infrastructure that underlies biobanking activities. To date, a wide range of commercial and open-source LIMSs are available and the decision to opt for one LIMS over another is often influenced by the needs of the biobank clients and researchers, as well as available financial resources. The Baobab LIMS was developed by customizing the Bika LIMS software ( www.bikalims.org ) to meet the requirements of biobanking best practices. The need to implement biobank standard operation procedures as well as stimulate the use of standards for biobank data representation motivated the implementation of Baobab LIMS, an open-source LIMS for Biobanking. Baobab LIMS comprises modules for biospecimen kit assembly, shipping of biospecimen kits, storage management, analysis requests, reporting, and invoicing. The Baobab LIMS is based on the Plone web-content management framework. All the system requirements for Plone are applicable to Baobab LIMS, including the need for a server with at least 8 GB RAM and 120 GB hard disk space. Baobab LIMS is a server-client-based system, whereby the end user is able to access the system securely through the internet on a standard web browser, thereby eliminating the need for standalone installations on all machines.

  3. Baobab Laboratory Information Management System: Development of an Open-Source Laboratory Information Management System for Biobanking

    PubMed Central

    Bendou, Hocine; Sizani, Lunga; Reid, Tim; Swanepoel, Carmen; Ademuyiwa, Toluwaleke; Merino-Martinez, Roxana; Meuller, Heimo; Abayomi, Akin

    2017-01-01

    A laboratory information management system (LIMS) is central to the informatics infrastructure that underlies biobanking activities. To date, a wide range of commercial and open-source LIMSs are available and the decision to opt for one LIMS over another is often influenced by the needs of the biobank clients and researchers, as well as available financial resources. The Baobab LIMS was developed by customizing the Bika LIMS software (www.bikalims.org) to meet the requirements of biobanking best practices. The need to implement biobank standard operation procedures as well as stimulate the use of standards for biobank data representation motivated the implementation of Baobab LIMS, an open-source LIMS for Biobanking. Baobab LIMS comprises modules for biospecimen kit assembly, shipping of biospecimen kits, storage management, analysis requests, reporting, and invoicing. The Baobab LIMS is based on the Plone web-content management framework. All the system requirements for Plone are applicable to Baobab LIMS, including the need for a server with at least 8 GB RAM and 120 GB hard disk space. Baobab LIMS is a server–client-based system, whereby the end user is able to access the system securely through the internet on a standard web browser, thereby eliminating the need for standalone installations on all machines. PMID:28375759

  4. [The future of clinical laboratory database management system].

    PubMed

    Kambe, M; Imidy, D; Matsubara, A; Sugimoto, Y

    1999-09-01

    To assess the present status of the clinical laboratory database management system, the difference between the Clinical Laboratory Information System and Clinical Laboratory System was explained in this study. Although three kinds of database management systems (DBMS) were shown including the relational model, tree model and network model, the relational model was found to be the best DBMS for the clinical laboratory database based on our experience and developments of some clinical laboratory expert systems. As a future clinical laboratory database management system, the IC card system connected to an automatic chemical analyzer was proposed for personal health data management and a microscope/video system was proposed for dynamic data management of leukocytes or bacteria.

  5. Manufacturing Laboratory | Energy Systems Integration Facility | NREL

    Science.gov Websites

    Manufacturing Laboratory Manufacturing Laboratory Researchers in the Energy Systems Integration Facility's Manufacturing Laboratory develop methods and technologies to scale up renewable energy technology manufacturing capabilities. Photo of researchers and equipment in the Manufacturing Laboratory. Capability Hubs

  6. Development and implementation of the Caribbean Laboratory Quality Management Systems Stepwise Improvement Process (LQMS-SIP) Towards Accreditation.

    PubMed

    Alemnji, George; Edghill, Lisa; Guevara, Giselle; Wallace-Sankarsingh, Sacha; Albalak, Rachel; Cognat, Sebastien; Nkengasong, John; Gabastou, Jean-Marc

    2017-01-01

    Implementing quality management systems and accrediting laboratories in the Caribbean has been a challenge. We report the development of a stepwise process for quality systems improvement in the Caribbean Region. The Caribbean Laboratory Stakeholders met under a joint Pan American Health Organization/US Centers for Disease Control and Prevention initiative and developed a user-friendly framework called 'Laboratory Quality Management System - Stepwise Improvement Process (LQMS-SIP) Towards Accreditation' to support countries in strengthening laboratory services through a stepwise approach toward fulfilling the ISO 15189: 2012 requirements. This approach consists of a three-tiered framework. Tier 1 represents the minimum requirements corresponding to the mandatory criteria for obtaining a licence from the Ministry of Health of the participating country. The next two tiers are quality improvement milestones that are achieved through the implementation of specific quality management system requirements. Laboratories that meet the requirements of the three tiers will be encouraged to apply for accreditation. The Caribbean Regional Organisation for Standards and Quality hosts the LQMS-SIP Secretariat and will work with countries, including the Ministry of Health and stakeholders, including laboratory staff, to coordinate and implement LQMS-SIP activities. The Caribbean Public Health Agency will coordinate and advocate for the LQMS-SIP implementation. This article presents the Caribbean LQMS-SIP framework and describes how it will be implemented among various countries in the region to achieve quality improvement.

  7. Strengthening laboratory systems in resource-limited settings.

    PubMed

    Olmsted, Stuart S; Moore, Melinda; Meili, Robin C; Duber, Herbert C; Wasserman, Jeffrey; Sama, Preethi; Mundell, Ben; Hilborne, Lee H

    2010-09-01

    Considerable resources have been invested in recent years to improve laboratory systems in resource-limited settings. We reviewed published reports, interviewed major donor organizations, and conducted case studies of laboratory systems in 3 countries to assess how countries and donors have worked together to improve laboratory services. While infrastructure and the provision of services have seen improvement, important opportunities remain for further advancement. Implementation of national laboratory plans is inconsistent, human resources are limited, and quality laboratory services rarely extend to lower tier laboratories (eg, health clinics, district hospitals). Coordination within, between, and among governments and donor organizations is also frequently problematic. Laboratory standardization and quality control are improving but remain challenging, making accreditation a difficult goal. Host country governments and their external funding partners should coordinate their efforts effectively around a host country's own national laboratory plan to advance sustainable capacity development throughout a country's laboratory system.

  8. Laboratory for Atmospheres: Instrument Systems Report

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Studies of the atmospheres of our solar system's planets including our own require a comprehensive set of observations, relying on instruments on spacecraft, aircraft, balloons, and on the surface. Laboratory personnel define requirements, conceive concepts, and develop instrument systems for spaceflight missions, and for balloon, aircraft, and ground-based observations. Laboratory scientists also participate in the design of data processing algorithms, calibration techniques, and data processing systems. The instrument sections of this report are organized by measurement technique: lidar, passive, in situ and microwave. A number of instruments in various stages of development or modification are also described. This report will be updated as instruments evolve.

  9. Development and implementation of the Caribbean Laboratory Quality Management Systems Stepwise Improvement Process (LQMS-SIP) Towards Accreditation

    PubMed Central

    Alemnji, George; Edghill, Lisa; Wallace-Sankarsingh, Sacha; Albalak, Rachel; Cognat, Sebastien; Nkengasong, John; Gabastou, Jean-Marc

    2017-01-01

    Background Implementing quality management systems and accrediting laboratories in the Caribbean has been a challenge. Objectives We report the development of a stepwise process for quality systems improvement in the Caribbean Region. Methods The Caribbean Laboratory Stakeholders met under a joint Pan American Health Organization/US Centers for Disease Control and Prevention initiative and developed a user-friendly framework called ‘Laboratory Quality Management System – Stepwise Improvement Process (LQMS-SIP) Towards Accreditation’ to support countries in strengthening laboratory services through a stepwise approach toward fulfilling the ISO 15189: 2012 requirements. Results This approach consists of a three-tiered framework. Tier 1 represents the minimum requirements corresponding to the mandatory criteria for obtaining a licence from the Ministry of Health of the participating country. The next two tiers are quality improvement milestones that are achieved through the implementation of specific quality management system requirements. Laboratories that meet the requirements of the three tiers will be encouraged to apply for accreditation. The Caribbean Regional Organisation for Standards and Quality hosts the LQMS-SIP Secretariat and will work with countries, including the Ministry of Health and stakeholders, including laboratory staff, to coordinate and implement LQMS-SIP activities. The Caribbean Public Health Agency will coordinate and advocate for the LQMS-SIP implementation. Conclusion This article presents the Caribbean LQMS-SIP framework and describes how it will be implemented among various countries in the region to achieve quality improvement. PMID:28879149

  10. Development opportunities for hospital clinical laboratory joint ventures.

    PubMed

    Van Riper, J A

    1995-01-01

    Regional health-care providers are being given the opportunity to collaborate in specialty health-care services. Collaboration to achieve superior economies of scale is very effective in the clinical laboratory industry. National laboratory chains are consolidating and enhancing their control of the industry to ensure their historic profitability. National companies have closed many laboratory facilities and have laid off substantial numbers of laboratory personnel. Health-care providers can regain control of their locally generated laboratory health-care dollars by joining forces with clinical laboratory joint ventures. Laboratorians can assist the healthcare providers in bringing laboratory services and employment back to the local community. New capital for operational development and laboratory information systems will help bring the laboratory to the point of care. The independent regional laboratory is focused on supporting the medical needs of the community. The profit generated from a laboratory joint venture is shared among local health-care providers, supporting their economic viability. The laboratories' ability to contribute to the development of profit-making ventures will provide capital for new laboratory development. All of the above will ensure the clinical laboratories' role in providing quality health care to our communities and employment opportunities for laboratory personnel.

  11. Public health laboratory quality management in a developing country.

    PubMed

    Wangkahat, Khwanjai; Nookhai, Somboon; Pobkeeree, Vallerut

    2012-01-01

    The article aims to give an overview of the system of public health laboratory quality management in Thailand and to produce a strengths, weaknesses, opportunities and threats (SWOT) analysis that is relevant to public health laboratories in the country. The systems for managing laboratory quality that are currently employed were described in the first component. The second component was a SWOT analysis, which used the opinions of laboratory professionals to identify any areas that could be improved to meet quality management systems. Various quality management systems were identified and the number of laboratories that met both international and national quality management requirements was different. The SWOT analysis found the opportunities and strengths factors offered the best chance to improve laboratory quality management in the country. The results are based on observations and brainstorming with medical laboratory professionals who can assist laboratories in accomplishing quality management. The factors derived from the analysis can help improve laboratory quality management in the country. This paper provides viewpoints and evidence-based approaches for the development of best possible practice of services in public health laboratories.

  12. Sandia National Laboratories: Cooperative Research and Development

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  13. Development of a laboratory prototype water quality monitoring system suitable for use in zero gravity

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Witz, S.; Hartung, W. H.

    1973-01-01

    The development of a laboratory prototype water quality monitoring system for use in the evaluation of candidate water recovery systems and for study of techniques for measuring potability parameters is reported. Sensing techniques for monitoring of the most desirable parameters are reviewed in terms of their sensitivities and complexities, and their recommendations for sensing techniques are presented. Rationale for selection of those parameters to be monitored (pH, specific conductivity, Cr(+6), I2, total carbon, and bacteria) in a next generation water monitor is presented along with an estimate of flight system specifications. A master water monitor development schedule is included.

  14. Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tommaso P.

    2013-01-01

    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort.

  15. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of The Director)

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selectedmore » from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.« less

  16. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2015-06-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory technology development activities. 1: Introduction

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.

    1983-01-01

    The Jet Propulsion Laboratory and the Langley Research Center have been developing technology related to large space antennas (LSA) during the past several years. The need for a communication system research program became apparent during the recent studies for the Land Mobile Satellite System. This study indicated the need for additional research in (1) electromagnetic analysis methods, (2) design and development of multiple beam feed systems, and (3) the measurement methods for LSA reflectors.

  18. Measuring laboratory-based influenza surveillance capacity: development of the 'International Influenza Laboratory Capacity Review' Tool.

    PubMed

    Muir-Paulik, S A; Johnson, L E A; Kennedy, P; Aden, T; Villanueva, J; Reisdorf, E; Humes, R; Moen, A C

    2016-01-01

    The 2005 International Health Regulations (IHR 2005) emphasized the importance of laboratory capacity to detect emerging diseases including novel influenza viruses. To support IHR 2005 requirements and the need to enhance influenza laboratory surveillance capacity, the Association of Public Health Laboratories (APHL) and the Centers for Disease Control and Prevention (CDC) Influenza Division developed the International Influenza Laboratory Capacity Review (Tool). Data from 37 assessments were reviewed and analyzed to verify that the quantitative analysis results accurately depicted a laboratory's capacity and capabilities. Subject matter experts in influenza and laboratory practice used an iterative approach to develop the Tool incorporating feedback and lessons learnt through piloting and implementation. To systematically analyze assessment data, a quantitative framework for analysis was added to the Tool. The review indicated that changes in scores consistently reflected enhanced or decreased capacity. The review process also validated the utility of adding a quantitative analysis component to the assessments and the benefit of establishing a baseline from which to compare future assessments in a standardized way. Use of the Tool has provided APHL, CDC and each assessed laboratory with a standardized analysis of the laboratory's capacity. The information generated is used to improve laboratory systems for laboratory testing and enhance influenza surveillance globally. We describe the development of the Tool and lessons learnt. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. [Strategy Development for International Cooperation in the Clinical Laboratory Field].

    PubMed

    Kudo, Yoshiko; Osawa, Susumu

    2015-10-01

    The strategy of international cooperation in the clinical laboratory field was analyzed to improve the quality of intervention by reviewing documents from international organizations and the Japanese government. Based on the world development agenda, the target of action for health has shifted from communicable diseases to non-communicable diseases (NCD). This emphasizes the importance of comprehensive clinical laboratories instead of disease-specific examinations in developing countries. To achieve this goal, the World Health Organization (WHO) has disseminated to the African and Asian regions the Laboratory Quality Management System (LQMS), which is based on the same principles of the International Organization of Standardization (ISO) 15189. To execute this strategy, international experts must have competence in project management, analyze information regarding the target country, and develop a strategy for management of the LQMS with an understanding of the technical aspects of laboratory work. However, there is no appropriate pre- and post-educational system of international health for Japanese international workers. Universities and academic organizations should cooperate with the government to establish a system of education for international workers. Objectives of this education system must include: (1) training for the organization and understanding of global health issues, (2) education of the principles regarding comprehensive management of clinical laboratories, and (3) understanding the LQMS which was employed based on WHO's initiative. Achievement of these objectives will help improve the quality of international cooperation in the clinical laboratory field.

  20. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  1. Design and development of a solar powered mobile laboratory

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Simon, A.; Barrera, H.; Acharya, V.; Repke, W.

    2016-08-01

    This paper describes the design and development of a solar powered mobile laboratory (SPML) system. The SPML provides a mobile platform that schools, universities, and communities can use to give students and staff access to laboratory environments where dedicated laboratories are not available. The lab includes equipment like 3D printers, computers, and soldering stations. The primary power source of the system is solar PV which allows the laboratory to be operated in places where the grid power is not readily available or not sufficient to power all the equipment. The main system components include PV panels, junction box, battery, charge controller, and inverter. Not only is it used to teach students and staff how to use the lab equipment, but it is also a great tool to educate the public about solar PV technologies.

  2. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    NASA Technical Reports Server (NTRS)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  3. Specialized Laboratory Information Systems.

    PubMed

    Dangott, Bryan

    2015-06-01

    Some laboratories or laboratory sections have unique needs that traditional anatomic and clinical pathology systems may not address. A specialized laboratory information system (LIS), which is designed to perform a limited number of functions, may perform well in areas where a traditional LIS falls short. Opportunities for specialized LISs continue to evolve with the introduction of new testing methodologies. These systems may take many forms, including stand-alone architecture, a module integrated with an existing LIS, a separate vendor-supplied module, and customized software. This article addresses the concepts underlying specialized LISs, their characteristics, and in what settings they are found. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Specialized Laboratory Information Systems.

    PubMed

    Dangott, Bryan

    2016-03-01

    Some laboratories or laboratory sections have unique needs that traditional anatomic and clinical pathology systems may not address. A specialized laboratory information system (LIS), which is designed to perform a limited number of functions, may perform well in areas where a traditional LIS falls short. Opportunities for specialized LISs continue to evolve with the introduction of new testing methodologies. These systems may take many forms, including stand-alone architecture, a module integrated with an existing LIS, a separate vendor-supplied module, and customized software. This article addresses the concepts underlying specialized LISs, their characteristics, and in what settings they are found. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Continuing professional development training needs of medical laboratory personnel in Botswana

    PubMed Central

    2014-01-01

    Background Laboratory professionals are expected to maintain their knowledge on the most recent advances in laboratory testing and continuing professional development (CPD) programs can address this expectation. In developing countries, accessing CPD programs is a major challenge for laboratory personnel, partly due to their limited availability. An assessment was conducted among clinical laboratory workforce in Botswana to identify and prioritize CPD training needs as well as preferred modes of CPD delivery. Methods A self-administered questionnaire was disseminated to medical laboratory scientists and technicians registered with the Botswana Health Professions Council. Questions were organized into domains of competency related to (i) quality management systems, (ii) technical competence, (iii) laboratory management, leadership, and coaching, and (iv) pathophysiology, data interpretation, and research. Participants were asked to rank their self-perceived training needs using a 3-point scale in order of importance (most, moderate, and least). Furthermore, participants were asked to select any three preferences for delivery formats for the CPD. Results Out of 350 questionnaires that were distributed, 275 were completed and returned giving an overall response rate of 79%. The most frequently selected topics for training in rank order according to key themes were (mean, range) (i) quality management systems, most important (79%, 74–84%); (ii) pathophysiology, data interpretation, and research (68%, 52–78%); (iii) technical competence (65%, 44–73%); and (iv) laboratory management, leadership, and coaching (60%, 37–77%). The top three topics selected by the participants were (i) quality systems essentials for medical laboratory, (ii) implementing a quality management system, and (iii) techniques to identify and control sources of error in laboratory procedures. The top three preferred CPD delivery modes, in rank order, were training workshops, hands

  6. The Case for Laboratory Developed Procedures

    PubMed Central

    Sabatini, Linda M.; Tsongalis, Gregory J.; Caliendo, Angela M.; Olsen, Randall J.; Ashwood, Edward R.; Bale, Sherri; Benirschke, Robert; Carlow, Dean; Funke, Birgit H.; Grody, Wayne W.; Hayden, Randall T.; Hegde, Madhuri; Lyon, Elaine; Pessin, Melissa; Press, Richard D.; Thomson, Richard B.

    2017-01-01

    An explosion of knowledge and technology is revolutionizing medicine and patient care. Novel testing must be brought to the clinic with safety and accuracy, but also in a timely and cost-effective manner, so that patients can benefit and laboratories can offer testing consistent with current guidelines. Under the oversight provided by the Clinical Laboratory Improvement Amendments, laboratories have been able to develop and optimize laboratory procedures for use in-house. Quality improvement programs, interlaboratory comparisons, and the ability of laboratories to adjust assays as needed to improve results, utilize new sample types, or incorporate new mutations, information, or technologies are positive aspects of Clinical Laboratory Improvement Amendments oversight of laboratory-developed procedures. Laboratories have a long history of successful service to patients operating under Clinical Laboratory Improvement Amendments. A series of detailed clinical examples illustrating the quality and positive impact of laboratory-developed procedures on patient care is provided. These examples also demonstrate how Clinical Laboratory Improvement Amendments oversight ensures accurate, reliable, and reproducible testing in clinical laboratories. PMID:28815200

  7. Development of an Excel-based laboratory information management system for improving workflow efficiencies in early ADME screening.

    PubMed

    Lu, Xinyan

    2016-01-01

    There is a clear requirement for enhancing laboratory information management during early absorption, distribution, metabolism and excretion (ADME) screening. The application of a commercial laboratory information management system (LIMS) is limited by complexity, insufficient flexibility, high costs and extended timelines. An improved custom in-house LIMS for ADME screening was developed using Excel. All Excel templates were generated through macros and formulae, and information flow was streamlined as much as possible. This system has been successfully applied in task generation, process control and data management, with a reduction in both labor time and human error rates. An Excel-based LIMS can provide a simple, flexible and cost/time-saving solution for improving workflow efficiencies in early ADME screening.

  8. DSP-Based Hands-On Laboratory Experiments for Photovoltaic Power Systems

    ERIC Educational Resources Information Center

    Muoka, Polycarp I.; Haque, Md. Enamul; Gargoom, Ameen; Negnetvitsky, Michael

    2015-01-01

    This paper presents a new photovoltaic (PV) power systems laboratory module that was developed to experimentally reinforce students' understanding of design principles, operation, and control of photovoltaic power conversion systems. The laboratory module is project-based and is designed to support a renewable energy course. By using MATLAB…

  9. Information systems as a quality management tool in clinical laboratories

    NASA Astrophysics Data System (ADS)

    Schmitz, Vanessa; Rosecler Bez el Boukhari, Marta

    2007-11-01

    This article describes information systems as a quality management tool in clinical laboratories. The quality of laboratory analyses is of fundamental importance for health professionals in aiding appropriate diagnosis and treatment. Information systems allow the automation of internal quality management processes, using standard sample tests, Levey-Jennings charts and Westgard multirule analysis. This simplifies evaluation and interpretation of quality tests and reduces the possibility of human error. This study proposes the development of an information system with appropriate functions and costs for the automation of internal quality control in small and medium-sized clinical laboratories. To this end, it evaluates the functions and usability of two commercial software products designed for this purpose, identifying the positive features of each, so that these can be taken into account during the development of the proposed system.

  10. Science Faculty Belief Systems in a Professional Development Program: Inquiry in College Laboratories

    NASA Astrophysics Data System (ADS)

    Hutchins, Kristen L.; Friedrichsen, Patricia J.

    2012-12-01

    The purpose of this study was to investigate how science faculty members' belief systems about inquiry-based teaching changed through their experience in a professional development program. The program was designed to support early career science faculty in learning about inquiry and incorporating an inquiry-based approach to teaching laboratories. Data sources for this qualitative study included three semi-structured interviews, observations during the program and during faculty members' implementation in their courses, and a researcher's journal. In the first phase of data analysis, we created profiles for each of the four participants. Next, we developed assertions, and tested for confirming and disconfirming evidence across the profiles. The assertions indicated that, through the professional development program, participants' knowledge and beliefs about inquiry-based teaching shifted, placing more value on student-directed learning and classroom inquiry. Participants who were internally motivated to participate and held incoming positive attitudes toward the mini-journal inquiry-based approach were more likely to incorporate the approach in their future practice. Students' responses played a critical role in participants' belief systems and their decision to continue using the inquiry-based format. The findings from this study have implications for professional development design.

  11. Fire safety evaluation system for NASA office/laboratory buildings

    NASA Astrophysics Data System (ADS)

    Nelson, H. E.

    1986-11-01

    A fire safety evaluation system for office/laboratory buildings is developed. The system is a life safety grading system. The system scores building construction, hazardous areas, vertical openings, sprinklers, detectors, alarms, interior finish, smoke control, exit systems, compartmentation, and emergency preparedness.

  12. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  13. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  14. Laboratory Modelling of Volcano Plumbing Systems: a review

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to

  15. The development of a highly constrained health level 7 implementation guide to facilitate electronic laboratory reporting to ambulatory electronic health record systems.

    PubMed

    Sujansky, Walter V; Overhage, J Marc; Chang, Sophia; Frohlich, Jonah; Faus, Samuel A

    2009-01-01

    Electronic laboratory interfaces can significantly increase the value of ambulatory electronic health record (EHR) systems by providing laboratory result data automatically and in a computable form. However, many ambulatory EHRs cannot implement electronic laboratory interfaces despite the existence of messaging standards, such as Health Level 7, version 2 (HL7). Among several barriers to implementing laboratory interfaces is the extensive optionality within the HL7 message standard. This paper describes the rationale for and development of an HL7 implementation guide that seeks to eliminate most of the optionality inherent in HL7, but retain the information content required for reporting outpatient laboratory results. A work group of heterogeneous stakeholders developed the implementation guide based on a set of design principles that emphasized parsimony, practical requirements, and near-term adoption. The resulting implementation guide contains 93% fewer optional data elements than HL7. This guide was successfully implemented by 15 organizations during an initial testing phase and has been approved by the HL7 standards body as an implementation guide for outpatient laboratory reporting. Further testing is required to determine whether widespread adoption of the implementation guide by laboratories and EHR systems can facilitate the implementation of electronic laboratory interfaces.

  16. [Knowledge management system for laboratory work and clinical decision support].

    PubMed

    Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko

    2011-05-01

    This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.

  17. The ideal laboratory information system.

    PubMed

    Sepulveda, Jorge L; Young, Donald S

    2013-08-01

    Laboratory information systems (LIS) are critical components of the operation of clinical laboratories. However, the functionalities of LIS have lagged significantly behind the capacities of current hardware and software technologies, while the complexity of the information produced by clinical laboratories has been increasing over time and will soon undergo rapid expansion with the use of new, high-throughput and high-dimensionality laboratory tests. In the broadest sense, LIS are essential to manage the flow of information between health care providers, patients, and laboratories and should be designed to optimize not only laboratory operations but also personalized clinical care. To list suggestions for designing LIS with the goal of optimizing the operation of clinical laboratories while improving clinical care by intelligent management of laboratory information. Literature review, interviews with laboratory users, and personal experience and opinion. Laboratory information systems can improve laboratory operations and improve patient care. Specific suggestions for improving the function of LIS are listed under the following sections: (1) Information Security, (2) Test Ordering, (3) Specimen Collection, Accessioning, and Processing, (4) Analytic Phase, (5) Result Entry and Validation, (6) Result Reporting, (7) Notification Management, (8) Data Mining and Cross-sectional Reports, (9) Method Validation, (10) Quality Management, (11) Administrative and Financial Issues, and (12) Other Operational Issues.

  18. The SLMTA programme: Transforming the laboratory landscape in developing countries

    PubMed Central

    Maruta, Talkmore; Luman, Elizabeth T.; Nkengasong, John N.

    2014-01-01

    Background Efficient and reliable laboratory services are essential to effective and well-functioning health systems. Laboratory managers play a critical role in ensuring the quality and timeliness of these services. However, few laboratory management programmes focus on the competencies required for the daily operations of a laboratory in resource-limited settings. This report provides a detailed description of an innovative laboratory management training tool called Strengthening Laboratory Management Toward Accreditation (SLMTA) and highlights some challenges, achievements and lessons learned during the first five years of implementation (2009–2013) in developing countries. Programme SLMTA is a competency-based programme that uses a series of short courses and work-based learning projects to effect immediate and measurable laboratory improvement, while empowering laboratory managers to implement practical quality management systems to ensure better patient care. A SLMTA training programme spans from 12 to 18 months; after each workshop, participants implement improvement projects supported by regular supervisory visits or on-site mentoring. In order to assess strengths, weaknesses and progress made by the laboratory, audits are conducted using the World Health Organization’s Regional Office for Africa (WHO AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist, which is based on International Organization for Standardization (ISO) 15189 requirements. These internal audits are conducted at the beginning and end of the SLMTA training programme. Conclusion Within five years, SLMTA had been implemented in 617 laboratories in 47 countries, transforming the laboratory landscape in developing countries. To our knowledge, SLMTA is the first programme that makes an explicit connection between the performance of specific management behaviours and routines and ISO 15189 requirements. Because of this close relationship, SLMTA is

  19. 42 CFR 493.1230 - Condition: General laboratory systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: General laboratory systems. 493.1230... SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Quality System for Nonwaived Testing General Laboratory Systems § 493.1230 Condition: General laboratory systems. Each laboratory that...

  20. Development of the Global Measles Laboratory Network.

    PubMed

    Featherstone, David; Brown, David; Sanders, Ray

    2003-05-15

    The routine reporting of suspected measles cases and laboratory testing of samples from these cases is the backbone of measles surveillance. The Global Measles Laboratory Network (GMLN) has developed standards for laboratory confirmation of measles and provides training resources for staff of network laboratories, reference materials and expertise for the development and quality control of testing procedures, and accurate information for the Measles Mortality Reduction and Regional Elimination Initiative. The GMLN was developed along the lines of the successful Global Polio Laboratory Network, and much of the polio laboratory infrastructure was utilized for measles. The GMLN has developed as countries focus on measles control activities following successful eradication of polio. Currently more than 100 laboratories are part of the global network and follow standardized testing and reporting procedures. A comprehensive laboratory accreditation process will be introduced in 2002 with six quality assurance and performance indicators.

  1. Aerospace energy systems laboratory: Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  2. Laboratory Information Management System Chain of Custody: Reliability and Security

    PubMed Central

    Tomlinson, J. J.; Elliott-Smith, W.; Radosta, T.

    2006-01-01

    A chain of custody (COC) is required in many laboratories that handle forensics, drugs of abuse, environmental, clinical, and DNA testing, as well as other laboratories that want to assure reliability of reported results. Maintaining a dependable COC can be laborious, but with the recent establishment of the criteria for electronic records and signatures by US regulatory agencies, laboratory information management systems (LIMSs) are now being developed to fully automate COCs. The extent of automation and of data reliability can vary, and FDA- and EPA-compliant electronic signatures and system security are rare. PMID:17671623

  3. [Quality Management System in Pathological Laboratory].

    PubMed

    Koyatsu, Junichi; Ueda, Yoshihiko

    2015-07-01

    Even compared to other clinical laboratories, the pathological laboratory conducts troublesome work, and many of the work processes are also manual. Therefore, the introduction of the systematic management of administration is necessary. It will be a shortcut to use existing standards such as ISO 15189 for this purpose. There is no standard specialized for the pathological laboratory, but it is considered to be important to a pathological laboratory in particular. 1. Safety nianagement of the personnel and environmental conditions. Comply with laws and regulations concerning the handling of hazardous materials. 2. Pre-examination processes. The laboratory shall have documented procedures for the proper collection and handling of primary samples. Developed and documented criteria for acceptance or rejection of samples are applied. 3. Examination processes. Selection, verification, and validation of the examination procedures. Devise a system that can constantly monitor the traceability of the sample. 4. Post-examination processes. Storage, retention, and disposal of clinical samples. 5. Release of results. When examination results fall within established alert or critical intervals, immediately notify the physicians. The important point is to recognize the needs of the client and be aware that pathological diagnoses are always "the final diagnoses".

  4. A professional development model for medical laboratory scientists working in the microbiology laboratory.

    PubMed

    Amerson, Megan H; Pulido, Lila; Garza, Melinda N; Ali, Faheem A; Greenhill, Brandy; Einspahr, Christopher L; Yarsa, Joseph; Sood, Pramilla K; Hu, Peter C

    2012-01-01

    The University of Texas M.D. Anderson Cancer Center, Division of Pathology and Laboratory Medicine is committed to providing the best pathology and medicine through: state-of-the art techniques, progressive ground-breaking research, education and training for the clinical diagnosis and research of cancer and related diseases. After surveying the laboratory staff and other hospital professionals, the Department administrators and Human Resource generalists developed a professional development model for Microbiology to support laboratory skills, behavior, certification, and continual education within its staff. This model sets high standards for the laboratory professionals to allow the labs to work at their fullest potential; it provides organization to training technologists based on complete laboratory needs instead of training technologists in individual areas in which more training is required if the laboratory needs them to work in other areas. This model is a working example for all microbiology based laboratories who want to set high standards and want their staff to be acknowledged for demonstrated excellence and professional development in the laboratory. The PDM model is designed to focus on the needs of the laboratory as well as the laboratory professionals.

  5. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe, Jeffrey .C; Boring, Ronald L.

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation andmore » control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.« less

  6. Improving performance in the ED through laboratory information exchange systems.

    PubMed

    Raymond, Louis; Paré, Guy; Maillet, Éric; Ortiz de Guinea, Ana; Trudel, Marie-Claude; Marsan, Josianne

    2018-03-12

    The accessibility of laboratory test results is crucial to the performance of emergency departments and to the safety of patients. This study aims to develop a better understanding of which laboratory information exchange (LIE) systems emergency care physicians (ECPs) are using to consult their patients' laboratory test results and which benefits they derive from such use. A survey of 163 (36%) ECPs in Quebec was conducted in collaboration with the Quebec's Department of Health and Social Services. Descriptive statistics, chi-square tests, cluster analyses, and ANOVAs were conducted. The great majority of respondents indicated that they use several LIE systems including interoperable electronic health record (iEHR) systems, laboratory results viewers (LRVs), and emergency department information systems (EDIS) to consult their patients' laboratory results. Three distinct profiles of LIE users were observed. The extent of LIE usage was found to be primarily determined by the functional design differences between LIE systems available in the EDs. Our findings also indicate that the more widespread LIE usage, the higher the perceived benefits. More specifically, physicians who make extensive use of iEHR systems and LRVs obtain the widest range of benefits in terms of efficiency, quality, and safety of emergency care. Extensive use of LIE systems allows ECPs to better determine and monitor the health status of their patients, verify their diagnostic assumptions, and apply evidence-based practices in laboratory medicine. But for such benefits to be possible, ECPs must be provided with LIE systems that produce accurate, up-to-date, complete, and easy-to-interpret information.

  7. The spacecraft control laboratory experiment optical attitude measurement system

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Montgomery, Raymond C.; Barsky, Michael F.

    1991-01-01

    A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only.

  8. Spacecraft contamination programs within the Air Force Systems Command Laboratories

    NASA Technical Reports Server (NTRS)

    Murad, Edmond

    1990-01-01

    Spacecraft contamination programs exist in five independent AFSC organizations: Geophysics Laboratory (GL), Arnold Engineering and Development Center (AEDC), Rome Air Development Center (RADC/OSCE), Wright Research and Development Center (MLBT), Armament Laboratory (ATL/SAI), and Space Systems Division (SSD/OL-AW). In addition, a sizable program exists at Aerospace Corp. These programs are complementary, each effort addressing a specific area of expertise: GL's effort is aimed at addressing the effects of on-orbit contamination; AEDC's effort is aimed at ground simulation and measurement of optical contamination; RADC's effort addresses the accumulation, measurement, and removal of contamination on large optics; MLBT's effort is aimed at understanding the effect of contamination on materials; ATL's effort is aimed at understanding the effect of plume contamination on systems; SSD's effort is confined to the integration of some contamination experiments sponsored by SSD/CLT; and Aerospace Corp.'s effort is aimed at supporting the needs of the using System Program Offices (SPO) in specific areas, such as contamination during ground handling, ascent phase, laboratory measurements aimed at understanding on-orbit contamination, and mass loss and mass gain in on-orbit operations. These programs are described in some detail, with emphasis on GL's program.

  9. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    PubMed

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  10. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    PubMed Central

    Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  11. [On the way to national reference system of laboratory medicine].

    PubMed

    Muravskaia, N P; Men'shikov, V V

    2014-10-01

    The application of standard samples and reference techniques of implementation of measurements is needed for a valid support of reliability of analyses applied in clinical diagnostic laboratories. They play role of landmarks under metrologic monitoring, calibration of devices and control of quality of results. The article presents analysis of shortcomings interfering with formation of national reference system in Russia harmonized with possibilities provided by international organizations. Among them are the joint Committee on metrologic monitoring in laboratory medicine under the auspices of the International Bureau of Weights and Measures, the International Federation of clinical chemistry and laboratory medicine, etc. The results of the recent development of national normative documents, standard samples and techniques assisted by the authors of article are considered. They are the first steps to organization of national reference system which would comprise all range of modern analytical technologies of laboratory medicine. The national and international measures are proposed to enhance the promptest resolving of task of organization of national reference system for laboratory medicine in the interests of increasing of effectiveness of medical care to citizen of Russia.

  12. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  13. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenfield, Bryce A.

    2009-12-01

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coveragemore » in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.« less

  14. Laboratory Information Management Systems for Forensic Laboratories: A White Paper for Directors and Decision Makers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony Hendrickson; Brian Mennecke; Kevin Scheibe

    2005-10-01

    Modern, forensics laboratories need Laboratory Information Management Systems (LIMS) implementations that allow the lab to track evidentiary items through their examination lifecycle and also serve all pertinent laboratory personnel. The research presented here presents LIMS core requirements as viewed by respondents serving in different forensic laboratory capacities as well as different forensic laboratory environments. A product-development methodology was employed to evaluate the relative value of the key features that constitute a LIMS, in order to develop a set of relative values for these features and the specifics of their implementation. In addition to the results of the product development analysis,more » this paper also provides an extensive review of LIMS and provides an overview of the preparation and planning process for the successful upgrade or implementation of a LIMS. Analysis of the data indicate that the relative value of LIMS components are viewed differently depending upon respondents' job roles (i.e., evidence technicians, scientists, and lab management), as well as by laboratory size. Specifically, the data show that: (1) Evidence technicians place the most value on chain of evidence capabilities and on chain of custody tracking; (2) Scientists generally place greatest value on report writing and generation, and on tracking daughter evidence that develops during their analyses; (3) Lab. Managers place the greatest value on chain of custody, daughter evidence, and not surprisingly, management reporting capabilities; and (4) Lab size affects LIMS preference in that, while all labs place daughter evidence tracking, chain of custody, and management and analyst report generation as their top three priorities, the order of this prioritization is size dependent.« less

  15. A professional development model for medical laboratory scientists working in the immunohematology laboratory.

    PubMed

    Garza, Melinda N; Pulido, Lila A; Amerson, Megan; Ali, Faheem A; Greenhill, Brandy A; Griffin, Gary; Alvarez, Enrique; Whatley, Marsha; Hu, Peter C

    2012-01-01

    Transfusion medicine, a section of the Department of Laboratory Medicine at The University of Texas MD Anderson Cancer Center is committed to the education and advancement of its health care professionals. It is our belief that giving medical laboratory professionals a path for advancement leads to excellence and increases overall professionalism in the Immunohematology Laboratory. As a result of this strong commitment to excellence and professionalism, the Immunohematology laboratory has instituted a Professional Development Model (PDM) that aims to create Medical Laboratory Scientists (MLS) that are not only more knowledgeable, but are continually striving for excellence. In addition, these MLS are poised for advancement in their careers. The professional development model consists of four levels: Discovery, Application, Maturation, and Expert. The model was formulated to serve as a detailed path to the mastery of all process and methods in the Immunohematology Laboratory. Each level in the professional development model consists of tasks that optimize the laboratory workflow and allow for concurrent training. Completion of a level in the PDM is rewarded with financial incentive and further advancement in the field. The PDM for Medical Laboratory Scientists in the Immunohematology Laboratory fosters personal development, rewards growth and competency, and sets high standards for all services and skills provided. This model is a vital component of the Immunohematology Laboratory and aims to ensure the highest quality of care and standards in their testing. It is because of the success of this model and the robustness of its content that we hope other medical laboratories aim to reach the same level of excellence and professionalism, and adapt this model into their own environment.

  16. Laboratory automation in clinical bacteriology: what system to choose?

    PubMed

    Croxatto, A; Prod'hom, G; Faverjon, F; Rochais, Y; Greub, G

    2016-03-01

    Automation was introduced many years ago in several diagnostic disciplines such as chemistry, haematology and molecular biology. The first laboratory automation system for clinical bacteriology was released in 2006, and it rapidly proved its value by increasing productivity, allowing a continuous increase in sample volumes despite limited budgets and personnel shortages. Today, two major manufacturers, BD Kiestra and Copan, are commercializing partial or complete laboratory automation systems for bacteriology. The laboratory automation systems are rapidly evolving to provide improved hardware and software solutions to optimize laboratory efficiency. However, the complex parameters of the laboratory and automation systems must be considered to determine the best system for each given laboratory. We address several topics on laboratory automation that may help clinical bacteriologists to understand the particularities and operative modalities of the different systems. We present (a) a comparison of the engineering and technical features of the various elements composing the two different automated systems currently available, (b) the system workflows of partial and complete laboratory automation, which define the basis for laboratory reorganization required to optimize system efficiency, (c) the concept of digital imaging and telebacteriology, (d) the connectivity of laboratory automation to the laboratory information system, (e) the general advantages and disadvantages as well as the expected impacts provided by laboratory automation and (f) the laboratory data required to conduct a workflow assessment to determine the best configuration of an automated system for the laboratory activities and specificities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Region 7 Laboratory Information Management System

    EPA Pesticide Factsheets

    This is metadata documentation for the Region 7 Laboratory Information Management System (R7LIMS) which maintains records for the Regional Laboratory. Any Laboratory analytical work performed is stored in this system which replaces LIMS-Lite, and before that LAST. The EPA and its contractors may use this database. The Office of Policy & Management (PLMG) Division at EPA Region 7 is the primary managing entity; contractors can access this database but it is not accessible to the public.

  18. Laboratory-Directed Research and Development 2016 Summary Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear

  19. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    PubMed Central

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  20. Laboratory development and testing of spacecraft diagnostics

    NASA Astrophysics Data System (ADS)

    Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric

    2017-10-01

    The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.

  1. The impact of SLMTA in improving laboratory quality systems in the Caribbean Region.

    PubMed

    Guevara, Giselle; Gordon, Floris; Irving, Yvette; Whyms, Ismae; Parris, Keith; Beckles, Songee; Maruta, Talkmore; Ndlovu, Nqobile; Albalak, Rachel; Alemnji, George

    Past efforts to improve laboratory quality systems and to achieve accreditation for better patient care in the Caribbean Region have been slow. To describe the impact of the Strengthening of Laboratory Management Toward Accreditation (SLMTA) training programme and mentorship amongst five clinical laboratories in the Caribbean after 18 months. Five national reference laboratories from four countries participated in the SLMTA programme that incorporated classroom teaching and implementation of improvement projects. Mentors were assigned to the laboratories to guide trainees on their improvement projects and to assist in the development of Quality Management Systems (QMS). Audits were conducted at baseline, six months, exit (at 12 months) and post-SLMTA (at 18 months) using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist to measure changes in implementation of the QMS during the period. At the end of each audit, a comprehensive implementation plan was developed in order to address gaps. Baseline audit scores ranged from 19% to 52%, corresponding to 0 stars on the SLIPTA five-star scale. After 18 months, one laboratory reached four stars, two reached three stars and two reached two stars. There was a corresponding decrease in nonconformities and development of over 100 management and technical standard operating procedures in each of the five laboratories. The tremendous improvement in these five Caribbean laboratories shows that SLMTA coupled with mentorship is an effective, user-friendly, flexible and customisable approach to the implementation of laboratory QMS. It is recommended that other laboratories in the region consider using the SLMTA training programme as they engage in quality systems improvement and preparation for accreditation.

  2. The impact of SLMTA in improving laboratory quality systems in the Caribbean Region

    PubMed Central

    Gordon, Floris; Irving, Yvette; Whyms, Ismae; Parris, Keith; Beckles, Songee; Maruta, Talkmore; Ndlovu, Nqobile; Albalak, Rachel; Alemnji, George

    2014-01-01

    Background Past efforts to improve laboratory quality systems and to achieve accreditation for better patient care in the Caribbean Region have been slow. Objective To describe the impact of the Strengthening of Laboratory Management Toward Accreditation (SLMTA) training programme and mentorship amongst five clinical laboratories in the Caribbean after 18 months. Method Five national reference laboratories from four countries participated in the SLMTA programme that incorporated classroom teaching and implementation of improvement projects. Mentors were assigned to the laboratories to guide trainees on their improvement projects and to assist in the development of Quality Management Systems (QMS). Audits were conducted at baseline, six months, exit (at 12 months) and post-SLMTA (at 18 months) using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist to measure changes in implementation of the QMS during the period. At the end of each audit, a comprehensive implementation plan was developed in order to address gaps. Results Baseline audit scores ranged from 19% to 52%, corresponding to 0 stars on the SLIPTA five-star scale. After 18 months, one laboratory reached four stars, two reached three stars and two reached two stars. There was a corresponding decrease in nonconformities and development of over 100 management and technical standard operating procedures in each of the five laboratories. Conclusion The tremendous improvement in these five Caribbean laboratories shows that SLMTA coupled with mentorship is an effective, user-friendly, flexible and customisable approach to the implementation of laboratory QMS. It is recommended that other laboratories in the region consider using the SLMTA training programme as they engage in quality systems improvement and preparation for accreditation. PMID:27066396

  3. Continuing professional development crediting system for specialists in laboratory medicine within 28 EFLM national societies.

    PubMed

    Topic, Elizabeta; Beletic, Andjelo; Zima, Tomas

    2013-01-01

    Continuing professional development (CPD) with corresponding crediting system is recognized as essential for the laboratory medicine specialists to provide optimal service for the patients. Article presents results of the survey evaluating current CPD crediting practice among members of European Federation of Clinical Chemistry and Laboratory Medicine (EFLM). A questionnaire had been forwarded to presidents/national representatives of all EFLM members, with invitation to provide information about CPD programmes and crediting policies, as well as feedback on individual CPD categories, through scoring their relevance. Complete or partial answers were received from 28 of 38 members. In 23 countries, CPD programmes exist and earn credits, with 19 of them offering access to non-medical scientists. CPD activities are evaluated in all participating countries, regardless to the existence of an official CPD programme. Among participating members with mandatory specialists' licensing (22/28), CPD is a prerequisite for relicensing in 13 countries. Main categories recognized as CPD are: continuing education (24 countries), article/book (17/14 countries) authorship and distance learning (14 countries). The highest median score of relevance (20) is allocated to professional training, editor/authorship and official activities in professional organizations, with the first category showing the least variation among scores. Majority of EFLM members have developed CPD programmes, regularly evaluated and accompanied by crediting systems. Programmes differ in accessibility for non-medical scientists and impact on relicensing eligibility. Continuing education, authorship and e-learning are mainly recognized as CPD activities, although the professional training is appreciated as the most important individual CPD category.

  4. Continuing professional development crediting system for specialists in laboratory medicine within 28 EFLM national societies

    PubMed Central

    Topic, Elizabeta; Beletic, Andjelo; Zima, Tomas

    2013-01-01

    Introduction: Continuing professional development (CPD) with corresponding crediting system is recognized as essential for the laboratory medicine specialists to provide optimal service for the patients. Article presents results of the survey evaluating current CPD crediting practice among members of European Federation of Clinical Chemistry and Laboratory Medicine (EFLM). Materials and methods: A questionnaire had been forwarded to presidents/national representatives of all EFLM members, with invitation to provide information about CPD programmes and crediting policies, as well as feedback on individual CPD categories, through scoring their relevance. Results: Complete or partial answers were received from 28 of 38 members. In 23 countries, CPD programmes exist and earn credits, with 19 of them offering access to non-medical scientists. CPD activities are evaluated in all participating countries, regardless to the existence of an official CPD programme. Among participating members with mandatory specialists’ licensing (22/28), CPD is a prerequisite for relicensing in 13 countries. Main categories recognized as CPD are: continuing education (24 countries), article/book (17/14 countries) authorship and distance learning (14 countries). The highest median score of relevance (20) is allocated to professional training, editor/authorship and official activities in professional organizations, with the first category showing the least variation among scores. Conclusions: Majority of EFLM members have developed CPD programmes, regularly evaluated and accompanied by crediting systems. Programmes differ in accessibility for non-medical scientists and impact on relicensing eligibility. Continuing education, authorship and e-learning are mainly recognized as CPD activities, although the professional training is appreciated as the most important individual CPD category. PMID:24266304

  5. Firing Room Remote Application Software Development & Swamp Works Laboratory Robot Software Development

    NASA Technical Reports Server (NTRS)

    Garcia, Janette

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.

  6. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2018-05-11

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  7. Strengthening systems for communicable disease surveillance: creating a laboratory network in Rwanda

    PubMed Central

    2011-01-01

    Background The recent emergence of a novel strain of influenza virus with pandemic potential underscores the need for quality surveillance and laboratory services to contribute to the timely detection and confirmation of public health threats. To provide a framework for strengthening disease surveillance and response capacities in African countries, the World Health Organization Regional Headquarters for Africa (AFRO) developed Integrated Disease Surveillance and Response (IDSR) aimed at improving national surveillance and laboratory systems. IDSR emphasizes the linkage of information provided by public health laboratories to the selection of relevant, appropriate and effective public health responses to disease outbreaks. Methods We reviewed the development of Rwanda's National Reference Laboratory (NRL) to understand essential structures involved in creating a national public health laboratory network. We reviewed documents describing the NRL's organization and record of test results, conducted site visits, and interviewed health staff in the Ministry of Health and in partner agencies. Findings were developed by organizing thematic categories and grouping examples within them. We purposefully sought to identify success factors as well as challenges inherent in developing a national public health laboratory system. Results Among the identified success factors were: a structured governing framework for public health surveillance; political commitment to promote leadership for stronger laboratory capacities in Rwanda; defined roles and responsibilities for each level; coordinated approaches between technical and funding partners; collaboration with external laboratories; and use of performance results in advocacy with national stakeholders. Major challenges involved general infrastructure, human resources, and budgetary constraints. Conclusions Rwanda's experience with collaborative partnerships contributed to creation of a functional public health laboratory

  8. Potential of Laboratory Execution Systems (LESs) to Simplify the Application of Business Process Management Systems (BPMSs) in Laboratory Automation.

    PubMed

    Neubert, Sebastian; Göde, Bernd; Gu, Xiangyu; Stoll, Norbert; Thurow, Kerstin

    2017-04-01

    Modern business process management (BPM) is increasingly interesting for laboratory automation. End-to-end workflow automation and improved top-level systems integration for information technology (IT) and automation systems are especially prominent objectives. With the ISO Standard Business Process Model and Notation (BPMN) 2.X, a system-independent and interdisciplinary accepted graphical process control notation is provided, allowing process analysis, while also being executable. The transfer of BPM solutions to structured laboratory automation places novel demands, for example, concerning the real-time-critical process and systems integration. The article discusses the potential of laboratory execution systems (LESs) for an easier implementation of the business process management system (BPMS) in hierarchical laboratory automation. In particular, complex application scenarios, including long process chains based on, for example, several distributed automation islands and mobile laboratory robots for a material transport, are difficult to handle in BPMSs. The presented approach deals with the displacement of workflow control tasks into life science specialized LESs, the reduction of numerous different interfaces between BPMSs and subsystems, and the simplification of complex process modelings. Thus, the integration effort for complex laboratory workflows can be significantly reduced for strictly structured automation solutions. An example application, consisting of a mixture of manual and automated subprocesses, is demonstrated by the presented BPMS-LES approach.

  9. Implementing a laboratory automation system: experience of a large clinical laboratory.

    PubMed

    Lam, Choong Weng; Jacob, Edward

    2012-02-01

    Laboratories today face increasing pressure to automate their operations as they are challenged by a continuing increase in workload, need to reduce expenditure, and difficulties in recruitment of experienced technical staff. Was the implementation of a laboratory automation system (LAS) in the Clinical Biochemistry Laboratory at Singapore General Hospital successful? There is no simple answer, so the following topics comparing and contrasting pre- and post-LAS have been explored: turnaround time (TAT), laboratory errors, and staff satisfaction. The benefits and limitations of LAS from the laboratory experience were also reviewed. The mean TAT for both stat and routine samples decreased post-LAS (30% and 13.4%, respectively). In the 90th percentile TAT chart, a 29% reduction was seen in the processing of stat samples on the LAS. However, no significant difference in the 90th percentile TAT was observed with routine samples. It was surprising to note that laboratory errors increased post-LAS. Considerable effort was needed to overcome the initial difficulties associated with adjusting to a new system, new software, and new working procedures. Although some of the known advantages and limitations of LAS have been validated, the claimed benefits such as improvements in TAT, laboratory errors, and staff morale were not evident in the initial months.

  10. Horizontal and vertical integration in hospital laboratories and the laboratory information system.

    PubMed

    Friedman, B A; Mitchell, W

    1990-09-01

    An understanding of horizontal and vertical integration and their quasi-integration variants is important for pathologists to formulate a competitive strategy for hospital clinical laboratories. These basic organizational concepts, in turn, are based on the need to establish control over critical laboratory inputs and outputs. The pathologist seeks greater control of mission-critical system inputs and outputs to increase the quality and efficiency of the laboratory operations. The LIS produces horizontal integration of the various hospital laboratories by integrating them vertically. Forward vertical quasi-integration of the laboratories is mediated primarily by the LIS through front-end valued-added features such as reporting of results and creating a long-term on-line test result archive. These features increase the value of the information product of pathology for clinicians and increase the cost of switching to another system. The LIS can also serve as a means for customizing the information product of the laboratories to appeal to new market segments such as hospital administrators.

  11. Development, integrated investigation, laboratory and in-flight testing of Chibis-M microsatellite ADCS

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Ivanov, D. S.; Ivlev, N. A.; Karpenko, S. O.; Roldugin, D. S.; Tkachev, S. S.

    2014-01-01

    Design, analytical investigation, laboratory and in-flight testing of the attitude determination and control system (ADCS) of a microsatellites are considered. The system consists of three pairs of reaction wheels, three magnetorquers, a set of Sun sensors, a three-axis magnetometer and a control unit. The ADCS is designed for a small 10-50 kg LEO satellite. System development is accomplished in several steps: satellite dynamics preliminary study using asymptotical and numerical techniques, hardware and software design, laboratory testing of each actuator and sensor and the whole ADCS. Laboratory verification is carried out on the specially designed test-bench. In-flight ADCS exploitation results onboard the Russian microsatellite "Chibis-M" are presented. The satellite was developed, designed and manufactured by the Institute of Space Research of RAS. "Chibis-M" was launched by the "Progress-13M" cargo vehicle on January 25, 2012 after undocking from the International Space Station (ISS). This paper assess both the satellite and the ADCS mock-up dynamics. Analytical, numerical and laboratory study results are in good correspondence with in-flight data.

  12. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory

    PubMed Central

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L.; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M.; Wilter da Silva, Alan; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S.; Stuart, David I.; Henrick, Kim; Esnouf, Robert M.

    2011-01-01

    The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service. PMID:21460443

  13. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory.

    PubMed

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M; da Silva, Alan Wilter; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S; Stuart, David I; Henrick, Kim; Esnouf, Robert M

    2011-04-01

    The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.

  14. 42 CFR 493.1239 - Standard: General laboratory systems quality assessment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Standard: General laboratory systems quality... for Nonwaived Testing General Laboratory Systems § 493.1239 Standard: General laboratory systems... laboratory systems requirements specified at §§ 493.1231 through 493.1236. (b) The general laboratory systems...

  15. Development of a laser system of the laboratory AVLIS complex for producing isotopes and radionuclides

    NASA Astrophysics Data System (ADS)

    D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya.; Firsov, V. A.; Tsvetkov, G. O.

    2018-01-01

    The use of atomic vapour laser isotope separation (AVLIS) for solving a number of urgent problems (formation of 177Lu radionuclides for medical applications, 63Ni radionuclides for betavoltaic power supplies and 150Nd isotope for searching for neutrinoless double β decay and neutrino mass) is considered. An efficient three-step scheme of photoionisation of neodymium atoms through the 50474-cm-1 autoionising state with radiation wavelengths of the corresponding stages of λ1 = 6289.7 Å, λ2 = 5609.4 Å and λ3 = 5972.1 Å is developed. The average saturation intensity of the autoionising transition is ˜6 W cm-2, a value consistent with the characteristics of the previously developed photoionisation schemes for lutetium and nickel. A compact laser system for the technological AVLIS complex, designed to produce radionuclides and isotopes under laboratory conditions, is developed based on the experimental results.

  16. [Survey results of medical insurance reimbursement system for independent medical laboratories in Korea].

    PubMed

    Bae, Sook Young; Kwon, Jung Ah; Kim, Jang Su; Yoon, Soo Young; Lee, Chang Kyu; Lee, Kap No; Kim, Dae Won; Min, Won Ki; Cha, Young Joo; Chae, Seok Lae; Hwang, Yoo Sung

    2007-04-01

    A questionnaire survey was performed to perceive the problem of the current medical insurance reimbursement system for laboratory tests referred to independent medical laboratories; then, we intended to find a way to improve the reimbursement system. Questionnaires were distributed to 220 independent medical laboratories and 700 laboratory physicians from July through October 2005. Frequency analysis was used to analyse the replies from 109 respondents to 25 questionnaire items regarding the current medical insurance reimbursement system for referral tests, problems with the system, and suggestions for the improvement of the system. Among the 109 respondents to this survey, 49 (45.8%) considered the current reimbursement system to be unsatisfactory, while only 16 (15.0%) answered satisfactory. The problem was that the referral clinics-not the laboratories that performed the tests--would first receive their reimbursement for the laboratory tests from Health Insurance Review Agency (HIRA) and then give a portion of the laboratory test fees to the independent medical laboratories after the deduction of administrative fees. They (62.5% of the respondents) would prefer a separated reimbursement system by which the referral clinic-as well as the independent medical laboratory-would receive their reimbursement directly from HIRA through an Electronic Data Interchange (EDI) system. In this new system, 34% of the respondents expected the quality of the laboratory tests to be improved; however, 41.6% answered that the income of the referral clinic is expected to decrease. For the improvement of the medical insurance reimbursement system, the administrative fee for the referral clinic and the test fee for the independent medical laboratory should be reimbursed directly to the respective organizations. These changes could be made possible with the proper analysis of medical costs and the development of an effective EDI reimbursement system.

  17. PR-PR: cross-platform laboratory automation system.

    PubMed

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  18. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  19. Virtual Earth System Laboratory (VESL): Effective Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.

    2016-12-01

    The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.

  20. Radio Wavelength Studies of the Galactic Center Source N3, Spectroscopic Instrumentation For Robotic Telescope Systems, and Developing Active Learning Activities for Astronomy Laboratory Courses

    NASA Astrophysics Data System (ADS)

    Ludovici, Dominic Alesio

    2017-08-01

    The mysterious radio source N3 appears to be located within the vicinity of the Radio Arc region of the Galactic Center. To investigate the nature of this source, we have conducted radio observations with the VLA and the VLBA. Continuum observations between 2 and 50 GHz reveal that N3 is an extremely compact and bright source with a non-thermal spectrum. Molecular line observations with the VLA reveal a compact molecular cloud adjacent to N3 in projection. The properties of this cloud are consistent with other galactic center clouds. We are able to rule out several hypotheses for the nature of N3, though a micro-blazar origin cannot be ruled out. Robotic Telescope systems are now seeing widespread deployment as both teaching and research instruments. While these systems have traditionally been able to produce high quality images, these systems have lacked the capability to conduct spectroscopic observations. To enable spectroscopic observations on the Iowa Robotic Observatory, we have developed a low cost (˜ 500), low resolution (R ˜ 300) spectrometer which mounts inside a modified filter wheel and a moderate cost (˜ 5000), medium resolution (R ˜ 8000) fiber-fed spectrometer. Software has been developed to operate both instruments robotically and calibration pipelines are being developed to automate calibration of the data. The University of Iowa offers several introductory astronomy laboratory courses taken by many hundreds of students each semester. To improve student learning in these laboratory courses, we have worked to integrate active learning into laboratory activities. We present the pedagogical approaches used to develop and update the laboratory activities and present an inventory of the current laboratory exercises. Using the inventory, we make observations of the strengths and weaknesses of the current exercises and provide suggestions for future refinement of the astronomy laboratory curriculum.

  1. Laboratory directed research and development program, FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less

  2. Laboratory Activities for Life Span Motor Development.

    ERIC Educational Resources Information Center

    Haywood, Kathleen M.

    This manual describes motor development laboratory activities to help future physical education teachers observe, assess, measure, and test students' motor skills. A total of 20 laboratory activities are described under five sections geared toward: (1) physical growth and maturation; (2) assessing early motor development; (3) assessing basic motor…

  3. A computer-based maintenance reminder and record-keeping system for clinical laboratories.

    PubMed

    Roberts, B I; Mathews, C L; Walton, C J; Frazier, G

    1982-09-01

    "Maintenance" is all the activity an organization devotes to keeping instruments within performance specifications to assure accurate and precise operation. The increasing use of complex analytical instruments as "workhorses" in clinical laboratories requires more maintenance awareness by laboratory personnel. Record-keeping systems that document maintenance completion and that should prompt the continued performance of maintenance tasks have not kept up with instrumentation development. We report here a computer-based record-keeping and reminder system that lists weekly the maintenance items due for each work station in the laboratory, including the time required to complete each item. Written in BASIC, the system uses a DATABOSS data base management system running on a time-shared Digital Equipment Corporation PDP 11/60 computer with a RSTS V 7.0 operating system.

  4. PR-PR: Cross-Platform Laboratory Automation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linshiz, G; Stawski, N; Goyal, G

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Goldenmore » Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.« less

  5. [Information system of the national network of public health laboratories in Peru (Netlab)].

    PubMed

    Vargas-Herrera, Javier; Segovia-Juarez, José; Garro Nuñez, Gladys María

    2015-01-01

    Clinical laboratory information systems produce improvements in the quality of information, reduce service costs, and diminish wait times for results, among other things. In the construction process of this information system, the National Institute of Health (NIH) of Peru has developed and implemented a web-based application to communicate to health personnel (laboratory workers, epidemiologists, health strategy managers, physicians, etc.) the results of laboratory tests performed at the Peruvian NIH or in the laboratories of the National Network of Public Health Laboratories which is called NETLAB. This article presents the experience of implementing NETLAB, its current situation, perspectives of its use, and its contribution to the prevention and control of diseases in Peru.

  6. Cost and implementation analysis of a personal digital assistant system for laboratory data collection.

    PubMed

    Blaya, J A; Gomez, W; Rodriguez, P; Fraser, H

    2008-08-01

    One hundred and twenty-six public health centers and laboratories in Lima, Peru, without internet. We have previously shown that a personal digital assistant (PDA) based system reduces data collection delays and errors for tuberculosis (TB) laboratory results when compared to a paper system. To assess the data collection efficiency of each system and the resources required to develop, implement and transfer the PDA-based system to a resource-poor setting. Time-motion study of data collectors using the PDA-based and paper systems. Cost analysis of developing, implementing and transferring the PDA-based system to a local organization and their redeployment of the system. Work hours spent collecting and processing results decreased by 60% (P < 0.001). Users perceived this decrease to be 70% and had no technical problems they failed to fix. The total cost and time to develop and implement the intervention was US$26092 and 22 weeks. The cost to extend the system to cover nine more districts was $1125 and to implement collecting patient weights was $4107. A PDA-based system drastically reduced the effort required to collect TB laboratory results from remote locations. With the framework described, open-source software and local development, organizations in resource-poor settings could reap the benefits of this technology.

  7. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  8. The Aerospace Energy Systems Laboratory: A BITBUS networking application

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneill-Rood, Nora

    1989-01-01

    The NASA Ames-Dryden Flight Research Facility developed a computerized aircraft battery servicing facility called the Aerospace Energy Systems Laboratory (AESL). This system employs distributed processing with communications provided by a 2.4-megabit BITBUS local area network. Customized handlers provide real time status, remote command, and file transfer protocols between a central system running the iRMX-II operating system and ten slave stations running the iRMX-I operating system. The hardware configuration and software components required to implement this BITBUS application are required.

  9. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investmentmore » in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their

  10. Abstract - Cooperative Research and Development Agreement between Ames National Laboratory and National Energy Technology Laboratory AGMT-0609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryden, Mark; Tucker, David A.

    The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.

  11. Remote systems development

    NASA Technical Reports Server (NTRS)

    Olsen, R.; Schaefer, O.; Hussey, J.

    1992-01-01

    Potential space missions of the nineties and the next century require that we look at the broad category of remote systems as an important means to achieve cost-effective operations, exploration and colonization objectives. This paper addresses such missions, which can use remote systems technology as the basis for identifying required capabilities which must be provided. The relationship of the space-based tasks to similar tasks required for terrestrial applications is discussed. The development status of the required technology is assessed and major issues which must be addressed to meet future requirements are identified. This includes the proper mix of humans and machines, from pure teleoperation to full autonomy; the degree of worksite compatibility for a robotic system; and the required design parameters, such as degrees-of-freedom. Methods for resolution are discussed including analysis, graphical simulation and the use of laboratory test beds. Grumman experience in the application of these techniques to a variety of design issues are presented utilizing the Telerobotics Development Laboratory which includes a 17-DOF robot system, a variety of sensing elements, Deneb/IRIS graphics workstations and control stations. The use of task/worksite mockups, remote system development test beds and graphical analysis are discussed with examples of typical results such as estimates of task times, task feasibility and resulting recommendations for design changes. The relationship of this experience and lessons-learned to future development of remote systems is also discussed.

  12. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  13. Developing a new experimental system for an undergraduate laboratory exercise to teach theories of visuomotor learning.

    PubMed

    Kasuga, Shoko; Ushiba, Junichi

    2014-01-01

    Humans have a flexible motor ability to adapt their movements to changes in the internal/external environment. For example, using arm-reaching tasks, a number of studies experimentally showed that participants adapt to a novel visuomotor environment. These results helped develop computational models of motor learning implemented in the central nervous system. Despite the importance of such experimental paradigms for exploring the mechanisms of motor learning, because of the cost and preparation time, most students are unable to participate in such experiments. Therefore, in the current study, to help students better understand motor learning theories, we developed a simple finger-reaching experimental system using commonly used laptop PC components with an open-source programming language (Processing Motor Learning Toolkit: PMLT). We found that compared to a commercially available robotic arm-reaching device, our PMLT accomplished similar learning goals (difference in the error reduction between the devices, P = 0.10). In addition, consistent with previous reports from visuomotor learning studies, the participants showed after-effects indicating an adaptation of the motor learning system. The results suggest that PMLT can serve as a new experimental system for an undergraduate laboratory exercise of motor learning theories with minimal time and cost for instructors.

  14. Laboratory challenges in the scaling up of HIV, TB, and malaria programs: The interaction of health and laboratory systems, clinical research, and service delivery.

    PubMed

    Birx, Deborah; de Souza, Mark; Nkengasong, John N

    2009-06-01

    Strengthening national health laboratory systems in resource-poor countries is critical to meeting the United Nations Millennium Development Goals. Despite strong commitment from the international community to fight major infectious diseases, weak laboratory infrastructure remains a huge rate-limiting step. Some major challenges facing laboratory systems in resource-poor settings include dilapidated infrastructure; lack of human capacity, laboratory policies, and strategic plans; and limited synergies between clinical and research laboratories. Together, these factors compromise the quality of test results and impact patient management. With increased funding, the target of laboratory strengthening efforts in resource-poor countries should be the integrating of laboratory services across major diseases to leverage resources with respect to physical infrastructure; types of assays; supply chain management of reagents and equipment; and maintenance of equipment.

  15. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  16. Facility and Laboratory Equipment | Energy Systems Integration Facility |

    Science.gov Websites

    Energy Systems Integration Facility is its infrastructure. In addition to extensive fixed laboratory . Photo of researchers testing building loads and power networks in the Systems Performance Laboratory

  17. MASTR-MS: a web-based collaborative laboratory information management system (LIMS) for metabolomics.

    PubMed

    Hunter, Adam; Dayalan, Saravanan; De Souza, David; Power, Brad; Lorrimar, Rodney; Szabo, Tamas; Nguyen, Thu; O'Callaghan, Sean; Hack, Jeremy; Pyke, James; Nahid, Amsha; Barrero, Roberto; Roessner, Ute; Likic, Vladimir; Tull, Dedreia; Bacic, Antony; McConville, Malcolm; Bellgard, Matthew

    2017-01-01

    An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research

  18. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  19. 42 CFR 493.1239 - Standard: General laboratory systems quality assessment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of general laboratory systems quality assessment reviews with appropriate staff. (c) The laboratory must document all general laboratory systems quality assessment activities. [68 FR 3703, Jan. 24, 2003... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: General laboratory systems quality...

  20. Development and Evaluation of Computer-Based Laboratory Practical Learning Tool

    ERIC Educational Resources Information Center

    Gandole, Y. B.

    2006-01-01

    Effective evaluation of educational software is a key issue for successful introduction of advanced tools in the curriculum. This paper details to developing and evaluating a tool for computer assisted learning of science laboratory courses. The process was based on the generic instructional system design model. Various categories of educational…

  1. Naval Research Laboratory Industrial Chemical Analysis and Respiratory Filter Standards Development

    DTIC Science & Technology

    2017-09-29

    Filter Standards Development September 29, 2017 Approved for public release; distribution is unlimited. Thomas E. suTTo Materials and Systems Branch...LIMITATION OF ABSTRACT Naval Research Laboratory Industrial Chemical Analysis and Respiratory Filter Standards Development Thomas E. Sutto Naval Research...approach, developed by NRL, is tested by examining the filter behavior against a number of chemicals to determine if the NRL approach resulted in the

  2. Employee Engagement Is Vital for the Successful Selection of a Total Laboratory Automation System.

    PubMed

    Yu, Hoi-Ying E; Wilkerson, Myra L

    2017-11-08

    To concretely outline a process for selecting a total laboratory automation system that connects clinical chemistry, hematology, and coagulation analyzers and to serve as a reference for other laboratories. In Phase I, a committee including the laboratory's directors and technologists conducted a review of 5 systems based on formal request for information process, site visits, and vendor presentations. We developed evaluation criteria and selected the 2 highest performing systems. In Phase II, we executed a detailed comparison of the 2 vendors based on cost, instrument layout, workflow design, and future potential. In addition to selecting a laboratory automation system, we used the process to ensure employee engagement in preparation for implementation. Selecting a total laboratory automation system is a complicated process. This paper provides practical guide in how a thorough selection process can be done with participation of key stakeholders. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Usability evaluation of Laboratory and Radiology Information Systems integrated into a hospital information system.

    PubMed

    Nabovati, Ehsan; Vakili-Arki, Hasan; Eslami, Saeid; Khajouei, Reza

    2014-04-01

    This study was conducted to evaluate the usability of widely used laboratory and radiology information systems. Three usability experts independently evaluated the user interfaces of Laboratory and Radiology Information Systems using heuristic evaluation method. They applied Nielsen's heuristics to identify and classify usability problems and Nielsen's severity rating to judge their severity. Overall, 116 unique heuristic violations were identified as usability problems. In terms of severity, 67 % of problems were rated as major and catastrophic. Among 10 heuristics, "consistency and standards" was violated most frequently. Moreover, mean severity of problems concerning "error prevention" and "help and documentation" heuristics was higher than of the others. Despite widespread use of specific healthcare information systems, they suffer from usability problems. Improving the usability of systems by following existing design standards and principles from the early phased of system development life cycle is recommended. Especially, it is recommended that the designers design systems that inhibit the initiation of erroneous actions and provide sufficient guidance to users.

  4. Development of a large-scale isolation chamber system for the safe and humane care of medium-sized laboratory animals harboring infectious diseases*

    PubMed Central

    Pan, Xin; Qi, Jian-cheng; Long, Ming; Liang, Hao; Chen, Xiao; Li, Han; Li, Guang-bo; Zheng, Hao

    2010-01-01

    The close phylogenetic relationship between humans and non-human primates makes non-human primates an irreplaceable model for the study of human infectious diseases. In this study, we describe the development of a large-scale automatic multi-functional isolation chamber for use with medium-sized laboratory animals carrying infectious diseases. The isolation chamber, including the transfer chain, disinfection chain, negative air pressure isolation system, animal welfare system, and the automated system, is designed to meet all biological safety standards. To create an internal chamber environment that is completely isolated from the exterior, variable frequency drive blowers are used in the air-intake and air-exhaust system, precisely controlling the filtered air flow and providing an air-barrier protection. A double door transfer port is used to transfer material between the interior of the isolation chamber and the outside. A peracetic acid sterilizer and its associated pipeline allow for complete disinfection of the isolation chamber. All of the isolation chamber parameters can be automatically controlled by a programmable computerized menu, allowing for work with different animals in different-sized cages depending on the research project. The large-scale multi-functional isolation chamber provides a useful and safe system for working with infectious medium-sized laboratory animals in high-level bio-safety laboratories. PMID:20872984

  5. NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock

    2011-01-01

    At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.

  6. Challenges in small screening laboratories: implementing an on-demand laboratory information management system.

    PubMed

    Lemmon, Vance P; Jia, Yuanyuan; Shi, Yan; Holbrook, S Douglas; Bixby, John L; Buchser, William

    2011-11-01

    The Miami Project to Cure Paralysis, part of the University of Miami Miller School of Medicine, includes a laboratory devoted to High Content Analysis (HCA) of neurons. The goal of the laboratory is to uncover signaling pathways, genes, compounds, or drugs that can be used to promote nerve growth. HCA permits the quantification of neuronal morphology, including the lengths and numbers of axons. HCA of various libraries on primary neurons requires a team-based approach, a variety of process steps and complex manipulations of cells and libraries to obtain meaningful results. HCA itself produces vast amounts of information including images, well-based data and cell-based phenotypic measures. Documenting and integrating the experimental workflows, library data and extensive experimental results is challenging. For academic laboratories generating large data sets from experiments involving thousands of perturbagens, a Laboratory Information Management System (LIMS) is the data tracking solution of choice. With both productivity and efficiency as driving rationales, the Miami Project has equipped its HCA laboratory with an On Demand or Software As A Service (SaaS) LIMS to ensure the quality of its experiments and workflows. The article discusses how the system was selected and integrated into the laboratory. The advantages of a SaaS based LIMS over a client-server based system are described. © 2011 Bentham Science Publishers

  7. A system dynamics approach to analyze laboratory test errors.

    PubMed

    Guo, Shijing; Roudsari, Abdul; Garcez, Artur d'Avila

    2015-01-01

    Although many researches have been carried out to analyze laboratory test errors during the last decade, it still lacks a systemic view of study, especially to trace errors during test process and evaluate potential interventions. This study implements system dynamics modeling into laboratory errors to trace the laboratory error flows and to simulate the system behaviors while changing internal variable values. The change of the variables may reflect a change in demand or a proposed intervention. A review of literature on laboratory test errors was given and provided as the main data source for the system dynamics model. Three "what if" scenarios were selected for testing the model. System behaviors were observed and compared under different scenarios over a period of time. The results suggest system dynamics modeling has potential effectiveness of helping to understand laboratory errors, observe model behaviours, and provide a risk-free simulation experiments for possible strategies.

  8. Developing a Remote Laboratory for Engineering Education

    ERIC Educational Resources Information Center

    Fabregas, E.; Farias, G.; Dormido-Canto, S.; Dormido, S.; Esquembre, F.

    2011-01-01

    New information technologies provide great opportunities for education. One such opportunity is the use of remote control laboratories for teaching students about control systems. This paper describes the creation of interactive remote laboratories (RLs). Two main software tools are used: Simulink and Easy Java Simulations (EJS). The first is a…

  9. Photovoltaic module certification and laboratory accreditation criteria development

    NASA Astrophysics Data System (ADS)

    Osterwald, Carl R.; Zerlaut, Gene; Hammond, Robert; D'Aiello, Robert

    1996-01-01

    This paper overviews a model product certification and test laboratory accreditation program for photovoltaic (PV) modules that was recently developed by the National Renewable Energy Laboratory and Arizona State University. The specific objective of this project was to produce a document that details the equipment, facilities, quality assurance procedures, and technical expertise an accredited laboratory needs for performance and qualification testing of PV modules, along with the specific tests needed for a module design to be certified. The document was developed in conjunction with a criteria development committee consisting of representatives from 30 U.S. PV manufacturers, end users, standards and codes organizations, and testing laboratories. The intent is to lay the groundwork for a future U.S. PV certification and accreditation program that will be beneficial to the PV industry as a whole.

  10. Integrating Environmental Management in Chemical Engineering Education by Introducing an Environmental Management System in the Student's Laboratory

    ERIC Educational Resources Information Center

    Montanes, Maria T.; Palomares, Antonio E.

    2008-01-01

    In this work we show how specific challenges related to sustainable development can be integrated into chemical engineering education by introducing an environmental management system in the laboratory where the students perform their experimental lessons. It is shown how the system has been developed and implemented in the laboratory, what role…

  11. Customizing Laboratory Information Systems: Closing the Functionality Gap.

    PubMed

    Gershkovich, Peter; Sinard, John H

    2015-09-01

    Highly customizable laboratory information systems help to address great variations in laboratory workflows, typical in Pathology. Often, however, built-in customization tools are not sufficient to add all of the desired functionality and improve systems interoperability. Emerging technologies and advances in medicine often create a void in functionality that we call a functionality gap. These gaps have distinct characteristics—a persuasive need to change the way a pathology group operates, the general availability of technology to address the missing functionality, the absence of this technology from your laboratory information system, and inability of built-in customization tools to address it. We emphasize the pervasive nature of these gaps, the role of pathology informatics in closing them, and suggest methods on how to achieve that. We found that a large number of the papers in the Journal of Pathology Informatics are concerned with these functionality gaps, and an even larger proportion of electronic posters and abstracts presented at the Pathology Informatics Summit conference each year deal directly with these unmet needs in pathology practice. A rapid, continuous, and sustainable approach to closing these gaps is critical for Pathology to provide the highest quality of care, adopt new technologies, and meet regulatory and financial challenges. The key element of successfully addressing functionality gaps is gap ownership—the ability to control the entire pathology information infrastructure with access to complementary systems and components. In addition, software developers with detailed domain expertise, equipped with right tools and methodology can effectively address these needs as they emerge.

  12. Introduction to ISO 15189: a blueprint for quality systems in veterinary laboratories.

    PubMed

    Freeman, Kathleen P; Bauer, Natali; Jensen, Asger L; Thoresen, Stein

    2006-06-01

    A trend in human and veterinary medical laboratory management is to achieve accreditation based on international standards. The International Organization for Standardization (ISO) 15189 standard is the first developed especially for accreditation of medical laboratories, and emphasizes the laboratory-client interface. European veterinary laboratories seeking to train candidates for the certification examination of the European College of Veterinary Clinical Pathology (ECVCP) require approval by the ECVCP Laboratory Standards Committee, which bases its evaluation in part on adherence to quality systems described in the ISO 15189 standards. The purpose of this article was to introduce the latest ISO quality standard and describe its application to veterinary laboratories in Europe, specifically as pertains to accreditation of laboratories involved in training veterinary clinical pathologists. Between 2003 and 2006, the Laboratory Standards Committee reviewed 12 applications from laboratories (3 commercial and 9 university) involved in training veterinary clinical pathologists. Applicants were asked to provide a description of the facilities for training and testing, current methodology and technology, health and safety policy, quality assurance policy (including internal quality control and participation in an external quality assurance program), written standard operating procedures (SOPs) and policies, a description of the laboratory information system, and personnel and training. Also during this time period multiple informal and formal discussions among ECVCP diplomates took place as to current practices and perceived areas of concern with regard to laboratory accreditation requirements. Areas in which improvement most often was needed in veterinary laboratories applying for ECVCP accreditation were the written quality plan, defined quality requirements for the tests performed, written SOPs and policies, training records, ongoing audits and competency

  13. [Assessment of learning activities using streaming video for laboratory practice education: aiming for development of E-learning system that promotes self-learning].

    PubMed

    Takeda, Naohito; Takeuchi, Isao; Haruna, Mitsumasa

    2007-12-01

    In order to develop an e-learning system that promotes self-learning, lectures and basic operations in laboratory practice of chemistry were recorded and edited on DVD media, consisting of 8 streaming videos as learning materials. Twenty-six students wanted to watch the DVD, and answered the following questions after they had watched it: "Do you think the video would serve to encourage you to study independently in the laboratory practice?" Almost all students (95%) approved of its usefulness, and more than 60% of them watched the videos repeatedly in order to acquire deeper knowledge and skill of the experimental operations. More than 60% answered that the demonstration-experiment should be continued in the laboratory practice, in spite of distribution of the DVD media.

  14. Development of a safe ground to space laser propagation system for the optical communications telescope laboratory

    NASA Technical Reports Server (NTRS)

    Wu, Janet P.

    2003-01-01

    Furthering pursuits in high bandwidth communications to future NASA deep space and neat-Earth probes, the Jet Propulsion Laboratory (JPL) is building the Optical communications Telescope Laboratory (OCTL) atop Table Mountain in Southern California. This R&D optical antenna will be used to develop optical communication strategies for future optical ground stations. Initial experiments to be conducted include propagating high-powered, Q-switched laser beams to retro-reflecting satellites. Yet laser beam propagation from the ground to space is under the cognizance of various government agencies, namely: the Occupational Safety and Health Administration (ISHA) that is responsible for protecting workforce personnel; the Federal Aviation Administration (FAA) responsible for protecting pilots and aircraft; and the Laser Clearinghouse of Space Command responsible for protecting space assets. To ensure that laser beam propagation from the OCTL and future autonomously operated ground stations comply with the guidelines of these organizations, JPL is developing a multi-tiered safety system that will meet the coordination, monitoring, and reporting functions required by the agencies. At Tier 0, laser operators will meet OSHA safety standards for protection and access to the high power lasers area will be restricted and interlocked. Tier 1, the area defined from the telescope dome out to a range of 3.4-km, will utilize long wave infrared camera sensors to alert operators of at risk aircraft in the FAA controlled airspace. Tier 2, defined to extend from 3.4-km out to the aircraft service ceiling in FAA airspace, will detect at risk aircraft by radar. Lastly, beam propagation into space, defined as Tier 3, will require coordination with the Laser Clearinghouse. A detailed description of the four tiers is presented along with the design of the integrated monitoring and beam transmission control system.

  15. Mars Science Laboratory Rover Mobility Bushing Development

    NASA Technical Reports Server (NTRS)

    Riggs, Benjamin

    2008-01-01

    NASA s Mars Science Laboratory (MSL) Project will send a six-wheeled rover to Mars in 2009. The rover will carry a scientific payload designed to search for organic molecules on the Martian surface during its primary mission. This paper describes the development and testing of a bonded film lubricated bushing system to be used in the mobility system of the rover. The MSL Rover Mobility System contains several pivots that are tightly constrained with respect to mass and volume. These pivots are also exposed to relatively low temperatures (-135 C) during operation. The combination of these constraints led the mobility team to consider the use of solid film lubricated metallic bushings and dry running polymeric bushings in several flight pivot applications. A test program was developed to mitigate the risk associated with using these materials in critical pivots on the MSL vehicle. The program was designed to characterize bushing friction and wear performance over the expected operational temperature range (-135 C to +70 C). Seven different bushing material / lubricant combinations were evaluated to aid in the selection of the final flight pivot bushing material / lubricant combination.

  16. A Urinalysis Result Reporting System for a Clinical Laboratory

    PubMed Central

    Sullivan, James E.; Plexico, Perry S.; Blank, David W.

    1987-01-01

    A menu driven Urinalysis Result Reporting System based on multiple IBM-PC Workstations connected together by a local area network was developed for the Clinical Chemistry Section of the Clinical Pathology Department at the National Institutes of Health's Clinical Center. Two Network File Servers redundantly save the test results of each urine specimen. When all test results for a specimen are entered into the system, the results are transmitted to the Department's Laboratory Computer System where they are made available to the ordering physician. The Urinalysis Data Management System has proven easy to learn and use.

  17. End-to-End Information System design at the NASA Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1978-01-01

    Recognizing a pressing need of the 1980s to optimize the two-way flow of information between a ground-based user and a remote space-based sensor, an end-to-end approach to the design of information systems has been adopted at the Jet Propulsion Laboratory. The objectives of this effort are to ensure that all flight projects adequately cope with information flow problems at an early stage of system design, and that cost-effective, multi-mission capabilities are developed when capital investments are made in supporting elements. The paper reviews the End-to-End Information System (EEIS) activity at the Laboratory, and notes the ties to the NASA End-to-End Data System program.

  18. Crew Systems Laboratory/Building 7. Historical Documentation

    NASA Technical Reports Server (NTRS)

    Slovinac, Patricia

    2011-01-01

    Building 7 is managed by the Crew and Thermal Systems Division of the JSC Engineering Directorate. Originally named the Life Systems Laboratory, it contained five major test facilities: two advanced environmental control laboratories and three human-rated vacuum chambers (8 , 11 , and the 20 ). These facilities supported flight crew familiarization and the testing and evaluation of hardware used in the early manned spaceflight programs, including Gemini, Apollo, and the ASTP.

  19. A Computerized Data-Capture System for Animal Biosafety Level 4 Laboratories

    PubMed Central

    Bente, Dennis A; Friesen, Jeremy; White, Kyle; Koll, Jordan; Kobinger, Gary P

    2011-01-01

    The restrictive nature of an Animal Biosafety Level 4 (ABSL4) laboratory complicates even simple clinical evaluation including data capture. Typically, clinical data are recorded on paper during procedures, faxed out of the ABSL4, and subsequently manually entered into a computer. This system has many disadvantages including transcriptional errors. Here, we describe the development of a highly customizable, tablet-PC-based computerized data-capture system, allowing reliable collection of observational and clinical data from experimental animals in a restrictive biocontainment setting. A multidisciplinary team with skills in containment laboratory animal science, database design, and software engineering collaborated on the development of this system. The goals were to design an easy-to-use and flexible user interface on a touch-screen tablet PC with user-supportable processes for recovery, full auditing capabilities, and cost effectiveness. The system simplifies data capture, reduces the necessary time in an ABSL4 environment, offers timely reporting and review of data, facilitates statistical analysis, reduces potential of erroneous data entry, improves quality assurance of animal care, and advances the use and refinement of humane endpoints. PMID:22330712

  20. Importance of implementing an analytical quality control system in a core laboratory.

    PubMed

    Marques-Garcia, F; Garcia-Codesal, M F; Caro-Narros, M R; Contreras-SanFeliciano, T

    2015-01-01

    The aim of the clinical laboratory is to provide useful information for screening, diagnosis and monitoring of disease. The laboratory should ensure the quality of extra-analytical and analytical process, based on set criteria. To do this, it develops and implements a system of internal quality control, designed to detect errors, and compare its data with other laboratories, through external quality control. In this way it has a tool to detect the fulfillment of the objectives set, and in case of errors, allowing corrective actions to be made, and ensure the reliability of the results. This article sets out to describe the design and implementation of an internal quality control protocol, as well as its periodical assessment intervals (6 months) to determine compliance with pre-determined specifications (Stockholm Consensus(1)). A total of 40 biochemical and 15 immunochemical methods were evaluated using three different control materials. Next, a standard operation procedure was planned to develop a system of internal quality control that included calculating the error of the analytical process, setting quality specifications, and verifying compliance. The quality control data were then statistically depicted as means, standard deviations, and coefficients of variation, as well as systematic, random, and total errors. The quality specifications were then fixed and the operational rules to apply in the analytical process were calculated. Finally, our data were compared with those of other laboratories through an external quality assurance program. The development of an analytical quality control system is a highly structured process. This should be designed to detect errors that compromise the stability of the analytical process. The laboratory should review its quality indicators, systematic, random and total error at regular intervals, in order to ensure that they are meeting pre-determined specifications, and if not, apply the appropriate corrective actions

  1. 9. Exterior view, Test Cell 7, Systems Integration Laboratory Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Exterior view, Test Cell 7, Systems Integration Laboratory Building (T-28), looking southwest. The enclosure discussed in CO-88-B-8 is at the right. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. 42 CFR 493.1230 - Condition: General laboratory systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: General laboratory systems. 493.1230 Section 493.1230 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... overall quality of the general laboratory systems and correct identified problems as specified in § 493...

  3. Laboratory Directed Research and Development FY2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser

  4. Thermal Storage Materials Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar

  5. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    systems test hub includes a Class 1, Division 2 space for performing tests of high-pressure hydrogen Laboratory offers the following capabilities. High-Pressure Hydrogen Systems The high-pressure hydrogen infrastructure. Key Infrastructure Robotic arm; high-pressure hydrogen; natural gas supply; standalone SCADA

  6. Development of medical data information systems

    NASA Technical Reports Server (NTRS)

    Anderson, J.

    1971-01-01

    Computerized storage and retrieval of medical information is discussed. Tasks which were performed in support of the project are: (1) flight crew health stabilization computer system, (2) medical data input system, (3) graphic software development, (4) lunar receiving laboratory support, and (5) Statos V printer/plotter software development.

  7. Initial experimental results from the Laboratory Biosphere closed ecological system facility

    NASA Astrophysics Data System (ADS)

    Alling, A.; Allen, J.; Dempster, W.; Nelson, M.; Silverstone, S.; van Thillo, M.

    Results from the closure and initial closed ecological system research in the "Laboratory Biosphere" facility in Santa Fe, New Mexico (USA) will be presented. The facility was initially sealed in April 2002; and the first crop experiments with soybeans commenced in May 2002. The Laboratory Biosphere was created by the team which invented, built and operated Biosphere 2 during its years of closed ecological system functioning (1991-94) and is a testbed to build upon the lessons learned. It is an opportunity to continue experiments with a sustainable soil based agriculture system unlike most bioregenerative systems which use hydroponic systems dependent on a supply of nutrient solution. Because of the small volume of the system (34-45 m3), developing mechanisms to keep parameters like carbon dioxide within acceptable limits will be critical. Recycle of nutrients within the system to maintain soil fertility; and the ability of the inherent complex ecology of soils and a soil bed reactor to handle trace gas buildups are primary research goals. Other research goals are determination of short and long-term exchanges between soil, plants and atmosphere, especially for carbon dioxide, oxygen, nitrogen, NOX, and methane, impact of cultivation (tillage) on soil/atmospheric exchanges., investigation and development of strategies to return nutrients to the soil to maintain fertility, e.g. shredding biomass vs. composting, impact on soil chemistry of returning leachate water to the soil as irrigation water. The microbiological status of soils prior to experiments and over time will allow measurement of changes in microbial diversity and the determination of the role of soil microbes in biogeochemical cycles. Integration of automated sensor and control in the system with real-time modeling has importance for operation, research and educational outreach programs. The Laboratory Biosphere is intended to test and develop a "cybersphere" (network of shared intelligence) that may be

  8. Towards an evaluation framework for Laboratory Information Systems.

    PubMed

    Yusof, Maryati M; Arifin, Azila

    Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS. Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS. A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes. The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  9. Validation of a laboratory and hospital information system in a medical laboratory accredited according to ISO 15189.

    PubMed

    Biljak, Vanja Radisic; Ozvald, Ivan; Radeljak, Andrea; Majdenic, Kresimir; Lasic, Branka; Siftar, Zoran; Lovrencic, Marijana Vucic; Flegar-Mestric, Zlata

    2012-01-01

    The aim of the study was to present a protocol for laboratory information system (LIS) and hospital information system (HIS) validation at the Institute of Clinical Chemistry and Laboratory Medicine of the Merkur University Hospital, Zagreb, Croatia. Validity of data traceability was checked by entering all test requests for virtual patient into HIS/LIS and printing corresponding barcoded labels that provided laboratory analyzers with the information on requested tests. The original printouts of the test results from laboratory analyzer(s) were compared with the data obtained from LIS and entered into the provided template. Transfer of data from LIS to HIS was examined by requesting all tests in HIS and creating real data in a finding generated in LIS. Data obtained from LIS and HIS were entered into a corresponding template. The main outcome measure was the accuracy of transfer obtained from laboratory analyzers and results transferred from LIS and HIS expressed as percentage (%). The accuracy of data transfer from laboratory analyzers to LIS was 99.5% and of that from LIS to HIS 100%. We presented our established validation protocol for laboratory information system and demonstrated that a system meets its intended purpose.

  10. An open microcomputer-based laboratory system for perceptional experimentality

    NASA Astrophysics Data System (ADS)

    Hamalainen, Ari

    A computer, equipped with hardware for acquiring data about the properties of a physical system and programs for processing that data, is a powerful tool for physics research and instruction. There is strong evidence that utilizing microcomputer-based laboratories (MBLs) in instruction can lead to significantly improved learning. The perceptional approach is a method for physics instruction, developed at the Department of Physics, University of Helsinki. Its main arguments are that the meanings of the concepts must be learnt before their formal definitions and adoption, and that learning and research are fundamentally similar concept formation processes. Applying the perceptional approach requires the ability to perform quantitative experiments, either as students' laboratory exercises or as lecture demonstrations, and to process their results. MBL tools are essential for this. In student's laboratory exercises, they reduce the routine work and leave more time for the actual learning. In lecture demonstrations, they make it possible to perform the experiments in the tight time limits. At a previous stage of the research, a set of requirements was found that the perceptional approach places on MBL systems. The primary goal of this thesis is to build a prototype of a MBL system that would fulfil these requirements. A secondary goal is to describe technical aspects of a computerized measurement system from the standpoint of educational use. The prototype was built using mostly commercial sensors and data acquisition units. The software was written with a visual programming language, designed for instrumentation applications. The prototype system was developed and tested with a set of demonstrations of various topics in the Finnish high school physics curriculum, which were implemented according to the perceptional approach. Limited usability tests were also performed. The prototype was improved, until it could perform the test demonstrations. It was found to meet the

  11. Laboratory Directed Research and Development FY-10 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  12. Laboratory Integration and Consolidation in a Regional Health System.

    PubMed

    Cook, Jim

    2017-08-01

    Health systems face intense pressure to decrease costs and improve services as the health care delivery system in the United States undergoes tremendous change due to health care reform. As health systems grow, like any business, they are forced to explore standardization to realize and maintain efficient practices. Clinical services, such as laboratory medicine, are more difficult to integrate due to wider variation in acceptable practice and culture, compared with other services. However, changes to laboratory service are imperative if health care professionals expect to survive and thrive in the new business environment. In this article, I describe the advocation efforts of the System Laboratory Council group toward implementation of a standardization process that we call integration, to improve the efficiency of the Laboratory Services department of our health system, the University of Maryland Medical System (UMMS). © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. 4. Exterior view of Systems Integration Laboratory Building (T28), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Exterior view of Systems Integration Laboratory Building (T-28), looking northwest. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  14. 3. Exterior view of Systems Integration Laboratory Building (T28), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Exterior view of Systems Integration Laboratory Building (T-28), looking southeast. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  15. Laboratory Activities for Developing Process Skills.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC.

    This workbook contains laboratory exercises designed for use in a college introductory biology course. Each exercise helps the student develop a basic science skill. The exercises are arranged in a hierarchical sequence suggesting the scientific method. Each skill facilitates the development of succeeding ones. Activities include Use of the…

  16. Laboratory Directed Research and Development Annual Report FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  17. Laboratory Directed Research and Development Annual Report FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Kelly O.

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate upmore » to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.« less

  18. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  19. Implementing a Quality Management System in the Medical Microbiology Laboratory.

    PubMed

    Carey, Roberta B; Bhattacharyya, Sanjib; Kehl, Sue C; Matukas, Larissa M; Pentella, Michael A; Salfinger, Max; Schuetz, Audrey N

    2018-07-01

    This document outlines a comprehensive practical approach to a laboratory quality management system (QMS) by describing how to operationalize the management and technical requirements described in the ISO 15189 international standard. It provides a crosswalk of the ISO requirements for quality and competence for medical laboratories to the 12 quality system essentials delineated by the Clinical and Laboratory Standards Institute. The quality principles are organized under three main categories: quality infrastructure, laboratory operations, and quality assurance and continual improvement. The roles and responsibilities to establish and sustain a QMS are outlined for microbiology laboratory staff, laboratory management personnel, and the institution's leadership. Examples and forms are included to assist in the real-world implementation of this system and to allow the adaptation of the system for each laboratory's unique environment. Errors and nonconforming events are acknowledged and embraced as an opportunity to improve the quality of the laboratory, a culture shift from blaming individuals. An effective QMS encourages "systems thinking" by providing a process to think globally of the effects of any type of change. Ultimately, a successful QMS is achieved when its principles are adopted as part of daily practice throughout the total testing process continuum. Copyright © 2018 American Society for Microbiology.

  20. Laboratory Directed Research and Development FY2001 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts thatmore » started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.« less

  1. Importance of Public-Private Partnerships: Strengthening Laboratory Medicine Systems and Clinical Practice in Africa

    PubMed Central

    Shrivastava, Ritu; Gadde, Renuka; Nkengasong, John N.

    2016-01-01

    After the launch of the US President's Emergency Plan for AIDS Relief in 2003, it became evident that inadequate laboratory systems and services would severely limit the scale-up of human immunodeficiency virus infection prevention, care, and treatment programs. Thus, the Office of the US Global AIDS Coordinator, Centers for Disease Control and Prevention, and Becton, Dickinson and Company developed a public-private partnership (PPP). Between October 2007 and July 2012, the PPP combined the competencies of the public and private sectors to boost sustainable laboratory systems and develop workforce skills in 4 African countries. Key accomplishments of the initiative include measurable and scalable outcomes to strengthen national capacities to build technical skills, develop sample referral networks, map disease prevalence, support evidence-based health programming, and drive continuous quality improvement in laboratories. This report details lessons learned from our experience and a series of recommendations on how to achieve successful PPPs. PMID:27025696

  2. Development of Servo Motor Trainer for Basic Control System in Laboratory of Electrical Engineering Control System Faculty of Engineering Universitas Negeri Surabaya

    NASA Astrophysics Data System (ADS)

    Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi

    2018-04-01

    In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.

  3. Development of a laboratory demonstration model active cleaning device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1975-01-01

    A laboratory demonstration model of a device for removing contaminant films from optical surfaces in space was developed. The development of a plasma tube, which would produce the desired cleaning effects under high vacuum conditions, represented the major problem in the program. This plasma tube development is discussed, and the resulting laboratory demonstration-model device is described.

  4. Validation of a laboratory and hospital information system in a medical laboratory accredited according to ISO 15189

    PubMed Central

    Biljak, Vanja Radisic; Ozvald, Ivan; Radeljak, Andrea; Majdenic, Kresimir; Lasic, Branka; Siftar, Zoran; Lovrencic, Marijana Vucic; Flegar-Mestric, Zlata

    2012-01-01

    Introduction The aim of the study was to present a protocol for laboratory information system (LIS) and hospital information system (HIS) validation at the Institute of Clinical Chemistry and Laboratory Medicine of the Merkur University Hospital, Zagreb, Croatia. Materials and methods: Validity of data traceability was checked by entering all test requests for virtual patient into HIS/LIS and printing corresponding barcoded labels that provided laboratory analyzers with the information on requested tests. The original printouts of the test results from laboratory analyzer(s) were compared with the data obtained from LIS and entered into the provided template. Transfer of data from LIS to HIS was examined by requesting all tests in HIS and creating real data in a finding generated in LIS. Data obtained from LIS and HIS were entered into a corresponding template. The main outcome measure was the accuracy of transfer obtained from laboratory analyzers and results transferred from LIS and HIS expressed as percentage (%). Results: The accuracy of data transfer from laboratory analyzers to LIS was 99.5% and of that from LIS to HIS 100%. Conclusion: We presented our established validation protocol for laboratory information system and demonstrated that a system meets its intended purpose. PMID:22384522

  5. Developing a lean culture in the laboratory.

    PubMed

    Napoles, Leyda; Quintana, Maria

    2006-07-25

    The Director of Pathology at Jackson Memorial Hospital was interested in improving the operational efficiencies of the department in order to enhance the department's level of service in conjunction with the expansion of the overall health system. The decision was made to implement proven Lean practices in the laboratory under the direction of a major consulting firm. This article details the scope of the initial project as well as the operating principles of Lean manufacturing practices as applied to the clinical laboratory. The goals of the project were to improve turnaround times of laboratory results, reduce inventory and supply costs, improve staff productivity, maximize workflow, and eliminate waste. Extensive data gathering and analysis guided the work process by highlighting the areas of highest opportunity. This systematic approach resulted in recommendations for the workflow and physical layout of the laboratory. It also included the introduction of "standard workflow" and "visual controls" as critical items that streamlined operational efficiencies. The authors provide actual photographs and schematics of the reorganization and improvements to the physical layout of the laboratory. In conclusion, this project resulted in decreased turnaround times and increased productivity, as well as significant savings in the overall laboratory operations.

  6. Factors Influencing Laboratory Information System Effectiveness Through Strategic Planning in Shiraz Teaching Hospitals.

    PubMed

    Bahador, Fateme; Sharifian, Roxana; Farhadi, Payam; Jafari, Abdosaleh; Nematolahi, Mohtram; Shokrpour, Nasrin

    This study aimed to develop and test a research model that examined 7effective factors on the effectiveness of laboratory information system (LIS) through strategic planning. This research was carried out on total laboratory staff, information technology staff, and laboratory managers in Shiraz (a city in the south of Iran) teaching hospitals by structural equation modeling approach in 2015. The results revealed that there was no significant positive relationship between decisions based on cost-benefit analysis and LIS functionality with LIS effectiveness, but there was a significant positive relationship between other factors and LIS effectiveness. As expected, high levels of strategic information system planning result in increasing LIS effectiveness. The results also showed that the relationship between cost-benefit analysis, LIS functionality, end-user involvement, and information technology-business alignment with strategic information system planning was significant and positive.

  7. A Consistent System for Coding Laboratory Samples

    NASA Astrophysics Data System (ADS)

    Sih, John C.

    1996-07-01

    A formal laboratory coding system is presented to keep track of laboratory samples. Preliminary useful information regarding the sample (origin and history) is gained without consulting a research notebook. Since this system uses and retains the same research notebook page number for each new experiment (reaction), finding and distinguishing products (samples) of the same or different reactions becomes an easy task. Using this system multiple products generated from a single reaction can be identified and classified in a uniform fashion. Samples can be stored and filed according to stage and degree of purification, e.g. crude reaction mixtures, recrystallized samples, chromatographed or distilled products.

  8. The Development of Laboratory Safety Questionnaire for Middle School Science Teachers

    ERIC Educational Resources Information Center

    Akpullukcu, Simge; Cavas, Bulent

    2017-01-01

    The purpose of this paper is to develop a "valid and reliable laboratory safety questionnaire" which could be used to identify science teachers' understanding about laboratory safety issues during their science laboratory activities. The questionnaire was developed from a literature review and prior instruments developed on laboratory…

  9. A Wireless Communications Systems Laboratory Course

    ERIC Educational Resources Information Center

    Guzelgoz, Sabih; Arslan, Huseyin

    2010-01-01

    A novel wireless communications systems laboratory course is introduced. The course teaches students how to design, test, and simulate wireless systems using modern instrumentation and computer-aided design (CAD) software. One of the objectives of the course is to help students understand the theoretical concepts behind wireless communication…

  10. Inter-laboratory Comparison of Three Earplug Fit-test Systems

    PubMed Central

    Byrne, David C.; Murphy, William J.; Krieg, Edward F.; Ghent, Robert M.; Michael, Kevin L.; Stefanson, Earl W.; Ahroon, William A.

    2017-01-01

    The National Institute for Occupational Safety and Health (NIOSH) sponsored tests of three earplug fit-test systems (NIOSH HPD Well-Fit™, Michael & Associates FitCheck, and Honeywell Safety Products VeriPRO®). Each system was compared to laboratory-based real-ear attenuation at threshold (REAT) measurements in a sound field according to ANSI/ASA S12.6-2008 at the NIOSH, Honeywell Safety Products, and Michael & Associates testing laboratories. An identical study was conducted independently at the U.S. Army Aeromedical Research Laboratory (USAARL), which provided their data for inclusion in this report. The Howard Leight Airsoft premolded earplug was tested with twenty subjects at each of the four participating laboratories. The occluded fit of the earplug was maintained during testing with a soundfield-based laboratory REAT system as well as all three headphone-based fit-test systems. The Michael & Associates lab had highest average A-weighted attenuations and smallest standard deviations. The NIOSH lab had the lowest average attenuations and the largest standard deviations. Differences in octave-band attenuations between each fit-test system and the American National Standards Institute (ANSI) sound field method were calculated (Attenfit-test - AttenANSI). A-weighted attenuations measured with FitCheck and HPD Well-Fit systems demonstrated approximately ±2 dB agreement with the ANSI sound field method, but A-weighted attenuations measured with the VeriPRO system underestimated the ANSI laboratory attenuations. For each of the fit-test systems, the average A-weighted attenuation across the four laboratories was not significantly greater than the average of the ANSI sound field method. Standard deviations for residual attenuation differences were about ±2 dB for FitCheck and HPD Well-Fit compared to ±4 dB for VeriPRO. Individual labs exhibited a range of agreement from less than a dB to as much as 9.4 dB difference with ANSI and REAT estimates. Factors such as

  11. 1. Exterior view of Systems Integration Laboratory Building (T28), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Exterior view of Systems Integration Laboratory Building (T-28), looking northeast. The taller of the two gantries on the left houses Test Cell 6 (fuel), while the shorter gantry on the right houses Test Cell 7 (oxidizer). This structure serves as the functional center of the Systems Integration Laboratory complex for testing, handling, and storage of the Titan II's hydrazine - and nitrogen tetroxide-based fuel system propellants. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  12. Laboratory Directed Research and Development annual report, fiscal year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through themore » appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.« less

  13. Usability Evaluation of Laboratory Information Systems.

    PubMed

    Mathews, Althea; Marc, David

    2017-01-01

    Numerous studies have revealed widespread clinician frustration with the usability of electronic health records (EHRs) that is counterproductive to adoption of EHR systems to meet the aims of health-care reform. With poor system usability comes increased risk of negative unintended consequences. Usability issues could lead to user error and workarounds that have the potential to compromise patient safety and negatively impact the quality of care.[1] While there is ample research on EHR usability, there is little information on the usability of laboratory information systems (LISs). Yet, LISs facilitate the timely provision of a great deal of the information needed by physicians to make patient care decisions.[2] Medical and technical advances in genomics that require processing of an increased volume of complex laboratory data further underscore the importance of developing user-friendly LISs. This study aims to add to the body of knowledge on LIS usability. A survey was distributed among LIS users at hospitals across the United States. The survey consisted of the ten-item System Usability Scale (SUS). In addition, participants were asked to rate the ease of performing 24 common tasks with a LIS. Finally, respondents provided comments on what they liked and disliked about using the LIS to provide diagnostic insight into LIS perceived usability. The overall mean SUS score of 59.7 for the LIS evaluated is significantly lower than the benchmark of 68 ( P < 0.001). All LISs evaluated received mean SUS scores below 68 except for Orchard Harvest (78.7). While the years of experience using the LIS was found to be a statistically significant influence on mean SUS scores, the combined effect of years of experience and LIS used did not account for the statistically significant difference in the mean SUS score between Orchard Harvest and each of the other LISs evaluated. The results of this study indicate that overall usability of LISs is poor. Usability lags that of systems

  14. Primary Exhaust Cooler at the Propulsion Systems Laboratory

    NASA Image and Video Library

    1952-09-21

    One of the two primary coolers at the Propulsion Systems Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Engines could be run in simulated altitude conditions inside the facility’s two 14-foot-diameter and 24-foot-long test chambers. The Propulsion Systems Laboratory was the nation’s only facility that could run large full-size engine systems in controlled altitude conditions. At the time of this photograph, construction of the facility had recently been completed. Although not a wind tunnel, the Propulsion Systems Laboratory generated high-speed airflow through the interior of the engine. The air flow was pushed through the system by large compressors, adjusted by heating or refrigerating equipment, and de-moisturized by air dryers. The exhaust system served two roles: reducing the density of the air in the test chambers to simulate high altitudes and removing hot gases exhausted by the engines being tested. It was necessary to reduce the temperature of the extremely hot engine exhaust before the air reached the exhauster equipment. As the air flow exited through exhaust section of the test chamber, it entered into the giant primary cooler seen in this photograph. Narrow fins or vanes inside the cooler were filled with water. As the air flow passed between the vanes, its heat was transferred to the cooling water. The cooling water was cycled out of the system, carrying with it much of the exhaust heat.

  15. Experience of quality management system in a clinical laboratory in Nigeria

    PubMed Central

    Sylvester-Ikondu, Ugochukwu; Onwuamah, Chika K.; Salu, Olumuyiwa B.; Ige, Fehintola A.; Meshack, Emily; Aniedobe, Maureen; Amoo, Olufemi S.; Okwuraiwe, Azuka P.; Okhiku, Florence; Okoli, Chika L.; Fasela, Emmanuel O.; Odewale, Ebenezer. O.; Aleshinloye, Roseline O.; Olatunji, Micheal; Idigbe, Emmanuel O.

    2012-01-01

    Issues Quality-management systems (QMS) are uncommon in clinical laboratories in Nigeria, and until recently, none of the nation’s 5 349 clinical laboratories have been able to attain the certifications necessary to begin the process of attaining international accreditation. Nigeria’s Human Virology Laboratory (HVL), however, began implementation of a QMS in 2006, and in 2008 it was determined that the laboratory conformed to the requirements of ISO 9001:2000 (now 2008), making it the first diagnostic laboratory to be certified in Nigeria. The HVL has now applied for the World Health Organization (WHO) accreditation preparedness scheme. The experience of the QMS implementation process and the lessons learned therein are shared here. Description In 2005, two personnel from the HVL spent time studying quality systems in a certified clinical laboratory in Dakar, Senegal. Following this peer-to-peer technical assistance, several training sessions were undertaken by HVL staff, a baseline assessment was conducted, and processes were established. The HVL has monitored its quality indicators and conducted internal and external audits; these analyses (from 2007 to 2009) are presented herein. Lessons learned Although there was improvement in the pre-analytical and analytical indicators analysed and although data-entry errors decreased in the post-analytical process, the delay in returning laboratory test results increased significantly. There were several factors identified as causes for this delay and all of these have now been addressed except for an identified need for automation of some high-volume assays (currently being negotiated). Internal and external audits showed a trend of increasing non-conformities which could be the result of personnel simply becoming lax over time. Application for laboratory accreditation, however, could provide the renewed vigour needed to correct these non-conformities. Recommendation This experience shows that sustainability of the QMS

  16. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energymore » Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition

  17. A Multi-User Remote Academic Laboratory System

    ERIC Educational Resources Information Center

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  18. 2. View, structures in Systems Integration Laboratory complex, looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View, structures in Systems Integration Laboratory complex, looking north. The Components Test Laboratory (T-27) is located in the immediate foreground. Immediately uphill to the left of T-27 is the Boiler Chiller Plant (T-28H). To the left of T-28H is the Oxidizer Conditioning Structure (T-28D). Behind the T-28D is the Long-Term Oxidizer Silo (T-28B). The twin gantry structure at the left is the Systems Integration Laboratory (T-28). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  20. [Formaldehyde-reducing efficiency of a newly developed dissection-table-connected local ventilation system in the gross anatomy laboratory room].

    PubMed

    Shinoda, Koh; Oba, Jun

    2010-03-01

    In compliance with health and safety management guidelines against harmful formaldehyde (FA) levels in the gross anatomy laboratory, we newly developed a dissection-table-connected local ventilation system in 2006. The system was composed of (1) a simple plenum-chambered dissection table with low-cost filters, (2) a transparent vinyl flexible duct for easy mounting and removal, which connects the table and the exhaust pipe laid above the ceiling, and (3) an intake creating a downward-flow of air, which was installed on the ceiling just above each table. The dissection table was also designed as a separate-component system, of which the upper plate and marginal suction inlets can be taken apart for cleaning after dissection, and equipped with opening/closing side-windows for picking up materials dropped during dissection and a container underneath the table to receive exudate from the cadaver through a waste-fluid pipe. The local ventilation system dramatically reduced FA levels to 0.01-0.03 ppm in the gross anatomy laboratory room, resulting in no discomforting FA smell and irritating sensation while preserving the student's view of room and line of flow as well as solving the problems of high maintenance cost, sanitation issues inside the table, and working-inconvenience during dissection practice. Switching ventilation methods or power-modes, the current local ventilation system was demonstrated to be more than ten times efficient in FA reduction compared to the whole-room ventilation system and suggested that 11 m3/min/table in exhaust volume should decrease FA levels in both A- and B-measurements to less than 0.1 ppm in 1000 m3 space containing thirty-one 3.5%-FA-fixed cadavers.

  1. 2. Exterior view of Systems Integration Laboratory Building (T28), looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Exterior view of Systems Integration Laboratory Building (T-28), looking southwest. The low-lying concrete Signal Transfer Building (T-28A) is located in the immediate foreground. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. QCloud: A cloud-based quality control system for mass spectrometry-based proteomics laboratories

    PubMed Central

    Chiva, Cristina; Olivella, Roger; Borràs, Eva; Espadas, Guadalupe; Pastor, Olga; Solé, Amanda

    2018-01-01

    The increasing number of biomedical and translational applications in mass spectrometry-based proteomics poses new analytical challenges and raises the need for automated quality control systems. Despite previous efforts to set standard file formats, data processing workflows and key evaluation parameters for quality control, automated quality control systems are not yet widespread among proteomics laboratories, which limits the acquisition of high-quality results, inter-laboratory comparisons and the assessment of variability of instrumental platforms. Here we present QCloud, a cloud-based system to support proteomics laboratories in daily quality assessment using a user-friendly interface, easy setup, automated data processing and archiving, and unbiased instrument evaluation. QCloud supports the most common targeted and untargeted proteomics workflows, it accepts data formats from different vendors and it enables the annotation of acquired data and reporting incidences. A complete version of the QCloud system has successfully been developed and it is now open to the proteomics community (http://qcloud.crg.eu). QCloud system is an open source project, publicly available under a Creative Commons License Attribution-ShareAlike 4.0. PMID:29324744

  3. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenkman, Benjamin L.

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  4. Anatomic pathology laboratory information systems: a review.

    PubMed

    Park, Seung Lyung; Pantanowitz, Liron; Sharma, Gaurav; Parwani, Anil Vasdev

    2012-03-01

    The modern anatomic pathology laboratory depends on a reliable information infrastructure to register specimens, record gross and microscopic findings, regulate laboratory workflow, formulate and sign out report(s), disseminate them to the intended recipients across the whole health system, and support quality assurance measures. This infrastructure is provided by the Anatomical Pathology Laboratory Information Systems (APLIS), which have evolved over decades and now are beginning to support evolving technologies like asset tracking and digital imaging. As digital pathology transitions from "the way of the future" to "the way of the present," the APLIS continues to be one of the key effective enablers of the scope and practice of pathology. In this review, we discuss the evolution, necessary components, architecture and functionality of the APLIS that are crucial to today's practicing pathologist and address the demands of emerging trends on the future APLIS.

  5. System for Informatics in the Molecular Pathology Laboratory: An Open-Source End-to-End Solution for Next-Generation Sequencing Clinical Data Management.

    PubMed

    Kang, Wenjun; Kadri, Sabah; Puranik, Rutika; Wurst, Michelle N; Patil, Sushant A; Mujacic, Ibro; Benhamed, Sonia; Niu, Nifang; Zhen, Chao Jie; Ameti, Bekim; Long, Bradley C; Galbo, Filipo; Montes, David; Iracheta, Crystal; Gamboa, Venessa L; Lopez, Daisy; Yourshaw, Michael; Lawrence, Carolyn A; Aisner, Dara L; Fitzpatrick, Carrie; McNerney, Megan E; Wang, Y Lynn; Andrade, Jorge; Volchenboum, Samuel L; Furtado, Larissa V; Ritterhouse, Lauren L; Segal, Jeremy P

    2018-04-24

    Next-generation sequencing (NGS) diagnostic assays increasingly are becoming the standard of care in oncology practice. As the scale of an NGS laboratory grows, management of these assays requires organizing large amounts of information, including patient data, laboratory processes, genomic data, as well as variant interpretation and reporting. Although several Laboratory Information Systems and/or Laboratory Information Management Systems are commercially available, they may not meet all of the needs of a given laboratory, in addition to being frequently cost-prohibitive. Herein, we present the System for Informatics in the Molecular Pathology Laboratory, a free and open-source Laboratory Information System/Laboratory Information Management System for academic and nonprofit molecular pathology NGS laboratories, developed at the Genomic and Molecular Pathology Division at the University of Chicago Medicine. The System for Informatics in the Molecular Pathology Laboratory was designed as a modular end-to-end information system to handle all stages of the NGS laboratory workload from test order to reporting. We describe the features of the system, its clinical validation at the Genomic and Molecular Pathology Division at the University of Chicago Medicine, and its installation and testing within a different academic center laboratory (University of Colorado), and we propose a platform for future community co-development and interlaboratory data sharing. Copyright © 2018. Published by Elsevier Inc.

  6. Design and implementation of an online systemic human anatomy course with laboratory.

    PubMed

    Attardi, Stefanie M; Rogers, Kem A

    2015-01-01

    Systemic Human Anatomy is a full credit, upper year undergraduate course with a (prosection) laboratory component at Western University Canada. To meet enrollment demands beyond the physical space of the laboratory facility, a fully online section was developed to run concurrently with the traditional face to face (F2F) course. Lectures given to F2F students are simultaneously broadcasted to online students using collaborative software (Blackboard Collaborate). The same collaborative software is used by a teaching assistant to deliver laboratory demonstrations in which three-dimensional (3D) virtual anatomical models are manipulated. Ten commercial software programs were reviewed to determine their suitability for demonstrating the virtual models, resulting in the selection of Netter's 3D Interactive Anatomy. Supplementary online materials for the central nervous system were developed by creating 360° images of plastinated prosected brain specimens and a website through which they could be accessed. This is the first description of a fully online undergraduate anatomy course with a live, interactive laboratory component. Preliminary data comparing the online and F2F student grades suggest that previous student academic performance, and not course delivery format, predicts performance in anatomy. Future qualitative studies will reveal student perceptions about their learning experiences in both of the course delivery formats. © 2014 American Association of Anatomists.

  7. Sandia National Laboratories: Research: Laboratory Directed Research &

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  8. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov Websites

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  9. Experiential learning in control systems laboratories and engineering project management

    NASA Astrophysics Data System (ADS)

    Reck, Rebecca Marie

    2015, a panel of 40 control systems faculty members, from a variety of institutions, completed a multi-round Delphi survey in order to bring them toward consensus on the common aspects of their laboratories. The following winter, 45 additional faculty members and practitioners from the control systems community completed a follow-up survey to gather feedback on the results of the Delphi survey. During the Delphi study, the panelists identified 15 laboratory objectives, 26 concepts, and 15 components that were common in their laboratories. Then in both the Delphi survey and follow-up survey each participant rated the importance of each of these items. While the average ratings differed slightly between the two groups, the order of each set of items was compared with two different tests and the order was found to be similar. Some of the common and important learning objectives include connecting theory to what is implemented and observed in the laboratory, designing controllers, and modeling and simulating systems. The most common component in both groups was Math-Works software. Some of the common concepts include block diagrams, stability, and PID control. Defining common aspects of undergraduate control systems laboratories enables common development, detailed comparisons, and simplified adaptation of equipment and experiments between campuses and programs. Throughout an undergraduate program in engineering, there are multiple opportunities for hands-on laboratory experiences that are related to course content. However, a similarly immersive experience for project management graduate students is harder to incorporate for all students in a course at once. This study explores an experiential learning opportunity for graduate students in engineering management or project management programs. The project management students enroll in a project management course. Undergraduate students interested in working on a project with a real customer enroll in a different projects

  10. Motion control system of MAX IV Laboratory soft x-ray beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se

    2016-07-27

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to runmore » the scans.« less

  11. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    PubMed

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  12. Importance of Public-Private Partnerships: Strengthening Laboratory Medicine Systems and Clinical Practice in Africa.

    PubMed

    Shrivastava, Ritu; Gadde, Renuka; Nkengasong, John N

    2016-04-15

    After the launch of the US President's Emergency Plan for AIDS Relief in 2003, it became evident that inadequate laboratory systems and services would severely limit the scale-up of human immunodeficiency virus infection prevention, care, and treatment programs. Thus, the Office of the US Global AIDS Coordinator, Centers for Disease Control and Prevention, and Becton, Dickinson and Company developed a public-private partnership (PPP). Between October 2007 and July 2012, the PPP combined the competencies of the public and private sectors to boost sustainable laboratory systems and develop workforce skills in 4 African countries. Key accomplishments of the initiative include measurable and scalable outcomes to strengthen national capacities to build technical skills, develop sample referral networks, map disease prevalence, support evidence-based health programming, and drive continuous quality improvement in laboratories. This report details lessons learned from our experience and a series of recommendations on how to achieve successful PPPs. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. Latest developments at the ALBA magnetic measurements laboratory

    NASA Astrophysics Data System (ADS)

    Marcos, J.; Massana, V.; García, L.; Campmany, J.

    2018-02-01

    ALBA is a third-generation synchrotron light source that has been in operation since 2012 near Barcelona. A magnetic measurements laboratory has been associated with the facility since its very early stages and has been active for the last 20 years. In the first part of this work, the different instruments available at the laboratory are described, and a brief overview of the measurement campaigns carried out during its 20 years of history is presented. In the second part, a more detailed description of the approach to Hall probe measurements adopted at ALBA is offered, with an explanation of the methods and ancillary equipment that have been developed along the years in order to improve the accuracy of the system. In the third part, a new concept of Hall probe bench devoted to the measurement of closed structures is presented. The in-house design and building of a prototype for such a bench is described, together with its mechanical and magnetic characterization. As a conclusion, the first results obtained with this bench are discussed.

  14. Aerospace Energy Systems Laboratory - Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames/Dryden Flight Research Facility operates a mixed fleet of research aircraft employing NiCd batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has evolved over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  15. 1995 Laboratory-Directed Research and Development Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  16. SHynergie: Development of a virtual project laboratory for monitoring hydraulic stimulations

    NASA Astrophysics Data System (ADS)

    Renner, Jörg; Friederich, Wolfgang; Meschke, Günther; Müller, Thomas; Steeb, Holger

    2016-04-01

    Hydraulic stimulations are the primary means of developing subsurface reservoirs regarding the extent of fluid transport in them. The associated creation or conditioning of a system of hydraulic conduits involves a range of hydraulic and mechanical processes but also chemical reactions, such as dissolution and precipitation, may affect the stimulation result on time scales as short as hours. In the light of the extent and complexity of these processes, the steering potential for the operator of a stimulation critically depends on the ability to integrate the maximum amount of site-specific information with profound process understanding and a large spectrum of experience. We report on the development of a virtual project laboratory for monitoring hydraulic stimulations within the project SHynergie (http://www.ruhr-uni-bochum.de/shynergie/). The concept of the laboratory envisioned product that constitutes a preparing and accompanying rather than post-processing instrument ultimately accessible to persons responsible for a project over a web-repository. The virtual laboratory consists of a data base, a toolbox, and a model-building environment. Entries in the data base are of two categories. On the one hand, selected mineral and rock properties are provided from the literature. On the other hand, project-specific entries of any format can be made that are assigned attributes regarding their use in a stimulation problem at hand. The toolbox is interactive and allows the user to perform calculations of effective properties and simulations of different types (e.g., wave propagation in a reservoir, hydraulic test). The model component is also hybrid. The laboratory provides a library of models reflecting a range of scenarios but also allows the user to develop a site-specific model constituting the basis for simulations. The laboratory offers the option to use its components following the typical workflow of a stimulation project. The toolbox incorporates simulation

  17. Laboratory Information Management System (LIMS): A case study

    NASA Technical Reports Server (NTRS)

    Crandall, Karen S.; Auping, Judith V.; Megargle, Robert G.

    1987-01-01

    In the late 70's, a refurbishment of the analytical laboratories serving the Materials Division at NASA Lewis Research Center was undertaken. As part of the modernization efforts, a Laboratory Information Management System (LIMS) was to be included. Preliminary studies indicated a custom-designed system as the best choice in order to satisfy all of the requirements. A scaled down version of the original design has been in operation since 1984. The LIMS, a combination of computer hardware, provides the chemical characterization laboratory with an information data base, a report generator, a user interface, and networking capabilities. This paper is an account of the processes involved in designing and implementing that LIMS.

  18. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noakes, Mark W; Burgess, Thomas W; Rowe, John C

    2011-01-01

    Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrievalmore » categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.« less

  19. Development of a competency based training programme to support multidisciplinary working in a combined biochemistry/haematology laboratory

    PubMed Central

    Woods, R; Longmire, W; Galloway, M; Smellie, W

    2000-01-01

    The aim of this study was to develop a competency based training programme to support multidisciplinary working in a combined biochemistry and haematology laboratory. The training programme was developed to document that staff were trained in the full range of laboratory tests that they were expected to perform. This programme subsequently formed the basis for the annual performance review of all staff. All staff successfully completed the first phase of the programme. This allowed laboratory staff to work unsupervised at night as part of a partial shift system. All staff are now working towards achieving a level of competence equivalent to the training level required for state registration by the Council for Professions Supplementary to Medicine. External evaluation of the training programme has included accreditation by the Council for Professions Supplementary to Medicine and reinspection by Clinical Pathology Accreditation (UK) Ltd. The development of a competency based training system has facilitated the introduction of multidisciplinary working in the laboratory. In addition, it enables the documentation of all staff to ensure that they are fully trained and are keeping up to date, because the continuing professional development programme in use in our laboratory has been linked to this training scheme. This approach to documentation of training facilitated a recent reinspection by Clinical Pathology Accreditation (UK) Ltd. Key Words: Keyword: multidisciplinary working • competency based training PMID:10889827

  20. 24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass, Climatic Building, First Floor Plan, Architectural. Drawing No. 35-07-01, Sheet 2 of 72, 1952, updated to 1985. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  1. 25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass. Climatic Building, First Floor Plan, Refrigeration and Engineering. Drawing No. 35-07-01, Sheet 52 of 72, 1952. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  2. The Binary System Laboratory Activities Based on Students Mental Model

    NASA Astrophysics Data System (ADS)

    Albaiti, A.; Liliasari, S.; Sumarna, O.; Martoprawiro, M. A.

    2017-09-01

    Generic science skills (GSS) are required to develop student conception in learning binary system. The aim of this research was to know the improvement of students GSS through the binary system labotoratory activities based on their mental model using hypothetical-deductive learning cycle. It was a mixed methods embedded experimental model research design. This research involved 15 students of a university in Papua, Indonesia. Essay test of 7 items was used to analyze the improvement of students GSS. Each items was designed to interconnect macroscopic, sub-microscopic and symbolic levels. Students worksheet was used to explore students mental model during investigation in laboratory. The increase of students GSS could be seen in their N-Gain of each GSS indicators. The results were then analyzed descriptively. Students mental model and GSS have been improved from this study. They were interconnect macroscopic and symbolic levels to explain binary systems phenomena. Furthermore, they reconstructed their mental model with interconnecting the three levels of representation in Physical Chemistry. It necessary to integrate the Physical Chemistry Laboratory into a Physical Chemistry course for effectiveness and efficiency.

  3. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia.

    PubMed

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a total of 43 facilities which, were investigated through quantitative methods using structured questionnaires interviews. Focus group discussion with the designated supply chain managers and key informant interviews were conducted for the qualitative method. There exists a well-designed logistics system for laboratory commodities with trained pharmacy personnel, distributed standard LMIS formats and established inventory control procedures. However, majority of laboratory professionals were not trained in LMIS. Majority of the facilities (60.5%) were stocked out for at least one ART monitoring and TB laboratory reagents and the highest stock out rate was for chemistry reagents. Expired ART monitoring laboratory commodities were found in 25 (73.5%) of facilities. Fifty percent (50%) of the assessed hospitals and 54% of health centers were currently using stock/bin cards for all HIV/AIDS and TB laboratory commodities in main pharmacy store, among these only 25% and 20.8% of them were updated with accurate information matching with the physical count done at the time of visit for hospitals and health centers respectively. Even though there exists a well designed laboratory LMIS, keeping quality stock/bin cards and LMIS reports were very low. Key ART monitoring laboratory commodities were stock out at many facilities at the day of visit and during the past six months. Based on findings, training of laboratory personnel's managing laboratory commodities and keeping accurate inventory control procedures

  4. Assessment of laboratory logistics management information system practice for HIV/AIDS and tuberculosis laboratory commodities in selected public health facilities in Addis Ababa, Ethiopia

    PubMed Central

    Desale, Adino; Taye, Bineyam; Belay, Getachew; Nigatu, Alemayehu

    2013-01-01

    Introduction Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods A cross-sectional descriptive study was conducted from September 2010-January 2011 at selected public health facilities. A stratified random sampling method was used to include a total of 43 facilities which, were investigated through quantitative methods using structured questionnaires interviews. Focus group discussion with the designated supply chain managers and key informant interviews were conducted for the qualitative method. Results There exists a well-designed logistics system for laboratory commodities with trained pharmacy personnel, distributed standard LMIS formats and established inventory control procedures. However, majority of laboratory professionals were not trained in LMIS. Majority of the facilities (60.5%) were stocked out for at least one ART monitoring and TB laboratory reagents and the highest stock out rate was for chemistry reagents. Expired ART monitoring laboratory commodities were found in 25 (73.5%) of facilities. Fifty percent (50%) of the assessed hospitals and 54% of health centers were currently using stock/bin cards for all HIV/AIDS and TB laboratory commodities in main pharmacy store, among these only 25% and 20.8% of them were updated with accurate information matching with the physical count done at the time of visit for hospitals and health centers respectively. Conclusion Even though there exists a well designed laboratory LMIS, keeping quality stock/bin cards and LMIS reports were very low. Key ART monitoring laboratory commodities were stock out at many facilities at the day of visit and during the past six months. Based on findings, training of laboratory personnel's managing laboratory commodities and keeping

  5. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  6. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  7. Evaluating Usability in a Distance Digital Systems Laboratory Class

    ERIC Educational Resources Information Center

    Kostaras, N.; Xenos, M.; Skodras, A. N.

    2011-01-01

    This paper presents the usability evaluation of a digital systems laboratory class offered to distance-learning students. It details the way in which students can participate remotely in such a laboratory, the methodology employed in the usability assessment of the laboratory infrastructure (hardware and software), and also outlines the main…

  8. Development of a laboratory niche Web site.

    PubMed

    Dimenstein, Izak B; Dimenstein, Simon I

    2013-10-01

    This technical note presents the development of a methodological laboratory niche Web site. The "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) Web site is used as an example. Although common steps in creation of most Web sites are followed, there are particular requirements for structuring the template's menu on methodological laboratory Web sites. The "nested doll principle," in which one object is placed inside another, most adequately describes the methodological approach to laboratory Web site design. Fragmentation in presenting the Web site's material highlights the discrete parts of the laboratory procedure. An optimally minimal triad of components can be recommended for the creation of a laboratory niche Web site: a main set of media, a blog, and an ancillary component (host, contact, and links). The inclusion of a blog makes the Web site a dynamic forum for professional communication. By forming links and portals, cloud computing opens opportunities for connecting a niche Web site with other Web sites and professional organizations. As an additional source of information exchange, methodological laboratory niche Web sites are destined to parallel both traditional and new forms, such as books, journals, seminars, webinars, and internal educational materials. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Laboratory systems integration: robotics and automation.

    PubMed

    Felder, R A

    1991-01-01

    Robotic technology is going to have a profound impact on the clinical laboratory of the future. Faced with increased pressure to reduce health care spending yet increase services to patients, many laboratories are looking for alternatives to the inflexible or "fixed" automation found in many clinical analyzers. Robots are being examined by many clinical pathologists as an attractive technology which can adapt to the constant changes in laboratory testing. Already, laboratory designs are being altered to accommodate robotics and automated specimen processors. However, the use of robotics and computer intelligence in the clinical laboratory is still in its infancy. Successful examples of robotic automation exist in several laboratories. Investigators have used robots to automate endocrine testing, high performance liquid chromatography, and specimen transportation. Large commercial laboratories are investigating the use of specimen processors which combine the use of fixed automation and robotics. Robotics have also reduced the exposure of medical technologists to specimens infected with viral pathogens. The successful examples of clinical robotics applications were a result of the cooperation of clinical chemists, engineers, and medical technologists. At the University of Virginia we have designed and implemented a robotic critical care laboratory. Initial clinical experience suggests that robotic performance is reliable, however, staff acceptance and utilization requires continuing education. We are also developing a robotic cyclosporine which promises to greatly reduce the labor costs of this analysis. The future will bring lab wide automation that will fully integrate computer artificial intelligence and robotics. Specimens will be transported by mobile robots. Specimen processing, aliquotting, and scheduling will be automated.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Downtime procedures for the 21st century: using a fully integrated health record for uninterrupted electronic reporting of laboratory results during laboratory information system downtimes.

    PubMed

    Oral, Bulent; Cullen, Regina M; Diaz, Danny L; Hod, Eldad A; Kratz, Alexander

    2015-01-01

    Downtimes of the laboratory information system (LIS) or its interface to the electronic medical record (EMR) disrupt the reporting of laboratory results. Traditionally, laboratories have relied on paper-based or phone-based reporting methods during these events. We developed a novel downtime procedure that combines advance placement of orders by clinicians for planned downtimes, the printing of laboratory results from instruments, and scanning of the instrument printouts into our EMR. The new procedure allows the analysis of samples from planned phlebotomies with no delays, even during LIS downtimes. It also enables the electronic reporting of all clinically urgent results during downtimes, including intensive care and emergency department samples, thereby largely avoiding paper- and phone-based communication of laboratory results. With the capabilities of EMRs and LISs rapidly evolving, information technology (IT) teams, laboratories, and clinicians need to collaborate closely, review their systems' capabilities, and design innovative ways to apply all available IT functions to optimize patient care during downtimes. Copyright© by the American Society for Clinical Pathology.

  11. Laboratory Directed Research and Development Program FY 2006 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about themore » FY 2006 projects and an internal evaluation of the program's management process.« less

  12. A Systematic Approach to Capacity Strengthening of Laboratory Systems for Control of Neglected Tropical Diseases in Ghana, Kenya, Malawi and Sri Lanka

    PubMed Central

    Njelesani, Janet; Dacombe, Russell; Palmer, Tanith; Smith, Helen; Koudou, Benjamin; Bockarie, Moses; Bates, Imelda

    2014-01-01

    Background The lack of capacity in laboratory systems is a major barrier to achieving the aims of the London Declaration (2012) on neglected tropical diseases (NTDs). To counter this, capacity strengthening initiatives have been carried out in NTD laboratories worldwide. Many of these initiatives focus on individuals' skills or institutional processes and structures ignoring the crucial interactions between the laboratory and the wider national and international context. Furthermore, rigorous methods to assess these initiatives once they have been implemented are scarce. To address these gaps we developed a set of assessment and monitoring tools that can be used to determine the capacities required and achieved by laboratory systems at the individual, organizational, and national/international levels to support the control of NTDs. Methodology and principal findings We developed a set of qualitative and quantitative assessment and monitoring tools based on published evidence on optimal laboratory capacity. We implemented the tools with laboratory managers in Ghana, Malawi, Kenya, and Sri Lanka. Using the tools enabled us to identify strengths and gaps in the laboratory systems from the following perspectives: laboratory quality benchmarked against ISO 15189 standards, the potential for the laboratories to provide support to national and regional NTD control programmes, and the laboratory's position within relevant national and international networks and collaborations. Conclusion We have developed a set of mixed methods assessment and monitoring tools based on evidence derived from the components needed to strengthen the capacity of laboratory systems to control NTDs. Our tools help to systematically assess and monitor individual, organizational, and wider system level capacity of laboratory systems for NTD control and can be applied in different country contexts. PMID:24603407

  13. Innovative ventilation system for animal anatomy laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, D.R.; Smith, D.C.

    1997-04-01

    A unique ventilation system was designed and built to reduce formaldehyde fumes in the large animal anatomy lab at the Vet Medical Center at Cornell University. The laboratory includes four rooms totaling 5,500 ft{sup 2}. The main room has 2,300 ft{sup 2} and houses the laboratory where up to 60 students dissect as many as 12 horses at a time. Other rooms are a cold storage locker, an animal preparation room and a smaller lab for specialized instruction. The large animal anatomy laboratory has a history of air quality complaints despite a fairly high ventilation rate of over 10 airmore » changes/hour. The horses are embalmed, creating a voluminous source of formaldehyde and phenol vapors. Budget constraints and increasingly stringent exposure limits for formaldehyde presented a great challenge to design a ventilation system that yields acceptable air quality. The design solution included two innovative elements: air-to-air heat recovery, and focused ventilation.« less

  14. Laboratory Directed Research and Development FY 2000 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R

    This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

  15. 1. View, structures in Systems Integration Laboratory complex, looking northwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View, structures in Systems Integration Laboratory complex, looking northwest. The twin gantry structure in the center is the Systems Integration Laboratory (T-28). To its immediate left in the foreground is a truck well, concrete retaining wall, piping, and stack associated with the oxidizer vault storage area. To the immediate right of T-28 is the concrete Signal Transfer Building (T-28A). At the extreme right is the Long-Term Hydrazine Silo (T-28E). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  16. [Development of novel laboratory technology--Chairmen's introductory remarks].

    PubMed

    Maekawa, Masato; Ando, Yukio

    2012-07-01

    The theme of the 58th annual meeting is, "Mission and Challenge of Laboratory Medicine". This symposium is named, "Development of Novel Laboratory Technology" and is held under the joint sponsorship of the Japanese Society of Clinical Chemistry and the Japanese Electrophoresis Society. Both societies have superior skills at developing methodology and technology. The tools used in the lectures are a carbon nanotube sensor, immunochromatography, direct measurement using polyanions and detergents, epigenomic analysis and fluorescent two-dimensional electrophoresis. All of the lectures will be very helpful and interesting.

  17. Pellet injector development at ORNL (Oak Ridge National Laboratory)

    NASA Astrophysics Data System (ADS)

    Gouge, M. J.; Argo, B. E.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; Fisher, P. W.; Foster, C. A.; Foust, C. R.; Milora, S. L.; Qualls, A. L.

    1990-09-01

    Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988 to 1989. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low (sup 3)He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2 to 10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2 to 3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor.

  18. Laboratory directed research and development FY98 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNLmore » with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.« less

  19. Security alarm communication and display systems development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddoups, I.G.

    1990-01-01

    Sandia National Laboratories has developed a variety of alarm communication and display systems for a broad spectrum of users. This paper will briefly describe the latest systems developed for the Department of Energy (DOE), the Department of Defense (DoD), and the Department of State (DOS) applications. Applications covered will vary from relatively small facilities to large complex sites. Ongoing system developments will also be discussed. The concluding section will summarize the practical, implementable state-of-the-art features available in new systems. 6 figs.

  20. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  1. Laboratory Directed Research and Development Program Activities for FY 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and

  2. Laboratory Directed Research and Development FY-15 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  3. Renewable energy technology development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  4. Valid methods: the quality assurance of test method development, validation, approval, and transfer for veterinary testing laboratories.

    PubMed

    Wiegers, Ann L

    2003-07-01

    Third-party accreditation is a valuable tool to demonstrate a laboratory's competence to conduct testing. Accreditation, internationally and in the United States, has been discussed previously. However, accreditation is only I part of establishing data credibility. A validated test method is the first component of a valid measurement system. Validation is defined as confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled. The international and national standard ISO/IEC 17025 recognizes the importance of validated methods and requires that laboratory-developed methods or methods adopted by the laboratory be appropriate for the intended use. Validated methods are therefore required and their use agreed to by the client (i.e., end users of the test results such as veterinarians, animal health programs, and owners). ISO/IEC 17025 also requires that the introduction of methods developed by the laboratory for its own use be a planned activity conducted by qualified personnel with adequate resources. This article discusses considerations and recommendations for the conduct of veterinary diagnostic test method development, validation, evaluation, approval, and transfer to the user laboratory in the ISO/IEC 17025 environment. These recommendations are based on those of nationally and internationally accepted standards and guidelines, as well as those of reputable and experienced technical bodies. They are also based on the author's experience in the evaluation of method development and transfer projects, validation data, and the implementation of quality management systems in the area of method development.

  5. Pollution monitoring system. [photographic laboratory by-products

    NASA Technical Reports Server (NTRS)

    Goodding, R. A.

    1973-01-01

    An investigation was undertaken to identify those photographic laboratory by-products which can produce harmful reactions if released untreated. After identification of these by-products, specific monitoring systems for each of the offending ions were investigated and recommendations for implementation are presented. Appropriate monitoring systems are discussed.

  6. Bar-Code System for a Microbiological Laboratory

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Kirschner, Larry

    2007-01-01

    A bar-code system has been assembled for a microbiological laboratory that must examine a large number of samples. The system includes a commercial bar-code reader, computer hardware and software components, plus custom-designed database software. The software generates a user-friendly, menu-driven interface.

  7. Using Modified Fagan Inspections to Control Rapid System Development

    NASA Technical Reports Server (NTRS)

    Griesel, M. A.; Welz, L. L.

    1994-01-01

    The Jet Propulsion Laboratory (JPL) has been developing new approaches to software and system development to shorten life cycle time and reduce total life-cycle cost, while maintaining product quality. One such approach has been taken by the Just-In-Time (JIT) Materiel Acquisition System Development Project.

  8. [Standardization of operation monitoring and control of the clinical laboratory automation system].

    PubMed

    Tao, R

    2000-10-01

    Laboratory automation systems showed up in the 1980s and have been introduced to many clinical laboratories since early 1990s. Meanwhile, it was found that the difference in the specimen tube dimensions, specimen identification formats, specimen carrier transportation equipment architecture, electromechanical interfaces between the analyzers and the automation systems was preventing the systems from being introduced to a wider extent. To standardize the different interfaces and reduce the cost of laboratory automation, NCCLS and JCCLS started establishing standards for laboratory automation in 1996 and 1997 respectively. Operation monitoring and control of the laboratory automation system have been included in their activities, resulting in the publication of an NCCLS proposed standard in 1999.

  9. Pathfinder radar development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Castillo, Steven

    2016-05-01

    Since the invention of Synthetic Aperture Radar imaging in the 1950's, users or potential users have sought to exploit SAR imagery for a variety of applications including the earth sciences and defense. At Sandia Laboratories, SAR Research and Development and associated defense applications grew out of the nuclear weapons program in the 1980's and over the years has become a highly viable ISR sensor for a variety of tactical applications. Sandia SAR systems excel where real-­-time, high-­-resolution, all-­-weather, day or night surveillance is required for developing situational awareness. This presentation will discuss the various aspects of Sandia's airborne ISR capability with respect to issues related to current operational success as well as the future direction of the capability as Sandia seeks to improve the SAR capability it delivers into multiple mission scenarios. Issues discussed include fundamental radar capabilities, advanced exploitation techniques and human-­-computer interface (HMI) challenges that are part of the advances required to maintain Sandia's ability to continue to support ever changing and demanding mission challenges.

  10. Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development

    DTIC Science & Technology

    2016-09-01

    ARL-TN-0779 ● SEP 2016 US Army Research Laboratory Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and...Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development by Neal Tesny Sensors and Electron Devices Directorate...TITLE AND SUBTITLE Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development 5a. CONTRACT NUMBER 5b

  11. Laboratory Directed Research and Development Program Assessment for FY 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities

  12. Laboratory evaluation of the pointing stability of the ASPS Vernier System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The annular suspension and pointing system (ASPS) is an end-mount experiment pointing system designed for use in the space shuttle. The results of the ASPS Vernier System (AVS) pointing stability tests conducted in a laboratory environment are documented. A simulated zero-G suspension was used to support the test payload in the laboratory. The AVS and the suspension were modelled and incorporated into a simulation of the laboratory test. Error sources were identified and pointing stability sensitivities were determined via simulation. Statistical predictions of laboratory test performance were derived and compared to actual laboratory test results. The predicted mean pointing stability during simulated shuttle disturbances was 1.22 arc seconds; the actual mean laboratory test pointing stability was 1.36 arc seconds. The successful prediction of laboratory test results provides increased confidence in the analytical understanding of the AVS magnetic bearing technology and allows confident prediction of in-flight performance. Computer simulations of ASPS, operating in the shuttle disturbance environment, predict in-flight pointing stability errors less than 0.01 arc seconds.

  13. Laboratory equipment maintenance: a critical bottleneck for strengthening health systems in sub-Saharan Africa?

    PubMed

    Fonjungo, Peter N; Kebede, Yenew; Messele, Tsehaynesh; Ayana, Gonfa; Tibesso, Gudeta; Abebe, Almaz; Nkengasong, John N; Kenyon, Thomas

    2012-02-01

    Properly functioning laboratory equipment is a critical component for strengthening health systems in developing countries. The laboratory can be an entry point to improve population health and care of individuals for targeted diseases - prevention, care, and treatment of TB, HIV/AIDS, and malaria, plus maternal and neonatal health - as well as those lacking specific attention and funding. We review the benefits and persistent challenges associated with sustaining laboratory equipment maintenance. We propose equipment management policies as well as a comprehensive equipment maintenance strategy that would involve equipment manufacturers and strengthen local capacity through pre-service training of biomedical engineers. Strong country leadership and commitment are needed to assure development and sustained implementation of policies and strategies for standardization of equipment, and regulation of its procurement, donation, disposal, and replacement.

  14. Laboratory directed research and development fy1999 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensuremore » that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD

  15. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  16. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Wester

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals thatmore » were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.« less

  17. Information Management Systems in the Undergraduate Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Merrer, Robert J.

    1985-01-01

    Discusses two applications of Laboratory Information Management Systems (LIMS) in the undergraduate laboratory. They are the coulometric titration of thiosulfate with electrogenerated triiodide ion and the atomic absorption determination of calcium using both analytical calibration curve and standard addition methods. (JN)

  18. Process Development in the Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Klein, Leonard C.; Dana, Susanne M.

    1998-06-01

    Many experiences in high school and undergraduate laboratories are well-tested cookbook recipes that have already been designed to yield optimal results; the well-known synthesis of aspirin is such an example. In this project for advanced placement or second-year high school chemistry students, students mimic the process development in industrial laboratories by investigating the effect of varying conditions in the synthesis of aspirin. The class decides on criteria that should be explored (quantity of catalyst, temperature of reaction, etc.). The class is then divided into several teams with each team assigned a variable to study. Each team must submit a proposal describing how they will explore the variable before they start their study. After data on yield and purity has been gathered and evaluated, students discuss which method is most desirable, based on their agreed-upon criteria. This exercise provides an opportunity for students to review many topics from the course (rate of reaction, limiting reagents, Beer's Law) while participating in a cooperative exercise designed to imitate industrial process development.

  19. Development of a paperless, Y2K compliant exposure tracking database at Los Alamos National Laboratory.

    PubMed

    Conwell, J L; Creek, K L; Pozzi, A R; Whyte, H M

    2001-02-01

    The Industrial Hygiene and Safety Group at Los Alamos National Laboratory (LANL) developed a database application known as IH DataView, which manages industrial hygiene monitoring data. IH DataView replaces a LANL legacy system, IHSD, that restricted user access to a single point of data entry needed enhancements that support new operational requirements, and was not Year 2000 (Y2K) compliant. IH DataView features a comprehensive suite of data collection and tracking capabilities. Through the use of Oracle database management and application development tools, the system is Y2K compliant and Web enabled for easy deployment and user access via the Internet. System accessibility is particularly important because LANL operations are spread over 43 square miles, and industrial hygienists (IHs) located across the laboratory will use the system. IH DataView shows promise of being useful in the future because it eliminates these problems. It has a flexible architecture and sophisticated capability to collect, track, and analyze data in easy-to-use form.

  20. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  1. Laboratory information management system: an example of international cooperation in Namibia.

    PubMed

    Colangeli, Patrizia; Ferrilli, Monica; Quaranta, Fabrizio; Malizia, Elio; Mbulu, Rosa-Stella; Mukete, Esther; Iipumbu, Lukas; Kamhulu, Anna; Tjipura-Zaire, Georgina; Di Francesco, Cesare; Lelli, Rossella; Scacchia, Massimo

    2012-01-01

    The authors describe the project undertaken by the Istituto G. Caporale to provide a laboratory information management system (LIMS) to the Central Veterinary Laboratory (CVL) in Windhoek, Namibia. This robust laboratory management tool satisfies Namibia's information obligations under international quality standard ISO 17025:2005. The Laboratory Information Management System (LIMS) for Africa was designed to collect and manage all necessary information on samples, tests and test results. The system involves the entry of sample data on arrival, as required by Namibian sampling plans, the tracking of samples through the various sections of the CVL, the collection of test results, generation of test reports and monitoring of outbreaks through data interrogation functions, eliminating multiple registrations of the same data on paper records. It is a fundamental component of the Namibian veterinary information system.

  2. Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2013-09-01

    Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.

  3. New developments in digital pathology: from telepathology to virtual pathology laboratory.

    PubMed

    Kayser, Klaus; Kayser, Gian; Radziszowski, Dominik; Oehmann, Alexander

    2004-01-01

    To analyse the present status and future development of computerized diagnostic pathology in terms of work-flow integrative telepathology and virtual laboratory. Telepathology has left its childhood. The technical development of telepathology is mature, in contrast to that of virtual pathology. Two kinds of virtual pathology laboratories are emerging: a) those with distributed pathologists and distributed (>=1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists working in a centralized laboratory. Both are under technical development. Telepathology can be used for e-learning and e-training in pathology, as exemplarily demonstrated on Digital Lung Pathology Pathology (www.pathology-online.org). A virtual pathology institution (mode a) accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size of images has to be limited, and usual different magnifications have to be used. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. First experiences of a virtual pathology institution group working with the iPATH server (Dr. L. Banach, Dr. G. Haroske, Dr. I. Hurwitz, Dr. K. Kayser, Dr. K.D. Kunze, Dr. M. Oberholzer,) working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalisation of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalisation is still under

  4. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    PubMed

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  5. The Laboratory Efficiencies Initiative: Partnership for Building a Sustainable National Public Health Laboratory System

    PubMed Central

    Moulton, Anthony D.; Ned, Renée M.; Nicholson, Janet K.A.; Chu, May C.; Becker, Scott J.; Blank, Eric C.; Breckenridge, Karen J.; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners. PMID:23997300

  6. Development of sensorial experiments and their implementation into undergraduate laboratories

    NASA Astrophysics Data System (ADS)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  7. Development of the HERMIES III mobile robot research testbed at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manges, W.W.; Hamel, W.R.; Weisbin, C.R.

    1988-01-01

    The latest robot in the Hostile Environment Robotic Machine Intelligence Experiment Series (HERMIES) is now under development at the Center for Engineering Systems Advanced Research (CESAR) in the Oak Ridge National Laboratory. The HERMIES III robot incorporates a larger than human size 7-degree-of-freedom manipulator mounted on a 2-degree-of-freedom mobile platform including a variety of sensors and computers. The deployment of this robot represents a significant increase in research capabilities for the CESAR laboratory. The initial on-board computer capacity of the robot exceeds that of 20 Vax 11/780s. The navigation and vision algorithms under development make extensive use of the on-boardmore » NCUBE hypercube computer while the sensors are interfaced through five VME computers running the OS-9 real-time, multitasking operating system. This paper describes the motivation, key issues, and detailed design trade-offs of implementing the first phase (basic functionality) of the HERMIES III robot. 10 refs., 7 figs.« less

  8. Laboratory Directed Research and Development Program FY98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less

  9. Application of the Toyota Production System improves core laboratory operations.

    PubMed

    Rutledge, Joe; Xu, Min; Simpson, Joanne

    2010-01-01

    To meet the increased clinical demands of our hospital expansion, improve quality, and reduce costs, our tertiary care, pediatric core laboratory used the Toyota Production System lean processing to reorganize our 24-hour, 7 d/wk core laboratory. A 4-month, consultant-driven process removed waste, led to a physical reset of the space to match the work flow, and developed a work cell for our random access analyzers. In addition, visual controls, single piece flow, standard work, and "5S" were instituted. The new design met our goals as reflected by achieving and maintaining improved turnaround time (TAT; mean for creatinine reduced from 54 to 23 minutes) with increased testing volume (20%), monetary savings (4 full-time equivalents), decreased variability in TAT, and better space utilization (25% gain). The project had the unanticipated consequence of eliminating STAT testing because our in-laboratory TAT for routine testing was less than our prior STAT turnaround goal. The viability of this approach is demonstrated by sustained gains and further PDCA (Plan, Do, Check, Act) improvements during the 4 years after completion of the project.

  10. Development of mobile laboratory for viral haemorrhagic fever detection in Africa.

    PubMed

    Weidmann, Manfred; Faye, Ousmane; Faye, Oumar; Abd El Wahed, Ahmed; Patel, Pranav; Batejat, Christophe; Manugerra, Jean Claude; Adjami, Aimee; Niedrig, Matthias; Hufert, Frank T; Sall, Amadou A

    2018-06-15

    In order to enable local response to viral haemorrhagic fever outbreaks a mobile laboratory transportable on commercial flights was developed. The development progressed from use of mobile real time RT-PCR to mobile Recombinase Polymerase Amplification (RT-RPA). The various stages of the mobile laboratory development are described. A brief overview of its deployments, which culminated in the first on site detection of Ebola virus disease (EVD) in March 2014 and a successful use in a campaign to roll back EVD cases in Conakry in the West-Africa Ebola virus outbreak are described. The developed mobile laboratory successfully enabled local teams to perform rapid viral haemorrhagic fever disgnostics.

  11. Developing a gate-array capability at a research and development laboratory

    NASA Astrophysics Data System (ADS)

    Balch, J. W.; Current, K. W.; Magnuson, W. G., Jr.; Pocha, M. D.

    1983-03-01

    Experiences in developing a gate array capability for low volume applications in a research and development (R and D) laboratory are described. By purchasing unfinished wafers and doing the customization steps in-house. Turnaround time was shortened to as little as one week and the direct costs reduced to as low as $5K per design. Designs generally require fast turnaround (a few weeks to a few months) and very low volumes (1 to 25). Design costs must be kept at a minimum. After reviewing available commercial gate array design and fabrication services, it was determined that objectives would best be met by using existing internal integrated circuit fabrication facilities, the COMPUTERVISION interactive graphics layout system, and extensive computational capabilities. The reasons and the approach taken for; selection for a particular gate array wafer, adapting a particular logic simulation program, and how layout aids were enhanced are discussed. Testing of the customized chips is described. The content, schedule, and results of the internal gate array course recently completed are discussed. Finally, problem areas and near term plans are presented.

  12. Sandia National Laboratories: Integrated Military Systems

    Science.gov Websites

    Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  13. Development of the Design Laboratory.

    ERIC Educational Resources Information Center

    Silla, Harry

    1986-01-01

    Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)

  14. DB4US: A Decision Support System for Laboratory Information Management

    PubMed Central

    Hortas, Maria Luisa; Baena-García, Manuel; Lana-Linati, Jorge; González, Carlos; Redondo, Maximino; Morales-Bueno, Rafael

    2012-01-01

    Background Until recently, laboratory automation has focused primarily on improving hardware. Future advances are concentrated on intelligent software since laboratories performing clinical diagnostic testing require improved information systems to address their data processing needs. In this paper, we propose DB4US, an application that automates information related to laboratory quality indicators information. Currently, there is a lack of ready-to-use management quality measures. This application addresses this deficiency through the extraction, consolidation, statistical analysis, and visualization of data related to the use of demographics, reagents, and turn-around times. The design and implementation issues, as well as the technologies used for the implementation of this system, are discussed in this paper. Objective To develop a general methodology that integrates the computation of ready-to-use management quality measures and a dashboard to easily analyze the overall performance of a laboratory, as well as automatically detect anomalies or errors. The novelty of our approach lies in the application of integrated web-based dashboards as an information management system in hospital laboratories. Methods We propose a new methodology for laboratory information management based on the extraction, consolidation, statistical analysis, and visualization of data related to demographics, reagents, and turn-around times, offering a dashboard-like user web interface to the laboratory manager. The methodology comprises a unified data warehouse that stores and consolidates multidimensional data from different data sources. The methodology is illustrated through the implementation and validation of DB4US, a novel web application based on this methodology that constructs an interface to obtain ready-to-use indicators, and offers the possibility to drill down from high-level metrics to more detailed summaries. The offered indicators are calculated beforehand so that they

  15. DB4US: A Decision Support System for Laboratory Information Management.

    PubMed

    Carmona-Cejudo, José M; Hortas, Maria Luisa; Baena-García, Manuel; Lana-Linati, Jorge; González, Carlos; Redondo, Maximino; Morales-Bueno, Rafael

    2012-11-14

    Until recently, laboratory automation has focused primarily on improving hardware. Future advances are concentrated on intelligent software since laboratories performing clinical diagnostic testing require improved information systems to address their data processing needs. In this paper, we propose DB4US, an application that automates information related to laboratory quality indicators information. Currently, there is a lack of ready-to-use management quality measures. This application addresses this deficiency through the extraction, consolidation, statistical analysis, and visualization of data related to the use of demographics, reagents, and turn-around times. The design and implementation issues, as well as the technologies used for the implementation of this system, are discussed in this paper. To develop a general methodology that integrates the computation of ready-to-use management quality measures and a dashboard to easily analyze the overall performance of a laboratory, as well as automatically detect anomalies or errors. The novelty of our approach lies in the application of integrated web-based dashboards as an information management system in hospital laboratories. We propose a new methodology for laboratory information management based on the extraction, consolidation, statistical analysis, and visualization of data related to demographics, reagents, and turn-around times, offering a dashboard-like user web interface to the laboratory manager. The methodology comprises a unified data warehouse that stores and consolidates multidimensional data from different data sources. The methodology is illustrated through the implementation and validation of DB4US, a novel web application based on this methodology that constructs an interface to obtain ready-to-use indicators, and offers the possibility to drill down from high-level metrics to more detailed summaries. The offered indicators are calculated beforehand so that they are ready to use when the user

  16. Laboratory practice at the periphery in developing countries.

    PubMed

    Lewis, S M

    2002-08-01

    An effective national health service structure requires a comprehensive programme for primary health care in peripheral and rural areas. This is especially important in under-resourced countries where facilities are sparse, the population is widely dispersed and transport is limited. Haematology has a key role in diagnosis and patient management by selecting tests for their clinical relevance and utility for the specific circumstances, and ensuring their technical reliability when used in health clinics and point-of-care testing. WHO has proposed a basic menu of tests in three categories: (a) tests such as haemoglobin screen which can be performed by nurses, midwives, health-aides or community doctors, (b) tests such as haemoglobinometry, microhaematocrit and microscopic examination of stained preparations which can be performed by a technician or laboratory assistant in a health centre, (c) tests requiring greater technical expertise of a laboratory technician or trained doctor. The peripheral health clinics and district laboratories must be familiar with the guidelines on standardized methods for collecting and storing specimens and transporting them to a regional laboratory or a reference centre. A training syllabus should be provided at the health centres and district laboratories, and this should include on-site instruction from supervisors and access to training manuals and distance-learning material. A co-ordinated programme of quality assurance and standardization of test methods should be established by a reference centre or national health authority with a network which encompasses all laboratories and health clinics undertaking any tests. Each regional laboratory should foster lower level laboratories or clinics within its neighbourhood. Of particular concern is the reliable diagnosis and management of anaemia. WHO reports indicate that 40% of the world population suffer from anaemia, especially affecting pregnant women, and a high proportion of infants

  17. The aerospace energy systems laboratory: Hardware and software implementation

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneil-Rood, Nora

    1989-01-01

    For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.

  18. Improved Undergraduate Astronomy Laboratories with A Modern Telescope Control System

    NASA Astrophysics Data System (ADS)

    Milano, Anthony J.; Broder, D.; Finn, R.; Newberg, H.; Weatherwax, A.; Whittet, D.

    2006-12-01

    We are in the middle of a cooperative astronomy education project to improve undergraduate laboratories at RPI (a PhD granting institution) and Siena College (a nearby liberal arts college). We have completed an overhaul of a 40-year-old, 16" B&C telescope on the RPI campus, and have made it available for hundreds of students at both schools, and once per week to the public. We have written an assessment test which was distributed to the students at the beginning and end of the Fall 2006 semester, which will be used as a baseline to determine whether the laboratory activities, which are currently under development, improve student learning in the Fall 2007 semester next year. The studio-style, hands-on, inquiry-based laboratories will be designed to challenge student misconceptions. In order to handle a large number of students using the main telescope and a limited number of smaller telescopes, we will cycle students through concurrent activities. This is enabled by the rapid acquisition and imaging of targets made possible by the upgrade to the control system of our 16" telescope. We demonstrate the productivity of our newly refurbished telescope, show the baseline results of our assessment, and present samples of activities under development. This project is funded by an NSF CCLI grant, 05-11340.

  19. Laboratory services series: a programmed maintenance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuxbury, D.C.; Srite, B.E.

    1980-01-01

    The diverse facilities, operations and equipment at a major national research and development laboratory require a systematic, analytical approach to operating equipment maintenance. A computer-scheduled preventive maintenance program is described including program development, equipment identification, maintenance and inspection instructions, scheduling, personnel, and equipment history.

  20. Iroquois Engine for the Avro Arrow in the Propulsion Systems Laboratory

    NASA Image and Video Library

    1957-08-21

    A researcher examines the Orenda Iroquois PS.13 turbojet in a Propulsion Systems Laboratory test chamber at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The Iroquois was being developed to power the CF-105 Arrow fighter designed by the Avro Canada Company. Avro began design work on the Arrow jet fighter in 1952. The company’s Orenda branch suggested building a titanium-based PS.13 Iroquois engine after development problems arose with the British engines that Avro had originally intended to use. The 10-stage, 20,000-pound-thrust Iroquois would prove to be more powerful than any contemporary US or British turbojet. It was also significantly lighter and more fuel efficient. An Iroquois was sent to Cleveland in April 1957 so that Lewis researchers could study the engine’s basic performance for the air force in the Propulsion Systems Laboratory. The tests were run over a wide range of speeds and altitudes with variations in exhaust-nozzle area. Initial studies determined the Iroquois’s windmilling and ignition characteristics at high altitude. After operating for 64 minutes, the engine was reignited at altitudes up to the 63,000-foot limit of the facility. Various modifications were attempted to reduce the occurrence of stall but did not totally eradicate the problem. The Arrow jet fighter made its initial flight in March 1958 powered by a substitute engine. In February 1959, however, both the engine and the aircraft programs were cancelled. The world’s superpowers had quickly transitioned from bombers to ballistic missiles which rendered the Avro Arrow prematurely obsolete.

  1. ["How can hospitals develop a beneficial relationship with laboratory testing companies?" - Chairmen's introductory remarks].

    PubMed

    Morita, Toshisuke; Kawano, Seiji

    2014-12-01

    The symposium was held with the Japanese Society of Laboratory Medicine and JACLaP to discuss the way to develop a beneficial relationship between hospitals and laboratory testing companies with co-chairing by Seiji Kawano, Kobe University and Toshisuke Morita, Toho University. Clinical testing is considered to be essential for medical diagnosis and treatment; however, it is difficult for a hospital to perform all clinical testing for various reasons, including cost-effectiveness. In this session, 4 guest speakers gave a talk from their viewpoints. Doctor Kawano talked about the results of a questionnaire filled out by 114 university hospitals on how to develop a beneficial relationship between hospitalsoand laboratory testing companies. Next, Mr. Shinji Ogawa, president and CEO of SRL, talked about favorable ways to utilize laboratory testing companies, sayingthat such companies, which have a variety of skills, are expected to offer new and advanced technologies to hospitals continuously, and abundant data which laboratory testing companies have should be used for the advancement of community medicine. Professor Koshiba, Hyogo Medical School, expressed his apprehension to develop a so-called branch lab. in university hospitals from his own experience, and concluded that a beneficial relationship with companies to perform tasks required by hospitals should be sought. The last speaker, Yuichi Setoyama, Mitsubishi Chemical Medience, talked about the new relationship between hospitals and laboratory testing companies, and emphasized that hospitals and such companies should know the strong and weak points of each other and build a mutually complementary system. After all presentations were over, a discussion with participants was held. Doctors of clinics said that the role of laboratory testing companies for large hospitals is different from that for small clinics, and such companies are indispensable for his everyday medical activities. Each medical institute has its

  2. Laboratory Control System's Effects on Student Achievement and Attitudes

    ERIC Educational Resources Information Center

    Cicek, Fatma Gozalan; Taspinar, Mehmet

    2016-01-01

    Problem Statement: The current study investigates whether the learning environment designed based on the laboratory control system affects the academic achievement, the attitude toward the learning-teaching process and the retention of the students in computer education. Purpose of Study: The study aims to identify the laboratory control system…

  3. Flowing recirculated-water system for inducing laboratory spawning of sea lampreys

    USGS Publications Warehouse

    Fredricks, Kim T.; Seelye, James G.

    1995-01-01

    We describe a water-recirculating system for inducing spawning of sea lampreys (Petromyzon marinus) held under laboratory conditions. Water temperature in the system was gradually increased to and maintained at 18 +/- 2 degrees C, the optimal temperature for spawning. About 10% freshwater was added daily to prevent buildup of waste products. Sea lampreys were provided substrate (approximately 3-6 cm in diameter) to build nests, and a water velocity of 0.2-0.3 m/s was maintained with an electric trolling motor. Sea lampreys held in this system exhibited characteristic spawning behavior. Prolarvae produced from artificial fertilization of gametes developed according to the standard timeline.

  4. Evaluation of the implementation of a quality system in a basic research laboratory: viability and impacts.

    PubMed

    Fraga, Hilda Carolina de Jesus Rios; Fukutani, Kiyoshi Ferreira; Celes, Fabiana Santana; Barral, Aldina Maria Prado; Oliveira, Camila Indiani de

    2012-01-01

    To evaluate the process of implementing a quality management system in a basic research laboratory of a public institution, particularly considering the feasibility and impacts of this improvement. This was a prospective and qualitative study. We employed the norm "NIT DICLA 035--Princípios das Boas Práticas de Laboratório (BPL)" and auxiliary documents of Organisation for Economic Co-operation and Development to complement the planning and implementation of a Quality System, in a basic research laboratory. In parallel, we used the PDCA tool to define the goals of each phase of the implementation process. This study enabled the laboratory to comply with the NIT DICLA 035 norm and to implement this norm during execution of a research study. Accordingly, documents were prepared and routines were established such as the registration of non-conformities, traceability of research data and equipment calibration. The implementation of a quality system, the setting of a laboratory focused on basic research is feasible once certain structural changes are made. Importantly, impacts were noticed during the process, which could be related to several improvements in the laboratory routine.

  5. Evaluation of FNS control systems: software development and sensor characterization.

    PubMed

    Riess, J; Abbas, J J

    1997-01-01

    Functional Neuromuscular Stimulation (FNS) systems activate paralyzed limbs by electrically stimulating motor neurons. These systems have been used to restore functions such as standing and stepping in people with thoracic level spinal cord injury. Research in our laboratory is directed at the design and evaluation of the control algorithms for generating posture and movement. This paper describes software developed for implementing FNS control systems and the characterization of a sensor system used to implement and evaluate controllers in the laboratory. In order to assess FNS control algorithms, we have developed a versatile software package using Lab VIEW (National Instruments, Corp). This package provides the ability to interface with sensor systems via serial port or A/D board, implement data processing and real-time control algorithms, and interface with neuromuscular stimulation devices. In our laboratory, we use the Flock of Birds (Ascension Technology Corp.) motion tracking sensor system to monitor limb segment position and orientation (6 degrees of freedom). Errors in the sensor system have been characterized and nonlinear polynomial models have been developed to account for these errors. With this compensation, the error in the distance measurement is reduced by 90 % so that the maximum error is less than 1 cm.

  6. An Environment for Incremental Development of Distributed Extensible Asynchronous Real-time Systems

    NASA Technical Reports Server (NTRS)

    Ames, Charles K.; Burleigh, Scott; Briggs, Hugh C.; Auernheimer, Brent

    1996-01-01

    Incremental parallel development of distributed real-time systems is difficult. Architectural techniques and software tools developed at the Jet Propulsion Laboratory's (JPL's) Flight System Testbed make feasible the integration of complex systems in various stages of development.

  7. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W.

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple ofmore » years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.« less

  8. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  9. The Data Acquisition and Control Systems of the Jet Noise Laboratory at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jansen, B. J., Jr.

    1998-01-01

    The features of the data acquisition and control systems of the NASA Langley Research Center's Jet Noise Laboratory are presented. The Jet Noise Laboratory is a facility that simulates realistic mixed flow turbofan jet engine nozzle exhaust systems in simulated flight. The system is capable of acquiring data for a complete take-off assessment of noise and nozzle performance. This paper describes the development of an integrated system to control and measure the behavior of model jet nozzles featuring dual independent high pressure combusting air streams with wind tunnel flow. The acquisition and control system is capable of simultaneous measurement of forces, moments, static and dynamic model pressures and temperatures, and jet noise. The design concepts for the coordination of the control computers and multiple data acquisition computers and instruments are discussed. The control system design and implementation are explained, describing the features, equipment, and the experiences of using a primarily Personal Computer based system. Areas for future development are examined.

  10. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    ERIC Educational Resources Information Center

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  11. Expert Assessment of Conditions for Accredited Quality Management System Functioning in Testing Laboratories

    NASA Astrophysics Data System (ADS)

    Mytych, Joanna; Ligarski, Mariusz J.

    2018-03-01

    The quality management systems compliant with the ISO 9001:2009 have been thoroughly researched and described in detail in the world literature. The accredited management systems used in the testing laboratories and compliant with the ISO/IEC 17025:2005 have been mainly described in terms of the system design and implementation. They have also been investigated from the analytical point of view. Unfortunately, a low number of studies concerned the management system functioning in the accredited testing laboratories. The aim of following study was to assess the management system functioning in the accredited testing laboratories in Poland. On 8 October 2015, 1,213 accredited testing laboratories were present in Poland. They investigated various scientific areas and substances/objects. There are more and more such laboratories that have various problems and different long-term experience when it comes to the implementation, maintenance and improvement of the management systems. The article describes the results of the conducted expert assessment (survey) carried out to examine the conditions for the functioning of a management system in an accredited laboratory. It also focuses on the characteristics of the accredited research laboratories in Poland. The authors discuss the selection of the external and internal conditions that may affect the accredited management system. They show how the experts assessing the selected conditions were chosen. The survey results are also presented.

  12. Laboratory Directed Research and Development Program Assessment for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, Diane; Flynn, Liz

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2C, and this report fulfills that requirement.

  13. Laboratory Directed Research and Development Program Assessment for FY 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Jack; Flynn, Liz

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2C. This report fulfills that requirement.

  14. Development and implications of technology in reform-based physics laboratories

    NASA Astrophysics Data System (ADS)

    Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung

    2012-12-01

    Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.

  15. The EnzymeTracker: an open-source laboratory information management system for sample tracking.

    PubMed

    Triplet, Thomas; Butler, Gregory

    2012-01-26

    In many laboratories, researchers store experimental data on their own workstation using spreadsheets. However, this approach poses a number of problems, ranging from sharing issues to inefficient data-mining. Standard spreadsheets are also error-prone, as data do not undergo any validation process. To overcome spreadsheets inherent limitations, a number of proprietary systems have been developed, which laboratories need to pay expensive license fees for. Those costs are usually prohibitive for most laboratories and prevent scientists from benefiting from more sophisticated data management systems. In this paper, we propose the EnzymeTracker, a web-based laboratory information management system for sample tracking, as an open-source and flexible alternative that aims at facilitating entry, mining and sharing of experimental biological data. The EnzymeTracker features online spreadsheets and tools for monitoring numerous experiments conducted by several collaborators to identify and characterize samples. It also provides libraries of shared data such as protocols, and administration tools for data access control using OpenID and user/team management. Our system relies on a database management system for efficient data indexing and management and a user-friendly AJAX interface that can be accessed over the Internet. The EnzymeTracker facilitates data entry by dynamically suggesting entries and providing smart data-mining tools to effectively retrieve data. Our system features a number of tools to visualize and annotate experimental data, and export highly customizable reports. It also supports QR matrix barcoding to facilitate sample tracking. The EnzymeTracker was designed to be easy to use and offers many benefits over spreadsheets, thus presenting the characteristics required to facilitate acceptance by the scientific community. It has been successfully used for 20 months on a daily basis by over 50 scientists. The EnzymeTracker is freely available online at http

  16. The EnzymeTracker: an open-source laboratory information management system for sample tracking

    PubMed Central

    2012-01-01

    Background In many laboratories, researchers store experimental data on their own workstation using spreadsheets. However, this approach poses a number of problems, ranging from sharing issues to inefficient data-mining. Standard spreadsheets are also error-prone, as data do not undergo any validation process. To overcome spreadsheets inherent limitations, a number of proprietary systems have been developed, which laboratories need to pay expensive license fees for. Those costs are usually prohibitive for most laboratories and prevent scientists from benefiting from more sophisticated data management systems. Results In this paper, we propose the EnzymeTracker, a web-based laboratory information management system for sample tracking, as an open-source and flexible alternative that aims at facilitating entry, mining and sharing of experimental biological data. The EnzymeTracker features online spreadsheets and tools for monitoring numerous experiments conducted by several collaborators to identify and characterize samples. It also provides libraries of shared data such as protocols, and administration tools for data access control using OpenID and user/team management. Our system relies on a database management system for efficient data indexing and management and a user-friendly AJAX interface that can be accessed over the Internet. The EnzymeTracker facilitates data entry by dynamically suggesting entries and providing smart data-mining tools to effectively retrieve data. Our system features a number of tools to visualize and annotate experimental data, and export highly customizable reports. It also supports QR matrix barcoding to facilitate sample tracking. Conclusions The EnzymeTracker was designed to be easy to use and offers many benefits over spreadsheets, thus presenting the characteristics required to facilitate acceptance by the scientific community. It has been successfully used for 20 months on a daily basis by over 50 scientists. The EnzymeTracker is

  17. Incremental development and prototyping in current laboratory software development projects: Preliminary analysis

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann

    1988-01-01

    Several Laboratory software development projects that followed nonstandard development processes, which were hybrids of incremental development and prototyping, are being studied. Factors in the project environment leading to the decision to use a nonstandard development process and affecting its success are analyzed. A simple characterization of project environment based on this analysis is proposed, together with software development approaches which have been found effective for each category. These approaches include both documentation and review requirements.

  18. 78 FR 60245 - Privacy Act Systems of Records; LabWare Laboratory Information Management System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... Services Laboratories (NVSL). Diagnostic testing provides official test results for animal imports, exports.... Diagnostic testing is also done in connection with suspected foreign animal disease investigations and... of Records; LabWare Laboratory Information Management System AGENCY: Animal and Plant Health...

  19. Electronics systems test laboratory testing of shuttle communications systems

    NASA Technical Reports Server (NTRS)

    Stoker, C. J.; Bromley, L. K.

    1985-01-01

    Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail.

  20. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    PubMed

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  1. Development of an Environmental Virtual Field Laboratory

    ERIC Educational Resources Information Center

    Ramasundaram, V.; Grunwald, S.; Mangeot, A.; Comerford, N. B.; Bliss, C. M.

    2005-01-01

    Laboratory exercises, field observations and field trips are a fundamental part of many earth science and environmental science courses. Field observations and field trips can be constrained because of distance, time, expense, scale, safety, or complexity of real-world environments. Our objectives were to develop an environmental virtual field…

  2. The Early Development of Satellite Characterization Capabilities at the Air Force Laboratories

    NASA Astrophysics Data System (ADS)

    Lambert, J.; Kissell, K.

    This presentation overviews the development of optical Space Object Identification (SOI) techniques at the Air Force laboratories during the two-decade "pre-operational" period prior to 1980 when the Groundbased Electro-Optical Deep Space Surveillance (GEODSS) sensors were deployed. Beginning with the launch of Sputnik in 1957, the United States Air Force has actively pursued the development and application of optical sensor technology for the detection, tracking, and characterization of artificial satellites. Until the mid-1980s, these activities were primarily conducted within Air Force research and development laboratories which supplied data to the operational components on a contributing basis. This presentation traces the early evolution of the optical space surveillance technologies from the early experimental sensors that led to the current generation of operationally deployed and research systems. The contributions of the participating Air Force organizations and facilities will be reviewed with special emphasis on the development of technologies for the characterization of spacecraft using optical signatures and imagery. The presentation will include descriptions and photographs of the early facilities and instrumentation, and examples of the SOI collection and analysis techniques employed. In this early period, computer support was limited so all aspects of space surveillance relied heavily on manual interaction. Many military, government, educational, and contractor agencies supported the development of instrumentation and analysis techniques. This overview focuses mainly on the role played by Air Force System Command and Office of Aerospace Research, and the closely related activities at the Department of Defense Advanced Research Projects Agency. The omission of other agencies from this review reflects the limitations of this presentation, not the significance of their contributions.

  3. Nanotechnology Characterization Laboratory Unveils New Technical Services for Drug Developers | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- Drug developers now have access to a shared analytical technology, developed and provided by the Frederick National Laboratory for Cancer Research, that helps fine-tune nanomedicine formulations and overcomes a key hurdle on the pat

  4. Health and safety in clinical laboratories in developing countries: safety considerations.

    PubMed

    Ejilemele, A A; Ojule, A C

    2004-01-01

    Clinical laboratories are potentially hazardous work areas. Health and safety in clinical laboratories is becoming an increasingly important subject as a result of the emergence of highly infectious diseases such as hepatitis and HIV. This is even more so in developing countries where health and safety have traditionally been regarded as low priority issues, considering the more important health problems confronting the health authorities in these countries. We conducted a literature search using the medical subheadings titles on the INTERNET over a period of twenty years and summarized our findings. This article identifies hazards in the laboratories and highlights measures to make the laboratory a safer work place. It also emphasizes the mandatory obligations of employers and employees towards the attainment of acceptable safety standards in clinical laboratories in Third World countries in the face of the current HIV/AIDS epidemic in many of these developing countries especially in the sub-Saharan Africa while accommodating the increasing work load in these laboratories. Both the employer and the employee have major roles to play in the maintenance of a safe working environment. This can be achieved if measures discussed are incorporated into everyday laboratory practice.

  5. Development of performance assessment instrument based contextual learning for measuring students laboratory skills

    NASA Astrophysics Data System (ADS)

    Susilaningsih, E.; Khotimah, K.; Nurhayati, S.

    2018-04-01

    The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.

  6. [Quality use of commercial laboratory for clinical testing services - considering laboratory's role].

    PubMed

    Ogawa, Shinji

    2014-12-01

    The number of commercial laboratories for clinical testing in Japan run privately has decreased to about 30 companies, and their business is getting tougher. Branch Lab. and FMS businesses have not expanded recently due to the new reimbursement system which adds an additional sample management fee, becoming effective in 2010. This presentation gives an outline of each role for hospital and commercial laboratories, and their pros & cons considering the current medical situation. Commercial laboratories have investigated how to utilize ICT systems for sharing test information between hospitals and our facilities. It would be very helpful to clarify issues for each hospital. We will develop and create new values for clinical laboratory testing services and forge mutually beneficial relationships with medical institutions. (Review).

  7. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  8. Challenges to laboratory hematology practice: Egypt perspective.

    PubMed

    Rizk, S H

    2018-05-01

    Laboratory hematology is an integral part of all clinical laboratories along the extensive healthcare facilities in Egypt. The aim of this review is to portrait the laboratory hematology practice in Egypt including its unique socioeconomic background, blood disease pattern, education and training, regulatory oversight, and the related challenges. Current practice varies widely between different parts of the healthcare system in terms of the range of tests, applied techniques, workforce experience, and quality of service. The national transfusion service (NBTS) in Egypt has been recently upgraded and standardized according to the World Health Organization (WHO) guidelines. Formal postgraduate education roughly follows the British system. Laboratory hematology specialization is achieved through 2-3 years masters' degree followed by 2-4 years doctorate degree in clinical pathology with training and research in hematology. Improvement of laboratory hematology education is recently undergoing a reform as a part of the modernization of higher education policy and following the standards developed by the National Quality Assurance and Accreditation Agency (NQAAA). Accreditation of medical laboratories is recently progressing with the development of the "Egyptian Accreditation Council" (EGAC) as the sole accreditation body system and training of assessors. Current laboratory system has many challenges, some are related to the inadequate system performance, and others are unique to laboratory hematology issues. The rapid technological advances and therapeutic innovations in hematology practice call for an adapting laboratory system with continuous upgrading. © 2018 John Wiley & Sons Ltd.

  9. A laboratory information management system for DNA barcoding workflows.

    PubMed

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  10. Corrections of clinical chemistry test results in a laboratory information system.

    PubMed

    Wang, Sihe; Ho, Virginia

    2004-08-01

    The recently released reports by the Institute of Medicine, To Err Is Human and Patient Safety, have received national attention because of their focus on the problem of medical errors. Although a small number of studies have reported on errors in general clinical laboratories, there are, to our knowledge, no reported studies that focus on errors in pediatric clinical laboratory testing. To characterize the errors that have caused corrections to have to be made in pediatric clinical chemistry results in the laboratory information system, Misys. To provide initial data on the errors detected in pediatric clinical chemistry laboratories in order to improve patient safety in pediatric health care. All clinical chemistry staff members were informed of the study and were requested to report in writing when a correction was made in the laboratory information system, Misys. Errors were detected either by the clinicians (the results did not fit the patients' clinical conditions) or by the laboratory technologists (the results were double-checked, and the worksheets were carefully examined twice a day). No incident that was discovered before or during the final validation was included. On each Monday of the study, we generated a report from Misys that listed all of the corrections made during the previous week. We then categorized the corrections according to the types and stages of the incidents that led to the corrections. A total of 187 incidents were detected during the 10-month study, representing a 0.26% error detection rate per requisition. The distribution of the detected incidents included 31 (17%) preanalytic incidents, 46 (25%) analytic incidents, and 110 (59%) postanalytic incidents. The errors related to noninterfaced tests accounted for 50% of the total incidents and for 37% of the affected tests and orderable panels, while the noninterfaced tests and panels accounted for 17% of the total test volume in our laboratory. This pilot study provided the rate and

  11. [Measures to prevent patient identification errors in blood collection/physiological function testing utilizing a laboratory information system].

    PubMed

    Shimazu, Chisato; Hoshino, Satoshi; Furukawa, Taiji

    2013-08-01

    We constructed an integrated personal identification workflow chart using both bar code reading and an all in-one laboratory information system. The information system not only handles test data but also the information needed for patient guidance in the laboratory department. The reception terminals at the entrance, displays for patient guidance and patient identification tools at blood-sampling booths are all controlled by the information system. The number of patient identification errors was greatly reduced by the system. However, identification errors have not been abolished in the ultrasound department. After re-evaluation of the patient identification process in this department, we recognized that the major reason for the errors came from excessive identification workflow. Ordinarily, an ultrasound test requires patient identification 3 times, because 3 different systems are required during the entire test process, i.e. ultrasound modality system, laboratory information system and a system for producing reports. We are trying to connect the 3 different systems to develop a one-time identification workflow, but it is not a simple task and has not been completed yet. Utilization of the laboratory information system is effective, but is not yet perfect for patient identification. The most fundamental procedure for patient identification is to ask a person's name even today. Everyday checks in the ordinary workflow and everyone's participation in safety-management activity are important for the prevention of patient identification errors.

  12. Development and Multi-laboratory Verification of US EPA ...

    EPA Pesticide Factsheets

    A drinking water method for seven pesticides and pesticide degradates is presented that addresses the occurrence monitoring needs of the US Environmental Protection Agency (EPA) for a future Unregulated Contaminant Monitoring Regulation (UCMR). The method employs online solid phase extraction-liquid chromatography–tandem mass spectrometry (SPE-LC–MS-MS). Online SPE-LC–MS-MS has the potential to offer cost-effective, faster, more sensitive and more rugged methods than the traditional offline SPE approach due to complete automation of the SPE process, as well as seamless integration with the LC–MS-MS system. The method uses 2-chloroacetamide, ascorbic acid and Trizma to preserve the drinking water samples for up to 28 days. The mean recoveries in drinking water (from a surface water source) fortified with method analytes are 87.1–112% with relative standard deviations of <14%. Single laboratory lowest concentration minimum reporting levels of 0.27–1.7 ng/L are demonstrated with this methodology. Multi-laboratory data are presented that demonstrate method ruggedness and transferability. The final method meets all of the EPA's UCMR survey requirements for sample collection and storage, precision, accuracy, and sensitivity. The journal article describes the development of drinking water Method 543 for analysis of selected CCL 3 chemicals. It is anticipated this method may be used in a future Unregulated Contaminant Monitoring Regulation to gather nationw

  13. Computer-assisted bar-coding system significantly reduces clinical laboratory specimen identification errors in a pediatric oncology hospital.

    PubMed

    Hayden, Randall T; Patterson, Donna J; Jay, Dennis W; Cross, Carl; Dotson, Pamela; Possel, Robert E; Srivastava, Deo Kumar; Mirro, Joseph; Shenep, Jerry L

    2008-02-01

    To assess the ability of a bar code-based electronic positive patient and specimen identification (EPPID) system to reduce identification errors in a pediatric hospital's clinical laboratory. An EPPID system was implemented at a pediatric oncology hospital to reduce errors in patient and laboratory specimen identification. The EPPID system included bar-code identifiers and handheld personal digital assistants supporting real-time order verification. System efficacy was measured in 3 consecutive 12-month time frames, corresponding to periods before, during, and immediately after full EPPID implementation. A significant reduction in the median percentage of mislabeled specimens was observed in the 3-year study period. A decline from 0.03% to 0.005% (P < .001) was observed in the 12 months after full system implementation. On the basis of the pre-intervention detected error rate, it was estimated that EPPID prevented at least 62 mislabeling events during its first year of operation. EPPID decreased the rate of misidentification of clinical laboratory samples. The diminution of errors observed in this study provides support for the development of national guidelines for the use of bar coding for laboratory specimens, paralleling recent recommendations for medication administration.

  14. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  15. Construction of the Propulsion Systems Laboratory No. 1 and 2

    NASA Image and Video Library

    1951-01-21

    Construction of the Propulsion Systems Laboratory No. 1 and 2 at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. When it began operation in late 1952, the Propulsion Systems Laboratory was the NACA’s most powerful facility for testing full-scale engines at simulated flight altitudes. The facility contained two altitude simulating test chambers which were a technological combination of the static sea-level test stands and the complex Altitude Wind Tunnel, which recreated actual flight conditions on a larger scale. NACA Lewis began designing the new facility in 1947 as part of a comprehensive plan to improve the altitude testing capabilities across the lab. The exhaust, refrigeration, and combustion air systems from all the major test facilities were linked. In this way, different facilities could be used to complement the capabilities of one another. Propulsion Systems Laboratory construction began in late summer 1949 with the installation of an overhead exhaust pipe connecting the facility to the Altitude Wind Tunnel and Engine Research Building. The large test section pieces arriving in early 1951, when this photograph was taken. The two primary coolers for the altitude exhaust are in place within the framework near the center of the photograph.

  16. A tracking system for laboratory mice to support medical researchers in behavioral analysis.

    PubMed

    Macrì, S; Mainetti, L; Patrono, L; Pieretti, S; Secco, A; Sergi, I

    2015-08-01

    The behavioral analysis of laboratory mice plays a key role in several medical and scientific research areas, such as biology, toxicology, pharmacology, and so on. Important information on mice behavior and their reaction to a particular stimulus is deduced from a careful analysis of their movements. Moreover, behavioral analysis of genetically modified mice allows obtaining important information about particular genes, phenotypes or drug effects. The techniques commonly adopted to support such analysis have many limitations, which make the related systems particularly ineffective. Currently, the engineering community is working to explore innovative identification and sensing technologies to develop new tracking systems able to guarantee benefits to animals' behavior analysis. This work presents a tracking solution based on passive Radio Frequency Identification Technology (RFID) in Ultra High Frequency (UHF) band. Much emphasis is given to the software component of the system, based on a Web-oriented solution, able to process the raw tracking data coming from a hardware system, and offer 2D and 3D tracking information as well as reports and dashboards about mice behavior. The system has been widely tested using laboratory mice and compared with an automated video-tracking software (i.e., EthoVision). The obtained results have demonstrated the effectiveness and reliability of the proposed solution, which is able to correctly detect the events occurring in the animals' cage, and to offer a complete and user-friendly tool to support researchers in behavioral analysis of laboratory mice.

  17. Medical Laboratory Assistant. Laboratory Occupations Cluster.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for medical laboratory assistant is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a task list. Each…

  18. Counter Trafficking System Development "Analysis Training Program"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Dennis C.

    This document will detail the training curriculum for the Counter-Trafficking System Development (CTSD) Analysis Modules and Lesson Plans are derived from the United States Military, Department of Energy doctrine and Lawrence Livermore National Laboratory (LLNL), Global Security (GS) S Program.

  19. Cryosphere Science Outreach using the NASA/JPL Virtual Earth System Laboratory

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Cheng, D. L. C.; Quinn, J.; Halkides, D. J.; Perez, G. L.

    2016-12-01

    Understanding the role of Cryosphere Science within the larger context of Sea Level Rise is both a technical and educational challenge that needs to be addressed if the public at large is to truly understand the implications and consequences of Climate Change. Within this context, we propose a new approach in which scientific tools are used directly inside a mobile/website platform geared towards Education/Outreach. Here, we apply this approach by using the Ice Sheet System Model, a state of the art Cryosphere model developed at NASA, and integrated within a Virtual Earth System Laboratory, with the goal to outreach Cryosphere science to K-12 and College level students. The approach mixes laboratory experiments, interactive classes/lessons on a website, and a simplified interface to a full-fledged instance of ISSM to validate the classes/lessons. This novel approach leverages new insights from the Outreach/Educational community and the interest of new generations in web based technologies and simulation tools, all of it delivered in a seamlessly integrated web platform, relying on a state of the art climate model and live simulations.

  20. Evaluation of the enterovirus laboratory surveillance system in Denmark, 2010 to 2013.

    PubMed

    Condell, Orla; Midgley, Sofie; Christiansen, Claus Bohn; Chen, Ming; Chen Nielsen, Xiaohui; Ellermann-Eriksen, Svend; Mølvadgaard, Mette; Schønning, Kristian; Vermedal Hoegh, Silje; Andersen, Peter Henrik; Voldstedlund, Marianne; Fischer, Thea Kølsen

    2016-05-05

    The primary aim of the Danish enterovirus (EV) surveillance system is to document absence of poliovirus infection. The conflict in Syria has left many children unvaccinated and movement from areas with polio cases to Europe calls for increased awareness to detect and respond to virus-transmission in a timely manner. We evaluate the national EV laboratory surveillance, to generate recommendations for system strengthening. The system was analysed for completeness of viral typing analysis and clinical information and timeliness of specimen collection, laboratory results and reporting of clinical information. Of 23,720 specimens screened, 2,202 (9.3%) were EV-positive. Submission of cerebrospinal fluid and faecal specimens from primary diagnostic laboratories was 79.5% complete (845/1,063), and varied by laboratory and patient age. EV genotypes were determined in 68.5% (979/1,430) of laboratory-confirmed cases, clinical information was available for 63.1% (903/1,430). Primary diagnostic results were available after a median of 1.4 days, typing results after 17 days, detailed clinical information after 33 days. The large number of samples typed demonstrated continued monitoring of EV-circulation in Denmark. The system could be strengthened by increasing the collection of supplementary faecal specimens, improving communication with primary diagnostic laboratories, adapting the laboratory typing methodology and collecting clinical information with electronic forms.

  1. Preservice laboratory education strengthening enhances sustainable laboratory workforce in Ethiopia

    PubMed Central

    2013-01-01

    Background There is a severe healthcare workforce shortage in sub Saharan Africa, which threatens achieving the Millennium Development Goals and attaining an AIDS-free generation. The strength of a healthcare system depends on the skills, competencies, values and availability of its workforce. A well-trained and competent laboratory technologist ensures accurate and reliable results for use in prevention, diagnosis, care and treatment of diseases. Methods An assessment of existing preservice education of five medical laboratory schools, followed by remedial intervention and monitoring was conducted. The remedial interventions included 1) standardizing curriculum and implementation; 2) training faculty staff on pedagogical methods and quality management systems; 3) providing teaching materials; and 4) procuring equipment for teaching laboratories to provide practical skills to complement didactic education. Results A total of 2,230 undergraduate students from the five universities benefitted from the standardized curriculum. University of Gondar accounted for 252 of 2,230 (11.3%) of the students, Addis Ababa University for 663 (29.7%), Jimma University for 649 (29.1%), Haramaya University for 429 (19.2%) and Hawassa University for 237 (10.6%) of the students. Together the universities graduated 388 and 312 laboratory technologists in 2010/2011 and 2011/2012 academic year, respectively. Practical hands-on training and experience with well-equipped laboratories enhanced and ensured skilled, confident and competent laboratory technologists upon graduation. Conclusions Strengthening preservice laboratory education is feasible in resource-limited settings, and emphasizing its merits (ample local capacity, country ownership and sustainability) provides a valuable source of competent laboratory technologists to relieve an overstretched healthcare system. PMID:24164781

  2. EPA LABORATORIES IMPLEMENT EMS PROGRAM

    EPA Science Inventory

    This paper highlights the breadth and magnitude of carrying out an effective Environmental Management System (EMS) program at the U.S. EPA's research and development laboratories. Federal research laboratories have unique operating challenges compared to more centralized industr...

  3. [Fundamentals of quality control systems in medical-biochemical laboratories--the role of marketing].

    PubMed

    Topić, E; Turek, S

    2000-01-01

    The basic criterion for the overall quality system in medical biochemistry laboratories concerning equipment, premises and laboratory staff in primary health care (PHC) (Regulations on quality systems and good laboratory practice of the Croatian Medical Biochemists Chamber, 1995, Regulations on categorization of medical biochemistry laboratories of the Croatian Medical Biochemists Chamber, 1996, EC4: Essential criteria for quality systems in medical laboratories. Eur J Clin Chem Clin Biochem 1997 in medical biochemical laboratories included in the First Croatia health project, Primary health care subproject, has been met by the marketing approach to the project. The equipment ensuring implementation of the complete laboratory program (NN/96), more accurate and precise analytical procedures, and higher reliability of laboratory test results compared with previous equipment, has been purchased by an international tender. Uniform technology and methods of analysis have ensured high standards of good laboratory services, yielding test results than can be transferred from primary to secondary health care level. The new equipment has improved organization between central and detached medical biochemistry laboratory units, while the high quality requirement has led to improvement in the staff structure, e.g., medical biochemists have been employed in laboratories that had previously worked without such a professional. Equipment renewal has been accompanied by proper education for all levels of PHC professionals.

  4. The Virtual Robotics Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Love, L.J.

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well asmore » many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.« less

  5. Installation of Computerized Procedure System and Advanced Alarm System in the Human Systems Simulation Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya Lee; Spielman, Zachary Alexander; Rice, Brandon Charles

    2016-04-01

    This report describes the installation of two advanced control room technologies, an advanced alarm system and a computerized procedure system, into the Human Systems Simulation Laboratory (HSSL). Installation of these technologies enables future phases of this research by providing a platform to systematically evaluate the effect of these technologies on operator and plant performance.

  6. Development of a mobile toolmark characterization/comparison system [Development of a mobile, automated toolmark characterization/comparison system

    DOE PAGES

    Chumbley, Scott; Zhang, Song; Morris, Max; ...

    2016-11-16

    Since the development of the striagraph, various attempts have been made to enhance forensic investigation through the use of measuring and imaging equipment. This study describes the development of a prototype system employing an easy-to-use software interface designed to provide forensic examiners with the ability to measure topography of a toolmarked surface and then conduct various comparisons using a statistical algorithm. Acquisition of the data is carried out using a portable 3D optical profilometer, and comparison of the resulting data files is made using software named “MANTIS” (Mark and Tool Inspection Suite). The system has been tested on laboratory-produced markingsmore » that include fully striated marks (e.g., screwdriver markings), quasistriated markings produced by shear-cut pliers, impression marks left by chisels, rifling marks on bullets, and cut marks produced by knives. Using the system, an examiner has the potential to (i) visually compare two toolmarked surfaces in a manner similar to a comparison microscope and (ii) use the quantitative information embedded within the acquired data to obtain an objective statistical comparison of the data files. Finally, this study shows that, based on the results from laboratory samples, the system has great potential for aiding examiners in conducting comparisons of toolmarks.« less

  7. Development of a mobile toolmark characterization/comparison system [Development of a mobile, automated toolmark characterization/comparison system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumbley, Scott; Zhang, Song; Morris, Max

    Since the development of the striagraph, various attempts have been made to enhance forensic investigation through the use of measuring and imaging equipment. This study describes the development of a prototype system employing an easy-to-use software interface designed to provide forensic examiners with the ability to measure topography of a toolmarked surface and then conduct various comparisons using a statistical algorithm. Acquisition of the data is carried out using a portable 3D optical profilometer, and comparison of the resulting data files is made using software named “MANTIS” (Mark and Tool Inspection Suite). The system has been tested on laboratory-produced markingsmore » that include fully striated marks (e.g., screwdriver markings), quasistriated markings produced by shear-cut pliers, impression marks left by chisels, rifling marks on bullets, and cut marks produced by knives. Using the system, an examiner has the potential to (i) visually compare two toolmarked surfaces in a manner similar to a comparison microscope and (ii) use the quantitative information embedded within the acquired data to obtain an objective statistical comparison of the data files. Finally, this study shows that, based on the results from laboratory samples, the system has great potential for aiding examiners in conducting comparisons of toolmarks.« less

  8. Clinical laboratory sciences data transmission : the NPU coding system

    PubMed Central

    PONTET, Françoise; PETERSEN, Ulla MAGDAL; FUENTES-ARDERIU, Xavier; NORDIN, Gunnar; BRUUNSHUUS, Ivan; IHALAINEN, Jarkko; KARLSSON, Daniel; FORSUM, Urban; DYBKAER, René; SCHADOW, Gunther; KUELPMANN, Wolf; FÉRARD, Georges; KANG, Dongchon; McDONALD, Clement; HILL, Gilbert

    2011-01-01

    Introduction In health care services, technology requires that correct information be duly available to professionals, citizens and authorities, worldwide. Thus, clinical laboratory sciences require standardized electronic exchanges for results of laboratory examinations. Methods. The NPU (Nomenclature, Properties and Units) coding system provides a terminology for identification of result values (property values). It is structured according to BIPM, ISO, IUPAC and IFCC recommendations. It uses standard terms for established concepts and structured definitions describing: which part of the universe is examined, which component of relevance in that part, which kind-of-property is relevant. Unit and specifications can be added where relevant [System(spec) Component(spec); kind-of-property(spec) = ? unit]. Results. The English version of this terminology is freely accessible at http://dior.imt.liu.se/cnpu/ and http://www.labterm.dk, directly or through the IFCC and IUPAC websites. It has been nationally used for more than 10 years in Denmark and Sweden and has been translated into 6 other languages. Conclusions. The NPU coding system provides a terminology for dedicated kinds-of-property following the international recommendations. It fits well in the health network and is freely accessible. Clinical laboratory professionals worldwide will find many advantages in using the NPU coding system, notably with regards to an accreditation process. PMID:19745311

  9. Accuracy of a laboratory-based computer implant guiding system.

    PubMed

    Barnea, Eitan; Alt, Ido; Kolerman, Roni; Nissan, Joseph

    2010-05-01

    Computer-guided implant placement is a growing treatment modality in partially and totally edentulous patients, though data about the accuracy of some systems for computer-guided surgery is limited. The purpose of this study was to evaluate the accuracy of a laboratory computer-guided system. A laboratory-based computer guiding system (M Guide; MIS technologies, Shlomi, Israel) was used to place implants in a fresh sheep mandible. A second computerized tomography (CT) scan was taken after placing the implants . The drill plan figures of the planned implants were positioned using assigned software (Med3D, Heidelberg, Germany) on the second CT scan to compare the implant position with the initial planning. Values representing the implant locations of the original drill plan were compared with that of the placed implants using SPSS software. Six measurements (3 vertical, 3 horizontal) were made on each implant to assess the deviation from the initial implant planning. A repeated-measurement analysis of variance was performed comparing the location of measurement (center, abutment, apex) and type of deviation (vertical vs. horizontal). The vertical deviation (mean -0.168) was significantly smaller than the horizontal deviation (mean 1.148). The laboratory computer-based guiding system may be a viable treatment concept for placing implants. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  10. Clinical laboratory sciences data transmission: the NPU coding system.

    PubMed

    Pontet, Françoise; Magdal Petersen, Ulla; Fuentes-Arderiu, Xavier; Nordin, Gunnar; Bruunshuus, Ivan; Ihalainen, Jarkko; Karlsson, Daniel; Forsum, Urban; Dybkaer, René; Schadow, Gunther; Kuelpmann, Wolf; Férard, Georges; Kang, Dongchon; McDonald, Clement; Hill, Gilbert

    2009-01-01

    In health care services, technology requires that correct information be duly available to professionals, citizens and authorities, worldwide. Thus, clinical laboratory sciences require standardized electronic exchanges for results of laboratory examinations. The NPU (Nomenclature, Properties and Units) coding system provides a terminology for identification of result values (property values). It is structured according to BIPM, ISO, IUPAC and IFCC recommendations. It uses standard terms for established concepts and structured definitions describing: which part of the universe is examined, which component of relevance in that part, which kind-of-property is relevant. Unit and specifications can be added where relevant [System(spec)-Component(spec); kind-of-property(spec) = ? unit]. The English version of this terminology is freely accessible at http://dior.imt.liu.se/cnpu/ and http://www.labterm.dk, directly or through the IFCC and IUPAC websites. It has been nationally used for more than 10 years in Denmark and Sweden and has been translated into 6 other languages. The NPU coding system provides a terminology for dedicated kinds-of-property following the international recommendations. It fits well in the health network and is freely accessible. Clinical laboratory professionals worldwide will find many advantages in using the NPU coding system, notably with regards to an accreditation process.

  11. Development and Evaluation of Mechatronics Learning System in a Web-Based Environment

    ERIC Educational Resources Information Center

    Shyr, Wen-Jye

    2011-01-01

    The development of remote laboratory suitable for the reinforcement of undergraduate level teaching of mechatronics is important. For the reason, a Web-based mechatronics learning system, called the RECOLAB (REmote COntrol LABoratory), for remote learning in engineering education has been developed in this study. The web-based environment is an…

  12. Development of an open source laboratory information management system for 2-D gel electrophoresis-based proteomics workflow

    PubMed Central

    Morisawa, Hiraku; Hirota, Mikako; Toda, Tosifusa

    2006-01-01

    Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS) should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved. PMID:17018156

  13. Laboratory directed research and development 2006 annual report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  14. Nanotechnology Laboratory Collaborates with Army to Develop Botulism Vaccine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Nanotechnology Characterization Laboratory (NCL) is collaborating with the Army to develop a candidate vaccine against botulism. Under a collaboration agreement between the National Cancer Institute and the U.S. Army Medical Research Institute of

  15. An innovative educational approach to professional development of medical laboratory scientists in Botswana.

    PubMed

    Magowe, Mabel Km; Ledikwe, Jenny H; Kasvosve, Ishmael; Martin, Robert; Thankane, Kabo; Semo, Bazghina-Werq

    2014-01-01

    To address the shortage of laboratory scientists in Botswana, an innovative, one-year academic bridging program was initiated at the University of Botswana, to advance diploma-holding laboratory technicians towards becoming laboratory scientists holding Bachelor's degrees. An evaluation was conducted, which described the outcomes of the program and the lessons learned from this novel approach to meeting human resource needs. This was a cross-sectional, mixed-methods evaluation. Qualitative interviews were conducted with graduates of the Bachelor of Science (BSc) Medical Laboratory Sciences (MLS) bridging program, along with the graduates' current supervisors, and key informants who were involved in program development or implementation. The quantitative data collected included a written questionnaire, completed by program graduates, with a retrospective pre-test/post-test survey of graduates' confidence, in terms of key laboratory competencies. The BSc MLS bridging program produced thirty-three laboratory scientists over 3 years. There was a significant increase in confidence among graduates, for specified competencies, after the program (P<0.05). Graduates reported acquiring new skills and, often, accepting new responsibilities at their former workplace, particularly in relationship to leadership and management. Five graduates enrolled in advanced degree programs. Most graduates assumed increased responsibility. However, only two graduates were promoted after completing the training program. The lessons learned include: the importance of stakeholder involvement, the need for data to identify local needs, financial sustainability, catering for the needs of adult learners, and ensuring a technically challenging work environment, conducive to the application of skills learned during training. A strong public health and clinical laboratory system is essential for the rapid detection and control of emerging health threats, and for patient care. However, there is a need

  16. Development of a Real-Time General-Purpose Digital Signal Processing Laboratory System.

    DTIC Science & Technology

    1983-12-01

    should serve several important purposes: to familiarize students with the use of common DSP tools in an instructional environment, to serve as a research ...of Dayton Research Institute researchers for DSP software and DSP system design insight. 3. Formulation of statement of requirements for development...Neither the University of Dayton nor its Research Institute have a DSP computer system. While UD offered no software or DSP system design information

  17. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Valerie

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources neededmore » to be successful at the national laboratories.« less

  18. Local area networks, laboratory information management systems, languages, and operating systems in the lab and pilot plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessy, R.E.

    1983-08-01

    Microprocessors and microcomputers are being incorporated into the instruments and controllers in our laboratory and pilot plant. They enhance both the quality and amount of information that is produced. Yet they simultaneously produce vast amounts of information that must be controlled, or scientists and engineers will become high priced secretaries. The devices need programs that control them in a time frame relevant to the experiment. Simple, expeditious pathways to the generation of software that will run rapidly is essential or first class scientists and engineers become second class system programmersexclamation This paper attempts to develop the vocabulary by which themore » people involved in this technological revolution can understand and control it. We will examine the elements that synergistically make up the electronic laboratory and pilot plant. More detailed analyses of each area may be found in a series of articles entitled A/C INTERFACE (1-4). Many factors interact in the final system that we bring into our laboratory. Yet many purchasers only perform a cursory evaluation on the superficial aspects of the hardware. The integrated lab and pilot plant require that microprocessors, which control and collect, be connected in a LAN to larger processors that can provide LIMS support. Statistics and scientific word processing capabilities then complete the armamentorium. The end result is a system that does things for the user, rather than doing things to him.« less

  19. System reliability of randomly vibrating structures: Computational modeling and laboratory testing

    NASA Astrophysics Data System (ADS)

    Sundar, V. S.; Ammanagi, S.; Manohar, C. S.

    2015-09-01

    The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10-degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four-post test rig.

  20. NCAR Earth Observing Laboratory's Data Tracking System

    NASA Astrophysics Data System (ADS)

    Cully, L. E.; Williams, S. F.

    2014-12-01

    The NCAR Earth Observing Laboratory (EOL) maintains an extensive collection of complex, multi-disciplinary datasets from national and international, current and historical projects accessible through field project web pages (https://www.eol.ucar.edu/all-field-projects-and-deployments). Data orders are processed through the EOL Metadata Database and Cyberinfrastructure (EMDAC) system. Behind the scenes is the institutionally created EOL Computing, Data, and Software/Data Management Group (CDS/DMG) Data Tracking System (DTS) tool. The DTS is used to track the complete life cycle (from ingest to long term stewardship) of the data, metadata, and provenance for hundreds of projects and thousands of data sets. The DTS is an EOL internal only tool which consists of three subsystems: Data Loading Notes (DLN), Processing Inventory Tool (IVEN), and Project Metrics (STATS). The DLN is used to track and maintain every dataset that comes to the CDS/DMG. The DLN captures general information such as title, physical locations, responsible parties, high level issues, and correspondence. When the CDS/DMG processes a data set, IVEN is used to track the processing status while collecting sufficient information to ensure reproducibility. This includes detailed "How To" documentation, processing software (with direct links to the EOL Subversion software repository), and descriptions of issues and resolutions. The STATS subsystem generates current project metrics such as archive size, data set order counts, "Top 10" most ordered data sets, and general information on who has ordered these data. The DTS was developed over many years to meet the specific needs of the CDS/DMG, and it has been successfully used to coordinate field project data management efforts for the past 15 years. This paper will describe the EOL CDS/DMG Data Tracking System including its basic functionality, the provenance maintained within the system, lessons learned, potential improvements, and future developments.

  1. Development of Robotics Applications in a Solid Propellant Mixing Laboratory

    DTIC Science & Technology

    1988-06-01

    implementation of robotic hardware and software into a laboratory environment requires a carefully structured series of phases which examines, in...strategy. The general methodology utilized in this project is discussed in Appendix A. The proposed laboratory robotics development program was structured ...Accessibility - Potential modifications - Safety precautions e) Robot Transport - Slider mechanisms - Linear tracks - Gantry configuration - Mobility f

  2. Using Interorganizational Partnerships to Strengthen Public Health Laboratory Systems

    PubMed Central

    Kimsey, Paul; Buehring, Gertrude

    2013-01-01

    Due to the current economic environment, many local and state health departments are faced with budget reductions. Health department administrators and public health laboratory (PHL) directors need to assess strategies to ensure that their PHLs can provide the same level of service with decreased funds. Exploratory case studies of interorganizational partnerships among local PHLs in California were conducted to determine the impact on local PHL testing services and capacity. Our findings suggest that interorganizational forms of cooperation among local PHLs can help bolster laboratory capacity by capturing economies of scale, leveraging scarce resources, and ensuring access to affordable, timely, and quality laboratory testing services. Interorganizational partnerships will help local and state public health departments continue to maintain a strong and robust laboratory system that supports their role in communicable disease surveillance. PMID:23997305

  3. Developing Medicare Competitive Bidding: A Study of Clinical Laboratories

    PubMed Central

    Hoerger, Thomas J.; Meadow, Ann

    1997-01-01

    Competitive bidding to derive Medicare fees promises several advantages over administered fee systems. The authors show how incentives for cost savings, quality, and access can be incorporated into bidding schemes, and they report on a study of the clinical laboratory industry conducted in preparation for a bidding demonstration. The laboratory industry is marked by variable concentration across geographic markets and, among firms themselves, by social and economic heterogeneity. The authors conclude that these conditions can be accommodated by available bidding design options and by careful selection of bidding markets. PMID:10180003

  4. [Development of laboratory sequence analysis software based on WWW and UNIX].

    PubMed

    Huang, Y; Gu, J R

    2001-01-01

    Sequence analysis tools based on WWW and UNIX were developed in our laboratory to meet the needs of molecular genetics research in our laboratory. General principles of computer analysis of DNA and protein sequences were also briefly discussed in this paper.

  5. A Radiation Laboratory Curriculum Development at Western Kentucky University

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  6. Developing a cardiopulmonary exercise testing laboratory.

    PubMed

    Diamond, Edward

    2007-12-01

    Cardiopulmonary exercise testing is a noninvasive and cost-effective technique that adds significant value to the assessment and management of a variety of symptoms and diseases. The penetration of this testing in medical practice may be limited by perceived operational and financial barriers. This article reviews coding and supervision requirements related to both simple and complex pulmonary stress testing. A program evaluation and review technique diagram is used to describe the work flow process. Data from our laboratory are used to generate an income statement that separates fixed and variable costs and calculates the contribution margin. A cost-volume-profit (break-even) analysis is then performed. Using data from our laboratory including fixed and variable costs, payer mix, reimbursements by payer, and the assumption that the studies are divided evenly between simple and complex pulmonary stress tests, the break-even number is calculated to be 300 tests per year. A calculator with embedded formulas has been designed by the author and is available on request. Developing a cardiopulmonary exercise laboratory is challenging but achievable and potentially profitable. It should be considered by a practice that seeks to distinguish itself as a quality leader. Providing this clinically valuable service may yield indirect benefits such as increased patient volume and increased utilization of other services provided by the practice. The decision for a medical practice to commit resources to managerial accounting support requires a cost-benefit analysis, but may be a worthwhile investment in our challenging economic environment.

  7. Technology Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Brame, Ray; And Others

    This guide contains 43 modules of laboratory activities for technology education courses. Each module includes an instructor's resource sheet and the student laboratory activity. Instructor's resource sheets include some or all of the following elements: module number, course title, activity topic, estimated time, essential elements, objectives,…

  8. The Midland fiber-optic analog transmission system development project (FATS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgart, J.S.; Anaya, R.; Morris, G.

    1988-07-01

    This report was written to document the overall effort related to the development and testing of the various components comprising the fiber optic analog transmission system (FATS) and to the validation of the FATS itself. The overall project was approached as a joint effort between the Los Alamos National Laboratory; the Atomic Weapons Research Establishment (AWRE); and EGandG Energy Measurements. The ultimate goal of the project was to develop a system, based on laser diodes and a streak camera system, to measure alpha. Although the FATS was not fielded on the MIDLAND event, in the course of the project wemore » did in fact answer technology questions identified on previous experiments and develop a better understanding of system needs. We hope that the information contained in this report will provide a basis for planning future experiments, as well as defining the direction for additional laboratory measurements. 94 figs.« less

  9. [Status of the clinical laboratory in the mandatory postgraduate medical training system. (1) Report from a laboratory technologist].

    PubMed

    Nishikawa, Yoko

    2006-06-01

    According to a new system for postgraduate clinical training, 33 medical trainees have been accepted for the past two years at Osaka General Medical Center. Before practicing clinical medicine in each division by a super-rotated table, orientation is scheduled for 5 days to master the basic systems indispensable to the hospital. In this orientation, training in laboratory medicine is performed for 7 hours (3.5 hours for 2 days). Trainees are divided into 4 groups and learn emergency tests of chemistry, hematology and urinalysis, blood transfusion, physiology and microbiology for 60 min each. Laboratory technologists instruct the trainees to gain the basic skills. The main contents are blood gas measuring in chemistry, sample preparation in hematology and urinalysis, taking each other's ECG, ordering blood products for transfusion, serologic study of infectious diseases, and Gram stain in microbiology. Although it is difficult to find time for routine analysis and instructing trainees in the clinical laboratory, it is a suitable opportunity for revision, also for laboratory technologists, and for communication to discuss clinical matters.

  10. Laboratory directed research and development: Annual report to the Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    As one of the premier scientific laboratories of the DOE, Brookhaven must continuously foster the development of new ideas and technologies, promote the early exploration and exploitation of creative and innovative concepts, and develop new fundable R and D projects and programs. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achievingmore » and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments are described in this report. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.« less

  11. The role of total laboratory automation in a consolidated laboratory network.

    PubMed

    Seaberg, R S; Stallone, R O; Statland, B E

    2000-05-01

    In an effort to reduce overall laboratory costs and improve overall laboratory efficiencies at all of its network hospitals, the North Shore-Long Island Health System recently established a Consolidated Laboratory Network with a Core Laboratory at its center. We established and implemented a centralized Core Laboratory designed around the Roche/Hitachi CLAS Total Laboratory Automation system to perform the general and esoteric laboratory testing throughout the system in a timely and cost-effective fashion. All remaining STAT testing will be performed within the Rapid Response Laboratories (RRLs) at each of the system's hospitals. Results for this laboratory consolidation and implementation effort demonstrated a decrease in labor costs and improved turnaround time (TAT) at the core laboratory. Anticipated system savings are approximately $2.7 million. TATs averaged 1.3 h within the Core Laboratory and less than 30 min in the RRLs. When properly implemented, automation systems can reduce overall laboratory expenses, enhance patient services, and address the overall concerns facing the laboratory today: job satisfaction, decreased length of stay, and safety. The financial savings realized are primarily a result of labor reductions.

  12. Improved Specimen-Referral System and Increased Access to Quality Laboratory Services in Ethiopia: The Role of the Public-Private Partnership

    PubMed Central

    Kebede, Yenew; Fonjungo, Peter N.; Tibesso, Gudeta; Shrivastava, Ritu; Nkengasong, John N.; Kenyon, Thomas; Kebede, Amha; Gadde, Renuka; Ayana, Gonfa

    2016-01-01

    Background. Nonstandardized specimen-transport logistics, lack of laboratory personnel to transport specimens, lack of standard specimen containers, and long turnaround time (TAT) hindered access to quality laboratory services. The objective of the Becton, Dickinson, and Company (BD)–US President's Emergency Plan for AIDS Relief (PEPFAR) Public-Private Partnership (PPP) was to support country-specific programs to develop integrated laboratory systems, services, and quality improvement strategies, with an emphasis on strengthening the specimen-referral system (SRS). Methods. In 2007, through the Centers for Disease Control and Prevention (CDC), the Ethiopian Public Health Institute (EPHI) joined with the BD-PEPFAR PPP to strengthen laboratory systems. A joint planning and assessment committee identified gaps in the SRS for prioritization and intervention and piloted the system in Addis Ababa and Amhara Region. Results. The PPP established standardized, streamlined specimen logistics, using the Ethiopian Postal Service Enterprise to support a laboratory network in which 554 facilities referred specimens to 160 laboratories. The PPP supported procuring 400 standard specimen containers and the training of 586 laboratory personnel and 81 postal workers. The average TAT was reduced from 7 days (range, 2–14 days) to 2 days (range, 1–3 days) in Addis Ababa and from 10 days (range, 6–21 days) to 5 days (range, 2–6 days) in Amhara Region. Conclusions. This study highlights the feasibility and untapped potential of PPPs to strengthen laboratory systems. This planned and structured approach to improving specimen referral enhanced access to quality laboratory services. PMID:27025700

  13. A Project-Based Laboratory for Learning Embedded System Design with Industry Support

    ERIC Educational Resources Information Center

    Lee, Chyi-Shyong; Su, Juing-Huei; Lin, Kuo-En; Chang, Jia-Hao; Lin, Gu-Hong

    2010-01-01

    A project-based laboratory for learning embedded system design with support from industry is presented in this paper. The aim of this laboratory is to motivate students to learn the building blocks of embedded systems and practical control algorithms by constructing a line-following robot using the quadratic interpolation technique to predict the…

  14. Development of Facilities for an Ocean Engineering Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Nash, W. A.; And Others

    A collection of seven laboratory facilities and processes dedicated to improving student understanding of the fundamental concepts associated with the structural mechanics of oceanic structures is described. Complete working drawings covering all mechanical and electrical aspects of these systems are presented so that the systems may be reproduced…

  15. Laboratory hemostasis: milestones in Clinical Chemistry and Laboratory Medicine.

    PubMed

    Lippi, Giuseppe; Favaloro, Emmanuel J

    2013-01-01

    Hemostasis is a delicate, dynamic and intricate system, in which pro- and anti-coagulant forces cooperate for either maintaining blood fluidity under normal conditions, or else will prompt blood clot generation to limit the bleeding when the integrity of blood vessels is jeopardized. Excessive prevalence of anticoagulant forces leads to hemorrhage, whereas excessive activation of procoagulant forces triggers excessive coagulation and thrombosis. The hemostasis laboratory performs a variety of first, second and third line tests, and plays a pivotal role in diagnostic and monitoring of most hemostasis disturbances. Since the leading targets of Clinical Chemistry and Laboratory Medicine include promotion of progress in fundamental and applied research, along with publication of guidelines and recommendations in laboratory diagnostics, this journal is an ideal source of information on current developments in the laboratory technology of hemostasis, and this article is aimed to celebrate some of the most important and popular articles ever published by the journal in the filed of laboratory hemostasis.

  16. A comprehensive Laboratory Services Survey of State Public Health Laboratories.

    PubMed

    Inhorn, Stanley L; Wilcke, Burton W; Downes, Frances Pouch; Adjanor, Oluwatosin Omolade; Cada, Ronald; Ford, James R

    2006-01-01

    In November 2004, the Association of Public Health Laboratories (APHL) conducted a Comprehensive Laboratory Services Survey of State Public Health Laboratories (SPHLs) in order to establish the baseline data necessary for Healthy People 2010 Objective 23-13. This objective aims to measure the increase in the proportion of health agencies that provide or assure access to comprehensive laboratory services to support essential public health services. This assessment addressed only SPHLs and served as a baseline to periodically evaluate the level of improvement in the provision of laboratory services over the decade ending 2010. The 2004 survey used selected questions that were identified as key indicators of provision of comprehensive laboratory services. The survey was developed in consultation with the Centers for Disease Control and Prevention National Center for Health Statistics, based on newly developed data sources. Forty-seven states and one territory responded to the survey. The survey was based on the 11 core functions of SPHLs as previously defined by APHL. The range of performance among individual laboratories for the 11 core functions (subobjectives) reflects the challenging issues that have confronted SPHLs in the first half of this decade. APHL is now working on a coordinated effort with other stakeholders to create seamless state and national systems for the provision of laboratory services in support of public health programs. These services are necessary to help face the threats raised by the specter of terrorism, emerging infections, and natural disasters.

  17. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data andmore » an internal evaluation of the program’s management process.« less

  18. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  19. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and anmore » internal evaluation of the program’s management process.« less

  20. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial datamore » and an internal evaluation of the program’s management process.« less

  1. Laboratory quality management system: road to accreditation and beyond.

    PubMed

    Wadhwa, V; Rai, S; Thukral, T; Chopra, M

    2012-01-01

    This review attempts to clarify the concepts of Laboratory Quality Management System (Lab QMS) for a medical testing and diagnostic laboratory in a holistic way and hopes to expand the horizon beyond quality control (QC) and quality assurance. It provides an insight on accreditation bodies and highlights a glimpse of existing laboratory practices but essentially it takes the reader through the journey of accreditation and during the course of reading and understanding this document, prepares the laboratory for the same. Some of the areas which have not been highlighted previously include: requirement for accreditation consultants, laboratory infrastructure and scope, applying for accreditation, document preparation. This section is well supported with practical illustrations and necessary tables and exhaustive details like preparation of a standard operating procedure and a quality manual. Concept of training and privileging of staff has been clarified and a few of the QC exercises have been dealt with in a novel way. Finally, a practical advice for facing an actual third party assessment and caution needed to prevent post-assessment pitfalls has been dealt with.

  2. Laboratory Directed Research and Development 1998 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work inmore » atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.« less

  3. Laboratory evaluation of Fecker and Loral optical IR PWI systems

    NASA Technical Reports Server (NTRS)

    Gorstein, M.; Hallock, J. N.; Houten, M.; Mcwilliams, I. G.

    1971-01-01

    A previous flight test of two electro-optical pilot warning indicators, using a flashing xenon strobe and silicon detectors as cooperative elements, pointed out several design deficiencies. The present laboratory evaluation program corrected these faults and calibrated the sensitivity of both systems in azimuth elevation and range. The laboratory tests were performed on an optical bench and consisted of three basic components: (1) a xenon strobe lamp whose output is monitored at the indicator detector to give pulse to pulse information on energy content at the receiver; (2) a strobe light attenuating optical system which is calibrated photometrically to provide simulated range; and (3) a positioning table on which the indicator system under study is mounted and which provides spatial location coordinates for all data points. The test results for both systems are tabulated.

  4. Informatics and the Clinical Laboratory

    PubMed Central

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-01-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, ‘Informatics’ – the art and science of turning data into useful information – is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology – whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients – which requires critical assessment of the ever-increasing volume of information available – can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that

  5. Percolation Tests for Septic Systems: A Laboratory Exercise.

    ERIC Educational Resources Information Center

    Tinker, John R., Jr.

    1978-01-01

    Describes how the procedures by which a certificate soil tester evaluates a parcel of land for its suitability as a site for a private sewage system or septic tank can be used by college students as a laboratory exercise in environmental geology. (HM)

  6. Development of Wave Turbine Emulator in a Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Vinatha, U.; Vittal K, P.

    2013-07-01

    Wave turbine emulator (WTE) is an important equipment for developing wave energy conversion system. The emulator reflects the actual behavior of the wave turbine by reproducing the characteristics of real wave turbine without reliance on natural wave resources and actual wave turbine. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators. The emulator can be used for research applications to drive an electrical generator in a similar way as a practical wave turbine. This article presents the development of a WTE in a laboratory environment and studies on the behavior of electrical generator coupled to the emulator. The structure of a WTE consists of a PC where the characteristics of the turbine are implemented, ac drive to emulate the turbine rotor, feedback mechanism from the drive and power electronic equipment to control the drive. The feedback signal is acquired by the PC through an A/D converter, and the signal for driving the power electronic device comes from the PC through a D/A converter.

  7. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and

  8. Implementation of the OECD principles of good laboratory practice in test facilities complying with a quality system accredited to the ISO/IEC 17025 standard.

    PubMed

    Feller, Etty

    2008-01-01

    Laboratories with a quality system accredited to the ISO/IEC 17025 standard have a definite advantage, compared to non-accredited laboratories, when preparing their facilities for the implementation of the principles of good laboratory practice (GLP) of the Organisation for Economic Co-operation and Development (OECD). Accredited laboratories have an established quality system covering the administrative and technical issues specified in the standard. The similarities and differences between the ISO/IEC 17025 standard and the OECD principles of GLP are compared and discussed.

  9. Development of guided inquiry-based laboratory worksheet on topic of heat of combustion

    NASA Astrophysics Data System (ADS)

    Sofiani, D.; Nurhayati; Sunarya, Y.; Suryatna, A.

    2018-03-01

    Chemistry curriculum reform shows an explicit shift from traditional approach to scientific inquiry. This study aims to develop a guided inquiry-based laboratory worksheet on topic of heat of combustion. Implementation of this topic in high school laboratory is new because previously some teachers only focused the experiment on determining the heat of neutralization. The method used in this study was development research consisted of three stages: define, design, and develop. In the define stage, curriculum analysis and material analysis were performed. In the design stage, laboratory optimization and product preparation were conducted. In the development stage, the product was evaluated by the experts and tested to a total of 20 eleventh-grade students. The instruments used in this study were assessment sheet and students’ response questionnaire. The assessment results showed that the guided inquiry-based laboratory worksheet has very good quality based on the aspects of content, linguistic, and graphics. The students reacted positively to the use of this guided inquiry-based worksheet as demonstrated by the results from questionnaire. The implications of this study is the laboratory activity should be directed to development of scientific inquiry skills in order to enhance students’ competences as well as the quality of science education.

  10. A method for developing outcome measures in the clinical laboratory.

    PubMed

    Jones, J

    1996-01-01

    Measuring and reporting outcomes in health care is becoming more important for quality assessment, utilization assessment, accreditation standards, and negotiating contracts in managed care. How does one develop an outcome measure for the laboratory to assess the value of the services? A method is described which outlines seven steps in developing outcome measures for a laboratory service or process. These steps include the following: 1. Identify the process or service to be monitored for performance and outcome assessment. 2. If necessary, form an multidisciplinary team of laboratory staff, other department staff, physicians, and pathologists. 3. State the purpose of the test or service including a review of published data for the clinical pathological correlation. 4. Prepare a process cause and effect diagram including steps critical to the outcome. 5. Identify key process variables that contribute to positive or negative outcomes. 6. Identify outcome measures that are not process measures. 7. Develop an operational definition, identify data sources, and collect data. Examples, including a process cause and effect diagram, process variables, and outcome measures, are given using the Therapeutic Drug Monitoring service (TDM). A summary of conclusions and precautions for outcome measurement is then provided.

  11. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    NASA Astrophysics Data System (ADS)

    Amolins, Michael Wayne

    The development of effective science educators has been a long-standing goal of the American education system. Numerous studies have suggested a breadth of professional development programs that have sought to utilize constructivist principles in order to orchestrate movement toward student-led, inquiry-based instruction. Very few, however, have addressed a missing link between the modern scientific laboratory and the traditional science classroom. While several laboratory-based training programs have begun to emerge in recent years, the skills necessary to translate this information into the classroom are rarely addressed. The result is that participants are often left without an outlet or the confidence to integrate these into their lessons. The purpose of this study was to examine the effectiveness of a laboratory-based professional development program focused on classroom integration and reformed science teaching principles. This was measured by the ability to invigorate its seven participants in order to achieve higher levels of success and fulfillment in the classroom. These participants all taught at public high schools in South Dakota, including both rural and urban locations, and taught a variety of courses. Participants were selected for this study through their participation in the Sanford Research/USD Science Educator Research Fellowship Program. Through the use of previously collected data acquired by Sanford Research, this study attempted to detail the convergence of three assessments in order to demonstrate the growth and development of its participants. First, pre- and post-program surveys were completed in order to display the personal and professional growth of its participants. Second, pre- and post-program classroom observations employing the Reformed Teaching Observation Protocol allowed for the assessment of pedagogical modifications being integrated by each participant, as well as the success of such modifications in constructively

  12. Laboratories | NREL

    Science.gov Websites

    | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced Thermal Laboratory Structural Testing Laboratory Surface Analysis Laboratory Systems Performance Laboratory T Thermal Storage Materials Laboratory Thermal Storage Process and Components Laboratory Thin-Film Deposition

  13. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    PubMed

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  14. Improved Specimen-Referral System and Increased Access to Quality Laboratory Services in Ethiopia: The Role of the Public-Private Partnership.

    PubMed

    Kebede, Yenew; Fonjungo, Peter N; Tibesso, Gudeta; Shrivastava, Ritu; Nkengasong, John N; Kenyon, Thomas; Kebede, Amha; Gadde, Renuka; Ayana, Gonfa

    2016-04-15

    Nonstandardized specimen-transport logistics, lack of laboratory personnel to transport specimens, lack of standard specimen containers, and long turnaround time (TAT) hindered access to quality laboratory services. The objective of the Becton, Dickinson, and Company (BD)-US President's Emergency Plan for AIDS Relief (PEPFAR) Public-Private Partnership (PPP) was to support country-specific programs to develop integrated laboratory systems, services, and quality improvement strategies, with an emphasis on strengthening the specimen-referral system (SRS). In 2007, through the Centers for Disease Control and Prevention (CDC), the Ethiopian Public Health Institute (EPHI) joined with the BD-PEPFAR PPP to strengthen laboratory systems. A joint planning and assessment committee identified gaps in the SRS for prioritization and intervention and piloted the system in Addis Ababa and Amhara Region. The PPP established standardized, streamlined specimen logistics, using the Ethiopian Postal Service Enterprise to support a laboratory network in which 554 facilities referred specimens to 160 laboratories. The PPP supported procuring 400 standard specimen containers and the training of 586 laboratory personnel and 81 postal workers. The average TAT was reduced from 7 days (range, 2-14 days) to 2 days (range, 1-3 days) in Addis Ababa and from 10 days (range, 6-21 days) to 5 days (range, 2-6 days) in Amhara Region. This study highlights the feasibility and untapped potential of PPPs to strengthen laboratory systems. This planned and structured approach to improving specimen referral enhanced access to quality laboratory services. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  15. MOBLAB: a mobile laboratory for testing real-time vision-based systems in path monitoring

    NASA Astrophysics Data System (ADS)

    Cumani, Aldo; Denasi, Sandra; Grattoni, Paolo; Guiducci, Antonio; Pettiti, Giuseppe; Quaglia, Giorgio

    1995-01-01

    In the framework of the EUREKA PROMETHEUS European Project, a Mobile Laboratory (MOBLAB) has been equipped for studying, implementing and testing real-time algorithms which monitor the path of a vehicle moving on roads. Its goal is the evaluation of systems suitable to map the position of the vehicle within the environment where it moves, to detect obstacles, to estimate motion, to plan the path and to warn the driver about unsafe conditions. MOBLAB has been built with the financial support of the National Research Council and will be shared with teams working in the PROMETHEUS Project. It consists of a van equipped with an autonomous power supply, a real-time image processing system, workstations and PCs, B/W and color TV cameras, and TV equipment. This paper describes the laboratory outline and presents the computer vision system and the strategies that have been studied and are being developed at I.E.N. `Galileo Ferraris'. The system is based on several tasks that cooperate to integrate information gathered from different processes and sources of knowledge. Some preliminary results are presented showing the performances of the system.

  16. Proven Innovations and New Initiatives in Ground System Development

    NASA Technical Reports Server (NTRS)

    Gunn, Jody M.

    2006-01-01

    The state-of-the-practice for engineering and development of Ground Systems has evolved significantly over the past half decade. Missions that challenge ground system developers with significantly reduced budgets in spite of requirements for greater and previously unimagined functionality are now the norm. Making the right trades early in the mission lifecycle is one of the key factors to minimizing ground system costs. The Mission Operations Strategic Leadership Team at the Jet Propulsion Laboratory has spent the last year collecting and working through successes and failures in ground systems for application to future missions.

  17. An e-health driven laboratory information system to support HIV treatment in Peru: E-quity for laboratory personnel, health providers and people living with HIV.

    PubMed

    García, Patricia J; Vargas, Javier H; Caballero N, Patricia; Calle V, Javier; Bayer, Angela M

    2009-12-10

    Peru has a concentrated HIV epidemic with an estimated 76,000 people living with HIV (PLHIV). Access to highly active antiretroviral therapy (HAART) expanded between 2004-2006 and the Peruvian National Institute of Health was named by the Ministry of Health as the institution responsible for carrying out testing to monitor the effectiveness of HAART. However, a national public health laboratory information system did not exist. We describe the design and implementation of an e-health driven, web-based laboratory information system--NETLAB--to communicate laboratory results for monitoring HAART to laboratory personnel, health providers and PLHIV. We carried out a needs assessment of the existing public health laboratory system, which included the generation and subsequent review of flowcharts of laboratory testing processes to generate better, more efficient streamlined processes, improving them and eliminating duplications. Next, we designed NETLAB as a modular system, integrating key security functions. The system was implemented and evaluated. The three main components of the NETLAB system, registration, reporting and education, began operating in early 2007. The number of PLHIV with recorded CD4 counts and viral loads increased by 1.5 times, to reach 18,907. Publication of test results with NETLAB took an average of 1 day, compared to a pre-NETLAB average of 60 days. NETLAB reached 2,037 users, including 944 PLHIV and 1,093 health providers, during its first year and a half. The percentage of overall PLHIV and health providers who were aware of NETLAB and had a NETLAB password has also increased substantially. NETLAB is an effective laboratory management tool since it is directly integrated into the national laboratory system and streamlined existing processes at the local, regional and national levels. The system also represents the best possible source of timely laboratory information for health providers and PLHIV, allowing patients to access their own

  18. Marshall Space Flight Center Ground Systems Development and Integration

    NASA Technical Reports Server (NTRS)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  19. Laboratory Information Systems Management and Operations.

    PubMed

    Cucoranu, Ioan C

    2015-06-01

    The main mission of a laboratory information system (LIS) is to manage workflow and deliver accurate results for clinical management. Successful selection and implementation of an anatomic pathology LIS is not complete unless it is complemented by specialized information technology support and maintenance. LIS is required to remain continuously operational with minimal or no downtime and the LIS team has to ensure that all operations are compliant with the mandated rules and regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Implementation and Initial Analysis of a Laboratory-Based Weekly Biosurveillance System, Provence-Alpes-Côte d’Azur, France

    PubMed Central

    Bedubourg, Gabriel; Abat, Cédric; Colson, Philippe; Rolain, Jean Marc; Chaudet, Hervé; Fournier, Pierre Edouard; Raoult, Didier; Deparis, Xavier

    2017-01-01

    We describe the implementation of an automated infectious disease surveillance system that uses data collected from 210 microbiologic laboratories throughout the Provence-Alpes-Côte d’Azur region in France. Each week, these facilities report bacterial species that have been isolated from patients in their area. An alarm is triggered whenever the case count for a bacterial species infection exceeds 2 SDs of the historical mean for that species at the participating laboratory. At its inception in July 2013, the system monitored 611 bacterial species. During July 1, 2013–March 20, 2016, weekly analyses of incoming surveillance data generated 34 alarms signaling possible infectious disease outbreaks; after investigation, 14 (41%) of these alarms resulted in health alerts declared by the regional health authority. We are currently improving the system by developing an Internet-based surveillance platform and extending our surveillance to include more laboratories in the region. PMID:28322712

  1. Laboratory automation: trajectory, technology, and tactics.

    PubMed

    Markin, R S; Whalen, S A

    2000-05-01

    Laboratory automation is in its infancy, following a path parallel to the development of laboratory information systems in the late 1970s and early 1980s. Changes on the horizon in healthcare and clinical laboratory service that affect the delivery of laboratory results include the increasing age of the population in North America, the implementation of the Balanced Budget Act (1997), and the creation of disease management companies. Major technology drivers include outcomes optimization and phenotypically targeted drugs. Constant cost pressures in the clinical laboratory have forced diagnostic manufacturers into less than optimal profitability states. Laboratory automation can be a tool for the improvement of laboratory services and may decrease costs. The key to improvement of laboratory services is implementation of the correct automation technology. The design of this technology should be driven by required functionality. Automation design issues should be centered on the understanding of the laboratory and its relationship to healthcare delivery and the business and operational processes in the clinical laboratory. Automation design philosophy has evolved from a hardware-based approach to a software-based approach. Process control software to support repeat testing, reflex testing, and transportation management, and overall computer-integrated manufacturing approaches to laboratory automation implementation are rapidly expanding areas. It is clear that hardware and software are functionally interdependent and that the interface between the laboratory automation system and the laboratory information system is a key component. The cost-effectiveness of automation solutions suggested by vendors, however, has been difficult to evaluate because the number of automation installations are few and the precision with which operational data have been collected to determine payback is suboptimal. The trend in automation has moved from total laboratory automation to a

  2. Designing an autoverification system in Zagazig University Hospitals Laboratories: preliminary evaluation on thyroid function profile.

    PubMed

    Sediq, Amany Mohy-Eldin; Abdel-Azeez, Ahmad GabAllahm Hala

    2014-01-01

    The current practice in Zagazig University Hospitals Laboratories (ZUHL) is manual verification of all results for the later release of reports. These processes are time consuming and tedious, with large inter-individual variation that slows the turnaround time (TAT). Autoverification is the process of comparing patient results, generated from interfaced instruments, against laboratory-defined acceptance parameters. This study describes an autoverification engine designed and implemented in ZUHL, Egypt. A descriptive study conducted at ZUHL, from January 2012-December 2013. A rule-based system was used in designing an autoverification engine. The engine was preliminarily evaluated on a thyroid function panel. A total of 563 rules were written and tested on 563 simulated cases and 1673 archived cases. The engine decisions were compared to that of 4 independent expert reviewers. The impact of engine implementation on TAT was evaluated. Agreement was achieved among the 4 reviewers in 55.5% of cases, and with the engine in 51.5% of cases. The autoverification rate for archived cases was 63.8%. Reported lab TAT was reduced by 34.9%, and TAT segment from the completion of analysis to verification was reduced by 61.8%. The developed rule-based autoverification system has a verification rate comparable to that of the commercially available software. However, the in-house development of this system had saved the hospital the cost of commercially available ones. The implementation of the system shortened the TAT and minimized the number of samples that needed staff revision, which enabled laboratory staff to devote more time and effort to handle problematic test results and to improve patient care quality.

  3. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    NASA Technical Reports Server (NTRS)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This paper details an architectural description of the Mission Data Processing and Control System (MPCS), an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is developed based on a set of small reusable components, implemented in Java, each designed with a specific function and well-defined interfaces. An industry standard messaging bus is used to transfer information among system components. Components generate standard messages which are used to capture system information, as well as triggers to support the event-driven architecture of the system. Event-driven systems are highly desirable for processing high-rate telemetry (science and engineering) data, and for supporting automation for many mission operations processes.

  4. Developments in laboratory diagnostics for isocyanate asthma

    PubMed Central

    Wisnewski, Adam V.

    2011-01-01

    Purpose of review Isocyanates, reactive chemicals used to generate polyurethane, are a leading cause of occupational asthma worldwide. Workplace exposure is the best-recognized risk factor for disease development, but is challenging to monitor. Clinical diagnosis and differentiation of isocyanates as the cause of asthma can be difficult. The gold-standard test, specific inhalation challenge, is technically and economically demanding, and is thus only available in a few specialized centers in the world. With the increasing use of isocyanates, efficient laboratory tests for isocyanate asthma and exposure are urgently needed. Recent findings The review focuses on literature published in 2005 and 2006. Over 150 articles, identified by searching PubMed using keywords ‘diphenylmethane’, ‘toluene’ or ‘hexamethylene diisocyanate’, were screened for relevance to isocyanate asthma diagnostics. New advances in understanding isocyanate asthma pathogenesis are described, which help improve conventional radioallergosorbent and enzyme-linked immunosorbent assay approaches for measuring isocyanate-specific IgE and IgG. Newer immunoassays, based on cellular responses and discovery science readouts are also in development. Summary Contemporary laboratory tests that measure isocyanate-specific human IgE and IgG are of utility in diagnosing a subset of workers with isocyanate asthma, and may serve as a biomarker of exposure in a larger proportion of occupationally exposed workers. PMID:17351466

  5. [The current clinical laboratory in the public health system and medical science: a lecture].

    PubMed

    Men'shikov, V V

    2011-11-01

    The analytic and diagnostic possibilities of current clinical laboratories are discussed. The roles of laboratory information in the formation of new research directions are characterized. The proposals on the development of economic basics of the development of laboratory medicine.

  6. An Embedded Systems Laboratory to Support Rapid Prototyping of Robotics and the Internet of Things

    ERIC Educational Resources Information Center

    Hamblen, J. O.; van Bekkum, G. M. E.

    2013-01-01

    This paper describes a new approach for a course and laboratory designed to allow students to develop low-cost prototypes of robotic and other embedded devices that feature Internet connectivity, I/O, networking, a real-time operating system (RTOS), and object-oriented C/C++. The application programming interface (API) libraries provided permit…

  7. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael F. Simpson

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  8. Positioning laboratory automation for today's dynamic climate

    PubMed Central

    Vogt, D. G.

    1994-01-01

    Laboratory automation has existed and matured at Eli Lilly and Company for well over a decade. The author's section serves as a developer of laboratory automation systems for customers within Lilly and embodies ‘robotic friendly’ laboratories with highly technical and experienced personnel. With several systems showing signs of age, second generation ‘smart systems’ have been developed and delivered during the last three years. These systems were built with an ideology different from previous systems. Upon their delivery, the ‘smart systems’ met the customer's functional requirements but the overall acceptance of this ideology is still being debated due to the perception of failure. Much of this perception can be attributed to the delivery of a system heavily dependent on system maintenance, something totally unexpected by the customer. This paper discusses the ideology of a‘smart systems’ and the results following implementation. The events that led to the review and subsequent departure of the ‘smart systems’ ideology are also described. PMID:18924995

  9. Development and evaluation of a lightweight sensor system ...

    EPA Pesticide Factsheets

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter with diameter of 2.5 µm or less (PM2.5), and volatile organic compounds (VOCs). This extended abstract, intended for oral presentation or poster presentation at this summer's AWMA conference, presents some of the first verification data from laboratory and burn calibration of a newly developed sensor and sampler system for ground and aerial sampling.

  10. Laboratory models for central nervous system tumor stem cell research.

    PubMed

    Khan, Imad Saeed; Ehtesham, Moneeb

    2015-01-01

    Central nervous system (CNS) tumors are complex organ systems comprising of a neoplastic component with associated vasculature, inflammatory cells, and reactive cellular and extracellular components. Research has identified a subset of cells in CNS tumors that portray defining properties of neural stem cells, namely, that of self-renewal and multi-potency. Growing evidence suggests that these tumor stem cells (TSC) play an important role in the maintenance and growth of the tumor. Furthermore, these cells have also been shown to be refractory to conventional therapy and may be crucial for tumor recurrence and metastasis. Current investigations are focusing on isolating these TSC from CNS tumors to investigate their unique biological processes. This understanding will help identify and develop more effective and comprehensive treatment strategies. This chapter provides an overview of some of the most commonly used laboratory models for CNSTSC research.

  11. A Microcomputer-Based Data Acquisition System for Use in Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Johnson, Ray L.

    1982-01-01

    A laboratory computer system based on the Commodore PET 2001 is described including three applications for the undergraduate analytical chemistry laboratory: (1) recording a UV-visible absorption spectrum; (2) recording and use of calibration curves; and (3) recording potentiometric data. Lists of data acquisition programs described are available…

  12. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu; Oamen, Godwin; Vassiljeva, Kristina; Teder, Leo

    2016-11-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. This paper provides educational theories and practices on the design of control for system dynamics.

  13. Development of a CCD based solar speckle imaging system

    NASA Astrophysics Data System (ADS)

    Nisenson, Peter; Stachnik, Robert V.; Noyes, Robert W.

    1986-02-01

    A program to develop software and hardware for the purpose of obtaining high angular resolution images of the solar surface is described. The program included the procurement of a Charge Coupled Devices imaging system; an extensive laboratory and remote site testing of the camera system; the development of a software package for speckle image reconstruction which was eventually installed and tested at the Sacramento Peak Observatory; and experiments of the CCD system (coupled to an image intensifier) for low light level, narrow spectral band solar imaging.

  14. Compliance program data management system for The Idaho National Engineering Laboratory/Environmental Protection Agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzler, C.L.; Poloski, J.P.; Bates, R.A.

    1988-01-01

    The Compliance Program Data Management System (DMS) developed at the Idaho National Engineering Laboratory (INEL) validates and maintains the integrity of data collected to support the Consent Order and Compliance Agreement (COCA) between the INEL and the Environmental Protection Agency (EPA). The system uses dBase III Plus programs and dBase III Plus in an interactive mode to enter, store, validate, manage, and retrieve analytical information provided on EPA Contract Laboratory Program (CLP) forms and CLP forms modified to accommodate 40 CFR 264 Appendix IX constituent analyses. Data analysis and presentation is performed utilizing SAS, a statistical analysis software program. Archivingmore » of data and results is performed at appropriate stages of data management. The DMS is useful for sampling and analysis programs where adherence to EPA CLP protocol, along with maintenance and retrieval of waste site investigation sampling results is desired or requested. 3 refs.« less

  15. [Monitoring nosocomial infections using a laboratory-based system].

    PubMed

    Montella, F; Gallo, S; Leacche, G; Macchia, G

    1998-01-01

    In this paper we report the results of a nosocomial infections surveillance system "Laboratory Based". The system started in August 1995 at San Giovanni Hospital, Rome. All the specimens sent to the Microbiology Laboratory have been registered using a computerized input form. 12,204 forms, attributable to patients between 0 and 97 years (median 43 years) resulted evaluable. The global rate of incidence of nosocomial infection was, in the study period, 16 per one thousand person/day. The rate of incidence, when stratified for the medical, surgical and emergency boards, was, respectively, 19 per one thousand person/day in the medical facilities, 15 per one thousand person/day in surgical and 17 per one thousand person/year in emergency facilities. The nosocomial infections incidence correlated well with the age of the patients and the time of bed stay. The bulk of infections were localized to the respiratory apparatus. Localization to urinary apparatus and sepsis follow. The isolated microbes were (38%) gram-negative microbes; the 38% of the isolates are gram-negative microbes and the 24% are Mycetes. Our data validate the surveillance system in a great hospital of Rome metropolitan area.

  16. Despin System for Hydrogen Tank in the Propulsion Systems Laboratory

    NASA Image and Video Library

    1962-04-21

    Mechanic Howard Wine inspects the setup of a spin isolator in Cell 2 of the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Photographer Al Jecko filmed the proceedings. This test was unique in that the chamber’s altitude system was used, but not its inlet air flow. The test was in preparation for an upcoming launch of modified liquid hydrogen propellant tank on a sounding rocket. This Weightlessness Analysis Sounding Probe (WASP) was part of Lewis investigation into methods for controlling partially filled liquid hydrogen fuel tanks during flight. Second-stage rockets, the Centaur in particular, were designed to stop their engines and coast, then restart them when needed. During this coast period, the propellant often shifted inside the tank. This movement could throw the rocket off course or result in the sloshing of fuel away from the fuel pump. Wine was one of only three journeymen mechanics at Lewis when he was hired in January 1954. He spent his first decade in the Propulsion Systems Laboratory and was soon named a section head. Wine went on to serve as Assistant Division Chief and later served as an assistant to the director. Jecko joined the center in 1947 as a photographer and artist. He studied at the Cleveland School or Art and was known for his cartoon drawing. He worked at the center for 26 years.

  17. MendeLIMS: a web-based laboratory information management system for clinical genome sequencing.

    PubMed

    Grimes, Susan M; Ji, Hanlee P

    2014-08-27

    Large clinical genomics studies using next generation DNA sequencing require the ability to select and track samples from a large population of patients through many experimental steps. With the number of clinical genome sequencing studies increasing, it is critical to maintain adequate laboratory information management systems to manage the thousands of patient samples that are subject to this type of genetic analysis. To meet the needs of clinical population studies using genome sequencing, we developed a web-based laboratory information management system (LIMS) with a flexible configuration that is adaptable to continuously evolving experimental protocols of next generation DNA sequencing technologies. Our system is referred to as MendeLIMS, is easily implemented with open source tools and is also highly configurable and extensible. MendeLIMS has been invaluable in the management of our clinical genome sequencing studies. We maintain a publicly available demonstration version of the application for evaluation purposes at http://mendelims.stanford.edu. MendeLIMS is programmed in Ruby on Rails (RoR) and accesses data stored in SQL-compliant relational databases. Software is freely available for non-commercial use at http://dna-discovery.stanford.edu/software/mendelims/.

  18. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOX, K.J.

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE)more » annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.« less

  19. Laboratory automation of high-quality and efficient ligand-binding assays for biotherapeutic drug development.

    PubMed

    Wang, Jin; Patel, Vimal; Burns, Daniel; Laycock, John; Pandya, Kinnari; Tsoi, Jennifer; DeSilva, Binodh; Ma, Mark; Lee, Jean

    2013-07-01

    Regulated bioanalytical laboratories that run ligand-binding assays in support of biotherapeutics development face ever-increasing demand to support more projects with increased efficiency. Laboratory automation is a tool that has the potential to improve both quality and efficiency in a bioanalytical laboratory. The success of laboratory automation requires thoughtful evaluation of program needs and fit-for-purpose strategies, followed by pragmatic implementation plans and continuous user support. In this article, we present the development of fit-for-purpose automation of total walk-away and flexible modular modes. We shared the sustaining experience of vendor collaboration and team work to educate, promote and track the use of automation. The implementation of laboratory automation improves assay performance, data quality, process efficiency and method transfer to CRO in a regulated bioanalytical laboratory environment.

  20. Micro-Electromechanical Instrument and Systems Development at the Charles Stark Draper Laboratory

    NASA Technical Reports Server (NTRS)

    Connelly, J. H.; Gilmore, J. P.; Weinberg, M. S.

    1995-01-01

    Several generations of micromechanical gyros and accelerometers have been developed at Draper. Current design effort centers on tuning-fork gyro design and pendulous accelerometer configurations. Over 200 gyros of different generations have been packaged and tested. These units have successfully performed across a temperature range of -40 to 85 degrees C, and have survived 30,000-g shock tests along all axes. Draper is currently under contract to develop an integrated micro-mechanical inertial sensor assembly (MMISA) and global positioning system (GPS) receiver configuration. The ultimate projections for size, weight, and power for an MMISA, after electronic design of the application specific integrated circuit (ASIC ) is completed, are 2 x 2 x 0.5 cm, 5 gm, and less than 1 W, respectively. This paper describes the fabrication process, the current gyro and accelerometer designs, and system configurations.

  1. Quality management systems for your in vitro fertilization clinic's laboratory: Why bother?

    PubMed

    Olofsson, Jan I; Banker, Manish R; Sjoblom, Late Peter

    2013-01-01

    Several countries have in recent years introduced prescribed requirements for treatment and monitoring of outcomes, as well as a licensing or accreditation requirement for in vitro fertilization (IVF) clinics and their laboratories. It is commonplace for Assisted Reproductive Technology (ART) laboratories to be required to have a quality control system. However, more effective Total Quality Management systems are now being implemented by an increasing number of ART clinics. In India, it is now a requirement to have a quality management system in order to be accredited and to help meet customer demand for improved delivery of ART services. This review contains the proceedings a quality management session at the Indian Fertility Experts Meet (IFEM) 2010 and focuses on the creation of a patient-oriented best-in-class IVF laboratory.

  2. Quality management systems for your in vitro fertilization clinic's laboratory: Why bother?

    PubMed Central

    Olofsson, Jan I; Banker, Manish R; Sjoblom, Late Peter

    2013-01-01

    Several countries have in recent years introduced prescribed requirements for treatment and monitoring of outcomes, as well as a licensing or accreditation requirement for in vitro fertilization (IVF) clinics and their laboratories. It is commonplace for Assisted Reproductive Technology (ART) laboratories to be required to have a quality control system. However, more effective Total Quality Management systems are now being implemented by an increasing number of ART clinics. In India, it is now a requirement to have a quality management system in order to be accredited and to help meet customer demand for improved delivery of ART services. This review contains the proceedings a quality management session at the Indian Fertility Experts Meet (IFEM) 2010 and focuses on the creation of a patient-oriented best-in-class IVF laboratory. PMID:23869142

  3. Harmonization of good laboratory practice requirements and laboratory accreditation programs.

    PubMed

    Royal, P D

    1994-09-01

    Efforts to harmonize Good Laboratory Practice (GLP) requirements have been underway through the Organization for Economic Cooperation and Development (OECD) since 1981. In 1985, a GLP panel was established to facilitate the practical implementation of the OECD/GLP program. Through the OECD/GLP program, Memoranda of Understanding (MOU) agreements which foster requirements for reciprocal data and study acceptance and unified GLP standards have been developed among member countries. Three OECD Consensus Workshops and three inspectors training workshops have been held. In concert with these efforts, several OECD countries have developed GLP accreditation programs, managed by local health and environmental ministries. In addition, Canada and the United States are investigating Laboratory Accreditation programs for environmental monitoring assessment and GLP-regulated studies. In the European Community (EC), the need for quality standards specifying requirements for production and international trade has promoted International Standards Organization (ISO) certification for certain products. ISO-9000 standards identify requirements for certification of quality systems. These certification programs may affect the trade and market of laboratories conducting GLP studies. Two goals identified by these efforts are common to both programs: first, harmonization and recognition of requirements, and second, confidence in the rigor of program components used to assess the integrity of data produced and study activities. This confidence can be promoted, in part, through laboratory inspection and screening processes. However, the question remains, will data produced by sanctioned laboratories be mutually accepted on an international basis?(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Proven Innovations and New Initiatives in Ground System Development: Reducing Costs in the Ground System

    NASA Technical Reports Server (NTRS)

    Gunn, Jody M.

    2006-01-01

    The state-of-the-practice for engineering and development of Ground Systems has evolved significantly over the past half decade. Missions that challenge ground system developers with significantly reduced budgets in spite of requirements for greater and previously unimagined functionality are now the norm. Making the right trades early in the mission lifecycle is one of the key factors to minimizing ground system costs. The Mission Operations Strategic Leadership Team at the Jet Propulsion Laboratory has spent the last year collecting and working through successes and failures in ground systems for application to future missions.

  5. Laboratory Directed Research and Development FY2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammeraad, J E; Jackson, K J; Sketchley, J A

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal yearmore » 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  6. The Tanzania experience: clinical laboratory testing harmonization and equipment standardization at different levels of a tiered health laboratory system.

    PubMed

    Massambu, Charles; Mwangi, Christina

    2009-06-01

    The rapid scale-up of the care and treatment programs in Tanzania during the preceding 4 years has greatly increased the demand for quality laboratory services for diagnosis of HIV and monitoring patients during antiretroviral therapy. Laboratory services were not in a position to cope with this demand owing to poor infrastructure, lack of human resources, erratic and/or lack of reagent supply and commodities, and slow manual technologies. With the limited human resources in the laboratory and the need for scaling up the care and treatment program, it became necessary to install automated equipment and train personnel for the increased volume of testing and new tests across all laboratory levels. With the numerous partners procuring equipment, the possibility of a multitude of equipment platforms with attendant challenges for procurement of reagents, maintenance of equipment, and quality assurance arose. Tanzania, therefore, had to harmonize laboratory tests and standardize laboratory equipment at different levels of the laboratory network. The process of harmonization of tests and standardization of equipment included assessment of laboratories, review of guidelines, development of a national laboratory operational plan, and stakeholder advocacy. This document outlines this process.

  7. A Simple and Low-Cost Monitoring System to Investigate Environmental Conditions in a Biological Research Laboratory.

    PubMed

    Gurdita, Akshay; Vovko, Heather; Ungrin, Mark

    2016-01-01

    Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a "Raspberry Pi" single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them.

  8. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  9. SNS Extraction Fast Kicker System Development

    DTIC Science & Technology

    2003-06-01

    SNS EXTRACTION FAST KICKER SYSTEM DEVELOPMENT * W. Zhang ξ, J. Sandberg, R. Lambiase, Y.Y. Lee, R. Lockey, J. Mi, T. Nehring, C. Pai, N. Tsoupas...Oak Ridge, TN 37831 * SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for...the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and

  10. [Construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province].

    PubMed

    Zhao-Hui, Zheng; Jun, Qin; Li, Chen; Hong, Zhu; Li, Tang; Zu-Wu, Tu; Ming-Xing, Zeng; Qian, Sun; Shun-Xiang, Cai

    2016-10-09

    To analyze the construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province, so as to provide the reference for the standardized detection and management of schistosomiasis laboratories. According to the laboratory standard of schistosomiasis at provincial, municipal and county levels, the management system construction and operation status of 60 schistosomiasis control institutions was assessed by the acceptance examination method from 2013 to 2015. The management system was already occupied over all the laboratories of schistosomiasis control institutions and was officially running. There were 588 non-conformities and the inconsistency rate was 19.60%. The non-conformity rate of the management system of laboratory quality control was 38.10% (224 cases) and the non-conformity rate of requirements of instrument and equipment was 23.81% (140 cases). The management system has played an important role in the standardized management of schistosomiasis laboratories.

  11. NASA Lewis Propulsion Systems Laboratory Customer Guide Manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1994-01-01

    This manual describes the Propulsion Systems Laboratory (PSL) at NASA Lewis Research Center. The PSL complex supports two large engine test cells (PSL-3 and PSL-4) that are capable of providing flight simulation to altitudes of 70,000 ft. Facility variables at the engine or test-article inlet, such as pressure, temperature, and Mach number (up to 3.0 for PSL-3 and up to 6.0 planned for PSL-4), are discussed. Support systems such as the heated and cooled combustion air systems; the altitude exhaust system; the hydraulic system; the nitrogen, oxygen, and hydrogen systems; hydrogen burners; rotating screen assemblies; the engine exhaust gas-sampling system; the infrared imaging system; and single- and multiple-axis thrust stands are addressed. Facility safety procedures are also stated.

  12. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov Websites

    Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  13. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  14. Mars Science Laboratory Entry, Descent and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tomasso P.; Chen, Allen

    2013-01-01

    The Mars Science Laboratory project recently places the Curiosity rove on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent and landing capabilities has been extended over the previous state of the art. This paper will present an overview to the MSL entry, descent and landing system design and preliminary flight performance results.

  15. Laboratory testing of alcohol safety interlock systems employing divided attention tests

    DOT National Transportation Integrated Search

    1975-12-01

    Author's abstract: Prototype Alcohol Safety Interlock Systems employing measurements of tracking ability, reaction time, and response accuracy to discern alcohol impairment were submitted to laboratory testing. These systems were modified versions of...

  16. Alumina Based 500 C Electronic Packaging Systems and Future Development

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2012-01-01

    NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.

  17. Assessing the outcome of Strengthening Laboratory Management Towards Accreditation (SLMTA) on laboratory quality management system in city government of Addis Ababa, Ethiopia

    PubMed Central

    Sisay, Abay; Mindaye, Tedla; Tesfaye, Abrham; Abera, Eyob; Desale, Adino

    2015-01-01

    Introduction Strengthening Laboratory Management Toward Accreditation (SLMTA) is a competency-based management training programme designed to bring about immediate and measurable laboratory improvement. The aim of this study is to assess the outcome of SLMTA on laboratory quality management system in Addis Ababa, Ethiopia. Methods The study used an Institutional based cross sectional study design that employed a secondary and primary data collection approach on the participated institution of medical laboratory in SLMTA. The study was conducted in Addis Ababa city government and the data was collected from February ‘April 2014 and data was entered in to EPI-data version 3.1 and was analyzed by SPSS version 20. Results The assessment finding indicate that there was a significant improvement in average scores (141.4; range of 65-196, 95%CI =86.275-115.5, p = 0.000) at final with 3 laboratories become 3 star, 6 laboratories were at 2 star, 11 were 1 star. Laboratory facilities respondents which thought getting adequate and timely manner mentorship were found 2.5 times more likely to get good success in the final score(AOR= 2.501, 95% CI= 1.109-4.602) than which did not get it. Conclusion At the end of SLMTA implementation,3 laboratories score 3 star, 6 laboratories were at 2 star, 11 were at 1 star. The most important contributing factor for not scoring star in the final outcome of SLMTA were not conducting their customer satisfaction survey, poor staff motivation, and lack of regular equipment service maintenance. Mentorship, onsite and offsite coaching and training activities had shown a great improvement on laboratory quality management system in most laboratories. PMID:26175805

  18. Assessing the outcome of Strengthening Laboratory Management Towards Accreditation (SLMTA) on laboratory quality management system in city government of Addis Ababa, Ethiopia.

    PubMed

    Sisay, Abay; Mindaye, Tedla; Tesfaye, Abrham; Abera, Eyob; Desale, Adino

    2015-01-01

    Strengthening Laboratory Management Toward Accreditation (SLMTA) is a competency-based management training programme designed to bring about immediate and measurable laboratory improvement. The aim of this study is to assess the outcome of SLMTA on laboratory quality management system in Addis Ababa, Ethiopia. The study used an Institutional based cross sectional study design that employed a secondary and primary data collection approach on the participated institution of medical laboratory in SLMTA. The study was conducted in Addis Ababa city government and the data was collected from February 'April 2014 and data was entered in to EPI-data version 3.1 and was analyzed by SPSS version 20. The assessment finding indicate that there was a significant improvement in average scores (141.4; range of 65-196, 95%CI=86.275-115.5, p=0.000) at final with 3 laboratories become 3 star, 6 laboratories were at 2 star, 11 were 1 star. Laboratory facilities respondents which thought getting adequate and timely manner mentorship were found 2.5 times more likely to get good success in the final score(AOR=2.501, 95% CI=1.109-4.602) than which did not get it. At the end of SLMTA implementation,3 laboratories score 3 star, 6 laboratories were at 2 star, 11 were at 1 star. The most important contributing factor for not scoring star in the final outcome of SLMTA were not conducting their customer satisfaction survey, poor staff motivation, and lack of regular equipment service maintenance. Mentorship, onsite and offsite coaching and training activities had shown a great improvement on laboratory quality management system in most laboratories.

  19. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  20. Laboratory System Improvement Program: first in the nation--New Hampshire reassessment.

    PubMed

    Power, Jill J; Bean, Christine L; Cosser, Amanda; Vazquez, Alma

    2013-01-01

    The New Hampshire Public Health Laboratories (NH PHL) conducted an initial Laboratory System Improvement Program (L-SIP) assessment in March 2007 and a reassessment in May 2011. New Hampshire was a pilot state for the initial L-SIP assessment in 2007 and was the first laboratory system in the United States to conduct an L-SIP reassessment. The New Hampshire reassessment was also used as a pilot for revising the assessment tool. The NH PHL performed a high-level comparison benchmarking the work done between the two assessments. This comparison revealed areas of improvement and other areas that needed continued focus to align with model standards of the 10 Essential Public Health Services. This article outlines achievements, improvements, and outcomes made since 2007, as well as participants, activities, plans, resources, and other factors that contributed to the change in scores between assessments.

  1. Air pollution control system research: An iterative approach to developing affordable systems

    NASA Technical Reports Server (NTRS)

    Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.

    1995-01-01

    This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.

  2. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  3. Laboratories and Demonstrations in Child Development with Unedited Videotapes.

    ERIC Educational Resources Information Center

    Poole, Debra Ann

    1986-01-01

    Multipurpose demonstrations of child development are easy to produce by videotaping children while they interact with parents, siblings, or friends. Unlike commercial films, videotapes without narration allow students to formulate and test their own research questions. This article describes how to use unedited videotapes for laboratories in…

  4. Development of Texas mechanistic-empirical flexible pavement design system.

    DOT National Transportation Integrated Search

    2013-09-01

    The FPS design system implemented in the mid-1990s has limitations in that it does not use any results : from laboratory testing so it is impossible to determine benefits from improved base materials or superior : asphalt mixes. The development of th...

  5. Development of a novel SCADA system for laboratory testing.

    PubMed

    Patel, M; Cole, G R; Pryor, T L; Wilmot, N A

    2004-07-01

    This document summarizes the supervisory control and data acquisition (SCADA) system that allows communication with, and controlling the output of, various I/O devices in the renewable energy systems and components test facility RESLab. This SCADA system differs from traditional SCADA systems in that it supports a continuously changing operating environment depending on the test to be performed. The SCADA System is based on the concept of having one Master I/O Server and multiple client computer systems. This paper describes the main features and advantages of this dynamic SCADA system, the connections of various field devices to the master I/O server, the device servers, and numerous software features used in the system. The system is based on the graphical programming language "LabVIEW" and its "Datalogging and Supervisory Control" (DSC) module. The DSC module supports a real-time database called the "tag engine," which performs the I/O operations with all field devices attached to the master I/O server and communications with the other tag engines running on the client computers connected via a local area network. Generic and detailed communication block diagrams illustrating the hierarchical structure of this SCADA system are presented. The flow diagram outlining a complete test performed using this system in one of its standard configurations is described.

  6. Development of IS2100: An Information Systems Laboratory.

    DTIC Science & Technology

    1985-03-01

    systems for digital logic; hardware architecture; machine, assembly, and high order language programming; and application packages such as database... applications and limitations. They should be able to define, demonstrate and/or discuss how computers are used, how they do their work, how to use them, and...limitations. Hands on operation of the hardware and software provides experience that aids in future selection of hardware systems and applications

  7. Laboratory Directed Research and Development FY2010 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less

  8. Developing Digital Courseware for a Virtual Nano-Biotechnology Laboratory: A Design-Based Research Approach

    ERIC Educational Resources Information Center

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Lin, Weijane; Sheen, Horn-Jiunn

    2014-01-01

    This paper first reviews applications of multimedia in engineering education, especially in laboratory learning. It then illustrates a model and accreditation criteria adopted for developing a specific set of nanotechnology laboratory courseware and reports the design-based research approach used in designing and developing the e-learning…

  9. 75 FR 39954 - Oversight of Laboratory Developed Tests; Public Meeting; Change of Meeting Location

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ...] Oversight of Laboratory Developed Tests; Public Meeting; Change of Meeting Location AGENCY: Food and Drug... location for the upcoming public meeting entitled ``Oversight of Laboratory Developed Tests.'' A new... the public meeting, FDA is announcing in this notice a new location for the public meeting. II. New...

  10. A Shallow Underground Laboratory for Low-Background Radiation Measurements and Materials Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Bonicalzi, Ricco; Cantaloub, Michael G.

    Abstract: Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths worldwide houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This manuscript describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. Wemore » conclude by presenting measurement targets and future opportunities.« less

  11. Software Engineering Laboratory (SEL) Data Base Maintenance System (DBAM) user's guide and system description

    NASA Technical Reports Server (NTRS)

    Lo, P. S.; Card, D.

    1983-01-01

    The Software Engineering Laboratory (SEL) Data Base Maintenance System (DBAM) is explained. The various software facilities of the SEL, DBAM operating procedures, and DBAM system information are described. The relationships among DBAM components (baseline diagrams), component descriptions, overlay descriptions, indirect command file listings, file definitions, and sample data collection forms are provided.

  12. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators,more » hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and

  13. Molecular Genetics Information System (MOLGENIS): alternatives in developing local experimental genomics databases.

    PubMed

    Swertz, Morris A; De Brock, E O; Van Hijum, Sacha A F T; De Jong, Anne; Buist, Girbe; Baerends, Richard J S; Kok, Jan; Kuipers, Oscar P; Jansen, Ritsert C

    2004-09-01

    Genomic research laboratories need adequate infrastructure to support management of their data production and research workflow. But what makes infrastructure adequate? A lack of appropriate criteria makes any decision on buying or developing a system difficult. Here, we report on the decision process for the case of a molecular genetics group establishing a microarray laboratory. Five typical requirements for experimental genomics database systems were identified: (i) evolution ability to keep up with the fast developing genomics field; (ii) a suitable data model to deal with local diversity; (iii) suitable storage of data files in the system; (iv) easy exchange with other software; and (v) low maintenance costs. The computer scientists and the researchers of the local microarray laboratory considered alternative solutions for these five requirements and chose the following options: (i) use of automatic code generation; (ii) a customized data model based on standards; (iii) storage of datasets as black boxes instead of decomposing them in database tables; (iv) loosely linking to other programs for improved flexibility; and (v) a low-maintenance web-based user interface. Our team evaluated existing microarray databases and then decided to build a new system, Molecular Genetics Information System (MOLGENIS), implemented using code generation in a period of three months. This case can provide valuable insights and lessons to both software developers and a user community embarking on large-scale genomic projects. http://www.molgenis.nl

  14. Development of a light-weight, wind-turbine-rotor-based data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, D.E.; Rumsey, M.; Robertson, P.

    1997-12-01

    Wind-energy researchers at Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) are developing a new, light-weight, modular system capable of acquiring long-term, continuous time-series data from current-generation small or large, dynamic wind-turbine rotors. Meetings with wind-turbine research personnel at NREL and SNL resulted in a list of the major requirements that the system must meet. Initial attempts to locate a commercial system that could meet all of these requirements were not successful, but some commercially available data acquisition and radio/modem subsystems that met many of the requirements were identified. A time synchronization subsystem and a programmable logicmore » device subsystem to integrate the functions of the data acquisition, the radio/modem, and the time synchronization subsystems and to communicate with the user have been developed at SNL. This paper presents the data system requirements, describes the four major subsystems comprising the system, summarizes the current status of the system, and presents the current plans for near-term development of hardware and software.« less

  15. Sandia National Laboratories, California Environmental Management System program manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a setmore » of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  16. A Study of the Effectiveness of the Instructional Systems Laboratory.

    ERIC Educational Resources Information Center

    Philipson, Will D.; Chan-Tam, Pik Wai

    A survey examined perception and use of the services of the Instructional Systems Laboratory (ISL) by the faculty of the University of Minnesota's College of Education. The questionnaire, mailed to all College of Education faculty members, emphasized faculty perception of instructional systems in the following areas: (1) instructional commitment:…

  17. The clinical information system GastroBase: integration of image processing and laboratory communication.

    PubMed

    Kocna, P

    1995-01-01

    GastroBase, a clinical information system, incorporates patient identification, medical records, images, laboratory data, patient history, physical examination, and other patient-related information. Program modules are written in C; all data is processed using Novell-Btrieve data manager. Patient identification database represents the main core of this information systems. A graphic library developed in the past year and graphic modules with a special video-card enables the storing, archiving, and linking of different images to the electronic patient-medical-record. GastroBase has been running for more than four years in daily routine and the database contains more than 25,000 medical records and 1,500 images. This new version of GastroBase is now incorporated into the clinical information system of University Clinic in Prague.

  18. 78 FR 22536 - Procedural Manual for the Election Assistance Commission's Voting System Test Laboratories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... System Test Laboratories Program Manual, Version 2.0 AGENCY: United States Election Assistance Commission (EAC). ACTION: Notice; publication of Voting System Test Laboratories Program Manual, Version 2.0, for 60 day public comment period on EAC Web site. SUMMARY: The U.S. Election Assistance Commission (EAC...

  19. Consolidated clinical microbiology laboratories.

    PubMed

    Sautter, Robert L; Thomson, Richard B

    2015-05-01

    The manner in which medical care is reimbursed in the United States has resulted in significant consolidation in the U.S. health care system. One of the consequences of this has been the development of centralized clinical microbiology laboratories that provide services to patients receiving care in multiple off-site, often remote, locations. Microbiology specimens are unique among clinical specimens in that optimal analysis may require the maintenance of viable organisms. Centralized laboratories may be located hours from patient care settings, and transport conditions need to be such that organism viability can be maintained under a variety of transport conditions. Further, since the provision of rapid results has been shown to enhance patient care, effective and timely means for generating and then reporting the results of clinical microbiology analyses must be in place. In addition, today, increasing numbers of patients are found to have infection caused by pathogens that were either very uncommon in the past or even completely unrecognized. As a result, infectious disease specialists, in particular, are more dependent than ever on access to high-quality diagnostic information from clinical microbiology laboratories. In this point-counterpoint discussion, Robert Sautter, who directs a Charlotte, NC, clinical microbiology laboratory that provides services for a 40-hospital system spread over 3 states in the southeastern United States explains how an integrated clinical microbiology laboratory service has been established in a multihospital system. Richard (Tom) Thomson of the NorthShore University HealthSystem in Evanston, IL, discusses some of the problems and pitfalls associated with large-scale laboratory consolidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Laboratory System Improvement Program: First in the Nation— New Hampshire Reassessment

    PubMed Central

    Bean, Christine L.; Cosser, Amanda; Vazquez, Alma

    2013-01-01

    The New Hampshire Public Health Laboratories (NH PHL) conducted an initial Laboratory System Improvement Program (L-SIP) assessment in March 2007 and a reassessment in May 2011. New Hampshire was a pilot state for the initial L-SIP assessment in 2007 and was the first laboratory system in the United States to conduct an L-SIP reassessment. The New Hampshire reassessment was also used as a pilot for revising the assessment tool. The NH PHL performed a high-level comparison benchmarking the work done between the two assessments. This comparison revealed areas of improvement and other areas that needed continued focus to align with model standards of the 10 Essential Public Health Services. This article outlines achievements, improvements, and outcomes made since 2007, as well as participants, activities, plans, resources, and other factors that contributed to the change in scores between assessments. PMID:23997303

  1. Building laboratory capacity to support HIV care in Nigeria: Harvard/APIN PEPFAR, 2004-2012.

    PubMed

    Hamel, Donald J; Sankalé, Jean-Louis; Samuels, Jay Osi; Sarr, Abdoulaye D; Chaplin, Beth; Ofuche, Eke; Meloni, Seema T; Okonkwo, Prosper; Kanki, Phyllis J

    From 2004-2012, the Harvard/AIDS Prevention Initiative in Nigeria, funded through the US President's Emergency Plan for AIDS Relief programme, scaled up HIV care and treatment services in Nigeria. We describe the methodologies and collaborative processes developed to improve laboratory capacity significantly in a resource-limited setting. These methods were implemented at 35 clinic and laboratory locations. Systems were established and modified to optimise numerous laboratory processes. These included strategies for clinic selection and management, equipment and reagent procurement, supply chains, laboratory renovations, equipment maintenance, electronic data management, quality development programmes and trainings. Over the eight-year programme, laboratories supported 160 000 patients receiving HIV care in Nigeria, delivering over 2.5 million test results, including regular viral load quantitation. External quality assurance systems were established for CD4+ cell count enumeration, blood chemistries and viral load monitoring. Laboratory equipment platforms were improved and standardised and use of point-of-care analysers was expanded. Laboratory training workshops supported laboratories toward increasing staff skills and improving overall quality. Participation in a World Health Organisation-led African laboratory quality improvement system resulted in significant gains in quality measures at five laboratories. Targeted implementation of laboratory development processes, during simultaneous scale-up of HIV treatment programmes in a resource-limited setting, can elicit meaningful gains in laboratory quality and capacity. Systems to improve the physical laboratory environment, develop laboratory staff, create improvements to reduce costs and increase quality are available for future health and laboratory strengthening programmes. We hope that the strategies employed may inform and encourage the development of other laboratories in resource-limited settings.

  2. Certification standards transfer: from committee to laboratory.

    PubMed

    Lehmann, H P

    1998-12-01

    The ISO 9000 Standards series were developed to provide the international manufacturing industry with a framework to ensure purchased products meet quality criteria. Section 4 of ISO 9001, Quality System Model for Quality Assurance in Design, Development, Production, Installation and Servicing, contains 20 aspects of a quality system that must be addressed by an organization in order to receive ISO 9001 certification. This concept is extended to the clinical laboratory, where a quality system program establishes for the customer (patient/clinician) that the purchased product (requested information on a submitted specimen-test result) meets established quality norms. In order to satisfy the customer, the providing organization must have policies and procedures in place that ensure a quality product, and be certified. To become certified the organization must, through an inspection process, demonstrate to an independent accrediting agency that it meets defined standards. In the United States, the government through the Clinical Laboratory Improvement Amendment (CLIA) 1988 established quality standards for the clinical laboratory. The College of American Pathologists (CAP), through its Laboratory Accreditation Program (LAP), serves as an independent agency that certifies that laboratories meet standards. To demonstrate the applicability of an established clinical laboratory accreditation program to ISO 9001 certification, the standards and checklists of CLIA 1988 and the CAP LAP will be examined to determine their conformance to ISO 9001, Section 4.

  3. Quality systems in veterinary diagnostics laboratories.

    PubMed

    de Branco, Freitas Maia L M

    2007-01-01

    Quality assurance of services provided by veterinary diagnostics laboratories is a fundamental element promoted by international animal health organizations to establish trust, confidence and transparency needed for the trade of animals and their products at domestic and international levels. It requires, among other things, trained personnel, consistent and rigorous methodology, choice of suitable methods as well as appropriate calibration and traceability procedures. An important part of laboratory quality management is addressed by ISO/IEC 17025, which aims to facilitate cooperation among laboratories and their associated parties by assuring the generation of credible and consistent information derived from analytical results. Currently, according to OIE recommendation, veterinary diagnostics laboratories are only subject to voluntary compliance with standard ISO/IEC 17025; however, it is proposed here that OIE reference laboratories and collaboration centres strongly consider its adoption.

  4. A Methodology to Obtain Learning Effective Laboratories with Learning Management System Integration

    ERIC Educational Resources Information Center

    Ruano, Ildefonso; Gamez, Javier; Dormido, Sebastian; Gomez, Juan

    2016-01-01

    Online laboratories are useful and valuable resources in high education, especially in engineering studies. This work presents a methodology to create effective laboratories for learning that interact with a Learning Management System (LMS) to achieve advanced integration. It is based on pedagogical aspects and considers not only the laboratory…

  5. Development of automated optical verification technologies for control systems

    NASA Astrophysics Data System (ADS)

    Volegov, Peter L.; Podgornov, Vladimir A.

    1999-08-01

    The report considers optical techniques for automated verification of object's identity designed for control system of nuclear objects. There are presented results of experimental researches and results of development of pattern recognition techniques carried out under the ISTC project number 772 with the purpose of identification of unique feature of surface structure of a controlled object and effects of its random treatment. Possibilities of industrial introduction of the developed technologies in frames of USA and Russia laboratories' lab-to-lab cooperation, including development of up-to-date systems for nuclear material control and accounting are examined.

  6. A Manual for a Laboratory Information Management System (LIMS) For Light Stable Isotopes - Version 7.0

    DTIC Science & Technology

    1998-01-01

    A MANUAL FOR A LABORATORY INFORMATION MANAGEMENT SYSTEM (LIMS) FOR LIGHT STABLE ISOTOPES— VERSION 7.0 U.S. GEOLOGICAL SURVEY Open-File Report 98-284...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 A MANUAL FOR A LABORATORY INFORMATION MANAGEMENT SYSTEM (LIMS) FOR LIGHT STABLE...Europa Scientific ..................................................120 1 A MANUAL FOR A LABORATORY INFORMATION MANAGEMENT SYSTEM (LIMS) FOR LIGHT STABLE

  7. Recent Developments at the Accelerator Laboratory in Jyvaeskylae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trzaska, Wladyslaw Henryk

    Recent developments at the Accelerator Laboratory in Jyvaeskylae are described. In addition to the existing K = 130 a new cyclotron has been added. It is capable of producing of high current proton and deuteron beams at 30 and 15 MeV correspondingly. It should be fully operational in 2010. A new development in Jyvaeskylae is the growing commitment to astroparticle physics. Jyvaeskylae took the main scientific responsibility for a new cosmic-ray experiment EMMA and has joined the LAGUNA project working on the design of the next generation of very large volume detectors for underground observatories.

  8. Project development laboratories energy fuels and oils based on NRU “MPEI”

    NASA Astrophysics Data System (ADS)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Khomenkov, A. M.; Paramonova, A. O.; Khtoo Naing, Aung

    2017-11-01

    In the process of improving the efficiency of power plants a hot topic is the use of high-quality fuels and lubricants. In the process of transportation, preparation for use, storage and maintenance of the properties of fuels and lubricants may deteriorate, which entails a reduction in the efficiency of power plants. One of the ways to prevent the deterioration of the properties is a timely analysis of the relevant laboratories. In this day, the existence of laboratories of energy fuels and energy laboratory oil at thermal power stations is satisfactory character. However, the training of qualified personnel to work in these laboratories is a serious problem, as the lack of opportunities in these laboratories a complete list of required tests. The solution to this problem is to explore the possibility of application of methods of analysis of the properties of fuels and lubricants in the stage of training and re-training of qualified personnel. In this regard, on the basis of MPEI developed laboratory projects of solid, liquid and gaseous fuels, power and energy oils and lubricants. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties. Assess the financial component of the implementation of the developed projects based on the use of modern equipment used for tests. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties.

  9. MSFC Skylab Orbital Workshop, volume 4. [design and development of life support systems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of specific systems on the Skylab Orbital Laboratory are discussed. The subjects considered are: (1) pressure garment conditioning system, (2) stowage system, (3) ground support equipment systems, and (4) marking systems illustrations of the system components are provided. Results of performance tests are discussed.

  10. The evaluation of hospital laboratory information management systems based on the standards of the American National Standard Institute

    PubMed Central

    Isfahani, Sakineh Saghaeiannejad; Khajouei, Reza; Jahanbakhsh, Maryan; Mirmohamadi, Mahboubeh

    2014-01-01

    Introduction: Nowadays, modern laboratories are faced with a huge volume of information. One of the goals of the Laboratory Information Management System (LIMS) is to assist in the management of the information generated in the laboratory. This study intends to evaluate the LIMS based on the standards of the American National Standard Institute (ANSI). Materials and Methods: This research is a descriptive–analytical study, which had been conducted in 2011, on the LIMSs in use, in the teaching and private hospitals in Isfahan. The data collecting instrument was a checklist, which was made by evaluating three groups of information components namely: ‘System capabilities’, ‘work list functions,’ and ‘reporting’ based on LIS8-A. Data were analyzed using the SPSS 20. Data were analyzed using (relative) frequency, percentage. To compare the data the following statistical tests were used: Leven test, t-test, and Analysis of Variance (ANOVA). Results: The results of the study indicated that the LIMS had a low conformity (30%) with LIS8-A (P = 0.001), with no difference between teaching and private hospitals (P = 0.806). The ANOVA revealed that in terms of conformity with the LIS8-A standard, there was a significant difference between the systems produced by different vendors (P = 0.023). According to the results, a Kowsar system with more than %57 conformity in the three groups of information components had a better conformity to the standard, compared to the other systems. Conclusions: This study indicated that none of the LIMSs had a good conformity to the standard. It seems that system providers did not pay sufficient attention to many of the information components required by the standards when designing and developing their systems. It was suggested that standards from certified organizations and institutions be followed in the design and development process of health information systems. PMID:25077154

  11. The evaluation of hospital laboratory information management systems based on the standards of the American National Standard Institute.

    PubMed

    Isfahani, Sakineh Saghaeiannejad; Khajouei, Reza; Jahanbakhsh, Maryan; Mirmohamadi, Mahboubeh

    2014-01-01

    Nowadays, modern laboratories are faced with a huge volume of information. One of the goals of the Laboratory Information Management System (LIMS) is to assist in the management of the information generated in the laboratory. This study intends to evaluate the LIMS based on the standards of the American National Standard Institute (ANSI). This research is a descriptive-analytical study, which had been conducted in 2011, on the LIMSs in use, in the teaching and private hospitals in Isfahan. The data collecting instrument was a checklist, which was made by evaluating three groups of information components namely: 'System capabilities', 'work list functions,' and 'reporting' based on LIS8-A. Data were analyzed using the SPSS 20. Data were analyzed using (relative) frequency, percentage. To compare the data the following statistical tests were used: Leven test, t-test, and Analysis of Variance (ANOVA). The results of the study indicated that the LIMS had a low conformity (30%) with LIS8-A (P = 0.001), with no difference between teaching and private hospitals (P = 0.806). The ANOVA revealed that in terms of conformity with the LIS8-A standard, there was a significant difference between the systems produced by different vendors (P = 0.023). According to the results, a Kowsar system with more than %57 conformity in the three groups of information components had a better conformity to the standard, compared to the other systems. This study indicated that none of the LIMSs had a good conformity to the standard. It seems that system providers did not pay sufficient attention to many of the information components required by the standards when designing and developing their systems. It was suggested that standards from certified organizations and institutions be followed in the design and development process of health information systems.

  12. Development and Implementation of a Quality Improvement Process for Echocardiographic Laboratory Accreditation.

    PubMed

    Gilliland, Yvonne E; Lavie, Carl J; Ahmad, Homaa; Bernal, Jose A; Cash, Michael E; Dinshaw, Homeyar; Milani, Richard V; Shah, Sangeeta; Bienvenu, Lisa; White, Christopher J

    2016-03-01

    We describe our process for quality improvement (QI) for a 3-year accreditation cycle in echocardiography by the Intersocietal Accreditation Commission (IAC) for a large group practice. Echocardiographic laboratory accreditation by the IAC was introduced in 1996, which is not required but could impact reimbursement. To ensure high-quality patient care and community recognition as a facility committed to providing high-quality echocardiographic services, we applied for IAC accreditation in 2010. Currently, there is little published data regarding the IAC process to meet echocardiography standards. We describe our approach for developing a multicampus QI process for echocardiographic laboratory accreditation during the 3-year cycle of accreditation by the IAC. We developed a quarterly review assessing (1) the variability of the interpretations, (2) the quality of the examinations, (3) a correlation of echocardiographic studies with other imaging modalities, (4) the timely completion of reports, (5) procedure volume, (6) maintenance of Continuing Medical Education credits by faculty, and (7) meeting Appropriate Use Criteria. We developed and implemented a multicampus process for QI during the 3-year accreditation cycle by the IAC for Echocardiography. We documented both the process and the achievement of those metrics by the Echocardiography Laboratories at the Ochsner Medical Institutions. We found the QI process using IAC standards to be a continuous educational experience for our Echocardiography Laboratory physicians and staff. We offer our process as an example and guide for other echocardiography laboratories who wish to apply for such accreditation or reaccreditation. © 2016, Wiley Periodicals, Inc.

  13. Hairy Root as a Model System for Undergraduate Laboratory Curriculum and Research

    ERIC Educational Resources Information Center

    Keyes, Carol A.; Subramanian, Senthil; Yu, Oliver

    2009-01-01

    Hairy root transformation has been widely adapted in plant laboratories to rapidly generate transgenic roots for biochemical and molecular analysis. We present hairy root transformations as a versatile and adaptable model system for a wide variety of undergraduate laboratory courses and research. This technique is easy, efficient, and fast making…

  14. A Simple and Low-Cost Monitoring System to Investigate Environmental Conditions in a Biological Research Laboratory

    PubMed Central

    Gurdita, Akshay; Vovko, Heather; Ungrin, Mark

    2016-01-01

    Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a “Raspberry Pi” single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them. PMID:26771659

  15. A tide prediction and tide height control system for laboratory mesocosms

    PubMed Central

    Long, Jeremy D.

    2015-01-01

    Experimental mesocosm studies of rocky shore and estuarine intertidal systems may benefit from the application of natural tide cycles to better replicate variation in immersion time, water depth, and attendant fluctuations in abiotic and edaphic conditions. Here we describe a stand-alone microcontroller tide prediction open-source software program, coupled with a mechanical tidal elevation control system, which allows continuous adjustment of aquarium water depths in synchrony with local tide cycles. We used this system to monitor the growth of Spartina foliosa marsh cordgrass and scale insect herbivores at three simulated shore elevations in laboratory mesocosms. Plant growth decreased with increasing shore elevation, while scale insect population growth on the plants was not strongly affected by immersion time. This system shows promise for a range of laboratory mesocosm studies where natural tide cycling could impact organism performance or behavior, while the tide prediction system could additionally be utilized in field experiments where treatments need to be applied at certain stages of the tide cycle. PMID:26623195

  16. Introductory Physics Laboratories for Life Scientists - Hands on Physics of Complex Systems

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Moore, Kim

    2015-03-01

    We have developed a set of laboratories and hands on activities to accompany a new two-semester interdisciplinary physics course that has been successfully implemented as the required physics course for premeds at the University of Maryland. The laboratories include significant content on physics relevant to cellular scales, from chemical interactions to random motion and charge screening in fluids. We also introduce the students to research-grade equipment and modern physics analysis tools in contexts relevant to biology, while maintaining the pedagogically valuable open-ended laboratory structure of reformed laboratories.

  17. Development of an improved system of wood-frame house construction

    Treesearch

    L.O. Anderson

    1965-01-01

    A new system of wood-frame house construction has been developed which combines increased use of low-grade wood, prefinished components, and rapid field assembly methods without much divergence from conventional construction. Laboratory evaluations of the components of the Nu-frame system indicated that; (a) 4-foot spacing of the W-trusses tested provides a safety...

  18. Development and operation of a quality assurance system for deviations from standard operating procedures in a clinical cell therapy laboratory.

    PubMed

    McKenna, D; Kadidlo, D; Sumstad, D; McCullough, J

    2003-01-01

    Errors and accidents, or deviations from standard operating procedures, other policy, or regulations must be documented and reviewed, with corrective actions taken to assure quality performance in a cellular therapy laboratory. Though expectations and guidance for deviation management exist, a description of the framework for the development of such a program is lacking in the literature. Here we describe our deviation management program, which uses a Microsoft Access database and Microsoft Excel to analyze deviations and notable events, facilitating quality assurance (QA) functions and ongoing process improvement. Data is stored in a Microsoft Access database with an assignment to one of six deviation type categories. Deviation events are evaluated for potential impact on patient and product, and impact scores for each are determined using a 0- 4 grading scale. An immediate investigation occurs, and corrective actions are taken to prevent future similar events from taking place. Additionally, deviation data is collectively analyzed on a quarterly basis using Microsoft Excel, to identify recurring events or developing trends. Between January 1, 2001 and December 31, 2001 over 2500 products were processed at our laboratory. During this time period, 335 deviations and notable events occurred, affecting 385 products and/or patients. Deviations within the 'technical error' category were most common (37%). Thirteen percent of deviations had a patient and/or a product impact score > or = 2, a score indicating, at a minimum, potentially affected patient outcome or moderate effect upon product quality. Real-time analysis and quarterly review of deviations using our deviation management program allows for identification and correction of deviations. Monitoring of deviation trends allows for process improvement and overall successful functioning of the QA program in the cell therapy laboratory. Our deviation management program could serve as a model for other laboratories in

  19. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  20. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center (GRC) developed a non-nuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASC), a Dual Convertor Controller (DCC) EM (engineering model) 2 & 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) to actively control a pair of Advanced Stirling Convertors (ASC). The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS) which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASC's in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and supercapacitor. A load profile, created based on data from several missions, tested the RPS and RSIL ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 V or exceeded 36 V. Once operation was verified with the DASCS, the tests were repeated with actual operating ASC's. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  1. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  2. Implementation of quality management systems and progress towards accreditation of National Tuberculosis Reference Laboratories in Africa

    PubMed Central

    de Dieu Iragena, Jean; Kao, Kekeletso; Erni, Donatelle; Mekonen, Teferi

    2017-01-01

    Background Laboratory services are essential at all stages of the tuberculosis care cascade, from diagnosis and drug resistance testing to monitoring response to treatment. Enabling access to quality services is a challenge in low-resource settings. Implementation of a strong quality management system (QMS) and laboratory accreditation are key to improving patient care. Objectives The study objective was to determine the status of QMS implementation and progress towards accreditation of National Tuberculosis Reference Laboratories (NTRLs) in the African Region. Method An online questionnaire was administered to NTRL managers in 47 World Health Organization Regional Office for Africa member states in the region, between February and April 2015, regarding the knowledge of QMS tools and progress toward implementation to inform strategies for tuberculosis diagnostic services strengthening in the region. Results A total of 21 laboratories (43.0%) had received SLMTA/TB-SLMTA training, of which 10 had also used the Global Laboratory Initiative accreditation tool. However, only 36.7% of NTRLs had received a laboratory audit, a first step in quality improvement. Most NTRLs participated in acid-fast bacilli microscopy external quality assurance (95.8%), although external quality assurance for other techniques was lower (60.4% for first-line drug susceptibility testing, 25.0% for second-line drug susceptibility testing, and 22.9% for molecular testing). Barriers to accreditation included lack of training and accreditation programmes. Only 28.6% of NTRLs had developed strategic plans and budgets which included accreditation. Conclusion Good foundations are in place on the continent from which to scale up accreditation efforts. Laboratory audits should be conducted as a first step in developing quality improvement action plans. Political commitment and strong leadership are needed to drive accreditation efforts; advocacy will require clear evidence of patient impact and cost

  3. Open-circuit respirometry: real-time, laboratory-based systems.

    PubMed

    Ward, Susan A

    2018-05-04

    This review explores the conceptual and technological factors integral to the development of laboratory-based, automated real-time open-circuit mixing-chamber and breath-by-breath (B × B) gas-exchange systems, together with considerations of assumptions and limitations. Advances in sensor technology, signal analysis, and digital computation led to the emergence of these technologies in the mid-20th century, at a time when investigators were beginning to recognise the interpretational advantages of nonsteady-state physiological-system interrogation in understanding the aetiology of exercise (in)tolerance in health, sport, and disease. Key milestones include the 'Auchincloss' description of an off-line system to estimate alveolar O 2 uptake B × B during exercise. This was followed by the first descriptions of real-time automated O 2 uptake and CO 2 output B × B measurement by Beaver and colleagues and by Linnarsson and Lindborg, and mixing-chamber measurement by Wilmore and colleagues. Challenges to both approaches soon emerged: e.g., the influence of mixing-chamber washout kinetics on mixed-expired gas concentration determination, and B × B alignment of gas-concentration signals with respired flow. The challenging algorithmic and technical refinements required for gas-exchange estimation at the alveolar level have also been extensively explored. In conclusion, while the technology (both hardware and software) underpinning real-time automated gas-exchange measurement has progressively advanced, there are still concerns regarding accuracy especially under the challenging conditions of changing metabolic rate.

  4. In-laboratory development of an automatic track counting system for solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Uzun, Sefa Kemal; Demiröz, Işık; Ulus, İzzet

    2017-01-01

    In this study, an automatic track counting system was developed for solid state nuclear track detectors (SSNTD). Firstly the specifications of required hardware components were determined, and accordingly the CCD camera, microscope and stage motor table was supplied and integrated. The system was completed by developing parametric software with VB.Net language. Finally a set of test intended for radon activity concentration measurement was applied. According to the test results, the system was enabled for routine radon measurement. Whether the parameters of system are adjusted for another SSNTD application, it could be used for other fields of SSNTD like neutron dosimetry or heavy charged particle detection.

  5. The role of diagnostic laboratories in support of animal disease surveillance systems.

    PubMed

    Zepeda, C

    2007-01-01

    Diagnostic laboratories are an essential component of animal disease surveillance systems. To understand the occurrence of disease in populations, surveillance systems rely on random or targeted surveys using three approaches: clinical, serological and virological surveillance. Clinical surveillance is the basis for early detection of disease and is usually centered on the detection of syndromes and clinical findings requiring confirmation by diagnostic laboratories. Although most of the tests applied usually perform to an acceptable standard, several have not been properly validated in terms of their diagnostic sensitivity and specificity. Sensitivity and specificity estimates can vary according to local conditions and, ideally, should be determined by national laboratories where the tests are to be applied. The importance of sensitivity and specificity estimates in the design and interpretation of statistically based surveys and risk analysis is fundamental to establish appropriate disease control and prevention strategies. The World Organisation for Animal Health's (OIE) network of reference laboratories acts as centers of expertise for the diagnosis of OIE listed diseases and have a role in promoting the validation of OIE prescribed tests for international trade. This paper discusses the importance of the epidemiological evaluation of diagnostic tests and the role of the OIE Reference Laboratories and Collaborating Centres in this process.

  6. Building laboratory capacity to support HIV care in Nigeria: Harvard/APIN PEPFAR, 2004–2012

    PubMed Central

    Hamel, Donald J.; Sankalé, Jean-Louis; Samuels, Jay Osi; Sarr, Abdoulaye D.; Chaplin, Beth; Ofuche, Eke; Meloni, Seema T.; Okonkwo, Prosper; Kanki, Phyllis J.

    2015-01-01

    Introduction From 2004–2012, the Harvard/AIDS Prevention Initiative in Nigeria, funded through the US President’s Emergency Plan for AIDS Relief programme, scaled up HIV care and treatment services in Nigeria. We describe the methodologies and collaborative processes developed to improve laboratory capacity significantly in a resource-limited setting. These methods were implemented at 35 clinic and laboratory locations. Methods Systems were established and modified to optimise numerous laboratory processes. These included strategies for clinic selection and management, equipment and reagent procurement, supply chains, laboratory renovations, equipment maintenance, electronic data management, quality development programmes and trainings. Results Over the eight-year programme, laboratories supported 160 000 patients receiving HIV care in Nigeria, delivering over 2.5 million test results, including regular viral load quantitation. External quality assurance systems were established for CD4+ cell count enumeration, blood chemistries and viral load monitoring. Laboratory equipment platforms were improved and standardised and use of point-of-care analysers was expanded. Laboratory training workshops supported laboratories toward increasing staff skills and improving overall quality. Participation in a World Health Organisation-led African laboratory quality improvement system resulted in significant gains in quality measures at five laboratories. Conclusions Targeted implementation of laboratory development processes, during simultaneous scale-up of HIV treatment programmes in a resource-limited setting, can elicit meaningful gains in laboratory quality and capacity. Systems to improve the physical laboratory environment, develop laboratory staff, create improvements to reduce costs and increase quality are available for future health and laboratory strengthening programmes. We hope that the strategies employed may inform and encourage the development of other

  7. Practical way to develop 10-color flow cytometry protocols for the clinical laboratory

    NASA Astrophysics Data System (ADS)

    Tárnok, Attila; Bocsi, Jozsef

    2010-02-01

    The latest development of commercial routine flow cytometers (FCM) is that they are equipped with three (blue, red, violet) or more lasers and many PMT detectors. Nowadays routine clinical instruments are capable of detecting 10 or more fluorescence colors simultaneously. Thereby, presenting opportunities for getting detailed information on the single cell level for cytomics and systems biology for improve diagnostics and monitoring of patients. The University Leipzig, Germany) recently started a cluster of excellence to study the molecular background of life style and environment associated diseases, enrolling 25000 individuals (LIFE). To this end the most comprehensive FCM protocol has to be developed for this study. We aimed to optimize fluorochrome and antibody combinations to the characteristics of the instrument for successful 10-color FCM. Systematic review of issues related to sampling, preparation, instrument settings, spillover and compensation matrix, reagent performance, and general principles of panel construction was performed. 10-color FCM enables for increased accuracy in cell subpopulation identification, the ability to obtain detailed information from blood specimens, improved laboratory efficiency, and the means to consistently detect major and rare cell populations. Careful attention to details of instrument and reagent performance allows for the development of panels suitable for screening of samples from healthy and diseased donors. The characteristics of this technique are particularly well suited for the analysis of broad human population cohorts and have the potential to reach the everyday practice in a standardized way for the clinical laboratory.

  8. Development of Matlab GUI educational software to assist a laboratory of physical optics

    NASA Astrophysics Data System (ADS)

    Fernández, Elena; Fuentes, Rosa; García, Celia; Pascual, Inmaculada

    2014-07-01

    Physical optics is one of the subjects in the Grade of Optics and Optometry in Spanish universities. The students who come to this degree often have difficulties to understand subjects that are related to physics. For this reason, the aim of this work is to develop optics simulation software that provides a virtual laboratory for studying the effects of different aspects of physical optics phenomena. This software can let optical undergraduates simulate many optical systems for a better understanding of the practical competences associated with the theoretical concepts studied in class. This interactive environment unifies the information that brings the manual of the practices, provides the visualization of the physical phenomena and allows users to vary the values of the parameters that come into play to check its effect. So, this virtual tool is the perfect complement to learning more about the practices developed in the laboratory. This software will be developed through the choices which have the Matlab to generate Graphical User Interfaces or GUIs. A set of knobs, buttons and handles will be included in the GUI's in order to control the parameters of the different physics phenomena. Graphics can also be inserted in the GUIs to show the behavior of such phenomena. Specifically, by using this software, the student is able to analyze the behaviour of the transmittance and reflectance of the TE and TM modes, the polarized light through of the Malus'Law or degree of polarization.

  9. Development of the Los Alamos National Laboratory Cryogenic Pressure Loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebey, Peter S.; Dole, James M.; Hoffer, James K.

    2003-05-15

    Targets for inertial fusion research and ignition at OMEGA, the National Ignition Facility, LMJ, and future facilities rely on beta-radiation-driven layering of spherical cryogenic DT ice layers contained within plastic or metal shells. Plastic shells will be permeation filled at room temperature then cooled to cryogenic temperatures before removal of the overpressure. The cryogenic pressure loader (CPL) was recently developed at Los Alamos National Laboratory as a testbed for studying the filling and layering of plastic target shells with DT. A technical description of the CPL is provided. The CPL consists of a cryostat, which contains a high-pressure permeation cell,more » and has optical access for investigating beta layering. The cryostat is housed within a tritium glovebox that contains manifolds for supplying high-pressure DT. The CPL shares some design elements with the cryogenic target handling system at the OMEGA facility to allow testing of tritium issues related to that system. The CPL has the capability to fill plastic targets by permeation to pressures up to 100 MPa and to cool them to 15 K. The CPL will accommodate a range of targets and may be modified for future experiments.« less

  10. An overview of Quality Management System implementation in a research laboratory

    NASA Astrophysics Data System (ADS)

    Molinéro-Demilly, Valérie; Charki, Abdérafi; Jeoffrion, Christine; Lyonnet, Barbara; O'Brien, Steve; Martin, Luc

    2018-02-01

    The aim of this paper is to show the advantages of implementing a Quality Management System (QMS) in a research laboratory in order to improve the management of risks specific to research programmes and to increase the reliability of results. This paper also presents experience gained from feedback following the implementation of the Quality process in a research laboratory at INRA, the French National Institute for Agronomic Research and details the various challenges encountered and solutions proposed to help achieve smoother adoption of a QMS process. The 7Ms (Management, Measurement, Manpower, Methods, Materials, Machinery, Mother-nature) methodology based on the Ishikawa `Fishbone' diagram is used to show the effectiveness of the actions considered by a QMS, which involve both the organization and the activities of the laboratory. Practical examples illustrate the benefits and improvements observed in the laboratory.

  11. Flowing-recirculated water system for inducing spawning phase sea lampreys to spawn in the laboratory

    USGS Publications Warehouse

    Fredricks, Kim T.; Seelye, James G.

    1995-01-01

    We describe a water-recirculating system for inducing spawning of sea lampreys (Petromyzon marinus) held under laboratory conditions. Water temperature in the system was gradually increased to and maintained at 18 ± 2°C, the optimal temperature for spawning. About 10% freshwater was added daily to prevent buildup of waste products. Sea lampreys were provided substrate (approximately 3–6 cm in diameter) to build nests, and a water velocity of 0.2–0.3 m!s was maintained with an electric trolling motor. Sea lampreys held in this system exhibited characteristic spawning behavior. Prolarvae produced from artificial fertilization of gametes developed according to the standard timeline.

  12. The total laboratory solution: a new laboratory E-business model based on a vertical laboratory meta-network.

    PubMed

    Friedman, B A

    2001-08-01

    Major forces are now reshaping all businesses on a global basis, including the healthcare and clinical laboratory industries. One of the major forces at work is information technology (IT), which now provides the opportunity to create a new economic and business model for the clinical laboratory industry based on the creation of an integrated vertical meta-network, referred to here as the "total laboratory solution" (TLS). Participants at the most basic level of such a network would include a hospital-based laboratory, a reference laboratory, a laboratory information system/application service provider/laboratory portal vendor, an in vitro diagnostic manufacturer, and a pharmaceutical/biotechnology manufacturer. It is suggested that each of these participants would add value to the network primarily in its area of core competency. Subvariants of such a network have evolved over recent years, but a TLS comprising all or most of these participants does not exist at this time. Although the TLS, enabled by IT and closely akin to the various e-businesses that are now taking shape, offers many advantages from a theoretical perspective over the current laboratory business model, its success will depend largely on (a) market forces, (b) how the collaborative networks are organized and managed, and (c) whether the network can offer healthcare organizations higher quality testing services at lower cost. If the concept is successful, new demands will be placed on hospital-based laboratory professionals to shift the range of professional services that they offer toward clinical consulting, integration of laboratory information from multiple sources, and laboratory information management. These information management and integration tasks can only increase in complexity in the future as new genomic and proteomics testing modalities are developed and come on-line in clinical laboratories.

  13. Electromedical devices test laboratories accreditation

    NASA Astrophysics Data System (ADS)

    Murad, C.; Rubio, D.; Ponce, S.; Álvarez Abri, A.; Terrón, A.; Vicencio, D.; Fascioli, E.

    2007-11-01

    In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University.

  14. Assessing Investigative Skill Development in Inquiry-Based and Traditional College Science Laboratory Courses

    ERIC Educational Resources Information Center

    Suits, Jerry P.

    2004-01-01

    A laboratory practical examination was used to compare the investigative skills developed in two different types of general-chemistry laboratory courses. Science and engineering majors (SEM) in the control group used a traditional verification approach (SEM-Ctrl), whereas those in the treatment group learned from an innovative, inquiry-based…

  15. Development of a prediction model on the acceptance of electronic laboratory notebooks in academic environments.

    PubMed

    Kloeckner, Frederik; Farkas, Robert; Franken, Tobias; Schmitz-Rode, Thomas

    2014-04-01

    Documentation of research data plays a key role in the biomedical engineering innovation processes. It makes an important contribution to the protection of intellectual property, the traceability of results and fulfilling the regulatory requirement. Because of the increasing digitalization in laboratories, an electronic alternative to the commonly-used paper-bound notebooks could contribute to the production of sophisticated documentation. However, compared to in an industrial environment, the use of electronic laboratory notebooks is not widespread in academic laboratories. Little is known about the acceptance of an electronic documentation system and the underlying reasons for this. Thus, this paper aims to establish a prediction model on the potential preference and acceptance of scientists either for paper-based or electronic documentation. The underlying data for the analysis originate from an online survey of 101 scientists in industrial, academic and clinical environments. Various parameters were analyzed to identify crucial factors for the system preference using binary logistic regression. The analysis showed significant dependency between the documentation system preference and the supposed workload associated with the documentation system (p<0.006; odds ratio=58.543) and an additional personal component. Because of the dependency of system choice on specific parameters it is possible to predict the acceptance of an electronic laboratory notebook before implementation.

  16. Development of analytical methodologies to assess recalcitrant pesticide bioremediation in biobeds at laboratory scale.

    PubMed

    Rivero, Anisleidy; Niell, Silvina; Cerdeiras, M Pía; Heinzen, Horacio; Cesio, María Verónica

    2016-06-01

    To assess recalcitrant pesticide bioremediation it is necessary to gradually increase the complexity of the biological system used in order to design an effective biobed assembly. Each step towards this effective biobed design needs a suitable, validated analytical methodology that allows a correct evaluation of the dissipation and bioconvertion. Low recovery yielding methods could give a false idea of a successful biodegradation process. To address this situation, different methods were developed and validated for the simultaneous determination of endosulfan, its main three metabolites, and chlorpyrifos in increasingly complex matrices where the bioconvertor basidiomycete Abortiporus biennis could grow. The matrices were culture media, bran, and finally a laboratory biomix composed of bran, peat and soil. The methodology for the analysis of the first evaluated matrix has already been reported. The methodologies developed for the other two systems are presented in this work. The targeted analytes were extracted from fungi growing over bran in semisolid media YNB (Yeast Nitrogen Based) with acetonitrile using shaker assisted extraction, The salting-out step was performed with MgSO4 and NaCl, and the extracts analyzed by GC-ECD. The best methodology was fully validated for all the evaluated analytes at 1 and 25mgkg(-1) yielding recoveries between 72% and 109% and RSDs <11% in all cases. The application of this methodology proved that A. biennis is able to dissipate 94% of endosulfan and 87% of chlorpyrifos after 90 days. Having assessed that A. biennis growing over bran can metabolize the studied pesticides, the next step faced was the development and validation of an analytical procedure to evaluate the analytes in a laboratory scale biobed composed of 50% of bran, 25% of peat and 25% of soil together with fungal micelium. From the different procedures assayed, only ultrasound assisted extraction with ethyl acetate allowed recoveries between 80% and 110% with RSDs

  17. The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesler, Elissa J; Branstetter, Lisa R; Churchill, Gary A

    2008-01-01

    Complex traits and disease co-morbidity in humans and in model organisms are the result of naturally occurring polymorphisms that interact with each other and with the environment. To ensure the availability of the resources needed to investigate biomolecular networks and ultimately systems level phenotypes, we have initiated breeding of a new genetic reference population of mice, the Collaborative Cross. This population has been designed to optimally support systems genetics analysis. Its novel and important features include high levels of genetic diversity, a large population size to ensure sufficient power in high-dimensional studies, and high mapping precision through accumulation of independentmore » recombination events. Implementation of the Collaborative Cross has been in progress at the Oak Ridge National Laboratory (ORNL) since May 2005. This is achieved through a software assisted breeding program with fully traceable lineages, performed in a uniform environment. Currently, there are 650 lines in production with almost 200 lines over seven generations of inbreeding. Retired breeders enter a high-throughput phenotyping protocol and DNA samples are banked for analysis of recombination history, allele loss, and population structure. Herein we present a progress report of the Collaborative Cross breeding program at ORNL and a description of the kinds of investigations that this resource will support.« less

  18. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. A programmable closed-loop recording and stimulating wireless system for behaving small laboratory animals

    PubMed Central

    Angotzi, Gian Nicola; Boi, Fabio; Zordan, Stefano; Bonfanti, Andrea; Vato, Alessandro

    2014-01-01

    A portable 16-channels microcontroller-based wireless system for a bi-directional interaction with the central nervous system is presented in this work. The device is designed to be used with freely behaving small laboratory animals and allows recording of spontaneous and evoked neural activity wirelessly transmitted and stored on a personal computer. Biphasic current stimuli with programmable duration, frequency and amplitude may be triggered in real-time on the basis of the recorded neural activity as well as by the animal behavior within a specifically designed experimental setup. An intuitive graphical user interface was developed to configure and to monitor the whole system. The system was successfully tested through bench tests and in vivo measurements on behaving rats chronically implanted with multi-channels microwire arrays. PMID:25096831

  20. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  1. Simulation of General Physics laboratory exercise

    NASA Astrophysics Data System (ADS)

    Aceituno, P.; Hernández-Aceituno, J.; Hernández-Cabrera, A.

    2015-01-01

    Laboratory exercises are an important part of general Physics teaching, both during the last years of high school and the first year of college education. Due to the need to acquire enough laboratory equipment for all the students, and the widespread access to computers rooms in teaching, we propose the development of computer simulated laboratory exercises. A representative exercise in general Physics is the calculation of the gravity acceleration value, through the free fall motion of a metal ball. Using a model of the real exercise, we have developed an interactive system which allows students to alter the starting height of the ball to obtain different fall times. The simulation was programmed in ActionScript 3, so that it can be freely executed in any operative system; to ensure the accuracy of the calculations, all the input parameters of the simulations were modelled using digital measurement units, and to allow a statistical management of the resulting data, measurement errors are simulated through limited randomization.

  2. Mars Science Laboratory Rover System Thermal Test

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  3. Multimission Telemetry Visualization (MTV) system: A mission applications project from JPL's Multimedia Communications Laboratory

    NASA Technical Reports Server (NTRS)

    Koeberlein, Ernest, III; Pender, Shaw Exum

    1994-01-01

    This paper describes the Multimission Telemetry Visualization (MTV) data acquisition/distribution system. MTV was developed by JPL's Multimedia Communications Laboratory (MCL) and designed to process and display digital, real-time, science and engineering data from JPL's Mission Control Center. The MTV system can be accessed using UNIX workstations and PC's over common datacom and telecom networks from worldwide locations. It is designed to lower data distribution costs while increasing data analysis functionality by integrating low-cost, off-the-shelf desktop hardware and software. MTV is expected to significantly lower the cost of real-time data display, processing, distribution, and allow for greater spacecraft safety and mission data access.

  4. The Development and Implementation of an Integrating Pharmacy Practice Laboratory.

    ERIC Educational Resources Information Center

    Newton, Gail D.; And Others

    1990-01-01

    The intent of an integrating laboratory was to help pharmacy students learn to solve problems, make decisions, and develop good communication skills. Educational units included exercises in guided design, patient profile review, patient inquiries, extemporaneous prescription compounding, clinical literature evaluation, and videotapes of simulated…

  5. Development and Score Validation of a Chemistry Laboratory Anxiety Instrument (CLAI) for College Chemistry Students.

    ERIC Educational Resources Information Center

    Bowen, Craig W.

    1999-01-01

    Reports the development and score validation of an instrument for measuring anxieties students experience in college chemistry laboratories. Factor analysis of scores from 361 college students shows that the developed Chemistry Laboratory Anxiety Instrument measures five constructs. Results from a second sample of 598 students show that scores on…

  6. Development and Evaluation of an Interactive Electronic Laboratory Manual for Cooperative Learning of Medical Histology

    ERIC Educational Resources Information Center

    Khalil, Mohammed K.; Kirkley, Debbie L.; Kibble, Jonathan D.

    2013-01-01

    This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual…

  7. Developing Therapies for Brain Tumors: The Impact of the Johns Hopkins Hunterian Neurosurgical Research Laboratory.

    PubMed

    Brem, Henry; Sankey, Eric W; Liu, Ann; Mangraviti, Antonella; Tyler, Betty M

    2017-01-01

    The Johns Hopkins Hunterian Neurosurgical Laboratory at the Johns Hopkins University School of Medicine was created in 1904 by Harvey Cushing and William Halsted and has had a long history of fostering surgical training, encouraging basis science research, and facilitating translational application. Over the past 30 years, the laboratory has addressed the paucity of brain tumor therapies. Pre-clinical work from the laboratory led to the development of carmustine wafers with initial US Food and Drug Administration (FDA) approval in 1996. Combining carmustine wafers, radiation, and temozolomide led to a significant increase in the median survival of patients with glioblastoma. The laboratory has also developed microchips and immunotherapy to further extend survival in this heretofore underserved population. These achievements were made possible by the dedication, commitment, and creativity of more than 300 trainees of the Hunterian Neurosurgical Laboratory. The laboratory demonstrates the beneficial influence of research experience as well its substantial impact on the field of biomedical research.

  8. Electronic laboratory system reduces errors in National Tuberculosis Program: a cluster randomized controlled trial.

    PubMed

    Blaya, J A; Shin, S S; Yale, G; Suarez, C; Asencios, L; Contreras, C; Rodriguez, P; Kim, J; Cegielski, P; Fraser, H S F

    2010-08-01

    To evaluate the impact of the e-Chasqui laboratory information system in reducing reporting errors compared to the current paper system. Cluster randomized controlled trial in 76 health centers (HCs) between 2004 and 2008. Baseline data were collected every 4 months for 12 months. HCs were then randomly assigned to intervention (e-Chasqui) or control (paper). Further data were collected for the same months the following year. Comparisons were made between intervention and control HCs, and before and after the intervention. Intervention HCs had respectively 82% and 87% fewer errors in reporting results for drug susceptibility tests (2.1% vs. 11.9%, P = 0.001, OR 0.17, 95%CI 0.09-0.31) and cultures (2.0% vs. 15.1%, P < 0.001, OR 0.13, 95%CI 0.07-0.24), than control HCs. Preventing missing results through online viewing accounted for at least 72% of all errors. e-Chasqui users sent on average three electronic error reports per week to the laboratories. e-Chasqui reduced the number of missing laboratory results at point-of-care health centers. Clinical users confirmed viewing electronic results not available on paper. Reporting errors to the laboratory using e-Chasqui promoted continuous quality improvement. The e-Chasqui laboratory information system is an important part of laboratory infrastructure improvements to support multidrug-resistant tuberculosis care in Peru.

  9. Creating and Evaluating a Hypertext System of Documenting Analytical Test Methods in a Chemical Plant Quality Assurance Laboratory.

    ERIC Educational Resources Information Center

    White, Charles E., Jr.

    The purpose of this study was to develop and implement a hypertext documentation system in an industrial laboratory and to evaluate its usefulness by participative observation and a questionnaire. Existing word-processing test method documentation was converted directly into a hypertext format or "hyperdocument." The hyperdocument was designed and…

  10. Leaf LIMS: A Flexible Laboratory Information Management System with a Synthetic Biology Focus.

    PubMed

    Craig, Thomas; Holland, Richard; D'Amore, Rosalinda; Johnson, James R; McCue, Hannah V; West, Anthony; Zulkower, Valentin; Tekotte, Hille; Cai, Yizhi; Swan, Daniel; Davey, Robert P; Hertz-Fowler, Christiane; Hall, Anthony; Caddick, Mark

    2017-12-15

    This paper presents Leaf LIMS, a flexible laboratory information management system (LIMS) designed to address the complexity of synthetic biology workflows. At the project's inception there was a lack of a LIMS designed specifically to address synthetic biology processes, with most systems focused on either next generation sequencing or biobanks and clinical sample handling. Leaf LIMS implements integrated project, item, and laboratory stock tracking, offering complete sample and construct genealogy, materials and lot tracking, and modular assay data capture. Hence, it enables highly configurable task-based workflows and supports data capture from project inception to completion. As such, in addition to it supporting synthetic biology it is ideal for many laboratory environments with multiple projects and users. The system is deployed as a web application through Docker and is provided under a permissive MIT license. It is freely available for download at https://leaflims.github.io .

  11. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  12. LBNL Laboratory Directed Research and Development Program FY2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  13. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  14. Biomedical engineering at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  15. Arctic Energy Technology Development Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. Inmore » the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.« less

  16. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  17. Pulverized solid injection system. Application to laboratory burners and pyrometric temperature measurements

    NASA Astrophysics Data System (ADS)

    Therssen, E.; Delfosse, L.

    1995-08-01

    The design and setting up of a pulverized solid injection system for use in laboratory burners is presented. The original dual system consists of a screw feeder coupled to an acoustic sower. This laboratory device allows a good regularity and stability of the particle-gas mixture transported to the burner in a large scale of mass powder and gas vector rate flow. The thermal history of the particles has been followed by optical measurements. The quality of the particle cloud injected in the burner has been validated by the good agreement between experimental and modeling particle temperature.

  18. Development of Sensorial Experiments and Their Implementation into Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Bromfield Lee, Deborah Christina

    2009-01-01

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only…

  19. Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Scallion, William I.

    2005-01-01

    As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools.

  20. Development of a Portable Motor Learning Laboratory (PoMLab)

    PubMed Central

    Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves

  1. Development of a Portable Motor Learning Laboratory (PoMLab).

    PubMed

    Takiyama, Ken; Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves

  2. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, Diane

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  3. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bookless, William

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  4. Lasers, their development, and applications at M.I.T. Lincoln Laboratory

    NASA Technical Reports Server (NTRS)

    Rediker, R. H.; Melngailis, I.; Mooradian, A.

    1984-01-01

    A historical account of the work on lasers at MIT Lincoln Laboratory is presented. Highlighted are the efforts that led to the coinvention of the semiconductor laser and the Laboratory's later role in establishing the feasibility of GaInAsP/InP semiconductor lasers for use in fiber telecommunications at 1.3-1.5 micron wavelengths. Descriptions of other important developments include tunable lead-salt semiconductor and solid-state lasers for spectroscopy and LIDAR applications, respectively, as well as ultrastable CO2 lasers for coherent infrared radar.

  5. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, D.

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  6. Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) Independent Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Mitchell L.; Aguilar, Michael L.; Mora, Victor D.; Regenie, Victoria A.; Ritz, William F.

    2009-01-01

    Two approaches were compared to the Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) approach: the Flat-Sat and Shuttle Avionics Integration Laboratory (SAIL). The Flat-Sat and CAIL/SAIL approaches are two different tools designed to mitigate different risks. Flat-Sat approach is designed to develop a mission concept into a flight avionics system and associated ground controller. The SAIL approach is designed to aid in the flight readiness verification of the flight avionics system. The approaches are complimentary in addressing both the system development risks and mission verification risks. The following NESC team findings were identified: The CAIL assumption is that the flight subsystems will be matured for the system level verification; The Flat-Sat and SAIL approaches are two different tools designed to mitigate different risks. The following NESC team recommendation was provided: Define, document, and manage a detailed interface between the design and development (EDL and other integration labs) to the verification laboratory (CAIL).

  7. Development of a New Low-Cost Indoor Mapping System - System Design, System Calibration and First Results

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.; Tschirschwitz, F.

    2016-06-01

    For mapping of building interiors various 2D and 3D indoor surveying systems are available today. These systems essentially differ from each other by price and accuracy as well as by the effort required for fieldwork and post-processing. The Laboratory for Photogrammetry & Laser Scanning of HafenCity University (HCU) Hamburg has developed, as part of an industrial project, a lowcost indoor mapping system, which enables systematic inventory mapping of interior facilities with low staffing requirements and reduced, measurable expenditure of time and effort. The modelling and evaluation of the recorded data take place later in the office. The indoor mapping system of HCU Hamburg consists of the following components: laser range finder, panorama head (pan-tilt-unit), single-board computer (Raspberry Pi) with digital camera and battery power supply. The camera is pre-calibrated in a photogrammetric test field under laboratory conditions. However, remaining systematic image errors are corrected simultaneously within the generation of the panorama image. Due to cost reasons the camera and laser range finder are not coaxially arranged on the panorama head. Therefore, eccentricity and alignment of the laser range finder against the camera must be determined in a system calibration. For the verification of the system accuracy and the system calibration, the laser points were determined from measurements with total stations. The differences to the reference were 4-5mm for individual coordinates.

  8. Slit Lamp-Based Ocular Scoring Systems in Toxicology and Drug Development: A Literature Survey.

    PubMed

    Eaton, Joshua Seth; Miller, Paul E; Bentley, Ellison; Thomasy, Sara M; Murphy, Christopher J

    2017-12-01

    To present a survey of the features of published slit lamp-based scoring systems and their applicability in the context of modern ocular toxicology and drug development. References describing original or modified slit lamp-based scoring systems for human or veterinary clinical patients or in investigative or toxicologic research were collected following a comprehensive literature review using textbooks and online publication searches. Each system's indications and features were compiled to facilitate comparison. Literature review identified 138 original or modified scoring systems. Most (48%) were published for evaluation of the ocular surface, 34% for the general anterior segment, and 18% for the lens. Most systems were described for assessment of human patients (50%) and small albino laboratory species such as rabbits (19%), rats (12%), and mice (8%). Systems described for pigmented laboratory species and for larger species such as dogs, cats, pigs, and nonhuman primates (NHPs) were comparatively underrepresented. No systems described a lens scoring scheme specific to the dog, cat, pig, or NHP. Scoring schemes for aqueous and vitreous cells were infrequently described for laboratory species. Many slit lamp-based scoring systems have been published, but the features of each differ and complicate translation of findings between different species. Use and interpretation of any scoring system in toxicology and drug development must be done with awareness of the limitations of the system being used.

  9. Forecasting staffing needs for productivity management in hospital laboratories.

    PubMed

    Pang, C Y; Swint, J M

    1985-12-01

    Daily and weekly prediction models are developed to help forecast hospital laboratory work load for the entire laboratory and individual sections of the laboratory. The models are tested using historical data obtained from hospital census and laboratory log books of a 90-bed southwestern hospital. The results indicate that the predictor variables account for 50%, 81%, 56%, and 82% of the daily work load variation for chemistry, hematology, and microbiology sections, and for the entire laboratory, respectively. Equivalent results for the weekly model are 53%, 72%, 12%, and 78% for the same respective sections. On the basis of the predicted work load, staffing assessment is made and a productivity monitoring system constructed. The purpose of such a system is to assist laboratory management in efforts to utilize laboratory manpower in a more efficient and cost-effective manner.

  10. [Building and implementation of management system in laboratories of the National Institute of Hygiene].

    PubMed

    Rozbicka, Beata; Brulińska-Ostrowska, Elzbieta

    2008-01-01

    The rules of good laboratory practice have always been observed in the laboratories of National Institute of Hygiene (NIH) and the reliability of the results has been carefully cared after when performing tests for clients. In 2003 the laboratories performing analyses related to food safety were designated as the national reference laboratories. This, added to the necessity of compliance with work standards and requirements of EU legislation and to the need of confirmation of competence by an independent organisation, led to a decision to seek accreditation of Polish Centre of Accreditation (PCA). The following stages of building and implementation of management system were presented: training, modifications of Institute's organisational structure, elaboration of management system's documentation, renovation and refurbishment of laboratory facilities, implementation of measuring and test equipment's supervision, internal audits and management review. The importance of earlier experiences and achievements with regard to validation of analytical methods and guarding of the quality of the results through organisation and participation in proficiency tests was highlighted. Current status of accreditation of testing procedures used in NIH laboratories that perform analyses in the field of chemistry, microbiology, radiobiology and medical diagnostic tests was presented.

  11. Development of Laboratory Investigations in Disorders of Sex Development.

    PubMed

    Audí, Laura; Camats, Núria; Fernández-Cancio, Mónica; Granada, María L

    2018-01-01

    Scientific knowledge to understand the biological basis of sex development was prompted by the observation of variants different from the 2 most frequent body types, and this became one of the fields first studied by modern pediatric endocrinology. The clinical observation was supported by professionals working in different areas of laboratory sciences which led to the description of adrenal and gonadal steroidogenesis, the enzymes involved, and the different deficiencies. Steroid hormone measurements evolved from colorimetry to radioimmunoassay (RIA) and automated immunoassays, although gas and liquid chromatography coupled to mass spectrometry are now the gold standard techniques for steroid measurements. Peptide hormones and growth factors were purified, and their measurement evolved from RIA to automated immunoassays. Hormone action mechanisms were described, and their specific receptors were characterized and assayed in experimental materials and in patient tissues and cell cultures. The discovery of the genetic basis for variant sex developments began with the description of the sex chromosomes. Molecular technology allowed cloning of genes coding for the different proteins involved in sex determination and development. Experimental animal models aided in verifying the roles of proteins and also suggested new genes to be investigated. New candidate genes continue to be described based on experimental models and on next-generation sequencing of patient DNAs. © 2017 S. Karger AG, Basel.

  12. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  13. The role of the independent clinical laboratory in new assay development and commercialization.

    PubMed

    Ellis, David G

    2003-01-01

    Most would agree that these are exciting times in the field of laboratory medicine. As the body of scientific knowledge expands and research activities, such as those catalyzed by the sequencing of the human genome, bring us closer to the promise of personalized medicine, the clinical laboratory industry will have increasing opportunities to partner with owners of intellectual property to develop and commercialize new diagnostic tests. The large, independent clinical laboratories are particularly well positioned to commercialize important new tests, with their broad market penetration, infrastructure, and the scale to run esoteric tests cost-effectively.

  14. Role of a quality management system in improving patient safety - laboratory aspects.

    PubMed

    Allen, Lynn C

    2013-09-01

    The aim of this study is to describe how implementation of a quality management system (QMS) based on ISO 15189 enhances patient safety. A literature review showed that several European hospitals implemented a QMS based on ISO 9001 and assessed the impact on patient safety. An Internet search showed that problems affecting patient safety have occurred in a number of laboratories across Canada. The requirements of a QMS based on ISO 15189 are outlined, and the impact of the implementation of each requirement on patient safety is summarized. The Quality Management Program - Laboratory Services in Ontario is briefly described, and the experience of Ontario laboratories with Ontario Laboratory Accreditation, based on ISO 15189, is outlined. Several hospitals that implemented ISO 9001 reported either a positive impact or no impact on patient safety. Patient safety problems in Canadian laboratories are described. Implementation of each requirement of the QMS can be seen to have a positive effect on patient safety. Average laboratory conformance on Ontario Laboratory Accreditation is very high, and laboratories must address and resolve any nonconformities. Other standards, practices, and quality requirements may also contribute to patient safety. Implementation of a QMS based on ISO 15189 provides a solid foundation for quality in the laboratory and enhances patient safety. It helps to prevent patient safety issues; when such issues do occur, effective processes are in place for investigation and resolution. Patient safety problems in Canadian laboratories might have been prevented had effective QMSs been in place. Ontario Laboratory Accreditation has had a positive impact on quality in Ontario laboratories. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. Development of robotic mobile platform with the universal chassis system

    NASA Astrophysics Data System (ADS)

    Ryadchikov, I.; Nikulchev, E.; Sechenev, S.; Drobotenko, M.; Svidlov, A.; Volkodav, P.; Feshin, A.

    2018-02-01

    The problem of stabilizing the position of mobile devices is extremely relevant at the modern level of technology development. This includes the problem of stabilizing aircraft and stabilizing the pitching of ships. In the laboratory of robotics and mechatronics of the Kuban State University, a robot is developed. The robot has additional internal degrees of freedom, responsible for compensating for deflections - the dynamic stabilization system.

  16. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress

    PubMed Central

    Alemnji, G. A.; Zeh, C.; Yao, K.; Fonjungo, P. N.

    2016-01-01

    OBJECTIVES Efforts to combat the HIV/AIDS pandemic have underscored the fragile and neglected nature of some national health laboratories in Africa. In response, national and international partners and various governments have worked collaboratively over the last several years to build sustainable laboratory capacities within the continent. Key accomplishments reflecting this successful partnership include the establishment of the African-based World Health Organization Regional Office for Africa (WHO-AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA); development of the Strengthening Laboratory Management Toward Accreditation (SLMTA) training programme; and launching of a Pan African-based institution, the African Society for Laboratory Medicine (ASLM). These platforms continue to serve as the foundations for national health laboratory infrastructure enhancement, capacity development and overall quality system improvement. Further targeted interventions should encourage countries to aim at integrated tiered referral networks, promote quality system improvement and accreditation, develop laboratory policies and strategic plans, enhance training and laboratory workforce development and a retention strategy, create career paths for laboratory professionals and establish public–private partnerships. Maintaining the gains and ensuring sustainability will require concerted action by all stakeholders with strong leadership and funding from African governments and from the African Union. PMID:24506521

  17. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov Websites

    radiation components, and has expanded its expertise to include integrated metrology, optics, electronics Acquisition Laboratory, Metrology Laboratory, Optics Laboratory, and Electronics Laboratory. Photo of a

  18. A virtual laboratory for the simulation of sustainable energy systems in a low energy building: A case study

    NASA Astrophysics Data System (ADS)

    Breen, M.; O'Donovan, A.; Murphy, M. D.; Delaney, F.; Hill, M.; Sullivan, P. D. O.

    2016-03-01

    The aim of this paper was to develop a virtual laboratory simulation platform of the National Building Retrofit Test-bed at the Cork Institute of Technology, Ireland. The building in question is a low-energy retrofit which is provided with electricity by renewable systems including photovoltaics and wind. It can be thought of as a living laboratory, as a number of internal and external building factors are recorded at regular intervals during human occupation. The analysis carried out in this paper demonstrated that, for the period from April to September 2015, the electricity provided by the renewable systems did not consistently match the building’s electricity requirements due to differing load profiles. It was concluded that the use of load shifting techniques may help to increase the percentage of renewable energy utilisation.

  19. Curriculum Development of a Research Laboratory Methodology Course for Complementary and Integrative Medicine Students

    PubMed Central

    Vasilevsky, Nicole; Schafer, Morgan; Tibbitts, Deanne; Wright, Kirsten; Zwickey, Heather

    2015-01-01

    Training in fundamental laboratory methodologies is valuable to medical students because it enables them to understand the published literature, critically evaluate clinical studies, and make informed decisions regarding patient care. It also prepares them for research opportunities that may complement their medical practice. The National College of Natural Medicine's (NCNM) Master of Science in Integrative Medicine Research (MSiMR) program has developed an Introduction to Laboratory Methods course. The objective of the course it to train clinical students how to perform basic laboratory skills, analyze and manage data, and judiciously assess biomedical studies. Here we describe the course development and implementation as it applies to complementary and integrative medicine students. PMID:26500806

  20. FY2007 Laboratory Directed Research and Development Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W W; Sketchley, J A; Kotta, P R

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted frommore » the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.« less