Sample records for laboratory tissue phantoms

  1. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  2. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms.

    PubMed

    Arunachalam, Kavitha; Maccarini, Paolo; De Luca, Valeria; Tognolatti, Piero; Bardati, Fernando; Snow, Brent; Stauffer, Paul

    2011-06-01

    Microwave (MW) radiometry is proposed for passive monitoring of kidney temperature to detect vesicoureteral reflux (VUR) of urine that is externally heated by a MW hyperthermia device and thereafter reflows from the bladder to kidneys during reflux. Here, we characterize in tissue-mimicking phantoms the performance of a 1.375 GHz radiometry system connected to an electromagnetically (EM) shielded microstrip log spiral antenna optimized for VUR detection. Phantom EM properties are characterized using a coaxial dielectric probe and network analyzer (NA). Power reflection and receive patterns of the antenna are measured in layered tissue phantom. Receiver spectral measurements are used to assess EM shielding provided by a metal cup surrounding the antenna. Radiometer and fiberoptic temperature data are recorded for varying volumes (10-30 mL) and temperaturesg (40-46°C) of the urine phantom at 35 mm depth surrounded by 36.5°C muscle phantom. Directional receive pattern with about 5% power spectral density at 35 mm target depth and better than -10 dB return loss from tissue load are measured for the antenna. Antenna measurements demonstrate no deterioration in power reception and effective EM shielding in the presence of the metal cup. Radiometry power measurements are in excellent agreement with the temperature of the kidney phantom. Laboratory testing of the radiometry system in temperature-controlled phantoms supports the feasibility of passive kidney thermometry for VUR detection.

  3. Use of maxillofacial laboratory materials to construct a tissue-equivalent head phantom with removable titanium implantable devices for use in verification of the dose of intensity-modulated radiotherapy.

    PubMed

    Morris, K

    2017-06-01

    The dose of radiotherapy is often verified by measuring the dose of radiation at specific points within a phantom. The presence of high-density implant materials such as titanium, however, may cause complications both during calculation and delivery of the dose. Numerous studies have reported photon/electron backscatter and alteration of the dose by high-density implants, but we know of no evidence of a dosimetry phantom that incorporates high density implants or fixtures. The aim of the study was to design and manufacture a tissue-equivalent head phantom for use in verification of the dose in radiotherapy using a combination of traditional laboratory materials and techniques and 3-dimensional technology that can incorporate titanium maxillofacial devices. Digital designs were used together with Mimics® 18.0 (Materialise NV) and FreeForm® software. DICOM data were downloaded and manipulated into the final pieces of the phantom mould. Three-dimensional digital objects were converted into STL files and exported for additional stereolithography. Phantoms were constructed in four stages: material testing and selection, design of a 3-dimensional mould, manufacture of implants, and final fabrication of the phantom using traditional laboratory techniques. Three tissue-equivalent materials were found and used to successfully manufacture a suitable phantom with interchangeable sections that contained three versions of titanium maxillofacial implants. Maxillofacial and other materials can be used to successfully construct a head phantom with interchangeable titanium implant sections for use in verification of doses of radiotherapy. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Tissue-mimicking gel phantoms for thermal therapy studies.

    PubMed

    Dabbagh, Ali; Abdullah, Basri Johan Jeet; Ramasindarum, Chanthiriga; Abu Kasim, Noor Hayaty

    2014-10-01

    Tissue-mimicking phantoms that are currently available for routine biomedical applications may not be suitable for high-temperature experiments or calibration of thermal modalities. Therefore, design and fabrication of customized thermal phantoms with tailored properties are necessary for thermal therapy studies. A multitude of thermal phantoms have been developed in liquid, solid, and gel forms to simulate biological tissues in thermal therapy experiments. This article is an attempt to outline the various materials and techniques used to prepare thermal phantoms in the gel state. The relevant thermal, electrical, acoustic, and optical properties of these phantoms are presented in detail and the benefits and shortcomings of each type are discussed. This review could assist the researchers in the selection of appropriate phantom recipes for their in vitro study of thermal modalities and highlight the limitations of current phantom recipes that remain to be addressed in further studies. © The Author(s) 2014.

  5. Dynamic tissue phantoms and their use in assessment of a noninvasive optical plethysmography imaging device

    NASA Astrophysics Data System (ADS)

    Thatcher, Jeffrey E.; Plant, Kevin D.; King, Darlene R.; Block, Kenneth L.; Fan, Wensheng; DiMaio, J. Michael

    2014-05-01

    Non-contact photoplethysmography (PPG) has been studied as a method to provide low-cost and non-invasive medical imaging for a variety of near-surface pathologies and two dimensional blood oxygenation measurements. Dynamic tissue phantoms were developed to evaluate this technology in a laboratory setting. The purpose of these phantoms was to generate a tissue model with tunable parameters including: blood vessel volume change; pulse wave frequency; and optical scattering and absorption parameters. A non-contact PPG imaging system was evaluated on this model and compared against laser Doppler imaging (LDI) and a traditional pulse oximeter. Results indicate non-contact PPG accurately identifies pulse frequency and appears to identify signals from optically dense phantoms with significantly higher detection thresholds than LDI.

  6. Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study.

    PubMed

    Leibinger, Alexander; Forte, Antonio E; Tan, Zhengchu; Oldfield, Matthew J; Beyrau, Frank; Dini, Daniele; Rodriguez Y Baena, Ferdinando

    2016-08-01

    Phantoms are common substitutes for soft tissues in biomechanical research and are usually tuned to match tissue properties using standard testing protocols at small strains. However, the response due to complex tool-tissue interactions can differ depending on the phantom and no comprehensive comparative study has been published to date, which could aid researchers to select suitable materials. In this work, gelatin, a common phantom in literature, and a composite hydrogel developed at Imperial College, were matched for mechanical stiffness to porcine brain, and the interactions during needle insertions within them were analyzed. Specifically, we examined insertion forces for brain and the phantoms; we also measured displacements and strains within the phantoms via a laser-based image correlation technique in combination with fluorescent beads. It is shown that the insertion forces for gelatin and brain agree closely, but that the composite hydrogel better mimics the viscous nature of soft tissue. Both materials match different characteristics of brain, but neither of them is a perfect substitute. Thus, when selecting a phantom material, both the soft tissue properties and the complex tool-tissue interactions arising during tissue manipulation should be taken into consideration. These conclusions are presented in tabular form to aid future selection.

  7. Toxicology Analysis of Tissue-Mimicking Phantom Made From Gelatin

    NASA Astrophysics Data System (ADS)

    Dolbashid, A. S.; Hamzah, N.; Zaman, W. S. W. K.; Mokhtar, M. S.

    2017-06-01

    Skin phantom mimics the biological skin tissues as it have the ability to respond to changes in its environment. The development of tissue-mimicking phantom could contributes towards the reduce usage of animal in cosmetics and pharmacokinetics. In this study, the skin phantoms made from gelatin were tested with four different commonly available cosmetic products to determine the toxicity of each substance. The four substances used were; mercury-based whitening face cream, carcinogenic liquid make-up foundation, paraben-based acne cleanser, and organic lip balm. Toxicity test were performed on all of the phantoms. For toxicity testing, topographical and electrophysiological changes of the phantoms were evaluated. The ability of each respective phantom to react with mild toxic substances and its electrical resistance were analysed in to determine the toxicity of all the phantom models. Four-electrode method along with custom made electrical impedance analyser was used to differentiate electrical resistance between intoxicated phantom and non-intoxicated phantom in this study. Electrical resistance values obtained from the phantom models were significantly higher than the control group. The result obtained suggests the phantom as a promising candidate to be used as alternative for toxicology testing in the future.

  8. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Fabrication and characterization of biological tissue phantoms with embedded nanoparticles

    NASA Astrophysics Data System (ADS)

    Skaptsov, A. A.; Ustalkov, S. O.; Mohammed, A. H. M.; Savenko, O. A.; Novikova, A. S.; Kozlova, E. A.; Kochubey, V. I.

    2017-11-01

    Phantoms are imitations of biological tissue, which are used for modelling of the light propagation in biological tissues. Carrying out any biophysical experiments requires an indispensable constancy of the initial experiment conditions. The use of solid undegradable phantoms is the basis to obtain reliable reproducible experimental results. The fabrication of biological tissues phantoms containing high absorbance or fluorescence nanoparticles and corresponding to specific mechanical, optical properties is an actual task. This work describes development, fabrication and characterization of such solid tissue phantoms with embedded CdSe/ZnS quantum dots, gold and upconversion nanoparticles. Luminescence of samples with CdSe/ZnS quantum dots and upconversion nanoparticles were recorded. A sample of gold nanorods was analyzed using thermal gravimetric analysis. It can be concluded that the samples are well suited for experiments on laser thermolysis.

  10. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics

    NASA Astrophysics Data System (ADS)

    Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.

    2017-07-01

    Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.

  11. Creation of an optically tunable, solid tissue phantom for use in cancer detection

    NASA Astrophysics Data System (ADS)

    Tucker, Matthew B.; Wallace, Catherine; Mantena, Sreekar; Cornwell, Neil; Ross, Weston; Odion, Ren; Vo-Dinh, Tuan; Codd, Patrick

    2018-02-01

    An optically tunable, solid tissue phantom was developed in order to aid in the verification and validation of non-destructive cancer detection technologies based on fluorescence spectroscopy. The solid tissue phantom contained agarose, hemoglobin, Intralipid, NADH, and FAD. The redox ratio of the solid phantoms were shown to be tunable; thus, indicating that these phantoms could be used to tailor specific optical conditions that mimic cancerous and healthy tissues. Therefore, this solid tissue phantom can serve as a suitable test bed to evaluate fluorescence spectroscopy based cancer detection devices.

  12. MO-F-CAMPUS-I-03: Tissue Equivalent Material Phantom to Test and Optimize Coherent Scatter Imaging for Tumor Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albanese, K; Morris, R; Lakshmanan, M

    Purpose: To accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Methods: A breast phantom has been designed to assess the capability of coded aperture coherent x-ray scatter imaging system to classify different types of breast tissue (adipose, fibroglandular, tumor). The tissue-equivalent phantom was modeled as a hollow plastic cylinder containing multiple cylindrical and spherical inserts that can be positioned, rearranged, or removed to model different breast geometries. Each enclosure can be filled with a tissue-equivalent material and excised human tumors. In this study, beef and lard,more » placed inside 2-mm diameter plastic Nalgene containers, were used as surrogates for fibroglandular and adipose tissue, respectively. The phantom was imaged at 125 kVp, 40 mA for 10 seconds each with a 1-mm pencil beam. The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor, or momentum transfer (q) spectrum of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: The tissue equivalent phantom was found to accurately model different types of breast tissue by qualitatively comparing our measured form factors to those of adipose and fibroglandular tissue from literature. Our imaging system has been able to define the location and composition of the various materials in the phantom. Conclusion: This work introduces a new tissue equivalent phantom for testing and optimization of our coherent scatter imaging system for material classification. In future studies, the phantom will enable the use of a variety of materials including excised human tissue specimens in evaluating and optimizing our imaging system using pencil- and fan-beam geometries. United States Department of Homeland Security Duke

  13. Fabricating optical phantoms to simulate skin tissue properties and microvasculatures

    NASA Astrophysics Data System (ADS)

    Sheng, Shuwei; Wu, Qiang; Han, Yilin; Dong, Erbao; Xu, Ronald

    2015-03-01

    This paper introduces novel methods to fabricate optical phantoms that simulate the morphologic, optical, and microvascular characteristics of skin tissue. The multi-layer skin-simulating phantom was fabricated by a light-cured 3D printer that mixed and printed the colorless light-curable ink with the absorption and the scattering ingredients for the designated optical properties. The simulated microvascular network was fabricated by a soft lithography process to embed microchannels in polydimethylsiloxane (PDMS) phantoms. The phantoms also simulated vascular anomalies and hypoxia commonly observed in cancer. A dual-modal multispectral and laser speckle imaging system was used for oxygen and perfusion imaging of the tissue-simulating phantoms. The light-cured 3D printing technique and the soft lithography process may enable freeform fabrication of skin-simulating phantoms that embed microvessels for image and drug delivery applications.

  14. 3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald

    2016-01-01

    Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.

  15. Optical characterization of tissue mimicking phantoms by a vertical double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Han, Yilin; Jia, Qiumin; Shen, Shuwei; Liu, Guangli; Guo, Yuwei; Zhou, Ximing; Chu, Jiaru; Zhao, Gang; Dong, Erbao; Allen, David W.; Lemaillet, Paul; Xu, Ronald

    2016-03-01

    Accurate characterization of absorption and scattering properties for biologic tissue and tissue-simulating materials enables 3D printing of traceable tissue-simulating phantoms for medical spectral device calibration and standardized medical optical imaging. Conventional double integrating sphere systems have several limitations and are suboptimal for optical characterization of liquid and soft materials used in 3D printing. We propose a vertical double integrating sphere system and the associated reconstruction algorithms for optical characterization of phantom materials that simulate different human tissue components. The system characterizes absorption and scattering properties of liquid and solid phantom materials in an operating wavelength range from 400 nm to 1100 nm. Absorption and scattering properties of the phantoms are adjusted by adding titanium dioxide powder and India ink, respectively. Different material compositions are added in the phantoms and characterized by the vertical double integrating sphere system in order to simulate the human tissue properties. Our test results suggest that the vertical integrating sphere system is able to characterize optical properties of tissue-simulating phantoms without precipitation effect of the liquid samples or wrinkling effect of the soft phantoms during the optical measurement.

  16. Concentration analysis of breast tissue phantoms with terahertz spectroscopy

    PubMed Central

    Truong, Bao C. Q.; Fitzgerald, Anthony J.; Fan, Shuting; Wallace, Vincent P.

    2018-01-01

    Terahertz imaging has been previously shown to be capable of distinguishing normal breast tissue from its cancerous form, indicating its applicability to breast conserving surgery. The heterogeneous composition of breast tissue is among the main challenges to progressing this potential research towards a practical application. In this paper, two concentration analysis methods are proposed for analyzing phantoms mimicking breast tissue. The dielectric properties and the double Debye parameters were used to determine the phantom composition. The first method is wholly based on the conventional effective medium theory while the second one combines this theoretical model with empirical polynomial models. Through assessing the accuracy of these methods, their potential for application to quantifying breast tissue pathology was confirmed. PMID:29541525

  17. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  18. Characterization and standardization of tissue-simulating protoporphyrin IX optical phantoms

    NASA Astrophysics Data System (ADS)

    Marois, Mikael; Bravo, Jaime; Davis, Scott C.; Kanick, Stephen Chad

    2016-03-01

    Optical devices for measuring protoporphryin IX (PpIX) fluorescence in tissue are routinely validated by measurements in optical phantoms. Yet there exists limited data to form a consensus on the recipe for phantoms that both mimic the optical properties found in tissue and yield a reliable and stable relationship between PpIX concentration and the fluorescence remission intensity. This study characterizes the influence of multiple phantom components on PpIX fluorescence emission intensity, using Intralipid as the scattering source, bovine whole blood as the background absorber, and Tween as a surfactant to prevent PpIX aggregation. Optical measurements showed a linear proportionality (r>0.99) between fluorescence intensity and PpIX concentration (0.1 to 10 μg/mL) over a range of Intralipid (1 to 2%) and whole blood (0.5 to 3%) for phantoms containing low surfactant (≤0.1%), with fluorescence intensities and scattering and absorption properties stable for 5 h after mixing. The role of surfactant in PpIX phantoms was found to be complex, as aggregation was evident in aqueous nonturbid phantoms with no surfactant (0% Tween), and avoided in phantoms containing Intralipid as the scattering source with no additional or low amounts of added surfactant (≤0.1% Tween). Conversely, phantoms containing higher surfactant content (>0.1% Tween) and whole blood showed interactions that distorted the fluorescence emissions.

  19. TH-AB-209-12: Tissue Equivalent Phantom with Excised Human Tissue for Assessing Clinical Capabilities of Coherent Scatter Imaging Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albanese, K; Morris, R; Spencer, J

    Purpose: Previously we reported the development of anthropomorphic tissue-equivalent scatter phantoms of the human breast. Here we present the first results from the scatter imaging of the tissue equivalent breast phantoms for breast cancer diagnosis. Methods: A breast phantom was designed to assess the capability of coded aperture coherent x-ray scatter imaging to classify different types of breast tissue (adipose, fibroglandular, tumor). The phantom geometry was obtained from a prone breast geometry scanned on a dedicated breast CT system. The phantom was 3D printed using the segmented DICOM breast CT data. The 3D breast phantom was filled with lard (asmore » a surrogate for adipose tissue) and scanned in different geometries alongside excised human breast tissues (obtained from lumpectomy and mastectomy procedures). The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor (i.e., momentum transfer (q) spectrum) of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: Our scatter imaging system was able to define the location and composition of the various materials and tissues within the phantom. Cancerous breast tissue was detected and classified through automated spectral matching and an 86% correlation threshold. The total scan time for the sample was approximately 10 minutes and approaches workflow times for clinical use in intra-operative or other diagnostic tasks. Conclusion: This work demonstrates the first results from an anthropomorphic tissue equivalent scatter phantom to characterize a coherent scatter imaging system. The functionality of the system shows promise in applications such as intra-operative margin detection or virtual biopsy in the diagnosis of breast cancer. Future work includes using additional patient-derived tissues (e.g., human fat), and modeling additional

  20. X-ray luminescence imaging of water, air, and tissue phantoms

    NASA Astrophysics Data System (ADS)

    Lun, Michael C.; Li, Changqing

    2018-02-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid molecular imaging modality. In XLCT, high energy x-ray photons excite phosphors emitting optical photons for tomographic image reconstruction. During XLCT, the optical signal obtained is thought to only originate from the embedded phosphor particles. However, numerous studies have reported other sources of optical photons such as in air, water, and tissue that are generated from ionization. These sources of optical photons will provide background noise and will limit the molecular sensitivity of XLCT imaging. In this study, using a water-cooled electron multiplying charge-coupled device (EMCCD) camera, we performed luminescence imaging of water, air, and several tissue mimicking phantoms including one embedded with a target containing 0.01 mg/mL of europium-doped gadolinium oxysulfide (GOS:Eu3+) particles during x-ray irradiation using a focused x-ray beam with energy less than the Cerenkov radiation threshold. In addition, a spectrograph was used to measure the x-ray luminescence spectrum. The phantom embedded with the GOS:Eu3+ target displayed the greatest luminescence intensity, followed by the tissue phantom, and finally the water phantom. Our results indicate that the x-ray luminescence intensity from a background phantom is equivalent to a GOS:Eu3+ concentration of 0.8 μg/mL. We also found a 3-fold difference in the radioluminescence intensity between liquid water and air. From the measurements of the emission spectra, we found that water produced a broad spectrum and that a tissue-mimicking phantom made from Intralipid had a different x-ray emission spectrum than one made with TiO2 and India ink. The measured spectra suggest that it is better to use Intralipid instead if TiO2 as optical scatterer for future XLCT imaging.

  1. Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties

    PubMed Central

    Chen, Alvin I.; Balter, Max L.; Chen, Melanie I.; Gross, Daniel; Alam, Sheikh K.; Maguire, Timothy J.; Yarmush, Martin L.

    2016-01-01

    Purpose: This paper describes the design, fabrication, and characterization of multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. The phantoms comprise epidermis, dermis, and hypodermis skin layers, blood vessels, and blood mimicking fluid. Each tissue component may be individually tailored to a range of physiological and demographic conditions. Methods: The skin layers were constructed from varying concentrations of gelatin and agar. Synthetic melanin, India ink, absorbing dyes, and Intralipid were added to provide optical absorption and scattering in the skin layers. Bovine serum albumin was used to increase acoustic attenuation, and 40 μm diameter silica microspheres were used to induce acoustic backscatter. Phantom vessels consisting of thin-walled polydimethylsiloxane tubing were embedded at depths of 2–6 mm beneath the skin, and blood mimicking fluid was passed through the vessels. The phantoms were characterized through uniaxial compression and tension experiments, rheological frequency sweep studies, diffuse reflectance spectroscopy, and ultrasonic pulse-echo measurements. Results were then compared to in vivo and ex vivo literature data. Results: The elastic and dynamic shear behavior of the phantom skin layers and vessel wall closely approximated the behavior of porcine skin tissues and human vessels. Similarly, the optical properties of the phantom tissue components in the wavelength range of 400–1100 nm, as well as the acoustic properties in the frequency range of 2–9 MHz, were comparable to human tissue data. Normalized root mean square percent errors between the phantom results and the literature reference values ranged from 1.06% to 9.82%, which for many measurements were less than the sample variability. Finally, the mechanical and imaging characteristics of the phantoms were found to remain stable after 30 days of storage at 21 °C. Conclusions: The phantoms described in this

  2. Simultaneous Measurement of Thermophysical Properties of Tissue-Mimicking Phantoms for High Intensity Focused Ultrasound (HIFU) Exposures

    NASA Astrophysics Data System (ADS)

    Gao, Jing; You, Jiang; Huang, Zhihong; Cochran, Sandy; Corner, George

    2012-03-01

    Tissue-mimicking phantoms, including bovine serum albumin phantoms and egg white phantoms, have been developed for, and in laboratory use for, real-time visualization of high intensity focused ultrasound-induced thermal coagulative necrosis since 2001. However, until now, very few data are available concerning their thermophysical properties. In this article, a step-wise transient plane source method has been used to determine the values of thermal conductivity, thermal diffusivity, and specific heat capacity of egg white phantoms with elevated egg white concentrations (0 v/v% to 40 v/v%, by 10 v/v% interval) at room temperature (~20 °C). The measured thermophysical properties were close to previously reported values; the thermal conductivity and thermal diffusivity were linearly proportional to the egg white concentration within the investigation range, while the specific heat capacity decreased as the egg white concentration increased. Taking account of large differences between real experiment and ideal model, data variations within 20 % were accepted.

  3. Measuring the nonlinear elastic properties of tissue-like phantoms.

    PubMed

    Erkamp, Ramon Q; Skovoroda, Andrei R; Emelianov, Stanislav Y; O'Donnell, Matthew

    2004-04-01

    A direct mechanical system simultaneously measuring external force and deformation of samples over a wide dynamic range is used to obtain force-displacement curves of tissue-like phantoms under plain strain deformation. These measurements, covering a wide deformation range, then are used to characterize the nonlinear elastic properties of the phantom materials. The model assumes incompressible media, in which several strain energy potentials are considered. Finite-element analysis is used to evaluate the performance of this material characterization procedure. The procedures developed allow calibration of nonlinear elastic phantoms for elasticity imaging experiments and finite-element simulations.

  4. 3D printing of tissue-simulating phantoms for calibration of biomedical optical devices

    NASA Astrophysics Data System (ADS)

    Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.

    2016-10-01

    Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.

  5. Evaluation of a pointwise microcirculation assessment method using liquid and multilayered tissue simulating phantoms

    NASA Astrophysics Data System (ADS)

    Fredriksson, Ingemar; Saager, Rolf B.; Durkin, Anthony J.; Strömberg, Tomas

    2017-11-01

    A fiber-optic probe-based instrument, designed for assessment of parameters related to microcirculation, red blood cell tissue fraction (fRBC), oxygen saturation (S), and speed resolved perfusion, has been evaluated using state-of-the-art tissue phantoms. The probe integrates diffuse reflectance spectroscopy (DRS) at two source-detector separations and laser Doppler flowmetry, using an inverse Monte Carlo method for identifying the parameters of a multilayered tissue model. Here, we characterize the accuracy of the DRS aspect of the instrument using (1) liquid blood phantoms containing yeast and (2) epidermis-dermis mimicking solid-layered phantoms fabricated from polydimethylsiloxane, titanium oxide, hemoglobin, and coffee. The root-mean-square (RMS) deviations for fRBC for the two liquid phantoms were 11% and 5.3%, respectively, and 11% for the solid phantoms with highest hemoglobin signatures. The RMS deviation for S was 5.2% and 2.9%, respectively, for the liquid phantoms, and 2.9% for the solid phantoms. RMS deviation for the reduced scattering coefficient (μs‧), for the solid phantoms was 15% (475 to 850 nm). For the liquid phantoms, the RMS deviation in average vessel diameter (D) was 1 μm. In conclusion, the skin microcirculation parameters fRBC and S, as well as, μs‧ and D are estimated with reasonable accuracy.

  6. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    PubMed Central

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  7. Near-infrared hyperspectral imaging of atherosclerotic tissue phantom

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nagao, R.; Kitayabu, A.; Awazu, K.

    2013-06-01

    A method to identify vulnerable plaques that are likely to cause acute coronary events has been required. The object of this study is identifying vulnerable plaques by hyperspectral imaging in near-infrared range (NIR-HSI) for an angioscopic application. In this study, NIR-HSI of atherosclerotic tissue phantoms was demonstrated under simulated angioscopic conditions. NIR-HSI system was constructed by a NIR super continuum light and a mercury-cadmium-telluride camera. Spectral absorbance values were obtained in the wavelength range from 1150 to 2400 nm at 10 nm intervals. The hyperspectral images were constructed with spectral angle mapper algorithm. As a result, detections of the lipid area in the atherosclerotic tissue phantom under angioscopic observation conditions were achieved especially in the wavelength around 1200 nm, which corresponds to the second overtone of CH stretching vibration mode.

  8. Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties.

    PubMed

    Chen, Roland K; Shih, A J

    2013-08-21

    This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.

  9. Hydrodynamic effects in laser cutting of biological tissue phantoms

    NASA Astrophysics Data System (ADS)

    Zhigarkov, V. S.; Yusupov, V. I.; Tsypina, S. I.; Bagratashvili, V. N.

    2017-11-01

    We study the thermal and transport processes that occur in the course of incision formation at the surface of a biological tissue phantom under the action of near-IR, moderate-power, continuous-wave laser radiation (λ = 1.94 μm) delivered by means of an optical fibre with an absorbing coating on its exit face. It is shown that in addition to the thermal effect, the laser-induced hydrodynamic effects caused by the explosive boiling of the interstitial water make a large contribution to the phantom destruction mechanism. These effects lead to the tissue rupture accompanied by the ejection of part of the fragmented substance from the site of laser impact and the formation of highly porous structure near the incision surface. We have found that the depth, the width and the relief of the laser incision wall in the case of using the optical fibre moving with a constant velocity, depend on the fibre tilt angle with respect to the phantom surface, as well as the direction of the fibre motion.

  10. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  11. Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X.

    2015-12-01

    Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.

  12. Development of a Tissue-Mimicking Phantom for Evaluating the Focusing Performance of High Intensity Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Zongyu, Jing; Faqi, Li; Jiangzhong, Zou; Zhibiao, Wang

    2006-05-01

    Objectives: To develop a tissue mimicking phantom which can be used to evaluate the focusing performance of the HIFU transducer, and the phantom should has the same acoustic characteristic and thermotics characteristic as the biological tissue. Materials and methods: The tissue mimicking phantom was made from water, gelatin, fresh biologic tissue Its ultrasonic parameters (attenuation coefficient) of the phantom was measured by the method of radiation pressure, and thermotics parameters of the phantom, including thermal conductivity, specific heat/fusion point et al were tested under the Measurement meter. The HIFU biological effect of the phantom was evaluated under the Model JC focused ultrasound tumor therapeutic system, developed and produced by Chongqing HIFU Technology Co. Ltd (working frequency: 0.7MHz; acoustic power: 200W; focal distance: 135mm; Acoustic focal region: 3×3×25 cubic mm). Results: The self-made phantom is sable, has smooth and glossy appearance, well-distributed construction, and good elasticity. We measured the followed values for acoustic and thermal properties: density 1049±2 kg/m3; attenuation 0.532±0.017 dB/cm (0.8 MHz), 0.612±0.021 dB/cm (1.0 MHz); thermal conductivity 0.76±0.08 W/m/-°C; specific heat 3653±143 J/kg-°C; fusion point154±8°C. The BFR induced in the phantom after HIFU exposure was stable in its size and appearance. Conclusion: We produced and improved one tissue mimicking phantom successfully which had semblable ultrasound and thermphysical properties like the soft tissue, and can replace the bovine liver to investigate the HIFU biological effect and to detect the focusing performance of the HIFU energy transducer. The research was supported by Chongqing University of Medical Science (CX200320).

  13. Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography

    PubMed Central

    Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo

    2014-01-01

    A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented. PMID:25136496

  14. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification

    NASA Astrophysics Data System (ADS)

    Yuan, Yu; Wyatt, Cory; Maccarini, Paolo; Stauffer, Paul; Craciunescu, Oana; MacFall, James; Dewhirst, Mark; Das, Shiva K.

    2012-04-01

    This paper describes a heterogeneous phantom that mimics a human thigh with a deep-seated tumor, for the purpose of studying the performance of radiofrequency (RF) heating equipment and non-invasive temperature monitoring with magnetic resonance imaging (MRI). The heterogeneous cylindrical phantom was constructed with an outer fat layer surrounding an inner core of phantom material mimicking muscle, tumor and marrow-filled bone. The component materials were formulated to have dielectric and thermal properties similar to human tissues. The dielectric properties of the tissue mimicking phantom materials were measured with a microwave vector network analyzer and impedance probe over the frequency range of 80-500 MHz and at temperatures of 24, 37 and 45 °C. The specific heat values of the component materials were measured using a differential scanning calorimeter over the temperature range of 15-55 °C. The thermal conductivity value was obtained from fitting the curves obtained from one-dimensional heat transfer measurement. The phantom was used to verify the operation of a cylindrical four-antenna annular phased array extremity applicator (140 MHz) by examining the proton resonance frequency shift (PRFS) thermal imaging patterns for various magnitude/phase settings (including settings to focus heating in tumors). For muscle and tumor materials, MRI was also used to measure T1/T2* values (1.5 T) and to obtain the slope of the PRFS phase change versus temperature change curve. The dielectric and thermal properties of the phantom materials were in close agreement to well-accepted published results for human tissues. The phantom was able to successfully demonstrate satisfactory operation of the tested heating equipment. The MRI-measured thermal distributions matched the expected patterns for various magnitude/phase settings of the applicator, allowing the phantom to be used as a quality assurance tool. Importantly, the material formulations for the various tissue types

  15. Photoacoustic microscopy of bilirubin in tissue phantoms

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2012-12-01

    Determining both bilirubin's concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83 mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400 μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications.

  16. Tissue Cancellation in Dual Energy Mammography Using a Calibration Phantom Customized for Direct Mapping.

    PubMed

    Han, Seokmin; Kang, Dong-Goo

    2014-01-01

    An easily implementable tissue cancellation method for dual energy mammography is proposed to reduce anatomical noise and enhance lesion visibility. For dual energy calibration, the images of an imaging object are directly mapped onto the images of a customized calibration phantom. Each pixel pair of the low and high energy images of the imaging object was compared to pixel pairs of the low and high energy images of the calibration phantom. The correspondence was measured by absolute difference between the pixel values of imaged object and those of the calibration phantom. Then the closest pixel pair of the calibration phantom images is marked and selected. After the calibration using direct mapping, the regions with lesion yielded different thickness from the background tissues. Taking advantage of the different thickness, the visibility of cancerous lesions was enhanced with increased contrast-to-noise ratio, depending on the size of lesion and breast thickness. However, some tissues near the edge of imaged object still remained after tissue cancellation. These remaining residuals seem to occur due to the heel effect, scattering, nonparallel X-ray beam geometry and Poisson distribution of photons. To improve its performance further, scattering and the heel effect should be compensated.

  17. Photoacoustic microscopy of bilirubin in tissue phantoms

    PubMed Central

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang

    2012-01-01

    Abstract. Determining both bilirubin’s concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83  mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400  μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications. PMID:23235894

  18. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  19. Wavefront shaping using a deformable mirror for focusing inside optical tissue phantoms

    NASA Astrophysics Data System (ADS)

    Gomes, Ricardo; Coelho, João. M. P.; Gabriel, Ana; Vieira, Pedro; Oliveira Silva, Catarina; Reis, Catarina

    2014-08-01

    Although light has long being used in medicine, scattering always hindered its use. This study intends to evolve into three different frontlines: development of methodologies to concentrate light inside biological tissues, development of an optical tissue phantom and development of multifunctional gold nanoparticles with therapeutic potential for targeting anticancer drug delivery. The impact of the scattering agent (milk) concentration in the measured wavefront and spot radius is analyzed. Wavefront correction proves to be efficient in overcoming the scattering effect in the different phantoms. Future studies for developing a photodynamic approach under near-infrared wavelength are now in progress and will be further presented.

  20. PROPERTIES OF PHANTOM TISSUE-LIKE POLYMETHYLPENTENE IN THE FREQUENCY RANGE 20–70 MHZ

    PubMed Central

    Madsen, Ernest L; Deaner, Meagan E; Mehi, James

    2011-01-01

    Quantitative ultrasound (QUS) has been employed to characterize soft tissues at ordinary abdominal ultrasound frequencies (2–15 MHz) and is beginning application at high frequencies (20–70 MHz). For example, backscatter and attenuation coefficients can be estimated in vivo using a reference phantom. At high frequencies it is crucial that reverberations do not compromise the measurements. Such reverberations can occur between the phantom's scanning window and transducer components as well as within the scanning window between its surfaces. Transducers are designed to minimize reverberations between the transducer and soft tissue. Thus, the acoustic impedance of a phantom scanning window should be tissue-like; polymethylpentene (TPX) is commonly used because of its tissue-like acoustic impedance. For QUS it is also crucial to correct for the transmission coefficient of the scanning window. Computation of the latter requires knowledge of the ultrasonic properties, viz, density, speed and attenuation coefficients. This work reports values for the ultrasonic properties of two versions of TPX over the high frequency range. One form (TPX film) is used as a scanning window on high frequency phantoms, and at 40 MHz and 22°C was found to have an attenuation coefficient of 120 dB/cm and a propagation speed of 2093 m/s. PMID:21723451

  1. Study Of Dose Distribution In A Human Body In Space Flight With The Spherical Tissue-Equivalent Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Akatov, Yu; Petrov, V.; Kartsev, I.; Polenov, Boris; Petrov, V.; Lyagushin, V.

    In the space experiment MATROSHKA-R, the spherical tissue equivalent phantom (30 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been installed in the star board crew cabin of the ISS Service Module. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size, and requires less crew time for the detector retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. In the first phase of the experiment the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). There were two experimental sessions with the spherical phantom in the crew cabin, (1) from Jan. 29, 2004 to Apr. 30, 2004 and (2) from Aug. 11, 2004 to Oct. 10, 2005. The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. The results obtained with the passive detectors returned to the ground after each session show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the crew cabin, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom (0.31 mGy/day) is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on the ISS trajectory. Minimum dose rate (0.15 mGy/day) is caused mainly by the strongly penetrating GCR particles and is observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the crew cabin are also estimated with the spherical phantom. The estimated effective

  2. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells.

    PubMed

    Phadnis, Akshay; Kumar, Sumit; Srivastava, Atul

    2016-10-01

    The work presented in this paper focuses on numerically investigating the thermal response of gold nanoshells-embedded biological tissue phantoms with potential applications into photo-thermal therapy wherein the interest is in destroying the cancerous cells with minimum damage to the surrounding healthy cells. The tissue phantom has been irradiated with a pico-second laser. Radiative transfer equation (RTE) has been employed to model the light-tissue interaction using discrete ordinate method (DOM). For determining the temperature distribution inside the tissue phantom, the RTE has been solved in combination with a generalized non-Fourier heat conduction model namely the dual phase lag bio-heat transfer model. The numerical code comprising the coupled RTE-bio-heat transfer equation, developed as a part of the current work, has been benchmarked against the experimental as well as the numerical results available in the literature. It has been demonstrated that the temperature of the optical inhomogeneity inside the biological tissue phantom embedded with gold nanoshells is relatively higher than that of the baseline case (no nanoshells) for the same laser power and operation time. The study clearly underlines the impact of nanoshell concentration and its size on the thermal response of the biological tissue sample. The comparative study concerned with the size and concentration of nanoshells showed that 60nm nanoshells with concentration of 5×10 15 mm -3 result into the temperature levels that are optimum for the irreversible destruction of cancer infected cells in the context of photo-thermal therapy. To the best of the knowledge of the authors, the present study is one of the first attempts to quantify the influence of gold nanoshells on the temperature distributions inside the biological tissue phantoms upon laser irradiation using the dual phase lag heat conduction model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Monte Carlo Simulation of the in vivo measurement of lung activity in the Lawrence Livermore National Laboratory torso phantom.

    PubMed

    Acha, Robert; Brey, Richard; Capello, Kevin

    2013-02-01

    A torso phantom was developed by the Lawrence Livermore National Laboratory (LLNL) that serves as a standard for intercomparison and intercalibration of detector systems used to measure low-energy photons from radionuclides, such as americium deposited in the lungs. DICOM images of the second-generation Human Monitoring Laboratory-Lawrence Livermore National Laboratory (HML-LLNL) torso phantom were segmented and converted into three-dimensional (3D) voxel phantoms to simulate the response of high purity germanium (HPGe) detector systems, as found in the HML new lung counter using a Monte Carlo technique. The photon energies of interest in this study were 17.5, 26.4, 45.4, 59.5, 122, 244, and 344 keV. The detection efficiencies at these photon energies were predicted for different chest wall thicknesses (1.49 to 6.35 cm) and compared to measured values obtained with lungs containing (241)Am (34.8 kBq) and (152)Eu (10.4 kBq). It was observed that no statistically significant differences exist at the 95% confidence level between the mean values of simulated and measured detection efficiencies. Comparisons between the simulated and measured detection efficiencies reveal a variation of 20% at 17.5 keV and 1% at 59.5 keV. It was found that small changes in the formulation of the tissue substitute material caused no significant change in the outcome of Monte Carlo simulations.

  4. Design of a dynamic optical tissue phantom to model extravasation pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Zhang, Jane Y.; Ergin, Aysegul; Andken, Kerry Lee; Sheng, Chao; Bigio, Irving J.

    2010-02-01

    We describe an optical tissue phantom that enables the simulation of drug extravasation from microvessels and validates computational compartmental models of drug delivery. The phantom consists of a microdialysis tubing bundle to simulate the permeable blood vessels, immersed in either an aqueous suspension of titanium dioxide (TiO2) or a TiO2 mixed agarose scattering medium. Drug administration is represented by a dye circulated through this porous microdialysis tubing bundle. Optical pharmacokinetic (OP) methods are used to measure changes in the absorption coefficient of the scattering medium due to the arrival and diffusion of the dye. We have established particle sizedependent concentration profiles over time of phantom drug delivery by intravenous (IV) and intra-arterial (IA) routes. Additionally, pharmacokinetic compartmental models are implemented in computer simulations for the conditions studied within the phantom. The simulated concentration-time profiles agree well with measurements from the phantom. The results are encouraging for future optical pharmacokinetic method development, both physical and computational, to understand drug extravasation under various physiological conditions.

  5. Automated modification and fusion of voxel models to construct body phantoms with heterogeneous breast tissue: Application to MRI simulations.

    PubMed

    Rispoli, Joseph V; Wright, Steven M; Malloy, Craig R; McDougall, Mary P

    2017-01-01

    Human voxel models incorporating detailed anatomical features are vital tools for the computational evaluation of electromagnetic (EM) fields within the body. Besides whole-body human voxel models, phantoms representing smaller heterogeneous anatomical features are often employed; for example, localized breast voxel models incorporating fatty and fibroglandular tissues have been developed for a variety of EM applications including mammography simulation and dosimetry, magnetic resonance imaging (MRI), and ultra-wideband microwave imaging. However, considering wavelength effects, electromagnetic modeling of the breast at sub-microwave frequencies necessitates detailed breast phantoms in conjunction with whole-body voxel models. Heterogeneous breast phantoms are sized to fit within radiofrequency coil hardware, modified by voxel-wise extrusion, and fused to whole-body models using voxel-wise, tissue-dependent logical operators. To illustrate the utility of this method, finite-difference time-domain simulations are performed using a whole-body model integrated with a variety of available breast phantoms spanning the standard four tissue density classifications representing the majority of the population. The software library uses a combination of voxel operations to seamlessly size, modify, and fuse eleven breast phantoms to whole-body voxel models. The software is publicly available on GitHub and is linked to the file exchange at MATLAB ® Central. Simulations confirm the proportions of fatty and fibroglandular tissues in breast phantoms have significant yet predictable implications on projected power deposition in tissue. Breast phantoms may be modified and fused to whole-body voxel models using the software presented in this work; user considerations for the open-source software and resultant phantoms are discussed. Furthermore, results indicate simulating breast models as predominantly fatty tissue can considerably underestimate the potential for tissue heating in

  6. Automated modification and fusion of voxel models to construct body phantoms with heterogeneous breast tissue: Application to MRI simulations

    PubMed Central

    Rispoli, Joseph V.; Wright, Steven M.; Malloy, Craig R.; McDougall, Mary P.

    2017-01-01

    Background Human voxel models incorporating detailed anatomical features are vital tools for the computational evaluation of electromagnetic (EM) fields within the body. Besides whole-body human voxel models, phantoms representing smaller heterogeneous anatomical features are often employed; for example, localized breast voxel models incorporating fatty and fibroglandular tissues have been developed for a variety of EM applications including mammography simulation and dosimetry, magnetic resonance imaging (MRI), and ultra-wideband microwave imaging. However, considering wavelength effects, electromagnetic modeling of the breast at sub-microwave frequencies necessitates detailed breast phantoms in conjunction with whole-body voxel models. Methods Heterogeneous breast phantoms are sized to fit within radiofrequency coil hardware, modified by voxel-wise extrusion, and fused to whole-body models using voxel-wise, tissue-dependent logical operators. To illustrate the utility of this method, finite-difference time-domain simulations are performed using a whole-body model integrated with a variety of available breast phantoms spanning the standard four tissue density classifications representing the majority of the population. Results The software library uses a combination of voxel operations to seamlessly size, modify, and fuse eleven breast phantoms to whole-body voxel models. The software is publicly available on GitHub and is linked to the file exchange at MATLAB® Central. Simulations confirm the proportions of fatty and fibroglandular tissues in breast phantoms have significant yet predictable implications on projected power deposition in tissue. Conclusions Breast phantoms may be modified and fused to whole-body voxel models using the software presented in this work; user considerations for the open-source software and resultant phantoms are discussed. Furthermore, results indicate simulating breast models as predominantly fatty tissue can considerably

  7. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.

    PubMed

    Vardaki, Martha Z; Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2015-08-07

    In this study we employed large volume liquid tissue phantoms, consisting of a scattering agent (Intralipid), an absorption agent (Indian ink) and a synthesized calcification powder (calcium hydroxyapatite (HAP)) similar to that found in cancerous tissues (e.g. breast and prostate), to simulate human tissues. We studied experimentally the magnitude and origin of Raman signals in a transmission Raman geometry as a function of optical properties of the medium and the location of calcifications within the phantom. The goal was to inform the development of future noninvasive cancer screening applications in vivo. The results provide insight into light propagation and Raman scattering distribution in deep Raman measurements, exploring also the effect of the variation of relative absorbance of laser and Raman photons within the phantoms. Most notably when modeling breast and prostate tissues it follows that maximum signals is obtained from the front and back faces of the tissue with the central region contributing less to the measured spectrum.

  8. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.

    PubMed

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2010-04-01

    Acoustic radiation force-optical coherence elastography (ARF-OCE) systems are novel imaging systems that have the potential to simultaneously quantify and characterize the optical and mechanical properties of in vivo tissues. This article presents the construction of bladder wall phantoms for use in ARF-OCE systems. Mechanical, acoustic, and optical properties are reported and compared to published values for the urinary bladder. The phantom consisted of 0.2000 +/- 0.0089 and 6.0000 +/- 0.2830 microm polystyrene microspheres (Polysciences Inc., Warrington, PA, Catalog Nos. 07304 and 07312), 7.5 +/- 1.5 microm copolymer microspheres composed of acrylonitrile and vinylidene chloride, (Expancel, Duluth, GA, Catalog No. 461 DU 20), and bovine serum albumin within a gelatin matrix. Young's modulus was measured by successive compression of the phantom and obtaining the slope of the resulting force-displacement data. Acoustic measurements were performed using the transmission method. The phantoms were submerged in a water bath and placed between transmitting and receiving 13 mm diameter unfocused transducers operating at a frequency of 3.5 MHz. A MATLAB algorithm to extract the optical scattering coefficient from optical coherence tomography (OCT) images of the phantom was used. The phantoms possess a Young's modulus of 17.12 +/- 2.72 kPa, a mass density of 1.05 +/- 0.02 g/cm3, an acoustic attenuation coefficient of 0.66 +/- 0.08 dB/cm/MHz, a speed of sound of 1591 +/- 8.76 m/s, and an optical scattering coefficient of 1.80 +/- 0.23 mm(-1). Ultrasound and OCT images of the bladder wall phantom are presented. A material that mimics the mechanical, optical, and acoustic properties of healthy bladder wall has been developed. This tissue-mimicking bladder wall phantom was developed as a control tool to investigate the feasibility of using ARF-OCE to detect the mechanical and optical changes that may be indicative of the onset or development of cancer in the urinary bladder

  9. A Rat Body Phantom for Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Qualls, Garry D.; Clowdsley, Martha S.; Slaba, Tony C.; Walker, Steven A.

    2010-01-01

    To reduce the uncertainties associated with estimating the biological effects of ionizing radiation in tissue, researchers rely on laboratory experiments in which mono-energetic, single specie beams are applied to cell cultures, insects, and small animals. To estimate the radiation effects on astronauts in deep space or low Earth orbit, who are exposed to mixed field broad spectrum radiation, these experimental results are extrapolated and combined with other data to produce radiation quality factors, radiation weighting factors, and other risk related quantities for humans. One way to reduce the uncertainty associated with such extrapolations is to utilize analysis tools that are applicable to both laboratory and space environments. The use of physical and computational body phantoms to predict radiation exposure and its effects is well established and a wide range of human and non-human phantoms are in use today. In this paper, a computational rat phantom is presented, as well as a description of the process through which that phantom has been coupled to existing radiation analysis tools. Sample results are presented for two space radiation environments.

  10. Fabrication and characterization of a 3-D non-homogeneous tissue-like mouse phantom for optical imaging

    NASA Astrophysics Data System (ADS)

    Avtzi, Stella; Zacharopoulos, Athanasios; Psycharakis, Stylianos; Zacharakis, Giannis

    2013-11-01

    In vivo optical imaging of biological tissue not only requires the development of new theoretical models and experimental procedures, but also the design and construction of realistic tissue-mimicking phantoms. However, most of the phantoms available currently in literature or the market, have either simple geometrical shapes (cubes, slabs, cylinders) or when realistic in shape they use homogeneous approximations of the tissue or animal under investigation. The goal of this study is to develop a non-homogeneous realistic phantom that matches the anatomical geometry and optical characteristics of the mouse head in the visible and near-infrared spectral range. The fabrication of the phantom consisted of three stages. Initially, anatomical information extracted from either mouse head atlases or structural imaging modalities (MRI, XCT) was used to design a digital phantom comprising of the three main layers of the mouse head; the brain, skull and skin. Based on that, initial prototypes were manufactured by using accurate 3D printing, allowing complex objects to be built layer by layer with sub-millimeter resolution. During the second stage the fabrication of individual molds was performed by embedding the prototypes into a rubber-like silicone mixture. In the final stage the detailed phantom was constructed by loading the molds with epoxy resin of controlled optical properties. The optical properties of the resin were regulated by using appropriate quantities of India ink and intralipid. The final phantom consisted of 3 layers, each one with different absorption and scattering coefficient (μa,μs) to simulate the region of the mouse brain, skull and skin.

  11. Manufacture and characterization of breast tissue phantoms for emulating benign lesions

    NASA Astrophysics Data System (ADS)

    Villamarín, J. A.; Rojas, M. A.; Potosi, O. M.; Narváez-Semanate, J. L.; Gaviria, C.

    2017-11-01

    Phantoms elaboration has turned a very important field of study during the last decades due to its applications in medicine. These objects are capable of emulating or mimicking acoustically biological tissues in which parameters like speed of sound (SOS) and attenuation are successfully attained. However, these materials are expensive depending on their characteristics (USD 460.00 - 6000.00) and is difficult to have precise measurements because of their composition. This paper presents the elaboration and characterization of low cost ( USD $25.00) breast phantoms which emulate histological normality and pathological conditions in order to support algorithm calibration procedures in imaging diagnosis. Quantitative ultrasound (QUS) was applied to estimate SOS and attenuation values for breast tissue (background) and benign lesions (fibroadenoma and cysts). Results showed values of the SOS and attenuation for the background between 1410 - 1450 m/s and 0.40 - 0.55 dB/cm at 1 MHz sampling frequency, respectively. On the other hand, the SOS obtained for the lesions ranges from 1350 to 1700 m/s and attenuation values between 0.50 - 1.80 dB/cm at 1 MHz. Finally, the fabricated phantoms allowed for obtaining ultrasonograms comparable with real ones whose acoustic parameters are in agree with those reported in the literature.

  12. Design and characterization of a phantom that simultaneously simulates tissue optical properties between 400 and 650 nm

    NASA Astrophysics Data System (ADS)

    Wagnieres, Georges A.; Cheng, Shangguan; Zellweger, Matthieu; Doegnitz-Utke, Nora; Braichotte, Daniel; Ballini, Jean-Pierre; van den Bergh, Hubert

    1996-12-01

    The design and characterization of optical phantoms which have the same absorption and scattering characteristics as biological tissues in a broad spectral window (between 400 and 650 nm) are presented. These low cost phantoms use agarose dissolved in water as the transparent matrix. The latter is loaded with various amounts of silicon dioxide, intralipid, ink, bovine serum, blood, azide, penicillin and fluorochromes. The silicon dioxide and intralipid particles are responsible for the light scattering whereas the ink and blood are the absorbers. The penicillin and the azide are used to insure the conservation of such phantoms when stored at 4 degrees Celsius. The serum and fluorochromes, such as Coumarin 30, produce an autofluorescence similar to human tissues. Various fluorochromes or photosensitizers can be added to these phantoms to simulate a photodetection procedure. The absorption and fluorescence spectroscopy of the dyes tested was not different in these phantoms than in live tissues. The mechanical properties of these gelatinous phantoms are also of interest as they can easily be molded and reshaped with a conventional cutter, so that for instance layered structures, with different optical properties in each layer, can be designed. The optical properties of these phantoms were determined between 400 and 650 nm by measuring their effective attenuation coefficient ((mu) eff) and total reflectance (Rd). The microscopic absorption and reduced scattering coefficients ((mu) a, (mu) s') were deduced from (mu) eff and Rd using a Monte-Carlo simulation.

  13. Absolute backscatter coefficient estimates of tissue-mimicking phantoms in the 5–50 MHz frequency range

    PubMed Central

    McCormick, Matthew M.; Madsen, Ernest L.; Deaner, Meagan E.; Varghese, Tomy

    2011-01-01

    Absolute backscatter coefficients in tissue-mimicking phantoms were experimentally determined in the 5–50 MHz frequency range using a broadband technique. A focused broadband transducer from a commercial research system, the VisualSonics Vevo 770, was used with two tissue-mimicking phantoms. The phantoms differed regarding the thin layers covering their surfaces to prevent desiccation and regarding glass bead concentrations and diameter distributions. Ultrasound scanning of these phantoms was performed through the thin layer. To avoid signal saturation, the power spectra obtained from the backscattered radio frequency signals were calibrated by using the signal from a liquid planar reflector, a water-brominated hydrocarbon interface with acoustic impedance close to that of water. Experimental values of absolute backscatter coefficients were compared with those predicted by the Faran scattering model over the frequency range 5–50 MHz. The mean percent difference and standard deviation was 54% ± 45% for the phantom with a mean glass bead diameter of 5.40 μm and was 47% ± 28% for the phantom with 5.16 μm mean diameter beads. PMID:21877789

  14. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  15. Local tissue air ratio in an anatomic phantom for 60Co total body irradiation.

    PubMed

    Vrtar, M; Purisić, A

    1991-07-01

    Tissue-air ratio (TAR), as the basic dosimetric function, is not ideally applicable to all important locations in total body irradiation (TBI) dosimetry because it generally refers to central ray measurements. We therefore introduced the local TAR which depends on the specific distribution of the scattering centres around the location of interest. Local TAR measurements were performed in an anatomic water phantom, produced by a sculptor, representing a patient during TBI in the real treatment position. A comparison has been made between TAR values, defined on the beam's ray at different locations in the anatomic phantom and cubic phantoms of different size. The local TAR values in the anatomic phantom, having more realistic outer surface curvatures, are lower by a few percent in most locations. We consider these values more accurate and better applicable to TBI conditions than those obtained in cubic water phantoms, even if the volume of the phantom is adapted to the particular side of the body.

  16. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Sterling, D; Higgins, P

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of severalmore » composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.« less

  17. Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples

    PubMed Central

    Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.

    2014-01-01

    In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822

  18. Characterization of a hyper-viscoelastic phantom mimicking biological soft tissue using an abdominal pneumatic driver with Magnetic Resonance Elastography (MRE)

    PubMed Central

    Leclerc, Gwladys E.; Debernard, Laetitia; Foucart, Félix; Robert, Ludovic; Pelletier, Kay M.; Charleux, Fabrice; Ehman, Richard; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine F.

    2012-01-01

    The purpose of this study was to create a polymer phantom mimicking the mechanical properties of soft tissues using experimental tests and rheological models. Multifrequency Magnetic Resonance Elastography (MMRE) tests were performed on the present phantom with a pneumatic driver to characterize the viscoelastic (μ, η) properties using Voigt, Maxwell, Zener and Springpot models. To optimize the MMRE protocol, the driver behavior was analyzed with a vibrometer. Moreover, the hyperelastic properties of the phantom were determined using compressive tests and Mooney-Rivlin model. The range of frequency to be used with the round driver was found between 60 Hz and 100 Hz as it exhibits one type of vibration mode for the membrane. MRE analysis revealed an increase in the shear modulus with frequency reflecting the viscoelastic properties of the phantom showing similar characteristic of soft tissues. Rheological results demonstrated that Springpot model better revealed the viscoelastic properties (μ = 3.45 kPa, η = 6.17 Pa.s) of the phantom and the Mooney-Rivlin coefficients were C10 = 1.09.10-2 MPa and C01 = −8.96.10-3 MPa corresponding to μ = 3.95 kPa. These studies suggest that the phantom, mimicking soft tissue, could be used for preliminary MRE tests to identify the optimal parameters necessary for in vivo investigations. Further developments of the phantom may allow clinicians to more accurately mimic healthy and pathological soft tissues using MRE. PMID:22284992

  19. Characterization of a hyper-viscoelastic phantom mimicking biological soft tissue using an abdominal pneumatic driver with magnetic resonance elastography (MRE).

    PubMed

    Leclerc, Gwladys E; Debernard, Laëtitia; Foucart, Félix; Robert, Ludovic; Pelletier, Kay M; Charleux, Fabrice; Ehman, Richard; Ho Ba Tho, Marie-Christine; Bensamoun, Sabine F

    2012-04-05

    The purpose of this study was to create a polymer phantom mimicking the mechanical properties of soft tissues using experimental tests and rheological models. Multifrequency Magnetic Resonance Elastography (MMRE) tests were performed on the present phantom with a pneumatic driver to characterize the viscoelastic (μ, η) properties using Voigt, Maxwell, Zener and Springpot models. To optimize the MMRE protocol, the driver behavior was analyzed with a vibrometer. Moreover, the hyperelastic properties of the phantom were determined using compressive tests and Mooney-Rivlin model. The range of frequency to be used with the round driver was found between 60 Hz and 100 Hz as it exhibits one type of vibration mode for the membrane. MRE analysis revealed an increase in the shear modulus with frequency reflecting the viscoelastic properties of the phantom showing similar characteristic of soft tissues. Rheological results demonstrated that Springpot model better revealed the viscoelastic properties (μ=3.45 kPa, η=6.17 Pas) of the phantom and the Mooney-Rivlin coefficients were C(10)=1.09.10(-2) MPa and C(01)=-8.96.10(-3) MPa corresponding to μ=3.95 kPa. These studies suggest that the phantom, mimicking soft tissue, could be used for preliminary MRE tests to identify the optimal parameters necessary for in vivo investigations. Further developments of the phantom may allow clinicians to more accurately mimic healthy and pathological soft tissues using MRE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. TU-H-CAMPUS-IeP2-05: Breast and Soft Tissue-Equivalent 3D Printed Phantoms for Imaging and Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hintenlang, D; Terracino, B

    Purpose: The study has the goal to demonstrate that breast and soft tissue-equivalent phantoms for dosimetry applications in the diagnostic energy range can be fabricated using common 3D printing methods. Methods: 3D printing provides the opportunity to rapidly prototype uniquely designed objects from a variety of materials. Common 3D printers are usually limited to printing objects based on thermoplastic materials such as PLA, or ABS. The most commonly available plastic is PLA, which has a density significantly greater than soft tissue. We utilized a popular 3D printer to demonstrate that tissue specific phantom materials can be generated through the carefulmore » selection of 3D printing parameters. A series of stepwedges were designed and printed using a Makerbot Replicator2 3D printing system. The print file provides custom adjustment of the infill density, orientation and position of the object on the printer stage, selection of infill patterns, and other control parameters. The x-ray attenuation and uniformity of fabricated phantoms were evaluated and compared to common tissue-equivalent phantom materials, acrylic and BR12. X-ray exposure measurements were made using narrow beam geometry on a clinical mammography unit at 28 kVp on the series of phantoms. The 3D printed phantoms were imaged at 28 kVp to visualize the internal structure and uniformity in different planes of the phantoms. Results: By utilizing specific in-fill density and patterns we are able to produce a phantom closely matching the attenuation characteristics of BR12 at 28 kVp. The in-fill patterns used are heterogeneous, so a judicious selection of fill pattern and the orientation of the fill pattern must be made in order to obtain homogenous attenuation along the intended direction of beam propagation. Conclusions: By careful manipulation of the printing parameters, breast and soft tissue-equivalent phantoms appropriate for use at imaging energies can be fabricated using 3D printing

  1. 3D printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lv, Xiang; Xue, Yue; Wang, Haili; Shen, Shu Wei; Zhou, Ximing; Liu, Guangli; Dong, Erbao; Xu, Ronald X.

    2017-03-01

    Tissue-simulating phantoms with interior vascular network may facilitate traceable calibration and quantitative validation of many medical optical devices. However, a solid phantom that reliably simulates tissue oxygenation and blood perfusion is still not available. This paper presents a new method to fabricate hollow microtubes for blood vessel simulation in solid phantoms. The fabrication process combines ultraviolet (UV) rapid prototyping technique with fluid mechanics of a coaxial jet flow. Polydimethylsiloxane (PDMS) and a UV-curable polymer are mixed at the designated ratio and extruded through a coaxial needle device to produce a coaxial jet flow. The extruded jet flow is quickly photo-polymerized by ultraviolet (UV) light to form vessel-simulating solid structures at different sizes ranging from 700 μm to 1000 μm. Microtube structures with adequate mechanical properties can be fabricated by adjusting material compositions and illumination intensity. Curved, straight and stretched microtubes can be formed by adjusting the extrusion speed of the materials and the speed of the 3D printing platform. To simulate vascular structures in biologic tissue, we embed vessel-simulating microtubes in a gel wax phantom of 10 cm x10 cm x 5 cm at the depth from 1 to 2 mm. Bloods at different oxygenation and hemoglobin concentration levels are circulated through the microtubes at different flow rates in order to simulate different oxygenation and perfusion conditions. The simulated physiologic parameters are detected by a tissue oximeter and a laser speckle blood flow meter respectively and compared with the actual values. Our experiments demonstrate that the proposed 3D printing process is able to produce solid phantoms with simulated vascular networks for potential applications in medical device calibration and drug delivery studies.

  2. Estimation of elasticity map of soft biological tissue mimicking phantom using laser speckle contrast analysis

    NASA Astrophysics Data System (ADS)

    Suheshkumar Singh, M.; Rajan, K.; Vasu, R. M.

    2011-05-01

    Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6mm in diameter, separated by 8mm between them. Three samples are made. One inclusion has Young's modulus E of 40kPa. The second inclusion has either a Young's modulus E of 20kPa, or scattering coefficient of μs'=3.00mm-1 or absorption coefficient of μa=0.03mm-1. The optical absorption (μa), reduced scattering (μs') coefficient, and the Young's modulus of the background are μa=0.01mm-1, μs'=1.00mm-1 and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of μa=0.03mm-1, E =40kPa and μs'=3.00mm-1. The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of μa, μs', and Young's modulus of the tissue mimicking medium are also carried out.

  3. 3D-Printed Tissue-Mimicking Phantoms for Medical Imaging and Computational Validation Applications

    PubMed Central

    Shahmirzadi, Danial; Li, Ronny X.; Doyle, Barry J.; Konofagou, Elisa E.; McGloughlin, Tim M.

    2014-01-01

    Abstract Abdominal aortic aneurysm (AAA) is a permanent, irreversible dilation of the distal region of the aorta. Recent efforts have focused on improved AAA screening and biomechanics-based failure prediction. Idealized and patient-specific AAA phantoms are often employed to validate numerical models and imaging modalities. To produce such phantoms, the investment casting process is frequently used, reconstructing the 3D vessel geometry from computed tomography patient scans. In this study the alternative use of 3D printing to produce phantoms is investigated. The mechanical properties of flexible 3D-printed materials are benchmarked against proven elastomers. We demonstrate the utility of this process with particular application to the emerging imaging modality of ultrasound-based pulse wave imaging, a noninvasive diagnostic methodology being developed to obtain regional vascular wall stiffness properties, differentiating normal and pathologic tissue in vivo. Phantom wall displacements under pulsatile loading conditions were observed, showing good correlation to fluid–structure interaction simulations and regions of peak wall stress predicted by finite element analysis. 3D-printed phantoms show a strong potential to improve medical imaging and computational analysis, potentially helping bridge the gap between experimental and clinical diagnostic tools. PMID:28804733

  4. Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom.

    PubMed

    Vieira, Sílvio L; Pavan, Theo Z; Junior, Jorge E; Carneiro, Antonio A O

    2013-12-01

    Paraffin-gel waxes have been investigated as new soft tissue-mimicking materials for ultrasound-guided breast biopsy training. Breast phantoms were produced with a broad range of acoustical properties. The speed of sound for the phantoms ranged from 1425.4 ± 0.6 to 1480.3 ± 1.7 m/s at room temperature. The attenuation coefficients were easily controlled between 0.32 ± 0.27 dB/cm and 2.04 ± 0.65 dB/cm at 7.5 MHz, depending on the amount of carnauba wax added to the base material. The materials do not suffer dehydration and provide adequate needle penetration, with a Young's storage modulus varying between 14.7 ± 0.2 kPa and 34.9 ± 0.3 kPa. The phantom background material possesses long-term stability and can be employed in a supine position without changes in geometry. These results indicate that paraffin-gel waxes may be promising materials for training radiologists in ultrasound biopsy procedures. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Feasibility of endoscopic laser speckle imaging modality in the evaluation of auditory disorder: study in bone-tissue phantom

    NASA Astrophysics Data System (ADS)

    Yu, Sungkon; Jang, Seulki; Lee, Sangyeob; Park, Jihoon; Ha, Myungjin; Radfar, Edalat; Jung, Byungjo

    2016-03-01

    This study investigates the feasibility of an endoscopic laser speckle imaging modality (ELSIM) in the measurement of perfusion of flowing fluid in optical bone tissue phantom(OBTP). Many studies suggested that the change of cochlear blood flow was correlated with auditory disorder. Cochlear microcirculation occurs under the 200μm thickness bone which is the part of the internal structure of the temporal bone. Concern has been raised regarding of getting correct optical signal from hard tissue. In order to determine the possibility of the measurement of cochlear blood flow under bone tissue using the ELSIM, optical tissue phantom (OTP) mimicking optical properties of temporal bone was applied.

  6. Characterization of a novel anthropomorphic plastinated lung phantom

    PubMed Central

    Yoon, Sungwon; Henry, Robert W.; Bouley, Donna M.; Bennett, N. Robert; Fahrig, Rebecca

    2008-01-01

    Phantoms are widely used during the development of new imaging systems and algorithms. For development and optimization of new imaging systems such as tomosynthesis, where conventional image quality metrics may not be applicable, a realistic phantom that can be used across imaging systems is desirable. A novel anthropomorphic lung phantom was developed by plastination of an actual pig lung. The plastinated phantom is characterized and compared with reference to in vivo images of the same tissue prior to plastination using high resolution 3D CT. The phantom is stable over time and preserves the anatomical features and relative locations of the in vivo sample. The volumes for different tissue types in the phantom are comparable to the in vivo counterparts, and CT numbers for different tissue types fall within a clinically useful range. Based on the measured CT numbers, the phantom cardiac tissue experienced a 92% decrease in bulk density and the phantom pulmonary tissue experienced a 78% decrease in bulk density compared to their in vivo counterparts. By-products in the phantom from the room temperature vulcanizing silicone and plastination process are also identified. A second generation phantom, which eliminates most of the by-products, is presented. Such anthropomorphic phantoms can be used to evaluate a wide range of novel imaging systems. PMID:19175148

  7. Quantification of biological tissue and construction of patient equivalent phantom (skull and chest) for infants (1-5 years old)

    NASA Astrophysics Data System (ADS)

    Alves, A. F.; Pina, D. R.; Bacchim Neto, F. A.; Ribeiro, S. M.; Miranda, J. R. A.

    2014-03-01

    Our main purpose in this study was to quantify biological tissue in computed tomography (CT) examinations with the aim of developing a skull and a chest patient equivalent phantom (PEP), both specific to infants, aged between 1 and 5 years old. This type of phantom is widely used in the development of optimization procedures for radiographic techniques, especially in computed radiography (CR) systems. In order to classify and quantify the biological tissue, we used a computational algorithm developed in Matlab ®. The algorithm performed a histogram of each CT slice followed by a Gaussian fitting of each tissue type. The algorithm determined the mean thickness for the biological tissues (bone, soft, fat, and lung) and also converted them into the corresponding thicknesses of the simulator material (aluminum, PMMA, and air). We retrospectively analyzed 148 CT examinations of infant patients, 56 for skull exams and 92 were for chest. The results provided sufficient data to construct a phantom to simulate the infant chest and skull in the posterior-anterior or anterior-posterior (PA/AP) view. Both patient equivalent phantoms developed in this study can be used to assess physical variables such as noise power spectrum (NPS) and signal to noise ratio (SNR) or perform dosimetric control specific to pediatric protocols.

  8. An accurate homogenized tissue phantom for broad spectrum autofluorescence studies: a tool for optimizing quantum dot-based contrast agents

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu; Wilson, Brian C.

    2008-02-01

    We are investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). The present studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. These contrast optimization studies require optical phantoms that simulate tissue autofluorescence, absorption and scattering over the entire visible spectrum, while allowing us to control the optical thickness. We present an optical phantom made of fresh homogenized tissue diluted in water. The homogenized tissue is poured into a clear polymer tank designed to hold a QD-loaded silica capillary in its center. Because of the non-linear effects of absorption and scattering on measured autofluorescence, direct comparison between results obtained using tissue phantoms of different concentration is not possible. We introduce mathematical models that make it possible to perform measurements on diluted tissue homogenates and subsequently extrapolate the results to intact (non-diluted) tissue. Finally, we present preliminary QD contrast data showing that the 380-420 nm spectral window is optimal for surface QD imaging.

  9. Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization

    NASA Astrophysics Data System (ADS)

    Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-11-01

    Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.

  10. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    PubMed

    Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  11. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues

    PubMed Central

    Shin, Andrew; Namiri, Nikan K.; Bajwa, Neha; St. John, Maie; Taylor, Zachary D.; Grundfest, Warren; Saddik, George N.

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research. PMID:29373598

  12. MR-based detection of individual histotripsy bubble clouds formed in tissues and phantoms.

    PubMed

    Allen, Steven P; Hernandez-Garcia, Luis; Cain, Charles A; Hall, Timothy L

    2016-11-01

    To demonstrate that MR sequences can detect individual histotripsy bubble clouds formed inside intact tissues. A line-scan and an EPI sequence were sensitized to histotripsy by inserting a bipolar gradient whose lobes bracketed the lifespan of a histotripsy bubble cloud. Using a 7 Tesla, small-bore scanner, these sequences monitored histotripsy clouds formed in an agar phantom and in vitro porcine liver and brain. The bipolar gradients were adjusted to apply phase with k-space frequencies of 10, 300 or 400 cm -1 . Acoustic pressure amplitude was also varied. Cavitation was simultaneously monitored using a passive cavitation detection system. Each image captured local signal loss specific to an individual bubble cloud. In the agar phantom, this signal loss appeared only when the transducer output exceeded the cavitation threshold pressure. In tissues, bubble clouds were immediately detected when the gradients created phase with k-space frequencies of 300 and 400 cm -1 . When the gradients created phase with a k-space frequency of 10 cm -1 , individual bubble clouds were not detectable until many acoustic pulses had been applied to the tissue. Cavitation-sensitive MR-sequences can detect single histotripsy bubble clouds formed in biologic tissue. Detection is influenced by the sensitizing gradients and treatment history. Magn Reson Med 76:1486-1493, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  13. Prediction and Measurement of Temperature Rise Induced by High Intensity Focused Ultrasound in a Tissue-Mimicking Phantom

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2018-06-01

    The present study aims to predict the temperature rise induced by high intensity focused ultrasound (HIFU) in soft tissues to assess tissue damage during HIFU thermal therapies. With the help of a MATLAB-based software package developed for HIFU simulation, the HIFU field was simulated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective, and the HIFU-induced temperature rise in a tissue-mimicking phantom was simulated by solving Pennes' bioheat transfer (BHT) equation. In order to verify the simulation results, we performed in-vitro heating experiments on a tissue-mimicking phantom by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The temperature rise near the focal spot obtained from the HIFU simulator was in good agreement with that from the in-vitro experiments. This confirms that the HIFU simulator based on the KZK and the BHT equations captures the HIFU-induced temperature rise in soft tissues well enough to make it suitable for HIFU treatment planning.

  14. Results on Dose Distributions in a Human Body from the Matroshka-R Experiment onboard the ISS Obtained with the Tissue-Equivalent Spherical Phantom

    NASA Astrophysics Data System (ADS)

    Shurshakov, Vyacheslav; Nikolaev, Igor; Kartsev, Ivan; Tolochek, Raisa; Lyagushin, Vladimir

    The tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS in Matroshka-R experiment for more than 10 years. Both passive and active space radiation detectors can be located inside the phantom and on its surface. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a human body. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2, and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 2000 days in 9 sessions of the space experiment. In the first phase of the experiment with the spherical phantom the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being usually observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. However, because of the ISS module shielding properties an inverse dose distribution in a human body can be observed when the dose rate maximum is closer to the geometrical center of the module. Maximum dose rate measured in the phantom is obviously due to the action of two radiation sources, namely, galactic cosmic rays (GCR) and Earth’ radiation belts. Minimum dose rate is produced mainly by the strongly penetrating GCR particles and is mostly observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue

  15. 3D printed optical phantoms and deep tissue imaging for in vivo applications including oral surgery

    NASA Astrophysics Data System (ADS)

    Bentz, Brian Z.; Costas, Alfonso; Gaind, Vaibhav; Garcia, Jose M.; Webb, Kevin J.

    2017-03-01

    Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing, evaluation, and calibration. This work demonstrates that 3D printing is an ideal method for fabricating such objects, allowing intricate inhomogeneities to be placed at exact locations in complex or anatomically realistic geometries, a process that is difficult or impossible using molds. We show printed mouse phantoms we have fabricated for developing deep tissue fluorescence imaging methods, and measurements of both their optical and mechanical properties. Additionally, we present a printed phantom of the human mouth that we use to develop an artery localization method to assist in oral surgery.

  16. Experimental evaluation of the thermal properties of two tissue equivalent phantom materials.

    PubMed

    Craciunescu, O I; Howle, L E; Clegg, S T

    1999-01-01

    Tissue equivalent radio frequency (RF) phantoms provide a means for measuring the power deposition of various hyperthermia therapy applicators. Temperature measurements made in phantoms are used to verify the accuracy of various numerical approaches for computing the power and/or temperature distributions. For the numerical simulations to be accurate, the electrical and thermal properties of the materials that form the phantom should be accurately characterized. This paper reports on the experimentally measured thermal properties of two commonly used phantom materials, i.e. a rigid material with the electrical properties of human fat, and a low concentration polymer gel with the electrical properties of human muscle. Particularities of the two samples required the design of alternative measuring techniques for the specific heat and thermal conductivity. For the specific heat, a calorimeter method is used. For the thermal diffusivity, a method derived from the standard guarded comparative-longitudinal heat flow technique was used for both materials. For the 'muscle'-like material, the thermal conductivity, density and specific heat at constant pressure were measured as: k = 0.31 +/- 0.001 W(mK)(-1), p = 1026 +/- 7 kgm(-3), and c(p) = 4584 +/- 107 J(kgK)(-1). For the 'fat'-like material, the literature reports on the density and specific heat such that only the thermal conductivity was measured as k = 0.55 W(mK)(-1).

  17. Using white-light spectroscopy for size determination of tissue phantoms

    NASA Astrophysics Data System (ADS)

    Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram

    2005-09-01

    Along with breast and cervical cancer, esophageal adenocarcinoma is one of the most common types of cancers. The characteristic features of pre-cancerous tissues are the increase in cell proliferation rate and cell nuclei enlargement, which both take place in the epithelium of human body surfaces. However, in the early stages of cancer these changes are very small and difficult to detect, even for expert pathologists. The aim of our research is to develop an optical probe for in vivo detection of nuclear size changes using white light scattering from cell nuclei. The probe will be employed through an endoscope and will be used for the medical examination of the esophagus. The proposed method of examination will be noninvasive, cheap, and specific, compared to a biopsy. Before the construction of this probe, we have developed theory to determine the nuclei size from the reflection data. In this first stage of our research, we compare experimental and theoretical scattered light intensities. Our theoretical model includes the values of scatterer size from which we can extract the nuclei size value. We first performed the study of polystyrene microspheres, acting as a tissue phantom. Spectral and angular distributions of scattered white light from tissue phantoms were studied. Experimental results show significant differences between the spectra of microspheres of different sizes and demonstrate almost linear relation between the number of spectral oscillations and the size of microspheres. Best results were achieved when the scattered light spectrum was collected at 30° to the normal of the sample surface. We present these research results in this paper. In ongoing work, normal and cancerous mammalian cell studies are being performed in order to determine cell nuclei size correlation with the size of microspheres through the light scattering spectrum observation.

  18. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    PubMed

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  19. Melanoma thickness measurement in two-layer tissue phantoms using pulsed photothermal radiometry (PPTR)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Qiu, Jinze; Paranjape, Amit; Milner, Thomas E.

    2009-02-01

    Melanoma is a malignant tumor of melanocytes which are found predominantly in skin. Melanoma is one of the rarer types of skin cancer but causes the majority of skin cancer related deaths. The staging of malignant melanoma using Breslow thickness is important because of the relationship to survival rate after five years. Pulsed photothermal radiometry (PPTR) is based on the time-resolved acquisition of infrared (IR) emission from a sample after pulsed laser exposure. PPTR can be used to investigate the relationship between melanoma thickness and detected radiometric temperature using two-layer tissue phantoms. We used a Monte Carlo simulation to mimic light transport in melanoma and employed a three-dimensional heat transfer model to obtain simulated radiometric temperature increase and, in comparison, we also conducted PPTR experiments to confirm our simulation results. Simulation and experimental results show similar trends: thicker absorbing layers corresponding to deeper lesions produce slower radiometric temperature decays. A quantitative relationship exists between PPTR radiometric temperature decay time and thickness of the absorbing layer in tissue phantoms.

  20. Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom

    NASA Astrophysics Data System (ADS)

    Gade, John; Palmqvist, Dorte; Plomgård, Peter; Greisen, Gorm

    2006-01-01

    The purpose of the study was to compare algorithms of four methods (plus two modifications) for spectrophotometric haemoglobin saturation measurements. Comparison was made in tissue phantoms basically consisting of a phosphate buffer, Intralipid and blood, allowing samples to be taken for reference measurements. Three experimental series were made. In experiment A (eight phantoms) we used the Knoefel method and measured specific extinction coefficients with a reflection spectrophotometer. In experiment B (six phantoms) the fully oxygenated phantoms were gradually deoxygenated with baker's yeast, and simultaneous measurements were made with our spectrophotometer and with a reference oxymeter (ABL-605) in 3 min intervals. For each spectrophotometric measurement haemoglobin saturation was calculated with all algorithms and modifications, and compared with reference. In experiment C (11 phantoms) we evaluated the ability of a modification of the Knoefel method to measure haemoglobin concentration in absolute quantities using extinction coefficients from experiment A. Results. Experiment A: with the Knoefel method extinction coefficients (±SD) for oxyhaemoglobin at 553.04 and 573.75 nm were 1.117 (±0.0396) ODmM-1 and 1.680 (± 0.0815) ODmM-1, respectively, and for deoxyhaemoglobin 1.205 (± 0.0514) ODmM-1 and 0.953 (±0.0487) ODmM-1, respectively. Experiment B: high correlation with the reference was found in all methods (r = 0.94-0.97). However, agreement varied from evidently wrong in method 3 and the original method 4 (e.g. saturation above 160%) to high agreement in method 2 as well as the modifications of methods 1 and 4, where oxygen dissociation curves were close to the reference method. Experiment C: with the modified Knoefel method the mean haemoglobin concentration difference from reference was 8.3% and the correlation was high (r = 0.91). We conclude that method 2 and the modifications of 1 and 4 were superior to the others, but depended on known values in

  1. Tissue phantom-based breast cancer detection using continuous near-infrared sensor

    PubMed Central

    Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang

    2016-01-01

    ABSTRACT Women's health is seriously threatened by breast cancer. Taking advantage of efficient diagnostic instruments to identify the disease is very meaningful in prolonging life. As a cheap noninvasive radiation-free technology, Near-infrared Spectroscopy is suitable for general breast cancer examination. A discrimination method of breast cancer is presented using the deference between absorption coefficients and applied to construct a blood oxygen detection device based on Modified Lambert-Beer theory. Combined with multi-wavelength multi-path near-infrared sensing technology, the proposed method can quantitatively distinguish the normal breast from the abnormal one by measuring the absorption coefficients of breast tissue and the blood oxygen saturation. An objective judgment about the breast tumor is made according to its high absorption of near-infrared light. The phantom experiment is implemented to show the presented method is able to recognize the absorption differences between phantoms and demonstrates its feasibility in the breast tumor detection. PMID:27459672

  2. Tissue phantom-based breast cancer detection using continuous near-infrared sensor.

    PubMed

    Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang

    2016-09-02

    Women's health is seriously threatened by breast cancer. Taking advantage of efficient diagnostic instruments to identify the disease is very meaningful in prolonging life. As a cheap noninvasive radiation-free technology, Near-infrared Spectroscopy is suitable for general breast cancer examination. A discrimination method of breast cancer is presented using the deference between absorption coefficients and applied to construct a blood oxygen detection device based on Modified Lambert-Beer theory. Combined with multi-wavelength multi-path near-infrared sensing technology, the proposed method can quantitatively distinguish the normal breast from the abnormal one by measuring the absorption coefficients of breast tissue and the blood oxygen saturation. An objective judgment about the breast tumor is made according to its high absorption of near-infrared light. The phantom experiment is implemented to show the presented method is able to recognize the absorption differences between phantoms and demonstrates its feasibility in the breast tumor detection.

  3. Evaluation of normal lung tissue complication probability in gated and conventional radiotherapy using the 4D XCAT digital phantom.

    PubMed

    Shahzadeh, Sara; Gholami, Somayeh; Aghamiri, Seyed Mahmood Reza; Mahani, Hojjat; Nabavi, Mansoure; Kalantari, Faraz

    2018-06-01

    The present study was conducted to investigate normal lung tissue complication probability in gated and conventional radiotherapy (RT) as a function of diaphragm motion, lesion size, and its location using 4D-XCAT digital phantom in a simulation study. Different time series of 3D-CT images were generated using the 4D-XCAT digital phantom. The binary data obtained from this phantom were then converted to the digital imaging and communication in medicine (DICOM) format using an in-house MATLAB-based program to be compatible with our treatment planning system (TPS). The 3D-TPS with superposition computational algorithm was used to generate conventional and gated plans. Treatment plans were generated for 36 different XCAT phantom configurations. These included four diaphragm motions of 20, 25, 30 and 35 mm, three lesion sizes of 3, 4, and 5 cm in diameter and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe and left upper lobe). The complication of normal lung tissue was assessed in terms of mean lung dose (MLD), the lung volume receiving ≥20 Gy (V20), and normal tissue complication probability (NTCP). The results showed that the gated RT yields superior outcomes in terms of normal tissue complication compared to the conventional RT. For all cases, the gated radiation therapy technique reduced the mean dose, V20, and NTCP of lung tissue by up to 5.53 Gy, 13.38%, and 23.89%, respectively. The results of this study showed that the gated RT provides significant advantages in terms of the normal lung tissue complication, compared to the conventional RT, especially for the lesions near the diaphragm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Ultrasound phase contrast thermal imaging with reflex transmission imaging methods in tissue phantoms

    PubMed Central

    Farny, Caleb H.; Clement, Gregory T.

    2009-01-01

    Thermal imaging measurements using ultrasound phase contrast have been performed in tissue phantoms heated with a focused ultrasound source. Back projection and reflex transmission imaging principles were employed to detect sound speed-induced changes in the phase caused by an increase in the temperature. The temperature was determined from an empirical relationship for the temperature dependence on sound speed. The phase contrast was determined from changes in the sound field measured with a hydrophone scan conducted before and during applied heating. The lengthy scanning routine used to mimic a large two-dimensional array required a steady-state temperature distribution within the phantom. The temperature distribution in the phantom was validated with magnetic resonance (MR) thermal imaging measurements. The peak temperature was found to agree within 1°C with MR and good agreement was found between the temperature profiles. The spatial resolution was 0.3 × 0.3 × 0.3 mm, comparing favorably with the 0.625 × 0.625 × 1.5 mm MR spatial resolution. PMID:19683380

  5. Determination of tissue equivalent materials of a physical 8-year-old phantom for use in computed tomography

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh

    2015-07-01

    This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found.

  6. Infant phantom head circuit board for EEG head phantom and pediatric brain simulation

    NASA Astrophysics Data System (ADS)

    Almohsen, Safa

    The infant's skull differs from an adult skull because of the characteristic features of the human skull during early development. The fontanels and the conductivity of the infant skull influence surface currents, generated by neurons, which underlie electroencephalography (EEG) signals. An electric circuit was built to power a set of simulated neural sources for an infant brain activity simulator. Also, in the simulator, three phantom tissues were created using saline solution plus Agarose gel to mimic the conductivity of each layer in the head [scalp, skull brain]. The conductivity measurement was accomplished by two different techniques: using the four points' measurement technique, and a conductivity meter. Test results showed that the optimized phantom tissues had appropriate conductivities to simulate each tissue layer to fabricate a physical head phantom. In this case, the best results should be achieved by testing the electrical neural circuit with the sample physical model to generate simulated EEG data and use that to solve both the forward and the inverse problems for the purpose of localizing the neural sources in the head phantom.

  7. Organosilicon phantom for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Avigo, Cinzia; Di Lascio, Nicole; Armanetti, Paolo; Kusmic, Claudia; Cavigli, Lucia; Ratto, Fulvio; Meucci, Sandro; Masciullo, Cecilia; Cecchini, Marco; Pini, Roberto; Faita, Francesco; Menichetti, Luca

    2015-04-01

    Photoacoustic imaging is an emerging technique. Although commercially available photoacoustic imaging systems currently exist, the technology is still in its infancy. Therefore, the design of stable phantoms is essential to achieve semiquantitative evaluation of the performance of a photoacoustic system and can help optimize the properties of contrast agents. We designed and developed a polydimethylsiloxane (PDMS) phantom with exceptionally fine geometry; the phantom was tested using photoacoustic experiments loaded with the standard indocyanine green dye and compared to an agar phantom pattern through polyethylene glycol-gold nanorods. The linearity of the photoacoustic signal with the nanoparticle number was assessed. The signal-to-noise ratio and contrast were employed as image quality parameters, and enhancements of up to 50 and up to 300%, respectively, were measured with the PDMS phantom with respect to the agar one. A tissue-mimicking (TM)-PDMS was prepared by adding TiO2 and India ink; photoacoustic tests were performed in order to compare the signal generated by the TM-PDMS and the biological tissue. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues.

  8. A new prospect in magnetic nanoparticle-based cancer therapy: Taking credit from mathematical tissue-mimicking phantom brain models.

    PubMed

    Saeedi, Mostafa; Vahidi, Omid; Goodarzi, Vahabodin; Saeb, Mohammad Reza; Izadi, Leila; Mozafari, Masoud

    2017-11-01

    Distribution patterns/performance of magnetic nanoparticles (MNPs) was visualized by computer simulation and experimental validation on agarose gel tissue-mimicking phantom (AGTMP) models. The geometry of a complex three-dimensional mathematical phantom model of a cancer tumor was examined by tomography imaging. The capability of mathematical model to predict distribution patterns/performance in AGTMP model was captured. The temperature profile vs. hyperthermia duration was obtained by solving bio-heat equations for four different MNPs distribution patterns and correlated with cell death rate. The outcomes indicated that bio-heat model was able to predict temperature profile throughout the tissue model with a reasonable precision, to be applied for complex tissue geometries. The simulation results on the cancer tumor model shed light on the effectiveness of the studied parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Multispectral measurement of contrast in tissue-mimicking phantoms in near-infrared spectral range of 650 to 1600 nm

    PubMed Central

    Salo, Daniel; Zhang, Hairong; Kim, David M.; Berezin, Mikhail Y.

    2014-01-01

    Abstract. In order to identify the optimal imaging conditions for the highest spatial contrast in biological tissue, we explored the properties of a tissue-mimicking phantom as a function of the wavelengths in a broad range of near-infrared spectra (650 to 1600 nm). Our customized multispectral hardware, which featured a scanning transmission microscope and imaging spectrographs equipped with silicon and InGaAs charge-coupled diode array detectors, allowed for direct comparison of the Michelson contrast obtained from a phantom composed of a honeycomb grid, Intralipid, and India ink. The measured contrast depended on the size of the grid, luminance, and the wavelength of measurements. We demonstrated that at low thickness of the phantom, a reasonable contrast of the objects can be achieved at any wavelength between 700 and 1400 nm and between 1500 and 1600 nm. At larger thicknesses, such contrast can be achieved mostly between 1200 and 1350 nm. These results suggest that distinguishing biological features in deep tissue and developing contrast agents for in vivo may benefit from imaging in this spectral range. PMID:25104414

  10. Coagulation and ablation patterns of high-intensity focused ultrasound on a tissue-mimicking phantom and cadaveric skin.

    PubMed

    Kim, Hee-Jin; Kim, Han Gu; Zheng, Zhenlong; Park, Hyoun Jun; Yoon, Jeung Hyun; Oh, Wook; Lee, Cheol Woo; Cho, Sung Bin

    2015-12-01

    High-intensity focused ultrasound (HIFU) can be applied noninvasively to create focused zones of tissue coagulation on various skin layers. We performed a comparative study of HIFU, evaluating patterns of focused tissue coagulation and ablation upon application thereof. A tissue-mimicking (TM) phantom was prepared with bovine serum albumin and polyacrylamide hydrogel to evaluate the geometric patterns of HIFU-induced thermal injury zones (TIZs) for five different HIFU devices. Additionally, for each device, we investigated histologic patterns of HIFU-induced coagulation and ablation in serial sections of cadaveric skin of the face and neck. All HIFU devices generated remarkable TIZs in the TM phantom, with different geometric values of coagulation for each device. Most of the TIZs seemed to be separated into two or more tiny parts. In cadaveric skin, characteristic patterns of HIFU-induced ablation and coagulation were noted along the mid to lower dermis at the focal penetration depth of 3 mm and along subcutaneous fat to the superficial musculoaponeurotic system or the platysma muscle of the neck at 4.5 mm. Additionally, remarkable pre-focal areas of tissue coagulation were observed in the upper and mid dermis at the focal penetration depth of 3 mm and mid to lower dermis at 4.5 mm. For five HIFU devices, we outlined various patterns of HIFU-induced TIZ formation along pre-focal, focal, and post-focal areas of TM phantom and cadaveric skin of the face and neck.

  11. A teaching phantom for sonographers.

    PubMed

    Zagzebski, J A; Madsen, E L; Frank, G R

    1991-01-01

    An anthropomorphic torso section phantom is described that is intended for use during initial stages of ultrasonographer training. The phantom represents a section of the upper abdomen, with simulated ribs, liver, kidney with fat pad, gallbladder, aorta, and bowel gas. Positioned in the liver are ten simulated soft tissue masses, which produce a variety of typical echographic patterns. All simulated soft tissue components are formed of tissue-mimicking materials that match their corresponding tissue counterparts in terms of speed of sound, ultrasonic attenuation, and density. Construction details are presented and examples of images are shown.

  12. A proto-type design of a real-tissue phantom for the validation of deformation algorithms and 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Szegedi, M.; Rassiah-Szegedi, P.; Fullerton, G.; Wang, B.; Salter, B.

    2010-07-01

    The purpose of this study is to design a real-tissue phantom for use in the validation of deformation algorithms. A phantom motion controller that runs sinusoidal and non-regular patient-based breathing pattern, via a piston, was applied to porcine liver tissue. It was regulated to simulate movement ranges similar to recorded implanted liver markers from patients. 4D CT was applied to analyze deformation. The suitability of various markers in the liver and the position reproducibility of markers and of reference points were studied. The similarity of marker motion pattern in the liver phantom and in real patients was evaluated. The viability of the phantom over time and its use with electro-magnetic tracking devices were also assessed. High contrast markers, such as carbon markers, implanted in the porcine liver produced less image artifacts on CT and were well visualized compared to metallic ones. The repositionability of markers was within a measurement accuracy of ±2 mm. Similar anatomical patient motions were reproducible up to elongations of 3 cm for a time period of at least 90 min. The phantom is compatible with electro-magnetic tracking devices and 4D CT. The phantom motion is reproducible and simulates realistic patient motion and deformation. The ability to carry out voxel-based tracking allows for the evaluation of deformation algorithms in a controlled environment with recorded patient traces. The phantom is compatible with all therapy devices clinically encountered in our department.

  13. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.

    PubMed

    Ferrari, P; Gualdrini, G

    2005-09-21

    In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.

  14. Effects of selected materials and geometries on the beta dose equivalent rate in a tissue equivalent phantom immersed in infinite clouds of 133Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piltingsrud, H.V.; Gels, G.L.

    1986-06-01

    Most calculations of dose equivalent (D.E.) rates at 70-micron tissue depths in tissue equivalent (T.E.) phantoms from infinite clouds (radius exceeds maximum beta range in air) of /sup 133/Xe do not consider the possible effects of clothing overlays. Consequently, a series of measurements were made using a 1-mm-thick plastic scintillation detector assembly mounted in a tissue equivalent (T.E.) phantom with an overlay of 70 micron of T.E. material. This assembly was placed in an infinite cloud containing a known concentration of /sup 133/Xe. Material samples were placed at selected distances from the detector phantom, both individually and in various combinations.more » Pulse-height spectra resulting from beta radiations were converted to relative D.E. rates at a 70-micron tissue depth. The relative D.E. rates were reduced from values with no clothing cover by as little as 45% when placing a single thin nylon cloth 1 cm from the phantom, to 94% for a T-shirt material plus wool material plus denim placed 1/2, 1 and 3 cm, respectively, from the phantom. The results indicate that even loosely fitting clothing can have an important effect on reducing the D.E. rate. Close-fitting clothing appears to provide better protection.« less

  15. Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip.

    PubMed

    Sthalekar, Chirag C; Miao, Yun; Koomson, Valencia Joyner

    2017-04-01

    An interface circuit with signal processing and digitizing circuits for a high frequency, large area avalanche photodiode (APD) has been integrated in a 130 nm BiCMOS chip. The system enables the absolute oximetry of tissue using frequency domain Near Infrared Spectroscopy (fdNIRS). The system measures the light absorbed and scattered by the tissue by measuring the reduction in the amplitude of signal and phase shift introduced between the light source and detector which are placed a finite distance away from each other. The received 80 MHz RF signal is downconverted to a low frequency and amplified using a heterodyning scheme. The front-end transimpedance amplifier has a 3-level programmable gain that increases the dynamic range to 60 dB. The phase difference between an identical reference channel and the optical channel is measured with a 0.5° accuracy. The detectable current range is [Formula: see text] and with a 40 A/W reponsivity using the APD, power levels as low as 500 pW can be detected. Measurements of the absorption and reduced scattering coefficients of solid tissue phantoms using this system are compared with those using a commercial instrument with differences within 30%. Measurement of a milk based liquid tissue phantom show an increase in absorption coefficient with addition of black ink. The miniaturized circuit serves as an efficiently scalable system for multi-site detection for applications in neonatal cerebral oximetry and optical mammography.

  16. Copolymer-in-oil phantom materials for elastography.

    PubMed

    Oudry, J; Bastard, C; Miette, V; Willinger, R; Sandrin, L

    2009-07-01

    Phantoms that mimic mechanical and acoustic properties of soft biological tissues are essential to elasticity imaging investigation and to elastography device characterization. Several materials including agar/gelatin, polyvinyl alcohol and polyacrylamide gels have been used successfully in the past to produce tissue phantoms, as reported in the literature. However, it is difficult to find a phantom material with a wide range of stiffness, good stability over time and high resistance to rupture. We aim at developing and testing a new copolymer-in-oil phantom material for elastography. The phantom is composed of a mixture of copolymer, mineral oil and additives for acoustic scattering. The mechanical properties of phantoms were evaluated with a mechanical test instrument and an ultrasound-based elastography technique. The acoustic properties were investigated using a through-transmission water-substituting method. We showed that copolymer-in-oil phantoms are stable over time. Their mechanical and acoustic properties mimic those of most soft tissues: the Young's modulus ranges from 2.2-150 kPa, the attenuation coefficient from 0.4-4.0 dB.cm(-1) and the ultrasound speed from 1420-1464 m/s. Their density is equal to 0.90 +/- 0.04 g/cm3. The results suggest that copolymer-in-oil phantoms are attractive materials for elastography.

  17. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.

    PubMed

    Kim, Hanna; Hau, Nguyen Trung; Chae, Yu-Gyeong; Lee, Byeong-Il; Kang, Hyun Wook

    2016-04-01

    Artificial skin phantoms have been developed as an alternative tissue for human skin experiments due to convenient use and easy storage. However, fabricating both thin (∼100 μm) epidermis and relatively thick dermis is often cumbersome, and most developed phantoms have hardly reflected specific human skin types. The objective of this study was to fabricate skin phantoms with 3D printing technique to emulate various human skin types (I-VI) along with the corresponding optical and mechanical properties for laser tattoo removal. Both gelatin and agar powders were mixed with coffee and TiO2 particles to fabricate skin phantoms with materials properties for various skin types (I-VI). A 3D printer was employed to precisely control the thickness of each phantom for epidermis and dermis layers. A number of concentrations of the coffee and TiO2 particles were used to determine the degree of absorption and scattering effects in various skin types. The optical properties between 500 and 1,000 nm for the fabricated phantoms were measured by double-integrating spheres with an inverse adding-doubling (IAD) algorithm. Optical coherence tomography (OCT) and rheometer were also utilized to evaluate optical (absorption and reduced scattering coefficients) and mechanical properties (compression modulus) of the fabricated phantoms, respectively. Visible color inspections presented that the skin phantoms for types I, III, and VI similarly emulated the color space of the human skin types. The optical property measurements demonstrated that the absorption (μa) and reduced scattering (μ(s')) coefficients decreased with wavelengths. Compared to the human skin type VI, a dermis phantom represented quite equivalent values of μa and μ(s') whereas an epidermis phantom showed up to 30% lower μa but almost identical μ(s') over the wavelengths. The OCT measurements confirmed that the thicknesses of the epidermis and the dermis phantoms were measured to be 138.50 ± 0.01 μm and

  18. Fabrication and characterization of silica aerogel as synthetic tissues for medical imaging phantoms

    NASA Astrophysics Data System (ADS)

    In, Eunji; Naguib, Hani

    2015-05-01

    Medical imaging plays an important role in the field of healthcare industry both in clinical settings and in research and development. It is used in prevention, early detection of disease, in choosing the optimal treatment, during surgical interventions and monitoring of the treatment effects. Despite much advancement in the last few decades, rapid change on its technology development and variety of imaging parameters that differ with the manufacturer restrict its further development. Imaging phantom is a calibrating medium that is scanned or imaged in the field of medical imaging to evaluate, analyze and tune the performance of various imaging devices. A phantom used to evaluate an imaging device should respond in a similar manner to how human tissue and organs would act in that specific imaging modality. There has been many research on the phantom materials; however, there has been no attempt to study on the material that mimics the structure of lung or fibrous tissue. So with the need for development of gel with such structure, we tried to mimic this structure with aerogel. Silica aerogels have unique properties that include low density (0.003g/cm) and mesoporosity (pore size 2-50nm), with a high thermal insulation value (0.005W/mK) and high surface area (500-1200m-2/g).] In this study, we cross-linked with di-isocyanate, which is a group in polyurethane to covalently bond the polymer to the surface of silica aerogel to enhance the mechanical properties. By formation of covalent bonds, the structure can be reinforced by widening the interparticle necks while minimally reducing porosity.

  19. Development and evaluation of a connective tissue phantom model for subsurface visualization of cancers requiring wide local excision

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Bates, Brent D.; Tselepidakis, Niki N.; DSouza, Alisha V.; Gunn, Jason R.; Ramkumar, Dipak B.; Paulsen, Keith D.; Pogue, Brian W.; Henderson, Eric R.

    2017-12-01

    Wide local excision (WLE) of tumors with negative margins remains a challenge because surgeons cannot directly visualize the mass. Fluorescence-guided surgery (FGS) may improve surgical accuracy; however, conventional methods with direct surface tumor visualization are not immediately applicable, and properties of tissues surrounding the cancer must be considered. We developed a phantom model for sarcoma resection with the near-infrared fluorophore IRDye 800CW and used it to iteratively define the properties of connective tissues that typically surround sarcoma tumors. We then tested the ability of a blinded surgeon to resect fluorescent tumor-simulating inclusions with ˜1-cm margins using predetermined target fluorescence intensities and a Solaris open-air fluorescence imaging system. In connective tissue-simulating phantoms, fluorescence intensity decreased with increasing blood concentration and increased with increasing intralipid concentrations. Fluorescent inclusions could be resolved at ≥1-cm depth in all inclusion concentrations and sizes tested. When inclusion depth was held constant, fluorescence intensity decreased with decreasing volume. Using targeted fluorescence intensities, a blinded surgeon was able to successfully excise inclusions with ˜1-cm margins from fat- and muscle-simulating phantoms with inclusion-to-background contrast ratios as low as 2∶1. Indirect, subsurface FGS is a promising tool for surgical resection of cancers requiring WLE.

  20. The impact of anthropometric patient-phantom matching on organ dose: A hybrid phantom study for fluoroscopy guided interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Perry B.; Geyer, Amy; Borrego, David

    Purpose: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. Methods: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific andmore » patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. Results: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. Conclusions: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical

  1. Quantitative assessment of soft tissue deformation using digital speckle pattern interferometry: studies on phantom breast models.

    PubMed

    Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R

    2017-01-01

    Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)-based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed.

  2. A statistically defined anthropomorphic software breast phantom.

    PubMed

    Lau, Beverly A; Reiser, Ingrid; Nishikawa, Robert M; Bakic, Predrag R

    2012-06-01

    Digital anthropomorphic breast phantoms have emerged in the past decade because of recent advances in 3D breast x-ray imaging techniques. Computer phantoms in the literature have incorporated power-law noise to represent glandular tissue and branching structures to represent linear components such as ducts. When power-law noise is added to those phantoms in one piece, the simulated fibroglandular tissue is distributed randomly throughout the breast, resulting in dense tissue placement that may not be observed in a real breast. The authors describe a method for enhancing an existing digital anthropomorphic breast phantom by adding binarized power-law noise to a limited area of the breast. Phantoms with (0.5 mm)(3) voxel size were generated using software developed by Bakic et al. Between 0% and 40% of adipose compartments in each phantom were replaced with binarized power-law noise (β = 3.0) ranging from 0.1 to 0.6 volumetric glandular fraction. The phantoms were compressed to 7.5 cm thickness, then blurred using a 3 × 3 boxcar kernel and up-sampled to (0.1 mm)(3) voxel size using trilinear interpolation. Following interpolation, the phantoms were adjusted for volumetric glandular fraction using global thresholding. Monoenergetic phantom projections were created, including quantum noise and simulated detector blur. Texture was quantified in the simulated projections using power-spectrum analysis to estimate the power-law exponent β from 25.6 × 25.6 mm(2) regions of interest. Phantoms were generated with total volumetric glandular fraction ranging from 3% to 24%. Values for β (averaged per projection view) were found to be between 2.67 and 3.73. Thus, the range of textures of the simulated breasts covers the textures observed in clinical images. Using these new techniques, digital anthropomorphic breast phantoms can be generated with a variety of glandular fractions and patterns. β values for this new phantom are comparable with published values for breast

  3. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niebuhr, Nina I., E-mail: n.niebuhr@dkfz.de; Johnen, Wibke; Güldaglar, Timur

    Purpose: Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. Methods: Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effectivemore » atomic number, as well as T1- and T2-relaxation times to patient and literature values. Results: Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K{sub 2}HPO{sub 4}, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. Conclusions: The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy.« less

  4. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy.

    PubMed

    Niebuhr, Nina I; Johnen, Wibke; Güldaglar, Timur; Runz, Armin; Echner, Gernot; Mann, Philipp; Möhler, Christian; Pfaffenberger, Asja; Jäkel, Oliver; Greilich, Steffen

    2016-02-01

    Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effective atomic number, as well as T1- and T2-relaxation times to patient and literature values. Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K2HPO4, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy.

  5. Multi-Modality Phantom Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe bothmore » our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.« less

  6. Radiofrequency ablation: importance of background tissue electrical conductivity--an agar phantom and computer modeling study.

    PubMed

    Solazzo, Stephanie A; Liu, Zhengjun; Lobo, S Melvyn; Ahmed, Muneeb; Hines-Peralta, Andrew U; Lenkinski, Robert E; Goldberg, S Nahum

    2005-08-01

    To determine whether radiofrequency (RF)-induced heating can be correlated with background electrical conductivity in a controlled experimental phantom environment mimicking different background tissue electrical conductivities and to determine the potential electrical and physical basis for such a correlation by using computer modeling. The effect of background tissue electrical conductivity on RF-induced heating was studied in a controlled system of 80 two-compartment agar phantoms (with inner wells of 0.3%, 1.0%, or 36.0% NaCl) with background conductivity that varied from 0.6% to 5.0% NaCl. Mathematical modeling of the relationship between electrical conductivity and temperatures 2 cm from the electrode (T2cm) was performed. Next, computer simulation of RF heating by using two-dimensional finite-element analysis (ETherm) was performed with parameters selected to approximate the agar phantoms. Resultant heating, in terms of both the T2cm and the distance of defined thermal isotherms from the electrode surface, was calculated and compared with the phantom data. Additionally, electrical and thermal profiles were determined by using the computer modeling data and correlated by using linear regression analysis. For each inner compartment NaCl concentration, a negative exponential relationship was established between increased background NaCl concentration and the T2cm (R2= 0.64-0.78). Similar negative exponential relationships (r2 > 0.97%) were observed for the computer modeling. Correlation values (R2) between the computer and experimental data were 0.9, 0.9, and 0.55 for the 0.3%, 1.0%, and 36.0% inner NaCl concentrations, respectively. Plotting of the electrical field generated around the RF electrode identified the potential for a dramatic local change in electrical field distribution (ie, a second electrical peak ["E-peak"]) occurring at the interface between the two compartments of varied electrical background conductivity. Linear correlations between the E

  7. SU-F-J-174: A Series of Computational Human Phantoms in DICOM-RT Format for Normal Tissue Dose Reconstruction in Epidemiological Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyakuryal, A; Moroz, B; Lee, C

    2016-06-15

    Purpose: Epidemiological studies of second cancer risk in radiotherapy patients often require individualized dose estimates of normal tissues. Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D radiological images or not even available. Generic patient CT images are often used in commercial radiotherapy treatment planning system (TPS) to reconstruct normal tissue doses. The objective of the current work was to develop a series of reference size computational human phantoms in DICOM-RT format for direct use in dose reconstruction in TPS. Methods: Contours of 93 organs and tissues were extracted from a series of pediatricmore » and adult hybrid computational human phantoms (newborn, 1-, 5-, 10-, 15-year-old, and adult males and females) using Rhinoceros software. A MATLAB script was created to convert the contours into the DICOM-RT structure format. The simulated CT images with the resolution of 1×1×3 mm3 were also generated from the binary phantom format and coupled with the DICOM-structure files. Accurate volumes of the organs were drawn in the format using precise delineation of the contours in converted format. Due to complex geometry of organs, higher resolution (1×1×1 mm3) was found to be more efficient in the conversion of newborn and 1-year-old phantoms. Results: Contour sets were efficiently converted into DICOM-RT structures in relatively short time (about 30 minutes for each phantom). A good agreement was observed in the volumes between the original phantoms and the converted contours for large organs (NRMSD<1.0%) and small organs (NRMSD<7.7%). Conclusion: A comprehensive series of computational human phantoms in DICOM-RT format was created to support epidemiological studies of second cancer risks in radiotherapy patients. We confirmed the DICOM-RT phantoms were successfully imported into the TPS programs of major vendors.« less

  8. Measurement of real-time tissue elastography in a phantom model and comparison with transient elastography in pediatric patients with liver diseases.

    PubMed

    Schenk, Jens-Peter; Alzen, Gerhard; Klingmüller, Volker; Teufel, Ulrike; El Sakka, Saroa; Engelmann, Guido; Selmi, Buket

    2014-01-01

    We aimed to determine the comparability of real-time tissue elastography (RTE) and transient elastography (TE) in pediatric patients with liver diseases. RTE was performed on the Elasticity QA Phantom Model 049 (Computerized Imaging Reference Systems Company Inc., Norfolk, Virginia, USA), which has five areas with different levels of stiffness. RTE measurements of relative stiffness (MEAN [mean value of tissue elasticity], AREA [% of blue color-coded stiffer tissue]) in the phantom were compared with the phantom stiffness specified in kPa (measurement unit of TE). RTE and TE were performed on 147 pediatric patients with various liver diseases. A total of 109 measurements were valid. The participants had following diseases: metabolic liver disease (n=25), cystic fibrosis (n=20), hepatopathy of unknown origin (n=11), autoimmune hepatitis (n=12), Wilson's disease (n=11), and various liver parenchyma alterations (n=30). Correlations between RTE and TE measurements in the patients were calculated. In addition, RTE was performed on a control group (n=30), and the RTE values between the patient and control groups were compared. The RTE parameters showed good correlation in the phantom model with phantom stiffness (MEAN/kPa, r=-0.97; AREA/kPa, r=0.98). However, the correlation of RTE and TE was weak in the patient group (MEAN/kPa, r=-0.23; AREA/kPa, r=0.24). A significant difference was observed between the patient and control groups (MEAN, P = 5.32 e-7; AREA, P = 1.62 e-6). In the phantom model, RTE was correlated with kPa, confirming the presumed comparability of the methods. However, there was no direct correlation between RTE and TE in patients with defined liver diseases under real clinical conditions.

  9. Development and evaluation of a connective tissue phantom model for subsurface visualization of cancers requiring wide local excision.

    PubMed

    Samkoe, Kimberley S; Bates, Brent D; Tselepidakis, Niki N; DSouza, Alisha V; Gunn, Jason R; Ramkumar, Dipak B; Paulsen, Keith D; Pogue, Brian W; Henderson, Eric R

    2017-12-01

    Wide local excision (WLE) of tumors with negative margins remains a challenge because surgeons cannot directly visualize the mass. Fluorescence-guided surgery (FGS) may improve surgical accuracy; however, conventional methods with direct surface tumor visualization are not immediately applicable, and properties of tissues surrounding the cancer must be considered. We developed a phantom model for sarcoma resection with the near-infrared fluorophore IRDye 800CW and used it to iteratively define the properties of connective tissues that typically surround sarcoma tumors. We then tested the ability of a blinded surgeon to resect fluorescent tumor-simulating inclusions with ∼1-cm margins using predetermined target fluorescence intensities and a Solaris open-air fluorescence imaging system. In connective tissue-simulating phantoms, fluorescence intensity decreased with increasing blood concentration and increased with increasing intralipid concentrations. Fluorescent inclusions could be resolved at ≥1-cm depth in all inclusion concentrations and sizes tested. When inclusion depth was held constant, fluorescence intensity decreased with decreasing volume. Using targeted fluorescence intensities, a blinded surgeon was able to successfully excise inclusions with ∼1-cm margins from fat- and muscle-simulating phantoms with inclusion-to-background contrast ratios as low as 2∶1. Indirect, subsurface FGS is a promising tool for surgical resection of cancers requiring WLE. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Quantitative assessment of soft tissue deformation using digital speckle pattern interferometry: studies on phantom breast models

    PubMed Central

    Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R.

    2017-01-01

    Abstract. Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)–based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed. PMID:28180134

  11. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  12. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  13. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  14. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  15. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a...

  16. Elasticity mapping of tissue mimicking phantoms by remote palpation with a focused ultrasound beam and intensity autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Usha Devi, C.; Bharat Chandran, R. S.; Vasu, R. M.; Sood, A. K.

    2007-05-01

    We use a focused ultrasound beam to load a region of interest (ROI) in a tissue-mimicking phantom and read out the vibration amplitude of phantom particles from the modulation depth in the intensity autocorrelation of a coherent light beam that intercepted the ROI. The modulation depth, which is also affected by the local light absorption coefficient, which is employed in ultrasound assisted optical tomography, to read out absorption coefficient is greatly influenced by the vibration amplitude, depends to a great extend on local elasticity. We scan a plane in an elastography phantom with an inhomogeneous inclusion, in elasticity with the focused ultrasound and from the measured modulation depth variation create a qualitative map of the elasticity variation in the interrogated plane.

  17. Automatic Robotic Steering of Flexible Needles from 3D Ultrasound Images in Phantoms and Ex Vivo Biological Tissue.

    PubMed

    Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne

    2018-05-29

    Robotic control of needle bending aims at increasing the precision of percutaneous procedures. Ultrasound feedback is preferable for its clinical ease of use, cost and compactness but raises needle detection issues. In this paper, we propose a complete system dedicated to robotized guidance of a flexible needle under 3D ultrasound imaging. This system includes a medical robot dedicated to transperineal needle positioning and insertion, a rapid path planning for needle steering using bevel-tip needle natural curvature in tissue, and an ultrasound-based automatic needle detection algorithm. Since ultrasound-based automatic needle steering is often made difficult by the needle localization in biological tissue, we quantify the benefit of using flexible echogenic needles for robotized guidance under 3D ultrasound. The "echogenic" term refers to the etching of microstructures on the needle shaft. We prove that these structures improve needle visibility and detection robustness in ultrasound images. We finally present promising results when reaching targets using needle steering. The experiments were conducted with various needles in different media (synthetic phantoms and ex vivo biological tissue). For instance, with nitinol needles the mean accuracy is 1.2 mm (respectively 3.8 mm) in phantoms (resp. biological tissue).

  18. Lung pair phantom

    DOEpatents

    Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.

    1993-01-01

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  19. Lung pair phantom

    DOEpatents

    Olsen, P.C.; Gordon, N.R.; Simmons, K.L.

    1993-11-30

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  20. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    PubMed

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  1. Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers.

    PubMed

    Ahn, K J; Kim, B J; Cho, S B

    2017-08-01

    Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. WAXS fat subtraction model to estimate differential linear scattering coefficients of fatless breast tissue: Phantom materials evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Robert Y., E-mail: rx-tang@laurentian.ca; Laamanen, Curtis, E-mail: cx-laamanen@laurentian.ca; McDonald, Nancy, E-mail: mcdnancye@gmail.com

    Purpose: Develop a method to subtract fat tissue contributions to wide-angle x-ray scatter (WAXS) signals of breast biopsies in order to estimate the differential linear scattering coefficients μ{sub s} of fatless tissue. Cancerous and fibroglandular tissue can then be compared independent of fat content. In this work phantom materials with known compositions were used to test the efficacy of the WAXS subtraction model. Methods: Each sample 5 mm in diameter and 5 mm thick was interrogated by a 50 kV 2.7 mm diameter beam for 3 min. A 25 mm{sup 2} by 1 mm thick CdTe detector allowed measurements ofmore » a portion of the θ = 6° scattered field. A scatter technique provided means to estimate the incident spectrum N{sub 0}(E) needed in the calculations of μ{sub s}[x(E, θ)] where x is the momentum transfer argument. Values of μ{sup ¯}{sub s} for composite phantoms consisting of three plastic layers were estimated and compared to the values obtained via the sum μ{sup ¯}{sub s}{sup ∑}(x)=ν{sub 1}μ{sub s1}(x)+ν{sub 2}μ{sub s2}(x)+ν{sub 3}μ{sub s3}(x), where ν{sub i} is the fractional volume of the ith plastic component. Water, polystyrene, and a volume mixture of 0.6 water + 0.4 polystyrene labelled as fibphan were chosen to mimic cancer, fat, and fibroglandular tissue, respectively. A WAXS subtraction model was used to remove the polystyrene signal from tissue composite phantoms so that the μ{sub s} of water and fibphan could be estimated. Although the composite samples were layered, simulations were performed to test the models under nonlayered conditions. Results: The well known μ{sub s} signal of water was reproduced effectively between 0.5 < x < 1.6 nm{sup −1}. The μ{sup ¯}{sub s} obtained for the heterogeneous samples agreed with μ{sup ¯}{sub s}{sup ∑}. Polystyrene signals were subtracted successfully from composite phantoms. The simulations validated the usefulness of the WAXS models for nonlayered biopsies. Conclusions: The methodology

  3. Particle velocity measurements with macroscopic fluorescence imaging in lymph tissue mimicking microfluidic phantoms

    NASA Astrophysics Data System (ADS)

    Hennessy, Ricky; Koo, Chiwan; Ton, Phuc; Han, Arum; Righetti, Raffaella; Maitland, Kristen C.

    2011-03-01

    Ultrasound poroelastography can quantify structural and mechanical properties of tissues such as stiffness, compressibility, and fluid flow rate. This novel ultrasound technique is being explored to detect tissue changes associated with lymphatic disease. We have constructed a macroscopic fluorescence imaging system to validate ultrasonic fluid flow measurements and to provide high resolution imaging of microfluidic phantoms. The optical imaging system is composed of a white light source, excitation and emission filters, and a camera with a zoom lens. The field of view can be adjusted from 100 mm x 75 mm to 10 mm x 7.5 mm. The microfluidic device is made of polydimethylsiloxane (PDMS) and has 9 channels, each 40 μm deep with widths ranging from 30 μm to 200 μm. A syringe pump was used to propel water containing 15 μm diameter fluorescent microspheres through the microchannels, with flow rates ranging from 0.5 μl/min to 10 μl/min. Video was captured at a rate of 25 frames/sec. The velocity of the microspheres in the microchannels was calculated using an algorithm that tracked the movement of the fluorescent microspheres. The imaging system was able to measure particle velocities ranging from 0.2 mm/sec to 10 mm/sec. The range of flow velocities of interest in lymph vessels is between 1 mm/sec to 10 mm/sec; therefore our imaging system is sufficient to measure particle velocity in phantoms modeling lymphatic flow.

  4. Geometrically complex 3D-printed phantoms for diffuse optical imaging.

    PubMed

    Dempsey, Laura A; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C

    2017-03-01

    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution.

  5. Geometrically complex 3D-printed phantoms for diffuse optical imaging

    PubMed Central

    Dempsey, Laura A.; Persad, Melissa; Powell, Samuel; Chitnis, Danial; Hebden, Jeremy C.

    2017-01-01

    Tissue-equivalent phantoms that mimic the optical properties of human and animal tissues are commonly used in diffuse optical imaging research to characterize instrumentation or evaluate an image reconstruction method. Although many recipes have been produced for generating solid phantoms with specified absorption and transport scattering coefficients at visible and near-infrared wavelengths, the construction methods are generally time-consuming and are unable to create complex geometries. We present a method of generating phantoms using a standard 3D printer. A simple recipe was devised which enables printed phantoms to be produced with precisely known optical properties. To illustrate the capability of the method, we describe the creation of an anatomically accurate, tissue-equivalent premature infant head optical phantom with a hollow brain space based on MRI atlas data. A diffuse optical image of the phantom is acquired when a high contrast target is inserted into the hollow space filled with an aqueous scattering solution. PMID:28663863

  6. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    NASA Astrophysics Data System (ADS)

    Wydra, A.; Maev, R. Gr

    2013-11-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  7. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull.

    PubMed

    Wydra, A; Maev, R Gr

    2013-11-21

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  8. Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue

    NASA Astrophysics Data System (ADS)

    Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat

    2013-03-01

    Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.

  9. Optical Quantification of Harmonic Acoustic Radiation Force Excitation in a Tissue-Mimicking Phantom.

    PubMed

    Suomi, Visa; Edwards, David; Cleveland, Robin

    2015-12-01

    Optical tracking was used to characterize acoustic radiation force-induced displacements in a tissue-mimicking phantom. Amplitude-modulated 3.3-MHz ultrasound was used to induce acoustic radiation force in the phantom, which was embedded with 10-μm microspheres that were tracked using a microscope objective and high-speed camera. For sine and square amplitude modulation, the harmonic components of the fundamental and second and third harmonic frequencies were measured. The displacement amplitudes were found to increase linearly with acoustic radiation force up to 10 μm, with sine modulation having 19.5% lower peak-to-peak amplitude values than square modulation. Square modulation produced almost no second harmonic, but energy was present in the third harmonic. For the sine modulation, energy was present in the second harmonic and low energy in the third harmonic. A finite-element model was used to simulate the deformation and was both qualitatively and quantitatively in agreement with the measurements. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Development of skin tissue phantom having a shape of sulcus cutis and crista cutis with lower temporal deterioration

    NASA Astrophysics Data System (ADS)

    Yuasa, Tomonori; Nagamori, Yutaro; Maeda, Takaaki; Funamizu, Hideki; Aizu, Yoshihisa

    2017-07-01

    Human skin surface has unevennesses called sulcus cutis and crista cutis. It is known that these affect the light propagation in human skin. In this study, we made a prototype of skin tissue phantom and investigated its spectral properties and problems to be solved.

  11. Hybrid pregnant reference phantom series based on adult female ICRP reference phantom

    NASA Astrophysics Data System (ADS)

    Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie

    2018-03-01

    This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.

  12. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation

    NASA Astrophysics Data System (ADS)

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.

    2016-08-01

    Optical phase conjugation (OPC)-based wavefront shaping techniques focus light through or within scattering media, which is critically important for deep-tissue optical imaging, manipulation, and therapy. However, to date, the sample thickness in OPC experiments has been limited to only a few millimeters. Here, by using a laser with a long coherence length and an optimized digital OPC system that can safely deliver more light power, we focused 532-nm light through tissue-mimicking phantoms up to 9.6 cm thick, as well as through ex vivo chicken breast tissue up to 2.5 cm thick. Our results demonstrate that OPC can be achieved even when photons have experienced on average 1000 scattering events. The demonstrated penetration of nearly 10 cm (˜100 transport mean free paths) has never been achieved before by any optical focusing technique, and it shows the promise of OPC for deep-tissue noninvasive optical imaging, manipulation, and therapy.

  13. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging. PMID:27829050

  14. Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Leh, Barbara; Siebert, Rainer; Hamzeh, Hussein; Menard, Laurent; Duval, Marie-Alix; Charon, Yves; Abi Haidar, Darine

    2012-10-01

    Growing interest in optical instruments for biomedical applications has increased the use of optically calibrated phantoms. Often associated with tissue modeling, phantoms allow the characterization of optical devices for clinical purposes. Fluorescent gel phantoms have been developed, mimicking optical properties of healthy and tumorous brain tissues. Specific geometries of dedicated molds offer multiple-layer phantoms with variable thicknesses and monolayer phantoms with cylindrical inclusions at various depths and diameters. Organic chromophores are added to allow fluorescence spectroscopy. These phantoms are designed to be used with 405 nm as the excitation wavelength. This wavelength is then adapted to excite large endogenous molecules. The benefits of these phantoms in understanding fluorescence tissue analysis are then demonstrated. In particular, detectability aspects as a function of geometrical and optical parameters are presented and discussed.

  15. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE PAGES

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  16. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  17. Use of optical skin phantoms for calibration of dermatological lasers

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Sekowska, A.; Marchwiński, M.; Galla, S.; Cenian, A.

    2016-09-01

    A wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties, such as capacitance and conductivity specific heat. We have fabricated a range of optical tissue phantoms based on polyvinylchloride-plastisol PVC-P with varying optical properties, including the absorption, scattering and density of the matrix material. We have utilized a pre-clinical dermatological laser system with a 975 nm diode laser module. A range of laser settings were tested, such as laser pulse duration, laser power and number of pulses. We have studied laser irradiation efficiency on fabricated optical tissue phantoms. Measurements of the temporal and spatial temperature distribution on the phantoms' surface were performed using thermographic imaging. The comparison of results between tissues' and phantoms' optical and thermal response prove that they can be used for approximate evaluation of laser heating efficiency. This study presents a viable approach for calibration of dermatological lasers which can be utilized in practice.

  18. Selective sensitivity of Mueller imaging for tissue scattering over absorption changes in cancer mimicking phantoms

    NASA Astrophysics Data System (ADS)

    Fathima, Adeeba; Sharma B. S., Mahima; N., Sujatha

    2018-03-01

    Tissue characterization using optical polarimetry, especially Mueller imaging is receiving sustained interest due to its potential in achieving optical contrast between normal and malignant variations. This is particularly important in identifying the margin of malignant growth in suspected tissue regions for accurate surgical removal, or in aiding the sampling procedure during biopsy. The sensitivity of Mueller matrix derived depolarization index to the combined effects of changes in scattering and absorption occurring in a cancerous growth is illustrated in this study. Depolarization imaging is shown to be useful in demarcating the boundary of two regions of differing optical properties using a tissue phantom, modeled according to the changes expected during cancerous growth in tissue. Tissue scattering and absorption are expected to generally increase with the nuclear size change and crowding as well as angiogenesis associated with malignancy. We have observed that there is selective sensitivity for the Mueller elements and derived depolarization index to tissue scattering over absorption in the object field. Although the scattering and absorption are expected to increase and decrease depolarization respectively, the optical contrast of Mueller images and the derived depolarization index between normal and cancerous tissue is found appreciable in this region.

  19. Quantification of blood volume by electrical impedance tomography using a tissue-equivalent phantom.

    PubMed

    Sadleir, R; Fox, R

    1998-11-01

    An in vivo electrical impedance tomography (EIT) system was designed to accurately estimate quantities of intra-peritoneal blood in the abdominal cavity. For this it is essential that the response is relatively independent of the position of the high conductivity anomaly (blood) in the body. The sensitivity of the system to the introduction of blood-equivalent resistivity anomalies was assessed by using a cylindrical tissue-equivalent phantom. It was found that a satisfactorily uniform response of the system in both radial (transverse) and axial (longitudinal) directions in the phantom could be achieved by filtering resistivity profile images obtained by EIT measurement, and by using extended electrodes to collect data. Post-processing of single impedance images gave rise to a quantity denoted the resistivity index. A filter was then used to remove the remaining radial variation of the resistivity index. It was calculated by evaluating the resistivity index of a number of theoretically calculated images, and constructing a correction filter similar to those used to remove lens imperfections, such as coma, in optical components. The 30% increase in the resistivity index observed when an anomaly was moved to the maximum extent allowed by the filter calculation (0.75 of the phantom radius) was reduced by the filter to 6%. A study of the axial dependence observed in the resistivity index using electrodes extended in the axial direction by +/-5 cm found that the variation in resistivity index with axial position was about half of that observed using small circular electrodes similar to those used in the Sheffield mark I system.

  20. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues

    NASA Astrophysics Data System (ADS)

    Tang, K.; Choy, V.; Chopra, R.; Bronskill, M. J.

    2007-05-01

    MRI-guided transurethral ultrasound therapy offers a minimally invasive approach for the treatment of localized prostate cancer. Integrating a multi-element planar transducer with active MR temperature feedback can enable three-dimensional conformal thermal therapy of a target region within the prostate gland while sparing surrounding normal tissues. Continuous measurement of the temperature distribution in tissue enables dynamic compensation for unknown changes in blood flow and tissue properties during treatment. The main goal of this study was to evaluate the feasibility of using active temperature feedback on a clinical 1.5 T MR imager for conformal thermal therapy. MR thermometry was performed during heating in both gel phantoms and excised tissue with a transurethral heating applicator, and the rotation rate and power were varied based on the thermal measurements. The capability to produce a region of thermal damage that matched a target boundary was evaluated. The influence of a cooling gradient (to simulate cooling of the rectum or urethra) on the desired pattern of thermal damage was also investigated in gel phantoms. Results showed high correlation between the desired target boundary and the 55 °C isotherm generated during heating with an average distance error of 0.9 mm ± 0.4 mm (n = 6) in turkey breasts, 1.4 mm ± 0.6 mm (n = 4) in gel phantoms without rectal cooling and 1.4 mm ± 0.6 mm (n = 3) in gel phantoms with rectal cooling. The results were obtained using a temporal update rate of 5 s, a spatial resolution of 3 × 3 × 10 mm for the control point, and a temperature uncertainty of approximately 1 °C. The performance of the control algorithm under these conditions was comparable to that of simulations conducted previously by our group. Overall, the feasibility of generating targeted regions of thermal damage with a transurethral heating applicator and active MR temperature feedback has been demonstrated experimentally. This method of treatment

  1. Novel tissue phantom for testing a dual-modality diagnostic system: time-resolved fluorescence spectroscopy and high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liao, Kuo-Chih; Sun, Yinghua; Park, Jesung; Marcu, Laura

    2008-02-01

    A unique tissue phantom is reported here that mimics the optical and acoustical properties of biological tissue and enables testing and validation of a dual-modality clinical diagnostic system combining time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasound backscatter microscopy (UBM). The phantom consisted of contrast agents including silicon dioxide particles with a range of diameters from 0.5 to 10 μm acting as optical and acoustical scatterers, and FITC-conjugated dextran mimicking the endogenous fluorophore in tissue. The agents were encapsulated in a polymer bead attached to the end of an optical fiber with a 200 μm diameter using a UV-induced polymerization technique. A set of beads with fibers were then implanted into a gel-based matrix with controlled patterns including a design with lateral distribution and a design with successively changing depth. The configuration presented here allowed the validation of the hybrid fluorescence spectroscopic and ultrasonic system by detecting the lateral and depth distribution of the contrast agents, as well as for coregistration of the ultrasonic image with spectroscopic data. In addition, the depth of the beads in the gel matrix was changed to explore the effect of different concentration ratio of the mixture on the fluorescence signal emitted.

  2. Semipermeable Hollow Fiber Phantoms for Development and Validation of Perfusion-Sensitive MR Methods and Signal Models

    PubMed Central

    Anderson, J.R.; Ackerman, J.J.H.; Garbow, J.R.

    2015-01-01

    Two semipermeable, hollow fiber phantoms for the validation of perfusion-sensitive magnetic resonance methods and signal models are described. Semipermeable hollow fibers harvested from a standard commercial hemodialysis cartridge serve to mimic tissue capillary function. Flow of aqueous media through the fiber lumen is achieved with a laboratory-grade peristaltic pump. Diffusion of water and solute species (e.g., Gd-based contrast agent) occurs across the fiber wall, allowing exchange between the lumen and the extralumenal space. Phantom design attributes include: i) small physical size, ii) easy and low-cost construction, iii) definable compartment volumes, and iv) experimental control over media content and flow rate. PMID:26167136

  3. Mixing formula for tissue-mimicking silicone phantoms in the near infrared

    NASA Astrophysics Data System (ADS)

    Böcklin, C.; Baumann, D.; Stuker, F.; Fröhlich, Jürg

    2015-03-01

    The knowledge of accurate optical parameters of materials is paramount in biomedical optics applications and numerical simulations of such systems. Phantom materials with variable but predefined parameters are needed to optimise these systems. An optimised integrating sphere measurement setup and reconstruction algorithm are presented in this work to determine the optical properties of silicone rubber based phantoms whose absorption and scattering properties are altered with TiO2 and carbon black particles. A mixing formula for all constituents is derived and allows to create phantoms with predefined optical properties.

  4. Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique

    NASA Astrophysics Data System (ADS)

    Udayakumar, K.; Sujatha, N.

    2015-03-01

    Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.

  5. Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes

    PubMed Central

    Wood, Sossena; Krishnamurthy, Narayanan; Santini, Tales; Raval, Shailesh; Farhat, Nadim; Holmes, John Andy; Ibrahim, Tamer S.

    2017-01-01

    Objective The purpose of this study is to design an anthropomorphic heterogeneous head phantom that can be used for MRI and other electromagnetic applications. Materials and methods An eight compartment, physical anthropomorphic head phantom was developed from a 3T MRI dataset of a healthy male. The designed phantom was successfully built and preliminarily evaluated through an application that involves electromagnetic-tissue interactions: MRI (due to it being an available resource). The developed phantom was filled with media possessing electromagnetic constitutive parameters that correspond to biological tissues at ~297 MHz. A preliminary comparison between an in-vivo human volunteer (based on whom the anthropomorphic head phantom was created) and various phantoms types, one being the anthropomorphic heterogeneous head phantom, were performed using a 7 Tesla human MRI scanner. Results Echo planar imaging was performed and minimal ghosting and fluctuations were observed using the proposed anthropomorphic phantom. The magnetic field distributions (during MRI experiments at 7 Tesla) and the scattering parameter (measured using a network analyzer) were most comparable between the anthropomorphic heterogeneous head phantom and an in-vivo human volunteer. Conclusion The developed anthropomorphic heterogeneous head phantom can be used as a resource to various researchers in applications that involve electromagnetic-biological tissue interactions such as MRI. PMID:28806768

  6. Optimizing signal output: effects of viscoelasticity and difference frequency on vibroacoustic radiation of tissue-mimicking phantoms

    NASA Astrophysics Data System (ADS)

    Namiri, Nikan K.; Maccabi, Ashkan; Bajwa, Neha; Badran, Karam W.; Taylor, Zachary D.; St. John, Maie A.; Grundfest, Warren S.; Saddik, George N.

    2018-02-01

    Vibroacoustography (VA) is an imaging technology that utilizes the acoustic response of tissues to a localized, low frequency radiation force to generate a spatially resolved, high contrast image. Previous studies have demonstrated the utility of VA for tissue identification and margin delineation in cancer tissues. However, the relationship between specimen viscoelasticity and vibroacoustic emission remains to be fully quantified. This work utilizes the effects of variable acoustic wave profiles on unique tissue-mimicking phantoms (TMPs) to maximize VA signal power according to tissue mechanical properties, particularly elasticity. A micro-indentation method was utilized to provide measurements of the elastic modulus for each biological replica. An inverse relationship was found between elastic modulus (E) and VA signal amplitude among homogeneous TMPs. Additionally, the difference frequency (Δf ) required to reach maximum VA signal correlated with specimen elastic modulus. Peak signal diminished with increasing Δf among the polyvinyl alcohol specimen, suggesting an inefficient vibroacoustic response by the specimen beyond a threshold of resonant Δf. Comparison of these measurements may provide additional information to improve tissue modeling, system characterization, as well as insights into the unique tissue composition of tumors in head and neck cancer patients.

  7. Silicone-based composite materials simulate breast tissue to be used as ultrasonography training phantoms.

    PubMed

    Ustbas, Burcin; Kilic, Deniz; Bozkurt, Ayhan; Aribal, Mustafa Erkin; Akbulut, Ozge

    2018-08-01

    A silicone-based composite breast phantom is fabricated to be used as an education model in ultrasonography training. A matrix of silicone formulations is tracked to mimic the ultrasonography and tactile response of human breast tissue. The performance of two different additives: (i) silicone oil and (ii) vinyl-terminated poly (dimethylsiloxane) (PDMS) are monitored by a home-made acoustic setup. Through the use of 75 wt% vinyl-terminated PDMS in two-component silicone elastomer mixture, a sound velocity of 1.29 ± 0.09 × 10 3  m/s and an attenuation coefficient of 12.99 ± 0.08 dB/cm-values those match closely to the human breast tissue-are measured with 5 MHz probe. This model can also be used for needle biopsy as well as for self-exam trainings. Herein, we highlight the fabrication of a realistic, durable, accessible, and cost-effective training platform that contains skin layer, inner breast tissue, and tumor masses. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays.

    PubMed

    Hariharan, Prasanna; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak K; Nagaraja, Srinidhi; Myers, Matthew R

    2014-12-01

    In focused-ultrasound procedures such as vessel cauterization or clot lysis, targeting accuracy is critical. To investigate the targeting accuracy of the focused-ultrasound systems, tissue phantoms embedded with thermocouples can be employed. This paper describes a method that utilizes an array of thermocouples to localize the focused ultrasound beam. All of the thermocouples are located away from the beam, so that thermocouple artifacts and sensor interference are minimized. Beam propagation and temperature rise in the phantom are simulated numerically, and an optimization routine calculates the beam location that produces the best agreement between the numerical temperature values and those measured with thermocouples. The accuracy of the method was examined as a function of the array characteristics, including the number of thermocouples in the array and their orientation. For exposures with a 3.3-MHz source, the remote-thermocouple technique was able to predict the focal position to within 0.06 mm. Once the focal location is determined using the localization method, temperatures at desired locations (including the focus) can be estimated from remote thermocouple measurements by curve fitting an analytical solution to the heat equation. Temperature increases in the focal plane were predicted to within 5% agreement with measured values using this method.

  9. Anthropomorphic breast phantoms for preclinical imaging evaluation with transmission or emission imaging

    NASA Astrophysics Data System (ADS)

    Tornai, Martin P.; McKinley, Randolph L.; Bryzmialkiewicz, Caryl N.; Cutler, Spencer J.; Crotty, Dominic J.

    2005-04-01

    With the development of several classes of dedicated emission and transmission imaging technologies utilizing ionizing radiation for improved breast cancer detection and in vivo characterization, it is extremely useful to have available anthropomorphic breast phantoms in a variety of shapes, sizes and malleability prior to clinical imaging. These anthropomorphic phantoms can be used to evaluate the implemented imaging approaches given a known quantity, the phantom, and to evaluate the variability of the measurement due to the imaging system chain. Thus, we have developed a set of fillable and incompressible breast phantoms ranging in volume from 240 to 1730mL with nipple-to-chest distances from 3.8 to 12cm. These phantoms are mountable and exchangeable on either a uniform chest plate or anthropomorphic torso phantom containing tissue equivalent bones and surface tissue. Another fillable ~700mL breast phantom with solid anterior chest plate is intentionally compressible, and can be used for direct comparisons between standard planar imaging approaches using mild-to-severe compression, partially compressed tomosynthesis, and uncompressed computed mammotomography applications. These phantoms can be filled with various fluids (water and oil based liquids) to vary the fatty tissue background composition. Shaped cellulose sponges with two cell densities are fabricated and can be added to the breasts to simulate connective tissue. Additionally, microcalcifications can be simulated by peppering slits in the sponges with oyster shell fragments. These phantoms have a utility in helping to evaluate clinical imaging paradigms with known input object parameters using basic imaging characterization, in an effort to further evaluate contemporary and next generation imaging tools. They may additionally provide a means to collect known data samples for task based optimization studies.

  10. Multimodal 3D cancer-mimicking optical phantom

    PubMed Central

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee Bowden, Audrey K.

    2016-01-01

    Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing various aspects of optical systems, including for evaluating new probe designs, characterizing the diagnostic potential of new technologies, and assessing novel image processing algorithms prior to validation in real tissue. We introduce and characterize the use of a new material, Dragon Skin (Smooth-On Inc.), and fabrication technique, air-brushing, for fabrication of a 3D phantom that mimics the appearance of a real organ under multiple imaging modalities. We demonstrate the utility of the material and technique by fabricating the first 3D, hollow bladder phantom with realistic normal and multi-stage pathology features suitable for endoscopic detection using the gold standard imaging technique, white light cystoscopy (WLC), as well as the complementary imaging modalities of optical coherence tomography and blue light cystoscopy, which are aimed at improving the sensitivity and specificity of WLC to bladder cancer detection. The flexibility of the material and technique used for phantom construction allowed for the representation of a wide range of diseased tissue states, ranging from inflammation (benign) to high-grade cancerous lesions. Such phantoms can serve as important tools for trainee education and evaluation of new endoscopic instrumentation. PMID:26977369

  11. Effect of surface topographic features on the optical properties of skin: a phantom study

    NASA Astrophysics Data System (ADS)

    Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.

    2016-10-01

    Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.

  12. Preservation of tissue specimens during transport to mycobacteriology laboratories.

    PubMed Central

    Richards, W D; Wright, H S

    1983-01-01

    Chloramine-T and sodium borate solutions were evaluated for their effectiveness in preserving Mycobacterium bovis and controlling the growth of non-mycobacterial contaminants on tissue specimens during transport to laboratories. The number of culturable M. bovis cells in suspension was reduced by 5.1 log10 upon exposure to chloramine-T solution and by less than 1 log10 upon exposure to sodium borate solution for 7 days. Reinoculation of laboratory media (because of overgrowth by non-mycobacterial contaminants) was required for 52.6% of 190 routine bovine tissue specimens shipped refrigerated in chloramine-T solution and for 6.1% of 520 specimens shipped unrefrigerated in sodium borate solution. M. bovis was isolated from bovine tissue stored in sodium borate solution at 23 degrees C for 17 weeks and at 4 degrees C for 25 weeks. Unrefrigerated sodium borate solution has been used successfully to ship tissue specimens to our laboratory for the past 11 years. PMID:6341397

  13. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    PubMed

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  14. Analytical prediction of sub-surface thermal history in translucent tissue phantoms during plasmonic photo-thermotherapy (PPTT).

    PubMed

    Dhar, Purbarun; Paul, Anup; Narasimhan, Arunn; Das, Sarit K

    2016-12-01

    Knowledge of thermal history and/or distribution in biological tissues during laser based hyperthermia is essential to achieve necrosis of tumour/carcinoma cells. A semi-analytical model to predict sub-surface thermal distribution in translucent, soft, tissue mimics has been proposed. The model can accurately predict the spatio-temporal temperature variations along depth and the anomalous thermal behaviour in such media, viz. occurrence of sub-surface temperature peaks. Based on optical and thermal properties, the augmented temperature and shift of the peak positions in case of gold nanostructure mediated tissue phantom hyperthermia can be predicted. Employing inverse approach, the absorption coefficient of nano-graphene infused tissue mimics is determined from the peak temperature and found to provide appreciably accurate predictions along depth. Furthermore, a simplistic, dimensionally consistent correlation to theoretically determine the position of the peak in such media is proposed and found to be consistent with experiments and computations. The model shows promise in predicting thermal distribution induced by lasers in tissues and deduction of therapeutic hyperthermia parameters, thereby assisting clinical procedures by providing a priori estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Correlations between the MR Diffusion-weighted Image (DWI) and the bone mineral density (BMD) as a function of the soft tissue thickness-focus on phantom and patient

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Sam; Cho, Jae-Hwan; Lee, Hae-Kag; Lee, Sang-Jeong; Park, Cheol-Soo; Dong, Kyung-Rae; Park, Yong-Soon; Chung, Woon-Kwan; Lee, Jong-Woong; Kim, Ho-Sung; Kim, Eun-Hye; Kweon, Dae Cheol; Yeo, Hwa-Yeon

    2013-02-01

    In this study we used lumbar phantoms to determine if the BMD (bone mineral density) changes when only the thickness of soft tissue is increased. Second, we targeted osteoporosis patients to analyze the dependences of the changes in the SNR (signal-to-noise ratio) and the ADC (apparent diffusion coefficient) on changes in T-score. We used a bone mineral densitometer, phantoms such as an aluminum spine phantom (ASP), a Hologic spine phantom (HSP), and a European spine phantom (ESP), five sheets of acrylic panel, and a water bath to study the effects of changes in the thickness of soft tissue. First, we measured the ASP, the HSP and the ESP. For the measurement of the ASP, we filled it with water to increase the height by 0.5 cm starting from the baseline height. We then did three measurements for each height. For the measurements of the HSP and the ESP, we placed an acrylic panel on the phantom and then did three measurements at each height. We used the ASP to calculate the degree of precision of the standard mode and the thick mode at the maximum height of the water bath. To assess the degree of precision in the measurements of the three types of phantoms, we calculated precision errors and analyzed the correlation between the change in the thickness of soft tissue and the variables of the BMD. Using DWIs (diffusion weighted images), we targeted 30 healthy persons without osteoporosis and 30 patients with a finding of osteoporosis and measured the T-scores for the L1 — L4 (lumbar spine) segments of by the spine using the dual-energy X-ray absorptiometry (DXA) before classifying the measurement at each part of the spine as osteopenia or osteoporosis. We measured the signal intensity on all four parts of L1-L4 in the DWIs obtained using a 1.5T MR scanner and measured the ADC in the ADC map image. We compared changes in the SNR and the ADC for each group. The study results confirmed that an increase in the thickness of the soft tissue had a significant correlation

  16. Prehospital thrombolysis in acute stroke: results of the PHANTOM-S pilot study.

    PubMed

    Weber, Joachim E; Ebinger, Martin; Rozanski, Michal; Waldschmidt, Carolin; Wendt, Matthias; Winter, Benjamin; Kellner, Philipp; Baumann, André; Fiebach, Jochen B; Villringer, Kersten; Kaczmarek, Sabina; Endres, Matthias; Audebert, Heinrich J

    2013-01-08

    Beneficial effects of IV tissue plasminogen activator (tPA) in acute ischemic stroke are strongly time-dependent. In the Pre-Hospital Acute Neurological Treatment and Optimization of Medical care in Stroke (PHANTOM-S) study, we undertook stroke treatment using a specialized ambulance, the stroke emergency mobile unit (STEMO), to shorten call-to-treatment time. The ambulance was staffed with a neurologist, paramedic, and radiographer and equipped with a CT scanner, point-of-care laboratory, and a teleradiology system. It was deployed by the dispatch center whenever a specific emergency call algorithm indicated an acute stroke situation. Study-specific procedures were restricted to patients able to give informed consent. We report feasibility, safety, and duration of procedures regarding prehospital tPA administration. From February 8 to April 30, 2011, 152 subjects were treated in STEMO. Informed consent was given by 77 patients. Forty-five (58%) had an acute ischemic stroke and 23 (51%) of these patients received tPA. The mean call-to-needle time was 62 minutes compared with 98 minutes in 50 consecutive patients treated in 2010. Two (9%) of the tPA-treated patients had a symptomatic intracranial hemorrhage and 1 of these patients (4%) died in hospital. Technical failures encountered were 1 CT dysfunction and 2 delayed CT image transmissions. The data suggest that prehospital stroke care in STEMO is feasible. No safety concerns have been raised so far. This new approach using prehospital tPA may be effective in reducing call-to-needle times, but this is currently being scrutinized in a prospective controlled study.

  17. Polyvinyl chloride plastisol breast phantoms for ultrasound imaging.

    PubMed

    de Carvalho, Isabela Miller; De Matheo, Lucas Lobianco; Costa Júnior, José Francisco Silva; Borba, Cecília de Melo; von Krüger, Marco Antonio; Infantosi, Antonio Fernando Catelli; Pereira, Wagner Coelho de Albuquerque

    2016-08-01

    Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging.

    PubMed

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J; Ramella-Roman, Jessica C; Mathews, Scott A; Coburn, James C; Sorg, Brian S; Chen, Yu; Pfefer, T Joshua

    2015-01-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance.

  19. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model.

    PubMed

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P; Martin, Edward W; Hitchcock, Charles L; Yilmaz, Alper; Tweedle, Michael F; Shao, Pengfei; Xu, Ronald X

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)-fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting.

  20. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model

    PubMed Central

    Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P.; Martin, Edward W.; Hitchcock, Charles L.; Yilmaz, Alper; Tweedle, Michael F.; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)—fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting. PMID:27367051

  1. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties

    PubMed Central

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Joshua Pfefer, T.

    2016-01-01

    Abstract. Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681

  2. Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan

    2014-12-01

    Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.

  3. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method

    PubMed Central

    Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming

    2018-01-01

    During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom. PMID:29758968

  4. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method.

    PubMed

    Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming

    2018-04-27

    During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom.

  5. Creation and Characterization of an Ultrasound and CT Phantom for Non-invasive Ultrasound Thermometry Calibration

    PubMed Central

    Lai, Chun-Yen; Kruse, Dustin E.; Ferrara, Katherine W.; Caskey, Charles F.

    2014-01-01

    Ultrasound thermometry provides noninvasive two-dimensional (2-D) temperature monitoring, and in this paper, we have investigated the use of computed tomography (CT) radiodensity to characterize tissues to improve the accuracy of ultrasound thermometry. Agarose-based tissue-mimicking phantoms were created with glyceryl trioleate (a fat-mimicking material) concentration of 0, 10, 20, 30, 40, and 50%. The speed of sound (SOS) of the phantoms was measured over a temperature range of 22.1–41.1°C. CT images of the phantoms were acquired by a clinical dedicated breast CT scanner, followed by calculation of the Hounsfield units (HU). The phantom was heated with a therapeutic acoustic pulse (1.54 MHz), while RF data were acquired with a 10-MHz linear-array transducer. 2-D speckle tracking was used to calculate the thermal strain offline. The tissue dependent thermal strain parameter required for ultrasound thermometry was analyzed and correlated with CT radiodensity, followed by validation of the temperature prediction. Results showed that the change in SOS with the temperature increase was opposite in sign between the 0–10% and 20–50% trioleate phantoms. The inverse of the tissue dependent thermal strain parameter of the phantoms was correlated with the CT radiodensity (R2 = 0.99). A blinded ultrasound thermometry study on phantoms with a trioleate range of 5–35% demonstrated the capability to estimate the tissue dependent thermal strain parameter and estimate temperature with error less than ~1°C. In conclusion, CT radiodensity may provide a method for improving ultrasound thermometry in heterogeneous tissues. PMID:24107918

  6. Look-Ahead Distance of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Qian, Zhiyu; Victor, Sunder S.; Gu, Yueqing; Giller, Cole A.; Liu, Hanli

    2003-08-01

    A short-separation, optical reflectance probe has been developed to assist the neurosurgeon in functional neurosurgery for accurate localization of the surgical target. Because of the scattering nature of tissue, the optical probe has a "Look Ahead Distance" (LAD), at which the measured optical reflectance starts to "see" or "sense" the underlying brain structure due to the difference in light scattering of tissue. To quantify the LAD, 2-layer laboratory phantoms have been developed to mimic gray and white matter of the brain, and Monte Carlo simulations have been also used to confirm the experimental findings. Based on both the laboratory and simulation results, a quantitative empirical equation is developed to express the LAD as a function of scattering coefficient of the measured tissue for a 400-micron-diameter fiber probe. The quantified LAD of the probe is highly desirable so as to improve the spatial resolution of the probe for better surgery guidance.

  7. SU-E-T-481: Dosimetric Effects of Tissue Heterogeneity in Proton Therapy: Monte Carlo Simulation and Experimental Study Using Animal Tissue Phantoms.

    PubMed

    Liu, Y; Zheng, Y

    2012-06-01

    Accurate determination of proton dosimetric effect for tissue heterogeneity is critical in proton therapy. Proton beams have finite range and consequently tissue heterogeneity plays a more critical role in proton therapy. The purpose of this study is to investigate the tissue heterogeneity effect in proton dosimetry based on anatomical-based Monte Carlo simulation using animal tissues. Animal tissues including a pig head and beef bulk were used in this study. Both pig head and beef were scanned using a GE CT scanner with 1.25 mm slice thickness. A treatment plan was created, using the CMS XiO treatment planning system (TPS) with a single proton spread-out-Bragg-peak beam (SOBP). Radiochromic films were placed at the distal falloff region. Image guidance was used to align the phantom before proton beams were delivered according to the treatment plan. The same two CT sets were converted to Monte Carlo simulation model. The Monte Carlo simulated dose calculations with/without tissue omposition were compared to TPS calculations and measurements. Based on the preliminary comparison, at the center of SOBP plane, the Monte Carlo simulation dose without tissue composition agreed generally well with TPS calculation. In the distal falloff region, the dose difference was large, and about 2 mm isodose line shift was observed with the consideration of tissue composition. The detailed comparison of dose distributions between Monte Carlo simulation, TPS calculations and measurements is underway. Accurate proton dose calculations are challenging in proton treatment planning for heterogeneous tissues. Tissue heterogeneity and tissue composition may lead to isodose line shifts up to a few millimeters in the distal falloff region. By simulating detailed particle transport and energy deposition, Monte Carlo simulations provide a verification method in proton dose calculation where inhomogeneous tissues are present. © 2012 American Association of Physicists in Medicine.

  8. MRI-guided fluorescence tomography of the breast: a phantom study

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Dehghani, Hamid; Paulsen, Keith D.

    2009-02-01

    Tissue phantoms simulating the human breast were used to demonstrate the imaging capabilities of an MRI-coupled fluorescence molecular tomography (FMT) imaging system. Specifically, phantoms with low tumor-to-normal drug contrast and complex internal structure were imaged with the MR-coupled FMT system. Images of indocyanine green (ICG) fluorescence yield were recovered using a diffusion model-based approach capable of estimating the distribution of fluorescence activity in a tissue volume from tissue-boundary measurements of transmitted light. Tissue structural information, which can be determined from standard T1 and T2 MR images, was used to guide the recovery of fluorescence activity. The study revealed that this spatial guidance is critical for recovering images of fluorescence yield in tissue with low tumor-to-normal drug contrast.

  9. A physical anthropomorphic phantom of a one year old child with real-time dosimetry

    NASA Astrophysics Data System (ADS)

    Bower, Mark William

    A physical heterogeneous phantom has been created with epoxy resin based tissue substitutes. The phantom is based on the Cristy and Eckerman mathematical phantom which in turn is a modification of the Medical Internal Radiation Dose (MIRD) model of a one-year-old child as presented by the Society of Nuclear Medicine. The Cristy and Eckerman mathematical phantom, and the physical phantom, are comprised of three different tissue types: bone, lung tissue and soft tissue. The bone tissue substitute is a homogenous mixture of bone tissues: active marrow, inactive marrow, trabecular bone, and cortical bone. Soft tissue organs are represented by a homogeneous soft tissue substitute at a particular location. Point doses were measured within the phantom with a Metal Oxide Semiconductor Field Effect Transistor (MOSFET)- based Patient Dose Verification System modified from the original radiotherapy application. The system features multiple dosimeters that are used to monitor entrance or exit skin doses and intracavity doses in the phantom in real-time. Two different MOSFET devices were evaluated: the typical therapy MOSFET and a developmental MOSFET device that has an oxide layer twice as thick as the therapy MOSFET thus making it of higher sensitivity. The average sensitivity (free-in-air, including backscatter) of the 'high-sensitivity' MOSFET dosimeters ranged from 1.15×105 mV per C kg-1 (29.7 mV/R) to 1.38×105 mV per C kg-1 (35.7 mV/R) depending on the energy of the x-ray field. The integrated physical phantom was utilized to obtain point measurements of the absorbed dose from diagnostic x-ray examinations. Organ doses were calculated based on these point dose measurements. The phantom dosimetry system functioned well providing real-time measurement of the dose to particular organs. The system was less reliable at low doses where the main contribution to the dose was from scattered radiation. The system also was of limited utility for determining the absorbed dose in

  10. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    PubMed Central

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  11. NADH-fluorescence scattering correction for absolute concentration determination in a liquid tissue phantom using a novel multispectral magnetic-resonance-imaging-compatible needle probe

    NASA Astrophysics Data System (ADS)

    Braun, Frank; Schalk, Robert; Heintz, Annabell; Feike, Patrick; Firmowski, Sebastian; Beuermann, Thomas; Methner, Frank-Jürgen; Kränzlin, Bettina; Gretz, Norbert; Rädle, Matthias

    2017-07-01

    In this report, a quantitative nicotinamide adenine dinucleotide hydrate (NADH) fluorescence measurement algorithm in a liquid tissue phantom using a fiber-optic needle probe is presented. To determine the absolute concentrations of NADH in this phantom, the fluorescence emission spectra at 465 nm were corrected using diffuse reflectance spectroscopy between 600 nm and 940 nm. The patented autoclavable Nitinol needle probe enables the acquisition of multispectral backscattering measurements of ultraviolet, visible, near-infrared and fluorescence spectra. As a phantom, a suspension of calcium carbonate (Calcilit) and water with physiological NADH concentrations between 0 mmol l-1 and 2.0 mmol l-1 were used to mimic human tissue. The light scattering characteristics were adjusted to match the backscattering attributes of human skin by modifying the concentration of Calcilit. To correct the scattering effects caused by the matrices of the samples, an algorithm based on the backscattered remission spectrum was employed to compensate the influence of multiscattering on the optical pathway through the dispersed phase. The monitored backscattered visible light was used to correct the fluorescence spectra and thereby to determine the true NADH concentrations at unknown Calcilit concentrations. Despite the simplicity of the presented algorithm, the root-mean-square error of prediction (RMSEP) was 0.093 mmol l-1.

  12. Homogeneous Canine Chest Phantom Construction: A Tool for Image Quality Optimization.

    PubMed

    Pavan, Ana Luiza Menegatti; Rosa, Maria Eugênia Dela; Giacomini, Guilherme; Bacchim Neto, Fernando Antonio; Yamashita, Seizo; Vulcano, Luiz Carlos; Duarte, Sergio Barbosa; Miranda, José Ricardo de Arruda; de Pina, Diana Rodrigues

    2016-01-01

    Digital radiographic imaging is increasing in veterinary practice. The use of radiation demands responsibility to maintain high image quality. Low doses are necessary because workers are requested to restrain the animal. Optimizing digital systems is necessary to avoid unnecessary exposure, causing the phenomenon known as dose creep. Homogeneous phantoms are widely used to optimize image quality and dose. We developed an automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adipose tissue, muscle tissue, and bone) in canine chest computed tomography exams. The thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and air). Dogs were separated into groups of 20 animals each according to weight. Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small, medium, large, and giant groups, respectively. The one-way analysis of variance revealed significant differences in all simulator material thicknesses (p < 0.05) quantified between groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In conclusion, the present methodology allows the development of phantoms of the canine chest and possibly other body regions and/or animals. The proposed phantom is a practical tool that may be employed in future work to optimize veterinary X-ray procedures.

  13. Homogeneous Canine Chest Phantom Construction: A Tool for Image Quality Optimization

    PubMed Central

    2016-01-01

    Digital radiographic imaging is increasing in veterinary practice. The use of radiation demands responsibility to maintain high image quality. Low doses are necessary because workers are requested to restrain the animal. Optimizing digital systems is necessary to avoid unnecessary exposure, causing the phenomenon known as dose creep. Homogeneous phantoms are widely used to optimize image quality and dose. We developed an automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adipose tissue, muscle tissue, and bone) in canine chest computed tomography exams. The thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and air). Dogs were separated into groups of 20 animals each according to weight. Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small, medium, large, and giant groups, respectively. The one-way analysis of variance revealed significant differences in all simulator material thicknesses (p < 0.05) quantified between groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In conclusion, the present methodology allows the development of phantoms of the canine chest and possibly other body regions and/or animals. The proposed phantom is a practical tool that may be employed in future work to optimize veterinary X-ray procedures. PMID:27101001

  14. Measurements of optical parameters of phantom solution and bulk animal tissues ex vivo at 650 nm

    NASA Astrophysics Data System (ADS)

    Sun, Ping; Wang, Yu; Liu, Jian

    2008-12-01

    Optical parameters of biological tissues, including absorption coefficient (μa), reduced scattering coefficient (μs') or scattering coefficient (μs), anisotropy factor (g) and refractive index (n) are investigated extensively and systemically at wavelength of 650 nm. Intralipid solution was selected to be the tissue phantom in order to test the validity of measurements. Considering the factors of fiber orientation and haemoglobin content, we chose some fresh bulk animal tissues in vitro which were bovine adipose, bovine muscle, porcine adipose, porcine muscle, porcine kidney, porcine liver, mutton and chicken breast. The basic assumption is that in vitro samples are a reasonable representation of the in vivo situation. We have gained numbers of experimental data of Intralipid and some tissues. Particularly, we have set up the close relationships among six optical parameters involving μa, μs', μs, g, n and μt. The experimental results show that for animal tissues, μa, μs' or μs and n rely deeply on muscle fiber orientations. Both of μs and μt range from 10mm-1 to 20mm-1. μa ranges from 10-2 mm-1 to 10-3 mm-1 and g from 0.95 to 0.99. The results of this study will be helpful in further understanding of optical properties of tissues.

  15. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry.

    PubMed

    Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G

    2004-12-07

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  16. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  17. Phantom Preparation and Optical Property Determination

    NASA Astrophysics Data System (ADS)

    He, Di; He, Jie; Mao, Heng

    2018-12-01

    Tissue-like optical phantoms are important in testing new imaging algorithms. Homogeneous optical phantoms with determined optical properties are the first step of making a proper heterogeneous phantom for multi-modality imaging. Typical recipes for such phantoms consist of epoxy resin, hardener, India ink and titanium oxide. By altering the concentration of India ink and titanium oxide, we are able to get multiple homogeneous phantoms with different absorption and scattering coefficients by carefully mixing all the ingredients. After fabricating the phantoms, we need to find their individual optical properties including the absorption and scattering coefficients. This is achieved by solving diffusion equation of each phantom as a homogeneous slab under canonical illumination. We solve the diffusion equation of homogeneous slab in frequency domain and get the formula for theoretical measurements. Under our steady-state diffused optical tomography (DOT) imaging system, we are able to obtain the real distribution of the incident light produced by a laser. With this source distribution we got and the formula we derived, numerical experiments show how measurements change while varying the value of absorption and scattering coefficients. Then we notice that the measurements alone will not be enough for us to get unique optical properties for steady-state DOT problem. Thus in order to determine the optical properties of a homogeneous slab we want to fix one of the coefficients first and use optimization methods to find another one. Then by assemble multiple homogeneous slab phantoms with different optical properties, we are able to obtain a heterogeneous phantom suitable for testing multi-modality imaging algorithms. In this paper, we describe how to make phantoms, derive a formula to solve the diffusion equation, demonstrate the non-uniqueness of steady-state DOT problem by analysing some numerical results of our formula, and finally propose a possible way to determine

  18. [Development of a digital chest phantom for studies on energy subtraction techniques].

    PubMed

    Hayashi, Norio; Taniguchi, Anna; Noto, Kimiya; Shimosegawa, Masayuki; Ogura, Toshihiro; Doi, Kunio

    2014-03-01

    Digital chest phantoms continue to play a significant role in optimizing imaging parameters for chest X-ray examinations. The purpose of this study was to develop a digital chest phantom for studies on energy subtraction techniques under ideal conditions without image noise. Computed tomography (CT) images from the LIDC (Lung Image Database Consortium) were employed to develop a digital chest phantom. The method consisted of the following four steps: 1) segmentation of the lung and bone regions on CT images; 2) creation of simulated nodules; 3) transformation to attenuation coefficient maps from the segmented images; and 4) projection from attenuation coefficient maps. To evaluate the usefulness of digital chest phantoms, we determined the contrast of the simulated nodules in projection images of the digital chest phantom using high and low X-ray energies, soft tissue images obtained by energy subtraction, and "gold standard" images of the soft tissues. Using our method, the lung and bone regions were segmented on the original CT images. The contrast of simulated nodules in soft tissue images obtained by energy subtraction closely matched that obtained using the gold standard images. We thus conclude that it is possible to carry out simulation studies based on energy subtraction techniques using the created digital chest phantoms. Our method is potentially useful for performing simulation studies for optimizing the imaging parameters in chest X-ray examinations.

  19. Image guided constitutive modeling of the silicone brain phantom

    NASA Astrophysics Data System (ADS)

    Puzrin, Alexander; Skrinjar, Oskar; Ozan, Cem; Kim, Sihyun; Mukundan, Srinivasan

    2005-04-01

    The goal of this work is to develop reliable constitutive models of the mechanical behavior of the in-vivo human brain tissue for applications in neurosurgery. We propose to define the mechanical properties of the brain tissue in-vivo, by taking the global MR or CT images of a brain response to ventriculostomy - the relief of the elevated intracranial pressure. 3D image analysis translates these images into displacement fields, which by using inverse analysis allow for the constitutive models of the brain tissue to be developed. We term this approach Image Guided Constitutive Modeling (IGCM). The presented paper demonstrates performance of the IGCM in the controlled environment: on the silicone brain phantoms closely simulating the in-vivo brain geometry, mechanical properties and boundary conditions. The phantom of the left hemisphere of human brain was cast using silicon gel. An inflatable rubber membrane was placed inside the phantom to model the lateral ventricle. The experiments were carried out in a specially designed setup in a CT scanner with submillimeter isotropic voxels. The non-communicative hydrocephalus and ventriculostomy were simulated by consequently inflating and deflating the internal rubber membrane. The obtained images were analyzed to derive displacement fields, meshed, and incorporated into ABAQUS. The subsequent Inverse Finite Element Analysis (based on Levenberg-Marquardt algorithm) allowed for optimization of the parameters of the Mooney-Rivlin non-linear elastic model for the phantom material. The calculated mechanical properties were consistent with those obtained from the element tests, providing justification for the future application of the IGCM to in-vivo brain tissue.

  20. Multimodal, 3D pathology-mimicking bladder phantom for evaluation of cystoscopic technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Optical coherence tomography (OCT) and blue light cystoscopy (BLC) have shown significant potential as complementary technologies to traditional white light cystoscopy (WLC) for early bladder cancer detection. Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing new technology designs, the diagnostic potential of systems, and novel image processing algorithms prior to validation in real tissue. Importantly, the phantom should mimic features of healthy and diseased tissue as they appear under WLC, BLC, and OCT, which are sensitive to tissue color and structure, fluorescent contrast, and optical scattering of subsurface layers, respectively. We present a phantom posing the hollow shape of the bladder and fabricated using a combination of 3D-printing and spray-coating with Dragon Skin (DS) (Smooth-On Inc.), a highly elastic polymer to mimic the layered structure of the bladder. Optical scattering of DS was tuned by addition of titanium dioxide, resulting in scattering coefficients sufficient to cover the human bladder range (0.49 to 2.0 mm^-1). Mucosal vasculature and tissue coloration were mimicked with elastic cord and red dye, respectively. Urethral access was provided through a small hole excised from the base of the phantom. Inserted features of bladder pathology included altered tissue color (WLC), fluorescence emission (BLC), and variations in layered structure (OCT). The phantom surface and underlying material were assessed on the basis of elasticity, optical scattering, layer thicknesses, and qualitative image appearance. WLC, BLC, and OCT images of normal and cancerous features in the phantom qualitatively matched corresponding images from human bladders.

  1. Cerebral NIRS performance testing with molded and 3D-printed phantoms (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Huang, Stanley; Chen, Yu; Welle, Cristin G.; Pfefer, T. Joshua

    2017-03-01

    Near-infrared spectroscopy (NIRS) has emerged as a low-cost, portable approach for rapid, point-of-care detection of hematomas caused by traumatic brain injury. As a new technology, there is a need to develop standardized test methods for objective, quantitative performance evaluation of these devices. Towards this goal, we have developed and studied two types of phantom-based testing approaches. The first involves 3D-printed phantoms incorporating hemoglobin-filled inclusions. Phantom layers representing specific cerebral tissues were printed using photopolymers doped with varying levels of titanium oxide and black resin. The accuracy, precision and spectral dependence of printed phantom optical properties were validated using spectrophotometry. The phantom also includes a hematoma inclusion insert which was filled with a hemoglobin solution. Oxygen saturation levels were modified by adding sodium dithionite at calibrated concentrations. The second phantom approach involves molded silicone layers with a superficial region - simulating the scalp and skull - comprised of removable layers to vary hematoma size and depth, and a bottom layer representing brain matter. These phantoms were tested with both a commercial hematoma detector and a custom NIRS system to optimize their designs and validate their utility in performing inter-device comparisons. The effects of hematoma depth, diameter, and height, as well as tissue optical properties and biological variables including hemoglobin saturation level and scalp/skull thickness were studied. Results demonstrate the ability to quantitatively compare NIRS device performance and indicate the promise of using 3D printing to achieve phantoms with realistic variations in tissue optical properties for evaluating biophotonic device performance.

  2. Study of Tissue Phantoms, Tissues, and Contrast Agent with the Biophotoacoustic Radar and Comparison to Ultrasound Imaging for Deep Subsurface Imaging

    NASA Astrophysics Data System (ADS)

    Alwi, R.; Telenkov, S.; Mandelis, A.; Gu, F.

    2012-11-01

    In this study, the imaging capability of our wide-spectrum frequency-domain photoacoustic (FD-PA) imaging alias "photoacoustic radar" methodology for imaging of soft tissues is explored. A practical application of the mathematical correlation processing method with relatively long (1 ms) frequency-modulated optical excitation is demonstrated for reconstruction of the spatial location of the PA sources. Image comparison with ultrasound (US) modality was investigated to see the complementarity between the two techniques. The obtained results with a phased array probe on tissue phantoms and their comparison to US images demonstrated that the FD-PA technique has strong potential for deep subsurface imaging with excellent contrast and high signal-to-noise ratio. FD-PA images of blood vessels in a human wrist and an in vivo subcutaneous tumor in a rat model are presented. As in other imaging modalities, the employment of contrast agents is desirable to improve the capability of medical diagnostics. Therefore, this study also evaluated and characterized the use of Food and Drug Administration (FDA)-approved superparamagnetic iron oxide nanoparticles (SPION) as PA contrast agents.

  3. Computation of Calcium Score with Dual Energy CT: A Phantom Study

    PubMed Central

    Kumar, Vidhya; Min, James K.; He, Xin; Raman, Subha V.

    2016-01-01

    Dual energy computed tomography (DECT) improves material and tissue characterization compared to single energy CT (SECT); we sought to validate coronary calcium quantification in advancing cardiovascular DECT. In an anthropomorphic phantom, agreement between measurements was excellent, and Bland-Altman analysis demonstrated minimal bias. Compared to the known calcium mass for each phantom, calcium mass by DECT was highly accurate. Noncontrast DECT yields accurate calcium measures, and warrants consideration in cardiac protocols for additional tissue characterizations. PMID:27680414

  4. An Eye Model for Computational Dosimetry Using A Multi-Scale Voxel Phantom

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-06-01

    The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  5. Characterization of tissue-simulating phantom materials for ultrasound-guided needle procedures

    NASA Astrophysics Data System (ADS)

    Buchanan, Susan; Moore, John; Lammers, Deanna; Baxter, John; Peters, Terry

    2012-02-01

    Needle biopsies are standard protocols that are commonly performed under ultrasound (US) guidance or computed tomography (CT)1. Vascular access such as central line insertions, and many spinal needle therapies also rely on US guidance. Phantoms for these procedures are crucial as both training tools for clinicians and research tools for developing new guidance systems. Realistic imaging properties and material longevity are critical qualities for needle guidance phantoms. However, current commercially available phantoms for use with US guidance have many limitations, the most detrimental of which include harsh needle tracks obfuscating US images and a membrane comparable to human skin that does not allow seepage of inner media. To overcome these difficulties, we tested a variety of readily available media and membranes to evaluate optimal materials to fit our current needs. It was concluded that liquid hand soap was the best medium, as it instantly left no needle tracks, had an acceptable depth of US penetration and portrayed realistic imaging conditions, while because of its low leakage, low cost, acceptable durability and transparency, the optimal membrane was 10 gauge vinyl.

  6. A biological phantom for evaluation of CT image reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.

    2014-03-01

    In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.

  7. Mechanical property assessment of tissue-mimicking phantoms using remote palpation and optical read-out for amplitude of vibration and refractive index modulation.

    PubMed

    Usha Devi, C; Bharat Chandran, R S; Vasu, R Mohan; Sood, Ajay K

    2007-01-01

    A coherent light beam is used to interrogate the focal region within a tissue-mimicking phantom insonified by an ultrasound transducer. The ultrasound-tagged photons exiting from the object carry with them information on local optical path length fluctuations caused by refractive index variations and medium vibration. Through estimation of the force distribution in the focal region of the ultrasound transducer, and solving the forward elastography problem for amplitude of vibration of tissue particles, we observe that the amplitude is directed along the axis of the transducer. It is shown that the focal region interrogated by photons launched along the transducer axis carries phase fluctuations owing to both refractive index variations and particle vibration, whereas the photons launched perpendicular to the transducer axis carry phase fluctuations arising mainly from the refractive index variations, with only smaller contribution from vibration of particles. Monte-Carlo simulations and experiments done on tissue-mimicking phantoms prove that as the storage modulus of the phantom is increased, the detected modulation depth in autocorrelation is reduced, significantly for axial photons and only marginally for the transverse-directed photons. It is observed that the depth of modulation is reduced to a significantly lower and constant value as the storage modulus of the medium is increased. This constant value is found to be the same for both axial and transverse optical interrogation. This proves that the residual modulation depth is owing to refractive index fluctuations alone, which can be subtracted from the overall measured modulation depth, paving the way for a possible quantitative reconstruction of storage modulus. Moreover, since the transverse-directed photons are not significantly affected by storage modulus variations, for a quantitatively accurate read-out of absorption coefficient variation, the interrogating light should be perpendicular to the focusing

  8. Stable phantom materials for ultrasound and optical imaging.

    PubMed

    Cabrelli, Luciana C; Pelissari, Pedro I B G B; Deana, Alessandro M; Carneiro, Antonio A O; Pavan, Theo Z

    2017-01-21

    Phantoms mimicking the specific properties of biological tissues are essential to fully characterize medical devices. Water-based materials are commonly used to manufacture phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages, such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue-mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. A styrene-ethylene/butylene-styrene (SEBS) copolymer in mineral oil samples was made varying the SEBS concentration between 5%-15%, and low-density polyethylene (LDPE) between 0%-9%. Acoustic properties, such as the speed of sound and the attenuation coefficient, were obtained using frequencies ranging from 1-10 MHz, and were consistent with that of soft tissues. These properties were controlled varying SEBS and LDPE concentration. To characterize the optical properties of the samples, the diffuse reflectance and transmittance were measured. Scattering and absorption coefficients ranging from 400 nm-1200 nm were calculated for each compound. SEBS gels are a translucent material presenting low optical absorption and scattering coefficients in the visible region of the spectrum, but the presence of LDPE increased the turbidity. Adding LDPE increased the absorption and scattering of the phantom materials. Ultrasound and photoacoustic images of a heterogeneous phantom made of LDPE/SEBS containing a spherical inclusion were obtained. Annatto dye was added to the inclusion to enhance the optical absorbance. The results suggest that copolymer gels are promising for ultrasound and optical imaging, making them also potentially useful for photoacoustic imaging.

  9. Stable phantom materials for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo Z.

    2017-01-01

    Phantoms mimicking the specific properties of biological tissues are essential to fully characterize medical devices. Water-based materials are commonly used to manufacture phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages, such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue-mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. A styrene-ethylene/butylene-styrene (SEBS) copolymer in mineral oil samples was made varying the SEBS concentration between 5%-15%, and low-density polyethylene (LDPE) between 0%-9%. Acoustic properties, such as the speed of sound and the attenuation coefficient, were obtained using frequencies ranging from 1-10 MHz, and were consistent with that of soft tissues. These properties were controlled varying SEBS and LDPE concentration. To characterize the optical properties of the samples, the diffuse reflectance and transmittance were measured. Scattering and absorption coefficients ranging from 400 nm-1200 nm were calculated for each compound. SEBS gels are a translucent material presenting low optical absorption and scattering coefficients in the visible region of the spectrum, but the presence of LDPE increased the turbidity. Adding LDPE increased the absorption and scattering of the phantom materials. Ultrasound and photoacoustic images of a heterogeneous phantom made of LDPE/SEBS containing a spherical inclusion were obtained. Annatto dye was added to the inclusion to enhance the optical absorbance. The results suggest that copolymer gels are promising for ultrasound and optical imaging, making them also potentially useful for photoacoustic imaging.

  10. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  11. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications

    NASA Astrophysics Data System (ADS)

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-01

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus Hp(3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  12. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications.

    PubMed

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-21

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus H p (3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  13. Adjustable fetal phantom for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Stubán, Norbert; Niwayama, Masatsugu

    2009-05-01

    As the measuring head of a fetal pulse oximeter must be attached to the head of the fetus inside the mother's uterus during labor, testing, and developing of fetal pulse oximeters in real environment have several difficulties. A fetal phantom could enable evaluation of pulse oximeters in a simulated environment without the restrictions and difficultness of medical experiments in the labor room. Based on anatomic data we developed an adjustable fetal head phantom with three different tissue layers and artificial arteries. The phantom consisted of two arteries with an inner diameter of 0.2 and 0.4 mm. An electronically controlled pump produced pulse waves in the arteries. With the phantom we investigated the sensitivity of a custom-designed wireless pulse oximeter at different pulsation intensity and artery diameters. The results showed that the oximeter was capable of identifying 4% and 2% changes in diameter between the diastolic and systolic point in arteries of over 0.2 and 0.4 mm inner diameter, respectively. As the structure of the phantom is based on reported anatomic values, the results predict that the investigated custom-designed wireless pulse oximeter has sufficient sensitivity to detect the pulse waves and to calculate the R rate on the fetal head.

  14. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms

    PubMed Central

    Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Chen, Qingshan; An, Kai-Nan; Greenleaf, James F.

    2011-01-01

    Tissue mechanical properties such as elasticity are linked to tissue pathology state. Several groups have proposed shear wave propagation speed to quantify tissue mechanical properties. It is well known that biological tissues are viscoelastic materials; therefore velocity dispersion resulting from material viscoelasticity is expected. A method called Shearwave Dispersion Ultrasound Vibrometry (SDUV) can be used to quantify tissue viscoelasticity by measuring dispersion of shear wave propagation speed. However, there is not a gold standard method for validation. In this study we present an independent validation method of shear elastic modulus estimation by SDUV in 3 gelatin phantoms of differing stiffness. In addition, the indentation measurements are compared to estimates of elasticity derived from shear wave group velocities. The shear elastic moduli from indentation were 1.16, 3.40 and 5.6 kPa for a 7, 10 and 15% gelatin phantom respectively. SDUV measurements were 1.61, 3.57 and 5.37 kPa for the gelatin phantoms respectively. Shear elastic moduli derived from shear wave group velocities were 1.78, 5.2 and 7.18 kPa for the gelatin phantoms respectively. The shear elastic modulus estimated from the SDUV, matched the elastic modulus measured by indentation. On the other hand, shear elastic modulus estimated by group velocity did not agree with indentation test estimations. These results suggest that shear elastic modulus estimation by group velocity will be bias when the medium being investigated is dispersive. Therefore a rheological model should be used in order to estimate mechanical properties of viscoelastic materials. PMID:21317078

  15. Three-dimensional printed ultrasound and photoacoustic training phantoms for vasculature access (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nikitichev, Daniil I.; Xia, Wenfeng; West, Simeon J.; Desjardins, Adrien E.; Ourselin, Sebastien; Vercauteren, Tom

    2017-03-01

    Ultrasound (US) imaging is widely used to guide vascular access procedures such as arterial and venous cannulation. As needle visualisation with US imaging can be very challenging, it is easy to misplace the needle in the patient and it can be life threating. Photoacoustic (PA) imaging is well suited to image medical needles and catheters that are commonly used for vascular access. To improve the success rate, a certain level of proficiency is required that can be gained through extensive practice on phantoms. Unfortunately, commercial training phantoms are expensive and custom-made phantoms usually do not replicate the anatomy very well. Thus, there is a great demand for more realistic and affordable ultrasound and photoacoustic imaging phantoms for vasculature access procedures training. Three-dimensional (3D) printing can help create models that replicate complex anatomical geometries. However, the available 3D printed materials do not possess realistic tissue properties. Alternatively, tissue-mimicking materials can be employed using casting and 3D printed moulds but this approach is limited to the creation of realistic outer shapes with no replication of complex internal structures. In this study, we developed a realistic vasculature access phantom using a combination of mineral oil based materials as background tissue and a non-toxic, water dissolvable filament material to create complex vascular structure using 3D printing. US and PA images of the phantoms comprising the complex vasculature network were acquired. The results show that 3D printing can facilitate the fabrication of anatomically realistic training phantoms, with designs that can be customized and shared electronically.

  16. Fabrication and characterization of biotissue-mimicking phantoms in the THz frequency range

    NASA Astrophysics Data System (ADS)

    Liakhov, E.; Smolyanskaya, O.; Popov, A.; Odlyanitskiy, E.; Balbekin, N.; Khodzitsky, M.

    2016-08-01

    The study revealed the most promising candidates for phantoms mimicking different biological tissues in the terahertz frequency range. Closest to biological tissues in terms of the refractive index appeared to be gelatin-based gels; in terms of the absorption coefficient they were agar-based gels. Gelatin is more stable in time, but requires special storage conditions to limit water evaporation. The dense structure of the agar-based phantom allows its use without mold and risk of damage. However, agar is a nutrient medium for bacteria and its parameters degrade even when the phantom form and water content are retained. Use of liquid suspensions of lecithin and milk powder are found to be extremely limited.

  17. Comparison of the ANSI, RSD, KKH, and BRMD thyroid-neck phantoms for 125I thyroid monitoring.

    PubMed

    Kramer, G H; Olender, G; Vlahovich, S; Hauck, B M; Meyerhof, D P

    1996-03-01

    The Human Monitoring Laboratory, which acts as the Canadian National Calibration Reference Centre for In Vivo Monitoring, has determined the performance characteristics of four thyroid phantoms for 125I thyroid monitoring. The phantoms were a phantom built to the specifications of the American National Standards Institute Standard N44.3; the phantom available from Radiology Support Devices; the phantom available from Kyoto Kagaku Hyohon; the phantom manufactured by the Human Monitoring Laboratory and known as the BRMD phantom. The counting efficiencies of the phantoms for 125I were measured at different phantom-to-detector distances. The anthropomorphic characteristics of the phantoms have been compared with the average man parameters. It was concluded that the BRMD, American National Standards Institute, and Radiology Support Devices phantoms have the same performance characteristics when the neck-to-detector distances are greater than 12 cm and all phantoms are essentially equivalent at 30 cm or more. The Kyoto Kagaku Hyohon phantom showed lower counting efficiencies at phantom-to-detector distances less than 30 cm. This was attributed to the design of the phantom. This study has also shown that the phantom need not be highly anthropomorphic provided the calibration is not performed at short neck-detector distances. Indeed, it might be possible to use t simple point source of 125I placed behind a 1.5 cm block of lucite at neck detector distances of 12 cm or more.

  18. Characterization of a phantom setup for breast conserving cancer surgery

    NASA Astrophysics Data System (ADS)

    Chadwell, Jacob T.; Conley, Rebekah H.; Collins, Jarrod A.; Meszoely, Ingrid M.; Miga, Michael I.

    2016-03-01

    The purpose of this work is to develop an anatomically and mechanically representative breast phantom for the validation of breast conserving surgical therapies, specifically, in this case, image guided surgeries. Using three patients scheduled for lumpectomy and four healthy volunteers in mock surgical presentations, the magnitude, direction, and location of breast deformations was analyzed. A phantom setup was then designed to approximate such deformations in a mock surgical environment. Specifically, commercially available and custom-built polyvinyl alcohol (PVA) phantoms were used to mimic breast tissue during surgery. A custom designed deformation apparatus was then created to reproduce deformations seen in typical clinical setups of the pre- and intra-operative breast geometry. Quantitative analysis of the human subjects yielded a positive correlation between breast volume and amount of breast deformation. Phantom results reflected similar behavior with the custom-built PVA phantom outperforming the commercial phantom.

  19. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    NASA Astrophysics Data System (ADS)

    Dang, Jun; Frisch, Benjamin; Lasaygues, Philippe; Zhang, Dachun; Tavernier, Stefaan; Felix, Nicolas; Lecoq, Paul; Auffray, Etiennette; Varela, Joao; Mensah, Serge; Wan, Mingxi

    2011-06-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED).

  20. High-resolution, anthropomorphic, computational breast phantom: fusion of rule-based structures with patient-based anatomy

    NASA Astrophysics Data System (ADS)

    Chen, Xinyuan; Gong, Xiaolin; Graff, Christian G.; Santana, Maira; Sturgeon, Gregory M.; Sauer, Thomas J.; Zeng, Rongping; Glick, Stephen J.; Lo, Joseph Y.

    2017-03-01

    While patient-based breast phantoms are realistic, they are limited by low resolution due to the image acquisition and segmentation process. The purpose of this study is to restore the high frequency components for the patient-based phantoms by adding power law noise (PLN) and breast structures generated based on mathematical models. First, 3D radial symmetric PLN with β=3 was added at the boundary between adipose and glandular tissue to connect broken tissue and create a high frequency contour of the glandular tissue. Next, selected high-frequency features from the FDA rule-based computational phantom (Cooper's ligaments, ductal network, and blood vessels) were fused into the phantom. The effects of enhancement in this study were demonstrated by 2D mammography projections and digital breast tomosynthesis (DBT) reconstruction volumes. The addition of PLN and rule-based models leads to a continuous decrease in β. The new β is 2.76, which is similar to what typically found for reconstructed DBT volumes. The new combined breast phantoms retain the realism from segmentation and gain higher resolution after restoration.

  1. SU-F-I-01: Normalized Mean Glandular Dose Values for Dedicated Breast CT Using Realistic Breast-Shaped Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, A; Boone, J

    Purpose: To estimate normalized mean glandular dose values for dedicated breast CT (DgN-CT) using breast CT-derived phantoms and compare to estimations using cylindrical phantoms. Methods: Segmented breast CT (bCT) volume data sets (N=219) were used to measure effective diameter profiles and were grouped into quintiles by volume. The profiles were averaged within each quintile to represent the range of breast sizes found clinically. These profiles were then used to generate five voxelized computational phantoms (V1, V2, V3, V4, V5 for the small to large phantom sizes, respectively), and loaded into the MCNP6 lattice geometry to simulate normalized mean glandular dosemore » coefficients (DgN-CT) using the system specifications of the Doheny-prototype bCT scanner in our laboratory. The DgN-CT coefficients derived from the bCT-derived breast-shaped phantoms were compared to those generated using a simpler cylindrical phantom using a constant volume, and the following constraints: (1) Length=1.5*radius; (2) radius determined at chest wall (Rcw), and (3) radius determined at the phantom center-of-mass (Rcm). Results: The change in Dg-NCT coefficients averaged across all phantom sizes, was - 0.5%, 19.8%, and 1.3%, for constraints 1–3, respectively. This suggests that the cylindrical assumption is a good approximation if the radius is taken at the breast center-of-mass, but using the radius at the chest wall results in an underestimation of the glandular dose. Conclusion: The DgN-CT coefficients for bCT-derived phantoms were compared against the assumption of a cylindrical phantom and proved to be essentially equivalent when the cylinder radius was set to r=1.5/L or Rcm. While this suggests that for dosimetry applications a patient’s breast can be approximated as a cylinder (if the correct radius is applied), this assumes a homogenous composition of breast tissue and the results may be different if the realistic heterogeneous distribution of glandular tissue is

  2. SU-F-I-14: 3D Breast Digital Phantom for XACT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, S; Laaroussi, R; Chen, J

    Purpose: The X-ray induced acoustic computed tomography (XACT) is a new imaging modality which combines X-ray contrast and high ultrasonic resolution in a single modality. Using XACT in breast imaging, a 3D breast volume can be imaged by only one pulsed X-ray radiation, which could dramatically reduce the imaging dose for patients undergoing breast cancer screening and diagnosis. A 3D digital phantom that contains both X-ray properties and acoustic properties of different tissue types is indeed needed for developing and optimizing the XACT system. The purpose of this study is to offer a realistic breast digital phantom as a valuablemore » tool for improving breast XACT imaging techniques and potentially leading to better diagnostic outcomes. Methods: A series of breast CT images along the coronal plane from a patient who has breast calcifications are used as the source images. A HU value based segmentation algorithm is employed to identify breast tissues in five categories, namely the skin tissue, fat tissue, glandular tissue, chest bone and calcifications. For each pixel, the dose related parameters, such as material components and density, and acoustic related parameters, such as frequency-dependent acoustic attenuation coefficient and bandwidth, are assigned based on tissue types. Meanwhile, other parameters which are used in sound propagation, including the sound speed, thermal expansion coefficient, and heat capacity are also assigned to each tissue. Results: A series of 2D tissue type image is acquired first and the 3D digital breast phantom is obtained by using commercial 3D reconstruction software. When giving specific settings including dose depositions and ultrasound center frequency, the X-ray induced initial pressure rise can be calculated accordingly. Conclusion: The proposed 3D breast digital phantom represents a realistic breast anatomic structure and provides a valuable tool for developing and evaluating the system performance for XACT.« less

  3. A Dosimetric Study on Slab-pinewood-slab Phantom for Developing the Heterogeneous Chest Phantom Mimicking Actual Human Chest

    PubMed Central

    Gurjar, Om Prakash; Paliwal, Radha Kishan; Mishra, Surendra Prasad

    2017-01-01

    The aim is to study the density, isodose depths, and doses at different points in slab-pinewood-slab (SPS) phantom, solid phantom SP34 (made up of polystyrene), and chest level of actual patient for developing heterogeneous chest phantom mimicking thoracic region of human body. A 6 MV photon beam of field size of 10 cm × 10 cm was directed perpendicular to the surface of computed tomography (CT) images of chest level of patient, SPS phantom, and SP34 phantom. Dose was calculated using anisotropic analytical algorithm. Hounsfield units were used to calculate the density of each medium. Isodose depths in all the three sets of CT images were measured. Variations between planned doses on treatment planning system (TPS) and measured on linear accelerator (LA) were calculated for three points, namely, near slab–pinewood interfaces (6 and 18 cm depths) and 10 cm depth in SPS phantom and at the same depths in SP34 phantom. Density of pinewood, SP34 slabs, chest wall, lung, and soft tissue behind lung was measured as 0.329 ± 0.08, 0.999 ± 0.02, 0.898 ± 0.02, 0.291 ± 0.12, and 1.002 ± 0.03 g/cc, respectively. Depths of 100% and 90% isodose curves in all the three sets of CT images were found to be similar. Depths of 80%, 70%, 60%, 50%, and 40% isodose lines in SPS phantom images were found to be equivalent to that in chest images, while it was least in SP34 phantom images. Variations in doses calculated at 6, 10, and 18 cm depths on TPS and measured on LA were found to be 0.36%, 1.65%, and 2.23%, respectively, in case of SPS phantom, while 0.24%, 0.90%, and 0.93%, respectively, in case of SP34 slab phantom. SPS phantom seemed equivalent to the chest level of human body. Dosimetric results of this study indicate that patient-specific quality assurance can be done using chest phantom mimicking thoracic region of human body, which has been fabricated using polystyrene and pinewood. PMID:28706353

  4. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  5. Model of optical phantoms thermal response upon irradiation with 975 nm dermatological laser

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Bashkatov, A. N.; Yakunin, A. N.; Avetisyan, Yu. A.; Genina, E. A.; Galla, S.; Sekowska, A.; Truchanowicz, D.; Cenian, A.; Jedrzejewska-Szczerska, M.; Tuchin, V. V.

    2018-04-01

    We have developed a numerical model describing the optical and thermal behavior of optical tissue phantoms upon laser irradiation. According to our previous studies, the phantoms can be used as substitute of real skin from the optical, as well as thermal point of view. However, the thermal parameters are not entirely similar to those of real tissues thus there is a need to develop mathematical model, describing the thermal and optical response of such materials. This will facilitate the correction factors, which would be invaluable in translation between measurements on skin phantom to real tissues, and gave a good representation of a real case application. Here, we present the model dependent on the data of our optical phantoms fabricated and measured in our previous preliminary study. The ambiguity between the modeling and the thermal measurements depend on lack of accurate knowledge of material's thermal properties and some exact parameters of the laser beam. Those parameters were varied in the simulation, to provide an overview of possible parameters' ranges and the magnitude of thermal response.

  6. The UF family of reference hybrid phantoms for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  7. Contrast-enhanced near-infrared laser mammography with a prototype breast scanner: feasibility study with tissue phantoms and preliminary results of imaging experimental tumors.

    PubMed

    Boehm, T; Hochmuth, A; Malich, A; Reichenbach, J R; Fleck, M; Kaiser, W A

    2001-10-01

    Near-infrared (NIR) optical mammography without contrast has a low specificity. The application of optical contrast medium may improve the performance. The concentration-dependent detectability of a new NIR contrast medium was determined with a prototype optical breast scanner. In vivo imaging of experimental tumors was performed. The NIR contrast agent NIR96010 is a newly synthesized, hydrophilic contrast agent for NIR mammography. A concentration-dependent contrast resolution was determined for tissue phantoms consisting of whole milk powder and gelatin. A central part of the phantoms measuring 2 x 2 cm2 without contrast was replaced with phantom material containing 1 micromol/L to 25 nmol/L NIR96010. The composite phantoms were measured with a prototype NIR breast scanner with lasers of lambda1 = 785 nm and lambda2 = 850 nm wavelength. Intensity profiles and standard deviations of the transmission signal in areas with and without contrast were determined by linear fit procedures. Signal-to-noise ratios and spatial resolution as a function of contrast concentration were determined. Near-infrared imaging of five tumor-bearing SCID mice (MX1 breast adenocarcinoma, tumor diameter 5-10 mm) was performed before and after intravenous application of 2 micromol/kg NIR96010. Spectrometry showed an absorption maximum of the contrast agent at 755 nm. No spectral shifts occurred in protein-containing solution. Signal-to-noise ratio in the transmission intensity profiles ranged from 1.1 at 25 nmol/L contrast to 28 at 1 micromol/L. At concentrations <40 nmol/L, no differentiation from the background was possible. The transitional area between the contrast-free edge of the phantom and the central contrast-containing part appeared in the profiles as a steep increase with a width of 4.2 +/- 1.8 mm. The experimental tumors were detectable in nonenhanced images as well as contrast-enhanced images, with better delineation after contrast administration. In postcontrast absorption

  8. A methodology to develop computational phantoms with adjustable posture for WBC calibration.

    PubMed

    Fonseca, T C Ferreira; Bogaerts, R; Hunt, John; Vanhavere, F

    2014-11-21

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  9. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    NASA Astrophysics Data System (ADS)

    Ferreira Fonseca, T. C.; Bogaerts, R.; Hunt, John; Vanhavere, F.

    2014-11-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  10. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Zhou, Weimin; Matthews, Thomas P.; Appleton, Catherine M.; Anastasio, Mark A.

    2017-04-01

    Photoacoustic computed tomography (PACT) and ultrasound computed tomography (USCT) are emerging modalities for breast imaging. As in all emerging imaging technologies, computer-simulation studies play a critically important role in developing and optimizing the designs of hardware and image reconstruction methods for PACT and USCT. Using computer-simulations, the parameters of an imaging system can be systematically and comprehensively explored in a way that is generally not possible through experimentation. When conducting such studies, numerical phantoms are employed to represent the physical properties of the patient or object to-be-imaged that influence the measured image data. It is highly desirable to utilize numerical phantoms that are realistic, especially when task-based measures of image quality are to be utilized to guide system design. However, most reported computer-simulation studies of PACT and USCT breast imaging employ simple numerical phantoms that oversimplify the complex anatomical structures in the human female breast. We develop and implement a methodology for generating anatomically realistic numerical breast phantoms from clinical contrast-enhanced magnetic resonance imaging data. The phantoms will depict vascular structures and the volumetric distribution of different tissue types in the breast. By assigning optical and acoustic parameters to different tissue structures, both optical and acoustic breast phantoms will be established for use in PACT and USCT studies.

  11. A new, open-source, multi-modality digital breast phantom

    NASA Astrophysics Data System (ADS)

    Graff, Christian G.

    2016-03-01

    An anthropomorphic digital breast phantom has been developed with the goal of generating random voxelized breast models that capture the anatomic variability observed in vivo. This is a new phantom and is not based on existing digital breast phantoms or segmentation of patient images. It has been designed at the outset to be modality agnostic (i.e., suitable for use in modeling x-ray based imaging systems, magnetic resonance imaging, and potentially other imaging systems) and open source so that users may freely modify the phantom to suit a particular study. In this work we describe the modeling techniques that have been developed, the capabilities and novel features of this phantom, and study simulated images produced from it. Starting from a base quadric, a series of deformations are performed to create a breast with a particular volume and shape. Initial glandular compartments are generated using a Voronoi technique and a ductal tree structure with terminal duct lobular units is grown from the nipple into each compartment. An additional step involving the creation of fat and glandular lobules using a Perlin noise function is performed to create more realistic glandular/fat tissue interfaces and generate a Cooper's ligament network. A vascular tree is grown from the chest muscle into the breast tissue. Breast compression is performed using a neo-Hookean elasticity model. We show simulated mammographic and T1-weighted MRI images and study properties of these images.

  12. A comparison of methods to evaluate gray scale response of tomosynthesis systems using a software breast phantom

    NASA Astrophysics Data System (ADS)

    Sousa, Maria A. Z.; Bakic, Predrag R.; Schiabel, Homero; Maidment, Andrew D. A.

    2017-03-01

    Digital breast tomosynthesis (DBT) has been shown to be an effective imaging tool for breast cancer diagnosis as it provides three-dimensional images of the breast with minimal tissue overlap. The quality of the reconstructed image depends on many factors that can be assessed using uniform or realistic phantoms. In this paper, we created four models of phantoms using an anthropomorphic software breast phantom and compared four methods to evaluate the gray scale response in terms of the contrast, noise and detectability of adipose and glandular tissues binarized according to phantom ground truth. For each method, circular regions of interest (ROIs) were selected with various sizes, quantity and positions inside a square area in the phantom. We also estimated the percent density of the simulated breast and the capability of distinguishing both tissues by receiver operating characteristic (ROC) analysis. Results shows a sensitivity of the methods to the ROI size, placement and to the slices considered.

  13. A physical breast phantom for 2D and 3D x-ray imaging made through inkjet printing

    NASA Astrophysics Data System (ADS)

    Ikejimba, Lynda C.; Graff, Christian G.; Rosenthal, Shani; Badal, Andreu; Ghammraoui, Bahaa; Lo, Joseph Y.; Glick, Stephen J.

    2017-03-01

    Physical breast phantoms are used for imaging evaluation studies with 2D and 3D breast x-ray systems, serving as surrogates for human patients. However, there is a presently a limited selection of available phantoms that are realistic, in terms of containing the complex tissue architecture of the human breast. In addition, not all phantoms can be successfully utilized for both 2D and 3D breast imaging. Additionally, many of the phantoms are uniform or unrealistic in appearance, expensive, or difficult to obtain. The purpose of this work was to develop a new method to generate realistic physical breast phantoms using easy to obtain and inexpensive materials. First, analytical modeling was used to design a virtual model, which was then compressed using finite element modeling. Next, the physical phantom was realized through inkjet printing with a standard inkjet printer using parchment paper and specialized inks, formulated using silver nanoparticles and a bismuth salt. The printed phantom sheets were then aligned and held together using a custom designed support plate made of PMMA, and imaged on clinical FFDM and DBT systems. Objects of interest were also placed within the phantom to simulate microcalcifications, pathologies that often occur in the breast. The linear attenuation coefficients of the inks and parchment were compared against tissue equivalent samples and found to be similar to breast tissue. The phantom is promising for use in imaging studies and developing QC protocols.

  14. Comprehensive quality assurance phantom for cardiovascular imaging systems

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Jan P.

    1998-07-01

    With the advent of high heat loading capacity x-ray tubes, high frequency inverter type generators, and the use of spectral shaping filters, the automatic brightness/exposure control (ABC) circuit logic employed in the new generation of angiographic imaging equipment has been significantly reprogrammed. These new angiographic imaging systems are designed to take advantage of the power train capabilities to yield higher contrast images while maintaining, or lower, the patient exposure. Since the emphasis of the imaging system design has been significantly altered, the system performance parameters one is interested and the phantoms employed for the quality assurance must also change in order to properly evaluate the imaging capability of the cardiovascular imaging systems. A quality assurance (QA) phantom has been under development in this institution and was submitted to various interested organizations such as American Association of Physicists in Medicine (AAPM), Society for Cardiac Angiography & Interventions (SCA&I), and National Electrical Manufacturers Association (NEMA) for their review and input. At the same time, in an effort to establish a unified standard phantom design for the cardiac catheterization laboratories (CCL), SCA&I and NEMA have formed a joint work group in early 1997 to develop a suitable phantom. The initial QA phantom design has since been accepted to serve as the base phantom by the SCA&I- NEMA Joint Work Group (JWG) from which a comprehensive QA Phantom is being developed.

  15. X-Ray Phantom Development For Observer Performance Studies

    NASA Astrophysics Data System (ADS)

    Kelsey, C. A.; Moseley, R. D.; Mettler, F. A.; Parker, T. W.

    1981-07-01

    The requirements for radiographic imaging phantoms for observer performance testing include realistic tasks which mimic at least some portion of the diagnostic examination presented in a setting which approximates clinically derived images. This study describes efforts to simulate chest and vascular diseases for evaluation of conventional and digital radiographic systems. Images of lung nodules, pulmonary infiltrates, as well as hilar and mediastinal masses are generated with a conventional chest phantom to make up chest disease test series. Vascular images are simulated by hollow tubes embedded in tissue density plastic with widening and narrowing added to mimic aneurysms and stenoses. Both sets of phantoms produce images which allow simultaneous determination of true positive and false positive rates as well as complete ROC curves.

  16. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Khoury, H. J.; Vieira, J. W.; de Melo Lima, V. J.; Robson Brown, K.

    2010-01-01

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  17. A low-cost, durable, combined ultrasound and fluoroscopic phantom for cervical transforaminal injections.

    PubMed

    Lerman, Imanuel R; Souzdalnitski, Dmitri; Narouze, Samer

    2012-01-01

    This technical report describes a durable, low-cost, anatomically accurate, and easy-to-prepare combined ultrasound (US) and fluoroscopic phantom of the cervical spine. This phantom is meant to augment training in US- and fluoroscopic-guided pain medicine procedures. The combined US and fluoroscopic phantom (CUF-P) is prepared from commercially available liquid plastic that is ordinarily used to prepare synthetic fishing lures. The liquid plastic is heated and then poured into a metal canister that houses an anatomical cervical spine model. Drops of dark purple dye are added to make the phantom opaque. After cooling, tubing is attached to the CUF-P to simulate blood vessels. The CUF-P accurately simulates human tissue by imitating both the tactile texture of skin and the haptic resistance of human tissue as the needle is advanced. This phantom contains simulated fluid-filled vertebral arteries that exhibit pulsed flow under color Doppler US. Under fluoroscopic examination, the CUF-P-simulated vertebral arteries also exhibit uptake of contrast dye if mistakenly injected. The creation of a training phantom allows the pain physician to practice needle positioning technique while simultaneously visualizing both targeted and avoidable vascular structures under US and fluoroscopic guidance. This low-cost CUF-P is easy to prepare and is reusable, making it an attractive alternative to current homemade and commercially available phantom simulators.

  18. Phantom Radiculopathy: Case Report and Review of the Literature.

    PubMed

    Croci, Davide; Fandino, Javier; Marbacher, Serge

    2016-06-01

    Phantom radicular pain is very uncommon. To the best of our knowledge, only 14 cases have been described in the literature. A review of the literature revealed the most common cause of phantom radicular pain to be lumbar disc herniation and, furthermore, that treatment with epidural steroid injection or surgical decompression relieves pain in almost all cases. A significant number of patients with superimposed phantom radiculopathy may be missed because of the high incidence of degenerative lumbar spine diseases in the adult population, as well as the fact that amputee patients very often present with mixed stump and phantom pain. We report a case of a patient presenting with new-onset phantom radicular pain (S1 left) 4 years after an above-the-knee amputation (left). Computed tomography myelography showed compression of the left S1 nerve root caused by recurrent disc herniation and scar tissue formation after previous discectomy at L5-S1. The patient experienced temporarily relief of the sciatic pain after a fluoroscopically-guided epidural transforaminal steroid injection. Subsequent microsurgical decompression led to complete remission of the phantom radicular pain. Amputees experiencing recurrent phantom radicular pain or new-onset superimposed pain deserve further radiologic evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    NASA Astrophysics Data System (ADS)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  20. Radiation phantom with humanoid shape and adjustable thickness

    DOEpatents

    Lehmann, Joerg [Pleasanton, CA; Levy, Joshua [Salem, NY; Stern, Robin L [Lodi, CA; Siantar, Christine Hartmann [Livermore, CA; Goldberg, Zelanna [Carmichael, CA

    2006-12-19

    A radiation phantom comprising a body with a general humanoid shape and at least a portion having an adjustable thickness. In one embodiment, the portion with an adjustable thickness comprises at least one tissue-equivalent slice.

  1. Conversion of ICRP male reference phantom to polygon-surface phantom

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom

  2. Shear wave velocity imaging using transient electrode perturbation: phantom and ex vivo validation.

    PubMed

    DeWall, Ryan J; Varghese, Tomy; Madsen, Ernest L

    2011-03-01

    This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations. The feasibility of electrode vibration elastography is demonstrated using finite element models and ultrasound simulations, tissue-mimicking phantoms simulating fully (phantom 1) and partially ablated (phantom 2) regions, and an ex vivo bovine liver ablation experiment. In phantom experiments, good boundary delineation was observed. Shear wave velocity estimates were within 7% of mechanical measurements in phantom 1 and within 17% in phantom 2. Good boundary delineation was also demonstrated in the ex vivo experiment. The shear wave velocity estimates inside the ablated region were higher than mechanical testing estimates, but estimates in the untreated tissue were within 20% of mechanical measurements. A comparison of electrode vibration elastography and electrode displacement elastography showed the complementary information that they can provide. Electrode vibration elastography shows promise as an imaging modality that provides ablation boundary delineation and quantitative information during ablation procedures.

  3. Shear Wave Velocity Imaging Using Transient Electrode Perturbation: Phantom and ex vivo Validation

    PubMed Central

    Varghese, Tomy; Madsen, Ernest L.

    2011-01-01

    This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations. The feasibility of electrode vibration elastography is demonstrated using finite element models and ultrasound simulations, tissue-mimicking phantoms simulating fully (phantom 1) and partially ablated (phantom 2) regions, and an ex vivo bovine liver ablation experiment. In phantom experiments, good boundary delineation was observed. Shear wave velocity estimates were within 7% of mechanical measurements in phantom 1 and within 17% in phantom 2. Good boundary delineation was also demonstrated in the ex vivo experiment. The shear wave velocity estimates inside the ablated region were higher than mechanical testing estimates, but estimates in the untreated tissue were within 20% of mechanical measurements. A comparison of electrode vibration elastography and electrode displacement elastography showed the complementary information that they can provide. Electrode vibration elastography shows promise as an imaging modality that provides ablation boundary delineation and quantitative information during ablation procedures. PMID:21075719

  4. Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns

    PubMed Central

    Sarkar, Saugata; Gurjarpadhye, Abhijit A.; Rylander, Christopher G.; Nichole Rylander, Marissa

    2011-01-01

    The degree by which optical properties of tumors are altered following introduction of carbon nanotubes (CNTs) of varying concentration and type is poorly understood, making it difficult to predict the impact of CNT inclusion on the photothermal response to laser therapies. Optical properties were measured of phantoms representative of breast tumor tissue incorporated with multiwalled carbon nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs), and single-walled carbon nanohorns (SWNHs) of varying concentration (0.01–0.1 mg/ml). Tissue phantoms were made from sodium alginate (3 g/ml) incorporated with polystyrene microbeads (3 μm diam and 1 mg/ml) and talc-France powder (40 mg/ml). Absorption (μa) and reduced scattering (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\mu^\\prime _s\\end{equation*} \\end{document}μs′) coefficients of phantoms containing CNTs were determined by the inverse adding-doubling algorithm for the wavelength range of 400–1300 nm. Optical properties of phantoms without CNTs were in the range of μa = 1.04–0.06 mm−1 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\mu^\\prime _s\\end{equation*} \\end{document}μs′ = 0.05–0.07 mm−1 at a wavelength of 900 nm, which corresponds with published data for human breast tumor tissue. Incorporating MWNTs, SWNTs, and SWNHs in phantoms with a concentration of 0.1 mg/ml increased (μa) by 20- to 30-fold, 5- to 6-fold, and 9- to 14-fold, respectively, for the wavelength range of 800–1100 nm with minimal change in \\documentclass[12pt]{minimal} \\usepackage

  5. Patient specific computerized phantoms to estimate dose in pediatric CT

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Sturgeon, G.; Li, X.; Cheng, L.; Ceritoglu, C.; Ratnanather, J. T.; Miller, M. I.; Tsui, B. M. W.; Frush, D.; Samei, E.

    2009-02-01

    We create a series of detailed computerized phantoms to estimate patient organ and effective dose in pediatric CT and investigate techniques for efficiently creating patient-specific phantoms based on imaging data. The initial anatomy of each phantom was previously developed based on manual segmentation of pediatric CT data. Each phantom was extended to include a more detailed anatomy based on morphing an existing adult phantom in our laboratory to match the framework (based on segmentation) defined for the target pediatric model. By morphing a template anatomy to match the patient data in the LDDMM framework, it was possible to create a patient specific phantom with many anatomical structures, some not visible in the CT data. The adult models contain thousands of defined structures that were transformed to define them in each pediatric anatomy. The accuracy of this method, under different conditions, was tested using a known voxelized phantom as the target. Errors were measured in terms of a distance map between the predicted organ surfaces and the known ones. We also compared calculated dose measurements to see the effect of different magnitudes of errors in morphing. Despite some variations in organ geometry, dose measurements from morphing predictions were found to agree with those calculated from the voxelized phantom thus demonstrating the feasibility of our methods.

  6. Synthesized tissue-equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions.

    PubMed

    Ianniello, Carlotta; de Zwart, Jacco A; Duan, Qi; Deniz, Cem M; Alon, Leeor; Lee, Jae-Seung; Lattanzi, Riccardo; Brown, Ryan

    2018-07-01

    To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue-equivalent dielectric properties. PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured. The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second- (solute concentrations) and seventh- (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes. PVP-based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T 2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413-419, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. SU-F-J-172: Hybrid MR/CT Compatible Phantom for MR-Only Based Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Lee, S; Song, K

    2016-06-15

    Purpose: Development of hybrid MR/CT compatible phantom was introduced to fully establish MR image only radiation treatment and this suggested technique using in-house developed hybrid MR/CT compatible phantom image would utilize to generate radiation treatment planning and perform dose calculation without multi-modal registration process or generation of pseudo CT. Methods: Fundamental characteristics for “hybrid MR/CT compatible phantom” was established: Relaxation times equivalent to human tissue, dielectric properties, homogeneous relaxation times, sufficient strength to fabricate a torso, ease of handling, a wide variety of density material for calibration, chemical and physical stability over an extended time. For this requirements, chemical componentmore » in each tested plug which would be tissue equivalent to human tissue on MR and CT image and production of phantom body and plug was performed. Chemical component has described below: Agaros, GdCl{sub 3}, NaN{sub 3}, NaCl, K{sub 2}Co{sub 3}, deionized-distilled water. Various mixture of chemical component to simulate human tissue on both MR and CT image was tested by measuring T1, T2 relaxation time and signal intensity (SI) on MR image and Hounsfield unit (HU) on CT and each value was compared. The hybrid MR/CT compatible phantom with 14 plugs was designed and has made. Total height and external diameter was decided by internal size of 32 channel MR head-coil. Results: Tissue-equivalent chemical component materials and hybrid MR/CT compatible phantom was developed. The range of T1, T2 relaxation time and SI on MR image, HU on CT was acquired and could be adjusted to correspond to simulated human tissue. Conclusion: Current result shows its possibility for MR-only based radiotherapy and the best mixing rate of chemical component for tissue-equivalent image on MR and CT was founded. However, additional technical issues remain to be overcome. Conversion of SI on MR image into HU and dose calculation

  8. Combined chirp coded tissue harmonic and fundamental ultrasound imaging for intravascular ultrasound: 20–60 MHz phantom and ex vivo results

    PubMed Central

    Park, Jinhyoung; Li, Xiang; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    The application of chirp coded excitation to pulse inversion tissue harmonic imaging can increase signal to noise ratio. On the other hand, the elevation of range side lobe level, caused by leakages of the fundamental signal, has been problematic in mechanical scanners which are still the most prevalent in high frequency intravascular ultrasound imaging. Fundamental chirp coded excitation imaging can achieve range side lobe levels lower than –60 dB with Hanning window, but it yields higher side lobes level than pulse inversion chirp coded tissue harmonic imaging (PI-CTHI). Therefore, in this paper a combined pulse inversion chirp coded tissue harmonic and fundamental imaging mode (CPI-CTHI) is proposed to retain the advantages of both chirp coded harmonic and fundamental imaging modes by demonstrating 20–60 MHz phantom and ex vivo results. A simulation study shows that the range side lobe level of CPI-CTHI is 16 dB lower than PI-CTHI, assuming that the transducer translates incident positions by 50 μm when two beamlines of pulse inversion pair are acquired. CPI-CTHI is implemented for a proto-typed intravascular ultrasound scanner capable of combined data acquisition in real-time. A wire phantom study shows that CPI-CTHI has a 12 dB lower range side lobe level and a 7 dB higher echo signal to noise ratio than PI-CTHI, while the lateral resolution and side lobe level are 50 μm finer and –3 dB less than fundamental chirp coded excitation imaging respectively. Ex vivo scanning of a rabbit trachea demonstrates that CPI-CTHI is capable of visualizing blood vessels as small as 200 μm in diameter with 6 dB better tissue contrast than either PI-CTHI or fundamental chirp coded excitation imaging. These results clearly indicate that CPI-CTHI may enhance tissue contrast with less range side lobe level than PI-CTHI. PMID:22871273

  9. Technical Note: Construction of heterogeneous head phantom for quality control in stereotactic radiosurgery.

    PubMed

    Najafi, Mohsen; Teimouri, Javad; Shirazi, Alireza; Geraily, Ghazale; Esfahani, Mahbod; Shafaei, Mostafa

    2017-10-01

    Stereotactic radiosurgery is a high precision modality for conformally delivering high doses of radiation to the brain lesion with a large dose volume. Several studies for the quality control of this technique were performed to measure the dose delivered to the target with a homogenous head phantom and some dosimeters. Some studies were also performed with one or two instances of heterogeneity in the head phantom to measure the dose delivered to the target. But these studies assumed the head as a sphere and simple shape heterogeneity. The construction of an adult human head phantom with the same size, shape, and real inhomogeneity as an adult human head is needed. Only then is measuring the accurate dose delivered to the area of interest and comparison with the calculated dose possible. According to the ICRU Report 44, polytetrafluoroethylene (PTFE) and methyl methacrylate were selected as a bone and soft tissue, respectively. A set of computed tomography (CT) scans from a standard human head were taken, and simplification of the CT images was used to design the layers of the phantom. The parts of each slice were cut and attached together. Tests of density and CT number were done to compare the material of the phantom with tissues of the head. The dose delivered to the target was measured with an EBT3 film. The density of the PTFE and Plexiglas that were inserted in the phantom are in good agreement with bone and soft tissue. Also, the CT numbers of these materials have a low difference. The dose distribution from the EBT3 film and the treatment planning system is similar. The constructed phantom with a size and inhomogeneity like an adult human head is suitable to measure the dose delivered to the area of interest. It also helps make an accurate comparison with the calculated dose by the treatment planning system. By using this phantom, the actual dose delivered to the target was obtained. This anthropomorphic head phantom can be used in other modalities of

  10. Correction factors for the ISO rod phantom, a cylinder phantom, and the ICRU sphere for reference beta radiation fields of the BSS 2

    NASA Astrophysics Data System (ADS)

    Behrens, R.

    2015-03-01

    The International Organization for Standardization (ISO) requires in its standard ISO 6980 that beta reference radiation fields for radiation protection be calibrated in terms of absorbed dose to tissue at a depth of 0.07 mm in a slab phantom (30 cm x 30 cm x 15 cm). However, many beta dosemeters are ring dosemeters and are, therefore, irradiated on a rod phantom (1.9 cm in diameter and 30 cm long), or they are eye dosemeters possibly irradiated on a cylinder phantom (20 cm in diameter and 20 cm high), or area dosemeters irradiated free in air with the conventional quantity value (true value) being defined in a sphere (30 cm in diameter, made of ICRU tissue (International Commission on Radiation Units and Measurements)). Therefore, the correction factors for the conventional quantity value in the rod, the cylinder, and the sphere instead of the slab (all made of ICRU tissue) were calculated for the radiation fields of 147Pm, 85Kr, 90Sr/90Y, and, 106Ru/106Rh sources of the beta secondary standard BSS 2 developed at PTB. All correction factors were calculated for 0° up to 75° (in steps of 15°) radiation incidence. The results are ready for implementation in ISO 6980-3 and have recently been (partly) implemented in the software of the BSS 2.

  11. Patient and tissue identification in the assisted reproductive technology laboratory.

    PubMed

    Pomeroy, Kimball O; Racowsky, Catherine

    2012-06-01

    Several high-profile cases involving in vitro fertilization have recently received considerable media attention and highlight the importance of assuring patient and tissue identification. Within the assisted reproductive technology (ART) laboratory, there are many steps where wrong patient or tissue identity could have drastic results. Erroneous identity can result in tragic consequences for the patient, the laboratory, and for those working in the program as a whole. Such errors can result in enormous psychological and financial costs, as well as a loss in confidence. There are several critical steps that should be taken every single time and for each specific procedure performed in the ART laboratory to ensure the correct identification of patients and their tissue. These steps should be detailed in protocols that include the method of identification, the two unique identifiers that will be used, the sources of these identifiers, and often a system in which more than one person is involved in the identification. Each protocol should ideally include a checklist that is actively used for the implementation of each procedure. The protocol should also indicate what to do if the identification does not match up, including rapid handling and notification of the patient involved in the error. All ART laboratories should instill in their employees an atmosphere of full and open disclosure for cases where mistakes are made. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. NOTE: On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2006-11-01

    Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP

  13. Freeform fabrication of tissue-simulating phantoms by combining three-dimensional printing and casting

    NASA Astrophysics Data System (ADS)

    Shen, Shuwei; Zhao, Zuhua; Wang, Haili; Han, Yilin; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Ray, William; Hoehne, Brad; Xu, Ronald

    2016-03-01

    Appropriate surgical planning is important for improved clinical outcome and minimal complications in many surgical operations, such as a conjoined twin separation surgery. We combine 3D printing with casting and assembling to produce a solid phantom of high fidelity to help surgeons for better preparation of the conjoined twin separation surgery. 3D computer models of individual organs were reconstructed based on CT scanned data of the conjoined twins. The models were sliced, processed, and converted to an appropriate format for Fused Deposition Modeling (FDM). The skeletons of the phantom were printed directly by FDM using Acrylonitrile-Butadiene-Styrene (ABS) material, while internal soft organs were fabricated by casting silicon materials of different compositions in FDM printed molds. The skeleton and the internal organs were then assembled with appropriate fixtures to maintain their relative positional accuracies. The assembly was placed in a FMD printed shell mold of the patient body for further casting. For clear differentiation of different internal organs, CT contrast agents of different compositions were added in the silicon cast materials. The produced phantom was scanned by CT again and compared with that of the original computer models of the conjoined twins in order to verify the structural and positional fidelity. Our preliminary experiments showed that combining 3D printing with casting is an effective way to produce solid phantoms of high fidelity for the improved surgical planning in many clinical applications.

  14. Solid hemoglobin-polymer phantoms for evaluation of biophotonic systems.

    PubMed

    Jang, Hyounguk; Pfefer, T Joshua; Chen, Yu

    2015-09-15

    Stable tissue phantoms that incorporate the spectral absorption properties of hemoglobin would benefit a wide range of biophotonic technologies. Toward this end, we have developed and validated a novel polymer material incorporating hemoglobin. Our solid hemoglobin-polymer (SHP) material is fabricated by mixing liquid silicone base with a hemoglobin solution, followed by sonication and low temperature curing. The optical properties of samples were determined over 450-1000 nm using the inverse adding-doubling method and the Beer-Lambert law. Measurements indicated SHP optical stability over four months. Near-infrared spectroscopy and hyperspectral imaging measurements of SHP samples were performed to demonstrate the utility of this approach. SHP materials have the potential to improve tissue-simulating phantoms used for development, evaluation, and standardization of optical devices for oximetry and other applications.

  15. The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Maynard, Matthew R.; Long, Nelia S.; Moawad, Nash S.; Shifrin, Roger Y.; Geyer, Amy M.; Fong, Grant; Bolch, Wesley E.

    2014-08-01

    Efforts to assess in utero radiation doses and related quantities to the developing fetus should account for the presence of the surrounding maternal tissues. Maternal tissues can provide varying levels of protection to the fetus by shielding externally-emitted radiation or, alternatively, can become sources of internally-emitted radiation following the biokinetic uptake of medically-administered radiopharmaceuticals or radionuclides located in the surrounding environment—as in the case of the European Union’s SOLO project (Epidemiological Studies of Exposed Southern Urals Populations). The University of Florida had previously addressed limitations in available computational phantom representation of the developing fetus by constructing a series of hybrid computational fetal phantoms at eight different ages and three weight percentiles. Using CT image sets of pregnant patients contoured using 3D-DOCTORTM, the eight 50th percentile fetal phantoms from that study were systematically combined in RhinocerosTM with the UF adult non-pregnant female to yield a series of reference pregnant female phantoms at fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. Deformable, non-uniform rational B-spline surfaces were utilized to alter contoured maternal anatomy in order to (1) accurately position and orient each fetus and surrounding maternal tissues and (2) match target masses of maternal soft tissue organs to reference data reported in the literature.

  16. On mimicking diffuse reflectance spectra in the visible and near-infrared ranges for tissue-like phantom design

    NASA Astrophysics Data System (ADS)

    Debernardi, N.; Dunias, P.; van El, B.; Statham, A. E.

    2014-03-01

    A novel methodology is presented to mimic diffuse reflectance spectra of arbitrary biological tissues in the visible and near-infrared ranges. The prerequisite for this method is that the spectral information of basic components is sufficient to mimic an arbitrary tissue. Using a sterile disposable fiber optic probe the diffuse reflectance spectrum of a tissue (either in vivo or ex vivo) is measured, which forms the target spectrum. With the same type of fiber probe, a wide variety of basic components (ingredients) has been previously measured and all together forms a spectral database. A "recipe" for the optimal mixture of ingredients can then be derived using an algorithm that fits the absorption and scattering behavior of the target spectrum using the spectra of the basic components in the database. The spectral mimicking accuracy refines by adding more ingredients to the database. The validity of the principle is demonstrated by mimicking an arbitrary mixture of components. The method can be applied with different kinds of materials, e.g. gelatins, waxes and silicones, thus providing the possibility of mimicking the mechanical properties of target tissues as well. The algorithm can be extended from single point contact spectral measurement to contactless multi- and hyper-spectral camera acquisition. It can be applied to produce portable and durable tissue-like phantoms that provides consistent results over time for calibration, demonstration, comparison of instruments or other such tasks. They are also more readily available than living tissue or a cadaver and are not so limited by ease of handling and legislation; hence they are highly useful when developing new devices.

  17. Depth dose distribution study within a phantom torso after irradiation with a simulated Solar Particle Event at NSRL

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to

  18. A methodology for developing anisotropic AAA phantoms via additive manufacturing.

    PubMed

    Ruiz de Galarreta, Sergio; Antón, Raúl; Cazón, Aitor; Finol, Ender A

    2017-05-24

    An Abdominal Aortic Aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta at least 1.5 times its normal diameter. The criterion of maximum diameter is still used in clinical practice, although numerical studies have demonstrated the importance of biomechanical factors for rupture risk assessment. AAA phantoms could be used for experimental validation of the numerical studies and for pre-intervention testing of endovascular grafts. We have applied multi-material 3D printing technology to manufacture idealized AAA phantoms with anisotropic mechanical behavior. Different composites were fabricated and the phantom specimens were characterized by biaxial tensile tests while using a constitutive model to fit the experimental data. One composite was chosen to manufacture the phantom based on having the same mechanical properties as those reported in the literature for human AAA tissue; the strain energy and anisotropic index were compared to make this choice. The materials for the matrix and fibers of the selected composite are, respectively, the digital materials FLX9940 and FLX9960 developed by Stratasys. The fiber proportion for the composite is equal to 0.15. The differences between the composite behavior and the AAA tissue are small, with a small difference in the strain energy (0.4%) and a maximum difference of 12.4% in the peak Green strain ratio. This work represents a step forward in the application of 3D printing technology for the manufacturing of AAA phantoms with anisotropic mechanical behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Photoacoustic resonance spectroscopy for biological tissue characterization

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin; Ohl, Claus-Dieter

    2014-06-01

    By "listening to photons," photoacoustics allows the probing of chromosomes in depth beyond the optical diffusion limit. Here we report the photoacoustic resonance effect induced by multiburst modulated laser illumination, which is theoretically modeled as a damped mass-string oscillator and a resistor-inductor-capacitor (RLC) circuit. Through sweeping the frequency of multiburst modulated laser, the photoacoustic resonance effect is observed experimentally on phantoms and porcine tissues. Experimental results demonstrate different spectra for each phantom and tissue sample to show significant potential for spectroscopic analysis, fusing optical absorption and mechanical vibration properties. Unique RLC circuit parameters are extracted to quantitatively characterize phantom and biological tissues.

  20. Customized three-dimensional printed optical phantoms with user defined absorption and scattering

    NASA Astrophysics Data System (ADS)

    Pannem, Sanjana; Sweer, Jordan; Diep, Phuong; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren M.

    2016-03-01

    The use of reliable tissue-simulating phantoms spans multiple applications in spectroscopic imaging including device calibration and testing of new imaging procedures. Three-dimensional (3D) printing allows for the possibility of optical phantoms with arbitrary geometries and spatially varying optical properties. We recently demonstrated the ability to 3D print tissue-simulating phantoms with customized absorption (μa) and reduced scattering (μs`) by incorporating nigrosin, an absorbing dye, and titanium dioxide (TiO2), a scattering agent, to acrylonitrile butadiene styrene (ABS) during filament extrusion. A physiologically relevant range of μa and μs` was demonstrated with high repeatability. We expand our prior work here by evaluating the effect of two important 3D-printing parameters, percent infill and layer height, on both μa and μs`. 2 cm3 cubes were printed with percent infill ranging from 10% to 100% and layer height ranging from 0.15 to 0.40 mm. The range in μa and μs` was 27.3% and 19.5% respectively for different percent infills at 471 nm. For varying layer height, the range in μa and μs` was 27.8% and 15.4% respectively at 471 nm. These results indicate that percent infill and layer height substantially alter optical properties and should be carefully controlled during phantom fabrication. Through the use of inexpensive hobby-level printers, the fabrication of optical phantoms may advance the complexity and availability of fully customizable phantoms over multiple spatial scales. This technique exhibits a wider range of adaptability than other common methods of fabricating optical phantoms and may lead to improved instrument characterization and calibration.

  1. Tracked ultrasound calibration studies with a phantom made of LEGO bricks

    NASA Astrophysics Data System (ADS)

    Soehl, Marie; Walsh, Ryan; Rankin, Adam; Lasso, Andras; Fichtinger, Gabor

    2014-03-01

    In this study, spatial calibration of tracked ultrasound was compared by using a calibration phantom made of LEGO® bricks and two 3-D printed N-wire phantoms. METHODS: The accuracy and variance of calibrations were compared under a variety of operating conditions. Twenty trials were performed using an electromagnetic tracking device with a linear probe and three trials were performed using varied probes, varied tracking devices and the three aforementioned phantoms. The accuracy and variance of spatial calibrations found through the standard deviation and error of the 3-D image reprojection were used to compare the calibrations produced from the phantoms. RESULTS: This study found no significant difference between the measured variables of the calibrations. The average standard deviation of multiple 3-D image reprojections with the highest performing printed phantom and those from the phantom made of LEGO® bricks differed by 0.05 mm and the error of the reprojections differed by 0.13 mm. CONCLUSION: Given that the phantom made of LEGO® bricks is significantly less expensive, more readily available, and more easily modified than precision-machined N-wire phantoms, it prompts to be a viable calibration tool especially for quick laboratory research and proof of concept implementations of tracked ultrasound navigation.

  2. An anthropomorphic phantom for quantitative evaluation of breast MRI.

    PubMed

    Freed, Melanie; de Zwart, Jacco A; Loud, Jennifer T; El Khouli, Riham H; Myers, Kyle J; Greene, Mark H; Duyn, Jeff H; Badano, Aldo

    2011-02-01

    In this study, the authors aim to develop a physical, tissue-mimicking phantom for quantitative evaluation of breast MRI protocols. The objective of this phantom is to address the need for improved standardization in breast MRI and provide a platform for evaluating the influence of image protocol parameters on lesion detection and discrimination. Quantitative comparisons between patient and phantom image properties are presented. The phantom is constructed using a mixture of lard and egg whites, resulting in a random structure with separate adipose- and glandular-mimicking components. T1 and T2 relaxation times of the lard and egg components of the phantom were estimated at 1.5 T from inversion recovery and spin-echo scans, respectively, using maximum-likelihood methods. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of phantom and patient images. A static, enhancing lesion was introduced by creating a hollow mold with stereolithography and filling it with a gadolinium-doped water solution. Measured phantom relaxation values fall within 2 standard errors of human values from the literature and are reasonably stable over 9 months of testing. Comparison of the covariance matrices of phantom and patient data demonstrates that the phantom and patient data have similar image structure. Their covariance matrices are the same to within error bars in the anterior-posterior direction and to within about two error bars in the right-left direction. The signal from the phantom's adipose-mimicking material can be suppressed using active fat-suppression protocols. A static, enhancing lesion can also be included with the ability to change morphology and contrast agent concentration. The authors have constructed a phantom and demonstrated its ability to mimic human breast images in terms of key physical properties that are relevant to breast MRI. This phantom provides a platform for the optimization and standardization of

  3. Population of 224 realistic human subject-based computational breast phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, David W.; Wells, Jered R., E-mail: jered.wells@duke.edu; Sturgeon, Gregory M.

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was thenmore » applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a

  4. Population of 224 realistic human subject-based computational breast phantoms

    PubMed Central

    Erickson, David W.; Wells, Jered R.; Sturgeon, Gregory M.; Dobbins, James T.; Segars, W. Paul; Lo, Joseph Y.

    2016-01-01

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range

  5. A suite of phantom-based test methods for assessing image quality of photoacoustic tomography systems

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2017-03-01

    As Photoacoustic Tomography (PAT) matures and undergoes clinical translation, objective performance test methods are needed to facilitate device development, regulatory clearance and clinical quality assurance. For mature medical imaging modalities such as CT, MRI, and ultrasound, tissue-mimicking phantoms are frequently incorporated into consensus standards for performance testing. A well-validated set of phantom-based test methods is needed for evaluating performance characteristics of PAT systems. To this end, we have constructed phantoms using a custom tissue-mimicking material based on PVC plastisol with tunable, biologically-relevant optical and acoustic properties. Each phantom is designed to enable quantitative assessment of one or more image quality characteristics including 3D spatial resolution, spatial measurement accuracy, ultrasound/PAT co-registration, uniformity, penetration depth, geometric distortion, sensitivity, and linearity. Phantoms contained targets including high-intensity point source targets and dye-filled tubes. This suite of phantoms was used to measure the dependence of performance of a custom PAT system (equipped with four interchangeable linear array transducers of varying design) on design parameters (e.g., center frequency, bandwidth, element geometry). Phantoms also allowed comparison of image artifacts, including surface-generated clutter and bandlimited sensing artifacts. Results showed that transducer design parameters create strong variations in performance including a trade-off between resolution and penetration depth, which could be quantified with our method. This study demonstrates the utility of phantom-based image quality testing in device performance assessment, which may guide development of consensus standards for PAT systems.

  6. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  7. A review of the benefits and pitfalls of phantoms in ultrasound-guided regional anesthesia.

    PubMed

    Hocking, Graham; Hebard, Simon; Mitchell, Christopher H

    2011-01-01

    With the growth of ultrasound-guided regional anesthesia, so has the requirement for training tools to practice needle guidance skills and evaluate echogenic needles. Ethically, skills in ultrasound-guided needle placement should be gained in a phantom before performance of nerve blocks on patients in clinical practice. However, phantom technology is varied, and critical evaluation of the images is needed to understand their application to clinical use. Needle visibility depends on the echogenicity of the needle relative to the echogenicity of the tissue adjacent the needle. We demonstrate this point using images of echogenic and nonechogenic needles in 5 different phantoms at both shallow angles (20 degrees) and steep angles (45 degrees). The echogenicity of phantoms varies enormously, and this impacts on how needles are visualized. Water is anechoic, making all needles highly visible, but does not fix the needle to allow practice placement. Gelatin phantoms and Blue Phantoms provide tactile feedback but have very low background echogenicity, which greatly exaggerates needle visibility. This makes skill acquisition easier but can lead to false confidence in regard to clinical ability. Fresh-frozen cadavers retain much of the textural feel of live human tissue and are nearly as echogenic. Similar to clinical practice, this makes needles inserted at steep angles practically invisible, unless they are highly echogenic. This review describes the uses and pitfalls of phantoms that have been described or commercially produced. Copyright © 2011 by American Society of Regional Anesthesia and Pain Medicine

  8. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    PubMed

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  9. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  10. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry.

    PubMed

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  11. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew

    2015-07-15

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches amore » patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement

  12. A new head phantom with realistic shape and spatially varying skull resistivity distribution.

    PubMed

    Li, Jian-Bo; Tang, Chi; Dai, Meng; Liu, Geng; Shi, Xue-Tao; Yang, Bin; Xu, Can-Hua; Fu, Feng; You, Fu-Sheng; Tang, Meng-Xing; Dong, Xiu-Zhen

    2014-02-01

    Brain electrical impedance tomography (EIT) is an emerging method for monitoring brain injuries. To effectively evaluate brain EIT systems and reconstruction algorithms, we have developed a novel head phantom that features realistic anatomy and spatially varying skull resistivity. The head phantom was created with three layers, representing scalp, skull, and brain tissues. The fabrication process entailed 3-D printing of the anatomical geometry for mold creation followed by casting to ensure high geometrical precision and accuracy of the resistivity distribution. We evaluated the accuracy and stability of the phantom. Results showed that the head phantom achieved high geometric accuracy, accurate skull resistivity values, and good stability over time and in the frequency domain. Experimental impedance reconstructions performed using the head phantom and computer simulations were found to be consistent for the same perturbation object. In conclusion, this new phantom could provide a more accurate test platform for brain EIT research.

  13. Development of the two Korean adult tomographic computational phantoms for organ dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Lee, Choonik; Park, Sang-Hyun

    2006-02-15

    Following the previously developed Korean tomographic phantom, KORMAN, two additional whole-body tomographic phantoms of Korean adult males were developed from magnetic resonance (MR) and computed tomography (CT) images, respectively. Two healthy male volunteers, whose body dimensions were fairly representative of the average Korean adult male, were recruited and scanned for phantom development. Contiguous whole body MR images were obtained from one subject exclusive of the arms, while whole-body CT images were acquired from the second individual. A total of 29 organs and tissues and 19 skeletal sites were segmented via image manipulation techniques such as gray-level thresholding, region growing, andmore » manual drawing, in which each of segmented image slice was subsequently reviewed by an experienced radiologist for anatomical accuracy. The resulting phantoms, the MR-based KTMAN-1 (Korean Typical MAN-1) and the CT-based KTMAN-2 (Korean Typical MAN-2), consist of 300x150x344 voxels with a voxel resolution of 2x2x5 mm{sup 3} for both phantoms. Masses of segmented organs and tissues were calculated as the product of a nominal reference density, the prevoxel volume, and the cumulative number of voxels defining each organs or tissue. These organs masses were then compared with those of both the Asian and the ICRP reference adult male. Organ masses within both KTMAN-1 and KTMAN-2 showed differences within 40% of Asian and ICRP reference values, with the exception of the skin, gall bladder, and pancreas which displayed larger differences. The resulting three-dimensional binary file was ported to the Monte Carlo code MCNPX2.4 to calculate organ doses following external irradiation for illustrative purposes. Colon, lung, liver, and stomach absorbed doses, as well as the effective dose, for idealized photon irradiation geometries (anterior-posterior and right lateral) were determined, and then compared with data from two other tomographic phantoms (Asian and Caucasian

  14. High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound.

    PubMed

    Forget, Benoît-Claude; Ramaz, François; Atlan, Michaël; Selb, Juliette; Boccara, Albert-Claude

    2003-03-01

    We report new results on acousto-optical tomography in phantom tissues using a frequency chirp modulation and a CCD camera. This technique allows quick recording of three-dimensional images of the optical contrast with a two-dimensional scan of the ultrasound source in a plane perpendicular to the ultrasonic path. The entire optical contrast along the ultrasonic path is concurrently obtained from the capture of a film sequence at a rate of 200 Hz. This technique reduces the acquisition time, and it enhances the axial resolution and thus the contrast, which are usually poor owing to the large volume of interaction of the ultrasound perturbation.

  15. Field and laboratory fish tissue accumulation of the anti-convulsant drug carbamazepine.

    PubMed

    Garcia, Santos N; Foster, Michael; Constantine, Lisa A; Huggett, Duane B

    2012-10-01

    Understanding the potential for human and veterinary pharmaceuticals to accumulate in the tissues of biota is a topic of increasing importance in the pharmaceutical risk assessment process. However, few data are available in the literature that compare the ability of laboratory bioconcentration studies to predict field tissue concentrations. To begin to address this data gap, bioconcentration factors (BCF) for carbamazepine (CBZ), a human anticonvulsant that modulates Na+ channels, were determined using laboratory experiments with Pimephales notatus and Ictalurus punctatus. These data were compared to field derived bioaccumulation factors (BAFs) for Oreochromis niloticus from the Denton, Texas Wastewater Treatment Plant. The 42 d kinetic BCFs (BCFk) for white muscle and liver of P. notatus were 1.9 and 4.6, respectively, while the white muscle, liver, brain, and plasma BCFk's of I. punctatus were 1.8, 1.5, 1.6, and 7.1, respectively. Field derived BAF values (2.5-3.8) for O. niloticus were similar to those derived in laboratory studies. Partitioning values between blood plasma and individual tissues were calculated for I. punctatus and O. niloticus, with the values indicating that tissue levels of carbamazepine are similar or slightly higher than plasma concentrations. Collectively these data suggest that the fish laboratory BCF and field derived BCF/BAF values for carbamazepine are similar and much lower than the European Union regulatory threshold of 2000 for designation of a "B" substance. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures.

    PubMed

    Cafarelli, A; Verbeni, A; Poliziani, A; Dario, P; Menciassi, A; Ricotti, L

    2017-02-01

    Materials with tailored acoustic properties are of great interest for both the development of tissue-mimicking phantoms for ultrasound tests and smart scaffolds for ultrasound mediated tissue engineering and regenerative medicine. In this study, we assessed the acoustic properties (speed of sound, acoustic impedance and attenuation coefficient) of three different materials (agarose, polyacrylamide and polydimethylsiloxane) at different concentrations or cross-linking levels and doped with different concentrations of barium titanate ceramic nanoparticles. The selected materials, besides different mechanical features (stiffness from few kPa to 1.6MPa), showed a wide range of acoustic properties (speed of sound from 1022 to 1555m/s, acoustic impedance from 1.02 to 1.67MRayl and attenuation coefficient from 0.2 to 36.5dB/cm), corresponding to ranges in which natural soft tissues can fall. We demonstrated that this knowledge can be used to build tissue-mimicking phantoms for ultrasound-based medical procedures and that the mentioned measurements enable to stimulate cells with a highly controlled ultrasound dose, taking into account the attenuation due to the cell-supporting scaffold. Finally, we were able to correlate for the first time the bioeffect on human fibroblasts, triggered by piezoelectric barium titanate nanoparticles activated by low-intensity pulsed ultrasound, with a precise ultrasound dose delivered. These results may open new avenues for the development of both tissue-mimicking materials for ultrasound phantoms and smart triggerable scaffolds for tissue engineering and regenerative medicine. This study reports for the first time the results of a systematic acoustic characterization of agarose, polyacrylamide and polydimethylsiloxane at different concentrations and cross-linking extents and doped with different concentrations of barium titanate nanoparticles. These results can be used to build tissue-mimicking phantoms, useful for many ultrasound

  17. Anatomically realistic ultrasound phantoms using gel wax with 3D printed moulds

    NASA Astrophysics Data System (ADS)

    Maneas, Efthymios; Xia, Wenfeng; Nikitichev, Daniil I.; Daher, Batol; Manimaran, Maniragav; Wong, Rui Yen J.; Chang, Chia-Wei; Rahmani, Benyamin; Capelli, Claudio; Schievano, Silvia; Burriesci, Gaetano; Ourselin, Sebastien; David, Anna L.; Finlay, Malcolm C.; West, Simeon J.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-01-01

    Here we describe methods for creating tissue-mimicking ultrasound phantoms based on patient anatomy using a soft material called gel wax. To recreate acoustically realistic tissue properties, two additives to gel wax were considered: paraffin wax to increase acoustic attenuation, and solid glass spheres to increase backscattering. The frequency dependence of ultrasound attenuation was well described with a power law over the measured range of 3-10 MHz. With the addition of paraffin wax in concentrations of 0 to 8 w/w%, attenuation varied from 0.72 to 2.91 dB cm-1 at 3 MHz and from 6.84 to 26.63 dB cm-1 at 10 MHz. With solid glass sphere concentrations in the range of 0.025-0.9 w/w%, acoustic backscattering consistent with a wide range of ultrasonic appearances was achieved. Native gel wax maintained its integrity during compressive deformations up to 60%; its Young’s modulus was 17.4  ±  1.4 kPa. The gel wax with additives was shaped by melting and pouring it into 3D printed moulds. Three different phantoms were constructed: a nerve and vessel phantom for peripheral nerve blocks, a heart atrium phantom, and a placental phantom for minimally-invasive fetal interventions. In the first, nerves and vessels were represented as hyperechoic and hypoechoic tubular structures, respectively, in a homogeneous background. The second phantom comprised atria derived from an MRI scan of a patient with an intervening septum and adjoining vena cavae. The third comprised the chorionic surface of a placenta with superficial fetal vessels derived from an image of a post-partum human placenta. Gel wax is a material with widely tuneable ultrasound properties and mechanical characteristics that are well suited for creating patient-specific ultrasound phantoms in several clinical disciplines.

  18. Effect of Young's modulus on bubble formation and pressure waves during pulsed holmium ablation of tissue phantoms

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Motamedi, Massoud; Welch, Ashley J.

    1995-05-01

    Mechanical injury during pulsed laser ablation of tissue is caused by rapid bubble expansions and collapse or by laser-induced pressure waves. In this study the effect of material elasticity on the ablation process has been investigated. Polyacrylamide tissue phantoms with various water concentrations (75-95%) were made. The Young's moduli of the gels were determined by measuring the stress-strain relationship. An optical fiber (200 or 400 micrometers ) was translated into the clear gel and one pulse of holmium:YAG laser radiation was given. The laser was operated in either the Q-switched mode (tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation inside the gels was recorded using a fast flash photography setup while simultaneously recording pressures with a PVDP needle hydrophone (40 ns risetime) positioned in the gel, approximately 2 mm away from the fibertip. A thermo-elastic expansion wave was measured only during Q-switched pulse delivery. The amplitude of this wave (approximately equals 40 bar at 1 mm from the fiber) did not vary significantly in any of the phantoms investigated. Rapid bubble formation and collapse was observed inside the clear gels. Upon bubble collapse, a pressure transient was emitted; the amplitude of this transient depended strongly on bubble size and geometry. It was found that (1) the bubble was almost spherical for the Q-switched pulse and became more elongated for the free-running pulse, and (2) the maximum bubble size and thus the collapse amplitude decreased with an increase in Young's modulus (from 68 +/- 11 bar at 1 mm in 95% water gel to 25 +/- 10 bar at 1 mm in 75% water gel).

  19. Dosimetric impact of the AeroForm tissue expander in postmastectomy radiation therapy: an ex vivo analysis.

    PubMed

    Moni, Janaki; Saleeby, Jonathan; Bannon, Elizabeth; Lo, Yuan-Chyuan; Fitzgerald, Thomas J

    2015-01-01

    To evaluate the effect of the AeroForm (AirXpanders Inc, Palo Alto, CA) tissue expander on the dose distribution in a phantom from a simulated postmastectomy radiation treatment for breast cancer. Experiments were conducted to determine the effect on the dose distribution with the metallic reservoir irradiated independently and with the entire AeroForm tissue expander placed on a RANDO phantom (The Phantom Laboratory, Salem, NY). The metallic reservoir was irradiated on a block of solid water with film at various depths ranging from 0 to 8.2 cm from the surface. The intact 400 cc AeroForm was inflated to full capacity and irradiated while positioned on a RANDO phantom, with 12 optically stimulated luminescent dosimeters (OSLDs) placed at clinically relevant expander-tissue interface points. Film dosimetry with the reservoir perpendicular to film reveals 40% transmission at a depth of 0.7 cm, which increases to 60% at a depth of 8.2 cm. In the parallel position, the results vary depending on which area under the reservoir is examined, indicating that the reservoir is not a uniformly dense object. Testing of the intact expander on the phantom revealed that the average percent difference (measured vs expected dose) was 2.7%, σ = 6.2% with heterogeneity correction and 3.7%, σ = 2.4% without heterogeneity correction. The only position where the OSLD readings were consistently higher than the calculated dose by >5% was at position 1, just deep to the canister at the expander-phantom interface. At this position, the readings varied from 5.2% to 14.5%, regardless of heterogeneity correction. Film dosimetry demonstrated beam attenuation in the shadow of the metallic reservoir in the expander. This decrease in dose was not reproduced on the intact expander on the phantom designed to replicate a clinical setup. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  20. Issues with Tissues: A Tale of Gameful Learning in an Introductory Undergraduate Biology Laboratory Course

    ERIC Educational Resources Information Center

    Owens, David

    2017-01-01

    An introductory undergraduate biology laboratory session about vertebrate tissues was gamified to elucidate the effects of gameful learning on students' perceptions of their own learning and motivation. Student groups were randomly assigned a vertebrate tissue, including corresponding slides and content from the laboratory manual, and tasked with…

  1. The histopathologic reliability of tissue taken from cadavers within the gross anatomy laboratory.

    PubMed

    Rae, Guenevere; Newman, William P; McGoey, Robin; Donthamsetty, Supriya; Karpinski, Aryn C; Green, Jeffrey

    2018-03-01

    The purpose of this study was to examine the histopathologic reliability of embalmed cadaveric tissue taken from the gross anatomy laboratory. Tissue samples from hearts, livers, lungs, and kidneys were collected after the medical students' dissection course was completed. All of the cadavers were embalmed in a formalin-based fixative solution. The tissue was processed, embedded in paraffin, sectioned at six micrometers, and stained with H&E. The microscope slides were evaluated by a board certified pathologist to determine whether the cellular components of the tissues were preserved at a high enough quality to allow for histopathologic diagnosis. There was a statistically significant relationship between ratings and organ groups. Across all organs, there was a smaller proportion of "poor" ratings. The lung group had the highest percentage of "poor" ratings (23.1%). The heart group had the least "poor" ratings (0.0%). The largest percentage of "satisfactory" ratings were in the lung group (52.8%), and the heart group contained the highest percentage of "good" ratings (58.5%) The lung group had the lowest percentage of "good" ratings (24.2%). These results indicate that heart tissue is more reliable than lung, kidney, or liver tissue when utilizing tissue from the gross anatomy laboratory for research and/or educational purposes. This information advises educators and researchers about the quality and histopathologic reliability of tissue samples obtained from the gross anatomy laboratory. Anat Sci Educ 11: 207-214. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  2. Development and characterisation of a brain tumour mimicking protoporphyrin IX fluorescence phantom (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Tisca, Cristiana; Peveler, William; Noimark, Sacha; Desjardins, Adrien E.; Parkin, Ivan P.; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    5-ALA-PpIX fluorescence-guided brain tumour resection can increase the accuracy at which cancerous tissue is removed and thereby improve patient outcomes, as compared with standard white light imaging. Novel optical devices that aim to increase the specificity and sensitivity of PpIX detection are typically assessed by measurements in tissue-mimicking optical phantoms of which all optical properties are defined. Current existing optical phantoms specified for PpIX lack consistency in their optical properties, and stability with respect to photobleaching, thus yielding an unstable correspondence between PpIX concentration and the fluorescence intensity. In this study, we developed a set of aqueous-based phantoms with different compositions, using deionised water or PBS buffer as background medium, intralipid as scattering material, bovine haemoglobin as background absorber, and either PpIX dissolved in DMSO or a novel nanoparticle with similar absorption and emission spectrum to PpIX as the fluorophore. We investigated the phantom stability in terms of aggregation and photobleaching by comparing with different background medium and fluorophores, respectively. We characterised the fluorescence intensity of the fluorescent nanoparticle in different concentration of intralipid and haemoglobin and its time-dependent stability, as compared to the PpIX-induced fluorescence. We corroborated that the background medium was essential to prepare a stable aqueous phantom. The novel fluorescent nanoparticle used as surrogate fluorophore of PpIX presented an improved temporal stability and a reliable correspondence between concentration and emission intensity. We proposed an optimised phantom composition and recipe to produce reliable and repeatable phantom for validation of imaging device.

  3. A feasiblity study of an ultrasonic test phantom arm

    NASA Astrophysics Data System (ADS)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  4. Laboratory Workflow Analysis of Culture of Periprosthetic Tissues in Blood Culture Bottles.

    PubMed

    Peel, Trisha N; Sedarski, John A; Dylla, Brenda L; Shannon, Samantha K; Amirahmadi, Fazlollaah; Hughes, John G; Cheng, Allen C; Patel, Robin

    2017-09-01

    Culture of periprosthetic tissue specimens in blood culture bottles is more sensitive than conventional techniques, but the impact on laboratory workflow has yet to be addressed. Herein, we examined the impact of culture of periprosthetic tissues in blood culture bottles on laboratory workflow and cost. The workflow was process mapped, decision tree models were constructed using probabilities of positive and negative cultures drawn from our published study (T. N. Peel, B. L. Dylla, J. G. Hughes, D. T. Lynch, K. E. Greenwood-Quaintance, A. C. Cheng, J. N. Mandrekar, and R. Patel, mBio 7:e01776-15, 2016, https://doi.org/10.1128/mBio.01776-15), and the processing times and resource costs from the laboratory staff time viewpoint were used to compare periprosthetic tissues culture processes using conventional techniques with culture in blood culture bottles. Sensitivity analysis was performed using various rates of positive cultures. Annualized labor savings were estimated based on salary costs from the U.S. Labor Bureau for Laboratory staff. The model demonstrated a 60.1% reduction in mean total staff time with the adoption of tissue inoculation into blood culture bottles compared to conventional techniques (mean ± standard deviation, 30.7 ± 27.6 versus 77.0 ± 35.3 h per month, respectively; P < 0.001). The estimated annualized labor cost savings of culture using blood culture bottles was $10,876.83 (±$337.16). Sensitivity analysis was performed using various rates of culture positivity (5 to 50%). Culture in blood culture bottles was cost-effective, based on the estimated labor cost savings of $2,132.71 for each percent increase in test accuracy. In conclusion, culture of periprosthetic tissue in blood culture bottles is not only more accurate than but is also cost-saving compared to conventional culture methods. Copyright © 2017 American Society for Microbiology.

  5. Extraneous tissue in surgical pathology: a College of American Pathologists Q-Probes study of 275 laboratories.

    PubMed

    Gephardt, G N; Zarbo, R J

    1996-11-01

    To develop a multi-institutional reference database of extraneous tissue (contaminants) in surgical pathology. In 1994, participants in the College of American Pathologists Q-Probes quality improvement program performed prospective and retrospective evaluations of extraneous tissue found in surgical pathology microscopic sections for a period of 4 weeks or until 1000 slides were reviewed in each participating laboratory. Two hundred seventy-five surgical pathology laboratories institutions, predominantly from North America. Extraneous tissue contamination rate for slides in prospective and retrospective reviews; staffing and practice procedures; location of extraneous tissue on slides; type of extraneous tissue (normal, abnormal, nonneoplastic, neoplasm, microorganisms, etc); class of extraneous tissue (slide or block contaminants); source of extraneous tissue (different or same case); origin of extraneous tissue (pathology laboratory, physician's office or operating room); and degree of diagnostic difficulty caused by extraneous tissue. Three hundred twenty-one thousand seven hundred fifty-seven slides were reviewed in the prospective study and 57083 slides in the retrospective study. There was an overall extraneous tissue rate of 0.6% of slides (2074/321757) in the prospective study and 2.9% of slides (1653/57083) in the retrospective study. Of those slides with extraneous tissue, the extraneous tissue was located near diagnostic tissue sections in 59.5% of the slides reviewed prospectively and in 25.3% of slides reviewed retrospectively; deeper sections were performed to evaluate extraneous tissue in 12.2% of prospective cases and in 3.1% of retrospective cases. Of the laboratories, 98% had written guidelines for changing solution in tissue processors, and 64.9% had guidelines for maintaining water baths free of extraneous tissue. A total of 98.9% used lens paper, filter bags, or sponges for processing fragmented and small specimens. Written protocols for

  6. Characterization and validation of the thorax phantom Lungman for dose assessment in chest radiography optimization studies.

    PubMed

    Rodríguez Pérez, Sunay; Marshall, Nicholas William; Struelens, Lara; Bosmans, Hilde

    2018-01-01

    This work concerns the validation of the Kyoto-Kagaku thorax anthropomorphic phantom Lungman for use in chest radiography optimization. The equivalence in terms of polymethyl methacrylate (PMMA) was established for the lung and mediastinum regions of the phantom. Patient chest examination data acquired under automatic exposure control were collated over a 2-year period for a standard x-ray room. Parameters surveyed included exposure index, air kerma area product, and exposure time, which were compared with Lungman values. Finally, a voxel model was developed by segmenting computed tomography images of the phantom and implemented in PENELOPE/penEasy Monte Carlo code to compare phantom tissue-equivalent materials with materials from ICRP Publication 89 in terms of organ dose. PMMA equivalence varied depending on tube voltage, from 9.5 to 10.0 cm and from 13.5 to 13.7 cm, for the lungs and mediastinum regions, respectively. For the survey, close agreement was found between the phantom and the patients' median values (deviations lay between 8% and 14%). Differences in lung doses, an important organ for optimization in chest radiography, were below 13% when comparing the use of phantom tissue-equivalent materials versus ICRP materials. The study confirms the value of the Lungman for chest optimization studies.

  7. Multilayered disease-mimicking bladder phantom with realistic surface topology for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Smith, Gennifer T.; Lurie, Kristen L.; Khan, Saara A.; Liao, Joseph C.; Ellerbee, Audrey K.

    2014-03-01

    Optical coherence tomography (OCT) has shown potential as a complementary modality to white light cystoscopy (WLC), the gold standard for imaging bladder cancer. OCT can visualize sub-surface details of the bladder wall, which enables it to stage cancers and detect tumors that are otherwise invisible to WLC. Currently, OCT systems have too slow a speed and too small a field of view for comprehensive bladder imaging, which limits its clinical utility. Validation and feasibility testing of technological refinements aimed to provide faster imaging and wider fields of view necessitates a realistic bladder phantom. We present a novel process to fabricate the first such phantom that mimics both the optical and morphological properties of layers of the healthy and pathologic bladder wall as they characteristically appear with OCT. The healthy regions of the silicone-based phantom comprises three layers: the urothelium, lamina propria and muscularis propria, each containing an appropriate concentration of titanium dioxide to mimic its distinct scattering properties. As well, the layers each possess a unique surface appearance imposed by a textured mold. Within this phantom, pathologic tissue-mimicking regions are created by thickening specific layers or creating inclusions that disrupt the layered appearance of the bladder wall, as is characteristic of bladder carcinomas. This phantom can help to evaluate the efficacy of new OCT systems and software for tumor localization. Moreover, the procedure we have developed is highly generalizable for the creation of OCT-relevant, multi-layer phantoms for tissues that incorporate diseased states characterized by the loss of layered structures.

  8. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic filmsmore » EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed

  9. Mechanical analysis of an axially symmetric cylindrical phantom with a spherical heterogeneity for MR elastography

    PubMed Central

    Magin, Richard L

    2016-01-01

    Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model who took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields. PMID:27579850

  10. Mechanical analysis of an axially symmetric cylindrical phantom with a spherical heterogeneity for MR elastography

    NASA Astrophysics Data System (ADS)

    Schwartz, Benjamin L.; Yin, Ziying; Magin, Richard L.

    2016-09-01

    Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy and thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model which took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields.

  11. Mechanical analysis of an axially symmetric cylindrical phantom with a spherical heterogeneity for MR elastography.

    PubMed

    Schwartz, Benjamin L; Yin, Ziying; Magin, Richard L

    2016-09-21

    Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy and thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model which took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields.

  12. VK-phantom male with 583 structures and female with 459 structures, based on the sectioned images of a male and a female, for computational dosimetry

    PubMed Central

    Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung

    2018-01-01

    Abstract The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body. PMID:29659988

  13. VK-phantom male with 583 structures and female with 459 structures, based on the sectioned images of a male and a female, for computational dosimetry.

    PubMed

    Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung

    2018-05-01

    The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body.

  14. Simulating tissue oxygenation by encapsulating hemoglobin in polymer microcapsules (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Guangli; Wu, Qiang; Shen, Shuwei; Zhao, Gang; Dong, Erbao; Xu, Ronald X.

    2017-03-01

    We describe a combination of liquid-jet microencapsulation and molding techniques to fabricate tissue-simulating phantoms that mimick functional characteristics of tissue oxygen saturation (StO2). Chicken hemoglobin (Hb) was encapsulated inside a photocurable resin by a coaxial flow focusing process. The microdroplets were cured by ultraviolet (UV) illumination to form Hb loaded polymersome microdroplets. The microdroplets were further freeze-dried to form semipermeable solid microcapules with an outer transparent polymeric shell and an inner core of Hb. The diameter of the microcapsules ranged from 50 to100 μm. The absorption spectrum of the microcapsules was measured by a UV/VIS spectrophotometer over a wavelength range from 400 nm to 1100 nm. To fabricate the tissue-simulating phantom, the Hb loaded microcapsules were dispersed in transparent polydimethylsiloxane (PDMS). The optical properties of the phantom were determined by an vertical double integrating sphere with a reconstruction algorithm. The experimental results showed that the tissue-simulating phantom exhibited the spectral characteristics closely resembling that of oxy-hemoglobin. The phantom had a long-term optical stability when stored in 4 ℃, indicating that microencapsulation effectively protected Hb and improved its shelf time. With the Hb loaded microcapsules, we will produce skin-simulating phantoms for quantitative validation of multispectral imaging techniques. To the best of the authors' knowledge, no solid phantom is able to mimick living tissue oxygenation with good agreement. Therefore, our work provided an engineering platform for validating and calibrating spectral optical devices in biomedical applications.

  15. Methodological questions of creating tissue-equivalent phantoms

    NASA Technical Reports Server (NTRS)

    Kolodkin, A. V.; Popov, V. I.; Sychkov, M. A.; Nikl, I.; Erdei, M.; Eyben, O.

    1974-01-01

    On the basis of analysis and generalization of literature data, the composition of tissue equivalent plastic was justified, parameters of a standard man were determined, plaster and metal forms were created for casting dummies, and an experimental model was produced from tissue equivalent material.

  16. TU-F-CAMPUS-T-05: Replacement Computational Phantoms to Estimate Dose in Out-Of-Field Organs and Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, K; Oregon Health and Science University, Portland, Oregon; Tannous, J

    Purpose: To estimate the absorbed dose in organs and tissues at risk for radiogenic cancer for children receiving photon radiotherapy for localized brain tumors (LBTs) by supplementing their missing body anatomies with those of replacement computational phantoms. Applied beyond the extent of the RT Images collected by computed tomography simulation, these phantoms included RT Image and RT Structure Set objects that encompassed sufficient extents and contours for dosimetric calculations. Method: Nine children, aged 2 to 14 years, who received three-dimensional conformal radiotherapy for low-grade LBTs, were randomly selected for this study under Institutional-Review-Board protocol. Because the extents of their RTmore » Images were cranial only, they were matched for size and sex with patients from a previous study with larger extents and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the patients’ data and those of the replacement computational phantoms using commercial software. In-field dose was calculated with a clinically-commissioned treatment planning system, and out-of-field dose was estimated with an analytical model. Results: Averaged over all nine children and normalized for a therapeutic dose of 54 Gy prescribed to the PTV, where the PTV is the GTV, the highest mean organ doses were 3.27, 2.41, 1.07, 1.02, 0.24, and 0.24 Gy in the non-tumor remainder, red bone marrow, thyroid, skin, breasts, and lungs, respectively. The mean organ doses ranged by a factor of 3 between the smallest and largest children. Conclusion: For children receiving photon radiotherapy for LBTs, we found their doses in organs at risk for second cancer to be non-negligible, especially in the non-tumor remainder, red bone marrow, thyroid, skin, breasts, and lungs. This study demonstrated the feasibility for patient dosimetry studies to augment missing patient anatomy by applying size- and sex

  17. The level of detail required in a deformable phantom to accurately perform quality assurance of deformable image registration

    NASA Astrophysics Data System (ADS)

    Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil

    2016-09-01

    The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.

  18. Development of skeletal system for mesh-type ICRP reference adult phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  19. Technical Note: Multipurpose CT, ultrasound, and MRI breast phantom for use in radiotherapy and minimally invasive interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruschin, Mark, E-mail: Mark.Ruschin@sunnybrook.ca; Chin, Lee; Ravi, Ananth

    Purpose: To develop a multipurpose gel-based breast phantom consisting of a simulated tumor with realistic imaging properties in CT, ultrasound and MRI, or a postsurgical cavity on CT. Applications for the phantom include: deformable image registration (DIR) quality assurance (QA), autosegmentation validation, and localization testing and training for minimally invasive image-guided procedures such as those involving catheter or needle insertion. Methods: A thermoplastic mask of a typical breast patient lying supine was generated and then filled to make an array of phantoms. The background simulated breast tissue consisted of 32.4 g each of ballistic gelatin (BG) powder and Metamusil™ (MM)more » dissolved in 800 ml of water. Simulated tumors were added using the following recipe: 12 g of barium sulfate (1.4% v/v) plus 0.000 14 g copper sulfate plus 0.7 g of MM plus 7.2 g of BG all dissolved in 75 ml of water. The phantom was evaluated quantitatively in CT by comparing Hounsfield units (HUs) with actual breast tissue. For ultrasound and MRI, the phantoms were assessed based on subjective image quality and signal-difference to noise (SDNR) ratio, respectively. The stiffness of the phantom was evaluated based on ultrasound elastography measurements to yield an average Young’s modulus. In addition, subjective tactile assessment of phantom was performed under needle insertion. Results: The simulated breast tissue had a mean background value of 24 HU on CT imaging, which more closely resembles fibroglandular tissue (40 HU) as opposed to adipose (−100 HU). The tumor had a mean CT number of 45 HU, which yielded a qualitatively realistic image contrast relative to the background either as an intact tumor or postsurgical cavity. The tumor appeared qualitatively realistic on ultrasound images, exhibiting hypoechoic characteristics compared to background. On MRI, the tumor exhibited a SDNR of 3.7. The average Young’s modulus was computed to be 15.8 ± 0.7 kPa (1 SD

  20. Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams

    NASA Astrophysics Data System (ADS)

    Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.

    2014-02-01

    The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.

  1. Effect of the Scattering Radiation in Air and Two Type of Slap Phantom between PMMA and the ISO Water Phantom for Personal Dosimeters Calibration

    NASA Astrophysics Data System (ADS)

    Kamwang, N.; Rungseesumran, T.; Saengchantr, D.; Monthonwattana, S.; Pungkun, V.

    2017-06-01

    The calibration of personal dosimeter to determine the quantities of the personal dose equivalent, Hp(d), is required to be placed on a suitable phantom in order to provide a reasonable approximation to the radiation backscattering properties as equivalent as part of body. The dosimeter which is worn on the trunk usually calibrated with slap phantom which recommended in ICRU 47 with dimension of 30 cm (w) x 30 cm (h) x 15 cm (t) PMMA slab phantom to achieve uniformity in calibration procedures, on the other hand the International Organization for Standardization (ISO), ISO 4037-3, proposed the ISO water slap phantom, with PMMA walls, same dimension but different wall thickness (front wall 2.5 mm and other side wall 10 mm thick) and fill with water. However, some laboratories are still calibrating a personal dosimeter in air in term of ambient dose equivalent, H*(d). This research study the effect of the scattering radiation in two type of those slap phantoms and in air, to calibrate two type of OSL (XA and LA) and electronic personal dosimeters. The X-ray and Cs-137 radiation field with the energy range from 33 to 662 keV were used. The results of this study will be discussed.

  2. MRXCAT: Realistic numerical phantoms for cardiovascular magnetic resonance

    PubMed Central

    2014-01-01

    Background Computer simulations are important for validating novel image acquisition and reconstruction strategies. In cardiovascular magnetic resonance (CMR), numerical simulations need to combine anatomical information and the effects of cardiac and/or respiratory motion. To this end, a framework for realistic CMR simulations is proposed and its use for image reconstruction from undersampled data is demonstrated. Methods The extended Cardiac-Torso (XCAT) anatomical phantom framework with various motion options was used as a basis for the numerical phantoms. Different tissue, dynamic contrast and signal models, multiple receiver coils and noise are simulated. Arbitrary trajectories and undersampled acquisition can be selected. The utility of the framework is demonstrated for accelerated cine and first-pass myocardial perfusion imaging using k-t PCA and k-t SPARSE. Results MRXCAT phantoms allow for realistic simulation of CMR including optional cardiac and respiratory motion. Example reconstructions from simulated undersampled k-t parallel imaging demonstrate the feasibility of simulated acquisition and reconstruction using the presented framework. Myocardial blood flow assessment from simulated myocardial perfusion images highlights the suitability of MRXCAT for quantitative post-processing simulation. Conclusion The proposed MRXCAT phantom framework enables versatile and realistic simulations of CMR including breathhold and free-breathing acquisitions. PMID:25204441

  3. Tissue mimicking materials for dental ultrasound

    PubMed Central

    Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Brown, Elliott R.; White, Shane N.

    2008-01-01

    While acoustic tissue mimicking materials have been explored for a variety of soft and hard biological tissues, no dental hard tissue mimicking materials have been characterized. Tooth phantoms are necessary to better understand acoustic phenomenology within the tooth environment and to accelerate the advancement of dental ultrasound imaging systems. In this study, soda lime glass and dental composite were explored as surrogates for human enamel and dentin, respectively, in terms of compressional velocity, attenuation, and acoustic impedance. The results suggest that a tooth phantom consisting of glass and composite can effectively mimic the acoustic behavior of a natural human tooth. PMID:18396919

  4. Adaptive focus for deep tissue using diffuse backscatter

    NASA Astrophysics Data System (ADS)

    Kress, Jeremy; Pourrezaei, Kambiz

    2014-02-01

    A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.

  5. Depth Dose Distribution Study within a Phantom Torso after Irradiation with a Simulated Solar Particle Event at NSRL

    NASA Technical Reports Server (NTRS)

    Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther

    2010-01-01

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field

  6. Tissue floaters and contaminants in the histology laboratory.

    PubMed

    Platt, Eric; Sommer, Paul; McDonald, Linda; Bennett, Ana; Hunt, Jennifer

    2009-06-01

    Anatomic pathology diagnosis is often based on morphologic features. In recent years, an appropriate increased attention to patient safety has led to an emphasis on improving maintenance of patient identity. Decreasing or eliminating cross-contamination from one specimen to another is an example of a patient identity issue for which process improvement can be initiated. To quantify the presence of cross-contamination from histology water baths and the slide stainers. We assessed for the presence of contaminants in water baths at cutting stations and in linear stainer stain baths. We assessed the potential for tissue discohesion and carryover in tissue samples and we assessed the potential for carryover onto blank slides sent through the stainer. In the 13 water baths examined (totalling 195 L of water), only one fragment of tissue was identified. The stain baths, however, contained abundant tissue contaminants, ranging in size from 2 to 3 cells to hundreds of cells. The first sets of xylenes and alcohols were the most heavily contaminated. Cross-contamination to blank slides occurred at a rate of 8%, with the highest frequency in the late afternoon. Cross-contamination can present a significant challenge in the histology laboratory. Although the histotechnologists' water baths are not heavily contaminated, the stainer baths do contain contaminating tissue fragments. Cross-contamination does occur onto blank slides in the experimental setting.

  7. Navigating conjugated polymer actuated neural probes in a brain phantom

    NASA Astrophysics Data System (ADS)

    Daneshvar, Eugene D.; Kipke, Daryl; Smela, Elisabeth

    2012-04-01

    Neural probe insertion methods have a direct impact on the longevity of the device in the brain. Initial tissue and vascular damage caused by the probe entering the brain triggers a chronic tissue response that is known to attenuate neural recordings and ultimately encapsulate the probes. Smaller devices have been found to evoke reduced inflammatory response. One way to record from undamaged neural networks may be to position the electrode sites away from the probe. To investigate this approach, we are developing probes with controllably movable electrode projections, which would move outside of the zone that is damaged by the insertion of the larger probe. The objective of this study was to test the capability of conjugated polymer bilayer actuators to actuate neural electrode projections from a probe shank into a transparent brain phantom. Parylene neural probe devices, having five electrode projections with actuating segments and with varying widths (50 - 250 μm) and lengths (200 - 1000 μm) were fabricated. The electroactive polymer polypyrrole (PPy) was used to bend or flatten the projections. The devices were inserted into the brain phantom using an electronic microdrive while simultaneously activating the actuators. Deflections were quantified based on video images. The electrode projections were successfully controlled to either remain flat or to actuate out-of-plane and into the brain phantom during insertion. The projection width had a significant effect on their ability to deflect within the phantom, with thinner probes deflecting but not the wider ones. Thus, small integrated conjugated polymer actuators may enable multiple neuro-experiments and applications not possible before.

  8. Optical tracking of acoustic radiation force impulse-induced dynamics in a tissue-mimicking phantom

    PubMed Central

    Bouchard, Richard R.; Palmeri, Mark L.; Pinton, Gianmarco F.; Trahey, Gregg E.; Streeter, Jason E.; Dayton, Paul A.

    2009-01-01

    Optical tracking was utilized to investigate the acoustic radiation force impulse (ARFI)-induced response, generated by a 5-MHz piston transducer, in a translucent tissue-mimicking phantom. Suspended 10-μm microspheres were tracked axially and laterally at multiple locations throughout the field of view of an optical microscope with 0.5-μm displacement resolution, in both dimensions, and at frame rates of up to 36 kHz. Induced dynamics were successfully captured before, during, and after the ARFI excitation at depths of up to 4.8 mm from the phantom’s proximal boundary. Results are presented for tracked axial and lateral displacements resulting from on-axis and off-axis (i.e., shear wave) acquisitions; these results are compared to matched finite element method modeling and independent ultrasonically based empirical results and yielded reasonable agreement in most cases. A shear wave reflection, generated by the proximal boundary, consistently produced an artifact in tracked displacement data later in time (i.e., after the initial ARFI-induced displacement peak). This tracking method provides high-frame-rate, two-dimensional tracking data and thus could prove useful in the investigation of complex ARFI-induced dynamics in controlled experimental settings. PMID:19894849

  9. Three-dimensional printing (3DP) of neonatal head phantom for ultrasound: thermocouple embedding and simulation of bone.

    PubMed

    Gatto, Matteo; Memoli, Gianluca; Shaw, Adam; Sadhoo, Neelaksh; Gelat, Pierre; Harris, Russell A

    2012-09-01

    A neonatal head phantom, comprising of an ellipsoidal geometry and including a circular aperture for simulating the fontanel was designed and fabricated, in order to allow an objective assessment of thermal rise in tissues during trans-cranial ultrasonic scanning of pre-term neonates. The precise position of a series of thermocouples was determined on the basis of finite-element analysis, which identified crucial target points for the thermal monitoring within the phantom geometry. Three-Dimensional Printing (3DP) was employed for the manufacture of the skull phantom, which was subsequently filled with dedicated brain-mimic material. A novel 3DP material combination was found to be able to mimic the acoustic properties of neonatal skull bone. Similarly, variations of a standard recipe for tissue mimic were examined, until one was found to mimic the brain of an infant. A specific strategy was successfully pursued to embed a thermocouple within the 3DP skull phantom during the manufacturing process. An in-process machine vision system was used to assess the correct position of the deposited thermocouple inside the fabricated skull phantom. An external silicone-made skin-like covering completed the phantom and was manufactured through a Direct Rapid Tooling (DRT) technique. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid

    NASA Astrophysics Data System (ADS)

    Lamart, Stephanie; Bouville, Andre; Simon, Steven L.; Eckerman, Keith F.; Melo, Dunstana; Lee, Choonsik

    2011-11-01

    The S values for 11 major target organs for I-131 in the thyroid were compared for three classes of adult computational human phantoms: stylized, voxel and hybrid phantoms. In addition, we compared specific absorbed fractions (SAFs) with the thyroid as a source region over a broader photon energy range than the x- and gamma-rays of I-131. The S and SAF values were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms and the University of Florida (UF) hybrid phantoms by using the Monte Carlo transport method, while the S and SAF values for the Oak Ridge National Laboratory (ORNL) stylized phantoms were obtained from earlier publications. Phantoms in our calculations were for adults of both genders. The 11 target organs and tissues that were selected for the comparison of S values are brain, breast, stomach wall, small intestine wall, colon wall, heart wall, pancreas, salivary glands, thyroid, lungs and active marrow for I-131 and thyroid as a source region. The comparisons showed, in general, an underestimation of S values reported for the stylized phantoms compared to the values based on the ICRP voxel and UF hybrid phantoms and relatively good agreement between the S values obtained for the ICRP and UF phantoms. Substantial differences were observed for some organs between the three types of phantoms. For example, the small intestine wall of ICRP male phantom and heart wall of ICRP female phantom showed up to eightfold and fourfold greater S values, respectively, compared to the reported values for the ORNL phantoms. UF male and female phantoms also showed significant differences compared to the ORNL phantom, 4.0-fold greater for the small intestine wall and 3.3-fold greater for the heart wall. In our method, we directly calculated the S values without using the SAFs as commonly done. Hence, we sought to confirm the differences observed in our S values by comparing the SAFs among the phantoms with the thyroid as a

  11. Intra-body microwave communication through adipose tissue.

    PubMed

    Asan, Noor Badariah; Noreland, Daniel; Hassan, Emadeldeen; Redzwan Mohd Shah, Syaiful; Rydberg, Anders; Blokhuis, Taco J; Carlsson, Per-Ola; Voigt, Thiemo; Augustine, Robin

    2017-08-01

    The human body can act as a medium for the transmission of electromagnetic waves in the wireless body sensor networks context. However, there are transmission losses in biological tissues due to the presence of water and salts. This Letter focuses on lateral intra-body microwave communication through different biological tissue layers and demonstrates the effect of the tissue thicknesses by comparing signal coupling in the channel. For this work, the authors utilise the R-band frequencies since it overlaps the industrial, scientific and medical radio (ISM) band. The channel model in human tissues is proposed based on electromagnetic simulations, validated using equivalent phantom and ex-vivo measurements. The phantom and ex-vivo measurements are compared with simulation modelling. The results show that electromagnetic communication is feasible in the adipose tissue layer with a low attenuation of ∼2 dB per 20 mm for phantom measurements and 4 dB per 20 mm for ex-vivo measurements at 2 GHz. Since the dielectric losses of human adipose tissues are almost half of ex-vivo tissue, an attenuation of around 3 dB per 20 mm is expected. The results show that human adipose tissue can be used as an intra-body communication channel.

  12. Velocity and attenuation of shear waves in the phantom of a muscle-soft tissue matrix with embedded stretched fibers

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Tsyuryupa, S. N.; Sarvazyan, A. P.

    2016-09-01

    We develop a theory of the elasticity moduli and dissipative properties of a composite material: a phantom simulating muscle tissue anisotropy. The model used in the experiments was made of a waterlike polymer with embedded elastic filaments imitating muscle fiber. In contrast to the earlier developed phenomenological theory of the anisotropic properties of muscle tissue, here we obtain the relationship of the moduli with characteristic sizes and moduli making up the composite. We introduce the effective elasticity moduli and viscosity tensor components, which depend on stretching of the fibers. We measure the propagation velocity of shear waves and the shear viscosity of the model for regulated tension. Waves were excited by pulsed radiation pressure generated by modulated focused ultrasound. We show that with increased stretching of fibers imitating muscle contraction, an increase in both elasticity and viscosity takes place, and this effect depends on the wave propagation direction. The results of theoretical and experimental studies support our hypothesis on the protective function of stretched skeletal muscle, which protects bones and joints from trauma.

  13. Fabrication and application of heterogeneous printed mouse phantoms for whole animal optical imaging

    PubMed Central

    Bentz, Brian Z.; Chavan, Anmol V.; Lin, Dergan; Tsai, Esther H. R.; Webb, Kevin J.

    2017-01-01

    This work demonstrates the usefulness of 3D printing for optical imaging applications. Progress in developing optical imaging for biomedical applications requires customizable and often complex objects for testing and evaluation. There is therefore high demand for what have become known as tissue-simulating “phantoms.” We present a new optical phantom fabricated using inexpensive 3D printing methods with multiple materials, allowing for the placement of complex inhomogeneities in complex or anatomically realistic geometries, as opposed to previous phantoms, which were limited to simple shapes formed by molds or machining. We use diffuse optical imaging to reconstruct optical parameters in 3D space within a printed mouse to show the applicability of the phantoms for developing whole animal optical imaging methods. This phantom fabrication approach is versatile, can be applied to optical imaging methods besides diffusive imaging, and can be used in the calibration of live animal imaging data. PMID:26835763

  14. Use of internal references for assessing CT density measurements of the pelvis as replacement for use of an external phantom.

    PubMed

    Boomsma, Martijn F; Slouwerhof, Inge; van Dalen, Jorn A; Edens, Mireille A; Mueller, Dirk; Milles, Julien; Maas, Mario

    2015-11-01

    The purpose of this research is to study the use of an internal reference standard for fat- and muscle as a replacement for an external reference standard with a phantom. By using a phantomless internal reference standard, Hounsfield unit (HU) measurements of various tissues can potentially be assessed in patients with a CT scan of the pelvis without an added phantom at time of CT acquisition. This paves the way for development of a tool for quantification of the change in tissue density in one patient over time and between patients. This could make every CT scan made without contrast available for research purposes. Fifty patients with unilateral metal-on-metal total hip replacements, scanned together with a calibration reference phantom used in bone mineral density measurements, were included in this study. On computed tomography scans of the pelvis without the use of intravenous iodine contrast, reference values for fat and muscle were measured in the phantom as well as within the patient's body. The conformity between the references was examined with the intra-class correlation coefficient. The mean HU (± SD) of reference values for fat for the internal- and phantom references were -91.5 (±7.0) and -90.9 (±7.8), respectively. For muscle, the mean HU (± SD) for the internal- and phantom references were 59.2 (±6.2) and 60.0 (±7.2), respectively. The intra-class correlation coefficients for fat and muscle were 0.90 and 0.84 respectively and show excellent agreement between the phantom and internal references. Internal references can be used with similar accuracy as references from an external phantom. There is no need to use an external phantom to asses CT density measurements of body tissue.

  15. Fabrication and characterization of polymer gel for MRI phantom with embedded lesion particles

    NASA Astrophysics Data System (ADS)

    In, Eunji; Naguib, Hani E.; Haider, Masoom

    2012-04-01

    Magnetic Resonance Imaging (MRI) is a medical imaging technique used in radiology to visualize the detailed internal structure and body soft tissues in complete 3D image. MRI performs best when optimal imaging parameters such as contrast, signal to noise ratio (SNR), spatial resolution and total scan time are utilized. However, due to a variety of imaging parameters that differ with the manufacturer, a calibration medium that allows the control of these parameters is necessary. Therefore, a phantom that behaves similar to human soft tissue is developed to replace a real human. Polymer gel is novel material that has great potential in the medical imaging. Since very few have focused on examining the behavior of polymer lesions, the motivation of this study is to develop a polymer gel phantom, especially for liver, with embedded lesions. Both the phantom and lesions should be capable of reflecting T1 and T2 relaxation values through various characterization processes. In this paper, phantom and lesion particles were fabricated with carrageenan as a gelling agent by physical aggregation. Agar was used as supplementary gelling agent and T2 modifier and Gd-DTPA as T1 modifier. The polymer gel samples were fabricated by varying the concentrations of the gelling agent, and T1 and T2 modifiers. The lesion particles were obtained by extracting molten polymer gel solution in chilled oil bath to obtain spherical shape. The polymer gel properties including density, elastic modulus, dielectric constant and optical properties were measured to compare with human tissue values for long period of time.

  16. WE-D-BRA-05: Pseudo In Vivo Patient Dosimetry Using a 3D-Printed Patient-Specific Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ger, R; Craft, DF; Burgett, EA

    Purpose: To test the feasibility of using 3D-printed patient-specific phantoms for intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We created a patient-specific whole-head phantom using a 3D printer. The printer data file was created from high-resolution DICOM computed tomography (CT) images of 3-year old child treated at our institution for medulloblastoma. A custom-modified extruder system was used to create tissue-equivalent materials. For the printing process, the Hounsfield Units from the CT images were converted to proportional volumetric densities. A 5-field IMRT plan was created from the patient CT and delivered to the 3D- phantom. Dose was measured by anmore » ion chamber placed through the eye. The ion chamber was placed at the posterior edge of the planning target volume in a high dose gradient region. CT scans of the patient and 3D-phantom were fused by using commercial treatment planning software (TPS). The patient’s plan was calculated on the phantom CT images. The ion chamber’s active volume was delineated in the TPS; dose per field and total dose were obtained. Measured and calculated doses were compared. Results: The 3D-phantom dimensions and tissue densities were in good agreement with the patient. However, because of a printing error, there was a large discrepancy in the density in the frontal cortex. The calculated and measured treatment plan doses were 1.74 Gy and 1.72 Gy, respectively. For individual fields, the absolute dose difference between measured and calculated values was on average 3.50%. Conclusion: This study demonstrated the feasibility of using 3D-printed patient-specific phantoms for IMRT QA. Such phantoms would be particularly advantageous for complex IMRT treatment plans featuring high dose gradients and/or for anatomical sites with high variation in tissue densities. Our preliminary findings are promising. We anticipate that, once the printing process is further refined, the agreement between

  17. Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery.

    PubMed

    Shen, Shuwei; Wang, Haili; Xue, Yue; Yuan, Li; Zhou, Ximing; Zhao, Zuhua; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Xu, Ronald X

    2017-09-08

    Preoperative assessment of tissue anatomy and accurate surgical planning is crucial in conjoined twin separation surgery. We developed a new method that combines three-dimensional (3D) printing, assembling, and casting to produce anatomic models of high fidelity for surgical planning. The related anatomic features of the conjoined twins were captured by computed tomography (CT), classified as five organ groups, and reconstructed as five computer models. Among these organ groups, the skeleton was produced by fused deposition modeling (FDM) using acrylonitrile-butadiene-styrene. For the other four organ groups, shell molds were prepared by FDM and cast with silica gel to simulate soft tissues, with contrast enhancement pigments added to simulate different CT and visual contrasts. The produced models were assembled, positioned firmly within a 3D printed shell mold simulating the skin boundary, and cast with transparent silica gel. The produced phantom was subject to further CT scan in comparison with that of the patient data for fidelity evaluation. Further data analysis showed that the produced model reassembled the geometric features of the original CT data with an overall mean deviation of less than 2 mm, indicating the clinical potential to use this method for surgical planning in conjoined twin separation surgery.

  18. New Radiation Dosimetry Estimates for [18F]FLT based on Voxelized Phantoms.

    PubMed

    Mendes, B M; Ferreira, A V; Nascimento, L T C; Ferreira, S M Z M D; Silveira, M B; Silva, J B

    2018-04-25

    3'-Deoxy-3-[ 18 F]fluorothymidine, or [ 18 F]FLT, is a positron emission tomography (PET) tracer used in clinical studies for noninvasive assessment of proliferation activity in several types of cancer. Although the use of this PET tracer is expanding, to date, few studies concerning its dosimetry have been published. In this work, new [ 18 F]FLT dosimetry estimates are determined for human and mice using Monte Carlo simulations. Modern voxelized male and female phantoms and [ 18 F]FLT biokinetic data, both published by the ICRP, were used for simulations of human cases. For most human organs/tissues the absorbed doses were higher than those reported in ICRP Publication 128. An effective dose of 1.70E-02 mSv/MBq to the whole body was determined, which is 13.5% higher than the ICRP reference value. These new human dosimetry estimates obtained using more realistic human phantoms represent an advance in the knowledge of [ 18 F]FLT dosimetry. In addition, mice biokinetic data were obtained experimentally. These data and a previously developed voxelized mouse phantom were used for simulations of animal cases. Concerning animal dosimetry, absorbed doses for organs/tissues ranged from 4.47 ± 0.75 to 155.74 ± 59.36 mGy/MBq. The obtained set of organ/tissue radiation doses for healthy Swiss mice is a useful tool for application in animal experiment design.

  19. Software phantom with realistic speckle modeling for validation of image analysis methods in echocardiography

    NASA Astrophysics Data System (ADS)

    Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten

    2014-03-01

    Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.

  20. ANTHROPOMORPHIC PHANTOMS FOR ASSESSMENT OF STRAIN IMAGING METHODS INVOLVING SALINE-INFUSED SONOHYSTEROGRAPHY

    PubMed Central

    Hobson, Maritza A.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Shi, Hairong; Hall, Timothy J.; Varghese, Tomy

    2008-01-01

    Two anthropomorphic uterine phantoms were developed which allow assessment and comparison of strain imaging systems adapted for use with saline-infused sonohysterography (SIS). Tissue-mimicking (TM) materials consist of dispersions of safflower oil in gelatin. TM fibroids are stiffer than the TM myometrium/cervix and TM polyps are softer. The first uterine phantom has 3-mm diameter TM fibroids randomly distributed in TM myometrium. The second uterine phantom has a 5-mm and an 8-mm spherical TM fibroid in addition to a 5-mm spherical and a 12.5-mm long (medicine-capsule-shaped) TM endometrial polyp protruding into the endometrial cavity; also, a 10-mm spherical TM fibroid projects from the serosal surface. Strain images using the first phantom show the stiffer 3-mm TM fibroids in the myometrium. Results from the second uterine phantom show that, as expected, parts of inclusions projecting into the uterine cavity will appear very stiff, whether they are stiff or soft. Results from both phantoms show that even though there is a five-fold difference in the Young’s moduli values, there is not a significant difference in the strain in the transition from the TM myometrium to the TM fat. These phantoms allow for realistic comparison and evolution of SIS strain imaging techniques and can aid clinical personnel to develop skills for SIS strain imaging. PMID:18514999

  1. Dose distributions in phantoms irradiated in thermal columns of two different nuclear reactors.

    PubMed

    Gambarini, G; Agosteo, S; Altieri, S; Bortolussi, S; Carrara, M; Gay, S; Nava, E; Petrovich, C; Rosi, G; Valente, M

    2007-01-01

    In-phantom dosimetry studies have been carried out at the thermal columns of a thermal- and a fast-nuclear reactor for investigating: (a) the spatial distribution of the gamma dose and the thermal neutron fluence and (b) the accuracy at which the boron concentration should be estimated in an explanted organ of a boron neutron capture therapy patient. The phantom was a cylinder (11 cm in diameter and 12 cm in height) of tissue-equivalent gel. Dose images were acquired with gel dosemeters across the axial section of the phantom. The thermal neutron fluence rate was measured with activation foils in a few positions of this phantom. Dose and fluence rate profiles were also calculated with Monte Carlo simulations. The trend of these profiles do not show significant differences for the thermal columns considered in this work.

  2. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    PubMed

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  3. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    NASA Astrophysics Data System (ADS)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  4. Improvement of the light-tissue coupling for better outcome of phototherapies

    NASA Astrophysics Data System (ADS)

    da Silva, Dilleys Ferreira; Vollet Filho, José Dirceu; Fortunato, Thereza Cury; Moriyama, Lilian Tan; Grecco, Clovis; Pratavieira, Sebastião.; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2018-02-01

    Phototherapies have been increasingly used in several applications such as the control of pain and inflammatory processes, photodynamic therapy, and even aesthetics uses. After many decades, the dosimetry for those techniques remains challenging. One of the key issues is the lack of homogeneity obtained for tissue illumination, which may limit adequate treatment. Especially concerning lesions, the surface tissue is usually irregular, and the light does not couple to the tissue efficiently to promote an effective treatment. A series of experiments have been performed using optical phantoms, in which coupling was improved by introducing a gel with a low concentration of scattering agents between the fiber and the phantom as an attempt to improve the homogeneity of light distribution within the phantoms. The effects promoted by roughness on phantom tissue surfaces are considerably attenuated when the coupling gel was introduced, resulting in a more uniform illumination pattern that may be used to promote better phototherapy treatments outcome.

  5. International Intercomparison of Specific Absorption Rates in a Flat Absorbing Phantom in the Near-Field of Dipole Antennas

    PubMed Central

    Davis, Christopher C.; Beard, Brian B.; Tillman, Ahlia; Rzasa, John; Merideth, Eric; Balzano, Quirino

    2018-01-01

    This paper reports the results of an international intercomparison of the specific absorption rates (SARs) measured in a flat-bottomed container (flat phantom), filled with human head tissue simulant fluid, placed in the near-field of custom-built dipole antennas operating at 900 and 1800 MHz, respectively. These tests of the reliability of experimental SAR measurements have been conducted as part of a verification of the ways in which wireless phones are tested and certified for compliance with safety standards. The measurements are made using small electric-field probes scanned in the simulant fluid in the phantom to record the spatial SAR distribution. The intercomparison involved a standard flat phantom, antennas, power meters, and RF components being circulated among 15 different governmental and industrial laboratories. At the conclusion of each laboratory’s measurements, the following results were communicated to the coordinators: Spatial SAR scans at 900 and 1800 MHz and 1 and 10 g maximum spatial SAR averages for cubic volumes at 900 and 1800 MHz. The overall results, given as meanstandard deviation, are the following: at 900 MHz, 1 g average 7.850.76; 10 g average 5.160.45; at 1800 MHz, 1 g average 18.44 ± 1.65; 10 g average 10.14 ± 0.85, all measured in units of watt per kilogram, per watt of radiated power. PMID:29520117

  6. Design and validation of a mathematical breast phantom for contrast-enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Hill, Melissa L.; Mainprize, James G.; Jong, Roberta A.; Yaffe, Martin J.

    2011-03-01

    In contrast-enhanced digital mammography (CEDM) an iodinated contrast agent is employed to increase lesion contrast and to provide tissue functional information. Here, we present the details of a software phantom that can be used as a tool for the simulation of CEDM images, and compare the degree of anatomic noise present in images simulated using the phantom to that associated with breast parenchyma in clinical CEDM images. Such a phantom could be useful for multiparametric investigations including characterization of CEDM imaging performance and system optimization. The phantom has a realistic mammographic appearance based on a clustered lumpy background and models contrast agent uptake according to breast tissue physiology. Fifty unique phantoms were generated and used to simulate regions of interest (ROI) of pre-contrast images and logarithmically subtracted CEDM images using monoenergetic ray tracing. Power law exponents, β, were used as a measure of anatomic noise and were determined using a linear least-squares fit to log-log plots of the square of the modulus of radially averaged image power spectra versus spatial frequency. The power spectra for ROI selected from regions of normal parenchyma in 10 pairs of clinical CEDM pre-contrast and subtracted images were also measured for comparison with the simulated images. There was good agreement between the measured β in the simulated CEDM images and the clinical images. The values of β were consistently lower for the logarithmically subtracted CEDM images compared to the pre-contrast images, indicating that the subtraction process reduced anatomical noise.

  7. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolch, Wesley

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenicmore » bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public« less

  8. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging

    NASA Astrophysics Data System (ADS)

    Surry, K. J. M.; Austin, H. J. B.; Fenster, A.; Peters, T. M.

    2004-12-01

    Poly(vinyl alcohol) cryogel, PVA-C, is presented as a tissue-mimicking material, suitable for application in magnetic resonance (MR) imaging and ultrasound imaging. A 10% by weight poly(vinyl alcohol) in water solution was used to form PVA-C, which is solidified through a freeze-thaw process. The number of freeze-thaw cycles affects the properties of the material. The ultrasound and MR imaging characteristics were investigated using cylindrical samples of PVA-C. The speed of sound was found to range from 1520 to 1540 m s-1, and the attenuation coefficients were in the range of 0.075-0.28 dB (cm MHz)-1. T1 and T2 relaxation values were found to be 718-1034 ms and 108-175 ms, respectively. We also present applications of this material in an anthropomorphic brain phantom, a multi-volume stenosed vessel phantom and breast biopsy phantoms. Some suggestions are made for how best to handle this material in the phantom design and development process.

  9. Neutron organ dose and the influence of adipose tissue

    NASA Astrophysics Data System (ADS)

    Simpkins, Robert Wayne

    Neutron fluence to dose conversion coefficients have been assessed considering the influences of human adipose tissue. Monte Carlo code MCNP4C was used to simulate broad parallel beam monoenergetic neutrons ranging in energy from thermal to 10 MeV. Simulated Irradiations were conducted for standard irradiation geometries. The targets were on gender specific mathematical anthropomorphic phantoms modified to approximate human adipose tissue distributions. Dosimetric analysis compared adipose tissue influence against reference anthropomorphic phantom characteristics. Adipose Male and Post-Menopausal Female Phantoms were derived introducing interstitial adipose tissue to account for 22 and 27 kg additional body mass, respectively, each demonstrating a Body Mass Index (BMI) of 30. An Adipose Female Phantom was derived introducing specific subcutaneous adipose tissue accounting for 15 kg of additional body mass demonstrating a BMI of 26. Neutron dose was shielded in the superficial tissues; giving rise to secondary photons which dominated the effective dose for Incident energies less than 100 keV. Adipose tissue impact on the effective dose was a 25% reduction at the anterior-posterior incidence ranging to a 10% increase at the lateral incidences. Organ dose impacts were more distinctive; symmetrically situated organs demonstrated a 15% reduction at the anterior-posterior Incidence ranging to a 2% increase at the lateral incidences. Abdominal or asymmetrically situated organs demonstrated a 50% reduction at the anterior-posterior incidence ranging to a 25% increase at the lateral incidences.

  10. SU-C-209-07: Phantoms for Digital Breast Tomosynthesis Imaging System Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, D; Liu, Y

    2016-06-15

    Purpose: Digital Breast Tomosynthesis (DBT) is gaining importance in breast imaging. There is a need for phantoms that can be used for image evaluation and comparison. Existing commercially available phantoms for DBT are expensive and may lack clinically relevant test objects. The purpose of this study is to develop phantoms for DBT evaluation. Methods Four phantoms have been designed and constructed to assess the image quality (IQ) of two DBT systems. The first contains a spiral of 0.3 mm SiC beads in gelatin to measure the tomographic slice thickness profile and uniformity of coverage in a series of tomographic planes.more » The second contains simulated tumors inclined with respect to the phantom base to assess tomographic image quality. The third has a tilted array of discs with varying contrast and diameter. This phantom was imaged alone and in a stack of TE slabs giving 2 to 10 cm thickness. The fourth has a dual wedge of glandular and adipose simulating materials. One wedge contains discs with varying diameter and thickness; the other supports a mass with six simulated spicules of varying size and a cluster of simulated calcifications. The simulated glandular tissue material varies between 35 and 100% of the total thickness (5.5 cm). Results: All phantoms were scanned successfully. The best IQ comparison was achieved with the dual wedge phantom as demonstrated by the spiculated mass and calcifications. Images were evaluated by two radiologists and one physicist. The projection images and corresponding set of tomographic planes were comparable and the synthesized projection images were inferior to the projection images for both systems. Conclusion: Four phantoms were designed, constructed and imaged on two DBT systems. They successfully demonstrated performance differences between two systems, and between true and synthesized projection images. Future work will incorporate these designs into a single phantom.« less

  11. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  12. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; de Melo Lima, V. J.; Kramer, R.; Khoury, H. J.

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI_AM and female RPI_AF phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  13. The Histopathologic Reliability of Tissue Taken from Cadavers within the Gross Anatomy Laboratory

    ERIC Educational Resources Information Center

    Rae, Guenevere; Newman, William P., III; McGoey, Robin; Donthamsetty, Supriya; Karpinski, Aryn C.; Green, Jeffrey

    2018-01-01

    The purpose of this study was to examine the histopathologic reliability of embalmed cadaveric tissue taken from the gross anatomy laboratory. Tissue samples from hearts, livers, lungs, and kidneys were collected after the medical students' dissection course was completed. All of the cadavers were embalmed in a formalin-based fixative solution.…

  14. Low-contrast lesion detection in tomosynthetic breast imaging using a realistic breast phantom

    NASA Astrophysics Data System (ADS)

    Zhou, Lili; Oldan, Jorge; Fisher, Paul; Gindi, Gene

    2006-03-01

    Tomosynthesis mammography is a potentially valuable technique for detection of breast cancer. In this simulation study, we investigate the efficacy of three different tomographic reconstruction methods, EM, SART and Backprojection, in the context of an especially difficult mammographic detection task. The task is the detection of a very low-contrast mass embedded in very dense fibro-glandular tissue - a clinically useful task for which tomosynthesis may be well suited. The project uses an anatomically realistic 3D digital breast phantom whose normal anatomic variability limits lesion conspicuity. In order to capture anatomical object variability, we generate an ensemble of phantoms, each of which comprises random instances of various breast structures. We construct medium-sized 3D breast phantoms which model random instances of ductal structures, fibrous connective tissue, Cooper's ligaments and power law structural noise for small scale object variability. Random instances of 7-8 mm irregular masses are generated by a 3D random walk algorithm and placed in very dense fibro-glandular tissue. Several other components of the breast phantom are held fixed, i.e. not randomly generated. These include the fixed breast shape and size, nipple structure, fixed lesion location, and a pectoralis muscle. We collect low-dose data using an isocentric tomosynthetic geometry at 11 angles over 50 degrees and add Poisson noise. The data is reconstructed using the three algorithms. Reconstructed slices through the center of the lesion are presented to human observers in a 2AFC (two-alternative-forced-choice) test that measures detectability by computing AUC (area under the ROC curve). The data collected in each simulation includes two sources of variability, that due to the anatomical variability of the phantom and that due to the Poisson data noise. We found that for this difficult task that the AUC value for EM (0.89) was greater than that for SART (0.83) and Backprojection (0.66).

  15. Patient-specific cardiac phantom for clinical training and preprocedure surgical planning.

    PubMed

    Laing, Justin; Moore, John; Vassallo, Reid; Bainbridge, Daniel; Drangova, Maria; Peters, Terry

    2018-04-01

    Minimally invasive mitral valve repair procedures including MitraClip ® are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using computed tomography (CT), segmented, and the resulting point cloud dataset was compared using absolute distance to the original patient data. The result, when comparing the molded model point cloud to the original dataset, resulted in a maximum Euclidean distance error of 7.7 mm, an average error of 0.98 mm, and a standard deviation of 0.91 mm. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for preoperative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients.

  16. Setup for testing cameras for image guided surgery using a controlled NIR fluorescence mimicking light source and tissue phantom

    NASA Astrophysics Data System (ADS)

    Georgiou, Giota; Verdaasdonk, Rudolf M.; van der Veen, Albert; Klaessens, John H.

    2017-02-01

    In the development of new near-infrared (NIR) fluorescence dyes for image guided surgery, there is a need for new NIR sensitive camera systems that can easily be adjusted to specific wavelength ranges in contrast the present clinical systems that are only optimized for ICG. To test alternative camera systems, a setup was developed to mimic the fluorescence light in a tissue phantom to measure the sensitivity and resolution. Selected narrow band NIR LED's were used to illuminate a 6mm diameter circular diffuse plate to create uniform intensity controllable light spot (μW-mW) as target/source for NIR camera's. Layers of (artificial) tissue with controlled thickness could be placed on the spot to mimic a fluorescent `cancer' embedded in tissue. This setup was used to compare a range of NIR sensitive consumer's cameras for potential use in image guided surgery. The image of the spot obtained with the cameras was captured and analyzed using ImageJ software. Enhanced CCD night vision cameras were the most sensitive capable of showing intensities < 1 μW through 5 mm of tissue. However, there was no control over the automatic gain and hence noise level. NIR sensitive DSLR cameras proved relative less sensitive but could be fully manually controlled as to gain (ISO 25600) and exposure time and are therefore preferred for a clinical setting in combination with Wi-Fi remote control. The NIR fluorescence testing setup proved to be useful for camera testing and can be used for development and quality control of new NIR fluorescence guided surgery equipment.

  17. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-19

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and--most importantly--use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density.more » Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.« less

  18. A training phantom for ultrasound-guided needle insertion and suturing.

    PubMed

    Nattagh, Khashayar; Siauw, Timmy; Pouliot, Jean; Hsu, I-Chow; Cunha, J Adam

    2014-01-01

    During gynecologic brachytherapy (BT), suturing and image-guided needle insertions are highly skill-dependent tasks. Medical residents often have to practice these techniques in the operating room; this is sub-optimal for many reasons. We present a fast and low-cost method of building realistic and disposable gynecologic phantoms, which can be used to train physicians new to gynecologic BT. Phantoms comprised a rectal cavity large enough to accommodate a standard transrectal ultrasound (US) probe, a vaginal cavity, a uterus, a uterine canal, and a cervix, all embedded in a gelatin matrix. The uterus was made of gelatin and coated with rubber to mimic the texture of soft tissue and for computed tomography (CT) and US image contrast. The phantom's durability, longevity, construction times, materials costs, CT, and US image quality were recorded. The speed of sound in the gelatin was measured using pulse echo measurements. Anatomic structures were distinguishable using CT and US. For the first phantom, material costs were under $200, curing time was approximately 48 hours, and active participation time was 3 hours. Reusable parts allowed for reduction in time and cost for subsequent phantoms: under $20, 24 hours curing time, and 1 hour active participation time. The speed of sound in the gelatin ranged from 1495 to 1506 m/s. A method for constructing gelatin gynecologic phantoms was developed. It can be used for training in image-guided BT needle insertion, placing a suture on the vaginal wall, and suturing the cervical lip. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  19. Development of an Arm Phantom for Testing Non-Invasive Blood Pressure Monitors

    NASA Astrophysics Data System (ADS)

    Anderson-Jackson, LaTecia D.

    Approximately one in every three adults age 20 older are diagnosed with high blood pressure or hypertension. It is estimated that hypertension affects 78 million people in the United States, is equally prevalent in both men and woman (Crabtree, Stuart-Shor, & McAllister, 2013). In the United States, around 78% of people suffering from hypertension are aware of their condition, with only 68% using hypertensive medications to control their blood pressure (Writing Group et al., 2010). Clinically, blood pressure measurements may lack accuracy, which can be attributed to various factors, including device limitations, cuff mis-sizing and misplacement, white-coat effect, masked hypertension, and lifestyle factors. The development of an arm phantom to simulate physiologic properties of a human arm and arterial BP waveforms may allow us to better assess the accuracy of non-invasive blood pressure (NIBP) monitors. The objective of this study are to: (1) Develop an arm phantom to replicate physiological properties of the human arm, and (2) Incorporate the arm phantom into a mock circulatory flow loop to simulate different physiological blood pressure readings on the bench. A tissue mimicking material, styrene-ethylene-butylene-styrene (SEBS), a co-block polymer was used to develop the arm phantom for in-vitro testing. To determine the optimal mechanical properties for the arm phantom, individual arm components were isolated and tested. A protocol was developed to evaluate various components for optimal arm phantom development. Mechanical testing was conducted on 10%, 15%, and 20% SEBS gel samples for modulus of elasticity measurements in order to simulate physiological properties of the human arm. As a result of the SEBS polymer being a new material for this application, this investigation will contribute to resolving the limitations that occurred during experimentation. In this study, we demonstrated that although SEBS polymer may be an ideal material to use for simulating

  20. Hybrid computational phantoms representing the reference adult male and adult female: construction and applications for retrospective dosimetry.

    PubMed

    Hurtado, Jorge L; Lee, Choonsik; Lodwick, Daniel; Goede, Timothy; Williams, Jonathan L; Bolch, Wesley E

    2012-03-01

    Currently, two classes of computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Mathematical surface equations in stylized phantoms are flexible, but the resulting anatomy is not as realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms called hybrid phantoms takes advantage of the best features of stylized and voxel phantoms-flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing the adult male and female reference anatomy and anthropometry are presented. These phantoms serve as the starting framework for creating patient or worker sculpted whole-body phantoms for retrospective dose reconstruction. Contours of major organs and tissues were converted or segmented from computed tomography images of a 36-y-old Korean volunteer and a 25-y-old U.S. female patient, respectively, with supplemental high-resolution CT images of the cranium. Polygon mesh models for the major organs and tissues were reconstructed and imported into Rhinoceros™ for non-uniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by Centers for Disease Control and Prevention and International Commission on Radiation Protection, respectively. Finally, two hybrid adult male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ volumes matched to ICRP data within 1% with the exception of total skin. The hybrid phantoms were voxelized from the NURBS phantoms

  1. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Maynard, Matthew R.; Geyer, John W.; Aris, John P.; Shifrin, Roger Y.; Bolch, Wesley

    2011-08-01

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR™ and then imported to the 3D modeling software package Rhinoceros™ for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in

  2. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.

    PubMed

    Burtnyk, Mathieu; N'Djin, William Apoutou; Kobelevskiy, Ilya; Bronskill, Michael; Chopra, Rajiv

    2010-11-21

    MRI-controlled transurethral ultrasound therapy uses a linear array of transducer elements and active temperature feedback to create volumes of thermal coagulation shaped to predefined prostate geometries in 3D. The specific aims of this work were to demonstrate the accuracy and repeatability of producing large volumes of thermal coagulation (>10 cc) that conform to 3D human prostate shapes in a tissue-mimicking gel phantom, and to evaluate quantitatively the accuracy with which numerical simulations predict these 3D heating volumes under carefully controlled conditions. Eleven conformal 3D experiments were performed in a tissue-mimicking phantom within a 1.5T MR imager to obtain non-invasive temperature measurements during heating. Temperature feedback was used to control the rotation rate and ultrasound power of transurethral devices with up to five 3.5 × 5 mm active transducer elements. Heating patterns shaped to human prostate geometries were generated using devices operating at 4.7 or 8.0 MHz with surface acoustic intensities of up to 10 W cm(-2). Simulations were informed by transducer surface velocity measurements acquired with a scanning laser vibrometer enabling improved calculations of the acoustic pressure distribution in a gel phantom. Temperature dynamics were determined according to a FDTD solution to Pennes' BHTE. The 3D heating patterns produced in vitro were shaped very accurately to the prostate target volumes, within the spatial resolution of the MRI thermometry images. The volume of the treatment difference falling outside ± 1 mm of the target boundary was, on average, 0.21 cc or 1.5% of the prostate volume. The numerical simulations predicted the extent and shape of the coagulation boundary produced in gel to within (mean ± stdev [min, max]): 0.5 ± 0.4 [-1.0, 2.1] and -0.05 ± 0.4 [-1.2, 1.4] mm for the treatments at 4.7 and 8.0 MHz, respectively. The temperatures across all MRI thermometry images were predicted within -0.3 ± 1.6 °C and 0

  3. Posture-specific phantoms representing female and male adults in Monte Carlo-based simulations for radiological protection

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Kramer, R.; Brayner, C.; Khoury, H. J.

    2010-08-01

    Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.

  4. Phantom penis: historical dimensions.

    PubMed

    Wade, Nicholas J; Finger, Stanley

    2010-10-01

    Interest in sensations from removed body parts other than limbs has increased with modern surgical techniques. This applies particularly to operations (e.g., gender-changing surgeries) that have resulted in phantom genitalia. The impression given in modern accounts, especially those dealing with phantoms associated with penis amputation, is that this is a recently discovered phenomenon. Yet the historical record reveals several cases of phantom penises dating from the late-eighteenth century and the early-nineteenth century. These cases, recorded by some of the leading medical and surgical figures of the era, are of considerable historical and theoretical significance. This is partly because these phantoms were associated with pleasurable sensations, in contrast to the loss of a limb, which for centuries had been associated with painful phantoms. We here present several early reports on phantom penile sensations, with the intent of showing what had been described and why more than 200 years ago.

  5. Development of PIMAL: Mathematical Phantom with Moving Arms and Legs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkurt, Hatice; Eckerman, Keith F.

    2007-05-01

    The computational model of the human anatomy (phantom) has gone through many revisions since its initial development in the 1970s. The computational phantom model currently used by the Nuclear Regulatory Commission (NRC) is based on a model published in 1974. Hence, the phantom model used by the NRC staff was missing some organs (e.g., neck, esophagus) and tissues. Further, locations of some organs were inappropriate (e.g., thyroid).Moreover, all the computational phantoms were assumed to be in the vertical-upright position. However, many occupational radiation exposures occur with the worker in other positions. In the first phase of this work, updates onmore » the computational phantom models were reviewed and a revised phantom model, which includes the updates for the relevant organs and compositions, was identified. This revised model was adopted as the starting point for this development work, and hence a series of radiation transport computations, using the Monte Carlo code MCNP5, was performed. The computational results were compared against values reported by the International Commission on Radiation Protection (ICRP) in Publication 74. For some of the organs (e.g., thyroid), there were discrepancies between the computed values and the results reported in ICRP-74. The reasons behind these discrepancies have been investigated and are discussed in this report.Additionally, sensitivity computations were performed to determine the sensitivity of the organ doses for certain parameters, including composition and cross sections used in the simulations. To assess the dose for more realistic exposure configurations, the phantom model was revised to enable flexible positioning of the arms and legs. Furthermore, to reduce the user time for analyses, a graphical user interface (GUI) was developed. The GUI can be used to visualize the positioning of the arms and legs as desired posture is achieved to generate the input file, invoke the computations, and extract the

  6. The development of a population of 4D pediatric XCAT phantoms for imaging research and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segars, W. P., E-mail: paul.segars@duke.edu; Norris, Hannah; Sturgeon, Gregory M.

    Purpose: We previously developed a set of highly detailed 4D reference pediatric extended cardiac-torso (XCAT) phantoms at ages of newborn, 1, 5, 10, and 15 yr with organ and tissue masses matched to ICRP Publication 89 values. In this work, we extended this reference set to a series of 64 pediatric phantoms of varying age and height and body mass percentiles representative of the public at large. The models will provide a library of pediatric phantoms for optimizing pediatric imaging protocols. Methods: High resolution positron emission tomography-computed tomography data obtained from the Duke University database were reviewed by a practicingmore » experienced radiologist for anatomic regularity. The CT portion of the data was then segmented with manual and semiautomatic methods to form a target model defined using nonuniform rational B-spline surfaces. A multichannel large deformation diffeomorphic metric mapping algorithm was used to calculate the transform from the best age matching pediatric XCAT reference phantom to the patient target. The transform was used to complete the target, filling in the nonsegmented structures and defining models for the cardiac and respiratory motions. The complete phantoms, consisting of thousands of structures, were then manually inspected for anatomical accuracy. The mass for each major tissue was calculated and compared to linearly interpolated ICRP values for different ages. Results: Sixty four new pediatric phantoms were created in this manner. Each model contains the same level of detail as the original XCAT reference phantoms and also includes parameterized models for the cardiac and respiratory motions. For the phantoms that were 10 yr old and younger, we included both sets of reproductive organs. This gave them the capability to simulate both male and female anatomy. With this, the population can be expanded to 92. Wide anatomical variation was clearly seen amongst the phantom models, both in organ shape and size, even

  7. Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for the Female Stylized and Voxel Phantoms Submerged in Air

    DOE PAGES

    Hiller, Mauritius; Dewji, Shaheen Azim

    2017-02-16

    Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less

  8. Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for the Female Stylized and Voxel Phantoms Submerged in Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiller, Mauritius; Dewji, Shaheen Azim

    Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less

  9. Consideration of the ICRP 2006 revised tissue weighting factors on age-dependent values of the effective dose for external photons

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E.

    2007-01-01

    The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, wT. ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion

  10. Guidelines to implement quality management systems in microbiology laboratories for tissue banking.

    PubMed

    Vicentino, W; Rodríguez, G; Saldías, M; Alvarez, I

    2009-10-01

    Human tissues for implants are a biomedical product that is being used more frequently by many medical disciplines. There are infections in the patients related to the implanted tissues. The early detection of infections transmitted by blood and the microbiological study of tissues before their clinical use are strategies in tissue banks to prevent these situations. This work sought to contribute to establish the bases for the operation of a laboratory applied to the microbiological quality control of tissues. Based on classical microbiological principles, we defined the operation of microbiological control and tissues sterilization since 2003. We determine lists of acceptable microorganisms for every tissue, criteria for the interpretation of results, and a diagnostic algorithm of microbiological quality. We observed that the circumstances of donor death can be a determinant of the quality. The environment and the operator should be investigated as probable sources of contamination in outbreaks. The criteria of work based on a solid methodology must help to avoid the transmission of infections between donor and recipient. This is a critical point in the quality management of a tissue bank.

  11. Resolution study of imaging in nanoparticle optical phantoms

    NASA Astrophysics Data System (ADS)

    Ortiz-Rascón, E.; Bruce, N. C.; Flores-Flores, J. O.; Sato-Berru, R.

    2011-08-01

    We present results of resolution and optical characterization studies of silicon dioxide nanoparticle solutions. These phantoms consist of spherical particles with a mean controlled diameter of 168 and 429 nm. The importance of this work lies in using these solutions to develop phantoms with optical properties that closely match those of human breast tissue at near-IR wavelengths, and also to compare different resolution criteria for imaging studies at these wavelengths. Characterization involves illuminating the solution with a laser beam transmitted through a recipient of known width containing the solution. Resulting intensity profiles from the light spot are measured as function of the detector position. Measured intensity profiles were fitted to the calculated profiles obtained from diffusion theory, using the method of images. Fitting results give us the absorption and transport scattering coefficients. These coefficients can be modified by changing the particle concentration of the solution. We found that these coefficients are the same order of magnitude as those of human tissue reported in published studies. The resolution study involves measuring the edge response function (ERF) for a mask embedded on the nanoparticle solutions and fitting it to the calculated ERF, obtaining the resolution for the Hebden, Sparrow and Bentzen criteria.

  12. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization (abstract)

    NASA Astrophysics Data System (ADS)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-01

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and-most importantly-use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density. Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.

  13. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jina; Lee, Youngkyu; Shin, Hunjoo

    Radiation treatment requires high accuracy to protect healthy organs and destroy the tumor. However, tumors located near the diaphragm constantly move during treatment. Respiration-gated radiotherapy has significant potential for the improvement of the irradiation of tumor sites affected by respiratory motion, such as lung and liver tumors. To measure and minimize the effects of respiratory motion, a realistic deformable phantom is required for use as a gold standard. The purpose of this study was to develop and study the characteristics of a deformable moving lung (DML) phantom, such as simulation, tissue equivalence, and rate of deformation. The rate of changemore » of the lung volume, target deformation, and respiratory signals were measured in this study; they were accurately measured using a realistic deformable phantom. The measured volume difference was 31%, which closely corresponds to the average difference in human respiration, and the target movement was − 30 to + 32 mm. The measured signals accurately described human respiratory signals. This DML phantom would be useful for the estimation of deformable image registration and in respiration-gated radiotherapy. This study shows that the developed DML phantom can exactly simulate the patient's respiratory signal and it acts as a deformable 4-dimensional simulation of a patient's lung with sufficient volume change.« less

  14. Optical detection of gold nanoparticles in a prostate-shaped porcine phantom.

    PubMed

    Grabtchak, Serge; Tonkopi, Elena; Whelan, William M

    2013-07-01

    Gold nanoparticles can be used as molecular contrast agents binding specifically to cancer sites and thus delineating tumor regions. Imaging gold nanoparticles deeply embedded in tissues with optical techniques possesses significant challenges due to multiple scattering of optical photons that blur the obtained images. Both diagnostic and therapeutic applications can benefit from a minimally invasive technique that can identify, localize, and quantify the payloads of gold nanoparticles deeply embedded in biological tissues. An optical radiance technique is applied to map localized inclusions of gold nanorods in 650- to 900-nm spectral range in a porcine phantom that mimics prostate geometry. Optical radiance defines a variation in the angular density of photons impinging on a selected point in the tissue from various directions. The inclusions are formed by immersing a capillary filled with gold nanorods in the phantom at increasing distances from the detecting fiber. The technique allows the isolation of the spectroscopic signatures of the inclusions from the background and identification of inclusion locations in the angular domain. Detection of ∼4×1010 gold nanoparticles or 0.04  mg Au/mL (detector-inclusion separation 10 mm, source-detector separation 15 mm) in the porcine tissue is demonstrated. The encouraging results indicate a promising potential of radiance spectroscopy in early prostate cancer diagnostics with gold nanoparticles.

  15. Two-dimensional multi-frequency imaging of a tumor inclusion in a homogeneous breast phantom using the harmonic motion Doppler imaging method.

    PubMed

    Tafreshi, Azadeh Kamali; Top, Can Barış; Gençer, Nevzat Güneri

    2017-06-21

    Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a [Formula: see text] mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.

  16. Two-dimensional multi-frequency imaging of a tumor inclusion in a homogeneous breast phantom using the harmonic motion Doppler imaging method

    NASA Astrophysics Data System (ADS)

    Kamali Tafreshi, Azadeh; Barış Top, Can; Güneri Gençer, Nevzat

    2017-06-01

    Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a 14~\\text{mm}× 9 mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.

  17. National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: Current status

    PubMed Central

    Lemaillet, Paul; Cooksey, Catherine C.; Levine, Zachary H.; Pintar, Adam L.; Hwang, Jeeseong; Allen, David W.

    2016-01-01

    The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer. PMID:27453623

  18. National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: Current status.

    PubMed

    Lemaillet, Paul; Cooksey, Catherine C; Levine, Zachary H; Pintar, Adam L; Hwang, Jeeseong; Allen, David W

    2016-03-24

    The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer.

  19. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes.

    PubMed

    Hazelaar, Colien; van Eijnatten, Maureen; Dahele, Max; Wolff, Jan; Forouzanfar, Tymour; Slotman, Ben; Verbakel, Wilko F A R

    2018-01-01

    Imaging phantoms are widely used for testing and optimization of imaging devices without the need to expose humans to irradiation. However, commercially available phantoms are commonly manufactured in simple, generic forms and sizes and therefore do not resemble the clinical situation for many patients. Using 3D printing techniques, we created a life-size phantom based on a clinical CT scan of the thorax from a patient with lung cancer. It was assembled from bony structures printed in gypsum, lung structures consisting of airways, blood vessels >1 mm, and outer lung surface, three lung tumors printed in nylon, and soft tissues represented by silicone (poured into a 3D-printed mold). Kilovoltage x-ray and CT images of the phantom closely resemble those of the real patient in terms of size, shapes, and structures. Surface comparison using 3D models obtained from the phantom and the 3D models used for printing showed mean differences <1 mm for all structures. Tensile tests of the materials used for the phantom show that the phantom is able to endure radiation doses over 24,000 Gy. It is feasible to create an anthropomorphic thorax phantom using 3D printing and molding techniques. The phantom closely resembles a real patient in terms of spatial accuracy and is currently being used to evaluate x-ray-based imaging quality and positional verification techniques for radiotherapy. © 2017 American Association of Physicists in Medicine.

  20. SU-E-J-97: Quality Assurance of Deformable Image Registration Algorithms: How Realistic Should Phantoms Be?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saenz, D; Stathakis, S; Kirby, N

    Purpose: Deformable image registration (DIR) has widespread uses in radiotherapy for applications such as dose accumulation studies, multi-modality image fusion, and organ segmentation. The quality assurance (QA) of such algorithms, however, remains largely unimplemented. This work aims to determine how detailed a physical phantom needs to be to accurately perform QA of a DIR algorithm. Methods: Virtual prostate and head-and-neck phantoms, made from patient images, were used for this study. Both sets consist of an undeformed and deformed image pair. The images were processed to create additional image pairs with one through five homogeneous tissue levels using Otsu’s method. Realisticmore » noise was then added to each image. The DIR algorithms from MIM and Velocity (Deformable Multipass) were applied to the original phantom images and the processed ones. The resulting deformations were then compared to the known warping. A higher number of tissue levels creates more contrast in an image and enables DIR algorithms to produce more accurate results. For this reason, error (distance between predicted and known deformation) is utilized as a metric to evaluate how many levels are required for a phantom to be a realistic patient proxy. Results: For the prostate image pairs, the mean error decreased from 1–2 tissue levels and remained constant for 3+ levels. The mean error reduction was 39% and 26% for Velocity and MIM respectively. For head and neck, mean error fell similarly through 2 levels and flattened with total reduction of 16% and 49% for Velocity and MIM. For Velocity, 3+ levels produced comparable accuracy as the actual patient images, whereas MIM showed further accuracy improvement. Conclusion: The number of tissue levels needed to produce an accurate patient proxy depends on the algorithm. For Velocity, three levels were enough, whereas five was still insufficient for MIM.« less

  1. 8.0-Tesla human MR system: temperature changes associated with radiofrequency-induced heating of a head phantom.

    PubMed

    Kangarlu, Allahyar; Shellock, Frank G; Chakeres, Donald W

    2003-02-01

    To investigate if the heat induced in biological tissues by typical radio frequency (RF) energy associated with an 8.0-Tesla magnetic resonance (MR) system causes excessive temperature changes. Fluoroptic thermometry was used to measure temperatures in multiple positions in a head phantom made of ground turkey breast. A series of experiments were conducted with measurements obtained at RF power levels ranging from a specific absorption rate (SAR) of up to 4.0 W/kg for 10 minutes. The highest temperature increases were up to 0.7 degrees C. An inhomogeneous heating pattern was observed. In general, the deep regions within the phantom registered higher temperature increases compared to the peripheral sites. The expectation of an inhomogeneous RF distribution in ultra high field systems (> 4 T) was confirmed. At a frequency of 340 MHz and in-tissue RF wave length of about 10 cm, the RF inhomogeneity was measured to create higher temperatures in deeper regions of a human head phantom compared to peripheral tissues. Our results agree with the computational electromagnetic calculations for such frequencies. Importantly, these experiments indicated that there were no regions of heating that exceeded the current FDA guidelines. Copyright 2003 Wiley-Liss, Inc.

  2. Design of a digital phantom population for myocardial perfusion SPECT imaging research

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Fung, George S. K.; Tsui, Benjamin M. W.; Links, Jonathan M.; Frey, Eric

    2014-06-01

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in

  3. Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms

    NASA Astrophysics Data System (ADS)

    Fonseca, Martina; An, Lu; Beard, Paul; Cox, Ben

    2017-12-01

    As multiwavelength photoacoustic imaging becomes increasingly widely used to obtain quantitative estimates, the need for validation studies conducted on well-characterized experimental phantoms becomes ever more pressing. One challenge that such studies face is the design of stable, well-characterized phantoms and absorbers with properties in a physiologically realistic range. This paper performs a full experimental characterization of aqueous solutions of copper and nickel sulfate, whose properties make them close to ideal as chromophores in multiwavelength photoacoustic imaging phantoms. Their absorption varies linearly with concentration, and they mix linearly. The concentrations needed to yield absorption values within the physiological range are below the saturation limit. The shape of their absorption spectra makes them useful analogs for oxy- and deoxyhemoglobin. They display long-term photostability (no indication of bleaching) as well as resistance to transient effects (no saturable absorption phenomena), and are therefore suitable for exposure to typical pulsed photoacoustic light sources, even when exposed to the high number of pulses required in scanning photoacoustic imaging systems. In addition, solutions with tissue-realistic, predictable, and stable scattering can be prepared by mixing sulfates and Intralipid, as long as an appropriate emulsifier is used. Finally, the Grüneisen parameter of the sulfates was found to be larger than that of water and increased linearly with concentration.

  4. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesiummore » oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.« less

  5. SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Z; Vijayan, S; Kilian-Meneghin, J

    Purpose: To determine similarities and differences between various head phantoms that might be used for dose measurements in diagnostic imaging procedures. Methods: We chose four frequently used anthropomorphic head phantoms (SK-150, PBU-50, RS-240T and Alderson Rando), a computational patient phantom (Zubal) and the CTDI head phantom for comparison in our study. We did a CT scan of the head phantoms using the same protocol and compared their dimensions and CT numbers. The scan data was used to calculate dose values for each of the phantoms using EGSnrc Monte Carlo software. An .egsphant file was constructed to describe these phantoms usingmore » a Visual C++ program for DOSXYZnrc/EGSnrc simulation. The lens dose was calculated for a simulated CBCT scan using DOSXYZnrc/EGSnrc and the calculated doses were validated with measurements using Gafchromic film and an ionization chamber. Similar calculations and measurements were made for PA radiography to investigate the attenuation and backscatter differences between these phantoms. We used the Zubal phantom as the standard for comparison since it was developed based on a CT scan of a patient. Results: The lens dose for the Alderson Rando phantom is around 9% different than the Zubal phantom, while the lens dose for the PBU-50 phantom was about 50% higher, possibly because its skull thickness and the density of bone and soft tissue are lower than anthropometric values. The lens dose for the CTDI phantom is about 500% higher because of its totally different structure. The entrance dose profiles are similar for the five anthropomorphic phantoms, while that for the CTDI phantom was distinctly different. Conclusion: The CTDI and PBU-50 head phantoms have substantially larger lens dose estimates in CBCT. The other four head phantoms have similar entrance dose with backscatter hence should be preferred for dose measurement in imaging procedures of the head. Partial support from NIH Grant R01-EB002873 and Toshiba Medical

  6. Phantom Sensations, Supernumerary Phantom Limbs and Apotemnophilia: Three Body Representation Disorders.

    PubMed

    Tatu, Laurent; Bogousslavsky, Julien

    2018-01-01

    Body representation disorders continue to be mysterious and involve the anatomical substrate that underlies the mental representation of the body. These disorders sit on the boundaries of neurological and psychiatric diseases. We present the main characteristics of 3 examples of body representation disorders: phantom sensations, supernumerary phantom limb, and apotemnophilia. The dysfunction of anatomical circuits that regulate body representation can sometimes have paradoxical features. In the case of phantom sensations, the patient feels the painful subjective sensation of the existence of the lost part of the body after amputation, surgery or trauma. In case of apotemnophilia, now named body integrity identity disorder, the subject wishes for the disappearance of the existing and normal limb, which can occasionally lead to self-amputation. More rarely, a brain-damaged patient with 4 existing limbs can report the existence of a supernumerary phantom limb. © 2018 S. Karger AG, Basel.

  7. Evaluation of phantom-based education system for acupuncture manipulation.

    PubMed

    Lee, In-Seon; Lee, Ye-Seul; Park, Hi-Joon; Lee, Hyejung; Chae, Younbyoung

    2015-01-01

    Although acupuncture manipulation has been regarded as one of the important factors in clinical outcome, it has been difficult to train novice students to become skillful experts due to a lack of adequate educational program and tools. In the present study, we investigated whether newly developed phantom acupoint tools would be useful to practice-naïve acupuncture students for practicing the three different types of acupuncture manipulation to enhance their skills. We recruited 12 novice students and had them practice acupuncture manipulations on the phantom acupoint (5% agarose gel). We used the Acusensor 2 and compared their acupuncture manipulation techniques, for which the target criteria were depth and time factors, at acupoint LI11 in the human body before and after 10 training sessions. The outcomes were depth of needle insertion, depth error from target criterion, time of rotating, lifting, and thrusting, time error from target criteria and the time ratio. After 10 training sessions, the students showed significantly improved outcomes in depth of needle, depth error (rotation, reducing lifting/thrusting), thumb-forward time error, thumb-backward time error (rotation), and lifting time (reinforcing lifting/thrusting). The phantom acupoint tool could be useful in a phantom-based education program for acupuncture-manipulation training for students. For advanced education programs for acupuncture manipulation, we will need to collect additional information, such as patient responses, acupoint-specific anatomical characteristics, delicate tissue-like modeling, haptic and visual feedback, and data from an acupuncture practice simulator.

  8. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitz, H.; Jenkins, M.; Lodwick, J.

    2000-02-01

    A new anthropometric phantom has been developed for calibrating in vivo measurements of stable lead deposited in bone using x-ray fluorescence. The phantom reproduces the shape of the mid shaft of the adult human leg and is fabricated using polyurethanes and calcium carbonate to produce materials that exhibit the same density, energy transmission, and calcium content as cortical bone, bone marrow, and muscle. The phantom includes a removable tibia fabricated using simulants for cortical bone and bone marrow to which a precise amount of stable lead has been added to cortical bone. The formulations used in fabricating the new anthropometricmore » phantom are much more uniform in density and composition than the conventional phantom made from Plexiglas cylinders filled with plaster-of-Paris. The energy spectrum from an x-ray fluorescence measurement of the phantom using a {sup 109}Cd source is indistinguishable from an in vivo x-ray fluorescence measurement of the human leg, demonstrating that the materials used in the phantom exhibit the same radiological properties as human tissue. Likewise, results from x-ray fluorescence measurements of the phantom exhibit the same positional dependency as the human leg and vary by approximately 36% when, for example, the phantom containing 54 ppm of stable lead in the tibia was rotated by only 15 degrees. The detection limit for a 30 min {sup 109}Cd K shell x-ray fluorescence in vivo measurement is approximately 20 ppm determined from a background measurement using the new phantom containing no added lead in the muscle, bone, or bone marrow. The new anthropometric phantom significantly improves in vivo x-ray fluorescence calibration measurements by (1) faithfully reproducing the anatomy of the human leg, (2) having components that exhibit radiological properties similar to that of human tissue, and (3) providing a realistic calibration standard that can be used for in vivo x-ray fluorescence intercomparison measurements.« less

  9. An easy to produce and economical three-dimensional brain phantom for stereotactic computed tomographic-guided brain biopsy training in the dog.

    PubMed

    Sidhu, Deepinder S; Ruth, Jeffrey D; Lambert, Gregory; Rossmeisl, John H

    2017-07-01

    To develop and validate a three-dimensional (3D) brain phantom that can be incorporated into existing stereotactic headframes to simulate stereotactic brain biopsy (SBB) and train veterinary surgeons. Experimental study. Canine brain phantoms were fabricated from osteological skull specimens, agarose brain parenchyma, and cheddar and mozzarella cheese molds (simulating meningiomas and gliomas). The neuroradiologic and viscoelastic properties of phantoms were quantified with computed tomography (CT) and oscillatory compression tests, respectively. Phantoms were validated by experienced and novice operators performing SBB on phantoms containing randomly placed, focal targets. Target yield and needle placement error (NPE) were compared between operators. Phantoms were produced in <4 hours, at an average cost of $92. The CT appearances of the phantom skull, agarose, and cheese components approximated the in vivo features of skull, brain parenchyma, and contrast-enhancing tumors of meningeal and glial origin, respectively. The complex moduli of the agarose and cheeses were comparable to the viscoelastic properties of in vivo brain tissues and brain tumors. The overall diagnostic yield of SBB was 88%. Although NPE did not differ between novice (median 3.68 mm; range, 1.46-14.54 mm) and experienced surgeons (median 1.17 mm, range, 0.78-1.58 mm), our results support the relevance of the learning curve associated with the SBB procedure. This 3D phantom replicates anatomical, CT, and tactile features of brain tissues and tumors and can be used to develop the technical skills required to perform SBB. © 2017 The American College of Veterinary Surgeons.

  10. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Higgins, P; Dusenbery, K

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT)more » was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.« less

  11. Three-dimensional dynamics of temperature fields in phantoms and biotissue under IR laser photothermal therapy using gold nanoparticles and ICG dye

    NASA Astrophysics Data System (ADS)

    Akchurin, Georgy G.; Garif, Akchurin G.; Maksimova, Irina L.; Skaptsov, Alexander A.; Terentyuk, Georgy S.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.; Tuchin, Valery V.

    2010-02-01

    We describe applications of silica (core)/gold (shell) nanoparticles and ICG dye to photothermal treatment of phantoms, biotissue and spontaneous tumor of cats and dogs. The laser irradiation parameters were optimized by preliminary experiments with laboratory rats. Three dimensional dynamics of temperature fields in tissue and solution samples was measured with a thermal imaging system. It is shown that the temperature in the volume region of nanoparticles localization can substantially exceed the surface temperature recorded by the thermal imaging system. We have demonstrated effective optical destruction of cancer cells by local injection of plasmon-resonant gold nanoshells and ICG dye followed by continuous wave (CW) diode laser irradiation at wavelength 808 nm.

  12. Soft 3D-Printed Phantom of the Human Kidney with Collecting System.

    PubMed

    Adams, Fabian; Qiu, Tian; Mark, Andrew; Fritz, Benjamin; Kramer, Lena; Schlager, Daniel; Wetterauer, Ulrich; Miernik, Arkadiusz; Fischer, Peer

    2017-04-01

    Organ models are used for planning and simulation of operations, developing new surgical instruments, and training purposes. There is a substantial demand for in vitro organ phantoms, especially in urological surgery. Animal models and existing simulator systems poorly mimic the detailed morphology and the physical properties of human organs. In this paper, we report a novel fabrication process to make a human kidney phantom with realistic anatomical structures and physical properties. The detailed anatomical structure was directly acquired from high resolution CT data sets of human cadaveric kidneys. The soft phantoms were constructed using a novel technique that combines 3D wax printing and polymer molding. Anatomical details and material properties of the phantoms were validated in detail by CT scan, ultrasound, and endoscopy. CT reconstruction, ultrasound examination, and endoscopy showed that the designed phantom mimics a real kidney's detailed anatomy and correctly corresponds to the targeted human cadaver's upper urinary tract. Soft materials with a tensile modulus of 0.8-1.5 MPa as well as biocompatible hydrogels were used to mimic human kidney tissues. We developed a method of constructing 3D organ models from medical imaging data using a 3D wax printing and molding process. This method is cost-effective means for obtaining a reproducible and robust model suitable for surgical simulation and training purposes.

  13. Studies on heavy charged particle interaction, water equivalence and Monte Carlo simulation in some gel dosimeters, water, human tissues and water phantoms

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2015-09-01

    Some gel dosimeters, water, human tissues and water phantoms were investigated with respect to their radiological properties in the energy region 10 keV-10 MeV. The effective atomic numbers (Zeff) and electron densities (Ne) for some heavy charged particles such as protons, He ions, B ions and C ions have been calculated for the first time for Fricke, MAGIC, MAGAT, PAGAT, PRESAGE, water, adipose tissue, muscle skeletal (ICRP), muscle striated (ICRU), plastic water, WT1 and RW3 using mass stopping powers from SRIM Monte Carlo software. The ranges and straggling were also calculated for the given materials. Two different set of mass stopping powers were used to calculate Zeff for comparison. The water equivalence of the given materials was also determined based on the results obtained. The Monte Carlo simulation of the charged particle transport was also done using SRIM code. The heavy ion distribution along with its parameters were shown for the given materials for different heavy ions. Also the energy loss and damage events in water when irradiated with 100 keV heavy ions were studied in detail.

  14. [Phantom studies of ultrasound equipment for quality improvement in breast diagnosis].

    PubMed

    Madjar, H; Mundinger, A; Lattermann, U; Gufler, H; Prömpeler, H J

    1996-04-01

    According to the German guidelines for quality control of ultrasonic equipment, the following conditions are required for breast ultrasound: A transducer frequency between 5-7.5 MHz and a minimum field of view of 5 cm. Satisfactory images must be obtained in a depth between 0.5 and 4 cm with a wide tolerance of the focal zones. This allows the use of poor quality equipment which does not produce satisfactory image quality and it excludes a number of high frequency and high resolution transducers with a field of view below 5 cm. This study with a test phantom was performed to define image quality objectively. Sixteen ultrasound instruments in different price categories were used to perform standardized examinations on a breast phantom model 550 (ATS Laboratories, Bridgeport, USA). Contrast and spatial resolution in different penetration depths were investigated on cyst phantoms from 1-4 mm diameter and wire targets with defined distances between 0.5-3 mm 4 investigations reported the images. A positive correlation was seen between price category and image quality. This study demonstrates that transducer frequency and image geometry do not allow sufficient quality control. An improvement of ultrasound diagnosis is only possible if equipment guidelines are based on standard examinations with test phantoms.

  15. Validation of microwave radiometry for measuring the internal temperature profile of human tissue

    NASA Astrophysics Data System (ADS)

    Levick, A.; Land, D.; Hand, J.

    2011-06-01

    A phantom target with a known linear temperature gradient has been developed for validating microwave radiometry for measuring internal temperature profiles within human tissue. The purpose of the phantom target is to simulate the temperature gradient found within the surface layers of a baby's brain during hypothermal neuroprotection therapy, in which the outer surface of the phantom represents the skin surface and the inner surface the brain core. The target comprises a volume of phantom tissue material with similar dielectric properties to high water-content human tissue, contained between two copper plates at known temperatures. The antenna of a microwave radiometer is in contact with one surface of the phantom material. We have measured the microwave temperature of the phantom with microwave radiometry in a frequency band of 3.0-3.5 GHz. Our microwave temperature measurements have small 0.05 °C (type A) uncertainties associated with random effects and provide temperatures consistent with values determined using theoretical models of the antenna-target system within uncertainties. The measurements are in good agreement with the major signal contribution being formed over a near plane-wave response within the material with a much smaller contribution from close to the antenna face.

  16. Poster - Thurs Eve-43: Verification of dose calculation with tissue inhomogeneity using MapCHECK.

    PubMed

    Korol, R; Chen, J; Mosalaei, H; Karnas, S

    2008-07-01

    MapCHECK (Sun Nuclear, Melbourne, FL) with 445 diode detectors has been used widely for routine IMRT quality assurance (QA) 1 . However, routine IMRT QA has not included the verification of inhomogeneity effects. The objective of this study is to use MapCHECK and a phantom to verify dose calculation and IMRT delivery with tissue inhomogeneity. A phantom with tissue inhomogeneities was placed on top of MapCHECK to measure the planar dose for an anterior beam with photon energy 6 MV or 18 MV. The phantom was composed of a 3.5 cm thick block of lung equivalent material and solid water arranged side by side with a 0.5 cm slab of solid water on the top of the phantom. The phantom setup including MapCHECK was CT scanned and imported into Pinnacle 8.0d for dose calculation. Absolute dose distributions were compared with gamma criteria 3% for dose difference and 3 mm for distance-to-agreement. The results are in good agreement between the measured and calculated planar dose with 88% pass rate based on the gamma analysis. The major dose difference was at the lung-water interface. Further investigation will be performed on a custom designed inhomogeneity phantom with inserts of varying densities and effective depth to create various dose gradients at the interface for dose calculation and delivery verification. In conclusion, a phantom with tissue inhomogeneities can be used with MapCHECK for verification of dose calculation and delivery with tissue inhomogeneity. © 2008 American Association of Physicists in Medicine.

  17. 3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Ghassemi, Pejhman; Melchiorri, Anthony; Ramella-Roman, Jessica; Mathews, Scott A.; Coburn, James; Sorg, Brian; Chen, Yu; Pfefer, Joshua

    2015-03-01

    The emerging technique of three-dimensional (3D) printing provides a revolutionary way to fabricate objects with biologically realistic geometries. Previously we have performed optical and morphological characterization of basic 3D printed tissue-simulating phantoms and found them suitable for use in evaluating biophotonic imaging systems. In this study we assess the potential for printing phantoms with irregular, image-defined vascular networks that can be used to provide clinically-relevant insights into device performance. A previously acquired fundus camera image of the human retina was segmented, embedded into a 3D matrix, edited to incorporate the tubular shape of vessels and converted into a digital format suitable for printing. A polymer with biologically realistic optical properties was identified by spectrophotometer measurements of several commercially available samples. Phantoms were printed with the retinal vascular network reproduced as ~1.0 mm diameter channels at a range of depths up to ~3 mm. The morphology of the printed vessels was verified by volumetric imaging with μ-CT. Channels were filled with hemoglobin solutions at controlled oxygenation levels, and the phantoms were imaged by a near-infrared hyperspectral reflectance imaging system. The effect of vessel depth on hemoglobin saturation estimates was studied. Additionally, a phantom incorporating the vascular network at two depths was printed and filled with hemoglobin solution at two different saturation levels. Overall, results indicated that 3D printed phantoms are useful for assessing biophotonic system performance and have the potential to form the basis of clinically-relevant standardized test methods for assessment of medical imaging modalities.

  18. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP)

    PubMed Central

    Jermoumi, M.; Korideck, H.; Bhagwat, M.; Zygmanski, P.; Makrigiogos, G.M.; Berbeco, R.I.; Cormack, R.C.; Ngwa, W.

    2016-01-01

    Purpose To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). Methods and materials A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm3) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. Results Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. Conclusions The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests. PMID:25964129

  19. Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP).

    PubMed

    Jermoumi, M; Korideck, H; Bhagwat, M; Zygmanski, P; Makrigiogos, G M; Berbeco, R I; Cormack, R C; Ngwa, W

    2015-07-01

    To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm(3)) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA. Output constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity. The results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Tissue Viscoelasticity Imaging Using Vibration and Ultrasound Coupler Gel

    NASA Astrophysics Data System (ADS)

    Yamakawa, Makoto; Shiina, Tsuyoshi

    2012-07-01

    In tissue diagnosis, both elasticity and viscosity are important indexes. Therefore, we propose a method for evaluating tissue viscoelasticity by applying vibration that is usually performed in elastography and using an ultrasound coupler gel with known viscoelasticity. In this method, we use three viscoelasticity parameters based on the coupler strain and tissue strain: the strain ratio as an elasticity parameter, and the phase difference and the normalized hysteresis loop area as viscosity parameters. In the agar phantom experiment, using these viscoelasticity parameters, we were able to estimate the viscoelasticity distribution of the phantom. In particular, the strain ratio and the phase difference were robust to strain estimation error.

  1. SU-F-T-684: Analysis of Cherenkov Excitation in Tissue and the Feasibility of Cherenkov Excited Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, Sara L; Andreozzi, Jacqueline M; Pogue, Brian W

    Purpose: The irradiation of photodynamic agents with radiotherapy beams has been demonstrated to enhance tumor killing in various studies, and one proposed mechanism is the optical fluence of Cherenkov emission activating the photosensitizer. This mechanism is explored in Monte Carlo simulations of fluence as well as laboratory measurements of fluence and radical oxygen species. Methods: Simulations were completed using GAMOS/GEANT4 with a 6 MV photon beam in tissue. The effects of blood vessel diameter, blood oxygen saturation, and beam size were examined, recording spectral fluence. Experiments were carried out in solutions of photosensitizer and phantoms. Results: Cherenkov produced by amore » 100×100um{sup 2} 6 MV beam resulted in fluence of less than 1 nJ/cm{sup 2}/Gy per 1 nm wavelength. At this microscopic level, differences in absorption of blood and water in the tissue affected the fluence spectrum, but variation in blood oxygenation had little effect. Light in tissue resulting from larger (10mm ×10mm) 6 MV beams had greater fluence due to light transport and elastic scattering of optical photons, but this transport process also resulted in higher absorption shifts. Therefore, the spectrum produced by a microscopic beam was weighted more heavily in UV/blue wavelengths than the spectrum at the macroscopic level. At the macroscopic level, the total fluence available for absorption by Verteporfin (BPD) in tissue approached uJ/cm{sup 2} for a high radiation dose, indicating that photodynamic activation seems unlikely. Tissue phantom confirmation of these light levels supported this observation, and photosensitization measurements with a radical oxygen species reporter are ongoing. Conclusion: Simulations demonstrated that fluence produced by Cherenkov in tissue by 6 MV photon beams at typical radiotherapy doses appears insufficient to activate photosensitizers to the level required for threshold effects, yet this disagrees with published biological

  2. Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement

    NASA Astrophysics Data System (ADS)

    Lin, Yu; He, Lian; Shang, Yu; Yu, Guoqiang

    2012-01-01

    A noncontact diffuse correlation spectroscopy (DCS) probe has been developed using two separated optical paths for the source and detector. This unique design avoids the interference between the source and detector and allows large source-detector separations for deep tissue blood flow measurements. The noncontact probe has been calibrated against a contact probe in a tissue-like phantom solution and human muscle tissues; flow changes concurrently measured by the two probes are highly correlated in both phantom (R2=0.89, p<10-5) and real-tissue (R2=0.77, p<10-5, n=9) tests. The noncontact DCS holds promise for measuring blood flow in vulnerable (e.g., pressure ulcer) and soft (e.g., breast) tissues without distorting tissue hemodynamic properties.

  3. Radiation dose evaluation of dental cone beam computed tomography using an anthropomorphic adult head phantom

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Shih, Cheng-Ting; Ho, Chang-hung; Liu, Yan-Lin; Chang, Yuan-Jen; Min Chao, Max; Hsu, Jui-Ting

    2014-11-01

    Dental cone beam computed tomography (CBCT) provides high-resolution tomographic images and has been gradually used in clinical practice. Thus, it is important to examine the amount of radiation dose resulting from dental CBCT examinations. In this study, we developed an in-house anthropomorphic adult head phantom to evaluate the level of effective dose. The anthropomorphic phantom was made of acrylic and filled with plaster to replace the bony tissue. The contour of the head was extracted from a set of adult computed tomography (CT) images. Different combinations of the scanning parameters of CBCT were applied. Thermoluminescent dosimeters (TLDs) were used to measure the absorbed doses at 19 locations in the head and neck regions. The effective doses measured using the proposed phantom at 65, 75, and 85 kVp in the D-mode were 72.23, 100.31, and 134.29 μSv, respectively. In the I-mode, the effective doses were 108.24, 190.99, and 246.48 μSv, respectively. The maximum percent error between the doses measured by the proposed phantom and the Rando phantom was l4.90%. Therefore, the proposed anthropomorphic adult head phantom is applicable for assessing the radiation dose resulting from clinical dental CBCT.

  4. Construction and geometric stability of physiological flow rate wall-less stenosis phantoms.

    PubMed

    Ramnarine, K V; Anderson, T; Hoskins, P R

    2001-02-01

    Wall-less flow phantoms are preferred for ultrasound (US) because tissue-mimicking material (TMM) with good acoustical properties can be made and cast to form anatomical models. The construction and geometrical stability of wall-less TMM flow phantoms is described using a novel method of sealing to prevent leakage of the blood-mimicking fluid (BMF). Wall-less stenosis flow models were constructed using a robust agar-based TMM and sealed using reticulated foam at the inlet and outlet tubes. There was no BMF leakage at the highest flow rate of 2.8 L/min in 0%, 35% and 57% diameter reduction stenoses models. Failure of the 75% stenosis model, due to TMM fracture, occurred at maximum flow rate of 2 L/min (mean velocity 10 m/s within the stenosis). No change of stenosis geometry was measured over 4 days. The construction is simple and effective and extends the possibility for high flow rate studies using robust TMM wall-less phantoms.

  5. Evaluation of blood flow in human exercising muscle by diffuse correlation spectroscopy: a phantom model study

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Mikie; Ono, Yumie; Ichinose, Masashi

    2018-02-01

    Diffuse correlation spectroscopy (DCS) has a potential to noninvasively and quantitatively measure the blood flow in the exercising muscle that could contribute to the fields of sports physiology and medicine. However, the blood flow index (BFI) measured from skin surface by DCS reflects hemodynamic signals from both superficial tissue and muscle layer. Thus, an appropriate calibration technology is required to quantify the absolute blood flow in the muscle layer. We therefore fabricated a realistic two-layer phantom model consisted of a static silicon layer imitating superficial tissue and a dynamic flow layer imitating the muscle blood flow and investigated the relationship between the simulated blood flow rate in the muscle layer and the BFI measured from the surface of the phantom. The absorption coefficient and the reduced scattering coefficient of the forearm were measured from 25 healthy young adults using a time-resolved nearinfrared spectroscopy. The depths of the superficial and muscle layers of forearm were also determined by ultrasound tomography images from 25 healthy young adults. The phantoms were fabricated to satisfy these optical coefficients and anatomical constraints. The simulated blood flow rate were set from 0 mL/ min to 68.7 mL/ min in ten steps, which is considered to cover a physiological range of mean blood flow of the forearm between per 100g of muscle tissue at rest to heavy dynamic handgrip exercise. We found a proportional relationship between the flow rates and BFIs with significant correlation coefficient of R = 0.986. Our results suggest that the absolute exercising muscle blood flow could be estimated by DCS with optimal calibration using phantom models.

  6. Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms.

    PubMed

    Moilanen, Petro; Zhao, Zuomin; Karppinen, Pasi; Karppinen, Timo; Kilappa, Vantte; Pirhonen, Jalmari; Myllylä, Risto; Haeggström, Edward; Timonen, Jussi

    2014-03-01

    Photo-acoustic (PA) imaging was combined with skeletal quantitative ultrasound (QUS) for assessment of human long bones. This approach permitted low-frequency excitation and detection of ultrasound so as to efficiently receive the thickness-sensitive fundamental flexural guided wave (FFGW) through a coating of soft tissue. The method was tested on seven axisymmetric bone phantoms, whose 1- to 5-mm wall thickness and 16-mm diameter mimicked those of the human radius. Phantoms were made of a composite material and coated with a 2.5- to 7.5-mm layer of soft material that mimicked soft tissue. Ultrasound was excited with a pulsed Nd:YAG laser at 1064-nm wavelength and received on the same side of the coated phantom with a heterodyne interferometer. The FFGW was detected at 30-kHz frequency. Fitting the FFGW phase velocity by the FLC(1,1) tube mode provided an accurate (9.5 ± 4.0%) wall thickness estimate. Ultrasonic in vivo characterization of cortical bone thickness may thus become possible. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Nuclear IHC enumeration: A digital phantom to evaluate the performance of automated algorithms in digital pathology.

    PubMed

    Niazi, Muhammad Khalid Khan; Abas, Fazly Salleh; Senaras, Caglar; Pennell, Michael; Sahiner, Berkman; Chen, Weijie; Opfer, John; Hasserjian, Robert; Louissaint, Abner; Shana'ah, Arwa; Lozanski, Gerard; Gurcan, Metin N

    2018-01-01

    Automatic and accurate detection of positive and negative nuclei from images of immunostained tissue biopsies is critical to the success of digital pathology. The evaluation of most nuclei detection algorithms relies on manually generated ground truth prepared by pathologists, which is unfortunately time-consuming and suffers from inter-pathologist variability. In this work, we developed a digital immunohistochemistry (IHC) phantom that can be used for evaluating computer algorithms for enumeration of IHC positive cells. Our phantom development consists of two main steps, 1) extraction of the individual as well as nuclei clumps of both positive and negative nuclei from real WSI images, and 2) systematic placement of the extracted nuclei clumps on an image canvas. The resulting images are visually similar to the original tissue images. We created a set of 42 images with different concentrations of positive and negative nuclei. These images were evaluated by four board certified pathologists in the task of estimating the ratio of positive to total number of nuclei. The resulting concordance correlation coefficients (CCC) between the pathologist and the true ratio range from 0.86 to 0.95 (point estimates). The same ratio was also computed by an automated computer algorithm, which yielded a CCC value of 0.99. Reading the phantom data with known ground truth, the human readers show substantial variability and lower average performance than the computer algorithm in terms of CCC. This shows the limitation of using a human reader panel to establish a reference standard for the evaluation of computer algorithms, thereby highlighting the usefulness of the phantom developed in this work. Using our phantom images, we further developed a function that can approximate the true ratio from the area of the positive and negative nuclei, hence avoiding the need to detect individual nuclei. The predicted ratios of 10 held-out images using the function (trained on 32 images) are

  8. Optical absorption and scattering properties of bulk porcine muscle phantoms from interstitial radiance measurements in 650-900 nm range

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Montgomery, Logan G.; Whelan, William M.

    2014-05-01

    We demonstrated the application of relative radiance-based continuous wave (cw) measurements for recovering absorption and scattering properties (the effective attenuation coefficient, the diffusion coefficient, the absorption coefficient and the reduced scattering coefficient) of bulk porcine muscle phantoms in the 650-900 nm spectral range. Both the side-firing fiber (the detector) and the fiber with a spherical diffuser at the end (the source) were inserted interstitially at predetermined locations in the phantom. The porcine phantoms were prostate-shaped with ˜4 cm in diameter and ˜3 cm thickness and made from porcine loin or tenderloin muscles. The described method was previously validated using the diffusion approximation on simulated and experimental radiance data obtained for homogenous Intralipid-1% liquid phantom. The approach required performing measurements in two locations in the tissue with different distances to the source. Measurements were performed on 21 porcine phantoms. Spectral dependences of the effective attenuation and absorption coefficients for the loin phantom deviated from corresponding dependences for the tenderloin phantom for wavelengths <750 nm. The diffusion constant and the reduced scattering coefficient were very close for both phantom types. To quantify chromophore presence, the plot for the absorption coefficient was matched with a synthetic absorption spectrum constructed from deoxyhemoglobin, oxyhemoglobin and water. The closest match for the porcine loin spectrum was obtained with the following concentrations: 15.5 µM (±30% s.d.) Hb, 21 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The tenderloin absorption spectrum was best described by 30 µM Hb (±30% s.d), 19 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The higher concentration of Hb in tenderloin was consistent with a dark-red appearance of the tenderloin phantom. The method can be applied to a number of biological

  9. Quantitative investigation of the edge enhancement in in-line phase contrast projections and tomosynthesis provided by distributing microbubbles on the interface between two tissues: a phantom study

    NASA Astrophysics Data System (ADS)

    Wu, Di; Donovan Wong, Molly; Li, Yuhua; Fajardo, Laurie; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2017-12-01

    The objective of this study was to quantitatively investigate the ability to distribute microbubbles along the interface between two tissues, in an effort to improve the edge and/or boundary features in phase contrast imaging. The experiments were conducted by employing a custom designed tissue simulating phantom, which also simulated a clinical condition where the ligand-targeted microbubbles are self-aggregated on the endothelium of blood vessels surrounding malignant cells. Four different concentrations of microbubble suspensions were injected into the phantom: 0%, 0.1%, 0.2%, and 0.4%. A time delay of 5 min was implemented before image acquisition to allow the microbubbles to become distributed at the interface between the acrylic and the cavity simulating a blood vessel segment. For comparison purposes, images were acquired using three system configurations for both projection and tomosynthesis imaging with a fixed radiation dose delivery: conventional low-energy contact mode, low-energy in-line phase contrast and high-energy in-line phase contrast. The resultant images illustrate the edge feature enhancements in the in-line phase contrast imaging mode when the microbubble concentration is extremely low. The quantitative edge-enhancement-to-noise ratio calculations not only agree with the direct image observations, but also indicate that the edge feature enhancement can be improved by increasing the microbubble concentration. In addition, high-energy in-line phase contrast imaging provided better performance in detecting low-concentration microbubble distributions.

  10. Optoacoustic response of gold nanorods in soft phantoms using high-power diode laser assemblies at 870 and 905 nm.

    PubMed

    Leggio, L; Gawali, S; Gallego, D; Rodríguez, S; Sánchez, M; Carpintero, G; Lamela, H

    2017-03-01

    In the present paper we show the optoacoustic (OA) response of two solutions of gold nanorods dispersed in distilled water (0.8 mg/ml) and hosted in tissue-like phantoms by using small arrays of HPDLs at 870 and 905 nm as excitation sources. The HPDLs are coupled to a 7-to-1 optical fiber bundle with output diameter of 675 μm. Each solution of gold nanorods exhibits an absorption peak close to the operating wavelength, i.e. ~860 nm and ~900 nm, respectively, to optimize the generation of OA signals. The phantoms are made of agar, intralipid and hemoglobin to simulate a soft biological tissue with reduced properties of scattering. Three 3-mm diameter tubes done in the phantoms at different depths (0.9 cm, 1.8 cm, and 2.7 cm) have been filled with gold nanorods. In this way, OA signals with appreciable SNR are generated at different depths in the phantoms. The high OA response exhibited by gold nanorods suggests their application in OA spectroscopy as exogenous contrast agents to detect and monitor emerging diseases like metastasis and arteriosclerotic plaques.

  11. Measurement and Modeling of Acoustic Fields in a Gel Phantom at High Intensities

    NASA Astrophysics Data System (ADS)

    Canney, Michael S.; Bailey, Michael R.; Khokhlova, Vera A.; Crum, Lawrence A.

    2006-05-01

    The goal of this work was to compare measured and numerically predicted HIFU pressure waveforms in water and a tissue-mimicking phantom. Waveforms were measured at the focus of a 2-MHz HIFU transducer with a fiber optic hydrophone. The transducer was operated with acoustic powers ranging from 2W to 300W. A KZK-type equation was used for modeling the experimental conditions. Strongly asymmetric nonlinear waves with peak positive pressure up to 80 MPa and peak negative pressure up to 20 MPa were measured in water, while waves up to 50 MPa peak positive pressure and 15 MPa peak negative pressure were measured in tissue phantoms. The values of peak negative pressure corresponded well with numerical simulations and were significantly smaller than predicted by linear extrapolation from low-level measurements. The values of peak positive pressures differed only at high levels of excitation where bandwidth limitations of the hydrophone failed to fully capture the predicted sharp shock fronts.

  12. SU-F-T-292: Imaging and Radiation Oncology Core (IROC) Houston QA Center’s Anthropomorphic Phantom Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrens, H; Lewis, B; Lujano, C

    2016-06-15

    Purpose: To describe the results of IROC Houston’s international and domestic end-to-end QA phantom irradiations. Methods: IROC Houston has anthropomorphic lung, liver, head and neck, prostate, SRS and spine phantoms that are used for credentialing and quality assurance purposes. The phantoms include structures that closely mimic targets and organs at risk and are made from tissue equivalent materials: high impact polystyrene, solid water, cork and acrylic. Motion tables are used to mimic breathing motion for some lung and liver phantoms. Dose is measured with TLD and radiochromic film in various planes within the target of the phantoms. Results: The mostmore » common phantom requested is the head and neck followed by the lung phantom. The head and neck phantom was sent to 800 domestic and 148 international sites between 2011 and 2015, with average pass rates of 89% and 92%, respectively. During the past five years, a general upward trend exists regarding demand for the lung phantom for both international and domestic sites with international sites more than tripling from 5 (2011) to 16 (2015) and domestic sites doubling from 66 (2011) to 152 (2015). The pass rate for lung phantoms has been consistent from year to year despite this large increase in the number of phantoms irradiated with an average pass rate of 85% (domestic) and 95% (international) sites. The percentage of lung phantoms used in combination with motions tables increased from 38% to 79% over the 5 year time span. Conclusion: The number of domestic and international sites irradiating the head and neck and lung phantoms continues to increase and the pass rates remained constant. These end-to-end QA tests continue to be a crucial part of clinical trial credentialing and institution quality assurance. This investigation was supported by IROC grant CA180803 awarded by the NCI.« less

  13. Vesicoureteral reflux in children: a phantom study of microwave heating and radiometric thermometry of pediatric bladder.

    PubMed

    Birkelund, Yngve; Klemetsen, Øystein; Jacobsen, Svein K; Arunachalam, Kavitha; Maccarini, Paolo; Stauffer, Paul R

    2011-11-01

    We have investigated the use of microwave heating and radiometry to safely heat urine inside a pediatric bladder. The medical application for this research is to create a safe and reliable method to detect vesicoureteral reflux, a pediatric disorder, where urine flow is reversed and flows from the bladder back up into the kidney. Using fat and muscle tissue models, we have performed both experimental and numerical simulations of a pediatric bladder model using planar dual concentric conductor microstrip antennas at 915 MHz for microwave heating. A planar elliptical antenna connected to a 500 MHz bandwidth microwave radiometer centered at 3.5 GHz was used for noninvasive temperature measurement inside tissue. Temperatures were measured in the phantom models at points during the experiment with implanted fiberoptic sensors, and 2-D distributions in cut planes at depth in the phantom with an infrared camera at the end of the experiment. Cycling between 20 s with 20 Watts power for heating, and 10 s without power to allow for undisturbed microwave radiometry measurements, the experimental results show that the target tissue temperature inside the phantom increases fast and that the radiometer provides useful measurements of spatially averaged temperature of the illuminated volume. The presented numerical and experimental results show excellent concordance, which confirms that the proposed system for microwave heating and radiometry is applicable for safe and reliable heating of pediatric bladder.

  14. Dynamic heart phantom with functional mitral and aortic valves

    NASA Astrophysics Data System (ADS)

    Vannelli, Claire; Moore, John; McLeod, Jonathan; Ceh, Dennis; Peters, Terry

    2015-03-01

    Cardiac valvular stenosis, prolapse and regurgitation are increasingly common conditions, particularly in an elderly population with limited potential for on-pump cardiac surgery. NeoChord©, MitraClipand numerous stent-based transcatheter aortic valve implantation (TAVI) devices provide an alternative to intrusive cardiac operations; performed while the heart is beating, these procedures require surgeons and cardiologists to learn new image-guidance based techniques. Developing these visual aids and protocols is a challenging task that benefits from sophisticated simulators. Existing models lack features needed to simulate off-pump valvular procedures: functional, dynamic valves, apical and vascular access, and user flexibility for different activation patterns such as variable heart rates and rapid pacing. We present a left ventricle phantom with these characteristics. The phantom can be used to simulate valvular repair and replacement procedures with magnetic tracking, augmented reality, fluoroscopy and ultrasound guidance. This tool serves as a platform to develop image-guidance and image processing techniques required for a range of minimally invasive cardiac interventions. The phantom mimics in vivo mitral and aortic valve motion, permitting realistic ultrasound images of these components to be acquired. It also has a physiological realistic left ventricular ejection fraction of 50%. Given its realistic imaging properties and non-biodegradable composition—silicone for tissue, water for blood—the system promises to reduce the number of animal trials required to develop image guidance applications for valvular repair and replacement. The phantom has been used in validation studies for both TAVI image-guidance techniques1, and image-based mitral valve tracking algorithms2.

  15. Evaluation of Phantom-Based Education System for Acupuncture Manipulation

    PubMed Central

    Lee, In-Seon; Lee, Ye-Seul; Park, Hi-Joon; Lee, Hyejung; Chae, Younbyoung

    2015-01-01

    Background Although acupuncture manipulation has been regarded as one of the important factors in clinical outcome, it has been difficult to train novice students to become skillful experts due to a lack of adequate educational program and tools. Objectives In the present study, we investigated whether newly developed phantom acupoint tools would be useful to practice-naïve acupuncture students for practicing the three different types of acupuncture manipulation to enhance their skills. Methods We recruited 12 novice students and had them practice acupuncture manipulations on the phantom acupoint (5% agarose gel). We used the Acusensor 2 and compared their acupuncture manipulation techniques, for which the target criteria were depth and time factors, at acupoint LI11 in the human body before and after 10 training sessions. The outcomes were depth of needle insertion, depth error from target criterion, time of rotating, lifting, and thrusting, time error from target criteria and the time ratio. Results After 10 training sessions, the students showed significantly improved outcomes in depth of needle, depth error (rotation, reducing lifting/thrusting), thumb-forward time error, thumb-backward time error (rotation), and lifting time (reinforcing lifting/thrusting). Conclusions The phantom acupoint tool could be useful in a phantom-based education program for acupuncture-manipulation training for students. For advanced education programs for acupuncture manipulation, we will need to collect additional information, such as patient responses, acupoint-specific anatomical characteristics, delicate tissue-like modeling, haptic and visual feedback, and data from an acupuncture practice simulator. PMID:25689598

  16. Precision measurements of the RSA method using a phantom model of hip prosthesis.

    PubMed

    Mäkinen, Tatu J; Koort, Jyri K; Mattila, Kimmo T; Aro, Hannu T

    2004-04-01

    Radiostereometric analysis (RSA) has become one of the recommended techniques for pre-market evaluation of new joint implant designs. In this study we evaluated the effect of repositioning of X-ray tubes and phantom model on the precision of the RSA method. In precision measurements, we utilized mean error of rigid body fitting (ME) values as an internal control for examinations. ME value characterizes relative motion among the markers within each rigid body and is conventionally used to detect loosening of a bone marker. Three experiments, each consisting of 10 double examinations, were performed. In the first experiment, the X-ray tubes and the phantom model were not repositioned between one double examination. In experiments two and three, the X-ray tubes were repositioned between one double examination. In addition, the position of the phantom model was changed in experiment three. Results showed that significant differences could be found in 2 of 12 comparisons when evaluating the translation and rotation of the prosthetic components. Repositioning procedures increased ME values mimicking deformation of rigid body segments. Thus, ME value seemed to be a more sensitive parameter than migration values in this study design. These results confirmed the importance of standardized radiographic technique and accurate patient positioning for RSA measurements. Standardization and calibration procedures should be performed with phantom models in order to avoid unnecessary radiation dose of the patients. The present model gives the means to establish and to follow the intra-laboratory precision of the RSA method. The model is easily applicable in any research unit and allows the comparison of the precision values in different laboratories of multi-center trials.

  17. Design of a digital phantom population for myocardial perfusion SPECT imaging research.

    PubMed

    Ghaly, Michael; Du, Yong; Fung, George S K; Tsui, Benjamin M W; Links, Jonathan M; Frey, Eric

    2014-06-21

    Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk

  18. Phantom stars and topology change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, Andrew; Garattini, Remo; Lobo, Francisco S. N.

    2008-11-15

    In this work, we consider time-dependent dark-energy star models, with an evolving parameter {omega} crossing the phantom divide {omega}=-1. Once in the phantom regime, the null energy condition is violated, which physically implies that the negative radial pressure exceeds the energy density. Therefore, an enormous negative pressure in the center may, in principle, imply a topology change, consequently opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal energy difference calculations that may reflect or measure the occurrence ofmore » a topology change. We denote these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an absurdly advanced civilization may manipulate these geometries to induce closed timelike curves, consequently violating causality.« less

  19. Evaluation of dose delivery accuracy of gamma knife using MRI polymer gel dosimeter in an inhomogeneous phantom

    NASA Astrophysics Data System (ADS)

    Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh

    2009-05-01

    Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.

  20. Phantom energy traversable wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobo, Francisco S.N.; Campo Grande, Ed. C8 1749-016 Lisbon

    2005-04-15

    It has been suggested that a possible candidate for the present accelerated expansion of the Universe is 'phantom energy'. The latter possesses an equation of state of the form {omega}{identical_to}p/{rho}<-1, consequently violating the null energy condition. As this is the fundamental ingredient to sustain traversable wormholes, this cosmic fluid presents us with a natural scenario for the existence of these exotic geometries. 'Note, however, that the notion of phantom energy is that of a homogeneously distributed fluid. Nevertheless, it can be extended to inhomogeneous spherically symmetric spacetimes, and it is shown that traversable wormholes may be supported by phantom energy.more » Because of the fact of the accelerating Universe, macroscopic wormholes could naturally be grown from the submicroscopic constructions that originally pervaded the quantum foam. One could also imagine an advanced civilization mining the cosmic fluid for phantom energy necessary to construct and sustain a traversable wormhole. In this context, we investigate the physical properties and characteristics of traversable wormholes constructed using the equation of state p={omega}{rho}, with {omega}<-1. We analyze specific wormhole geometries, considering asymptotically flat spacetimes and imposing an isotropic pressure. We also construct a thin shell around the interior wormhole solution, by imposing the phantom energy equation of state on the surface stresses. Using the 'volume integral quantifier' we verify that it is theoretically possible to construct these geometries with vanishing amounts of averaged null energy condition violating phantom energy. Specific wormhole dimensions and the traversal velocity and time are also deduced from the traversability conditions for a particular wormhole geometry. These phantom energy traversable wormholes have far-reaching physical and cosmological implications. For instance, an advanced civilization may use these geometries to induce closed

  1. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  2. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.

    Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbedmore » doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and

  3. Phantom vibration and phantom ringing among mobile phone users: A systematic review of literature.

    PubMed

    Deb, Amrita

    2015-09-01

    The last decade has witnessed considerable interest in pathological conditions stemming from misuse or overuse of technology, a condition commonly referred to as technopathology. Of the several complaints reported, phantom vibration or phantom ringing is one that has not yet been widely explored. The objective of conducting a systematic review is to provide an understanding of the phenomena and summarize the research conducted so far. Major databases were searched and articles that matched the inclusion criteria were selected for final analysis. According to findings obtained, phantom vibration or phantom ringing was commonly experienced by mobile phone users; however, few found it bothersome and hence took no steps to eliminate it. As of now, literature in the area is limited and many aspects of the phenomena such as its prevalence across populations, causal factors, consequences, and treatment plans are yet to be studied. Also, a clinical criterion for identification of the condition needs to be formulated. With increase in the number of individuals reporting mobile phone-related problem behavior, phantom vibration, or phantom ringing may be expected to become a cause of concern for mental health professionals within some years. Finally, the need for further research is emphasized while presenting directions for future investigations. © 2014 Wiley Publishing Asia Pty Ltd.

  4. In-phantom two-dimensional thermal neutron distribution for intraoperative boron neutron capture therapy of brain tumours

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Matsumura, A.; Yamamoto, K.; Kumada, H.; Shibata, Y.; Nose, T.

    2002-07-01

    The aim of this study was to determine the in-phantom thermal neutron distribution derived from neutron beams for intraoperative boron neutron capture therapy (IOBNCT). Gold activation wires arranged in a cylindrical water phantom with (void-in-phantom) or without (standard phantom) a cylinder styrene form placed inside were irradiated by using the epithermal beam (ENB) and the mixed thermal-epithermal beam (TNB-1) at the Japan Research Reactor No 4. With ENB, we observed a flattened distribution of thermal neutron flux and a significantly enhanced thermal flux delivery at a depth compared with the results of using TNB-1. The thermal neutron distribution derived from both the ENB and TNB-1 was significantly improved in the void-in-phantom, and a double high dose area was formed lateral to the void. The flattened distribution in the circumference of the void was observed with the combination of ENB and the void-in-phantom. The measurement data suggest that the ENB may provide a clinical advantage in the form of an enhanced and flattened dose delivery to the marginal tissue of a post-operative cavity in which a residual and/or microscopically infiltrating tumour often occurs. The combination of the epithermal neutron beam and IOBNCT will improve the clinical results of BNCT for brain tumours.

  5. The subresolution DaTSCAN phantom: a cost-effective, flexible alternative to traditional phantom technology.

    PubMed

    Taylor, Jonathan C; Vennart, Nicholas; Negus, Ian; Holmes, Robin; Bandmann, Oliver; Lo, Christine; Fenner, John

    2018-03-01

    The Alderson striatal phantom is frequently used to assess I-FP-CIT (Ioflupane) image quality and to test semi-quantification software. However, its design is associated with a number of limitations, in particular: unrealistic image appearances and inflexibility. A new physical phantom approach is proposed on the basis of subresolution phantom technology. The design incorporates thin slabs of attenuating material generated through additive manufacturing, and paper sheets with radioactive ink patterns printed on their surface, created with a conventional inkjet printer. The paper sheets and attenuating slabs are interleaved before scanning. Use of thin layers ensures that they cannot be individually resolved on reconstructed images. An investigation was carried out to demonstrate the performance of such a phantom in producing simplified I-FP-CIT uptake patterns. Single photon emission computed tomography imaging was carried out on an assembled phantom designed to mimic a healthy patient. Striatal binding ratio results and linear striatal dimensions were calculated from the reconstructed data and compared with that of 22 clinical patients without evidence of Parkinsonian syndrome, determined from clinical follow-up. Striatal binding ratio results for the fully assembled phantom were: 3.1, 3.3, 2.9 and 2.6 for the right caudate, left caudate, right putamen and right caudate, respectively. All were within two SDs of results derived from a cohort of clinical patients. Medial-lateral and anterior-posterior dimensions of the simulated striata were also within the range of values seen in clinical data. This work provides the foundation for the generation of a range of more clinically realistic, physical phantoms.

  6. Using the cavitation collapse time to indicate the extent of histotripsy-induced tissue fractionation

    NASA Astrophysics Data System (ADS)

    Macoskey, J. J.; Choi, S. W.; Hall, T. L.; Vlaisavljevich, E.; Lundt, J. E.; Lee, F. T., Jr.; Johnsen, E.; Cain, C. A.; Xu, Z.

    2018-03-01

    Histotripsy is an ultrasonic tissue ablation method based on acoustic cavitation. It has been shown that cavitation dynamics change depending on the mechanical properties of the host medium. During histotripsy treatment, the target-tissue is gradually fractionated and eventually liquefied to acellular homogenate. In this study, the change in the collapse time (t col) of the cavitation bubble cloud over the course of histotripsy treatment is investigated as an indicator for progression of the tissue fractionation process throughout treatment. A 500 kHz histotripsy transducer is used to generate single-location lesions within tissue-mimicking agar phantoms of varying stiffness levels as well as ex vivo bovine liver samples. Cavitation collapse signals are acquired with broadband hydrophones, and cavitation is imaged optically using a high-speed camera in transparent tissue-mimicking phantoms. The high-speed-camera-acquired measurements of t col validate the acoustic hydrophone measurements. Increases in t col are observed both with decreasing phantom stiffness and throughout histotripsy treatment with increasing number of pulses applied. The increasing trend of t col throughout the histotripsy treatment correlates well with the progression of lesion formation generated in tissue-mimicking phantoms (R 2  =  0.87). Finally, the increasing trend of t col over the histotripsy treatment is validated in ex vivo bovine liver.

  7. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research

    PubMed Central

    Paul Segars, W.; Tsui, Benjamin M. W.

    2012-01-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal “hybrid” models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be

  8. SU-G-TeP2-12: IROCHouston and MDAPL SRS Anthropomorphic Phantom Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molineu, A; Kry, S; Alvarez, P

    Purpose: To report the results of SRS phantom irradiations Methods: Anthropomorphic SRS head phantoms were sent to institutions participating in NCI sponsored SRS clinical trials and institutions interested in verifying SRS treatment delivery. The phantom shell was purchased from Phantom Laboratory and altered to house dosimetry and imaging inserts. The imaging insert has 1.9 cm diameter spherical target. The dosimetry insert holds two TLD capsules and radiochromic film in the coronal and sagittal planes through the center of the target. Institutions were asked to image, plan and treat the phantom as they would an SRS patient. GammaKnife, CyberKnife and c-armmore » accelerator institutions were asked to cover the target with 15 Gy, 20 Gy and 25 Gy, respectively. Following these guidelines and typical planning protocols for these three types of machines gives roughly 30 Gy to the center of the target for all units. Submission of the DICOM digital data set was required for analysis. Criteria of 5% for TLD results and 85% of pixels passing 5%/3mm gamma analysis were applied beginning in 2013. Results: The phantom was analyzed 269 times between the beginning of 2013 to present. The pass rate is 81%. Nineteen of the irradiation results failed only the TLD criteria, 19 failed only the film criteria and 12 failed both. Irradiations included 32 CyberKnife 23 GammaKnife, 3 TomoTherapy and 211 c-arm units. Planning systems included Eclipse, Ergo, GammaPlan, Hi-Art, iPlan, Monaco, MultiPlan, Pinnacle, RayStation, XiO and XKnife. Irradiations that were not accompanied with DICOM data were not included in this analysis. Conclusion: The phantom is a valuable end-to-end test used to independently verify the accuracy of SRS treatment delivery. This investigation was supported by IROC grant CA180803 awarded by the NCI.« less

  9. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom.

    PubMed

    Craft, Daniel F; Howell, Rebecca M

    2017-09-01

    Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. Shooting with sound: optimizing an affordable ballistic gelatin recipe in a graded ultrasound phantom education program.

    PubMed

    Tanious, Shariff F; Cline, Jamie; Cavin, Jennifer; Davidson, Nathan; Coleman, J Keegan; Goodmurphy, Craig W

    2015-06-01

    The goal of this study was to investigate the durability and longevity of gelatin formulas for the production of staged ultrasound phantoms for education. Gelatin phantoms were prepared from Knox gelatin (Kraft Foods, Northfield, IL) and a standard 10%-by-mass ordinance gelatin solution. Phantoms were durability tested by compressing to a 2-cm depth until cracking was visible. Additionally, 16 containers with varying combinations of phenol, container type, and storage location were tested for longevity against desiccation and molding. Once formulation was determined, 4 stages of phantoms from novice to clinically relevant were poured, and clinicians with ultrasound training ranked them on a 7-point Likert scale based on task difficulty, phantom suitability, and fidelity. On durability testing, the ballistic gelatin outperformed the Knox gelatin by more than 200 compressions. On longevity testing, gelatin with a 0.5% phenol concentration stored with a lid and refrigeration lasted longest, whereas containers without a lid had desiccation within 1 month, and those without phenol became moldy within 6 weeks. Ballistic gelatin was more expensive when buying in small quantities but was 7.4% less expensive when buying in bulk. The staged phantoms were deemed suitable for training, but clinicians did not consistently rank the phantoms in the intended order of 1 to 4 (44%). Refrigerated and sealed ballistic gelatin with phenol was a cost-effective method for creating in-house staged ultrasound phantoms suitable for large-scale ultrasound educational training needs. Clinician ranking of phantoms may be influenced by current training methods that favor biological tissue scanning as easier. © 2015 by the American Institute of Ultrasound in Medicine.

  11. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  12. TomoPhantom, a software package to generate 2D-4D analytical phantoms for CT image reconstruction algorithm benchmarks

    NASA Astrophysics Data System (ADS)

    Kazantsev, Daniil; Pickalov, Valery; Nagella, Srikanth; Pasca, Edoardo; Withers, Philip J.

    2018-01-01

    In the field of computerized tomographic imaging, many novel reconstruction techniques are routinely tested using simplistic numerical phantoms, e.g. the well-known Shepp-Logan phantom. These phantoms cannot sufficiently cover the broad spectrum of applications in CT imaging where, for instance, smooth or piecewise-smooth 3D objects are common. TomoPhantom provides quick access to an external library of modular analytical 2D/3D phantoms with temporal extensions. In TomoPhantom, quite complex phantoms can be built using additive combinations of geometrical objects, such as, Gaussians, parabolas, cones, ellipses, rectangles and volumetric extensions of them. Newly designed phantoms are better suited for benchmarking and testing of different image processing techniques. Specifically, tomographic reconstruction algorithms which employ 2D and 3D scanning geometries, can be rigorously analyzed using the software. TomoPhantom also provides a capability of obtaining analytical tomographic projections which further extends the applicability of software towards more realistic, free from the "inverse crime" testing. All core modules of the package are written in the C-OpenMP language and wrappers for Python and MATLAB are provided to enable easy access. Due to C-based multi-threaded implementation, volumetric phantoms of high spatial resolution can be obtained with computational efficiency.

  13. Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female Caucasian populations

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Milian, F. M.; Kramer, R.; de Oliveira Lira, C. A. B.; Khoury, H. J.

    2011-07-01

    Computational anthropomorphic human phantoms are useful tools developed for the calculation of absorbed or equivalent dose to radiosensitive organs and tissues of the human body. The problem is, however, that, strictly speaking, the results can be applied only to a person who has the same anatomy as the phantom, while for a person with different body mass and/or standing height the data could be wrong. In order to improve this situation for many areas in radiological protection, this study developed 18 anthropometric standing adult human phantoms, nine models per gender, as a function of the 10th, 50th and 90th mass and height percentiles of Caucasian populations. The anthropometric target parameters for body mass, standing height and other body measures were extracted from PeopleSize, a well-known software package used in the area of ergonomics. The phantoms were developed based on the assumption of a constant body-mass index for a given mass percentile and for different heights. For a given height, increase or decrease of body mass was considered to reflect mainly the change of subcutaneous adipose tissue mass, i.e. that organ masses were not changed. Organ mass scaling as a function of height was based on information extracted from autopsy data. The methods used here were compared with those used in other studies, anatomically as well as dosimetrically. For external exposure, the results show that equivalent dose decreases with increasing body mass for organs and tissues located below the subcutaneous adipose tissue layer, such as liver, colon, stomach, etc, while for organs located at the surface, such as breasts, testes and skin, the equivalent dose increases or remains constant with increasing body mass due to weak attenuation and more scatter radiation caused by the increasing adipose tissue mass. Changes of standing height have little influence on the equivalent dose to organs and tissues from external exposure. Specific absorbed fractions (SAFs) have also

  14. Realistic Analytical Polyhedral MRI Phantoms

    PubMed Central

    Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.

    2015-01-01

    Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724

  15. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom.

    PubMed

    Ahn, Keun Jae; Zheng, Zhenlong; Kwon, Tae Rin; Kim, Beom Joon; Lee, Hye Sun; Cho, Sung Bin

    2017-05-08

    During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs). In all experimental settings using the nanosecond or picosecond laser, tattoo pigments fragmented into coarse particles after a single laser pulse, and further disintegrated into smaller particles that dispersed toward the boundaries of PIZs after repetitive delivery of laser energy. Particles fractured by picosecond treatment were more evenly dispersed throughout PIZs than those fractured by nanosecond treatment. Additionally, picosecond-then-picosecond laser treatment (5-pass-picosecond treatment + 5-pass-picosecond treatment) induced greater disintegration of tattoo particles within PIZs than picosecond-then-nanosecond laser treatment (5-pass-picosecond treatment + 5-pass-nanosecond treatment). High-speed cinematography recorded the formation of PIZs after repeated reflection and propagation of acoustic waves over hundreds of microseconds to a few milliseconds. The present data may be of use in predicting three-dimensional laser-tattoo interactions and associated reactions in surrounding tissue.

  16. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reedmore » National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 m

  17. SU-D-209-06: Study On the Dose Conversion Coefficients in Pediatric Radiography with the Development of Children Voxel Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Q; Shanghai General Hospital, Shanghai, Shanghai; Zhuo, W

    Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominalmore » antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)« less

  18. OEDIPE: a new graphical user interface for fast construction of numerical phantoms and MCNP calculations.

    PubMed

    Franck, D; de Carlan, L; Pierrat, N; Broggio, D; Lamart, S

    2007-01-01

    Although great efforts have been made to improve the physical phantoms used to calibrate in vivo measurement systems, these phantoms represent a single average counting geometry and usually contain a uniform distribution of the radionuclide over the tissue substitute. As a matter of fact, significant corrections must be made to phantom-based calibration factors in order to obtain absolute calibration efficiencies applicable to a given individual. The importance of these corrections is particularly crucial when considering in vivo measurements of low energy photons emitted by radionuclides deposited in the lung such as actinides. Thus, it was desirable to develop a method for calibrating in vivo measurement systems that is more sensitive to these types of variability. Previous works have demonstrated the possibility of such a calibration using the Monte Carlo technique. Our research programme extended such investigations to the reconstruction of numerical anthropomorphic phantoms based on personal physiological data obtained by computed tomography. New procedures based on a new graphical user interface (GUI) for development of computational phantoms for Monte Carlo calculations and data analysis are being developed to take advantage of recent progress in image-processing codes. This paper presents the principal features of this new GUI. Results of calculations and comparison with experimental data are also presented and discussed in this work.

  19. A deformable head and neck phantom with in-vivo dosimetry for adaptive radiotherapy quality assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, Yan Jiang; Smith, Arthur-Allen; Mcilvena, David

    Purpose: Patients’ interfractional anatomic changes can compromise the initial treatment plan quality. To overcome this issue, adaptive radiotherapy (ART) has been introduced. Deformable image registration (DIR) is an important tool for ART and several deformable phantoms have been built to evaluate the algorithms’ accuracy. However, there is a lack of deformable phantoms that can also provide dosimetric information to verify the accuracy of the whole ART process. The goal of this work is to design and construct a deformable head and neck (HN) ART quality assurance (QA) phantom with in vivo dosimetry. Methods: An axial slice of a HN patientmore » is taken as a model for the phantom construction. Six anatomic materials are considered, with HU numbers similar to a real patient. A filled balloon inside the phantom tissue is inserted to simulate tumor. Deflation of the balloon simulates tumor shrinkage. Nonradiopaque surface markers, which do not influence DIR algorithms, provide the deformation ground truth. Fixed and movable holders are built in the phantom to hold a diode for dosimetric measurements. Results: The measured deformations at the surface marker positions can be compared with deformations calculated by a DIR algorithm to evaluate its accuracy. In this study, the authors selected a Demons algorithm as a DIR algorithm example for demonstration purposes. The average error magnitude is 2.1 mm. The point dose measurements from the in vivo diode dosimeters show a good agreement with the calculated doses from the treatment planning system with a maximum difference of 3.1% of prescription dose, when the treatment plans are delivered to the phantom with original or deformed geometry. Conclusions: In this study, the authors have presented the functionality of this deformable HN phantom for testing the accuracy of DIR algorithms and verifying the ART dosimetric accuracy. The authors’ experiments demonstrate the feasibility of this phantom serving as an end

  20. All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. R. A.; Fuelle, D.

    2003-05-01

    The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.

  1. Pediatric Phantom Dosimetry of Kodak 9000 Cone-beam Computed Tomography.

    PubMed

    Yepes, Juan F; Booe, Megan R; Sanders, Brian J; Jones, James E; Ehrlich, Ygal; Ludlow, John B; Johnson, Brandon

    2017-05-15

    The purpose of the study was to evaluate the radiation dose of the Kodak 9000 cone-beam computed tomography (CBCT) device for different anatomical areas using a pediatric phantom. Absorbed doses resulting from maxillary and mandibular region three by five cm CBCT volumes of an anthropomorphic 10-year-old child phantom were acquired using optical stimulated dosimetry. Equivalent doses were calculated for radiosensitive tissues in the head and neck area, and effective dose for maxillary and mandibular examinations were calculated following the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Of the mandibular scans, the salivary glands had the highest equivalent dose (1,598 microsieverts [μSv]), followed by oral mucosa (1,263 μSv), extrathoracic airway (pharynx, larynx, and trachea; 859 μSv), and thyroid gland (578 μSv). For the maxilla, the salivary glands had the highest equivalent dose (1,847 μSv), followed closely by oral mucosa (1,673 μSv), followed by the extrathoracic airway (pharynx, larynx, and trachea; 1,011 μSv) and lens of the eye (202 μSv). Compared to previous research of the Kodak 9000, completed with the adult phantom, a child receives one to three times more radiation for mandibular scans and two to 10 times more radiation for maxillary scans.

  2. Experimental verification of a CT-based Monte Carlo dose-calculation method in heterogeneous phantoms.

    PubMed

    Wang, L; Lovelock, M; Chui, C S

    1999-12-01

    To further validate the Monte Carlo dose-calculation method [Med. Phys. 25, 867-878 (1998)] developed at the Memorial Sloan-Kettering Cancer Center, we have performed experimental verification in various inhomogeneous phantoms. The phantom geometries included simple layered slabs, a simulated bone column, a simulated missing-tissue hemisphere, and an anthropomorphic head geometry (Alderson Rando Phantom). The densities of the inhomogeneity range from 0.14 to 1.86 g/cm3, simulating both clinically relevant lunglike and bonelike materials. The data are reported as central axis depth doses, dose profiles, dose values at points of interest, such as points at the interface of two different media and in the "nasopharynx" region of the Rando head. The dosimeters used in the measurement included dosimetry film, TLD chips, and rods. The measured data were compared to that of Monte Carlo calculations for the same geometrical configurations. In the case of the Rando head phantom, a CT scan of the phantom was used to define the calculation geometry and to locate the points of interest. The agreement between the calculation and measurement is generally within 2.5%. This work validates the accuracy of the Monte Carlo method. While Monte Carlo, at present, is still too slow for routine treatment planning, it can be used as a benchmark against which other dose calculation methods can be compared.

  3. Comparison of Tissue Density in Hounsfield Units in Computed Tomography and Cone Beam Computed Tomography.

    PubMed

    Varshowsaz, Masoud; Goorang, Sepideh; Ehsani, Sara; Azizi, Zeynab; Rahimian, Sepideh

    2016-03-01

    Bone quality and quantity assessment is one of the most important steps in implant treatment planning. Different methods such as computed tomography (CT) and recently suggested cone beam computed tomography (CBCT) with lower radiation dose and less time and cost are used for bone density assessment. This in vitro study aimed to compare the tissue density values in Hounsfield units (HUs) in CBCT and CT scans of different tissue phantoms with two different thicknesses, two different image acquisition settings and in three locations in the phantoms. Four different tissue phantoms namely hard tissue, soft tissue, air and water were scanned by three different CBCT and a CT system in two thicknesses (full and half) and two image acquisition settings (high and low kVp and mA). The images were analyzed at three sites (middle, periphery and intermediate) using eFilm software. The difference in density values was analyzed by ANOVA and correction coefficient test (P<0.05). There was a significant difference between density values in CBCT and CT scans in most situations, and CBCT values were not similar to CT values in any of the phantoms in different thicknesses and acquisition parameters or the three different sites. The correction coefficients confirmed the results. CBCT is not reliable for tissue density assessment. The results were not affected by changes in thickness, acquisition parameters or locations.

  4. X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedantham, Srinivasan; Karellas, Andrew

    Purpose: Phase contrast imaging, particularly of the breast, is being actively investigated. The purpose of this work is to investigate the x-ray phase contrast properties of breast tissues and commonly used breast tissue substitutes or phantom materials with an aim of determining the phantom materials best representative of breast tissues. Methods: Elemental compositions of breast tissues including adipose, fibroglandular, and skin were used to determine the refractive index, n= 1 -{delta}+i {beta}. The real part of the refractive index, specifically the refractive index decrement ({delta}), over the energy range of 5-50 keV were determined using XOP software (version 2.3, Europeanmore » Synchrotron Radiation Facility, France). Calcium oxalate and calcium hydroxyapatite were considered to represent the material compositions of microcalcifications in vivo. Nineteen tissue substitutes were considered as possible candidates to represent adipose tissue, fibroglandular tissue and skin, and four phantom materials were considered as possible candidates to represent microcalcifications. For each material, either the molecular formula, if available, or the elemental composition based on weight fraction, was used to determine {delta}. At each x-ray photon energy, the absolute percent difference in {delta} between the breast tissue and the substitute material was determined, from which three candidates were selected. From these candidate tissue substitutes, the material that minimized the absolute percent difference in linear attenuation coefficient {mu}, and hence {beta}, was considered to be best representative of that breast tissue. Results: Over the energy range of 5-50 keV, while the {delta} of CB3 and fibroglandular tissue-equivalent material were within 1% of that of fibroglandular tissue, the {mu} of fibroglandular tissue-equivalent material better approximated the fibroglandular tissue. While the {delta} of BR10 and adipose tissue-equivalent material were within 1

  5. Automatic insertion of simulated microcalcification clusters in a software breast phantom

    NASA Astrophysics Data System (ADS)

    Shankla, Varsha; Pokrajac, David D.; Weinstein, Susan P.; DeLeo, Michael; Tuite, Catherine; Roth, Robyn; Conant, Emily F.; Maidment, Andrew D.; Bakic, Predrag R.

    2014-03-01

    An automated method has been developed to insert realistic clusters of simulated microcalcifications (MCs) into computer models of breast anatomy. This algorithm has been developed as part of a virtual clinical trial (VCT) software pipeline, which includes the simulation of breast anatomy, mechanical compression, image acquisition, image processing, display and interpretation. An automated insertion method has value in VCTs involving large numbers of images. The insertion method was designed to support various insertion placement strategies, governed by probability distribution functions (pdf). The pdf can be predicated on histological or biological models of tumor growth, or estimated from the locations of actual calcification clusters. To validate the automated insertion method, a 2-AFC observer study was designed to compare two placement strategies, undirected and directed. The undirected strategy could place a MC cluster anywhere within the phantom volume. The directed strategy placed MC clusters within fibroglandular tissue on the assumption that calcifications originate from epithelial breast tissue. Three radiologists were asked to select between two simulated phantom images, one from each placement strategy. Furthermore, questions were posed to probe the rationale behind the observer's selection. The radiologists found the resulting cluster placement to be realistic in 92% of cases, validating the automated insertion method. There was a significant preference for the cluster to be positioned on a background of adipose or mixed adipose/fibroglandular tissues. Based upon these results, this automated lesion placement method will be included in our VCT simulation pipeline.

  6. Evaluating the Viscoelastic Properties of Tissue from Laser Speckle Fluctuations

    PubMed Central

    Hajjarian, Zeinab; Nadkarni, Seemantini K.

    2012-01-01

    Most pathological conditions such as atherosclerosis, cancer, neurodegenerative, and orthopedic disorders are accompanied with alterations in tissue viscoelasticity. Laser Speckle Rheology (LSR) is a novel optical technology that provides the invaluable potential for mechanical assessment of tissue in situ. In LSR, the specimen is illuminated with coherent light and the time constant of speckle fluctuations, τ, is measured using a high speed camera. Prior work indicates that τ is closely correlated with tissue microstructure and composition. Here, we investigate the relationship between LSR measurements of τ and sample mechanical properties defined by the viscoelastic modulus, G*. Phantoms and tissue samples over a broad range of viscoelastic properties are evaluated using LSR and conventional mechanical testing. Results demonstrate a strong correlation between τ and |G*| for both phantom (r = 0.79, p <0.0001) and tissue (r = 0.88, p<0.0001) specimens, establishing the unique capability of LSR in characterizing tissue viscoelasticity. PMID:22428085

  7. Characterizing tissue microstructure using an ultrasound system-independent spatial autocorrelation function

    NASA Astrophysics Data System (ADS)

    Dong, Fang

    1999-09-01

    The research described in this dissertation is related to characterization of tissue microstructure using a system- independent spatial autocorrelation function (SAF). The function was determined using a reference phantom method, which employed a well-defined ``point- scatterer'' reference phantom to account for instrumental factors. The SAF's were estimated for several tissue-mimicking (TM) phantoms and fresh dog livers. Both phantom tests and in vitro dog liver measurements showed that the reference phantom method is relatively simple and fairly accurate, providing the bandwidth of the measurement system is sufficient for the size of the scatterer being involved in the scattering process. Implementation of this method in clinical scanner requires that distortions from patient's body wall be properly accounted for. The SAF's were estimated for two phantoms with body-wall-like distortions. The experimental results demonstrated that body wall distortions have little effect if echo data are acquired from a large scattering volume. One interesting application of the SAF is to form a ``scatterer size image''. The scatterer size image may help providing diagnostic tools for those diseases in which the tissue microstructure is different from the normal. Another method, the BSC method, utilizes information contained in the frequency dependence of the backscatter coefficient to estimate the scatterer size. The SAF technique produced accurate scatterer size images of homogeneous TM phantoms and the BSC method was capable of generating accurate size images for heterogeneous phantoms. In the scatterer size image of dog kidneys, the contrast-to-noise-ratio (CNR) between renal cortex and medulla was improved dramatically compared to the gray- scale image. The effect of nonlinear propagation was investigated by using a custom-designed phantom with overlaying TM fat layer. The results showed that the correlation length decreased when the transmitting power increased. The

  8. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose

    NASA Astrophysics Data System (ADS)

    Ding, Aiping; Mille, Matthew M.; Liu, Tianyu; Caracappa, Peter F.; Xu, X. George

    2012-05-01

    Although it is known that obesity has a profound effect on x-ray computed tomography (CT) image quality and patient organ dose, quantitative data describing this relationship are not currently available. This study examines the effect of obesity on the calculated radiation dose to organs and tissues from CT using newly developed phantoms representing overweight and obese patients. These phantoms were derived from the previously developed RPI-adult male and female computational phantoms. The result was a set of ten phantoms (five males, five females) with body mass indexes ranging from 23.5 (normal body weight) to 46.4 kg m-2 (morbidly obese). The phantoms were modeled using triangular mesh geometry and include specified amounts of the subcutaneous adipose tissue and visceral adipose tissue. The mesh-based phantoms were then voxelized and defined in the Monte Carlo N-Particle Extended code to calculate organ doses from CT imaging. Chest-abdomen-pelvis scanning protocols for a GE LightSpeed 16 scanner operating at 120 and 140 kVp were considered. It was found that for the same scanner operating parameters, radiation doses to organs deep in the abdomen (e.g., colon) can be up to 59% smaller for obese individuals compared to those of normal body weight. This effect was found to be less significant for shallow organs. On the other hand, increasing the tube potential from 120 to 140 kVp for the same obese individual resulted in increased organ doses by as much as 56% for organs within the scan field (e.g., stomach) and 62% for those out of the scan field (e.g., thyroid), respectively. As higher tube currents are often used for larger patients to maintain image quality, it was of interest to quantify the associated effective dose. It was found from this study that when the mAs was doubled for the obese level-I, obese level-II and morbidly-obese phantoms, the effective dose relative to that of the normal weight phantom increased by 57%, 42% and 23%, respectively. This set

  9. Radiotherapy-induced Cherenkov luminescence imaging in a human body phantom.

    PubMed

    Ahmed, Syed Rakin; Jia, Jeremy Mengyu; Bruza, Petr; Vinogradov, Sergei; Jiang, Shudong; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2018-03-01

    Radiation therapy produces Cherenkov optical emission in tissue, and this light can be utilized to activate molecular probes. The feasibility of sensing luminescence from a tissue molecular oxygen sensor from within a human body phantom was examined using the geometry of the axillary lymph node region. Detection of regions down to 30-mm deep was feasible with submillimeter spatial resolution with the total quantity of the phosphorescent sensor PtG4 near 1 nanomole. Radiation sheet scanning in an epi-illumination geometry provided optimal coverage, and maximum intensity projection images provided illustration of the concept. This work provides the preliminary information needed to attempt this type of imaging in vivo. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms.

    PubMed

    Zhang, Da; Li, Xinhua; Gao, Yiming; Xu, X George; Liu, Bob

    2013-08-01

    To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters "nanoDots" and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method--a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future. A standard ATOM phantom has densely located holes (in 3×3 cm or 1.5×1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations. Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated relatively small variations, with

  11. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.

    2007-07-01

    phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR™ and Rhinoceros™, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB™ code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm—equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and

  12. Intraluminal mapping of tissue viscoelastic properties using laser speckle rheology catheter (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hosoda, Masaki; Tshikudi, Diane M.; Nadkarni, Seemantini K.

    2016-03-01

    A number of disease conditions including coronary atherosclerosis, peripheral artery disease and gastro-intestinal malignancies are associated with alterations in tissue mechanical properties. Laser speckle rheology (LSR) has been demonstrated to provide important information on tissue mechanical properties by analyzing the time scale of temporal speckle intensity fluctuations, which serves as an index of tissue viscoelasticity. In order to measure the mechanical properties of luminal organs in vivo, LSR must be conducted via a miniature endoscope or catheter. Here we demonstrate the capability of an omni-directional LSR catheter to quantify tissue mechanical properties over the entire luminal circumference without the need for rotational motion. Retracting the catheter using a motor-drive assembly enables the reconstruction of cylindrical maps of tissue mechanical properties. The performance of the LSR catheter is tested using a luminal phantom with mechanical moduli that vary in both circumferential and longitudinal directions. 2D cylindrical maps of phantom viscoelastic properties are reconstructed over four quadrants of the coronary circumference simultaneously during catheter pullback. The reconstructed cylindrical maps of the decorrelation time constants easily distinguish the different gel components of the phantom with different viscoelastic moduli. The average values of decorrelation times calculated for each gel component of the phantom show a strong correspondence with the viscoelastic moduli measured via standard mechanical rheometry. These results highlight the capability for cylindrical mapping of tissue viscoelastic properties using LSR in luminal organs using a miniature catheter, thus opening the opportunity for improved diagnosis of several disease conditions.

  13. Characterization of photoacoustic sources in tissue using time domain measurements

    NASA Astrophysics Data System (ADS)

    Viator, John Andrew

    Photoacoustic phenomenon in tissue and tissue phantoms is investigated with the particular goal of discrimination of diseased and healthy tissue. Propagation of broadband photoacoustic sources in tissue phantoms is studied with emphasis on attenuation, dispersion, and diffraction. Attenuation of photoacoustic waves induced by a circular laser spot on an absorber/air interface is modeled by the on-axis approximation of the acoustic field of a baffled piston source. Dispersion is studied in a diffraction free situation, where the disk of irradiation was created by a 5 mm laser spot on a 200 cm -1 solution. The genesis of diffraction in an absorbing solution was displayed by showing the merging of a boundary wave with a plane wave from a circular laser spot on an absorbing solution. Depth profiling of absorbing tissue phantoms and stained tissue was shown using a photoacoustic method. Acrylamide gels with layers of different optical absorption and stained elastin biomaterials were irradiated with stress confined laser pulses. The resulting acoustic waves were detected with a lithium niobate wideband acoustic transducer and processed in an algorithm to determine absorption coefficient as a function of depth. Spherical photoacoustic sources were generated in optically clear and turbid tissue phantoms. Propagation time and acoustic pulse duration were used to determine location and size, respectively. The photoacoustic sources were imaged using a multiplicative backprojection scheme. Image sources from acoustic boundaries were detected and dipole sources were detected and imaged. Finally an endoscopic photoacoustic probe was designed, built, and tested for use in determining treatment depth after palliative photodynamic therapy of esophageal cancer. The probe was less than 2.5 mm in diameter and consisted of a side firing 600 mum optical fiber to deliver laser energy and a 890 mum diameter, side viewing piezoelectric detector. The sensitivity of the probe was determined

  14. Reducing the number of laboratory animals used in tissue engineering research by restricting the variety of animal models. Articular cartilage tissue engineering as a case study.

    PubMed

    de Vries, Rob B M; Buma, Pieter; Leenaars, Marlies; Ritskes-Hoitinga, Merel; Gordijn, Bert

    2012-12-01

    The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about the adequacy of the current animal models in tissue engineering research, we investigate whether it is possible to reduce the number of laboratory animals by selecting and using only those models that have greatest predictive value for future clinical application of the tissue engineered product. The field of articular cartilage tissue engineering is used as a case study. Based on a study of the scientific literature and interviews with leading experts in the field, an overview is provided of the animal models used and the advantages and disadvantages of each model, particularly in terms of extrapolation to the human situation. Starting from this overview, it is shown that, by skipping the small models and using only one large preclinical model, it is indeed possible to restrict the number of animal models, thereby reducing the number of laboratory animals used. Moreover, it is argued that the selection of animal models should become more evidence based and that researchers should seize more opportunities to choose or create characteristics in the animal models that increase their predictive value.

  15. Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.

    2013-03-01

    We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in six lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for

  16. Needle Steering in Biological Tissue using Ultrasound-based Online Curvature Estimation

    PubMed Central

    Moreira, Pedro; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2014-01-01

    Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes. Accurate placement of the needle tip is important to the success of many needle procedures. The current needle steering systems depend on needle-tissue-specific data, such as maximum curvature, that is unavailable prior to an interventional procedure. In this paper, we present a novel three-dimensional adaptive steering method for flexible bevel-tipped needles that is capable of performing accurate tip placement without previous knowledge about needle curvature. The method steers the needle by integrating duty-cycled needle steering, online curvature estimation, ultrasound-based needle tracking, and sampling-based motion planning. The needle curvature estimation is performed online and used to adapt the path and duty cycling. We evaluated the method using experiments in a homogenous gelatin phantom, a two-layer gelatin phantom, and a biological tissue phantom composed of a gelatin layer and in vitro chicken tissue. In all experiments, virtual obstacles and targets move in order to represent the disturbances that might occur due to tissue deformation and physiological processes. The average targeting error using our new adaptive method is 40% lower than using the conventional non-adaptive duty-cycled needle steering method. PMID:26229729

  17. SU-F-T-114: A Novel Anatomically Predictive Extension Model of Computational Human Phantoms for Dose Reconstruction in Retrospective Epidemiological Studies of Second Cancer Risks in Radiotherapy Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmin, G; Lee, C; Lee, C

    Purpose: Recent advances in cancer treatments have greatly increased the likelihood of post-treatment patient survival. Secondary malignancies, however, have become a growing concern. Epidemiological studies determining secondary effects in radiotherapy patients require assessment of organ-specific dose both inside and outside the treatment field. An essential input for Monte Carlo modeling of particle transport is radiological images showing full patient anatomy. However, in retrospective studies it is typical to only have partial anatomy from CT scans used during treatment planning. In this study, we developed a multi-step method to extend such limited patient anatomy to full body anatomy for estimating dosemore » to normal tissues located outside the CT scan coverage. Methods: The first step identified a phantom from a library of body size-dependent computational human phantoms by matching the height and weight of patients. Second, a Python algorithm matched the patient CT coverage location in relation to the whole body phantom. Third, an algorithm cut the whole body phantom and scaled them to match the size of the patient. Then, merged the two anatomies into one whole body. We entitled this new approach, Anatomically Predictive Extension (APE). Results: The APE method was examined by comparing the original chest-abdomen-pelvis CT images of the five patients with the APE phantoms developed from only the chest part of the CAP images and whole body phantoms. We achieved average percent differences of tissue volumes of 25.7%, 34.2%, 16.5%, 26.8%, and 31.6% with an average of 27% across all patients. Conclusion: Our APE method extends the limited CT patient anatomy to whole body anatomy by using image processing and computational human phantoms. Our ongoing work includes evaluating the accuracy of these APE phantoms by comparing normal tissue doses in the APE phantoms and doses calculated for the original full CAP images under generic radiotherapy simulations

  18. MO-F-CAMPUS-I-02: Accuracy in Converting the Average Breast Dose Into the Mean Glandular Dose (MGD) Using the F-Factor in Cone Beam Breast CT- a Monte Carlo Study Using Homogeneous and Quasi-Homogeneous Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, C; Zhong, Y; Wang, T

    2015-06-15

    Purpose: To investigate the accuracy in estimating the mean glandular dose (MGD) for homogeneous breast phantoms by converting from the average breast dose using the F-factor in cone beam breast CT. Methods: EGSnrc-based Monte Carlo codes were used to estimate the MGDs. 13-cm in diameter, 10-cm high hemi-ellipsoids were used to simulate pendant-geometry breasts. Two different types of hemi-ellipsoidal models were employed: voxels in quasi-homogeneous phantoms were designed as either adipose or glandular tissue while voxels in homogeneous phantoms were designed as the mixture of adipose and glandular tissues. Breast compositions of 25% and 50% volume glandular fractions (VGFs), definedmore » as the ratio of glandular tissue voxels to entire breast voxels in the quasi-homogeneous phantoms, were studied. These VGFs were converted into glandular fractions by weight and used to construct the corresponding homogeneous phantoms. 80 kVp x-rays with a mean energy of 47 keV was used in the simulation. A total of 109 photons were used to image the phantoms and the energies deposited in the phantom voxels were tallied. Breast doses in homogeneous phantoms were averaged over all voxels and then used to calculate the MGDs using the F-factors evaluated at the mean energy of the x-rays. The MGDs for quasi-homogeneous phantoms were computed directly by averaging the doses over all glandular tissue voxels. The MGDs estimated for the two types of phantoms were normalized to the free-in-air dose at the iso-center and compared. Results: The normalized MGDs were 0.756 and 0.732 mGy/mGy for the 25% and 50% VGF homogeneous breasts and 0.761 and 0.733 mGy/mGy for the corresponding quasi-homogeneous breasts, respectively. The MGDs estimated for the two types of phantoms were similar within 1% in this study. Conclusion: MGDs for homogeneous breast models may be adequately estimated by converting from the average breast dose using the F-factor.« less

  19. Obesity And Laboratory Diets Affects Tissue Malondialdehyde (MDA) Levels In Obese Rats

    NASA Astrophysics Data System (ADS)

    Chowdhury, Parimal; Scott, Joseph; Holley, Andy; Hakkak, Reza

    2010-04-01

    This study was conducted to investigate the interaction of obesity and laboratory diets on tissue malondialdehyde levels in rats. Female Zucker obese and lean rats were maintained on either regular grain-based diet or purified casein diet for two weeks, orally gavaged at day 50 with 65 mg/kg DMBA and sacrificed 24 hrs later. Malondialdehyde (MDA) levels were measured in blood and harvested tissues. Data were recorded as mean ± SEM and analyzed statistically. Results show that the obese group on purified casein diet had reduction of MDA levels in the brain, duodenum, liver, lung and kidney tissues as compared to lean group, p <0.05. Obese group on grain-based diet showed significant increase in MDA levels only in the duodenum, p <0.05. We conclude that dietary intervention differentially affects the oxidative markers in obese rats. It appears that purified casein diets were more effective than grain-based diet in reduction of oxidative stress in obese rats.

  20. Oil-based gel phantom for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Aggarwal, Lucimara P.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo. Z.

    2015-06-01

    Water-based materials are commonly used in phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. Styrene-Ethylene/Butylene-Styrene (SEBS) copolymer in mineral oil samples were made varying the SEBS concentration between 5-15%, and low-density polyethylene (LDPE) between 0-9%. Acoustic properties such as speed of sound and attenuation coefficient were obtained by the substitution technique with frequencies ranging from 2.25-10 MHz, and were consistent to that of soft tissue. These properties were controlled varying SEBS and LDPE concentration; speed of sound from 1445-1480 m/s, and attenuation from 0.86-11.31 dB/cm were observed. SEBS gels with 0% of LDPE were optically transparent, presenting low optical absorption and scattering coefficients in the visible region of the spectrum. In order to fully characterize the optical properties of the samples, the reflectances of the surfaces were measured, along with the absorption. Scattering and absorption coefficients ranging from 400 nm to 1200 nm were calculated for each compound. The results showed that the presence of LDPE increased absorption and scattering of the phantoms. The results suggest the copolymer gels are promising for ultrasound and optical imaging, what make them also potentially useful for photoacoustic imaging.

  1. X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials1

    PubMed Central

    Vedantham, Srinivasan; Karellas, Andrew

    2013-01-01

    Purpose: Phase contrast imaging, particularly of the breast, is being actively investigated. The purpose of this work is to investigate the x-ray phase contrast properties of breast tissues and commonly used breast tissue substitutes or phantom materials with an aim of determining the phantom materials best representative of breast tissues. Methods: Elemental compositions of breast tissues including adipose, fibroglandular, and skin were used to determine the refractive index, n = 1 − δ + i β. The real part of the refractive index, specifically the refractive index decrement (δ), over the energy range of 5–50 keV were determined using XOP software (version 2.3, European Synchrotron Radiation Facility, France). Calcium oxalate and calcium hydroxyapatite were considered to represent the material compositions of microcalcifications in vivo. Nineteen tissue substitutes were considered as possible candidates to represent adipose tissue, fibroglandular tissue and skin, and four phantom materials were considered as possible candidates to represent microcalcifications. For each material, either the molecular formula, if available, or the elemental composition based on weight fraction, was used to determine δ. At each x-ray photon energy, the absolute percent difference in δ between the breast tissue and the substitute material was determined, from which three candidates were selected. From these candidate tissue substitutes, the material that minimized the absolute percent difference in linear attenuation coefficient μ, and hence β, was considered to be best representative of that breast tissue. Results: Over the energy range of 5–50 keV, while the δ of CB3 and fibroglandular tissue-equivalent material were within 1% of that of fibroglandular tissue, the μ of fibroglandular tissue-equivalent material better approximated the fibroglandular tissue. While the δ of BR10 and adipose tissue-equivalent material were within 1% of that of adipose tissue, the tissue

  2. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J.; Zhong, Hualiang

    2014-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline–based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient-dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may

  3. Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom

    PubMed Central

    Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M.; Hadoke, Patrick W.F.; Gray, Gillian A.; Hoskins, Peter R.

    2013-01-01

    Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (<10%) between theoretical velocity errors and measured errors for beam-target angles of 50°–80°. However, for angles of 10°–40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503

  4. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    PubMed

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    bone. The multicompartment anthropomorphic head phantom was successfully produced and able to simulate realistic air cavities, bony anatomy, and soft tissue. Image quality assessment in the tibia phantom using the PETRA sequence showed the suitability of the resin to mimic human anatomy with high SNR and contrast making it suitable for tissue segmentation. A solid resin material, which can be 3D printed, has been found to have similar magnetic resonance signal properties to human cortical bone. Phantoms replicating skeletal anatomy were successfully produced using this resin and demonstrated their use for image quality and segmentation assessment of ultrashort echo time sequences. © 2017 American Association of Physicists in Medicine.

  5. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT and Ultrasound.

    PubMed

    Filippou, Valeria; Tsoumpas, Charalampos

    2018-06-22

    Printing technology, capable of producing three-dimensional (3D) objects, has evolved in recent years and provides potential for developing reproducible and sophisticated physical phantoms. 3D printing technology can help rapidly develop relatively low cost phantoms with appropriate complexities, which are useful in imaging or dosimetry measurements. The need for more realistic phantoms is emerging since imaging systems are now capable of acquiring multimodal and multiparametric data. This review addresses three main questions about the 3D printers currently in use, and their produced materials. The first question investigates whether the resolution of 3D printers is sufficient for existing imaging technologies. The second question explores if the materials of 3D-printed phantoms can produce realistic images representing various tissues and organs as taken by different imaging modalities such as computer tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound (US), and mammography. The emergence of multimodal imaging increases the need for phantoms that can be scanned using different imaging modalities. The third question probes the feasibility and easiness of "printing" radioactive and/or non-radioactive solutions during the printing process. A systematic review of medical imaging studies published after January 2013 is performed using strict inclusion criteria. The databases used were Scopus and Web of Knowledge with specific search terms. In total, 139 papers were identified, however only 50 were classified as relevant for the purpose of this paper. In this review, following an appropriate introduction and literature research strategy, all 50 articles are presented in detail. A summary of tables and example figures of the most recent advances in 3D printing for the purposes of phantoms across different imaging modalities are provided. All 50 studies printed and scanned

  6. Fundamental study on micro calcification detection using twinkling sign (TS): the effect of stiffness of surrounding tissue on the appearance of TS.

    PubMed

    Liu, Lei; Funamoto, Kenichi; Tanabe, Masayuki; Hayase, Toshiyuki

    2013-01-01

    The twinkling sign (TS) observed in ultrasound imaging (e.g., color flow mode and pulse Doppler mode) has been reported in previous researches as a potential phenomenon to detect micro calcification in soft tissue. However, the mechanism of the twinkling sign has not been clearly understood yet. The authors investigated the effect of stiffness of surrounding tissue on the appearance of TS using the soft tissue-mimicking phantoms and a medical ultrasound device. The author used Poly (vinyl alcohol) hydro (PVA-H) gel as the material of phantom and developed three phantoms with different PVA concentration; 8 %wt, 10 %wt and 15 %wt those correspond to Young's modulus (E) as 50 kPa, 100 kPa and 230 kPa, respectively. Micro glass and CaCO3 particles were embedded in the phantoms as pseudo micro calcification. The authors observed TS in each phantom and analyzed the temporal average of TS. The temporal average of TS was largest in the 8 %wt (E = 50 kPa) PVA-H gel phantom, and decreased with increasing the phantom stiffness. The result indicated that the micro oscillation of the particles had a close relationship with the occurrence of TS.

  7. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom

    NASA Astrophysics Data System (ADS)

    Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.

    2017-11-01

    One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation

  8. Contrast-detail phantom scoring methodology.

    PubMed

    Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander

    2005-03-01

    Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on

  9. Multilayer thin-film phantoms for axial contrast transfer function measurement in optical coherence tomography.

    PubMed

    Agrawal, Anant; Chen, Chao-Wei; Baxi, Jigesh; Chen, Yu; Pfefer, T Joshua

    2013-07-01

    In optical coherence tomography (OCT), axial resolution is one of the most critical parameters impacting image quality. It is commonly measured by determining the point spread function (PSF) based on a specular surface reflection. The contrast transfer function (CTF) provides more insights into an imaging system's resolving characteristics and can be readily generated in a system-independent manner, without consideration for image pixel size. In this study, we developed a test method for determination of CTF based on multi-layer, thin-film phantoms, evaluated using spectral- and time-domain OCT platforms with different axial resolution values. Phantoms representing six spatial frequencies were fabricated and imaged. The fabrication process involved spin coating silicone films with precise thicknesses in the 8-40 μm range. Alternating layers were doped with a specified concentration of scattering particles. Validation of layer optical properties and thicknesses were achieved with spectrophotometry and stylus profilometry, respectively. OCT B-scans were used to calculate CTFs and results were compared with convetional PSF measurements based on specular reflections. Testing of these phantoms indicated that our approach can provide direct access to axial resolution characteristics highly relevant to image quality. Furthermore, tissue phantoms based on our thin-film fabrication approach may have a wide range of additional applications in optical imaging and spectroscopy.

  10. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.

  11. Phantom eye syndrome: a review of the literature.

    PubMed

    Andreotti, Agda M; Goiato, Marcelo C; Pellizzer, Eduardo P; Pesqueira, Aldiéris A; Guiotti, Aimée M; Gennari-Filho, Humberto; dos Santos, Daniela M

    2014-01-01

    The purpose of this literature review was to describe the main features of phantom eye syndrome in relation to their possible causes, symptoms, treatments, and influence of eye amputation on quality of life of anophthalmic patients. For this, a bibliographical research was performed in Pubmed database using the following terms: "eye amputation," "eye trauma," "phantom eye syndrome," "phantom pain," and "quality of life," associated or not. Thirteen studies were selected, besides some relevant references contained in the selected manuscripts and other studies hallowed in the literature. Thus, 56 articles were included in this review. The phantom eye syndrome is defined as any sensation reported by the patient with anophthalmia, originated anophthalmic cavity. In phantom eye syndrome, at least one of these three symptoms has to be present: phantom vision, phantom pain, and phantom sensations. This syndrome has a direct influence on the quality of life of the patients, and psychological support is recommended before and after the amputation of the eyeball as well as aid in the treatment of the syndrome. Therefore, it is suggested that, for more effective treatment of phantom eye syndrome, drug therapy should be associated with psychological approach.

  12. The design and dosimetric evaluation of tannin-based Rhizophora spp. particleboards as phantoms for high energy photons and electrons

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.; Hamid, P. N. K. Abd

    2018-01-01

    A set of phantom with an external dimension of 30 cm x 30 cm was constructed from tannin-based Rhizophora spp. particleboards similar to the solid water phantoms. The dosimetric characteristics of the particleboard phantoms were evaluated at high energy photons and electrons by measuring the beam output at 6 MV photons and 6 MeV electrons based on the IAEA TRS 398:2000 protocol. The tissue-phantom ratio (TPR20,10) was measured at 6 and 10 MV photons. The beam output calibration of the particleboards was in good agreement to water and solid water phantoms at 6 MV photons with percentage difference of 1.7 and 6.2% respectively. The beam output calibration of the tannin-based Rhizophora spp. particleboards at 6 MeV electrons on the other hand were in excellent agreement to water with percentage difference of 0.3. The percentage depth dose of tannin-based Rhizophora spp. particleboards were in agreement to water and solid water within 4.5% when measured using ionization chamber and EBT2 film. The electron beam parameters of R50, R80 and R90 at 6 MeV electrons also were in good agreement to water and solid water phantoms. The overall results had indicated the suitability of tannin-based Rhizophora spp. particleboards as water substitute phantom materials for high energy photons and electrons.

  13. Development and validation of a biologically realistic tissue-mimicking material for photoacoustics and other bimodal optical-acoustic modalities

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2017-03-01

    Recent years have seen rapid development of hybrid optical-acoustic imaging modalities with broad applications in research and clinical imaging, including photoacoustic tomography (PAT), photoacoustic microscopy, and ultrasound-modulated optical tomography. Tissue-mimicking phantoms are an important tool for objectively and quantitatively simulating in vivo imaging system performance. However, no standard tissue phantoms exist for such systems. One major challenge is the development of tissue-mimicking materials (TMMs) that are both highly stable and possess biologically realistic properties. To address this need, we have explored the use of various formulations of PVC plastisol (PVCP) based on varying mixtures of several liquid plasticizers. We developed a custom PVCP formulation with optical absorption and scattering coefficients, speed of sound, and acoustic attenuation that are tunable and tissue-relevant. This TMM can simulate different tissue compositions and offers greater mechanical strength than hydrogels. Optical properties of PVCP samples with varying composition were characterized using integrating sphere spectrophotometry and the inverse adding-doubling method. Acoustic properties were determined using a broadband pulse-transmission technique. To demonstrate the utility of this bimodal TMM, we constructed an image quality phantom designed to enable quantitative evaluation of PAT spatial resolution. The phantom was imaged using a custom combined PAT-ultrasound imaging system. Results indicated that this more biologically realistic TMM produced performance trends not captured in simpler liquid phantoms. In the future, this TMM may be broadly utilized for performance evaluation of optical, acoustic, and hybrid optical-acoustic imaging systems.

  14. Technical Note: A safe, cheap, and easy-to-use isotropic diffusion MRI phantom for clinical and multicenter studies.

    PubMed

    Pullens, Pim; Bladt, Piet; Sijbers, Jan; Maas, Andrew I R; Parizel, Paul M

    2017-03-01

    Since Diffusion Weighted Imaging (DWI) data acquisition and processing are not standardized, substantial differences in DWI derived measures such as Apparent Diffusion Coefficient (ADC) may arise which are related to the acquisition or MRI processing method, but not to the sample under study. Quality assurance using a standardized test object, or phantom, is a key factor in standardizing DWI across scanners. Current diffusion phantoms are either complex to use, not available in larger quantities, contain substances unwanted in a clinical environment, or are expensive. A diffusion phantom based on a polyvinylpyrrolidone (PVP) solution, together with a phantom holder, is presented and compared to existing diffusion phantoms for use in clinical DWI scans. An ADC vs. temperature calibration curve was obtained. ADC of the phantom (808 to 857 ± 0.2 mm 2 /s) is in the same range as ADC values found in brain tissue. ADC measurements are highly reproducible across time with an intra-class correlation coefficient of > 0.8. ADC as function of temperature (in Kelvin) can be estimated as ADCm(T)=[exp(-7.09)·exp-2903.81T-1293.55] with a total uncertainty (95% confidence limit) of ± 1.7%. We present an isotropic diffusion MRI phantom, together with its temperature calibration curve, that is easy-to-use in a clinical environment, cost-effective, reproducible to produce, and that contains no harmful substances. © 2017 American Association of Physicists in Medicine.

  15. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain.

    PubMed

    Ortiz-Catalan, Max; Guðmundsdóttir, Rannveig A; Kristoffersen, Morten B; Zepeda-Echavarria, Alejandra; Caine-Winterberger, Kerstin; Kulbacka-Ortiz, Katarzyna; Widehammar, Cathrine; Eriksson, Karin; Stockselius, Anita; Ragnö, Christina; Pihlar, Zdenka; Burger, Helena; Hermansson, Liselotte

    2016-12-10

    Phantom limb pain is a debilitating condition for which no effective treatment has been found. We hypothesised that re-engagement of central and peripheral circuitry involved in motor execution could reduce phantom limb pain via competitive plasticity and reversal of cortical reorganisation. Patients with upper limb amputation and known chronic intractable phantom limb pain were recruited at three clinics in Sweden and one in Slovenia. Patients received 12 sessions of phantom motor execution using machine learning, augmented and virtual reality, and serious gaming. Changes in intensity, frequency, duration, quality, and intrusion of phantom limb pain were assessed by the use of the numeric rating scale, the pain rating index, the weighted pain distribution scale, and a study-specific frequency scale before each session and at follow-up interviews 1, 3, and 6 months after the last session. Changes in medication and prostheses were also monitored. Results are reported using descriptive statistics and analysed by non-parametric tests. The trial is registered at ClinicalTrials.gov, number NCT02281539. Between Sept 15, 2014, and April 10, 2015, 14 patients with intractable chronic phantom limb pain, for whom conventional treatments failed, were enrolled. After 12 sessions, patients showed statistically and clinically significant improvements in all metrics of phantom limb pain. Phantom limb pain decreased from pre-treatment to the last treatment session by 47% (SD 39; absolute mean change 1·0 [0·8]; p=0·001) for weighted pain distribution, 32% (38; absolute mean change 1·6 [1·8]; p=0·007) for the numeric rating scale, and 51% (33; absolute mean change 9·6 [8·1]; p=0·0001) for the pain rating index. The numeric rating scale score for intrusion of phantom limb pain in activities of daily living and sleep was reduced by 43% (SD 37; absolute mean change 2·4 [2·3]; p=0·004) and 61% (39; absolute mean change 2·3 [1·8]; p=0·001), respectively. Two of four

  16. The development of a population of 4D pediatric XCAT phantoms for CT imaging research and optimization

    NASA Astrophysics Data System (ADS)

    Norris, Hannah; Zhang, Yakun; Frush, Jack; Sturgeon, Gregory M.; Minhas, Anum; Tward, Daniel J.; Ratnanather, J. Tilak; Miller, M. I.; Frush, Donald; Samei, Ehsan; Segars, W. Paul

    2014-03-01

    With the increased use of CT examinations, the associated radiation dose has become a large concern, especially for pediatrics. Much research has focused on reducing radiation dose through new scanning and reconstruction methods. Computational phantoms provide an effective and efficient means for evaluating image quality, patient-specific dose, and organ-specific dose in CT. We previously developed a set of highly-detailed 4D reference pediatric XCAT phantoms at ages of newborn, 1, 5, 10, and 15 years with organ and tissues masses matched to ICRP Publication 89 values. We now extend this reference set to a series of 64 pediatric phantoms of a variety of ages and height and weight percentiles, representative of the public at large. High resolution PET-CT data was reviewed by a practicing experienced radiologist for anatomic regularity and was then segmented with manual and semi-automatic methods to form a target model. A Multi-Channel Large Deformation Diffeomorphic Metric Mapping (MC-LDDMM) algorithm was used to calculate the transform from the best age matching pediatric reference phantom to the patient target. The transform was used to complete the target, filling in the non-segmented structures and defining models for the cardiac and respiratory motions. The complete phantoms, consisting of thousands of structures, were then manually inspected for anatomical accuracy. 3D CT data was simulated from the phantoms to demonstrate their ability to generate realistic, patient quality imaging data. The population of pediatric phantoms developed in this work provides a vital tool to investigate dose reduction techniques in 3D and 4D pediatric CT.

  17. SU-F-E-10: Student-Driven Exploration of Radiographic Material Properties, Phantom Construction, and Clinical Workflows Or: The Extraordinary Life of CANDY MAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahon, RN; Riblett, MJ; Hugo, GD

    Purpose: To develop a hands-on learning experience that explores the radiological and structural properties of everyday items and applies this knowledge to design a simple phantom for radiotherapy exercises. Methods: Students were asked to compile a list of readily available materials thought to have radiation attenuation properties similar to tissues within the human torso. Participants scanned samples of suggested materials and regions of interest (ROIs) were used to characterize bulk attenuation properties. Properties of each material were assessed via comparison to a Gammex Tissue characterization phantom and used to construct a list of inexpensive near-tissue-equivalent materials. Critical discussions focusing onmore » samples found to differ from student expectations were used to revise and narrow the comprehensive list. From their newly acquired knowledge, students designed and constructed a simple thoracic phantom for use in a simulated clinical workflow. Students were tasked with setting up the phantom and acquiring planning CT images for use in treatment planning and dose delivery. Results: Under engineer and physicist supervision, students were trained to use a CT simulator and acquired images for approximately 60 different foodstuffs, candies, and household items. Through peer discussion, students gained valuable insights and were made to review preconceptions about radiographic material properties. From a subset of imaged materials, a simple phantom was successfully designed and constructed to represent a human thorax. Students received hands-on experience with clinical treatment workflows by learning how to perform CT simulation, create a treatment plan for an embedded tumor, align the phantom for treatment, and deliver a treatment fraction. Conclusion: In this activity, students demonstrated their ability to reason through the radiographic material selection process, construct a simple phantom to specifications, and exercise their knowledge of

  18. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmann, A; Stafford, R; Yung, J

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR.more » Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.« less

  19. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms

    PubMed Central

    Zhang, Da; Li, Xinhua; Gao, Yiming; Xu, X. George; Liu, Bob

    2013-01-01

    Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future. Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations. Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord

  20. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Da; Li, Xinhua; Liu, Bob

    Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future.Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified themore » conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations.Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord

  1. Dose Distribution in Cone-Beam Breast Computed Tomography: An Experimental Phantom Study

    NASA Astrophysics Data System (ADS)

    Russo, Paolo; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Villani, Natalia

    2010-02-01

    We measured the spatial distribution of absorbed dose in a 14 cm diameter PMMA half-ellipsoid phantom simulating the uncompressed breast, using an X-ray cone-beam breast computed tomography apparatus, assembled for laboratory tests. Thermoluminescent dosimeters (TLD-100) were placed inside the phantom in six positions, both axially and at the phantom periphery. To study the dose distribution inside the PMMA phantom two experimental setups were adopted with effective energies in the range 28.7-44.4 keV. Different values of effective energies were obtained by combining different configurations of added Cu filtration (0.05 mm or 0.2 mm) and tube voltages (from 50 kVp to 80 kVp). Dose values obtained by TLDs in different positions inside the PMMA are reported. To evaluate the dose distribution in the breast shaped volume, the values measured were normalized to the one obtained in the inner position inside the phantom. Measurements with a low energy setup show a gradual increment of dose going from the "chest wall" to the "nipple" (63% more at the "nipple" compared to the central position). Likewise, a gradual increment is observed going from the breast axis toward the periphery (82% more at the "skin" compared to the central position). A more uniform distribution of dose inside the PMMA was obtained with a high energy setup (the maximum variation was 33% at 35.5 keV effective energy in the radial direction). The most uniform distribution is obtained at 44.4 keV. The results of this study show how the dose is distributed: it varies as a function of effective energy of the incident X-ray beam and as a function of the position inside the volume (axial or peripheral position).

  2. Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Deirdre M.; Fagan, Andrew J.; Moran, Carmel M.

    2011-02-15

    Purpose: A range of anatomically realistic multimodality renal artery phantoms consisting of vessels with varying degrees of stenosis was developed and evaluated using four imaging techniques currently used to detect renal artery stenosis (RAS). The spatial resolution required to visualize vascular geometry and the velocity detection performance required to adequately characterize blood flow in patients suffering from RAS are currently ill-defined, with the result that no one imaging modality has emerged as a gold standard technique for screening for this disease. Methods: The phantoms, which contained a range of stenosis values (0%, 30%, 50%, 70%, and 85%), were designed formore » use with ultrasound, magnetic resonance imaging, x-ray computed tomography, and x-ray digital subtraction angiography. The construction materials used were optimized with respect to their ultrasonic speed of sound and attenuation coefficient, MR relaxometry (T{sub 1},T{sub 2}) properties, and Hounsfield number/x-ray attenuation coefficient, with a design capable of tolerating high-pressure pulsatile flow. Fiducial targets, incorporated into the phantoms to allow for registration of images among modalities, were chosen to minimize geometric distortions. Results: High quality distortion-free images of the phantoms with good contrast between vessel lumen, fiducial markers, and background tissue to visualize all stenoses were obtained with each modality. Quantitative assessments of the grade of stenosis revealed significant discrepancies between modalities, with each underestimating the stenosis severity for the higher-stenosed phantoms (70% and 85%) by up to 14%, with the greatest discrepancy attributable to DSA. Conclusions: The design and construction of a range of anatomically realistic renal artery phantoms containing varying degrees of stenosis is described. Images obtained using the main four diagnostic techniques used to detect RAS were free from artifacts and exhibited adequate

  3. Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink

    PubMed Central

    Spinelli, L.; Botwicz, M.; Zolek, N.; Kacprzak, M.; Milej, D.; Sawosz, P.; Liebert, A.; Weigel, U.; Durduran, T.; Foschum, F.; Kienle, A.; Baribeau, F.; Leclair, S.; Bouchard, J.-P.; Noiseux, I.; Gallant, P.; Mermut, O.; Farina, A.; Pifferi, A.; Torricelli, A.; Cubeddu, R.; Ho, H.-C.; Mazurenka, M.; Wabnitz, H.; Klauenberg, K.; Bodnar, O.; Elster, C.; Bénazech-Lavoué, M.; Bérubé-Lauzière, Y.; Lesage, F.; Khoptyar, D.; Subash, A. A.; Andersson-Engels, S.; Di Ninni, P.; Martelli, F.; Zaccanti, G.

    2014-01-01

    A multi-center study has been set up to accurately characterize the optical properties of diffusive liquid phantoms based on Intralipid and India ink at near-infrared (NIR) wavelengths. Nine research laboratories from six countries adopting different measurement techniques, instrumental set-ups, and data analysis methods determined at their best the optical properties and relative uncertainties of diffusive dilutions prepared with common samples of the two compounds. By exploiting a suitable statistical model, comprehensive reference values at three NIR wavelengths for the intrinsic absorption coefficient of India ink and the intrinsic reduced scattering coefficient of Intralipid-20% were determined with an uncertainty of about 2% or better, depending on the wavelength considered, and 1%, respectively. Even if in this study we focused on particular batches of India ink and Intralipid, the reference values determined here represent a solid and useful starting point for preparing diffusive liquid phantoms with accurately defined optical properties. Furthermore, due to the ready availability, low cost, long-term stability and batch-to-batch reproducibility of these compounds, they provide a unique fundamental tool for the calibration and performance assessment of diffuse optical spectroscopy instrumentation intended to be used in laboratory or clinical environment. Finally, the collaborative work presented here demonstrates that the accuracy level attained in this work for optical properties of diffusive phantoms is reliable. PMID:25071947

  4. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.

    2003-08-01

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  5. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams.

    PubMed

    Doucet, R; Olivares, M; DeBlois, F; Podgorsak, E B; Kawrakow, I; Seuntjens, J

    2003-08-07

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 x 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid Water (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  6. Phantom Recollection of Bridging and Elaborative Inferences

    ERIC Educational Resources Information Center

    Singer, Murray; Spear, Jackie

    2015-01-01

    The phantom recollection model is a multiprocess analysis according to which memory judgments are collaboratively supported by one's recollection of an item in its context, a vaguer sense of stimulus familiarity, and the phantom recollection of the substance and even perceptual details of unstudied but related lures. Phantom recollection has…

  7. Phantom with pulsatile arteries to investigate the influence of blood vessel depth on pulse oximeter signal strength.

    PubMed

    Stuban, Norbert; Niwayama, Masatsugu; Santha, Hunor

    2012-01-01

    This paper describes a three-layer head phantom with artificial pulsating arteries at five different depths (1.2 mm, 3.7 mm, 6.8 mm, 9.6 mm and 11.8 mm). The structure enables formation of spatially and temporally varying tissue properties similar to those of living tissues. In our experiment, pressure pulses were generated in the arteries by an electronically controlled pump. The physical and optical parameters of the layers and the liquid in the artificial arteries were similar to those of real tissues and blood. The amplitude of the pulsating component of the light returning from the phantom tissues was measured at each artery depth mentioned above. The build-up of the in-house-developed pulse oximeter used for performing the measurements and the physical layout of the measuring head are described. The radiant flux generated by the LED on the measuring head was measured to be 1.8 mW at 910 nm. The backscattered radiant flux was measured, and found to be 0.46 nW (0.26 ppm), 0.55 nW (0.31 ppm), and 0.18 nW (0.10 ppm) for the 1.2 mm, 3.7 mm and 6.8 mm arteries, respectively. In the case of the 9.6 mm and 11.8 mm arteries, useful measurement data were not obtained owing to weak signals. We simulated the phantom with the arteries at the above-mentioned five depths and at two additional ones (2.5 mm and 5.3 mm in depth) using the Monte Carlo method. The measurement results were verified by the simulation results. We concluded that in case of 11 mm source-detector separation the arteries at a depth of about 2.5 mm generate the strongest pulse oximeter signal level in a tissue system comprising three layers of thicknesses: 1.5 mm (skin), 5.0 mm (skull), and >50 mm (brain).

  8. Phantom with Pulsatile Arteries to Investigate the Influence of Blood Vessel Depth on Pulse Oximeter Signal Strength

    PubMed Central

    Stuban, Norbert; Niwayama, Masatsugu; Santha, Hunor

    2012-01-01

    This paper describes a three-layer head phantom with artificial pulsating arteries at five different depths (1.2 mm, 3.7 mm, 6.8 mm, 9.6 mm and 11.8 mm). The structure enables formation of spatially and temporally varying tissue properties similar to those of living tissues. In our experiment, pressure pulses were generated in the arteries by an electronically controlled pump. The physical and optical parameters of the layers and the liquid in the artificial arteries were similar to those of real tissues and blood. The amplitude of the pulsating component of the light returning from the phantom tissues was measured at each artery depth mentioned above. The build-up of the in-house-developed pulse oximeter used for performing the measurements and the physical layout of the measuring head are described. The radiant flux generated by the LED on the measuring head was measured to be 1.8 mW at 910 nm. The backscattered radiant flux was measured, and found to be 0.46 nW (0.26 ppm), 0.55 nW (0.31 ppm), and 0.18 nW (0.10 ppm) for the 1.2 mm, 3.7 mm and 6.8 mm arteries, respectively. In the case of the 9.6 mm and 11.8 mm arteries, useful measurement data were not obtained owing to weak signals. We simulated the phantom with the arteries at the above-mentioned five depths and at two additional ones (2.5 mm and 5.3 mm in depth) using the Monte Carlo method. The measurement results were verified by the simulation results. We concluded that in case of 11 mm source-detector separation the arteries at a depth of about 2.5 mm generate the strongest pulse oximeter signal level in a tissue system comprising three layers of thicknesses: 1.5 mm (skin), 5.0 mm (skull), and >50 mm (brain). PMID:22368501

  9. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties

    PubMed Central

    Kleiser, S.; Nasseri, N.; Andresen, B.; Greisen, G.; Wolf, M.

    2016-01-01

    The SafeBoosC trial showed that cerebral oximetry combined with a treatment guideline can reduce the the burden of hypoxia in neonates by 50% [Brit. Med. J. 350, g7635 (2015)25569128]. However, guidelines based on oximetry by one oximeter are not directly usable by other oximeters. We made a blood-lipid phantom simulating the neonatal head to determine the relation between oxygenation values obtained by different oximeters. We calculated coefficients for easy conversion from one oximeter to the other. We additionally determined the corresponding SafeBoosC intervention thresholds at which we measured an uncertainty of up to 9.2% when varying hemoglobin content from 25μM to 70μM. In conclusion, this paper makes the comparison of absolute values obtained by different oximeters possible. PMID:27570691

  10. Saturation measurement accuracy in clinical near-infrared cerebral oximeters with a 3D-printed channel array phantom

    NASA Astrophysics Data System (ADS)

    Afshari, Ali; Ghassemi, Pejhman; Halprin, Molly; Lin, Jonathan; Weininger, Sandy; Gandjbakhche, Amir H.; Wang, Jianting; Pfefer, Joshua

    2018-02-01

    Clinical cerebral oximeters based on near-infrared spectroscopy (NIRS) are a commonly used, non-invasive tool for intraoperative monitoring of hemoglobin saturation. Research to verify performance of cerebral oximeters in human subject trials has shown differences between commercially available devices. Test methods based on tissue-simulating phantoms have been proposed to augment clinical findings. While prior studies have focused on liquid phantoms, this work is aimed at developing methods based on solid polymer phantoms that are stable. Specifically, we have designed and fabricated a neonatal/pediatric head mimicking layered phantoms based on a 3D-printed cerebral matrix incorporating an array of vessel-simulating linear channels. Superficial layers incorporating homogeneous molded polydimethylsiloxane (PDMS) slabs were fabricated to represent CSF, scalp and skull regions. The cerebral matrix was filled with bovine blood desaturated with sodium dithionite to achieve oxygenation levels across the 40-90% range. Measurements were performed with a commercially available cerebral oximeter using two probes with different illumination-collection geometries, as designed for neonatal and pediatric patients. Reference measurements of samples were performed with a CO-oximeter before injection and after extraction. Results from applied cerebral oximeters indicate a strong sensitivity to the thickness of the superficial layer of the phantom. Better correlation with the reference CO-oximeter results were obtained in the superficial layer thickness of 0.8-2.5 mm range. Channel array phantoms with modular superficial layers represent a promising approach for performance testing of NIRS-based cerebral oximeters.

  11. Radio-frequency ring applicator: energy distributions measured in the CDRH phantom.

    PubMed

    van Rhoon, G C; Raskmark, P; Hornsleth, S N; van den Berg, P M

    1994-11-01

    SAR distributions were measured in the CDRH phantom, a 1 cm fat-equivalent shell filled with an abdomen-equivalent liquid (sigma = 0.4-1.0 S m-1; dimensions 22 x 32 x 57 cm) to demonstrate the feasibility of the ring applicator to obtain deep heating. The ring electrodes were fixed in a PVC tube; diameter 48 cm, ring width 20 cm and gap width between both rings 31.6 cm. Radio-frequency energy was fed to the electrodes at eight points. The medium between the electrodes and the phantom was deionised water. The SAR distribution in the liquid tissue volume was obtained by a scanning E-field probe measuring the E-field in all three directions. With equal amplitude and phase applied to all feeding points, a uniform SAR distribution was measured in the central cross-section at 30 MHz. With RF energy supplied to only four adjacent feeding points (others were connected to a 50 omega load), the feasibility to perform amplitude steering was demonstrated; SAR values above 50% of the maximum SAR were measured in one quadrant only. SAR distributions obtained at 70 MHz showed an improved focusing ability; a maximum at the centre exists for an electric conductivity of the abdomen-equivalent tissue of 0.6 and 0.4 S m-1.

  12. Spatially-resolved probing of biological phantoms by point-radiance spectroscopy

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.

    2011-03-01

    Interstitial fiber-optic based strategies for therapy monitoring and assessment rely on detecting treatment-induced changes in the light distribution in biological tissues. We present an optical technique to identify spectrally and spatially specific tissue chromophores in highly scattering turbid media. Typical optical sensors measure non-directional light intensity (i.e. fluence) and require fiber translation (i.e. 3-5 positions), which is difficult to implement clinically. Point radiance spectroscopy is based on directional light collection (i.e. radiance) at a single point with a side-firing fiber that can be rotated up to 360°. A side firing fiber accepts light within a well-defined solid angle thus potentially providing an improved spatial resolution. Experimental measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43° cleaved fiber (i.e. radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid (i.e. scattering medium). Light was collected at 1-5° increments through 360°-segment. Gold nanoparticles, placed into a 3.5 mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a non-invasive optical modality for prostate cancer monitoring.

  13. Calibration standard of body tissue with magnetic nanocomposites for MRI and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Woodward, Robert; House, Michael; Engineer, Diana; Feindel, Kirk; Dutz, Silvio; Odenbach, Stefan; StPierre, Tim

    2016-05-01

    We present a first study of a long-term phantom for Magnetic Resonance Imaging (MRI) and X-ray imaging of biological tissues with magnetic nanocomposites (MNC) suitable for 3-dimensional and quantitative imaging of tissues after, e.g. magnetically assisted cancer treatments. We performed a cross-calibration of X-ray microcomputed tomography (XμCT) and MRI with a joint calibration standard for both imaging techniques. For this, we have designed a phantom for MRI and X-ray computed tomography which represents biological tissue enriched with MNC. The developed phantoms consist of an elastomer with different concentrations of multi-core MNC. The matrix material is a synthetic thermoplastic gel, PermaGel (PG). The developed phantoms have been analyzed with Nuclear Magnetic Resonance (NMR) Relaxometry (Bruker minispec mq 60) at 1.4 T to obtain R2 transverse relaxation rates, with SQUID (Superconducting QUantum Interference Device) magnetometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to verify the magnetite concentration, and with XμCT and 9.4 T MRI to visualize the phantoms 3-dimensionally and also to obtain T2 relaxation times. A specification of a sensitivity range is determined for standard imaging techniques X-ray computed tomography (XCT) and MRI as well as with NMR. These novel phantoms show a long-term stability over several months up to years. It was possible to suspend a particular MNC within the PG reaching a concentration range from 0 mg/ml to 6.914 mg/ml. The R2 relaxation rates from 1.4 T NMR-relaxometry show a clear connection (R2=0.994) with MNC concentrations between 0 mg/ml and 4.5 mg/ml. The MRI experiments have shown a linear correlation of R2 relaxation and MNC concentrations as well but in a range between MNC concentrations of 0 mg/ml and 1.435 mg/ml. It could be shown that XμCT displays best moderate and high MNC concentrations. The sensitivity range for this particular XμCT apparatus yields from 0.569 mg/ml to 6.914 mg/ml. The

  14. Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies

    NASA Astrophysics Data System (ADS)

    Ramanujam, Nirmala; Vishnoi, Gargi; Hielscher, Andreas H.; Rode, Martha; Forouzan, Iraj; Chance, Britton

    2000-04-01

    Near infrared (NIR) measurements were made from the maternal abdomen (clinical studies) and laboratory tissue phantoms (experimental studies) to gain insight into photon migration through the fetal head in utero. Specifically, a continuous wave spectrometer was modified and employed to make NIR measurements at 760 and 850 nm, at a large (10 cm) and small (2.5/4 cm) source-detector separation, simultaneously, on the maternal abdomen, directly above the fetal head. A total of 19 patients were evaluated, whose average gestational age and fetal head depth, were 37 weeks +/- 3 and 2.25 cm +/- 0.7, respectively. At the large source-detector separation, the photons are expected to migrate through both the underlying maternal and fetal tissues before being detected at the surface, while at the short source-detector separation, the photons are expected to migrate primarily through the superficial maternal tissues before being detected. Second, similar NIR measurements were made on laboratory tissue phantoms, with variable optical properties and physical geometries. The variable optical properties were obtained using different concentrations of India ink and Intralipid in water, while the variable physical geometries were realized by employing glass containers of different shapes and sizes. Third, the NIR measurements, which were made on the laboratory tissue phantoms, were compared to the NIR measurements made on the maternal abdomen to determine which tissue phantom best simulates the photon migration path through the fetal head in utero. The results of the comparison were used to provide insight into the optical properties and physical geometry of the maternal and fetal tissues in the photon migration path.

  15. Poster - Thur Eve - 69: Electron beam dosimetry in heterogeneous phantoms using the MAGIC normoxic polymer gel.

    PubMed

    Nedaie, H A; Ghahraman, A R; Bolouri, B; Arbabi, A

    2012-07-01

    Recently, radiation sensitive polymer gels are being used as a reliable dosimetry method for three-dimensional (3D) verification of radiation doses in clinical use. Some properties of gel dosimeters have made them useful in verifying complex situations in electron therapy. The aim of this study was to experimentally evaluate the influence of tissue inhomogeneities on electron beam dose distributions by use of polymer gel dosimetry. Another purpose was to evaluate the appropriateness of polymer gels for electron beam dosimetry applications. A cylindrical phantom filled with MAGIC polymer gel with a polyacrilic wall (ρ = 1.18 g.cm -3 ) was placed in a Perspex water-filled tank exactly underneath the bone inhomogeneity region .Then, the slab phantom was irradiated with a dose of 5Gy of 8MeV electrons to measure the dose distribution beyond the heterogeneity region. Afterwards, another cylindrical gel phantom similar to the above was used and irradiated with the same dose of 15 MeV electrons to measure the dose distribution beyond the same heterogeneity region. The same mentioned setup was repeated for measurement of the dose distribution beneath the air heterogeneity and homogenous phantom. The results of gel dosimetry under bone inhomogeneity have shown a reduction in dose. This is related to the high mass stopping and mass scattering powers of bone tissue. In addition, dose enhancement is seen laterally near the bone-tissue interface, due to increased side scattering of electrons. Hot and cold scatter lobes under heterogeneity regions are other effects that can be seen. The results of gel dosimetry under the air inhomogeneity have shown an increase in dose. This is related to the low mass stopping and mass scattering powers of the air cavity. When a high energy beam passes through a low-density medium or an air cavity, electronic equilibrium is lost along the central axis of the beam .The dose rebuild up is a consequence of this electronic disequilibrium. An

  16. WE-D-303-00: Computational Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John; Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA

    2015-06-15

    Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computationalmore » phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.« less

  17. Using patient‐specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide‐Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J

    2013-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B‐spline‐based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast‐Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM‐DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0~3.1mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B‐spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient‐specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient‐dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This

  18. New ANSI standard for thyroid phantom

    DOE PAGES

    Mallett, Michael W.; Bolch, Wesley E.; Fulmer, Philip C.; ...

    2015-08-01

    Here, a new ANSI standard titled “Thyroid Phantom Used in Occupational Monitoring” (Health Physics Society 2014) has been published. The standard establishes the criteria for acceptable design, fabrication, or modeling of a phantom suitable for calibrating in vivo monitoring systems to measure photon-emitting radionuclides deposited in the thyroid. The current thyroid phantom standard was drafted in 1973 (ANSI N44.3-1973), last reviewed in 1984, and a revision of the standard to cover a more modern approach was deemed warranted.

  19. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment.

    PubMed

    Ceh, Justin; Youd, Tom; Mastrovich, Zach; Peterson, Cody; Khan, Sarah; Sasser, Todd A; Sander, Ian M; Doney, Justin; Turner, Clark; Leevy, W Matthew

    2017-02-24

    Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D) printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene) filaments infused with varied concentrations of bismuth (1.2-2.7 g/cm³), a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT) experiments of these filaments indicated that a density of 1.2 g/cm³ of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm³ created a stable material that could attenuate 50% of 99m Technetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization.

  20. SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D; Summers, P; Followill, D

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested tomore » determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multilayer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU. Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%. Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma

  1. Planar small-angle x-ray scattering imaging of phantoms and biological samples

    NASA Astrophysics Data System (ADS)

    Choi, M.; Badano, A.

    2017-04-01

    Coherent small-angle x-ray scattering (SAXS) provides molecular and nanometer-scale structural information. By capturing SAXS data at multiple locations across a sample, we obtained planar images and observed improved contrast given by the difference in the material scattering cross sections. We use phantoms made with 3D printing techniques, with tissue-mimicking plastic (PMMA), and with a highly scattering reference material (AgBe), which were chosen because of their well characterized scattering cross section to demonstrate and characterize the planar imaging of a laboratory SAXS system. We measure 1.07 and 2.14 nm-1 angular intensity maps for AgBe, 9.5 nm-1 for PMMA, and 12.3 nm-1 for Veroclear. The planar SAXS images show material discrimination based on their cross sectional features. The image signal-to-noise ratio (SNR) of each q image was dependent on exposure time and x-ray flux. We observed a lower SNR (91 ± 48) at q angles where no characteristic peaks for either material exist. To improve the visualization of the acquired data by utilizing all q-binned data, we describe a weighted-sum presentation method with a priori knowledge of relevant cross sections to improve the SNR (10 000 ± 6400) over the SNR from a single q-image at 1.07 nm-1 (1100 ± 620). In addition, we describe planar SAXS imaging of a mouse brain slice showing differentiation of tissue types as compared to a conventional absorption-based x-ray imaging technique.

  2. [Mirror, mirror of the wall: mirror therapy in the treatment of phantom limbs and phantom limb pain].

    PubMed

    Casale, Roberto; Furnari, Anna; Lamberti, Raul Coelho; Kouloulas, Efthimios; Hagenberg, Annegret; Mallik, Maryam

    2015-01-01

    Phantom limb and phantom limb pain control are pivotal points in the sequence of intervention to bring the amputee to functional autonomy. The alterations of perception and sensation, the pain of the residual limb and the phantom limb are therefore aspects of amputation that should be taken into account in the "prise en charge" of these patients. Within the more advanced physical therapies to control phantom and phantom limb pain there is the use of mirrors (mirror therapy). This article willfocus on its use and on the possible side effects induced by the lack of patient selection and a conflict of body schema restoration through mirror therapy with concurrent prosthetic training and trauma acceptance. Advice on the need to select patients before treatment decisions, with regard to their psychological as well as clinical profile (including time since amputation and clinical setting), and the need to be aware of the possible adverse effects matching different and somehow conflicting therapeutic approaches, are put forward. Thus a coordinated sequence of diagnostic, prognostic and therapeutic procedures carried out by an interdisciplinary rehabilitation team that works globally on all patients' problems is fundamental in the management of amputees and phantom limb pain. Further studies and the development of a multidisciplinary network to study this and other applications of mirror therapy are needed.

  3. Evaluation of the usefulness of a MOSFET detector in an anthropomorphic phantom for 6-MV photon beam.

    PubMed

    Kohno, Ryosuke; Hirano, Eriko; Kitou, Satoshi; Goka, Tomonori; Matsubara, Kana; Kameoka, Satoru; Matsuura, Taeko; Ariji, Takaki; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2010-07-01

    In order to evaluate the usefulness of a metal oxide-silicon field-effect transistor (MOSFET) detector as a in vivo dosimeter, we performed in vivo dosimetry using the MOSFET detector with an anthropomorphic phantom. We used the RANDO phantom as an anthropomorphic phantom, and dose measurements were carried out in the abdominal, thoracic, and head and neck regions for simple square field sizes of 10 x 10, 5 x 5, and 3 x 3 cm(2) with a 6-MV photon beam. The dose measured by the MOSFET detector was verified by the dose calculations of the superposition (SP) algorithm in the XiO radiotherapy treatment-planning system. In most cases, the measured doses agreed with the results of the SP algorithm within +/-3%. Our results demonstrated the utility of the MOSFET detector for in vivo dosimetry even in the presence of clinical tissue inhomogeneities.

  4. [CALCULATION OF RADIATION LOADS ON THE ANTHROPOMORPHIC PHANTOM ONBOARD THE SPACE STATION IN THE CASE OF ADDITIONAL SHIELDING].

    PubMed

    Kartashov, D A; Shurshakov, V A

    2015-01-01

    The paper presents the results of calculating doses from space ionizing radiation for a modeled orbital station cabin outfitted with an additional shield aimed to reduce radiation loads on cosmonaut. The shield is a layer with the mass thickness of -6 g/cm2 (mean density = 0.62 g/cm3) that covers the outer cabin wall and consists of wet tissues and towels used by cosmonauts for hygienic purposes. A tissue-equivalent anthropomorphic phantom imitates human body. Doses were calculated for the standard orbit of the International space station (ISS) with consideration of the longitudinal and transverse phantom orientation relative to the wall with or without the additional shield. Calculation of dose distribution in the human body improves prediction of radiation loads. The additional shield reduces radiation exposure of human critical organs by -20% depending on their depth and body spatial orientation in the ISS compartment.

  5. MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model

    NASA Technical Reports Server (NTRS)

    James, Michael R.; Durkee, Joe W.; McKinney, Gregg; Singleterry Robert

    2008-01-01

    The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom.

  6. A novel breast software phantom for biomechanical modeling of elastography.

    PubMed

    Bhatti, Syeda Naema; Sridhar-Keralapura, Mallika

    2012-04-01

    In developing breast imaging technologies, testing is done with phantoms. Physical phantoms are normally used but their size, shape, composition, and detail cannot be modified readily. These difficulties can be avoided by creating a software breast phantom. Researchers have created software breast phantoms using geometric and/or mathematical methods for applications like image fusion. The authors report a 3D software breast phantom that was built using a mechanical design tool, to investigate the biomechanics of elastography using finite element modeling (FEM). The authors propose this phantom as an intermediate assessment tool for elastography simulation; for use after testing with commonly used phantoms and before clinical testing. The authors design the phantom to be flexible in both, the breast geometry and biomechanical parameters, to make it a useful tool for elastography simulation. The authors develop the 3D software phantom using a mechanical design tool based on illustrations of normal breast anatomy. The software phantom does not use geometric primitives or imaging data. The authors discuss how to create this phantom and how to modify it. The authors demonstrate a typical elastography experiment of applying a static stress to the top surface of the breast just above a simulated tumor and calculate normal strains in 3D and in 2D with plane strain approximations with linear solvers. In particular, they investigate contrast transfer efficiency (CTE) by designing a parametric study based on location, shape, and stiffness of simulated tumors. The authors also compare their findings to a commonly used elastography phantom. The 3D breast software phantom is flexible in shape, size, and location of tumors, glandular to fatty content, and the ductal structure. Residual modulus, maps, and profiles, served as a guide to optimize meshing of this geometrically nonlinear phantom for biomechanical modeling of elastography. At best, low residues (around 1-5 KPa) were

  7. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Wood, Rachel P.; Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-03-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability.

  8. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies

    NASA Astrophysics Data System (ADS)

    Holt, Robert W.; Zhang, Rongxiao; Esipova, Tatiana V.; Vinogradov, Sergei A.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2014-09-01

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  9. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies.

    PubMed

    Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2014-09-21

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  10. Dynamic phantom for radionuclide cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickles, R.J.

    1979-06-01

    A flow-based phantom has been developed to verify analysis routines most frequently employed in clinical radionuclide cardiology. Ejection-fraction studies by first-pass or equilibrium techniques are simulated, as well as assessment of shunts and cardiac output. This hydraulic phantom, with its valve-selectable dysfunctions, offers a greater role in training than in quality control, as originally intended.

  11. DEVELOPMENT OF A SET OF MESH-BASED AND AGE-DEPENDENT CHINESE PHANTOMS AND APPLICATION FOR CT DOSE CALCULATIONS.

    PubMed

    Pi, Yifei; Liu, Tianyu; Xu, X George

    2018-06-01

    Phantoms for organ dose calculations are essential in radiation protection dosimetry. This article describes the development of a set of mesh-based and age-dependent phantoms for Chinese populations using reference data recommended by the Chinese government and by the International Atomic Energy Agency (IAEA). Existing mesh-based RPI adult male (RPI-AM) and RPI adult female (RPI-AF) phantoms were deformed to form new phantoms according to anatomical data for the height and weight of Chinese individuals of 5 years old male, 5 years old female, 10 years old male, 10 years old female,15 years old male, 15 years old female, adult male and adult female-named USTC-5 M, USTC-5F, USTC-10M, USTC-10F, USTC-15M, USTC-15F, USTC-AM and USTC-AF, respectively. Following procedures to ensure the accuracy, more than 120 organs/tissues in each model were adjusted to match the Chinese reference parameters and the mass errors were within 0.5%. To demonstrate the usefulness, these new set of phantoms were combined with a fully validated model of the GE LightSpeed Pro 16 multi-detector computed tomography (MDCT) scanner and the GPU-based ARCHER Monte Carlo code to compute organ doses from CT examinations. Organ doses for adult models were then compared with the data of RPI-AM and RPI-AF under the same conditions. The absorbed doses and the effective doses of RPI phantoms are found to be lower than these of the USTC adult phantoms whose body sizes are smaller. Comparisons for the doses among different ages and genders were also made. It was found that teenagers receive more radiation doses than adults do. Such Chinese-specific phantoms are clearly better suited in organ dose studies for the Chinese individuals than phantoms designed for western populations. As already demonstrated, data derived from age-specific Chinese phantoms can help CT operators and designers to optimize image quality and doses.

  12. Broadband Vibration Detection in Tissue Phantoms Using a Fiber Fabry-Perot Cavity.

    PubMed

    Barnes, Jack; Li, Sijia; Goyal, Apoorv; Abolmaesumi, Purang; Mousavi, Parvin; Loock, Hans-Peter

    2018-04-01

    A fiber optic vibration sensor is developed and characterized with an ultrawide dynamic sensing range, from less than 1 Hz to clinical ultrasound frequencies near 6 MHz. The vibration sensor consists of a matched pair of fiber Bragg gratings coupled to a custom-built signal processing circuit. The wavelength of a laser diode is locked to one of the many cavity resonances using the Pound-Drever-Hall scheme. A calibrated piezoelectric vibration element was used to characterize the sensor's strain, temperature, and noise responses. To demonstrate its sensing capability, an ultrasound phantom with built-in low frequency vibration actuation was constructed. The fiber optic senor was shown to simultaneously capture the low frequency vibration and the clinical ultrasound transmission waveforms with nanostrain sensitivity. This miniaturized and sensitive vibration sensor can provide comprehensive information regarding strain response and the resultant ultrasound waveforms.

  13. Phantom smoking among young adult bar patrons

    PubMed Central

    Guillory, Jamie; Lisha, Nadra; Lee, Youn Ok; Ling, Pamela M

    2016-01-01

    Objective To explore the prevalence and sociodemographic makeup of smokers who do not self-identify as smokers (ie, phantom smokers) compared with self-identifying smokers in a sample of bar-going young adults aged 18–30 years to more accurately assess young adult prevalence of smoking and inform cessation message targeting. Methods Cross-sectional surveys of smokers (n=3089) were conducted in randomly selected bars/nightclubs in seven US cities. Logistic regression models assessed associations between phantom smoking ( past 30-day smoking and denial of being a smoker), tobacco and alcohol use behaviours (eg, social smoking, nicotine dependence, smoking while drinking, past 30-day alcohol use) and demographics. Results Compared with smokers, phantom smokers were more likely to be college graduates (OR=1.43, 95% CI 1.03 to 1.98) and to identify themselves as social smokers (OR=1.60, 95% CI 1.27 to 2.12). Phantom smokers had lower odds of smoking while drinking (OR=0.28, 95% CI 0.25 to 0.32), being nicotine dependent (OR=0.36, 95% CI 0.22 to 0.76) and having quit for at least 1 day in the last year (OR=0.46, 95% CI 0.36 to 0.69) compared with smokers. Conclusions This research extends phantom smoking literature on college students to provide a broader picture of phantom smoking among young adults in high-risk contexts and of varying levels of educational attainment. Phantom smokers may be particularly sensitive to social pressures against smoking, suggesting the importance of identifying smoking as a behaviour (rather than identity) in cessation messaging to ensure that phantom smokers are reached. PMID:27048205

  14. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data

    NASA Astrophysics Data System (ADS)

    Shypailo, R. J.; Ellis, K. J.

    2011-05-01

    During construction of the whole body counter (WBC) at the Children's Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of 40K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Carlo n-particle simulation program was used to describe the WBC (54 detectors plus shielding), test individual detector counting response, and create a series of virtual anthropomorphic phantoms based on national reference anthropometric data. Each phantom included an outer layer of adipose tissue and an inner core of lean tissue. Phantoms were designed for both genders representing ages 3.5 to 18.5 years with body sizes from the 5th to the 95th percentile based on body weight. In addition, a spherical surface source surrounding the WBC was modeled in order to measure the effects of subject mass on room background interference. Individual detector measurements showed good agreement with the MCNP model. The background source model came close to agreement with empirical measurements, but showed a trend deviating from unity with increasing subject size. Results from the MCNP simulation of the CNRC WBC agreed well with empirical measurements using BOMAB phantoms. Individual detector efficiency corrections were used to improve the accuracy of the model. Nonlinear multiple regression efficiency calibration equations were derived for each gender. Room background correction is critical in improving the accuracy of the WBC calibration.

  15. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    ERIC Educational Resources Information Center

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  16. The viability of phantom dark energy: A review

    NASA Astrophysics Data System (ADS)

    Ludwick, Kevin J.

    2017-09-01

    In this brief review, we examine the theoretical consistency and viability of phantom dark energy. Almost all data sets from cosmological probes are compatible with the dark energy of the phantom variety (i.e. equation-of-state parameter w < -1) and may even favor evolving dark energy, and since we expect every physical entity to have some kind of field description, we set out to examine the case for phantom dark energy as a field theory. We discuss the many attempts at frameworks that may mitigate and eliminate theoretical pathologies associated with phantom dark energy. We also examine frameworks that provide an apparent measurement w < -1 while avoiding the need for a phantom field theory.

  17. Image based Monte Carlo Modeling for Computational Phantom

    NASA Astrophysics Data System (ADS)

    Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican

    2014-06-01

    The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.

  18. CT dose reduction using Automatic Exposure Control and iterative reconstruction: A chest paediatric phantoms study.

    PubMed

    Greffier, Joël; Pereira, Fabricio; Macri, Francesco; Beregi, Jean-Paul; Larbi, Ahmed

    2016-04-01

    To evaluate the impact of Automatic Exposure Control (AEC) on radiation dose and image quality in paediatric chest scans (MDCT), with or without iterative reconstruction (IR). Three anthropomorphic phantoms representing children aged one, five and 10-year-old were explored using AEC system (CARE Dose 4D) with five modulation strength options. For each phantom, six acquisitions were carried out: one with fixed mAs (without AEC) and five each with different modulation strength. Raw data were reconstructed with Filtered Back Projection (FBP) and with two distinct levels of IR using soft and strong kernels. Dose reduction and image quality indices (Noise, SNR, CNR) were measured in lung and soft tissues. Noise Power Spectrum (NPS) was evaluated with a Catphan 600 phantom. The use of AEC produced a significant dose reduction (p<0.01) for all anthropomorphic sizes employed. According to the modulation strength applied, dose delivered was reduced from 43% to 91%. This pattern led to significantly increased noise (p<0.01) and reduced SNR and CNR (p<0.01). However, IR was able to improve these indices. The use of AEC/IR preserved image quality indices with a lower dose delivered. Doses were reduced from 39% to 58% for the one-year-old phantom, from 46% to 63% for the five-year-old phantom, and from 58% to 74% for the 10-year-old phantom. In addition, AEC/IR changed the patterns of NPS curves in amplitude and in spatial frequency. In chest paediatric MDCT, the use of AEC with IR allows one to obtain a significant dose reduction while maintaining constant image quality indices. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Development of Traceable Phantoms for Improved Image Quantification in Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Zimmerman, Brian

    2014-03-01

    Clinical trials for new drugs increasingly rely on imaging data to monitor patient response to the therapy being studied. In the case of radiopharmaceutical applications, imaging data are also used to estimate organ and tumor doses in order to arrive at the optimal dosage for safe and effective treatment. Positron Emission Tomography (PET) is one of the most commonly used imaging modalities for these types of applications. In large, multicenter trials it is crucial to minimize as much as possible the variability that arises due to use of different types of scanners and other instrumentation so that the biological response can be more readily evaluated. This can be achieved by ensuring that all the instruments are calibrated to a common standard and that their performance is continuously monitored throughout the trial. Maintaining links to a single standard also enables the comparability of data acquired on a heterogeneous collection of instruments in different clinical settings. As the standards laboratory for the United States, the National Institute of Standards and Technology (NIST) has been developing a suite of phantoms having traceable activity content to enable scanner calibration and performance testing. The configurations range from small solid cylindrical sources having volumes from 1 mL to 23 mL to large cylinders having a total volume of 9 L. The phantoms are constructed with 68Ge as a long-lived substitute for the more clinically useful radionuclide 18F. The contained activity values are traceable to the national standard for 68Ge and are also linked to the standard for 18F through a careful series of comparisons. The techniques that have been developed are being applied to a variety of new phantom configurations using different radionuclides. Image-based additive manufacturing techniques are also being investigated to create fillable phantoms having irregular shapes which can better mimic actual organs and tumors while still maintaining traceability

  20. Density scaling of phantom materials for a 3D dose verification system.

    PubMed

    Tani, Kensuke; Fujita, Yukio; Wakita, Akihisa; Miyasaka, Ryohei; Uehara, Ryuzo; Kodama, Takumi; Suzuki, Yuya; Aikawa, Ako; Mizuno, Norifumi; Kawamori, Jiro; Saitoh, Hidetoshi

    2018-05-21

    In this study, the optimum density scaling factors of phantom materials for a commercially available three-dimensional (3D) dose verification system (Delta4) were investigated in order to improve the accuracy of the calculated dose distributions in the phantom materials. At field sizes of 10 × 10 and 5 × 5 cm 2 with the same geometry, tissue-phantom ratios (TPRs) in water, polymethyl methacrylate (PMMA), and Plastic Water Diagnostic Therapy (PWDT) were measured, and TPRs in various density scaling factors of water were calculated by Monte Carlo simulation, Adaptive Convolve (AdC, Pinnacle 3 ), Collapsed Cone Convolution (CCC, RayStation), and AcurosXB (AXB, Eclipse). Effective linear attenuation coefficients (μ eff ) were obtained from the TPRs. The ratios of μ eff in phantom and water ((μ eff ) pl,water ) were compared between the measurements and calculations. For each phantom material, the density scaling factor proposed in this study (DSF) was set to be the value providing a match between the calculated and measured (μ eff ) pl,water . The optimum density scaling factor was verified through the comparison of the dose distributions measured by Delta4 and calculated with three different density scaling factors: the nominal physical density (PD), nominal relative electron density (ED), and DSF. Three plans were used for the verifications: a static field of 10 × 10 cm 2 and two intensity modulated radiation therapy (IMRT) treatment plans. DSF were determined to be 1.13 for PMMA and 0.98 for PWDT. DSF for PMMA showed good agreement for AdC and CCC with 6 MV x ray, and AdC for 10 MV x ray. DSF for PWDT showed good agreement regardless of the dose calculation algorithms and x-ray energy. DSF can be considered one of the references for the density scaling factor of Delta4 phantom materials and may help improve the accuracy of the IMRT dose verification using Delta4. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley

  1. Innovative anisotropic phantoms for calibration of diffusion tensor imaging sequences.

    PubMed

    Kłodowski, Krzysztof; Krzyżak, Artur Tadeusz

    2016-05-01

    The paper describes a novel type of anisotropic phantoms designed for b-matrix spatial distribution diffusion tensor imaging (BSD-DTI). Cubic plate anisotropic phantom, cylinder capillary phantom and water reference phantom are described as a complete set necessary for calibration, validation and normalization of BSD-DTI. An innovative design of the phantoms basing on enclosing the anisotropic cores in glass balls filled with liquid made for the first time possible BSD calibration with usage of echo planar imaging (EPI) sequence. Susceptibility artifacts prone to occur in EPI sequences were visibly reduced in the central region of the phantoms. The phantoms were designed for usage in a clinical scanner's head coil, but can be scaled for other coil or scanner types. The phantoms can be also used for a pre-calibration of imaging of other types of phantoms having more specific applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Detectability comparison between a high energy x-ray phase sensitive and mammography systems in imaging phantoms with varying glandular-adipose ratios

    NASA Astrophysics Data System (ADS)

    Ghani, Muhammad U.; Wong, Molly D.; Wu, Di; Zheng, Bin; Fajardo, Laurie L.; Yan, Aimin; Fuh, Janis; Wu, Xizeng; Liu, Hong

    2017-05-01

    The objective of this study was to demonstrate the potential benefits of using high energy x-rays in comparison with the conventional mammography imaging systems for phase sensitive imaging of breast tissues with varying glandular-adipose ratios. This study employed two modular phantoms simulating the glandular (G) and adipose (A) breast tissue composition in 50 G-50 A and 70 G-30 A percentage densities. Each phantom had a thickness of 5 cm with a contrast detail test pattern embedded in the middle. For both phantoms, the phase contrast images were acquired using a micro-focus x-ray source operated at 120 kVp and 4.5 mAs, with a magnification factor (M) of 2.5 and a detector with a 50 µm pixel pitch. The mean glandular dose delivered to the 50 G-50 A and 70 G-30 A phantom sets were 1.33 and 1.3 mGy, respectively. A phase retrieval algorithm based on the phase attenuation duality that required only a single phase contrast image was applied. Conventional low energy mammography images were acquired using GE Senographe DS and Hologic Selenia systems utilizing their automatic exposure control (AEC) settings. In addition, the automatic contrast mode (CNT) was also used for the acquisition with the GE system. The AEC mode applied higher dose settings for the 70 G-30 A phantom set. As compared to the phase contrast images, the dose levels for the AEC mode acquired images were similar while the dose levels for the CNT mode were almost double. The observer study, contrast-to-noise ratio and figure of merit comparisons indicated a large improvement with the phase retrieved images in comparison to the AEC mode images acquired with the clinical systems for both density levels. As the glandular composition increased, the detectability of smaller discs decreased with the clinical systems, particularly with the GE system, even at higher dose settings. As compared to the CNT mode (double dose) images, the observer study also indicated that the phase retrieved images provided

  3. HU deviation in lung and bone tissues: Characterization and a corrective strategy.

    PubMed

    Ai, Hua A; Meier, Joseph G; Wendt, Richard E

    2018-05-01

    In the era of precision medicine, quantitative applications of x-ray Computed Tomography (CT) are on the rise. These require accurate measurement of the CT number, also known as the Hounsfield Unit. In this study, we evaluated the effect of patient attenuation-induced beam hardening of the x-ray spectrum on the accuracy of the HU values and a strategy to correct for the resulting deviations in the measured HU values. A CIRS electron density phantom was scanned on a Siemens Biograph mCT Flow CT scanner and a GE Discovery 710 CT scanner using standard techniques that are employed in the clinic to assess the HU deviation caused by beam hardening in different tissue types. In addition, an anthropomorphic ATOM adult male upper torso phantom was scanned on the GE Discovery 710 scanner. Various amounts of Superflab bolus material were wrapped around the phantoms to simulate different patient sizes. The mean HU values that were measured in the phantoms were evaluated as a function of the water-equivalent area (A w ), a parameter that is described in the report of AAPM Task Group 220. A strategy by which to correct the HU values was developed and tested. The variation in the HU values in the anthropomorphic ATOM phantom under different simulated body sizes, both before and after correction, were compared, with a focus on the lung and bone tissues. Significant HU deviations that depended on the simulated patient size were observed. A positive correlation between HU and A w was observed for tissue types that have an HU of less than zero, while a negative correlation was observed for tissue types with HU values that are greater than zero. The magnitude of the difference increases as the underlying attenuation property deviates further away from that of water. In the electron density phantom study, the maximum observed HU differences between the measured and reference values in the cortical bone and lung materials were 426 and 94 HU, respectively. In the anthropomorphic phantom

  4. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination.

    PubMed

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-21

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an

  5. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-01

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm-2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an

  6. Tissue mimicking simulations for temporal enhanced ultrasound-based tissue typing

    NASA Astrophysics Data System (ADS)

    Bayat, Sharareh; Imani, Farhad; Gerardo, Carlos D.; Nir, Guy; Azizi, Shekoofeh; Yan, Pingkun; Tahmasebi, Amir; Wilson, Storey; Iczkowski, Kenneth A.; Lucia, M. Scott; Goldenberg, Larry; Salcudean, Septimiu E.; Mousavi, Parvin; Abolmaesumi, Purang

    2017-03-01

    Temporal enhanced ultrasound (TeUS) is an imaging approach where a sequence of temporal ultrasound data is acquired and analyzed for tissue typing. Previously, in a series of in vivo and ex vivo studies we have demonstrated that, this approach is effective for detecting prostate and breast cancers. Evidences derived from our experiments suggest that both ultrasound-signal related factors such as induced heat and tissue-related factors such as the distribution and micro-vibration of scatterers lead to tissue typing information in TeUS. In this work, we simulate mechanical micro-vibrations of scatterers in tissue-mimicking phantoms that have various scatterer densities reflecting benign and cancerous tissue structures. Finite element modeling (FEM) is used for this purpose where the vertexes are scatterers representing cell nuclei. The initial positions of scatterers are determined by the distribution of nuclei segmented from actual digital histology scans of prostate cancer patients. Subsequently, we generate ultrasound images of the simulated tissue structure using the Field II package resulting in a temporal enhanced ultrasound. We demonstrate that the micro-vibrations of scatterers are captured by temporal ultrasound data and this information can be exploited for tissue typing.

  7. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    NASA Astrophysics Data System (ADS)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-11-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  8. Enhanced diagnostic of skin conditions by polarized laser speckles: phantom studies and computer modeling

    NASA Astrophysics Data System (ADS)

    Tchvialeva, Lioudmila; Lee, Tim K.; Markhvida, Igor; Zeng, Haishan; Doronin, Alexander; Meglinski, Igor

    2014-03-01

    The incidence of the skin melanoma, the most commonly fatal form of skin cancer, is increasing faster than any other potentially preventable cancer. Clinical practice is currently hampered by the lack of the ability to rapidly screen the functional and morphological properties of tissues. In our previous study we show that the quantification of scattered laser light polarization provides a useful metrics for diagnostics of the malignant melanoma. In this study we exploit whether the image speckle could improve skin cancer diagnostic in comparison with the previously used free-space speckle. The study includes skin phantom measurements and computer modeling. To characterize the depolarization of light we measure the spatial distribution of speckle patterns and analyse their depolarization ratio taken into account radial symmetry. We examine the dependences of depolarization ratio vs. roughness for phantoms which optical properties are of the order of skin lesions. We demonstrate that the variation in bulk optical properties initiates the assessable changes in the depolarization ratio. We show that image speckle differentiates phantoms significantly better than free-space speckle. The results of experimental measurements are compared with the results of Monte Carlo simulation.

  9. Phantom bite: a real or a phantom diagnosis? A case report.

    PubMed

    Sutter, Ben A

    2017-01-01

    This case report describes computer-guided occlusal therapy in a patient who met the unified diagnostic criteria for phantom bite. After a review of the patient's medical history, along with a diagnostic work-up that included cone beam computed tomography, temporomandibular joint vibration analysis, and digital occlusal analysis, problematic dental components were discovered (including prolonged disclusion time and imbalanced bite force). A digital occlusal analyzer evaluated the patient's occlusion and systematically guided the necessary changes. After reduction of the disclusion time and correction of the occlusal force imbalance, the patient reported significant improvement in comfort. The results suggest that phantom bite could be an abnormal occlusal condition and not a psychological or neurologic somatoform disorder.

  10. Monte Carlo and Phantom Study of the Radiation Dose to the Body from Dedicated Computed Tomography of the Breast

    PubMed Central

    Sechopoulos, Ioannis; Vedantham, Srinivasan; Suryanarayanan, Sankararaman; D’Orsi, Carl J.; Karellas, Andrew

    2008-01-01

    Purpose To prospectively determine the radiation dose absorbed by the organs and tissues of the body during a dedicated computed tomography of the breast (DBCT) study using Monte Carlo methods and a phantom. Materials and Methods Using the Geant4 Monte Carlo toolkit, the Cristy anthropomorphic phantom and the geometry of a prototype DBCT was simulated. The simulation was used to track x-rays emitted from the source until their complete absorption or exit from the simulation limits. The interactions of the x-rays with the 65 different volumes representing organs, bones and other tissues of the anthropomorphic phantom that resulted in energy deposition were recorded. These data were used to compute the radiation dose to the organs and tissues during a complete DBCT acquisition relative to the average glandular dose to the imaged breast (ROD, relative organ dose), using the x-ray spectra proposed for DBCT imaging. The effectiveness of a lead shield for reducing the dose to the organs was investigated. Results The maximum ROD among the organs was for the ipsilateral lung with a maximum of 3.25%, followed by the heart and the thymus. Of the skeletal tissues, the sternum received the highest dose with a maximum ROD to the bone marrow of 2.24%, and to the bone surface of 7.74%. The maximum ROD to the uterus, representative of that of an early-stage fetus, was 0.026%. These maxima occurred for the highest energy x-ray spectrum (80 kVp) analyzed. A lead shield does not protect substantially the organs that receive the highest dose from DBCT. Discussion Although the dose to the organs from DBCT is substantially higher than that from planar mammography, they are comparable or considerably lower than those reached by other radiographic procedures and much lower than other CT examinations. PMID:18292479

  11. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation.

    PubMed

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-21

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  12. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pan, Yuxi; Qiu, Rui; Gao, Linfeng; Ge, Chaoyong; Zheng, Junzheng; Xie, Wenzhang; Li, Junli

    2014-09-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations.

  13. Natural Rubber Nanocomposite with Human-Tissue-Like Mechanical Characteristic

    NASA Astrophysics Data System (ADS)

    Murniati, Riri; Novita, Nanda; Sutisna; Wibowo, Edy; Iskandar, Ferry; Abdullah, Mikrajuddin

    2017-07-01

    The blends of synthetic rubber and natural rubber with nanosilica were prepared using a blending technique in presence of different filler volume fraction. The effect of filler on morphological and mechanical characteristics was studied. Utilization of human cadaver in means of medical study has been commonly used primarily as tools of medical teaching and training such as surgery. Nonetheless, human cadaver brought inevitable problems. So it is necessary to find a substitute material that can be used to replace cadavers. In orthopaedics, the materials that resemble in mechanical properties to biological tissues are elastomers such as natural rubber (latex) and synthetic rubber (polyurethanes, silicones). This substitution material needs to consider the potential of Indonesia to help the development of the nation. Indonesia is the second largest country producer of natural rubber in the world. This paper aims to contribute to adjusting the mechanical properties of tissue-mimicking materials (TMMs) to the recommended range of biological tissue value and thus allow the development of phantoms with greater stability and similarity to human tissues. Repeatability for the phantom fabrication process was also explored. Characteristics were then compared to the control and mechanical characteristics of different human body part tissue. Nanosilica is the best filler to produce the best nanocomposite similarities with human tissue. We produced composites that approaching the properties of human internal tissues.

  14. IGRT/ART phantom with programmable independent rib cage and tumor motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Olivier C. L., E-mail: o.haas@coventry.ac.uk; Mills, John A.; Land, Imke

    2014-02-15

    Purpose: This paper describes the design and experimental evaluation of the Methods and Advanced Equipment for Simulation and Treatment in Radiation Oncology (MAESTRO) thorax phantom, a new anthropomorphic moving ribcage combined with a 3D tumor positioning system to move target inserts within static lungs. Methods: The new rib cage design is described and its motion is evaluated using Vicon Nexus, a commercial 3D motion tracking system. CT studies at inhale and exhale position are used to study the effect of rib motion and tissue equivalence. Results: The 3D target positioning system and the rib cage have millimetre accuracy. Each axismore » of motion can reproduce given trajectories from files or individually programmed sinusoidal motion in terms of amplitude, period, and phase shift. The maximum rib motion ranges from 7 to 20 mm SI and from 0.3 to 3.7 mm AP with LR motion less than 1 mm. The repeatability between cycles is within 0.16 mm root mean square error. The agreement between CT electron and mass density for skin, ribcage, spine hard and inner bone as well as cartilage is within 3%. Conclusions: The MAESTRO phantom is a useful research tool that produces programmable 3D rib motions which can be synchronized with 3D internal target motion. The easily accessible static lungs enable the use of a wide range of inserts or can be filled with lung tissue equivalent and deformed using the target motion system.« less

  15. MO-B-BRD-01: Creation of 3D Printed Phantoms for Clinical Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E.

    . This data is used to 3D print individualized physical models of patient’s unique anatomy for aid in planning complex and challenging surgical procedures. Methods, techniques and imaging requirements for 3D printing anatomic models from imaging data will be discussed. Specific applications currently being used in the radiology clinic will be detailed. Standardized phantoms for radiation therapy are abundant. However, custom phantom designs can be advantageous for both clinical tasks and research. 3D printing is a useful method of custom fabrication that allows one to construct custom objects relatively quickly. Possibilities for custom radiotherapy phantoms range from 3D printing a hollow shell and filling the shell with tissue equivalent materials to fully printing the entire phantom with materials that are tissue equivalent as well as suitable for 3D printing. A range of materials available for use in radiotherapy phantoms and in the case of phantoms for dosimetric measurements, this choice is critical. The necessary steps required will be discussed including: modalities of 3D model generation, 3D model requirements for 3D printing, generation of machine instructions from the 3D model, and 3D printing techniques, choice of phantoms material, and troubleshooting techniques for each step in the process. Case examples of 3D printed phantoms will be shown. Learning Objectives: Understand the types of 3D modeling software required to design your device, the file formats required for data transfer from design software to 3D printer, and general troubleshooting techniques for each step of the process. Learn the differences between materials and design for photons vs. electrons vs. protons. Understand the importance of material choice and design geometries for your custom phantoms. Learn specific steps of quality assurance and quality control for 3D printed beam filters and compensators for proton therapy. Learn of special 3D printing applications for imaging. Cunha

  16. Design of a multimodal (1H/23Na MR/CT) anthropomorphic thorax phantom.

    PubMed

    Neumann, Wiebke; Lietzmann, Florian; Schad, Lothar R; Zöllner, Frank G

    2017-06-01

    This work proposes a modular, anthropomorphic MR and CT thorax phantom that enables the comparison of experimental studies for quantitative evaluation of deformable, multimodal image registration algorithms and realistic multi-nuclear MR imaging techniques. A human thorax phantom was developed with insertable modules representing lung, liver, ribs and additional tracking spheres. The quality of human tissue mimicking characteristics was evaluated for 1 H and 23 Na MR as well as CT imaging. The position of landmarks in the lung lobes was tracked during CT image acquisition at several positions during breathing cycles. 1 H MR measurements of the liver were repeated after seven months to determine long term stability. The modules possess HU, T 1 and T 2 values comparable to human tissues (lung module: -756±148HU, artificial ribs: 218±56HU (low CaCO 3 concentration) and 339±121 (high CaCO 3 concentration), liver module: T 1 =790±28ms, T 2 =65±1ms). Motion analysis showed that the landmarks in the lung lobes follow a 3D trajectory similar to human breathing motion. The tracking spheres are well detectable in both CT and MRI. The parameters of the tracking spheres can be adjusted in the following ranges to result in a distinct signal: HU values from 150 to 900HU, T 1 relaxation time from 550ms to 2000ms, T 2 relaxation time from 40ms to 200ms. The presented anthropomorphic multimodal thorax phantom fulfills the demands of a simple, inexpensive system with interchangeable components. In future, the modular design allows for complementing the present set up with additional modules focusing on specific research targets such as perfusion studies, 23 Na MR quantification experiments and an increasing level of complexity for motion studies. Copyright © 2016. Published by Elsevier GmbH.

  17. Temperature mapping of laser-induced hyperthermia in an ocular phantom using magnetic resonance thermography.

    PubMed

    Maswadi, Saher M; Dodd, Stephen J; Gao, Jia-Hong; Glickman, Randolph D

    2004-01-01

    Laser-induced heating in an ocular phantom is measured with magnetic resonance thermography (MRT) using temperature-dependent phase changes in proton resonance frequency. The ocular phantom contains a layer of melanosomes isolated from bovine retinal pigment epithelium. The phantom is heated by the 806-nm output of a continuous wave diode laser with an irradiance of 2.4 to 21.6 W/cm2 in a beam radius of 0.8 or 2.4 mm, depending on the experiment. MRT is performed with a 2 T magnet, and a two-turn, 6-cm-diam, circular radio frequency coil. Two-dimensional temperature gradients are measured within the plane of the melanin layer, as well as normal to it, with a temperature resolution of 1 degrees C or better. The temperature gradients extending within the melanin layer are broader than those orthogonal to the layer, consistent with the higher optical absorption and consequent heating in the melanin. The temperature gradients in the phantom measured by MRT closely approximate the predictions of a classical heat diffusion model. Three-dimensional temperature maps with a spatial resolution of 0.25 mm in all directions are also made. Although the temporal resolution is limited in the prototype system (22.9 s for a single image "slice"), improvements in future implementations are likely. These results indicate that MRT has sufficient spatial and temperature resolution to monitor target tissue temperature during transpupillary thermotherapy in the human eye.

  18. A vibration model for frequency analysis of arterial tubes with tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Fatemi, Mostafa; Greenleaf, James F.

    2003-04-01

    Vibro-acoustography is a new noncontact imaging method based on the radiation force of ultrasound. We extend this technique for tissue characterization of arterial tubes by vibration techniques. The arterial tube can be excited remotely by ultrasound at its resonant frequencies where the vibration and acoustic emission of the tube can be measurable. From these resonant frequencies, the material properties of the arterial tube can be found. A theory for a tube with tissue is formulated using first-order shear deformation theory to include the effects of transverse shear deformation and rotary inertia. A wave propagation approach is applied for easy handling of the boundary conditions. Experimental studies were carried out on a silicone tube embedded in a cylindrical gel phantom. A confocal transducer is used to produce the radiation force of ultrasound for exciting the tube-phantom structure. The vibration of the tube and the phantom are measured with a laser vibrometry system. The fundamental mode of a tube-phantom structure is well excited by the radiation force of ultrasound, and was measured to be 81.8 Hz, which is close to the theoretical prediction of 83.3 Hz. Both excitation and measurement are remote and noncontact, important attributes for future study of arteries.

  19. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...

  20. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with a...