Sample records for laboratory universe pasadena

  1. The Pasadena Recommendations: Five Years After AAS Endorsement

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia; Frattare, L.; Ulvestad, J.

    2010-01-01

    It has been five years since the AAS Council unanimously endorsed the document, known as "Equity Now: The Pasadena Recommendations for Gender Equality in Astronomy," in January 2005. This document was the main product of the conference entitled "Women in Astronomy II: Ten Years After” (WIA II), held in June 2003 in Pasadena, CA. Participants of that 2003 meeting assessed the progress for women in science, offering insights into causes of the slower advancement of women, and discussed strategies to accelerate the achievement of equality. These insights and strategies were then incorporated into the "Pasadena Recommendations" by the CSWA. It was subsequently released to the entire AAS community for review and comments prior to its endorsement by the AAS. We will discuss the Recommendations and their impact since the endorsement by the AAS, including the process that is in place for organizations and departments to formally endorse the Pasadena Recommendations, thus making an organizational commitment to their implementation (see http://www.aas.org/cswa/pasadena_endorse.html).

  2. Stereo Pair, Pasadena, California

    NASA Image and Video Library

    2000-03-10

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown.

  3. 76 FR 1150 - City of Pasadena, CA; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. NJ11-9-000] City of Pasadena, CA; Notice of Filing December 30, 2010. Take notice that on December 22, 2010, the City of Pasadena, California (Pasadena) filed its annual revisions to is Transmission Revenue Balancing Account Adjustment and...

  4. 78 FR 2983 - City of Pasadena, CA; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. NJ13-6-000] City of Pasadena, CA; Notice of Filing Take notice that on December 19, 2012, City of Pasadena, California submitted its tariff filing per 35.28(e): Pasadena 2013 TRBAA Update to be effective 1/1/2013. Any person...

  5. Perspective view, Landsat overlay Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image shows a perspective view of the area around Pasadena, California, just north of Los Angeles. The cluster of hills surrounded by freeways on the left is the Verdugo Hills, which lie between the San Gabriel Valley in the foreground and the San Fernando Valley in the upper left. The San Gabriel Mountains are seen across the top of the image, and parts of the high desert near the city of Palmdale are visible along the horizon on the right. Several urban features can be seen in the image. NASA's Jet Propulsion Laboratory (JPL) is the bright cluster of buildings just right of center; the flat tan area to the right of JPL at the foot of the mountains is a new housing development devoid of vegetation. Two freeways (the 210 and the 134) cross near the southeastern end of the Verdugo Hills near a white circular feature, the Rose Bowl. The commercial and residential areas of the city of Pasadena are the bright areas clustered around the freeway. These data will be used for a variety of applications including urban planning and natural hazard risk analysis.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers

  6. Pasadena, California Anaglyph with Aerial Photo Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph shows NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. Red-blue glasses are required to see the 3-D effect. The surrounding residential areas of La Canada-Flintridge (to the left) and Altadena/Pasadena (to the right) are also shown. JPL is located at the base of the San Gabriel Mountains, an actively growing mountain range, seen towards the top of the image. The large canyon coming out of the mountains (top to bottom of image) is the Arroyo Seco, which is a major drainage channel for the mountains. Sand and gravel removal operations in the lower part of the arroyo (bottom of image) are removing debris brought down by flood and mudflow events. Old landslide scars (lobe-shaped features) are seen in the arroyo, evidence that living near steep canyon slopes in tectonically active areas can be hazardous. The data can also be utilized by recreational users such as hikers enjoying the natural beauty of these rugged mountains.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. The detailed aerial image was provided by U. S. Geological Survey digital orthophotography. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  7. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Establishing The Pasadena Seismological Laboratory: An Adventure in Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Hazen, M. H.

    2002-05-01

    The 1906 San Francisco earthquake jolted Berkeley geologist Harry O. Wood (1879-1958) into a lifetime of seismological research that included the establishment of a seismic monitoring network in southern California, the co-invention of a seismograph capable of measuring short-period earthquakes, and the implementation of a public-safety campaign. None of these initiatives would have been possible without the support of the Carnegie Institution, a Washington DC-based research organization that supported not only exceptional individuals (as founder Andrew Carnegie had stipulated), but also large-scale, collaborative investigations. Wood published his plan for a "western United States" earthquake research program in 1916, but it was not until he moved to Washington during World War I that he made contacts that transformed his dream into a reality. While working at the National Research Council, Wood shared his vision with astronomer George Ellery Hale, geologist Arthur L. Day and, finally, Carnegie president John C. Merriam. Merriam was a Californian, a geologist, and a strong proponent of collaborative science. In 1921, the Carnegie Advisory Committee on Seismology - the first organization "of this magnitude" in American research - was formed. Initially, the program operated from an office at the Mount Wilson Observatory, where Wood was in charge of the daily operations. Then, in 1926, a joint venture with the California Institute of Technology was launched. Located in the mountains west of Pasadena, the Seismological Laboratory coordinated a range of scientific efforts. By 1930, thirteen American cities had Wood-Anderson seismographs in place, quantities of data had been acquired, new fault zones had been identified, and Beno Gutenberg and Charles F. Richter had been attracted to the program. Over the years, the U.S. Coast and Geodetic Survey and other government agencies also contributed to the effort. In the mid-1930s, the Carnegie Institution transferred the

  9. 75 FR 2136 - City of Pasadena, CA; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-31-000] City of Pasadena, CA; Notice of Filing January 6, 2010. Take notice that on December 30, 2009, City of Pasadena, California filed its fifth annual revision to its Transmission Revenue Balancing Account Adjustment...

  10. 78 FR 77447 - City of Pasadena, California; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. NJ14-3-000] City of Pasadena, California; Notice of Filing Take notice that on December 11, 2013, City of Pasadena, California submitted its tariff filing per 35.28(e): 2014 Transmission Revenue Balancing Account Adjustment Update to be...

  11. 77 FR 1484 - Notice of Filing; City of Pasadena, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. NJ12-4-000] Notice of Filing; City of Pasadena, CA Take notice that on December 14, 2011, City of Pasadena, California submitted its tariff filing per 35.28(e): 2012 TRBAA Update Filing, to be effective 1/1/2012. Any person desiring to...

  12. A Wet Chemistry Laboratory Cell

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Perspective View, Landsat Overlay Pasadena, California

    NASA Image and Video Library

    2000-02-21

    This image shows a perspective view of the area around Pasadena, California, just north of Los Angeles. The cluster of hills surrounded by freeways on the left is the Verdugo Hills, which lie between the San Gabriel Valley and the San Fernando Valley.

  14. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (third from left), mission manager and project engineer, Mars Science Laboratory (MSL), Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. From left to right, Watkins is joined by Dwayne Brown, NASA Headquarters public affairs officer; Michael Meyer, lead scientist Mars Exploration Program, NASA Headquarters; Watkins; John Grant, geologist, Smithsonian National Air and Space Museum in Washington; Dawn Sumner, geologist, University of California, Davis and John Grotzinger, MSL project scientist, JPL. Photo Credit: (NASA/Carla Cioffi)

  15. Pasadena City College Profile in Productivity, 1987-1992.

    ERIC Educational Resources Information Center

    Pasadena City Coll., CA.

    Focusing on the 5-year period from 1987 through 1991, this report provides data on Pasadena City College (PCC) in California, reviewing efforts and achievements in improving institutional productivity. Following a brief opening section discussing productivity trends and issues in the American workforce and in higher education, discussions are…

  16. Delivery to the Wet Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of a picture acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera documents the delivery of soil to one of four Wet Chemistry Laboratory (WCL) cells on the 30th Martian day, or sol, of the mission. Approximately one cubic centimeter of this soil was then introduced into the cell and mixed with water for chemical analysis. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Pasadena, California Perspective View with Aerial Photo and Landsat Overlay

    NASA Image and Video Library

    2000-02-18

    This perspective view, acquired by NASA Shuttle Radar Topography Mission SRTM in Feb. 2000, shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains.

  18. Descent Stage of Mars Science Laboratory During Assembly

    NASA Image and Video Library

    2008-11-19

    This image from early October 2008 shows personnel working on the descent stage of NASA Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  19. Mars Science Laboratory Rover Taking Shape

    NASA Image and Video Library

    2008-11-19

    This image taken in August 2008 in a clean room at NASA JPL, Pasadena, Calif., shows NASA next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

  20. Pasadena City College SIGI Project Research Design. Pilot Study.

    ERIC Educational Resources Information Center

    Risser, John J.; Tulley, John E.

    A pilot study evaluation of SIGI (System of Interactive Guidance and Information) at Pasadena City College in 1974-75 tested the effectiveness of an experimental research design for an expanded field test of the system the following year. (SIGI is a computer based career guidance program designed by Educational Testing Service to assist community…

  1. Mars Science Laboratory Mission Curiosity Rover Stereo

    NASA Image and Video Library

    2011-07-22

    This stereo image of NASA Mars Science Laboratory Curiosity Rovert was taken May 26, 2011, in Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory in Pasadena, Calif. 3D glasses are necessary to view this image.

  2. Pasadena, California Perspective View with Aerial Photo and Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada-Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U. S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory, is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene.

    This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons.

    For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site]

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation

  3. Anaglyph of Perspective View with Aerial Photo Overlay Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Red-blue glasses are required to see the 3-D effect. Portions of the cities of Altadena and La Canada-Flintridge are also shown. The image was created from two datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data and U. S. Geological Survey digital aerial photography provided the image detail. The Jet Propulsion Laboratory is the cluster of large buildings left of center, at the base of the mountains. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires can strip the mountains of vegetation, increasing the hazards from flooding and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C

  4. Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Ortega, A. M.; Cubison, M. J.; Froyd, K. D.; Zhao, Y.; Cliff, S. S.; Hu, W. W.; Toohey, D. W.; Flynn, J. H.; Lefer, B. L.; Grossberg, N.; Alvarez, S.; Rappenglück, B.; Taylor, J. W.; Allan, J. D.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Massoli, P.; Zhang, X.; Liu, J.; Weber, R. J.; Corrigan, A. L.; Russell, L. M.; Isaacman, G.; Worton, D. R.; Kreisberg, N. M.; Goldstein, A. H.; Thalman, R.; Waxman, E. M.; Volkamer, R.; Lin, Y. H.; Surratt, J. D.; Kleindienst, T. E.; Offenberg, J. H.; Dusanter, S.; Griffith, S.; Stevens, P. S.; Brioude, J.; Angevine, W. M.; Jimenez, J. L.

    2013-08-01

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) and two types of oxygenated OA (OOA). The Pasadena OA elemental composition when plotted as H : C versus O : C follows a line less steep than that observed for Riverside, CA. The OOA components from both locations follow a common line, however, indicating similar secondary organic aerosol (SOA) oxidation chemistry at the two sites such as fragmentation reactions leading to acid formation. In addition to the similar evolution of elemental composition, the dependence of SOA concentration on photochemical age displays quantitatively the same trends across several North American urban sites. First, the OA/ΔCO values for Pasadena increase with photochemical age exhibiting a slope identical to or slightly higher than those for Mexico City and the northeastern United States. Second, the ratios of OOA to odd-oxygen (a photochemical oxidation marker) for Pasadena, Mexico City, and Riverside are similar, suggesting a proportional relationship between SOA and odd-oxygen formation rates. Weekly cycles of the OA components are examined as well. HOA exhibits lower concentrations on Sundays versus weekdays, and the decrease in HOA matches that predicted for primary vehicle emissions using fuel sales data, traffic counts, and vehicle emission ratios. OOA does not display a weekly cycle—after accounting for differences in photochemical aging —which suggests the dominance of gasoline emissions in SOA formation under the assumption that most urban SOA precursors are from motor vehicles.

  5. Mars Science Laboratory Rover and Descent Stage

    NASA Image and Video Library

    2008-11-19

    In this February 17, 2009, image, NASA Mars Science Laboratory rover is attached to the spacecraft descent stage. The image was taken inside the Spacecraft Assembly Facility at NASA JPL, Pasadena, Calif.

  6. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, left, meets with JPL Director Michael Watkins during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  7. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, right, is presented a plaque by JPL Director Michael Watkins during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. The plaque presents a view of the Mars Science Laboratory rover Curiosity on the surface of Mars. Photo Credit: (NASA/Bill Ingalls)

  8. A Conceptual Model of the Pasadena Housing System

    NASA Technical Reports Server (NTRS)

    Hirshberg, Alan S.; Barber, Thomas A.

    1971-01-01

    During the last 5 years, there have been several attempts at applying systems analysis to complex urban problems. This paper describes one such attempt by a multidisciplinary team of students, engineers, professors, and community representatives. The Project organization is discussed and the interaction of the different disciplines (the process) described. The two fundamental analysis questions posed by the Project were: "Why do houses deteriorate?" and "Why do people move?" The analysis of these questions led to the development of a conceptual system model of housing in Pasadena. The major elements of this model are described, and several conclusions drawn from it are presented.

  9. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence turns and talks with Executive Director of the National Space Council Scott Pace during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  10. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  11. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from left, his wife Karen, and daughter Charlotte are given a tour of NASA's Jet Propulsion Laboratory by JPL Director Michael Watkins, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  12. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, his wife Karen, and their daughter Charlotte shake hands with Mars Curiosity Mission ACE Walt Hoffman, right, during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  13. Organic Aerosol Composition and Sources in Pasadena, California during the 2010 CalNex Campaign

    EPA Science Inventory

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) ...

  14. The space laboratory of University College London

    NASA Astrophysics Data System (ADS)

    Johnstone, Alan

    1994-10-01

    University College London was one of the first universities in the world to become involved in making scientific observations in space. Since its laboratory, the Mullard Space Science Laboratory was established, it has participated in 40 satellite missions and more than 200 sounding rocket experiments. Its scientific research in five fields, space plasma physics, high energy astronomy, solar astronomy, Earth remote sensing, and detector physics is internationally renowned. The scientific and technological expertise development through the construction and use of space instrumentation has been fed back into an educational program which leads to degrees at the three levels of B.Sc., M.Sc., and Ph.D.

  15. US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview

    DTIC Science & Technology

    2017-11-01

    ARL-TR-8199 ● NOV 2017 US Army Research Laboratory US Army Research Laboratory and University of Notre Dame Distributed Sensing...US Army Research Laboratory US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview by Roger P...TITLE AND SUBTITLE US Army Research Laboratory and University of Notre Dame Distributed Sensing: Hardware Overview 5a. CONTRACT NUMBER 5b. GRANT

  16. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence is given instructions on how to drive a rover nicknamed "Scarecrow" by JPL Director Michael Watkins at NASA's Jet Propulsion Laboratory Mars Yard, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)

  17. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 3rd from left, his wife Karen, and their daughter Charlotte meet with JPL Director Michael Watkins, and Mars Curiosity Mission ACE Walt Hoffman, right, during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  18. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, right, and Executive Director of the National Space Council Scott Pace during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  19. Mars Science Laboratory's Descent Stage

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of NASA's Mars Science Laboratory, called the descent stage, does its main work during the final few minutes before touchdown on Mars.

    The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground.

    The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  20. Mars Science Laboratory Rover Taking Shape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The rover is about 9 feet wide and 10 feet long.

    Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin.

    JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.

  1. How To Curb the Appetite for Energy in University Laboratories.

    ERIC Educational Resources Information Center

    Zsirai, Ted; Wright, Michaella

    2001-01-01

    Discusses ways to cut rising energy costs within university laboratories by using heat recovery systems and variable volume exhaust hood systems. Explores the implementation of broad-based, sustainable laboratory classroom design concepts. (GR)

  2. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, left, explains to U.S. Vice President Mike Pence, daughter of Mike Pence, Charlotte Pence, and wife of Mike Pence, Karen Pence the progress for the Mars 2020 mission while inside the Spacecraft Assembly Facility (SAF) during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  3. US Army Research Laboratory and University of Notre Dame Distributed Sensing: Software Overview

    DTIC Science & Technology

    2017-09-01

    ARL-TN-0847 ● Sep 2017 US Army Research Laboratory US Army Research Laboratory and University of Notre Dame Distributed Sensing...Destroy this report when it is no longer needed. Do not return it to the originator. ARL-TN-0847 ● Sep 2017 US Army Research Laboratory...US Army Research Laboratory and University of Notre Dame Distributed Sensing: Software Overview by Neal Tesny Sensors and Electron Devices

  4. Martian Soil Ready for Robotic Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander scooped up this Martian soil on the mission's 11th Martian day, or sol, after landing (June 5, 2008) as the first soil sample for delivery to the laboratory on the lander deck.

    The material includes a light-toned clod possibly from crusted surface of the ground, similar in appearance to clods observed near a foot of the lander.

    This approximately true-color view of the contents of the scoop on the Robotic Arm comes from combining separate images taken by the Robotic Arm Camera on Sol 11, using illumination by red, green and blue light-emitting diodes on the camera.

    The scoop loaded with this sample was poised over an open sample-delivery door of Thermal and Evolved-Gas Analyzer at the end of Sol 11, ready to be dumped into the instrument on the next sol.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Mars Science Laboratory Spacecraft Assembled for Testing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions.

    These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  6. Pension fund activities at Department laboratories managed by the University of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-18

    The Department of Energy`s (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department`s interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department`s contract administration of its interest in those pension plans.

  7. The Phases Differential Astrometry Data Archive. 2. Updated Binary Star Orbits and a Long Period Eclipsing Binary

    DTIC Science & Technology

    2010-12-01

    Mathematics and Astronomy , 105-24 California Institute of Technology, Pasadena, CA 91125, USA 6 Nicolaus Copernicus Astronomical Center, Polish Academy of...Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA 10 Department of Astronomy , University of California...PHASES is funded in part by the California Institute of Technology Astronomy Department and by the National Aeronautics and Space Administration under

  8. The laboratory astrophysics facility at University College

    NASA Astrophysics Data System (ADS)

    Hyland, A. R.; Smith, R. G.; Robinson, G.

    A laboratory astrophysics facility for the study of the terrestrial analogues of interstellar dust grains is being developed in the Physics Department, University College, Australian Defence Force Academy. The facility consists of a gas handling system for the preparation of samples, a closed-cycle cooler and specimen chamber, and a Fourier Transform Infrared (FTIR) Spectrometer capable of high resolution (0.3/cm) and high sensitivity measurements, currently from 1-25 microns. The layout and construction of the laboratory are described, and the proposed initial experimental program aimed at determining the optical constants of ices, over a wide wavelength range for comparison with astronomical observations, is discussed.

  9. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, left, thanks JPL Deputy Director Lt. Gen. (Ret) Larry James, JPL Director Michael Watkins, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell , UAG Chairman, Admiral (Ret) James Ellis , and California Institute of Technology President Thomas Rosenbaum, right, for giving him a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  10. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, his wife Karen, and their daughter Charlotte are shown how to send a command to the Curiosity rover on Mars by Mars Curiosity Mission ACE Walt Hoffman during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Hoffman asked Charlotte Pence if she would do the honors of sending the command to the rover. Photo Credit: (NASA/Bill Ingalls)

  11. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)

  12. Research Collaborations Between Universities and Department of Defense Laboratories

    DTIC Science & Technology

    2014-07-31

    collaboration and often combines government, industry , and university partners. Must be competed. Medium to long term Yes Yes Yes Yes...can reach out to third parties such as industry or Federally Funded Research and Development Centers (FFRDCs) without the having to go through...position at DOD laboratories. Students learn about research that is important to the DOD, and university- industry collaborations are a great way to

  13. Linked Learning in Pasadena: Creating a Collaborative Culture for Sustainable District Reform. Linked Learning Case Study Series

    ERIC Educational Resources Information Center

    Rice, Erik; Rutherford-Quach, Sara

    2012-01-01

    This is the story of how Pasadena Unified School District (PUSD) is creating sustainable high school reform. PUSD, through a set of district leadership practices, thoughtfully built the capacity of and sense of ownership among essential stakeholders to design, implement, and support a system of Linked Learning pathways. Though firmly anchored by…

  14. Effects of Students' Pre- and Post-Laboratory Concept Maps on Students' Attitudes toward Chemistry Laboratory in University General Chemistry

    ERIC Educational Resources Information Center

    Kilic, Ziya; Kaya, Osman Nafiz; Dogan, Alev

    2004-01-01

    The purpose of this study was to investigate the effects of scientific discussions based on student-constructed pre- and post-laboratory concept maps on students' attitudes toward chemistry laboratory in the university general chemistry. As part of instruction, during the first four laboratory sessions, students were taught how to construct and…

  15. Google+ as a Tool for Use in Cooperative Laboratory Activities between Universities

    ERIC Educational Resources Information Center

    Puig-Ortiz, Joan; Pàmies-Vilà, Rosa; Martinez Miralles, Jordi Ramon

    2015-01-01

    The following is a proposal for collaboration between universities with the aim to improve curricula that require laboratory activities. A methodology is suggested to implement an innovative educational project involving the exchange of laboratory activities. The exchange of laboratory activities can be carried out on different levels of…

  16. Mars 2020 MOXIE Laboratory and Principal Investigator

    NASA Image and Video Library

    2016-07-15

    One investigation on NASA's Mars 2020 rover will extract oxygen from the Martian atmosphere. It is called MOXIE, for Mars Oxygen In-Situ Resource Utilization Experiment. In this image, MOXIE Principal Investigator Michael Hecht, of the Massachusetts Institute of Technology, Cambridge, is in the MOXIE development laboratory at NASA's Jet Propulsion Laboratory, Pasadena, California. Mars' atmosphere is mostly carbon dioxide. Demonstration of the capability for extracting oxygen from it, under Martian environmental conditions, will be a pioneering step toward how humans on Mars will use the Red Planet's natural resources. Oxygen can be used in the rocket http://photojournal.jpl.nasa.gov/catalog/PIA20761

  17. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, to the Vice President's left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)

  18. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from left, poses for a group photograph with JPL Director Michael Watkins, left, JPL Deputy Director Lt. Gen. (Ret) Larry James, California Institute of Technology President Thomas Rosenbaum, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, and UAG Chairman, Admiral (Ret) James Ellis, right, after having toured NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  19. Radar research at The Pennsylvania State University Radar and Communications Laboratory

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.

    2017-05-01

    The Radar and Communications Laboratory (RCL) at The Pennsylvania State University is at the forefront of radar technology and is engaged in cutting edge research in all aspects of radar, including modeling and simulation studies of novel radar paradigms, design and development of new types of radar architectures, and extensive field measurements in realistic scenarios. This paper summarizes the research at The Pennsylvania State University's Radar and Communications Laboratory and relevant collaborative research with several groups over the past 15 years in the field of radar and related technologies, including communications, radio frequency identification (RFID), and spectrum sensing.

  20. THE GREEN DORM: A SUSTAINABLE RESIDENCE AND LIVING LABORATORY FOR STANFORD UNIVERSITY

    EPA Science Inventory

    The Lotus Living Laboratory at Stanford University is exploring sustainable building technologies and sustainable living habits through the design, construction and operation of The Green Dorm, an innovative facility containing residential, laboratory and commons space. Both ...

  1. Designing the Psychology Laboratories at Nebraska Wesleyan University.

    ERIC Educational Resources Information Center

    Fawl, Clifford L.

    This paper describes the psychology laboratory at Nebraska Wesleyan University and the efforts of the small department which participated in the design and development process. The lab consists of 26 rooms, mostly small cubicles, and covers approximately 3,800 square feet. Each area of the lab is described in terms of its design and function.…

  2. 75 FR 48939 - National Superconducting Cyclotron Laboratory of Michigan State University; Notice of Decision on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... DEPARTMENT OF COMMERCE International Trade Administration National Superconducting Cyclotron Laboratory of Michigan State University; Notice of Decision on Applications for Duty-Free Entry of Scientific... Cyclotron Laboratory of Michigan State University. Instrument: Radio Frequency Quadropole Accelerator (RFQ...

  3. Formaldehyde Exposures in a University Anatomy Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Kyle William

    Air sampling studies were conducted within a university anatomical laboratory during the embalmment of a cadaver in order to determine if dangerous concentrations of formaldehyde existed. Three air sampling studies were conducted in the anatomical laboratory on three separate days that a cadaver was being embalmed. Samples were collected and analyzed using the Occupational Safety and Health Administration (OSHA) Sampling and Analytical Methods: Method 52. Each air sampling study sampled for short term exposure limit (STEL) and time weighted mean (TWA) breathing zone formaldehyde concentrations as well as area TWA formaldehyde concentrations. A personal aldehyde monitor was also used in each air sampling study to sample for breathing zone formaldehyde concentrations. Measured TWA mean exposures to formaldehyde ranged from 0.15--1.3 parts per million (ppm), STEL formaldehyde exposures ranged from 0.019--0.64 ppm, and eight-hour TWAs ranged from 0.03 to 3.6 ppm. All 8-hour TWA formaldehyde concentrations sampled in the anatomy laboratory during an embalmment were less than the permissible exposure limit (PEL) required by OSHA.

  4. A Comprehensive Review of Credit Instructional Programs Offered by Pasadena City Colleges, 1981-1982. Volume I. Summary Report.

    ERIC Educational Resources Information Center

    Carvell Education Managment Planning, Inc., Los Angeles, CA.

    The first part of a report on a comprehensive review of the credit instructional programs offered by Pasadena City College (PCC), this volume provides a description of the evaluation procedures used, and a discussion of general issues that are major considerations for program improvement. Section I introduces the program review in terms of its…

  5. The Relationships between University Students' Chemistry Laboratory Anxiety, Attitudes, and Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Kurbanoglu, N. Izzet; Akin, Ahmet

    2010-01-01

    The aim of this study is to examine the relationships between chemistry laboratory anxiety, chemistry attitudes, and self-efficacy. Participants were 395 university students. Participants completed the Chemistry Laboratory Anxiety Scale, the Chemistry Attitudes Scale, and the Self-efficacy Scale. Results showed that chemistry laboratory anxiety…

  6. A BSCS-Style Laboratory Approach for University General Biology.

    ERIC Educational Resources Information Center

    Leonard, William H.

    1982-01-01

    Compared effectiveness of a Biological Sciences Curriculum Study (BSCS)-style laboratory program in a university general biology course against a popular traditionally oriented program. Although learning gains for both groups were significant, students using the BSCS-style investigations scored significantly higher on a posttest of laboratory…

  7. Power Origami

    NASA Image and Video Library

    2014-08-14

    Researchers at NASA Jet Propulsion Laboratory, Pasadena, California, and Brigham Young University, Provo, Utah, collaborated to construct a prototype of a solar panel array that folds up in the style of origami, to make for easier deployment.

  8. 77 FR 75184 - Accreditation and Approval of NMC Global Corporation, as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... NMC Global Corporation, as a Commercial Gauger and Laboratory AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: Notice of accreditation and approval of NMC Global... 151.12 and 19 CFR 151.13, NMC Global Corporation, 1107 Center St., Pasadena, TX 77506, has been...

  9. Review of Army Research Laboratory Programs for Historically Black Colleges and Universities and Minority Institutions

    ERIC Educational Resources Information Center

    National Academies Press, 2014

    2014-01-01

    "Review of Army Research Laboratory Programs for Historically Black Colleges and Universities and Minority Institutions" examines the ways in which historically black colleges and universities and minority institutions have used the Army Research Laboratory (ARL) funds to enhance the science, technology, engineering, and mathematics…

  10. An Experimental Study of a BSCS-Style Laboratory Approach for University General Biology.

    ERIC Educational Resources Information Center

    Leonard, William H.

    1983-01-01

    A Biological Sciences Curriculum Study (BSCS) inquiry approach for university general biology laboratory was tested against a well-established commercial program judged to be highly directive. The BSCS was found to be more effective in learning biology laboratory concepts than the commercial program as measured by a laboratory concepts test.…

  11. Phoenix Robotic Arm

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A vital instrument on NASA's Phoenix Mars Lander is the robotic arm, which will dig into the icy soil and bring samples back to the science deck of the spacecraft for analysis. In September 2006 at a Lockheed Martin Space Systems clean room facility near Denver, spacecraft technician Billy Jones inspects the arm during the assembly phase of the mission.

    Using the robotic arm -- built by the Jet Propulsion Laboratory, Pasadena -- the Phoenix mission will study the history of water and search for complex organic molecules in the ice-rich soil.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  12. Work on Phoenix Science Deck

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Lockheed Martin Space Systems technicians Jim Young (left) and Jack Farmerie (right) work on the science deck of NASA's Phoenix Mars Lander.

    The spacecraft was built in a 100,000-class clean room near Denver under NASA's planetary protection practices to keep organics from being taken to Mars. The lander's robotic arm, built by the Jet Propulsion Laboratory, Pasadena, is seen at the top of the picture. The color and grey dots will be used to calibrate the spacecraft's Surface Stereoscopic Imager camera once the spacecraft has landed on the red planet.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  13. Frederick National Laboratory and Georgetown University Launch Research and Education Collaboration | Frederick National Laboratory for Cancer Research

    Cancer.gov

    FREDERICK, Md. -- A new collaboration established between Georgetown University and the Frederick National Laboratory for Cancer Research aims to expand both institutions’ research and training missions in the biomedical sciences. Representatives f

  14. Using Cluster Analysis to Characterize Meaningful Learning in a First-Year University Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective learning in the university chemistry laboratory. The MLLI was administered at the beginning and the end of the first semester to first-year university chemistry students to measure their expectations and experiences for learning in…

  15. Descent Stage of Mars Science Laboratory During Assembly

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from early October 2008 shows personnel working on the descent stage of NASA's Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground. The larger three of the orange spheres in the descent stage are fuel tanks. The smaller two are tanks for pressurant gas used for pushing the fuel to the rocket engines.

    JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  16. The Los Alamos universe: Using multimedia to promote laboratory capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kindel, J.

    2000-03-01

    This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists ofmore » three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.« less

  17. Computer Simulations Improve University Instructional Laboratories1

    PubMed Central

    2004-01-01

    Laboratory classes are commonplace and essential in biology departments but can sometimes be cumbersome, unreliable, and a drain on time and resources. As university intakes increase, pressure on budgets and staff time can often lead to reduction in practical class provision. Frequently, the ability to use laboratory equipment, mix solutions, and manipulate test animals are essential learning outcomes, and “wet” laboratory classes are thus appropriate. In others, however, interpretation and manipulation of the data are the primary learning outcomes, and here, computer-based simulations can provide a cheaper, easier, and less time- and labor-intensive alternative. We report the evaluation of two computer-based simulations of practical exercises: the first in chromosome analysis, the second in bioinformatics. Simulations can provide significant time savings to students (by a factor of four in our first case study) without affecting learning, as measured by performance in assessment. Moreover, under certain circumstances, performance can be improved by the use of simulations (by 7% in our second case study). We concluded that the introduction of these simulations can significantly enhance student learning where consideration of the learning outcomes indicates that it might be appropriate. In addition, they can offer significant benefits to teaching staff. PMID:15592599

  18. Papers presented to the International Colloquium on Venus

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This volume contains short papers that have been accepted for the International Colloquium on Venus, August 10-12, Pasadena, California. The Program Committee consisted of Stephen Saunders (Jet Propulsion Laboratory) and Sean C. Solomon (Massachusetts Institute of Technology). Chairmen: Raymond Arvison (Washington University); Vassily Moroz (Institute for Space Research); Donald B. Campbell (Cornell University); Thomas Donahue (University of Michigan); James W. Head III (Brown University); Pamela Jones (Lunar and Planetary Institute); Mona Jasnow, Andrew Morrison, Timothy Pardker, Jeffrey Plaut, Ellen Stofan, Tommy Thompson, Cathy Weitz (Jet Propulsion Laboratory); Gordon Pettengil (Massachusetts Institute of Technology); and Janet Luhmann (University of California, Los Angeles).

  19. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, standing, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, seated next to his wife Karen and daughter Charlotte Pence, during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President was, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, left, UAG Chairman, Admiral (Ret) James Ellis, JPL Deputy Director Lt. Gen. (Ret) Larry James, and California Institute of Technology President Thomas Rosenbaum. Photo Credit: (NASA/Bill Ingalls)

  20. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 3rd from right, tours NASA's Jet Propulsion Laboratory along with his wife Karen, and daughter Charlotte, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President t and his family on the tour are: UAG Chairman, Admiral (Ret) James Ellis , left, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, behind Mrs. Pence, California Institute of Technology President Thomas Rosenbaum, JPL Director Michael Watkins, and JPL Deputy Director Lt. Gen. (Ret) Larry James, right. Photo Credit: (NASA/Bill Ingalls)

  1. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence can be seen with his wife Karen Pence as they toured NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. The vice President was also joined by his daughter Charlotte Pence, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell , UAG Chairman, Admiral (Ret) James Ellis , Executive Director of the National Space Council Scott Pace, JPL Deputy Director Lt. Gen. (Ret) Larry James, and California Institute of Technology President Thomas Rosenbaum. Photo Credit: (NASA/Bill Ingalls)

  2. Using the Universal Design for Learning Approach in Science Laboratories to Minimize Student Stress

    ERIC Educational Resources Information Center

    Miller, Daniel K.; Lang, Patricia L.

    2016-01-01

    This commentary discusses how the principles of universal design for learning (UDL) can be applied in the science laboratory with an emphasis on assisting students who experience stress in the laboratory environment. The UDL approach in the laboratory is based on three elements: open-mindedness, supportive communication, and analysis and…

  3. Undergraduate Skills Laboratories at Sonoma State University

    NASA Astrophysics Data System (ADS)

    Gill, Amandeep; Zack, K.; Mills, H.; Cunningham, B.; Jackowski, S.

    2014-01-01

    Due to the current economic climate, funding sources for many laboratory courses have been cut from university budgets. However, it is still necessary for undergraduates to master laboratory skills to be prepared and competitive applicants when entering the professional world and/or graduate school. In this context, student-led programs may be able to compensate for this lack of formal instruction and reinforce concepts from lecture by applying research techniques to develop hands-on comprehension. The Sonoma State University Chapter of Society of Physics Students has established a peer-led skills lab to teach research techniques in the fields of astronomy and physics. The goal is to alleviate the pressures of both independently learning and efficiently applying techniques to junior and senior-level research projects. These skill labs are especially valuable for nontraditional students who, due to work or family duties, may not get a chance to fully commit to research projects. For example, a topic such as Arduino programming has a multitude of applications in both astronomy and physics, but is not taught in traditional university courses. Although some programming and electronics skills are taught in (separate) classes, they are usually not applied to actual research projects, which combined expertise is needed. For example, in astronomy, there are many situations involving programming telescopes and taking data with electronic cameras. Often students will carry out research using these tools but when something goes wrong, the students will not have the skills to trouble shoot and fix the system. Another astronomical topic to be taught in the skills labs is the analysis of astronomical data, including running remote telescopes, analyzing photometric variability, and understanding the concepts of star magnitudes, flat fields, and biases. These workshops provide a setting in which the student teacher may strengthen his or her understanding of the topic by presenting

  4. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocker, Mark; Crofcheck, Czarena; Andrews, Rodney

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities andmore » contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO 2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.« less

  5. Site Description for the University of Nebraska's Sandhills Agricultural Laboratory

    NASA Technical Reports Server (NTRS)

    Gardner, B. R.; Blad, B. L.

    1985-01-01

    The Sandhills Agricultural Laboratory is operated by the University of Nebraska. The laboratory is located in the south-central part of the Nebraska Sandhills near Tryon, Nebraska (41 deg. 37' N; 100 deg. 50' W). The laboratory is surrounded on the west and south by native rangeland vegetation, on the south by a large field of corn irrigated by a center pivot, and on the east by wheat stubble. This site is appropriate for moisture stress studies since rainfall is almost always inadequate to meet evaporative demands of agricultural crops during most of the growing season and the sandy soils (Valentine fine sand) at the site do not store large quantities of water. Various levels of water stress are achieved through irrigation from solid set sprinklers.

  6. Safety leadership in the teaching laboratories of electrical and electronic engineering departments at Taiwanese Universities.

    PubMed

    Wu, Tsung-Chih

    2008-01-01

    Safety has always been one of the principal goals in teaching laboratories. Laboratories cannot serve their educational purpose when accidents occur. The leadership of department heads has a major impact on laboratory safety, so this study discusses the factors affecting safety leadership in teaching laboratories. This study uses a mail survey to explore the perceived safety leadership in electrical and electronic engineering departments at Taiwanese universities. An exploratory factor analysis shows that there are three main components of safety leadership, as measured on a safety leadership scale: safety controlling, safety coaching, and safety caring. The descriptive statistics also reveals that among faculty, the perception of department heads' safety leadership is in general positive. A two-way MANOVA shows that there are interaction effects on safety leadership between university size and instructor age; there are also interaction effects between presence of a safety committee and faculty gender and faculty age. It is therefore necessary to assess organizational factors when determining whether individual factors are the cause of differing perceptions among faculty members. The author also presents advice on improving safety leadership for department heads at small universities and at universities without safety committees.

  7. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grotzinger, Mars Science Laboratory (MSL) project scientist, Jet Propulsion Lab (JPL), Pasadena, Calif., answers a reporter's question at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  8. Universal immunogenicity validation and assessment during early biotherapeutic development to support a green laboratory.

    PubMed

    Bautista, Ami C; Zhou, Lei; Jawa, Vibha

    2013-10-01

    Immunogenicity support during nonclinical biotherapeutic development can be resource intensive if supported by conventional methodologies. A universal indirect species-specific immunoassay can eliminate the need for biotherapeutic-specific anti-drug antibody immunoassays without compromising quality. By implementing the R's of sustainability (reduce, reuse, rethink), conservation of resources and greener laboratory practices were achieved in this study. Statistical analysis across four biotherapeutics supported identification of consistent product performance standards (cut points, sensitivity and reference limits) and a streamlined universal anti-drug antibody immunoassay method implementation strategy. We propose an efficient, fit-for-purpose, scientifically and statistically supported nonclinical immunogenicity assessment strategy. Utilization of a universal method and streamlined validation, while retaining comparability to conventional immunoassays and meeting the industry recommended standards, provides environmental credits in the scientific laboratory. Collectively, individual reductions in critical material consumption, energy usage, waste and non-environment friendly consumables, such as plastic and paper, support a greener laboratory environment.

  9. Single Still Image

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This narrow angle image taken by Cassini's camera system of the Moon is one of the best of a sequence of narrow angle frames taken as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. The 80 millisecond exposure was taken through a spectral filter centered at 0.33 microns; the filter bandpass was 85 Angstroms wide. The spatial scale of the image is about 1.4 miles per pixel (about 2.3 kilometers). The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  10. Reliability and validity of job content questionnaire for university research laboratory staff in Malaysia.

    PubMed

    Nehzat, F; Huda, B Z; Tajuddin, S H Syed

    2014-03-01

    Job Content Questionnaire (JCQ) has been proven a reliable and valid instrument to assess job stress in many countries and among various occupations. In Malaysia, both English and Malay versions of the JCQ have been administered to automotive workers, schoolteachers, and office workers. This study assessed the reliability and validity of the instrument with research laboratory staff in a university. A cross sectional study was conducted among 258 research laboratory staff in Universiti Putra Malaysia (UPM). Malaysian laboratory staff who have worked for at least one year were randomly selected from nine faculties and institutes in the university that have research laboratory. A self-administered English and Malay version of Job Content Questionnaire (JCQ) was used. Three major scales of JCQ: decision latitude, psychological job demands, and social support were assessed. Cronbach's alpha coefficients of two scales were acceptable, decision latitude and psychological job demands (0.70 and 0.72, respectively), while Cronbach's alpha coefficient for social support (0.86) was good. Exploratory factor analysis showed five factors that correspond closely to the theoretical construct of the questionnaire. The results of this research suggest that the JCQ is reliable and valid for examining psychosocial work situations and job strain among research laboratory staff. Further studies should be done for confirmative results, and further evaluation is needed on the decision authority subscale for this occupation.

  11. Pension fund activities at Department laboratories managed by the University of California. [Contains Management and Auditor Comments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-18

    The Department of Energy's (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department's interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department's contract administration of its interest in those pension plans.

  12. Cassini UVIS Observations of Titan Ultraviolet Airglow Spectra with Laboratory Modeling from Electron- and Proton-Excited N2 Emission Studies

    NASA Astrophysics Data System (ADS)

    Ajello, J. M.; West, R. A.; Malone, C. P.; Gustin, J.; Esposito, L. W.; McClintock, W. E.; Holsclaw, G. M.; Stevens, M. H.

    2011-12-01

    Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 & Department of Physics, California State University, Fullerton, CA 92834 Michael H. Stevens Space Science Division, Naval Research Laboratory, Washington, DC 20375 Jacques Gustin Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium A. Ian F. Stewart, Larry W. Esposito, William E. McClintock, Gregory M. Holsclaw Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 E. Todd Bradley Department of Physics, University of Central Florida, Orlando, FL 32816 The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including three eclipse observations from 2009 through 2010. The 77 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions (lifetimes less than ~100 μs), including the Lyman-Birge-Hopfield (LBH) band system, arising from photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2). The altitude of peak UV emission on the limb of Titan during daylight occurred inside the thermosphere/ionosphere (near 1000 km altitude). However, at night on the limb, the same emission features, but much weaker in intensity, arise in the lower atmosphere below 1000 km (lower thermosphere, mesosphere, haze layer) extending downwards to near the surface at ~300 km, possibly resulting from proton- and/or heavier ion-induced emissions as well as secondary-electron-induced emissions. The eclipse observations are unique. UV emissions were observed during only one of the three eclipse events, and no Vegard-Kaplan (VK) or LBH emissions were seen. Through regression analysis using

  13. Risk assessment and quality improvement of liquid waste management in Taiwan University chemical laboratories.

    PubMed

    Ho, Chao-Chung; Chen, Ming-Shu

    2018-01-01

    The policy of establishing new universities across Taiwan has led to an increase in the number of universities, and many schools have constructed new laboratories to meet students' academic needs. In recent years, there has been an increase in the number of laboratory accidents from the liquid waste in universities. Therefore, how to build a safety system for laboratory liquid waste disposal has become an important issue in the environmental protection, safety, and hygiene of all universities. This study identifies the risk factors of liquid waste disposal and presents an agenda for practices to laboratory managers. An expert questionnaire is adopted to probe into the risk priority procedures of liquid waste disposal; then, the fuzzy theory-based FMEA method and the traditional FMEA method are employed to analyze and improve the procedures for liquid waste disposal. According to the research results, the fuzzy FMEA method is the most effective, and the top 10 potential disabling factors are prioritized for improvement according to the risk priority number (RNP), including "Unclear classification", "Gathering liquid waste without a funnel or a drain pan", "Lack of a clearance and transport contract", "Liquid waste spill during delivery", "Spill over", "Decentralized storage", "Calculating weight in the wrong way", "Compatibility between the container material and the liquid waste", "Lack of dumping and disposal tools", and "Lack of a clear labels for liquid waste containers". After tracking improvements, the overall improvement rate rose to 60.2%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Identifying and Addressing Challenges to Research in University Laboratory Preschools

    ERIC Educational Resources Information Center

    File, Nancy

    2012-01-01

    Research Findings: This essay offers a review of challenges that university laboratory preschools face in providing a site for research that fits with other components of the program mission. An argument is made to consider paradigm shifts in research questions and methods that move away from traditions within the fields that study children's…

  15. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    ERIC Educational Resources Information Center

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…

  16. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 5th from left, joined by his wife Karen Pence, left, and daughter Charlotte Pence. 2nd from left, view the Vehicle System Test Bed (VSTB) rover in the Mars Yard during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. NASA Mars Exploration Manager Li Fuk, 2nd from left, JPL Director Michael Watkins, Mars Curiosity Engineering Operations Team Chief Megan Lin, and MSL Engineer Sean McGill, right, helped explain to the Vice President and his family how they use these test rovers. Photo Credit: (NASA/Bill Ingalls)

  17. Space Industry. Industry Study, Spring 2008

    DTIC Science & Technology

    2008-01-01

    Northrop Grumman Space Technology, Redondo Beach, CA Jet Propulsion Laboratory , Pasadena, CA Aerospace Corporation, El Segundo, CA International... good of all men, and to become the world’s leading space-faring nation. - John F. Kennedy (Rice University, September 12, 1962) The United States...European civil space sectors delivered several important payloads in 2008. The ESA sponsored Columbus Laboratory was carried aloft aboard America’s

  18. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (right), mission manager and Mars Science Laboratory (MSL) engineer, Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference, as Michael Meyer, Mars Exploration Program lead scientist looks on, at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL, or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  19. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grotzinger, Mars Science Laboratory (MSL) project scientist, Jet Propulsion Lab (JPL), Pasadena, Calif., holds up a model of the MSL, or Curiosity, at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  20. Measuring the Transition Temperature of a Superconductor in a Pre-University Laboratory

    ERIC Educational Resources Information Center

    Ireson, Gren

    2006-01-01

    This article presents the methodology and results for a simple approach to the measurement of the transition temperature of a superconducting material, in a pre-university laboratory session, using readily available apparatus (and some liquid nitrogen).

  1. Initial Results from the Bloomsburg University Goniometer Laboratory

    NASA Technical Reports Server (NTRS)

    Shepard, M. K.

    2002-01-01

    The Bloomsburg University Goniometer Laboratory (B.U.G. Lab) consists of three systems for studying the photometric properties of samples. The primary system is an automated goniometer capable of measuring the entire bi-directional reflectance distribution function (BRDF) of samples. Secondary systems include a reflectance spectrometer and digital video camera with macro zoom lens for characterizing and documenting other physical properties of measured samples. Works completed or in progress include the characterization of the BRDF of calibration surfaces for the 2003 Mars Exploration Rovers (MER03), Martian analog soils including JSC-Mars-1, and tests of photometric models.

  2. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, speaks to NASA Social attendees about the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Knowledge, attitude and practice of aspects of laboratory safety in Pathology Laboratories at the University of Port Harcourt Teaching Hospital, Nigeria.

    PubMed

    Ejilemele, A A; Ojule, A C

    2005-12-01

    To assess current knowledge, attitudes and practice of aspects of laboratory safety in pathology laboratories at the University of Port Harcourt Teaching Hospital in view of perceived inadequacies in safety practices in clinical laboratories in developing countries. Sixty (60) self- administered questionnaires were distributed to all cadres of staff in four (4) different laboratories (Chemical Pathology, Haematology, Blood bank and Medical Microbiology) at the Hospital. Gross deficiencies were found in the knowledge, attitudes and practice of laboratory safety by laboratory staff in areas of use of personal protective equipment, specimen collection and processing, centrifuge--related hazards, infective hazards waste disposal and provision and use of First Aid Kits. Issues pertaining to laboratory safety are not yet given adequate attention by both employers and employees in developing countries in this ear of resurgence of diseases such as HIV/AIDS and Hepatitis Band C, is emphasized.

  4. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    JPL Director Michael Watkins, left, explains the history of NASA's Jet Propulsion Laboratory and the use of the Mission Support Area to Vice President Mike Pence, seated 4th from left, during a tour of JPL, Saturday, April 28, 2018 in Pasadena, California. Joining the Vice President was, JPL Distinguished Visiting Scientist and Spouse of UAG Chairman James Ellis, Elisabeth Pate-Cornell, left, UAG Chairman, Admiral (Ret) James Ellis, Executive Director of the National Space Council Scott Pace, wife of Mike Pence, Karen Pence, daughter of Mike Pence, Charlotte Pence, and JPL Deputy Director Lt. Gen. (Ret) Larry James. Photo Credit: (NASA/Bill Ingalls)

  5. Papers presented to the International Colloquium on Venus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    This volume contains short papers that have been accepted for the International Colloquium on Venus, August 10-12, Pasadena, California. The Program Committee consisted of Stephen Saunders (Jet Propulsion Laboratory) and Sean C. Solomon (Massachusetts Institute of Technology). Chairmen: Raymond Arvison (Washington University); Vassily Moroz (Institute for Space Research); Donald B. Campbell (Cornell University); Thomas Donahue (University of Michigan); James W. Head III (Brown University); Pamela Jones (Lunar and Planetary Institute); Mona Jasnow, Andrew Morrison, Timothy Pardker, Jeffrey Plaut, Ellen Stofan, Tommy Thompson, Cathy Weitz (Jet Propulsion Laboratory); Gordon Pettengil (Massachusetts Institute of Technology); and Janet Luhmann (University of California, Losmore » Angeles). Separate abstracts have been prepared for papers in this report.« less

  6. A STUDY OF THE APPLICATION OF LABORATORY TRAINING METHODS TO PROGRAMS AT AIR UNIVERSITY (OCTOBER 1964-JULY 1965).

    ERIC Educational Resources Information Center

    BOYER, RONALD K.; AND OTHERS

    THIS 1964-65 STUDY SOUGHT TO EXPLORE APPLICATIONS OF LABORATORY TRAINING TO AIR UNIVERSITY PROGRAMS, TO PREDICT PROBLEMS IN ADAPTING THE LABORATORY METHOD TO SUCH PROGRAMS, AND TO DETERMINE USEFUL MODIFICATIONS THAT MIGHT BE MADE IN TRAINING DESIGNS. A GROUP OF 25 AIR UNIVERSITY PERSONNEL REPRESENTING VARIOUS RANKS AND SCHOOLS ATTENDED AN…

  7. Integrated Array and 3-Component Processing Using a Seismic Microarray

    DTIC Science & Technology

    1991-05-31

    VA 22091 Pasadena, CA 91125 Mr. William J. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical Sciences Vienna, VA 22180 Princeton...Station S-CUBED University of California A Division of Maxwell Laboratory Berkeley, CA 94720 P.O. Box 1620 La Jolla, CA 92038-1 60 2 Prof. William ...Geosciences Building #77 University of Arizona Tucson, AZ 85721 Dr. William Wortman Mission Research Corporation 8560 Cinderbed Rd. Suite # 700

  8. Near Source Contributions to Teleseismic P Wave Coda and Regional Phases

    DTIC Science & Technology

    1991-04-27

    Pasadena, CA 91-125 Mr. William J. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical Sciences Vienna, VA 22180 Princeton...Station S-CUBED University of California A Division of Maxwell Laboratory Berkeley, CA 94720 P.O.Box 1620 La Jolla, CA 92038-1620 2 Prof. William ...Geosciences- Building #77 University of Arizona Tucson, AZ 85721 Dr. William Wortman Mission Research Corporation 8560 Cinderbed Rd. Suite # 700 Newington

  9. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    ERIC Educational Resources Information Center

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  10. Experience of Implementing ISO 15189 Accreditation at a University Laboratory

    PubMed Central

    2015-01-01

    The present article summarizes the authors’ experience with the implementation of a quality management system based on ISO 17025 and ISO 15189 standards at university laboratories. The accreditation of the analytical procedures at the Universidad Mariano Gálvez represented a challenge due to the unique nature of an educational institution and the difference in nature to the standards implemented. Sample handling and care of the patient were combined to achieve an integrated management system. We explain the development of the management system, the obstacles and benefits of the system and concluding that it is possible to design a management system based on ISO 15189 for the university lab that allowed delivering results assuring technical competence to patient care and welfare. PMID:27683499

  11. University Physics Students' Ideas of Thermal Radiation Expressed in Open Laboratory Activities Using Infrared Cameras

    ERIC Educational Resources Information Center

    Haglund, Jesper; Melander, Emil; Weiszflog, Matthias; Andersson, Staffan

    2017-01-01

    Background: University physics students were engaged in open-ended thermodynamics laboratory activities with a focus on understanding a chosen phenomenon or the principle of laboratory apparatus, such as thermal radiation and a heat pump. Students had access to handheld infrared (IR) cameras for their investigations. Purpose: The purpose of the…

  12. A Radiation Laboratory Curriculum Development at Western Kentucky University

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  13. 75 FR 36696 - Notice of Intent To Grant Exclusive License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... Office, Jet Propulsion Laboratory, Mail Code 180-200, 4800 Oak Grove Drive, Pasadena, CA 91109; or via... Office, Jet Propulsion Laboratory, Mail Code 180-200, 4800 Oak Grove Drive, Pasadena, CA 91109; (818) 354...

  14. Preliminary study: Formaldehyde exposure in laboratories of Sharjah university in UAE

    PubMed Central

    Ahmed, Hafiz Omer

    2011-01-01

    Objectives Laboratory technicians, students, and instructors are at high risk, because they deal with chemicals including formaldehyde. Thus, this preliminary study was conducted to measure the concentration of formaldehyde in the laboratories of the University of Sharjah in UAE. Materials and Methods: Thirty-two air samples were collected and analyzed for formaldehyde using National Institute for Occupational Safety and Health (NIOSH) method 3500. In this method, formaldehyde reacts with chromotropic acid in the presence of sulfuric acid to form a colored solution. The absorbance of the colored solution is read in spectrophotometer at wavelength 580 nm and is proportional to the quantity of the formaldehyde in the solution. Results: For the anatomy laboratory and in the presence of the covered cadaver, the mean concentration of formaldehyde was found to be 0.100 ppm with a range of 0.095–0.105 ppm. Whereas for the other laboratories, the highest mean concentration of formaldehyde was 0.024 ppm in the general microbiology laboratory and the lowest mean concentration of formaldehyde was 0.001 ppm in the environmental health laboratory. The 8-hour (time-weighted average) concentration of formaldehyde was found to be ranging between 0.0003 ppm in environmental health laboratory and 0.026 ppm in the anatomy laboratory. Conclusions: The highest level of concentration of formaldehyde in the presence of the covered cadaver in anatomy laboratory exceeded the recommended ceiling standard established by USA-NIOSH which is 0.1 ppm, but below the ceiling standard established by American Conference of Governmental Industrial Hygienists which is 0.3 ppm. Thus, it is recommended that formaldehyde levels should be measured periodically specially during the dissection in the anatomy laboratory, and local exhaust ventilation system should be installed and personal protective equipment such as safety glass and gloves should be available and be used to prevent direct skin or eye

  15. Reengineering Electrical Engineering Undergraduate Laboratories at Escola Politecnica, University of Sao Paulo.

    ERIC Educational Resources Information Center

    Seabra, Antonio C.; Consonni, Denise

    Brazilian engineering schools are under a strict program to reengineer their courses with the financial support of the federal agencies. At the electronic engineering department at the University of Sao Paulo, this process started by modifying the Basic Electricity and Electronic Laboratories. This paper describes the new structure of these labs…

  16. The Vanderbilt University nanoscale science and engineering fabrication laboratory

    NASA Astrophysics Data System (ADS)

    Hmelo, Anthony B.; Belbusti, Edward F.; Smith, Mark L.; Brice, Sean J.; Wheaton, Robert F.

    2005-08-01

    Vanderbilt University has realized the design and construction of a 1635 sq. ft. Class 10,000 cleanroom facility to support the wide-ranging research mission associated with the Vanderbilt Institute for Nanoscale Science and Engineering (VINSE). By design we have brought together disparate technologies and researchers formerly dispersed across the campus to work together in a small contiguous space intended to foster interaction and synergy of nano-technologies not often found in close proximity. The space hosts a variety of tools for lithographic patterning of substrates, the deposition of thin films, the synthesis of diamond nanostructures and carbon nanotubes, and a variety of reactive ion etchers for the fabrication of nanostructures on silicon substrates. In addition, a separate 911 sq. ft. chemistry laboratory supports nanocrystal synthesis and the investigation of biomolecular films. The design criteria required an integrated space that would support the scientific agenda of the laboratory while satisfying all applicable code and safety concerns. This project required the renovation of pre-existing laboratory space with minimal disruption to ongoing activities in a mixed-use building, while meeting the requirements of the 2000 edition of the International Building Code for the variety of potentially hazardous processes that have been programmed for the space. In this paper we describe how architectural and engineering challenges were met in the areas of mitigating floor vibration issues, shielding our facility against EMI emanations, design of the contamination control facility itself, chemical storage and handling, toxic gas use and management, as well as mechanical, electrical, plumbing, lab security, fire and laboratory safety issues.

  17. Improving Pre-Service Elementary Teachers' Education via a Laboratory Course on Air Pollution: One University's Experience

    ERIC Educational Resources Information Center

    Mandrikas, Achilleas; Parkosidis, Ioannis; Psomiadis, Ploutarchos; Stoumpa, Artemisia; Chalkidis, Anthimos; Mavrikaki, Evangelia; Skordoulis, Constantine

    2013-01-01

    This paper describes the structure of the "Air Pollution Course", an environmental science laboratory course developed at the Science Education Laboratory of the Faculty of Primary Education, University of Athens, as well as the findings resulting from its implementation by pre-service elementary teachers. The course proposed in this…

  18. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  19. Unstable Hadrons in Hot Hadron Gas in Laboratory and in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Inga; Rafelski, Johann

    2011-04-01

    We study kinetic master equations for reactions involving the formation and the natural decay of unstable particles in a thermal expanding hadronic gas in the laboratory and in the early Universe. We consider here for the first time the role of the decay channel of one (hadron resonance) into two daughter particles, and also by token of detailed balance the inverse process, fusion of two (thermal) particles into one. We obtain the thermal invariant reaction rate using as an input the free space (vacuum) decay time and show the medium quantum effects on π+π<->ρ reaction relaxation time. As another laboratory example we describe the K+K<->φ process in thermal expanding hadronic gas in heavy ions collisions. A particularly interesting application of our formalism is the 0̂<->γ+γ process in the early Universe. We also explore the fate of charged pions and the muon freeze-out in the Universe. Another interesting field of application of our formalism is the study of short lived hadronic resonances, which are in general not able to reach yield equilibrium. We study the evolution of hadron resonances in small drops of QGP and use the insight gained to generalize the dynamics to QED effects as well.

  20. Safety in Academic Chemistry Laboratories: Volume 1. Accident Prevention for College and University Students, 7th Edition.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This book contains volume 1 of 2 and describes safety guidelines for academic chemistry laboratories to prevent accidents for college and university students. Contents include: (1) "Your Responsibility for Accident Prevention"; (2) "Guide to Chemical Hazards"; (3) "Recommended Laboratory Techniques"; and (4) "Safety Equipment and Emergency…

  1. NORSAR Basic Seismological Research

    DTIC Science & Technology

    1990-11-29

    AZ 85721 Prof. Christopher H. Scholz Dr. William Wortman Lamont-Doherty Geological Observatory Mission Research Corporation of Columbia University 735...Reston, VA 22091 Mr. William J. Best Prof. Robert W. Clayton 907 Westwood Drive Seismological Laboratory Vienna, VA 22180 Division of Geological...Planetary Sciences California Institute of Technology Pasadena, CA 91125 Dr. N. Biswas Prof. F. A. Dahlen Geophysical Institute Geological and Geophysical

  2. Preservice laboratory education strengthening enhances sustainable laboratory workforce in Ethiopia

    PubMed Central

    2013-01-01

    Background There is a severe healthcare workforce shortage in sub Saharan Africa, which threatens achieving the Millennium Development Goals and attaining an AIDS-free generation. The strength of a healthcare system depends on the skills, competencies, values and availability of its workforce. A well-trained and competent laboratory technologist ensures accurate and reliable results for use in prevention, diagnosis, care and treatment of diseases. Methods An assessment of existing preservice education of five medical laboratory schools, followed by remedial intervention and monitoring was conducted. The remedial interventions included 1) standardizing curriculum and implementation; 2) training faculty staff on pedagogical methods and quality management systems; 3) providing teaching materials; and 4) procuring equipment for teaching laboratories to provide practical skills to complement didactic education. Results A total of 2,230 undergraduate students from the five universities benefitted from the standardized curriculum. University of Gondar accounted for 252 of 2,230 (11.3%) of the students, Addis Ababa University for 663 (29.7%), Jimma University for 649 (29.1%), Haramaya University for 429 (19.2%) and Hawassa University for 237 (10.6%) of the students. Together the universities graduated 388 and 312 laboratory technologists in 2010/2011 and 2011/2012 academic year, respectively. Practical hands-on training and experience with well-equipped laboratories enhanced and ensured skilled, confident and competent laboratory technologists upon graduation. Conclusions Strengthening preservice laboratory education is feasible in resource-limited settings, and emphasizing its merits (ample local capacity, country ownership and sustainability) provides a valuable source of competent laboratory technologists to relieve an overstretched healthcare system. PMID:24164781

  3. Astrochemistry Lecture and Laboratory Courses at the University of Illinois: Applied Spectroscopy

    NASA Astrophysics Data System (ADS)

    Woon, David E.; McCall, Benjamin J.

    2016-06-01

    The Department of Chemistry at the University of Illinois at Urbana-Champaign offers two courses in astrochemistry, one lecture (Chem 450) and one laboratory (Chem 451). Both courses present the opportunity for advanced undergraduate and graduate students to learn about various spectroscopic concepts as they are applied toward an exotic subject, astrochemistry. In the lecture course, each student devotes a substantial fraction of the course work to one of the known astromolecules, building a wiki page for it during the semester, presenting a brief oral description about it in class, and then finally writing a paper about it. The course covers electronic, vibrational, and rotational spectroscopy, along with Einstein coefficients, line widths, and the interpretation of actual astronomical spectra. It also covers relevant reactions and reaction networks. Students learn to use pgopher for modeling rotational spectra. The lab course focuses on the methylidyne radical (CH). It begins with its chemistry and spectroscopy and then moves on to laboratory study of its electronic spectrum as observed in a butane flame and then collected with the university's 12" f/15 Brashear refracting telescope in the campus observatory built in 1896. Students learn to use IGOR to reduce CCD data.

  4. Promoting ergonomics in Algeria: activities of "the research and training laboratory" in the University of Oran.

    PubMed

    Mebarki, Bouhafs; El-Bachir, Tebboune Cheikh

    2012-01-01

    The growing need in Algeria to develop ergonomics knowledge and practice in industry was behind the initiative to develop a training and research project within the ergonomics laboratory at Oran University. Since 2005 the laboratory team is running an academic option master in work design and ergonomics. The evaluation of the academic master in 2010 revealed the acute need of the local industry for professional competences in ergonomic and work psychology. A professional training master program in "ergonomics & work psychology" was then developed in partnership with local industry, five European Universities and six Universities from three Maghreb countries. Research projects were initiated around the two training programs, in conjunction with a number of ergonomics dissemination and promotion activities. Preliminary results of the project are presented and discussed in relation to the local context, and in the light of similar cases in Industrially Developing Countries.

  5. The Importance of a Laboratory Section on Student Learning Outcomes in a University Introductory Earth Science Course

    ERIC Educational Resources Information Center

    Forcino, Frank L.

    2013-01-01

    Laboratory sections of university Earth science courses provide hands-on, inquiry-based activities for students in support of lecture and discussion. Here, I compare student conceptual knowledge outcomes of laboratory sections by administering an independent concept inventory at the beginning and end of two courses: one that had a lecture and a…

  6. Bigger eyes in a wider universe: The American understanding of Earth in outer space, 1893--1941

    NASA Astrophysics Data System (ADS)

    Prosser, Jodicus Wayne

    Between 1893 and 1941, the understanding of the Milky Way galaxy within the American culture changed from a sphere to a spiral and Earth's location within it changed from the center to the periphery. These changes were based primarily upon scientific theories developed at Mount Wilson Observatory near Pasadena, California. This dissertation is an "astrosophy" that traces the history of changing depictions of the Milky Way in selected published sources and identifies key individuals, theories and technologies involved. It also demonstrates why the accepted depictions of the universe envisioned at Mount Wilson were cultural-scientific products created, in part, as the result of place. Southern California became the hearth of a culture that justified its superiority based upon its unique climate. Clear skies, remarkable visibility, and a perceived existence of intense natural light became the basis for the promotion of Mount Wilson as the premier location for astronomical observations. Conservation, en plein air paintings, and the concept of pays age moralisé are Southern Californian cultural products of the early 1900s that promoted an idealized society capable of exceptional intellectual endeavors and scientific accomplishments. The efforts of astronomers Hale, Shapley, Adams, Hubble and Ritchey resulted in the changing American understanding of the universe. This dissertation reveals how the diverse social interactions of these astronomers intersected Arroyo Seco meetings, women's organizations, the Valley Hunt Club elites, and philanthropic groups that comprised the schizophrenic culture of Pasadena. Their astronomical theories are compared to other aspects of the Southern Californian culture revealed in the writings of Raymond Chandler, Nathanael West and John Fante. The desire of astronomers to gain prestige from their discoveries is compared to competition in the creative processes of Hollywood. The theories created by astronomers and the films of the motion

  7. A new IBA-AMS laboratory at the Comenius University in Bratislava (Slovakia)

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Kúš, Peter; Holý, Karol; Ješkovský, Miroslav; Breier, Robert; Staníček, Jaroslav; Šivo, Alexander; Richtáriková, Marta; Kováčik, Andrej; Szarka, Ján; Steier, Peter; Priller, Alfred

    2015-01-01

    A Centre for Nuclear and Accelerator Technologies (CENTA) has been established at the Comenius University in Bratislava comprising of a tandem laboratory designed for Ion Beam Analysis (IBA), Ion Beam Modification (IBM) of materials and Accelerator Mass Spectrometry (AMS). The main equipment of the laboratory, i.e. Alphatross and MC-SNICS ion sources, 3 MV Pelletron tandem accelerator, and analyzers of accelerated ions are described. Optimization of ion beam characteristics for different ion sources with gas and solid targets, for transmission of accelerated ions with different energy and charge state, for different parameters of the high-energy ion analyzers, as well as first AMS results are presented. The scientific program of the CENTA will be devoted mainly to nuclear, environmental, life and material sciences.

  8. [Laboratory medicine in the obligatory postgraduate clinical training system--common clinical training program in the department of laboratory medicine in our prefectural medical university hospital].

    PubMed

    Okamoto, Yasuyuki

    2003-04-01

    I propose a postgraduate common clinical training program to be provided by the department of laboratory medicine in our prefectural medical university hospital. The program has three purposes: first, mastering basic laboratory tests; second, developing the skills necessary to accurately interpret laboratory data; third, learning specific techniques in the field of laboratory medicine. For the first purpose, it is important that medical trainees perform testing of their own patients at bedside or in the central clinical laboratory. When testing at the central clinical laboratory, instruction by expert laboratory technicians is helpful. The teaching doctors in the department of laboratory medicine are asked to advise the trainees on the interpretation of data. Consultation will be received via interview or e-mail. In addition, the trainees can participate in various conferences, seminars, and meetings held at the central clinical laboratory. Finally, in order to learn specific techniques in the field of laboratory medicine, several special courses lasting a few months will be prepared. I think this program should be closely linked to the training program in internal medicine.

  9. [Laboratory of Pharmacognosy of Faculty of Pharmacy, University of Coimbra (Portugal): teaching and et research (1902-1980)].

    PubMed

    Cabral, Célia; Lígia Salgueiro; Pita, João Rui

    2016-03-01

    In this article the authors present a brief history of the Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Portugal (1902-1980). The authors refer the importance of pharmacognosy in the study plans, the scientific research and the scientific collection of pharmacognosy, Faculty of Pharmacy, University of Coimbra. This heritage consists of collection of drugs prepared in the laboratory of pharmacognosy, a collection Drogen-Lehrsammlung purchased to E. Merck and a collection of botanic-didactic models of the XIXth century of the famous German manufacturer R. Brendel. The authors study the relationship between research and teaching, highlighting the importance of the collections of drugs.

  10. Making Stuff Outreach at the Ames Laboratory and Iowa State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ament, Katherine; Karsjen, Steven; Leshem-Ackerman, Adah

    The U. S. Department of Energy's Ames Laboratory in Ames, Iowa was a coalition partner for outreach activities connected with NOVA's Making Stuff television series on PBS. Volunteers affiliated with the Ames Laboratory and Iowa State University, with backgrounds in materials science, took part in activities including a science-themed Family Night at a local mall, Science Cafes at the Science Center of Iowa, teacher workshops, demonstrations at science nights in elementary and middle schools, and various other events. We describe a selection of the activities and present a summary of their outcomes and extent of their impact on Ames, Desmore » Moines and the surrounding communities in Iowa. In Part 2, results of a volunteer attitude survey are presented, which shed some light on the volunteer experience and show how the volunteers participation in outreach activities has affected their views of materials education.« less

  11. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees are seen during a science panel discussion with Cassini project scientist at JPL, Linda Spilker, Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, Cassini Composite Infrared Spectrometer(CIRS) Instrument deputy principle investigator Connor Nixon, and Cassini assistant project science systems engineer Morgan Cable, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Presentation to Ohio State University Dept. of Electrical Engineering ElectroScience Laboratory

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene

    2002-01-01

    Presentation made during visit to The Ohio State University, ElectroScience Laboratory, on November 14, 2002. An overview of NASA and selected technology products from the Digital Communications Technology Branch (5650) for fiscal year 2003 are highlighted. The purpose of the meeting was to exchange technical information on current aeronautics and space communications research and technology being conducted at NASA Glenn Research Center and to promote faculty/student collaborations of mutual interest.

  13. National Laboratories and Universities: Building New Ways to Work Together--Report of a Workshop

    ERIC Educational Resources Information Center

    National Academies Press, 2005

    2005-01-01

    This volume is a report of a workshop held in 2003 to address best practices and remaining challenges with respect to national laboratory-university collaborations. The following are appended: (1) Committee Member Biographies; (2) Workshop Agenda; (3) Workshop Participants; (4) Glossary of Acronyms; and (5) Major Benefits and Challenges. [This…

  14. Building a Low-Cost Gross Anatomy Laboratory: A Big Step for a Small University

    ERIC Educational Resources Information Center

    Goldman, Evan

    2010-01-01

    This article illustrates details of the planning, building, and improvement phases of a cost-efficient, full-dissection gross anatomy laboratory on a campus of an historically design-centric university. Special considerations were given throughout the project to the nature of hosting cadavers in a building shared amongst all undergraduate majors.…

  15. Parachute Testing for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The team developing the landing system for NASA's Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

    In this image, an engineer is dwarfed by the parachute, which holds more air than a 280-square-meter (3,000-square-foot) house and is designed to survive loads in excess of 36,000 kilograms (80,000 pounds).

    The parachute, built by Pioneer Aerospace, South Windsor, Connecticut, has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 17 meters (55 feet). It is the largest disk-gap-band parachute ever built and is shown here inflated in the test section with only about 3.8 meters (12.5 feet) of clearance to both the floor and ceiling.

    The wind tunnel, which is 24 meters (80 feet) tall and 37 meters (120 feet) wide and big enough to house a Boeing 737, is part of the National Full-Scale Aerodynamics Complex, operated by the U.S. Air Force, Arnold Engineering Development Center.

    NASA's Jet Propulsion Laboratory, Pasadena, California, is building and testing the Mars Science Laboratory spacecraft for launch in 2009. The mission will land a roving analytical laboratory on the surface of Mars in 2010. JPL is a division of the California Institute of Technology.

  16. Proceedings of USC (University of Southern California) Workshop on VLSI (Very Large Scale Integration) & Modern Signal Processing, held at Los Angeles, California on 1-3 November 1982

    DTIC Science & Technology

    1983-11-15

    Concurrent Algorithms", A. Cremers , Dortmund University, West Germany, and T. Hibbard, JPL, Pasadena, CA 64 "An Overview of Signal Representations in...n O f\\ n O P- A -> Problem-oriented specification of concurrent algorithms Armin B. Cremers and Thomas N. Hibbard Preliminary version September...1982 s* Armin B. Cremers Computer Science Department University of Dortmund P.O. Box 50 05 00 D-4600 Dortmund 50 Fed. Rep. Germany

  17. Asking the next generation: the implementation of pre-university students’ ideas about physics laboratory preparation exercises

    NASA Astrophysics Data System (ADS)

    Dunnett, K.; Bartlett, P. A.

    2018-01-01

    It was planned to introduce online pre-laboratory session activities to a first-year undergraduate physics laboratory course to encourage a minimum level of student preparation for experiments outside the laboratory environment. A group of 16 and 17 year old laboratory work-experience students were tasked to define and design a pre-laboratory activity based on experiments that they had been undertaking. This informed the structure, content and aims of the activities introduced to a first year physics undergraduate laboratory course, with the particular focus on practising the data handling. An implementation study showed how students could try to optimise high grades, rather than gain efficiency-enhancing experience if careful controls were not put in place by assessors. However, the work demonstrated that pre-university and first-year physics students can take an active role in developing scaffolding activities that can help to improve the performance of those that follow their footsteps.

  18. Flyover Video of Phoenix Work Area

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This video shows an overhead view of NASA's Phoenix Mars Lander and the work area of the Robotic Arm.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Safety climate in university and college laboratories: impact of organizational and individual factors.

    PubMed

    Wu, Tsung-Chih; Liu, Chi-Wei; Lu, Mu-Chen

    2007-01-01

    Universities and colleges serve to be institutions of education excellence; however, problems in the areas of occupational safety may undermine such goals. Occupational safety must be the concern of every employee in the organization, regardless of job position. Safety climate surveys have been suggested as important tools for measuring the effectiveness and improvement direction of safety programs. Thus, this study aims to investigate the influence of organizational and individual factors on safety climate in university and college laboratories. Employees at 100 universities and colleges in Taiwan were mailed a self-administered questionnaire survey; the response rate was 78%. Multivariate analysis of variance revealed that organizational category of ownership, the presence of a safety manager and safety committee, gender, age, title, accident experience, and safety training significantly affected the climate. Among them, accident experience and safety training affected the climate with practical significance. The authors recommend that managers should address important factors affecting safety issues and then create a positive climate by enforcing continuous improvements.

  20. Evaluating laboratory key performance using quality indicators in Alexandria University Hospital Clinical Chemistry Laboratories.

    PubMed

    Rizk, Mostafa M; Zaki, Adel; Hossam, Nermine; Aboul-Ela, Yasmin

    2014-12-01

    The performance of clinical laboratories plays a fundamental role in the quality and effectiveness of healthcare. To evaluate the laboratory performance in Alexandria University Hospital Clinical Laboratories using key quality indicators and to compare the performance before and after an improvement plan based on ISO 15189 standards. The study was carried out on inpatient samples for a period of 7 months that was divided into three phases: phase I included data collection for evaluation of the existing process before improvement (March-May 2012); an intermediate phase, which included corrective, preventive action, quality initiative and steps for improvement (June 2012); and phase II, which included data collection for evaluation of the process after improvement (July 2012-September 2012). In terms of the preanalytical indicators, incomplete request forms in phase I showed that the total number of received requests were 31 944, with a percentage of defected request of 33.66%; whereas in phase II, there was a significant reduction in all defected request items (P<0.001) with a percentage of defected requests of 9.64%. As for the analytical indicators, the proficiency testing accuracy score in phase I showed poor performance of 10 analytes in which total error (TE) exceeded total error allowable (TEa), with a corresponding sigma value of less than 3, which indicates test problems and an unreliable method. The remaining analytes showed an acceptable performance in which TE did not exceed the TEa, with a sigma value of more than 6. Following an intervention of 3 months, the performance showed marked improvement. Error tracking in phase I showed a TE of (5.11%), whereas in phase II it was reduced to 2.48% (P<0.001).For the postanalytical indicators, our results in phase I showed that the percentage of nonreported critical results was 26.07%. In phase II, there was a significant improvement (P<0.001). The percentage of nonreported results was 11.37%, the reasons were

  1. LOINC, a universal standard for identifying laboratory observations: a 5-year update.

    PubMed

    McDonald, Clement J; Huff, Stanley M; Suico, Jeffrey G; Hill, Gilbert; Leavelle, Dennis; Aller, Raymond; Forrey, Arden; Mercer, Kathy; DeMoor, Georges; Hook, John; Williams, Warren; Case, James; Maloney, Pat

    2003-04-01

    The Logical Observation Identifier Names and Codes (LOINC) database provides a universal code system for reporting laboratory and other clinical observations. Its purpose is to identify observations in electronic messages such as Health Level Seven (HL7) observation messages, so that when hospitals, health maintenance organizations, pharmaceutical manufacturers, researchers, and public health departments receive such messages from multiple sources, they can automatically file the results in the right slots of their medical records, research, and/or public health systems. For each observation, the database includes a code (of which 25 000 are laboratory test observations), a long formal name, a "short" 30-character name, and synonyms. The database comes with a mapping program called Regenstrief LOINC Mapping Assistant (RELMA(TM)) to assist the mapping of local test codes to LOINC codes and to facilitate browsing of the LOINC results. Both LOINC and RELMA are available at no cost from http://www.regenstrief.org/loinc/. The LOINC medical database carries records for >30 000 different observations. LOINC codes are being used by large reference laboratories and federal agencies, e.g., the CDC and the Department of Veterans Affairs, and are part of the Health Insurance Portability and Accountability Act (HIPAA) attachment proposal. Internationally, they have been adopted in Switzerland, Hong Kong, Australia, and Canada, and by the German national standards organization, the Deutsches Instituts für Normung. Laboratories should include LOINC codes in their outbound HL7 messages so that clinical and research clients can easily integrate these results into their clinical and research repositories. Laboratories should also encourage instrument vendors to deliver LOINC codes in their instrument outputs and demand LOINC codes in HL7 messages they get from reference laboratories to avoid the need to lump so many referral tests under the "send out lab" code.

  2. From customer satisfaction survey to corrective actions in laboratory services in a university hospital.

    PubMed

    Oja, Paula I; Kouri, Timo T; Pakarinen, Arto J

    2006-12-01

    To find out the satisfaction of clinical units with laboratory services in a university hospital, to point out the most important problems and defects in services, to carry out corrective actions, and thereafter to identify the possible changes in satisfaction. and Senior physicians and nurses-in-charge of the clinical units at Oulu University Hospital, Finland. Customer satisfaction survey using a questionnaire was carried out in 2001, indicating the essential aspects of laboratory services. Customer-specific problems were clarified, corrective actions were performed, and the survey was repeated in 2004. In 2001, the highest dissatisfaction rates were recorded for computerized test requesting and reporting, turnaround times of tests, and the schedule of phlebotomy rounds. The old laboratory information system was not amenable to major improvements, and it was renewed in 2004-05. Several clinical units perceived turnaround times to be long, because the tests were ordered as routine despite emergency needs. Instructions about stat requesting were given to these units. However, no changes were evident in the satisfaction level in the 2004 survey. Following negotiations with the clinics, phlebotomy rounds were re-scheduled. This resulted in a distinct increase in satisfaction in 2004. Satisfaction survey is a screening tool that identifies topics of dissatisfaction. Without further clarifications, it is not possible to find out the specific problems of customers and to undertake targeted corrective actions. Customer-specific corrections are rarely seen as improvements in overall satisfaction rates.

  3. Aerosol in selected laboratories at Faculty of Mechanical Engineering, Opole University of Technology

    NASA Astrophysics Data System (ADS)

    Olszowski, Tomasz

    2017-10-01

    The paper contains the results of a study into mass concentration of the dispersed aerosol fraction with the aerodynamic diameter of up to 2.5 and 10 micrometers. The study was conducted during classes with students participating in them in two laboratories located at Faculty of Mechanical Engineering, Opole University of Technology as well as outdoor outside the building. It was demonstrated that the values of the mass concentration of PM2.5 and PM10 measured in the laboratories differ considerably from the levels measured in the ambient air in the outdoor areas surrounding the faculty building. It was concluded that the diversity of PM2.5/PM10 ratio was greater in the laboratories. Direct correlation was not established between the concentrations of the particular PM fractions in the two investigated environments. It was demonstrated that there is a statistically significant relation between the concentration of PM2.5 and PM10 and the number of people present in the laboratory. The conducted cluster analysis led to the detection of the existence of dominant structures determining air quality parameters. For the analyzed case, endogenic factors are responsible for the aerosanitary condition. The study demonstrated that the evaluation of air quality needs to be performed individually for the specific rooms.

  4. Enhancement of Laboratory and Field Instruction in Environmental Science, Biology, and Chemistry Degree Programs at University of the Incarnate Word

    DTIC Science & Technology

    1999-10-12

    The project provided state-of-the-art training to students on the use of modern field and laboratory equipment in Environmental Science , Chemistry...laboratory instruction in Environmental Science , Chemistry, and Biology during the past 1998-99 academic year at the University of the Incarnate Word...development of maps at selected study sites. Dr. William F. Thomann, Environmental Science provided instruction on field and laboratory studies of water

  5. Astronomy Laboratory Exercise on Olbers’ Paradox and the Age of the Universe

    NASA Astrophysics Data System (ADS)

    Glazer, Kelsey Samantha; Edwards, Charlotte; Overduin, James; Storrs, Alex

    2018-01-01

    We describe the development of a new laboratory exercise for undergraduate introductory astronomy courses. Students begin by estimating the intensity of the extragalactic background light using a simple Newtonian cosmological model that agrees with recent measurements to within a factor of two. They then use the 0.5m Towson University telescope to image a dark patch of sky such as the Hubble Deep Field near or during new Moon, and compare the intensity actually observed with that predicted. This comparison leads to a new appreciation of foreground contributions such as light pollution, airglow, zodiacal light, starlight and others. Students pick up important skills in uncertainty analysis and astronomical unit conversion. But the most valuable aspect of the exercise in our view is that it enables students to draw a direct connection between the evidence of their own eyes and the age of the Universe.

  6. The molecular universe: from astronomy to laboratory astrophysics and back

    NASA Astrophysics Data System (ADS)

    van Dishoeck, Ewine

    2015-08-01

    Molecules are found in a wide range of astronomical environments, fromour Solar System to distant starburst galaxies at the highest redshifts. Thanks to the opening up of the infrared and (sub)millimeter wavelength regime, culminating with Herschel and ALMA, more than 180 different species have now been found throughout the various stages of stellar birth and death: diffuse and dense interstellar clouds, protostars and disks, the envelopes of evolved stars and planetary nebulae, and exo-planetary atmospheres. Molecules and solid-state features are now also routinely detected in the interstellar medium of external galaxies, near and far.There are many motivations for studying this molecular universe. From the chemical perspective, interstellar space provides a unique laboratory to study basic molecular processes under very different conditions from those normally found in a laboratory on Earth. For astronomers, molecules are unique probes of the many environments where they are found, providing information on density, temperature, dynamics, ionization fractions and magnetic fields. Molecules also play an important role in the cooling of clouds allowing them to collapse, including the formation of the very first stars and galaxies. Finally, the molecular composition is sensitive to the history of the material, and ultimately provides critical information on our origins.This talk will summarize a number of recent observational highlights and provide examples of cases where the availability of new laboratory data proved crucial in the analysis. This includes basic data such as spectroscopy and collisional rate coefficients, but also an improved understanding of photoprocesses in the gaseous and solid state. Much of the chemistry in star- and planet-forming regions is now thought to be driven by gas-grain chemistry rather than pure gas-phase chemistry, and a few examples of the close link between models and laboratory experiments will be given. In spite of lingering

  7. Attitudes of medical laboratory technology graduates towards the internship training period at king faisal university.

    PubMed

    Bashawri, Layla A M; Ahmed, Mirghani A; Bahnassy, Ahmed A L; Al-Salim, Jawaher A

    2006-05-01

    The objective of this present survey was to look into the attitudes of medical laboratory technology (MLT) graduates towards the internship training period of the MLT Department, College of Applied Medical Sciences, King Faisal University. A self-administered questionnaire was designed and distributed for this purpose. The study period was from December 1(st) 2002 - 31(st) December 2004. Two-hundred questionnaires were distributed to recent graduates, and 115 were returned completed. All respondents agreed with the importance and necessity of the internship period, and felt it should not be reduced or eliminated. The most favorite laboratory where they liked to work was microbiology (70%). They all agreed that evaluation report with hospital staff and laboratory set up were vital in achieving the goals of the internship period. The majority stressed the significance of safety precautions and the application of theoretical knowledge before performing technical assignments. The respondents had very positive attitudes towards the internship-training period stressing its importance. The most favorite laboratory rotations were in rank order: Microbiology, Serology followed by Histotechnology, Hematology, Blood Banking and finally Clinical Chemistry. The majority of graduates had a very positive attitude also towards medical laboratory technology as a profession.

  8. Towards Direct Simulations of Counterflow Flames with Consistent Differential-Algebraic Boundary Conditions

    DTIC Science & Technology

    2015-01-05

    Mechanical and Civil Engineering Dept., California Institute of Technology, Pasadena, CA 91125, USA Josette Bellan † Jet Propulsion Laboratory...91125, USA Kenneth Harstad ‡ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA A new approach for the formulation of...BDF (Backward Differentiation Formula ), in fixed-leading-coefficient form where the or- der of the method varies between 1 and 5. The BDF method can

  9. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini project scientist at JPL, Linda Spilker, left, Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, second from left, Cassini Composite Infrared Spectrometer(CIRS) Instrument deputy principle investigator Connor Nixon, second from right, and Cassini assistant project science systems engineer Morgan Cable, right, participate in a Cassini science panel discussion during the Cassini NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Laboratory Astrophysics as Key to Understanding the Universe

    NASA Astrophysics Data System (ADS)

    van Dishoeck, Ewine F.

    2012-05-01

    Modern astrophysics is blessed with an increasing amount of high quality observational data on astronomical sources, ranging from our own solar system to the edge of the Universe and from the lowest temperature clouds to the highest energy cosmic rays. Spectra containing thousands of features of atoms, molecules, ice and dust are routinely obtained for stars, planets, comets, the ISM andstar-forming regions, and in the near future even for the most distant galaxies. Realistic models of exo-planetary atmospheres require information on billions of lines. Theories of jets from young stars benefit from plasma experiments to benchmark them. Stellar evolution theories and cosmology rely heavily on accurate rates for nuclear fusion reactions. The first stars could not have formed without the simplest chemical reactions taking place in primordial clouds. Particle physics is at the heart of finding candidates for the mysterious dark matter. There is no doubt that laboratory astrophysics, which includes theoretical calculations, remains at the foundation of the interpretation of observations and truly 'makes astronomy tick'. In this talk, several recent developments in determining these fundamental data will be presented which have resulted in significant advances in our understanding of astrophysical environments. Often, a comparatively minor investment in basic studies can greatly enhance the scientific return from missions. Examples will be taken from each of the 6 themes of the new Laboratory Astrophysics dvision of the AAS (www.aas.org/labastro/lawg_charter.php): atomic, molecular, solid matter, plasma, nuclear, and particle physics. Special attention will be given to recent results from infrared and millimeter facilities, including Herschel and ALMA, which reveal rich spectra of water and organic molecules in star- and planet forming zones. Their interpretation is greatly added by the application of ultra-high vacuum surface science techniques to astrophysical problems.

  11. A Cryogenic Detector Characterization Facility in the Shallow Underground Laboratory at the Technical University of Munich

    NASA Astrophysics Data System (ADS)

    Langenkämper, A.; Defay, X.; Ferreiro Iachellini, N.; Kinast, A.; Lanfranchi, J.-C.; Lindner, E.; Mancuso, M.; Mondragón, E.; Münster, A.; Ortmann, T.; Potzel, W.; Schönert, S.; Strauss, R.; Ulrich, A.; Wawoczny, S.; Willers, M.

    2018-04-01

    The Physics Department of the Technical University of Munich operates a shallow underground detector laboratory in Garching, Germany. It provides ˜ 160 {m^2} of laboratory space which is shielded from cosmic radiation by ˜ 6 m of gravel and soil, corresponding to a shielding of ˜ 15 {m.w.e.} . The laboratory also houses a cleanroom equipped with work- and wetbenches, a chemical fumehood as well as a spin-coater and a mask-aligner for photolithographic processing of semiconductor detectors. Furthermore, the shallow underground laboratory runs two high-purity germanium detector screening stations, a liquid argon cryostat and a ^3 He-^4 He dilution refrigerator with a base temperature of ≤ 12-14 mK . The infrastructure provided by the shallow laboratory is particularly relevant for the characterization of CaWO_4 target crystals for the CRESST-III experiment, detector fabrication and assembly for rare event searches. Future applications of the laboratory include detector development in the framework of coherent neutrino nucleus scattering experiments (ν -cleus) and studying its potential as a site to search for MeV-scale dark matter with gram-scale cryogenic detectors.

  12. Growing a garden without water: Graduate teaching assistants in introductory science laboratories at a doctoral/research university

    NASA Astrophysics Data System (ADS)

    Luft, Julie A.; Kurdziel, Josepha P.; Roehrig, Gillian H.; Turner, Jessica

    2004-03-01

    Graduate teaching assistants (GTAs) in the sciences are a common feature of U.S. universities that have a prominent mission of research. During the past 2 decades, increased attention has been paid to the professional development of GTAs as instructors. As a result, universities have created training programs to assist GTAs in selecting instructional methods, curricular formats, and assessments when they serve as laboratory, lecture, or discussion group instructors. Unfortunately, few studies explore the educational and instructional environment of GTAs in these reformed settings. This study was conducted to address this specific need. As a constructivist inquiry, qualitative methods were used to collect and analyze the data to elucidate the educational and instructional environment of science GTAs at a doctoral/research university in which various training programs existed. We found that GTAs worked autonomously, that traditional practices and curricula existed in laboratories, and that instructors frequently held limited views of undergraduates' abilities and motivation. Findings in this initial study about GTAs suggest that developers of GTA training programs draw on the literature regarding science teacher education, and that reward systems be instituted that recognize faculty and staff for their participation in GTA training programs.

  13. First Measurements of the Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Martín-Torres, F. J.; Zorzano-Mier, M.; Gomez-Elvira, J.

    2012-12-01

    ón de Ardoz, Madrid, Spain ) I. McEwan, M. Richardson Ashima Research, Inc., Pasadena, CA, USA L. Castañer, M. Domínguez, V. Jiménez, L. Kowalski, J. Ricart Universidad Politécnica de Cataluña, Barcelona, Spain M.A. de Pablo, M. Ramos Universidad de Alcalá de Henares, Alcalá de Henares, Madrid, Spain M. de la Torre Juárez Jet Propulsion Laboratory, Pasadena, CA, USA J. Moreno, A. Peña, J. Serrano, F. Torrero, T. Velasco EADS-CRISA, Madrid, Spain N.O. Renno Michigan University, Ann Arbor, MI, USA M. Genzer, A.-M. Harri, H. Kahanpää, J. Polkko FMI, Finland R. Haberle NASA Ames Research Center, CA, USA R. Urquí INSA, Madrid, Spain

  14. Coding and Analysing Behaviour Strategies of Instructors in University Science Laboratories to Improve Science Teachers Training

    ERIC Educational Resources Information Center

    Ajaja, Patrick Osawaru

    2013-01-01

    The intention of this study was to determine how science instructors in the university laboratories spend time on instruction. The study, was guided by three research questions and two hypotheses tested at 0.05 level of significance. The study employed a non-participant observation case study design. 48 instructors teaching lower and higher levels…

  15. Radon measurement laboratories. An educational experience based on school and university cooperation

    NASA Astrophysics Data System (ADS)

    De Cicco, F.; Balzano, E.; Limata, B. N.; Masullo, M. R.; Quarto, M.; Roca, V.; Sabbarese, C.; Pugliese, M.

    2017-11-01

    There is a growing interest in engaging students and the general public about the meaning and objectives of doing science. When it is possible students can learn by actively engaging in the practices of science, conducting investigations, sharing ideas with their peers, teachers and scientists, learning to work with measuring apparatuses, to acquire and process data and use models so as to interpret phenomena. This is a process that requires a gradual collective growth. Schools and universities can both benefit from this cooperation. This paper presents activities of a project focusing on the radon survey in high schools. The ENVIRAD (environmental radioactivity) educational project involved about 2500 students and some tens of teachers in measurements while using solid state nuclear track detectors. This experience began about 15 years ago and is still carried out by various national projects managed by the same research group. The measurements and data analysis have been done in school laboratories and in the university radioactivity laboratory. Several hundred students were also involved in the transduction and signal processing. In some cases, pupils have also been involved in citizen awareness and the dissemination of this experience has kicked off a follow-up project explicitly addressed to citizens. The project has led to the opportunity to learn science through a real physics experiment. The students’ enthusiasm allowed the collection of a relevant amount of data which benefitted both the regional survey on radon and the improvement of nuclear physics teaching at school. Through the project activities it was possible to recognize the interdisciplinary connections among different scientific disciplines connected to radioactivity.

  16. The University as an Open Laboratory

    ERIC Educational Resources Information Center

    Birx, Donald L.; Ford, Ralph M.; Payne, Carrie A.

    2013-01-01

    Colleges and universities are two of the most formidable resources a country has to reinvent and grow its economy. This is the second of two papers that outlines a process of building and strengthening research universities that enhances regional technology development and facilitates flexible networks of collaboration and resource sharing. In the…

  17. Spectrometer Images of Candidate Landing Sites for Next Mars Rover

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This composite shows four examples of 'browse' products the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument obtained of areas on Mars near proposed landing sites for NASA's 2009 Mars Science Laboratory. These examples are from two of more than 30 candidate sites. They are enhanced color images of West Candor chasm (A) and Nili Fossae trough (B); and false color images indicating the presence of hydrated (water-containing) minerals in West Candor (C); and clay-like (phyllosilicate) minerals in Nili Fossae (D).

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  18. Aeroshell for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver.

    This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested.

    The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent.

    The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet.

    In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell.

    The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in

  19. Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California

    USGS Publications Warehouse

    Snieder, R.; Safak, E.

    2006-01-01

    The motion of a building depends on the excitation, the coupling of the building to the ground, and the mechanical properties of the building. We separate the building response from the excitation and the ground coupling by deconvolving the motion recorded at different levels in the building and apply this to recordings of the motion in the Robert A. Millikan Library in Pasadena, California. This deconvolution allows for the separation of instrinsic attenuation and radiation damping. The waveforms obtained from deconvolution with the motion in the top floor show a superposition of one upgoing and one downgoing wave. The waveforms obtained by deconvolution with the motion in the basement can be formulated either as a sum of upgoing and downgoing waves, or as a sum over normal modes. Because these deconvolved waves for late time have a monochromatic character, they are most easily analyzed with normal-mode theory. For this building we estimate a shear velocity c = 322 m/sec and a quality factor Q = 20. These values explain both the propagating waves and the normal modes.

  20. Does the Beach-Spawning Grunion Eat Its Own Eggs? Eighth Graders Use Inquiry-Based Investigation to Collect Real Data in a University Laboratory

    ERIC Educational Resources Information Center

    Cavanagh, J. William; Martinez, Kimberly M.; Higgins, Benjamin A.; Horn, Michael H.

    2014-01-01

    A collaborative effort between a junior high school and a nearby university allowed 40 eighth-grade honors students to engage in a scientific investigation within a university laboratory. These students, with their science teachers and university researchers, gathered data on egg cannibalism in a beach-spawning fish and thereby contributed to an…

  1. [How do hospital clinical laboratories and laboratory testing companies cooperate and build reciprocal relations?].

    PubMed

    Kawano, Seiji

    2014-12-01

    As the 2nd Joint Symposium of the Japanese Society of Laboratory Medicine and the Japanese Association of Laboratory Pathologists, the symposium on clinical test out-sourcing and branch laboratories was held at the 60th General Meeting of the Japanese Society of Laboratory Medicine on November 2nd, 2013 in Kobe. For the symposium, we conducted a questionnaire survey on the usage of clinical test out-sourcing and the introduction of branch laboratories to clinical laboratories of Japanese university hospitals, both private and public, between July 25th and August 20th, 2013. Seventy-two hospitals responded to the questionnaire survey, consisting of 41 public medical school hospitals and 31 private ones. According to the survey, the selection of each clinical test for out-sourcing was mainly determined by the capacities of hospital clinical laboratories and their equipment, as well as the profitability of each test. The main concerns of clinical laboratory members of university hospitals involved the continuity of measurement principles, traceability, and standardization of reference values for each test. They strongly requested the interchangeability and computerization of test data between laboratory testing companies. A branch laboratory was introduced to six hospitals, all of which were private medical college hospitals, out of 72 university hospitals, and eight of the other hospitals were open to its introduction. The merits and demerits of introducing a branch laboratory were also discussed. (Review).

  2. Wide Angle Movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief movie illustrates the passage of the Moon through the Saturn-bound Cassini spacecraft's wide-angle camera field of view as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. From beginning to end of the sequence, 25 wide-angle images (with a spatial image scale of about 14 miles per pixel (about 23 kilometers)were taken over the course of 7 and 1/2 minutes through a series of narrow and broadband spectral filters and polarizers, ranging from the violet to the near-infrared regions of the spectrum, to calibrate the spectral response of the wide-angle camera. The exposure times range from 5 milliseconds to 1.5 seconds. Two of the exposures were smeared and have been discarded and replaced with nearby images to make a smooth movie sequence. All images were scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is approximately the same in every image. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS)at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  3. [Proposal for graduate school education in the future: from the viewpoint of the Department of clinical Laboratory in a university hospital].

    PubMed

    Ishii, Junichi

    2009-08-01

    Fujita Health University Hospital, located in Toyoake, is a large teaching hospital with 1,505 beds. The Department of Clinical Laboratory in our hospital, in which 136 medical technologists work, is one of the largest clinical laboratories in Japan. Medical technologists in our hospital are required not only to perform accurate laboratory examinations, but also to contribute to the medical care team. In addition, they must educate students and trainee medical technologists. Furthermore, they conduct research to develop and evaluate new laboratory methods. Thus, we hope that education in graduate schools of medical technology (Master's course), along with promoting the specialty of laboratory techniques, will develop students' clinical skills to examine patients and research skills to conduct studies.

  4. Student research laboratory for optical engineering

    NASA Astrophysics Data System (ADS)

    Tolstoba, Nadezhda D.; Saitgalina, Azaliya; Abdula, Polina; Butova, Daria

    2015-10-01

    Student research laboratory for optical engineering is comfortable place for student's scientific and educational activity. The main ideas of laboratory, process of creation of laboratory and also activity of laboratory are described in this article. At ITMO University in 2013-2014 were formed a lot of research laboratories. SNLO is a student research (scientific) laboratory formed by the Department of Applied and computer optics of the University ITMO (Information Technologies of Mechanics and Optics). Activity of laboratory is career guidance of entrants and students in the field of optical engineering. Student research laboratory for optical engineering is a place where student can work in the interesting and entertaining scientific atmosphere.

  5. Economic impact of university veterinary diagnostic laboratories: A case study.

    PubMed

    Schulz, Lee L; Hayes, Dermot J; Holtkamp, Derald J; Swenson, David A

    2018-03-01

    Veterinary diagnostic laboratories (VDLs) play a significant role in the prevention and mitigation of endemic animal diseases and serve an important role in surveillance of, and the response to, outbreaks of transboundary and emerging animal diseases. They also allow for business continuity in livestock operations and help improve human health. Despite these critical societal roles, there is no academic literature on the economic impact of VDLs. We present a case study on the economic impact of the Iowa State University Veterinary Diagnostic Laboratory (ISUVDL). We use economic contribution analysis coupled with a stakeholder survey to estimate the impact. Results suggest that the ISUVDL is responsible for $2,162.46 million in direct output, $2,832.45 million in total output, $1,158.19 million in total value added, and $31.79 million in state taxes in normal years. In an animal health emergency this increases to $8,446.21 million in direct output, $11,063.06 million in total output, $4,523.70 million in total value added, and $124.15 million in state taxes. The ISUVDL receives $4 million annually as a direct state government appropriation for operating purposes. The $31.79 million in state taxes in normal years and the $124.15 million in state taxes in an animal health emergency equates to a 795% and 3104% return on investment, respectively. Estimates of the economic impact of the ISUVDL provide information to scientists, administrators, and policymakers regarding the efficacy and return on investment of VDLs. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The AAPT Advanced Laboratory Task Force Report

    NASA Astrophysics Data System (ADS)

    Dunham, Jeffrey

    2008-04-01

    In late 2005, the American Association of Physics Teachers (AAPT) assembled a seven-member Advanced Laboratory Task Force^ to recommend ways that AAPT could increase the degree and effectiveness of its interactions with physics teachers of upper-division physics laboratories, with the ultimate goal of improving the teaching of advanced laboratories. The task force completed its work during the first half of 2006 and its recommendations were presented to the AAPT Executive Committee in July 2006. This talk will present the recommendations of the task force and actions taken by AAPT in response to them. The curricular goals of the advanced laboratory course at various institutions will also be discussed. The talk will conclude with an appeal to the APS membership to support ongoing efforts to revitalize advanced laboratory course instruction. ^Members of the Advanced Laboratory Task Force: Van Bistrow, University of Chicago; Bob DeSerio, University of Florida; Jeff Dunham, Middlebury College (Chair); Elizabeth George, Wittenburg University; Daryl Preston, California State University, East Bay; Patricia Sparks, Harvey Mudd College; Gerald Taylor, James Madison University; and David Van Baak, Calvin College.

  7. Rasp Tool on Phoenix Robotic Arm Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This close-up photograph taken at the Payload Interoperability Testbed at the University of Arizona, Tucson, shows the motorized rasp protruding from the bottom of the scoop on the engineering model of NASA's Phoenix Mars Lander's Robotic Arm.

    The rasp will be placed against the hard Martian surface to cut into the hard material and acquire an icy soil sample for analysis by Phoenix's scientific instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Embry-Riddle Aeronautical University multispectral sensor and data fusion laboratory: a model for distributed research and education

    NASA Astrophysics Data System (ADS)

    McMullen, Sonya A. H.; Henderson, Troy; Ison, David

    2017-05-01

    The miniaturization of unmanned systems and spacecraft, as well as computing and sensor technologies, has opened new opportunities in the areas of remote sensing and multi-sensor data fusion for a variety of applications. Remote sensing and data fusion historically have been the purview of large government organizations, such as the Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and National Geospatial-Intelligence Agency (NGA) due to the high cost and complexity of developing, fielding, and operating such systems. However, miniaturized computers with high capacity processing capabilities, small and affordable sensors, and emerging, commercially available platforms such as UAS and CubeSats to carry such sensors, have allowed for a vast range of novel applications. In order to leverage these developments, Embry-Riddle Aeronautical University (ERAU) has developed an advanced sensor and data fusion laboratory to research component capabilities and their employment on a wide-range of autonomous, robotic, and transportation systems. This lab is unique in several ways, for example, it provides a traditional campus laboratory for students and faculty to model and test sensors in a range of scenarios, process multi-sensor data sets (both simulated and experimental), and analyze results. Moreover, such allows for "virtual" modeling, testing, and teaching capability reaching beyond the physical confines of the facility for use among ERAU Worldwide students and faculty located around the globe. Although other institutions such as Georgia Institute of Technology, Lockheed Martin, University of Dayton, and University of Central Florida have optical sensor laboratories, the ERAU virtual concept is the first such lab to expand to multispectral sensors and data fusion, while focusing on the data collection and data products and not on the manufacturing aspect. Further, the initiative is a unique effort among Embry-Riddle faculty to develop multi

  9. Teaching Laboratory Renovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Zuhairi, Ali Jassim; Al-Dahhan, Wedad; Hussein, Falah

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. The improvement of students’ understanding of concepts in science and its applications, practical scientific skills and understanding of how science and scientists work in laboratory experiences have been considered key aspects of education in science for over 100 years. Facility requirements for the necessary level of safety and security combined with specific requirementsmore » relevant to the course to be conducted dictate the structural design of a particular laboratory, and the design process must address both. This manuscript is the second in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. We summarize the process used to guide a major renovation of the chemistry instructional laboratory facilities at Al-Nahrain University and discuss lessons learned from the project.« less

  10. Clinico-laboratory profile of breath-holding spells in children in Sohag University Hospital, Upper Egypt

    PubMed Central

    Sadek, Abdelrahim Abdrabou; Mohamed, Montaser Mohamed; Sharaf, El-Zahraa El-Said Ahmed; Magdy, Rofaida Mohamed; Allam, Ahmed Ahmed

    2016-01-01

    Introduction Breath-holding spells (BHSs) are involuntary pauses of breathing, sometimes accompanied by loss of consciousness. They usually occur in response to an upsetting or surprising situation. Breath-holding spells are usually caused by either a change in the usual breathing pattern or a slowing of the heart rate. In some children, BHSs may be related to iron deficiency anemia. The aim of the work was to study the clinical and laboratory profile of BPHs in children presented to the Neuropediatric Clinic at Sohag University Hospital. Methods An observational prospective study was done at Sohag University Hospital over a period of one year on children diagnosed as having BHSs by clinical history and laboratory evaluation, including complete blood count (CBC), serum iron, serum ferritin, total iron binding capacity, and Electroencephalography (EEG). Results During the period of study (one year), we reviewed data of 32 children who had been diagnosed as having BHSs. We found that cyanotic spells (71.88%) predominated over pallid spells. There were positive family histories (31.25%) and consanguinity (53.135) in the studied patients. We found a high incidence of iron deficiency anemia (62.5%) in association with BHS. Abnormal EEGs were found in (65.63%) of studied children. Conclusion BHS is a common, important problem associated with iron deficiency anemia, which is, in turn, a common nutritional problem in our country. PMID:27279996

  11. Profile of central research and application laboratory of Aǧrı İbrahim Çeçen University

    NASA Astrophysics Data System (ADS)

    Türkoǧlu, Emir Alper; Kurt, Murat; Tabay, Dilruba

    2016-04-01

    Aǧrı İbrahim Çeçen University built a central research and application laboratory (CRAL) in the east of Turkey. The CRAL possesses 7 research and analysis laboratories, 12 experts and researchers, 8 standard rooms for guest researchers, a restaurant, a conference hall, a meeting room, a prey room and a computer laboratory. The CRAL aims certain collaborations between researchers, experts, clinicians and educators in the areas of biotechnology, bioimagining, food safety & quality, omic sciences such as genomics, proteomics and metallomics. It also intends to develop sustainable solutions in agriculture and animal husbandry, promote public health quality, collect scientific knowledge and keep it for future generations, contribute scientific awareness of all stratums of society, provide consulting for small initiatives and industries. It has been collaborated several scientific foundations since 2011.

  12. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    ERIC Educational Resources Information Center

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  13. The communication of laboratory investigations by university entrants

    NASA Astrophysics Data System (ADS)

    Campbell, Bob; Kaunda, Loveness; Allie, Saalih; Buffler, Andy; Lubben, Fred

    2000-10-01

    The purpose of the study reported here was to analyse the ways in which unversity entrant science students carry out and communicate experimental activities and to identify a model to explain characteristic communication practices. The study was prompted by a need to inform the development of an introductory laboratory course. The students studied shared an educational background characterised by a lack of experience with laboratory work and scientific writing. Seven groups of three students were studied. The investigative strategies of these groups were observed. Laboratory reports were used to identify the ways in which students communicated these strategies. Data are presented that show a discrepancy between the strategies used and those reported. The results suggest that: (i) students' perceptions of the purpose of a laboratory task influence their decisions on what to report; (ii) understandings of laboratory procedures greatly influence their decision on what to report and on how much detail to include in a report and; (iii) knowledge of discourse rules contributes to effective reporting. It is concluded that students' communication of an investigation results from the differential operation of various perceptual filters that determine both the procedural and discourse elements of their reports. It is recommended that the communication of science should be taught explicitly and alongside the procedures and concepts of science.

  14. Leveraging Cloud Technology to Provide a Responsive, Reliable and Scalable Backend for the Virtual Ice Sheet Laboratory Using the Ice Sheet System Model and Amazon's Elastic Compute Cloud

    NASA Astrophysics Data System (ADS)

    Perez, G. L.; Larour, E. Y.; Halkides, D. J.; Cheng, D. L. C.

    2015-12-01

    The Virtual Ice Sheet Laboratory(VISL) is a Cryosphere outreach effort byscientists at the Jet Propulsion Laboratory(JPL) in Pasadena, CA, Earth and SpaceResearch(ESR) in Seattle, WA, and the University of California at Irvine (UCI), with the goal of providing interactive lessons for K-12 and college level students,while conforming to STEM guidelines. At the core of VISL is the Ice Sheet System Model(ISSM), an open-source project developed jointlyat JPL and UCI whose main purpose is to model the evolution of the polar ice caps in Greenland and Antarctica. By using ISSM, VISL students have access tostate-of-the-art modeling software that is being used to conduct scientificresearch by users all over the world. However, providing this functionality isby no means simple. The modeling of ice sheets in response to sea and atmospheric temperatures, among many other possible parameters, requiressignificant computational resources. Furthermore, this service needs to beresponsive and capable of handling burst requests produced by classrooms ofstudents. Cloud computing providers represent a burgeoning industry. With majorinvestments by tech giants like Amazon, Google and Microsoft, it has never beeneasier or more affordable to deploy computational elements on-demand. This isexactly what VISL needs and ISSM is capable of. Moreover, this is a promisingalternative to investing in expensive and rapidly devaluing hardware.

  15. Phoenix Lowered into Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Phoenix Mars Lander was lowered into a thermal vacuum chamber at Lockheed Martin Space Systems, Denver, in December 2006.

    The spacecraft was folded in its aeroshell and underwent environmental testing that simulated the extreme conditions the spacecraft will see during its nine-and-a-half-month cruse to Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  16. University Movements as Laboratories of Counter-Hegemony

    ERIC Educational Resources Information Center

    Sotiris, Panagiotis

    2014-01-01

    Beginning with a reading of Kant's "The Conflict of the Faculties" and then moving towards a tentative possible theorization of the University as a hegemonic apparatus this paper aims at discussing university movements in terms of (counter) hegemony. Recent struggles against austerity, neoliberalism and the erosion of democracy,…

  17. Laboratory Measurements of Cometary Photochemical Phenomena.

    DTIC Science & Technology

    1981-12-04

    PROGFIAM ELEMENT.PROJECT TASK Laser .Chemistry Division AREA & WORK UNIT NUMaZRS Department of Chemistry - Howard University NR.051-733 Wash’ ngtQn, D. C...William M. Jackson Laser Chemistry Division Department of Chemistry Howard University .Washington, D. C. 20059 / Published by Jet Propulsion Laboratory...MEASUREMENTS OF COMETARY PHOTOCHEMICAL PHENOMENA William M. Jackson Howard University Washington, DC 20059 Abstract Laboratory experiments are described

  18. This photocopy of an engineering drawing shows the floor plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the floor plan of the Liner Lab, including room functions. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex Phase II, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "Liner Laboratory, Floor Plan and Schedules," drawing no. E33/4-2, 26 June 1962. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  19. 41st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  20. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Guo, Hongyu; Liu, Jiumeng; Froyd, Karl D.; Roberts, James M.; Veres, Patrick R.; Hayes, Patrick L.; Jimenez, Jose L.; Nenes, Athanasios; Weber, Rodney J.

    2017-05-01

    pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas-particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42--NO3--NH4+-HNO3-NH3 system. For PM2. 5, internal mixing of sea salt components (SO42--NO3--NH4+-Na+-Cl--K+-HNO3-NH3-HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3.

  1. Disturbing Pop-Tart

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover's front right camera imaged Pop-tart, a small rock or indurated soil material which was pushed out of the surrounding drift material by Sojourner's front left wheel during a soil mechanics experiment.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. California Sun Glint

    Atmospheric Science Data Center

    2014-05-15

    ... path 41. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, ... Text acknowledgment: Clare Averill (Raytheon ITSS / Jet Propulsion Laboratory), Mike Garay (Jet Propulsion Laboratory) and Dominic ...

  3. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... latitude. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, ... acknowledgment: Clare Averill (Acro Service Corporation/Jet Propulsion Laboratory), Ralph Kahn (Jet Propulsion Laboratory), David J. Diner ...

  4. RoboSimian Disaster Relief Poster Artist Concept

    NASA Image and Video Library

    2015-03-11

    This artist's concept shows RoboSimian, a robot intended to assist with disaster relief and mitigation. RoboSimian is an ape-like robot that moves around on four limbs. It was designed and built at the Jet Propulsion Laboratory in Pasadena, California. It will compete in the 2015 DARPA Robotics Challenge Finals. To get the robot in shape for the contest, researchers at JPL are collaborating with partners at University of California, Santa Barbara, and the California Institute of Technology. http://photojournal.jpl.nasa.gov/catalog/PIA19313

  5. Microscopic Materials on a Magnet

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These images show a comparison of the weak magnet OM7 from the Optical Microscope on NASA's Phoenix Mars Lander before (left) and after (right) soil deposition.

    The microscope took the left image during Phoenix's Sol 15 (June 10, 2008) and the right image during Sol 21 (Jun 16, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. The Level of Awareness of Safety Measures Practiced in School Laboratories among Pre-Service Science Teachers at Najran University

    ERIC Educational Resources Information Center

    Fagihi, Yahea Ali

    2018-01-01

    This study is an attempt to identify the level of awareness of safety measures practiced in school laboratories among pre-service Science teachers at Najran University. It also aims to identify the sources of safety measures awareness and the statistically significant differences among the sample responses due to specialization and grade…

  7. The Language Laboratory.

    ERIC Educational Resources Information Center

    Hocking, Elton

    This condensed article on the language laboratory describes educational and financial possibilities and limitations, often citing the foreign language program at Purdue University as an example. The author discusses: (1) costs and amortization, (2) preventive maintenance, (3) laboratory design, (4) the multichannel recorder, and (5) visuals. Other…

  8. Atlas of Absorption Lines from 0 to 17900 cm-1

    DTIC Science & Technology

    1987-09-01

    Hampton, Virginia H. M. Pickett Jet Propulsion Laboratory Pasadena, California D. J. Richardson and J. S. Namkung ST Systems Corporation (STX...2 NH3 HN03 OH HF HCi HBr HI CIO OCS H2CO H0C1 N2 HCN CH3C! H202 C2H2 C2H6 PH3 Oj(JPL) +- 0(3P)(JPL) H02(JPL) Solor CO...Hanscom AFB, Massachusetts. H. M. Pickett: Jet Propulsion Laboratory, Pasadena, California. D. J. Richardson and J. S. Namkung: ST Systems Corporation

  9. Minority University System Engineering: A Small Satellite Design Experience Held at the Jet Propulsion Laboratory During the Summer of 1996

    NASA Technical Reports Server (NTRS)

    Ordaz, Miguel Angel

    1997-01-01

    The University of Texas at El Paso (UTEP) in conjunction with the Jet Propulsion Laboratory (JPL), North Carolina A&T and California State University of Los Angeles participated during the summer of 1996 in a prototype program known as Minority University Systems Engineering (MUSE). The program consisted of a ten week internship at JPL for students and professors of the three universities. The purpose of MUSE as set forth in the MUSE program review August 5, 1996 was for the participants to gain experience in the following areas: 1) Gain experience in a multi-disciplinary project; 2) Gain experience working in a culturally diverse atmosphere; 3) Provide field experience for students to reinforce book learning; and 4) Streamline the design process in two areas: make it more financially feasible; and make it faster.

  10. A new ion-beam laboratory for materials research at the Slovak University of Technology

    NASA Astrophysics Data System (ADS)

    Noga, Pavol; Dobrovodský, Jozef; Vaňa, Dušan; Beňo, Matúš; Závacká, Anna; Muška, Martin; Halgaš, Radoslav; Minárik, Stanislav; Riedlmajer, Róbert

    2017-10-01

    An ion beam laboratory (IBL) for materials research has been commissioned recently at the Slovak University of Technology within the University Science Park CAMBO located in Trnava. The facility will support research in the field of materials science, physical engineering and nanotechnology. Ion-beam materials modification (IBMM) as well as ion-beam analysis (IBA) are covered and deliverable ion energies are in the range from tens of keV up to tens of MeV. Two systems have been put into operation. First, a high current version of the HVEE 6 MV Tandetron electrostatic tandem accelerator with duoplasmatron and cesium sputtering ion sources, equipped with two end-stations: a high-energy ion implantation and IBA end-station which includes RBS, PIXE and ERDA analytical systems. Second, a 500 kV implanter equipped with a Bernas type ion source and two experimental wafer processing end-stations. The facility itself, operational experience and first IBMM and IBA experiments are presented together with near-future plans and ongoing development of the IBL.

  11. Physics Laboratory in UEC

    NASA Astrophysics Data System (ADS)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.

  12. Visual interaction: models, systems, prototypes. The Pictorial Computing Laboratory at the University of Rome La Sapienza.

    PubMed

    Bottoni, Paolo; Cinque, Luigi; De Marsico, Maria; Levialdi, Stefano; Panizzi, Emanuele

    2006-06-01

    This paper reports on the research activities performed by the Pictorial Computing Laboratory at the University of Rome, La Sapienza, during the last 5 years. Such work, essentially is based on the study of humancomputer interaction, spans from metamodels of interaction down to prototypes of interactive systems for both synchronous multimedia communication and groupwork, annotation systems for web pages, also encompassing theoretical and practical issues of visual languages and environments also including pattern recognition algorithms. Some applications are also considered like e-learning and collaborative work.

  13. University of Maryland MRSEC - Facilities: Keck Laboratory

    Science.gov Websites

    MRSEC Templates Opportunities Search Home » Facilities » Keck Laboratory Shared Experimental educational institutions for non-profit administrative or educational purposes if proper credit is given to

  14. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  15. Team Huddle Before Lifting Phoenix into Test Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Spacecraft specialists huddle to discuss the critical lift of NASA's Phoenix Mars Lander into a thermal vacuum chamber.

    In December 2006, the spacecraft was in a cruise configuration prior to going into environmental testing at a Lockheed Martin Space Systems facility near Denver. At all stages of assembly and testing, the spacecraft is handled with extreme care and refinement.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  16. The development and assessment of constructivist-based curriculum changes in a university general biology laboratory course

    NASA Astrophysics Data System (ADS)

    Herron, Sherry Shelton

    1999-11-01

    This study describes the processes involved in transforming the curriculum of the second semester general biology laboratory course for science majors, BSC 111L, at the University of Southern Mississippi from one based on the behaviorist model of teaching and learning to one based on the constructivist model. The study encompasses pilot and research phases. During the pilot phase conducted fall semester of 1997, the researcher presented to graduate teaching assistants an overview of the need for curriculum reform and some of the theoretical underpinnings for the movement. The researcher worked with all of the general biology teaching assistants to determine factors they considered supportive of the effort, identified specific goals and exercises, and developed a mission statement. The researcher then worked with two of the teaching assistants to write the new curriculum materials and pilot them in a designated laboratory section each week. During the research phase, the researcher facilitated the use of constructivist teaching methods and interviewed the teaching assistants during weekly group meetings. The researcher videotaped and observed the laboratories at various times throughout spring semester of 1998. Student responses to survey questions about the laboratories were collected during the observation sessions. Data derived from self-assessments on teaching beliefs completed by the teaching assistants, interview transcripts, videotaped laboratory sessions, and student surveys were used to assess the effectiveness of the new curriculum and the intervention program. It was observed that despite being given the same instructions, curriculum, and materials, each teaching assistant conducted his laboratory section in a unique way and rarely conducted the complete laboratory in the intended manner. It was also observed that one TA in particular needed more training in interpersonal skill development and content than was provided during the weekly intervention

  17. The Dewey School as Triumph, Tragedy, and Misunderstood: Exploring the Myths and Historiography of the University of Chicago Laboratory School

    ERIC Educational Resources Information Center

    Fallace, Thomas; Fantozzi, Victoria

    2017-01-01

    Background/Context: Over the last century, perhaps no school in American history has been studied more than John Dewey's Laboratory School at the University of Chicago (1896-1904). Scholars have published dozens of articles, books, essays, and assessments of a school that existed for only seven and a half years. Purpose/Objective/Research…

  18. Tests to Help Plan Opportunity Moves

    NASA Image and Video Library

    2005-05-06

    Rover engineers check how a test rover moves in material chosen to simulate some difficult Mars driving conditions. The scene is inside the In-Situ Instrument Laboratory at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  19. Rocky terrain & airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of very rocky terrain at the Ares Vallis landing site, along with the lander's deflated airbags, were imaged by the Imager for Mars Pathfinder (IMP) before its deployment on Sol 2. The metallic object at the bottom is a bracket for the IMP's release mechanism.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. Sojourner, Wedge, & Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Imager for Mars Pathfinder (IMP) image taken near the end of daytime operations on Sol 50 shows the Sojourner rover between the rocks 'Wedge' (foreground) and 'Shark' (behind rover). The rover successfully deployed its Alpha Proton X-Ray Spectrometer on Shark on Sol 52.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. Simulating Titan-Like Smog

    NASA Image and Video Library

    2013-04-03

    In a laboratory experiment at NASA Jet Propulsion Laboratory, Pasadena, Calif., scientists simulate the atmosphere of Saturn moon Titan. In this picture, molecules of dicyanoacetylene are seen on a special film on a sapphire window.

  2. Characterizing Instructional Practices in the Laboratory: The Laboratory Observation Protocol for Undergraduate STEM

    ERIC Educational Resources Information Center

    Velasco, Jonathan B.; Knedeisen, Adam; Xue, Dihua; Vickrey, Trisha L.; Abebe, Marytza; Stains, Marilyne

    2016-01-01

    Chemistry laboratories play an essential role in the education of undergraduate Science, Technology, Engineering, and Mathematics (STEM) and non-STEM students. The extent of student learning in any educational environment depends largely on the effectiveness of the instructors. In chemistry laboratories at large universities, the instructors of…

  3. Narrow Angle movie

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This brief three-frame movie of the Moon was made from three Cassini narrow-angle images as the spacecraft passed by the Moon on the way to its closest approach with Earth on August 17, 1999. The purpose of this particular set of images was to calibrate the spectral response of the narrow-angle camera and to test its 'on-chip summing mode' data compression technique in flight. From left to right, they show the Moon in the green, blue and ultraviolet regions of the spectrum in 40, 60 and 80 millisecond exposures, respectively. All three images have been scaled so that the brightness of Crisium basin, the dark circular region in the upper right, is the same in each image. The spatial scale in the blue and ultraviolet images is 1.4 miles per pixel (2.3 kilometers). The original scale in the green image (which was captured in the usual manner and then reduced in size by 2x2 pixel summing within the camera system) was 2.8 miles per pixel (4.6 kilometers). It has been enlarged for display to the same scale as the other two. The imaging data were processed and released by the Cassini Imaging Central Laboratory for Operations (CICLOPS) at the University of Arizona's Lunar and Planetary Laboratory, Tucson, AZ.

    Photo Credit: NASA/JPL/Cassini Imaging Team/University of Arizona

    Cassini, launched in 1997, is a joint mission of NASA, the European Space Agency and Italian Space Agency. The mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  4. OCCUPATION--LANGUAGE LABORATORY DIRECTOR.

    ERIC Educational Resources Information Center

    TURNER, DAYMOND

    TRUE PROFESSIONAL STATUS FOR A LABORATORY DIRECTOR, PLUS ADMINISTRATIVE SUPPORT OF SUCH INSTRUCTION, WILL GIVE COLLEGES AND UNIVERSITIES ADEQUATE RETURN FOR THEIR INVESTMENT IN ELECTRONIC EQUIPMENT. BY BEING INVOLVED IN IMPORTANT RESEARCH AND INSTRUCTIONAL ACTIVITIES, THE DIRECTOR OF A LANGUAGE LABORATORY CAN SERVE ALSO TO FREE THE TEACHER AND…

  5. False Color Terrain Model of Phoenix Workspace

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is a terrain model of Phoenix's Robotic Arm workspace. It has been color coded by depth with a lander model for context. The model has been derived using images from the depth perception feature from Phoenix's Surface Stereo Imager (SSI). Red indicates low-lying areas that appear to be troughs. Blue indicates higher areas that appear to be polygons.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Color Image of Phoenix Lander on Mars Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an enhanced-color image from Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera. It shows the Phoenix lander with its solar panels deployed on the Mars surface. The spacecraft appears more blue than it would in reality.

    The blue/green and red filters on the HiRISE camera were used to make this picture.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Mars Surface near Viking Lander 1 Footpad

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, which has been flipped horizontally, was taken by Viking Lander 1 on August 1, 1976, 12 sols after landing. Much like images that have returned from Phoenix, the soil beneath Viking 1 has been exposed due to exhaust from thruster engines during descent. This is visible to the right of the struts of Viking's surface-sampler arm housing, seen on the left.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Phoenix Carries Soil to Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Robotic Arm scoop positioned over the Wet Chemistry Lab delivery funnel on Sol 29, the 29th Martian day after landing, or June 24, 2008. The soil will be delivered to the instrument on Sol 30.

    This image has been enhanced to brighten the scene.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Frost on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows bluish-white frost seen on the Martian surface near NASA's Phoenix Mars Lander. The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). Frost is expected to continue to appear in images as fall, then winter approach Mars' northern plains.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. The Physics Laboratory in Honduras.

    ERIC Educational Resources Information Center

    Zuniga, M. A.

    1979-01-01

    This paper, presented at the conference on the role of the laboratory in physics education, which was held in Oxford, England in July 1978, describes the role of the laboratory in school and university physics in Honduras. (HM)

  11. Fifty-five years (1955-2010) of the Coagulation Section at Laboratory of Hematology, Sestre milosrdnice University Hospital, and its founder, hematologist Ljubomir Popović.

    PubMed

    Stancić, Vladimir; Stancić, Nevenka; Vucelić, Vesna; Lang, Nada; Grbac, Ljiljana

    2011-09-01

    The Coagulation Section at Laboratory of Hematology, Sestre milosrdnice University Hospital, Zagreb, was founded in 1955 by Ljubomir Popović, hematologist and assistant at School of Medicine, University of Zagreb, in cooperation with hard-working laboratory technicians. Apart from papers on hematologic neoplasms, plasmacytoma and lymphoma, Ljubomir Popović published a number of papers in the field of anticoagulant therapy with heparin and oral anticoagulants, some of which are also in use today. After Ljubomir Popović left the Hospital in 1964, the Laboratory was run by Professor Nedjeljko Milić, head of the newly founded Division of Hematology. In 1968, the management of the Laboratory of Hematology was taken over by Biserka Raić, MS, medical biochemist, until her retirement in 2007. Great development in morphological and cytometric studies of blood and blood cells has been paralleled by continuous progress and almost dominating activities in the diagnosis of hemostasis disorders. In the 1970s, Marko Koprcina, hematologist, and Biserka Raić introduced the then latest tests in practice at all Hospital departments. In that golden age of the Coagulation Section, M. Koprcina, B. Raić and their associates transferred their knowledge to all colleagues in the Hospital. Through that collaboration, high standards in the diagnosis of hemostasis disorders were achieved, from which the currently high level of clinical knowledge about coagulation disorders and their treatment has derived, making Sestre milosrdnice University Hospital one of the leading hospitals in this field in the country. By describing development of the Coagulation Section and the life of its founder Ljubomir Popović, the authors tried to provide an answer to the following question: can today's clinicians still have a deciding role in laboratory development, considering that assessments of different phenomena are always initiated by an interested clinician who is trying to interpret and understand

  12. Supreme Court Hears Privacy Case Between NASA and Jet Propulsion Laboratory Scientists

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    After NASA put into practice the 2004 Homeland Security Presidential Directive-12, known as HSPD-12, Dennis Byrnes talked to then-NASA administrator Michael Griffin. Byrnes recalls that Griffin told him in 2007 that if he didn’t like the agency's implementation of HSPD-12, he should go to court. That's exactly what Byrnes, an employee of the California Institute of Technology (Caltech) working as a senior engineer at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., did. Concerned about prying and open-ended background investigations of federal contractors through NASA's implementation of HSPD-12, he, along with lead plaintiff Robert Nelson and 26 other Caltech employees working at JPL, sued NASA. Following several lower court decisions, including an injunction issued by a U.S. federal appeals court in response to a plaintiff motion, the case made it all the way to the U.S. Supreme Court, which heard oral arguments on 5 October.

  13. Testing Precision of Movement of Curiosity Robotic Arm

    NASA Image and Video Library

    2012-02-22

    A NASA Mars Science Laboratory test rover called the Vehicle System Test Bed, or VSTB, at NASA Jet Propulsion Laboratory, Pasadena, CA serves as the closest double for Curiosity in evaluations of the mission hardware and software.

  14. Characterization of the Shielded Neutron Source at Triangle Universities Nuclear Laboratory

    NASA Astrophysics Data System (ADS)

    Hobson, Chad; Finch, Sean; Howell, Calvin; Malone, Ron; Tornow, Wernew

    2016-09-01

    In 2015, Triangle Universities Nuclear Laboratory rebuilt its shielded neutron source (SNS) with the goal of improving neutron beam collimation and reducing neutron and gamma-ray backgrounds. Neutrons are produced via the 2H(d,n)3He reaction and then collimated by heavy shielding to form a beam. The SNS has the ability to produce both a rectangular and circular neutron beam through use of two collimators with different beam apertures. Our work characterized both the neutron beam profiles as well as the neutron and gamma-ray backgrounds at various locations around the SNS. This characterization was performed to provide researchers who use the SNS with beam parameters necessary to plan and conduct an experiment. Vertical and horizontal beam profiles were measured at two different distances from the neutron production cell by scanning a small plastic scintillator across the face of the beam at various energies for each collimator. Background neutron and gamma-ray intensities were measured using time-of-flight techniques at 10 MeV and 16 MeV with the rectangular collimator. We present results on the position and size of neutron beam as well as on the structure and magnitude of the backgrounds.

  15. The University of Kansas High-Throughput Screening Laboratory. Part II: enabling collaborative drug-discovery partnerships through cutting-edge screening technology

    PubMed Central

    McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam

    2011-01-01

    The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory. PMID:21806374

  16. The University of Kansas High-Throughput Screening Laboratory. Part II: enabling collaborative drug-discovery partnerships through cutting-edge screening technology.

    PubMed

    McDonald, Peter R; Roy, Anuradha; Chaguturu, Rathnam

    2011-07-01

    The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory.

  17. Pilot Project on Women and Science. A report on women scientists at the University of New Mexico and Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvaggio, R.

    In the fall of 1991, through the coordinating efforts of the University of New Mexico and Los Alamos National Laboratory, the Pilot Project on Women and Science was initiated as a year-long study of women scientists at both the university and the laboratory. Its purpose was to gather information directly from women scientists in an attempt to analyze and make recommendations concerning the professional and cultural environment for women in the sciences. This report is an initial attempt to understand the ways in which women scientists view themselves, their profession, and the scientific culture they inhabit. By recording what thesemore » women say about their backgrounds and educational experiences, their current positions, the difficult negotiations many have made between their personal and professional lives, and their relative positions inside and outside the scientific community, the report calls attention both to the individual perspectives offered by these women and to the common concerns they share.« less

  18. Known Locations of Carbonate Rocks on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Green dots show the locations of orbital detections of carbonate-bearing rocks on Mars, determined by analysis of targeted observations by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) acquired through January 2008. The spectrometer is on NASA's Mars Reconnaissance Orbiter.

    The base map is color-coded global topography (red is high, blue is low) overlain on mosaicked daytime thermal infrared images. The topography data are from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. The thermal infrared imagery is from the Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter.

    The CRISM team, led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., includes expertise from universities, government agencies and small businesses in the United States and abroad. Arizona State University, Tempe, operates the Thermal Emission Imaging System, which the university developed in collaboration with Raytheon Santa Barbara Remote Sensing.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and Mars Odyssey projects for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiters.

  19. BASIC STEPS IN DESIGNING SCIENCE LABORATORIES.

    ERIC Educational Resources Information Center

    WHITNEY, FRANK L.

    PLANNERS OF CURRENT UNIVERSITY LABORATORIES OFTEN MAKE THE SAME MISTAKES MADE BY INDUSTRIAL LABORATORIES 20 YEARS AGO. THIS CAN BE REMEDIED BY INCREASED COMMUNICATION BETWEEN SCIENTISTS AND DESIGNERS IN SEMINARS DEFINING THE BASIC NEEDS OF A PARTICULAR LABORATORY SITUATION. ELECTRONIC AND MECHANICAL EQUIPMENT ACCOUNT FOR OVER 50 PER CENT OF TOTAL…

  20. [Laboratory management fee in national health insurance; what is required from clinical laboratory physicians? --message from Chairpersons].

    PubMed

    Kimura, Satoshi; Koshiba, Masahiro

    2013-06-01

    The laboratory management fee (LMF) in national health insurance ("Kentai-Kensa-Kanri-Kasan" in Japanese) has had a major impact on Japanese clinical laboratories, especially in recent years. In 2012, the fee was raised to approximately 5,000 yen per admitted patient. In order to address this national support, clinical pathologists are required to increase their knowledge and skills. On the other hand, there are insufficient clinical pathologists in Japan. In order to solve this problem, the Japanese Society of Laboratory Medicine (JSLM) approved a new license for Qualified Clinical Laboratory Managing Physicians (CLMPs), in addition to Certified Clinical Laboratory Physicians (CCLPs). The requirements to become a CLMP are less strict than for CCLP. There are approximately 500 CLMPs and 600 CCLPs in this country. The aim of this symposium was to offer opportunities to increase attendees' clinical skills, especially CLMPs and young clinical pathologists. Four CCLPs were chosen as speakers from a university hospital, a major city hospital, a medium-sized acute care hospital, and a university hospital anatomical pathologist, together with a chief medical technologist from a university hospital. All the speakers presented their ideal role models of clinical pathologists matching LMF requirements. JSLM together with the Japanese Association of Clinical Laboratory Physicians (JACLaP) sponsored this symposium. It was a successful meeting with more than two hundred attendees.

  1. 'Snow White' Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 43, the 43rd Martian day after landing (July 8, 2008). This image shows the trench informally called 'Snow White.'

    Two samples were delivered to the Wet Chemistry Laboratory, which is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The first sample was taken from the surface area just left of the trench and informally named 'Rosy Red.' It was delivered to the Wet Chemistry Laboratory on Sol 30 (June 25, 2008). The second sample, informally named 'Sorceress,' was taken from the center of the 'Snow White' trench and delivered to the Wet Chemistry Laboratory on Sol 41 (July 6, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. How mechanisms explain interfield cooperation: biological-chemical study of plant growth hormones in Utrecht and Pasadena, 1930-1938.

    PubMed

    Schürch, Caterina

    2017-09-01

    This article examines to what extent a particular case of cross-disciplinary research in the 1930s was structured by mechanistic reasoning. For this purpose, it identifies the interfield theories that allowed biologists and chemists to use each other's techniques and findings, and that provided the basis for the experiments performed to identify plant growth hormones and to learn more about their role in the mechanism of plant growth. In 1930, chemists and biologists in Utrecht and Pasadena began to cooperatively study plant growth. I will argue that these researchers decided to join forces because they believed to rely on each other's findings and methods to solve their research problems adequately. In the course of the cooperation, organic chemists arrived at isolating plant growth hormones by using a test method developed in plant physiology. This achievement, in turn, facilitated biologists' investigation of the mechanism of plant growth. Researchers eventually believed to have the means to study the relation between a substance's molecular structure and its physiological activity. The way they conceptualized the problem of identifying hormones and unraveling the mechanism of plant growth, as well as their actual research actions are compatible with the new mechanists' account of mechanism research. The study illustrates that focusing on researchers' mechanistic reasoning can contribute considerably to explaining the structure of cross-disciplinary research projects.

  3. Laboratory Automation and Intra-Laboratory Turnaround Time: Experience at the University Hospital Campus Bio-Medico of Rome.

    PubMed

    Angeletti, Silvia; De Cesaris, Marina; Hart, Jonathan George; Urbano, Michele; Vitali, Massimiliano Andrea; Fragliasso, Fulvio; Dicuonzo, Giordano

    2015-12-01

    Intra-laboratory turnaround time (TAT) is a key indicator of laboratory performance. Improving TAT is a complex task requiring staff education, equipment acquisition, and adequate TAT monitoring. The aim of the present study was to evaluate the intra-laboratory TAT after laboratory automation implementation (June 2013-June 2014) and to compare it to that in the preautomation period (July 2012-May 2013). Intra-laboratory TAT was evaluated both as the mean TAT registered and the percentage of outlier (OP) exams. The mean TAT was 36, 38, and 34 min during the study periods, respectively. These values respected the goal TAT established at 45 min. The OP, calculated at 45 min as well as at 60 min, decreased from 26 to 21 and from 11 to 5, respectively. From a focused analysis on blood count cell, troponin I, and prothrombin (PT) test, TAT improvement was more evident for tests requiring longer preanalytical process. The follow-up of TAT from June 2013 to June 2014 revealed the reduction of the mean TAT as well as of the OP exams after automation implementation and that automation more strongly affects the test in the preanalytical phase including centrifugation of the sample, such as troponin I and PT. © 2015 Society for Laboratory Automation and Screening.

  4. Exploring the Universe

    NASA Astrophysics Data System (ADS)

    Schmidt, Maarten

    2015-08-01

    I cover my life and career, first in Holland during World War II and then in Pasadena, California, after we emigrated in 1959. My main work concerned the rate of star formation and the discovery of quasars and their cosmological evolution. It's a great honor to write an essay for this volume of the Annual Review of Astronomy and Astrophysics. It is primarily an autobiography with an attempt to link my own career to some of the major developments in astronomy.

  5. Institute of Laboratory Animal Resources (ILAR)

    DTIC Science & Technology

    1994-05-12

    Athens. Georgia Muriel T. Davisson. The Jackson Laboratory, Bar Harbor. Maine Neal L. First. University of Wisconsin, Madison , Wisconsin James W. Glosser...Hear, Wisconsin Regional Primate Research Center, Madison . Wisconsin Margaret Z. Jones. Michigan State University, East Lansing, Michigan Michael D...California School of Medicine, Los Angeles, California Henry C. Pitot III, University of Wisconsin. Madison , Wisconsin Paul G. Risser, Miami University

  6. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    Second Lady Karen Pence gives commands to a rover nicknamed "Scarecrow" as NASA Mars Exploration Manager Li Fuk, left, Mars Curiosity Engineering Operations Team Chief Megan Lin, Vice President Mike Pence, daughter of Mike Pence, Charlotte Pence, and JPL Director Michael Watkins, right, look on, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)

  7. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence gives commands to a rover nicknamed "Scarecrow" as NASA Mars Exploration Manager Li Fuk, left, Mars Curiosity Engineering Operations Team Chief Megan Lin, JPL Director Michael Watkins, and daughter of Mike Pence, Charlotte Pence, right, look on, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)

  8. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover is at lower right, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  9. Airbag retraction

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows that the Mars Pathfinder airbags have been successfully retracted, allowing safe deployment of the rover ramps. The Sojourner rover, still in its deployed position, is at center image, and rocks are visible in the background. Mars Pathfinder landed successfully on the surface of Mars today at 10:07 a.m. PDT.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  10. Sojourner's APXS at Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Sojourner rover is seen next to the rock 'Shark', in this image taken by the Imager for Mars Pathfinder (IMP) near the end of daytime operations on Sol 52. The rover's Alpha Proton X-Ray Spectrometer is deployed against the rock. The rock 'Wedge' is in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. Redirecting Under-Utilised Computer Laboratories into Cluster Computing Facilities

    ERIC Educational Resources Information Center

    Atkinson, John S.; Spenneman, Dirk H. R.; Cornforth, David

    2005-01-01

    Purpose: To provide administrators at an Australian university with data on the feasibility of redirecting under-utilised computer laboratories facilities into a distributed high performance computing facility. Design/methodology/approach: The individual log-in records for each computer located in the computer laboratories at the university were…

  12. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Preston Dyches, media relations specialist at NASA's Jet Propulsion Laboratory, during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Deepest Trenching at Phoenix Site on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander widened the deepest trench it has excavated, dubbed 'Stone Soup,' (in the lower half of this image) to collect a sample from about 18 centimeters (7 inches) below the surface for analysis by the lander's wet chemistry laboratory.

    Phoenix's Surface Stereo Imager took this image on Sol 95 (Aug. 30, 2008), the 95th Martian day since landing. For scale, the rock to the right of the Stone Soup trench is about 15 centimeters (6 inches) across. The lander's robotic arm scooped up a sample from the left half of the trench for delivery the following sol to the wet chemistry laboratory.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. The Laboratory-Based Economics Curriculum.

    ERIC Educational Resources Information Center

    King, Paul G.; LaRoe, Ross M.

    1991-01-01

    Describes the liberal arts, computer laboratory-based economics program at Denison University (Ohio). Includes as goals helping students to (1) understand deductive arguments, (2) learn to apply theory in real-world situations, and (3) test and modify theory when necessary. Notes that the program combines computer laboratory experiments for…

  15. Device for Lowering Mars Science Laboratory Rover to the Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is hardware for controlling the final lowering of NASA's Mars Science Laboratory rover to the surface of Mars from the spacecraft's hovering, rocket-powered descent stage.

    The photo shows the bridle device assembly, which is about two-thirds of a meter, or 2 feet, from end to end, and has two main parts. The cylinder on the left is the descent brake. On the right is the bridle assembly, including a spool of nylon and Vectran cords that will be attached to the rover.

    When pyrotechnic bolts fire to sever the rigid connection between the rover and the descent stage, gravity will pull the tethered rover away from the descent stage. The bridle or tether, attached to three points on the rover, will unspool from the bridle assembly, beginning from the larger-diameter portion of the spool at far right. The rotation rate of the assembly, hence the descent rate of the rover, will be governed by the descent brake. Inside the housing of that brake are gear boxes and banks of mechanical resistors engineered to prevent the bridle from spooling out too quickly or too slowly. The length of the bridle will allow the rover to be lowered about 7.5 meters (25 feet) while still tethered to the descent stage.

    The Starsys division of SpaceDev Inc., Poway, Calif., provided the descent brake. NASA's Jet Propulsion Laboratory, Pasadena, Calif., built the bridle assembly. Vectran is a product of Kuraray Co. Ltd., Tokyo. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  16. Online Assessment of Learning and Engagement in University Laboratory Practicals

    ERIC Educational Resources Information Center

    Whitworth, David E.; Wright, Kate

    2015-01-01

    In science education, laboratory practicals are frequently assessed through submission of a report. A large increase in student numbers necessitated us adapting a traditional practical report into an online test with automated marking. The assessment was designed to retain positive features of the traditional laboratory report but with added…

  17. The Case for Sustainable Laboratories: First Steps at Harvard University

    ERIC Educational Resources Information Center

    Woolliams, Jessica; Lloyd, Matthew; Spengler, John D.

    2005-01-01

    Purpose: Laboratories typically consume 4-5 times more energy than similarly-sized commercial space. This paper adds to a growing dialogue about how to "green" a laboratory's design and operations. Design/methodology/approach: The paper is divided into three sections. The first section reviews the background and theoretical issues. A…

  18. [What's the point of cost management in clinical laboratories?].

    PubMed

    Setoyama, Tomokazu; Yamauchi, Kazuyoshi; Katsuyama, Tsutomu

    2006-11-01

    Clinical laboratories need to know and manage the costs of laboratory tests, because they need financial data (1) to estimate costs per patient, (2) to request a budget to buy equipment, and (3) to improve their work; however, less than 40% laboratories practice cost management. In 2002, Shinshu University Hospital began to assess the costs of laboratory tests, but it was difficult to evaluate the quality of our cost management because there are few data and papers about the costs of laboratory tests in Japan. In this article, we practiced cost analysis using Shinshu University Hospital's data for 3 years (2002-2004), and studied the features of laboratory test costs and the problems of laboratory cost management. As a result, we listed 7 points to check cost management in clinical laboratories. This check list was established using only one data from our hospital. So, we suggest the benchmarking laboratory test costs between laboratories of the same type of hospitals or various laboratories.

  19. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  20. Credit WCT. Original 2'" x 2'" color negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-'" x 2-'" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows small autoclave demonstrated by JPL staff member Milton Clay (JPL negative no. JPL-10286AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  1. Micro-Detection System for Determination of the Biotic or Abiotic Origin of Amino Acids

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Betts, Bruce (Technical Monitor)

    2002-01-01

    The research involved the development of a breadboard version of a spacecraft based system for the detection of amino acid chirality (handedness) on solar system bodies. The design concept has three distinct components: a sublimation chamber for the release of amino acids from an acquired sample; a microchip based capillary electrophoresis (CE) chip for the separation of amino acids and their enantiomers; and a fluorescent based detection system. In addition, we have investigated the use of a microfluidics system for the extraction of amino acids in samples in which sublimation has proven to be problematic. This is a joint project carried out at the Scripps Institution of Oceanography (SIO), University of California at San Diego; the Jet Propulsion Laboratory (JPL), Pasadena; and the Department of Chemistry, University of California, Berkeley.

  2. Phoenix Telltale Movie with Clouds, Sol 103

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander's telltale catches a breeze as clouds move over the landing site on Sol 103 (Sept. 7, 2008), the 103rd Martian day since landing.

    Phoenix's Surface Stereo Imager took this series of images during daily telltale monitoring around 3 p.m. local solar time and captured the clouds moving over the landing site.

    Phoenix can measure wind speed and direction by imaging the telltale, which is about about 10 centimeters (4 inches) tall. The telltale was built by the University of Aarhus, Denmark.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Post-Baccalaureate Laboratory Specialist Certifications and Master’s Degrees in Laboratory Medicine

    PubMed Central

    Johnson, Susan T.

    2013-01-01

    Opportunities to advance one’s knowledge and position are available within the clinical laboratory arena. By obtaining a specialist credential in chemistry, hematology or microbiology, a laboratorian has demonstrated advance knowledge and ability in their respective discipline. These specialist certifications open doors within and outside the laboratory profession and may lead to promotion. The specialist in blood banking credential is unique in that accredited training programs are available, some of which are affiliated with universities and graduate credit is granted for program completion. Other avenues available include pathologist assistants programs, diplomats in laboratory management and Master of Science degrees in clinical laboratory science. There are a number of choices available to achieve your professional goal. PMID:27683434

  4. Designing an autoverification system in Zagazig University Hospitals Laboratories: preliminary evaluation on thyroid function profile.

    PubMed

    Sediq, Amany Mohy-Eldin; Abdel-Azeez, Ahmad GabAllahm Hala

    2014-01-01

    The current practice in Zagazig University Hospitals Laboratories (ZUHL) is manual verification of all results for the later release of reports. These processes are time consuming and tedious, with large inter-individual variation that slows the turnaround time (TAT). Autoverification is the process of comparing patient results, generated from interfaced instruments, against laboratory-defined acceptance parameters. This study describes an autoverification engine designed and implemented in ZUHL, Egypt. A descriptive study conducted at ZUHL, from January 2012-December 2013. A rule-based system was used in designing an autoverification engine. The engine was preliminarily evaluated on a thyroid function panel. A total of 563 rules were written and tested on 563 simulated cases and 1673 archived cases. The engine decisions were compared to that of 4 independent expert reviewers. The impact of engine implementation on TAT was evaluated. Agreement was achieved among the 4 reviewers in 55.5% of cases, and with the engine in 51.5% of cases. The autoverification rate for archived cases was 63.8%. Reported lab TAT was reduced by 34.9%, and TAT segment from the completion of analysis to verification was reduced by 61.8%. The developed rule-based autoverification system has a verification rate comparable to that of the commercially available software. However, the in-house development of this system had saved the hospital the cost of commercially available ones. The implementation of the system shortened the TAT and minimized the number of samples that needed staff revision, which enabled laboratory staff to devote more time and effort to handle problematic test results and to improve patient care quality.

  5. Medical laboratory science and nursing students’ perception of academic learning environment in a Philippine university using Dundee Ready Educational Environment Measure (DREEM)

    PubMed Central

    2016-01-01

    Purpose This study aimed to compare the perception of the academic learning environment between medical laboratory science students and nursing students at Saint Louis University, Baguio City, Philippines. Methods A cross-sectional survey research design was used to measure the perceptions of the participants. A total of 341 students from the Department of Medical Laboratory Science, School of Natural Sciences, and the School of Nursing answered the Dundee Ready Education Environment Measure (DREEM) instrument from April to May 2016. Responses were compared according to course of study, gender, and year level. Results The total mean DREEM scores of the medical laboratory science students and nursing students did not differ significantly when grouped according to course of study, gender, or year level. Medical laboratory science students had significantly lower mean scores in the sub-domains ‘perception of learning’ and ‘perception of teaching.’ Male medical laboratory science students had significantly lower mean scores in the sub-domain ‘perception of learning’ among second year students. Medical laboratory science students had significantly lower mean scores in the sub-domain ‘perception of learning.’ Nursing students identified 7 problem areas, most of which were related to their instructors. Conclusion Medical laboratory science and nursing students viewed their academic learning environment as ‘more positive than negative.’ However, the relationship of the nursing instructors to their students needs improvement. PMID:27649901

  6. Medical laboratory science and nursing students' perception of academic learning environment in a Philippine university using Dundee Ready Educational Environment Measure (DREEM).

    PubMed

    Barcelo, Jonathan M

    2016-01-01

    This study aimed to compare the perception of the academic learning environment between medical laboratory science students and nursing students at Saint Louis University, Baguio City, Philippines. A cross-sectional survey research design was used to measure the perceptions of the participants. A total of 341 students from the Department of Medical Laboratory Science, School of Natural Sciences, and the School of Nursing answered the Dundee Ready Education Environment Measure (DREEM) instrument from April to May 2016. Responses were compared according to course of study, gender, and year level. The total mean DREEM scores of the medical laboratory science students and nursing students did not differ significantly when grouped according to course of study, gender, or year level. Medical laboratory science students had significantly lower mean scores in the sub-domains 'perception of learning' and 'perception of teaching.' Male medical laboratory science students had significantly lower mean scores in the sub-domain 'perception of learning' among second year students. Medical laboratory science students had significantly lower mean scores in the sub-domain 'perception of learning.' Nursing students identified 7 problem areas, most of which were related to their instructors. Medical laboratory science and nursing students viewed their academic learning environment as 'more positive than negative.' However, the relationship of the nursing instructors to their students needs improvement.

  7. Implementation of a rapid HIT immunoassay at a university hospital - Retrospective analysis of HIT laboratory orders in patients with thrombocytopenia.

    PubMed

    Black, Anne; Heimerl, Susanne; Oertli, Linnéa; Wilczek, Wolf; Greinacher, Andreas; Spannagl, Michael; Herr, Wolfgang; Hart, Christina

    2017-10-01

    Heparin-induced thrombocytopenia (HIT) is a rare cause of thrombocytopenia and a potentially life-threatening adverse drug reaction. Clinical overdiagnosis of HIT results in costly laboratory tests and anticoagulation. Criteria and algorithms for diagnosis are established, but their translation into clinical practice is still challenging. In a retrospective approach we studied all HIT related laboratory test requests within four years and evaluated data before (1st period, 24month) and after (2nd period, 24month) replacing particle gel immunoassay (PaGIA) and enzyme-linked immunosorbent assay (ELISA) by a chemiluminescent immunoassay (CLIA). HIT was confirmed by heparin-induced platelet activation (HIPA) test. Clinical pretest probability for HIT using an implemented simplified 4Ts score and platelet count were evaluated. Costs for laboratory tests and alternative anticoagulation were calculated. In 1850 patients with suspected HIT, 2327 laboratory orders were performed. In 87.2% of these orders an intermediate/high simplified 4Ts score was found. Thrombocytopenia was present in 87.1%. After replacing PaGIA and ELISA by CLIA the number of immunological and functional laboratory tests was reduced by 38.2%. The number of positive HIT immunoassays declined from 22.6% to 6.0%, while the number of positive HIPA tests among positive immunological tests increased by 19%. Altogether, acute HIT was confirmed in 59 patients. A decline in the use of alternative anticoagulants was observed in the 2nd period. Our study shows that in a university hospital setting HIT is well-known, but diagnosis requires a precise laboratory confirmation. Replacing PaGIA and ELISA by CLIA did not influence laboratory order behavior but results in reduced overall costs for laboratory diagnostics and alternative anticoagulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. 40 CFR 262.105 - What must be included in the laboratory environmental management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.105 What must be included in the laboratory environmental management plan? (a) Each University must include specific... laboratory environmental management plan? 262.105 Section 262.105 Protection of Environment ENVIRONMENTAL...

  9. Destination Mars Grand Opening

    NASA Image and Video Library

    2016-09-18

    Apollo 11 astronaut Buzz Aldrin, left and Erisa Hines of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, try out Microsoft HoloLens mixed reality headset during a preview of the new Destination: Mars experience at the Kennedy Space Center Visitor Complex. Destination: Mars gives guests an opportunity to “visit” several sites on Mars using real imagery from NASA’s Curiosity Mars Rover. Based on OnSight, a tool created by NASA’s Jet Propulsion Laboratory in Pasadena, California, the experience brings guests together with a holographic version of Aldrin and Curiosity rover driver Hines as they are guided to Mars using Microsoft HoloLens mixed reality headset. Photo credit: NASA/Charles Babir

  10. Animation of Panorama of Phoenix Landing Area Looking Southeast

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of panoramic images taken by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 15 (June 9, 2008), the 15th Martian day after landing. The panorama looks to the southeast and shows rocks casting shadows, polygons on the surface and as the image looks to the horizon, Phoenix's backshell gleams in the distance.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Surface Stereo Imager on Mars, Side View

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image is a view of NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) as seen by the lander's Robotic Arm Camera. This image was taken on the afternoon of the 116th Martian day, or sol, of the mission (September 22, 2008). The mast-mounted SSI, which provided the images used in the 360 degree panoramic view of Phoenix's landing site, is about 4 inches tall and 8 inches long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Martian Plain in Late Summer

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Mars Phoenix Lander acquired this view of the textured plain near the lander at about 11 a.m. local Mars solar time during the mission's 124th Martian day, or sol (Sept. 29, 2008).

    The image was taken through an infrared filter. The brighter patches are dustier than darker areas of the surface.

    The last signal from the lander came on Nov. 2, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Robotic Arm Camera Image of the South Side of the Thermal and Evolved-Gas Analyzer (Door TA4

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Evolved-Gas Analyzer (TEGA) instrument aboard NASA's Phoenix Mars Lander is shown with one set of oven doors open and dirt from a sample delivery. After the 'seventh shake' of TEGA, a portion of the dirt sample entered the oven via a screen for analysis. This image was taken by the Robotic Arm Camera on Sol 18 (June 13, 2008), or 18th Martian day of the mission.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Martian Arctic Landscape Panorama Video

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    Typical view if you were standing on Mars and slowly turned around for a look. Starting at the north, SSI sees its shadow and turns its head viewing solar arrays, the lander deck and landscape. Note very few rocks on the hummocky terrain and network of troughs, typical of polar surfaces here on Earth.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Martian Surface Beneath Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an image of the Martian surface beneath NASA's Phoenix Mars Lander. The image was taken by Phoenix's Robotic Arm Camera (RAC) on the eighth Martian day of the mission, or Sol 8 (June 2, 2008). The light feature in the middle of the image below the leg is informally called 'Holy Cow.' The dust, shown in the dark foreground, has been blown off of 'Holy Cow' by Phoenix's thruster engines.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Phoenix Makes an Impression on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the first impression dubbed Yeti and looking like a wide footprint -- made on the Martian soil by the Robotic Arm scoop on Sol 6, the sixth Martian day of the mission, (May 31, 2008).

    Touching the ground is the first step toward scooping up soil and ice and delivering the samples to the lander's experiments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. A Laboratory Safety Program at Delaware.

    ERIC Educational Resources Information Center

    Whitmyre, George; Sandler, Stanley I.

    1986-01-01

    Describes a laboratory safety program at the University of Delaware. Includes a history of the program's development, along with standard safety training and inspections now being implemented. Outlines a two-day laboratory safety course given to all graduate students and staff in chemical engineering. (TW)

  20. Implementation of a Project-Based Molecular Biology Laboratory Emphasizing Protein Structure-Function Relationships in a Large Introductory Biology Laboratory Course

    ERIC Educational Resources Information Center

    Treacy, Daniel J.; Sankaran, Saumya M.; Gordon-Messer, Susannah; Saly, Danielle; Miller, Rebecca; Isaac, R. Stefan; Kosinski-Collins, Melissa S.

    2011-01-01

    In introductory laboratory courses, many universities are turning from traditional laboratories with predictable outcomes to inquiry-inspired, project-based laboratory curricula. In these labs, students are allowed to design at least some portion of their own experiment and interpret new, undiscovered data. We have redesigned the introductory…

  1. Daytime Utilization of a University Observatory for Laboratory Instruction

    NASA Astrophysics Data System (ADS)

    Mattox, J. R.

    2006-08-01

    Scheduling convenience provides a strong incentive to fully explore effective utilization of educational observatories during daylight hours. I present two compelling daytime student activities that I developed at the Observatory at Fayetteville State University. My Introductory Astronomy Laboratory classes pursue these as separate investigations. My Physical Science classes complete both in a single lab period of 110 minutes duration. Both of these activities are also appropriate for High School student investigators, and could be used as demonstrations for younger students. Daylight Observation of Venus. With a clear sky, and when its elongation exceeds ~20˚, Venus is readily apparent in the daytime sky once a telescope is pointed at it. This is accomplished either with a digital pointing system, or with setting circles on a polar-aligned mount using the Sun to initialize the RA circle. Using the telescope pointing as a reference, it is also possible under optimal circumstances for students to see Venus in the daytime sky with naked eyes. Students are asked to write about the circumstances that made it possible to see Venus. Educational utilization of daytime observations of the Moon, Jupiter, Saturn, and the brightest stars are also discussed. Using a CCD Camera to Determine the Temperature of a Sunspot. After my students view the Sun with Eclipse Glasses and in projection using a 3-inch refractor, they analyze a CCD image of a sunspot (which they obtain if possible) to determine the ratio of its surface intensity relative to the normal solar surface. They then use the Stefan-Boltzmann law (usually with some coaching) to determine the sunspot temperature given the nominal surface temperature of the Sun. Appropriate safety precautions are presented given the hazards of magnified sunlight. Mitigation of dome seeing during daylight hours is discussed.

  2. JPL-20180430-JPLf-0001-Vice President Pence Visits NASA Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-30

    Vice President Mike Pence toured NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California on Saturday, April 28 with his wife, Karen, and their daughter, Charlotte. JPL is the birthplace of numerous past, present and future robotic missions. Pence saw and heard more about JPL missions, which support the nation’s goals of furthering exploration of the Moon and Mars. JPL Director Mike Watkins led the tour for Pence and his guests. Vice President Pence toured JPL’s Mission Control where engineers communicate with spacecraft across the solar system through NASA’s Deep Space Network. While there, Charlotte Pence uplinked commands to the Mars Curiosity rover to execute its next science activities. The signal took about seven minutes to reach the rover, which is about 80-million miles from Earth. Pence also saw the Spacecraft Assembly Facility, where the Mars 2020 mission hardware is being assembled in a giant “clean room.” Mars 2020 will not only look for signs of habitable conditions on Mars in the ancient past, but will also search for signs of past microbial life itself.

  3. A Laboratory Course in Technological Chemistry.

    ERIC Educational Resources Information Center

    Wiseman, P.

    1986-01-01

    Describes a laboratory course taught at the University of Manchester Institute of Science and Technology (United Kingdom) which focuses on the preparation, properties, and applications of end-use products of the chemical industry. Outlines laboratory experiments on dyes, fibers, herbicides, performance testing, antioxidants, and surface active…

  4. Chemistry in a Large, Multidisciplinary Laboratory.

    ERIC Educational Resources Information Center

    Lingren, Wesley E.; Hughson, Robert C.

    1982-01-01

    Describes a science facility built at Seattle Pacific University for approximately 70 percent of the capital cost of a conventional science building. The building serves seven disciplines on a regular basis. The operation of the multidisciplinary laboratory, special features, laboratory security, and student experience/reactions are highlighted.…

  5. MGS Contingency Science Passes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  6. Attitudes of Healthcare Students on Gross Anatomy Laboratory Sessions

    ERIC Educational Resources Information Center

    Kawashiro, Yukiko; Anahara, Reiko; Kohno, Toshihiko; Mori, Chisato; Matsuno, Yoshiharu

    2009-01-01

    At Chiba University, gross anatomy laboratory sessions ("laboratories") are required for physical therapy students. Though most physical therapy schools require their students to participate in laboratories so that they will better understand the structure of the human body, few data exist on the value of these laboratories specifically…

  7. Theory and laboratory astrophysics

    NASA Technical Reports Server (NTRS)

    Schramm, David N.; Mckee, Christopher F.; Alcock, Charles; Allamandola, Lou; Chevalier, Roger A.; Cline, David B.; Dalgarno, Alexander; Elmegreen, Bruce G.; Fall, S. Michael; Ferland, Gary J.

    1991-01-01

    Science opportunities in the 1990's are discussed. Topics covered include the large scale structure of the universe, galaxies, stars, star formation and the interstellar medium, high energy astrophysics, and the solar system. Laboratory astrophysics in the 1990's is briefly surveyed, covering such topics as molecular, atomic, optical, nuclear and optical physics. Funding recommendations are given for the National Science Foundation, NASA, and the Department of Energy. Recommendations for laboratory astrophysics research are given.

  8. Fire and Explosion Hazards Expected in a Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasool, Shireen R.; Al-Dahhan, Wedad; Al-Zuhairi, Ali Jassim

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript is the fifth in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. In this study, we summarize unsafe practices involving the improper installation of a Gas Chromatograph (GC) at an Iraqi university which, if not corrected, could have resulted in a dangerous fire and explosion. Wemore » summarize the identified infractions and highlight lessons learned. By openly sharing the experiences at the university involved, we hope to minimize the possibility of another researcher being injured due to similarly unsafe practices in the future.« less

  9. Rover Soil Experiments Near Yogi

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sojourner, while on its way to the rock Yogi, performed several soil mechanics experiments. Piles of loose material churned up from the experiment are seen in front of and behind the Rover. The rock Pop-Tart is visible near the front right rover wheel. Yogi is at upper right. The image was taken by the Imager for Mars Pathfinder.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  10. KSC-2011-2273

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  11. KSC-2011-2274

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  12. KSC-2011-2276

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., unveiled an inflatable, full-size model of the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  13. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  14. Marie Curie during ORT6

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Marie Curie sits on the lander petal prior to deployment during the pre launch Operations Readiness Test (ORT) 6.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over thenext ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  15. Marie Curie during ORT4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Marie Curie rover drives down the rear ramp during Operational Readiness Test (ORT) 4.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over thenext ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  16. Teaching Engineering Design in a Laboratory Setting

    ERIC Educational Resources Information Center

    Hummon, Norman P.; Bullen, A. G. R.

    1974-01-01

    Discusses the establishment of an environmental systems laboratory at the University of Pittsburgh with the support of the Sloan Foundation. Indicates that the "real world" can be brought into the laboratory by simulating on computers, software systems, and data bases. (CC)

  17. Laboratory-Directed Research and Development 2016 Summary Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear

  18. A professional development model for medical laboratory scientists working in the microbiology laboratory.

    PubMed

    Amerson, Megan H; Pulido, Lila; Garza, Melinda N; Ali, Faheem A; Greenhill, Brandy; Einspahr, Christopher L; Yarsa, Joseph; Sood, Pramilla K; Hu, Peter C

    2012-01-01

    The University of Texas M.D. Anderson Cancer Center, Division of Pathology and Laboratory Medicine is committed to providing the best pathology and medicine through: state-of-the art techniques, progressive ground-breaking research, education and training for the clinical diagnosis and research of cancer and related diseases. After surveying the laboratory staff and other hospital professionals, the Department administrators and Human Resource generalists developed a professional development model for Microbiology to support laboratory skills, behavior, certification, and continual education within its staff. This model sets high standards for the laboratory professionals to allow the labs to work at their fullest potential; it provides organization to training technologists based on complete laboratory needs instead of training technologists in individual areas in which more training is required if the laboratory needs them to work in other areas. This model is a working example for all microbiology based laboratories who want to set high standards and want their staff to be acknowledged for demonstrated excellence and professional development in the laboratory. The PDM model is designed to focus on the needs of the laboratory as well as the laboratory professionals.

  19. Monte Carlo simulation of neutron backscattering from concrete walls in the dense plasma focus laboratory of Bologna University.

    PubMed

    Frignani, M; Mostacci, D; Rocchi, F; Sumini, M

    2005-01-01

    Between 2001 and 2003 a 3.2 kJ dense plasma focus (DPF) device has been built at the Montecuccolino Laboratory of the Department of Energy, Nuclear and Environmental Control Engineering (DIENCA) of the University of Bologna. A DPF is a pulsed device in which deuterium nuclear fusion reactions can be obtained through the pinching effects of electromagnetic fields upon a dense plasma. The empirical scale law that governs the total D-D neutron yield from a single pulse of a DPF predicts for this machine a figure of approximately 10(7) fast neutrons per shot. The aim of the present work is to evaluate the role of backscattering of neutrons from the concrete walls surrounding the Montecuccolino DPF in total neutron yield measurements. The evaluation is performed by MCNP-5 simulations that are aimed at estimating the neutron spectra at a few points of interest in the laboratory, where neutron detectors will be placed during the experimental campaigns. Spectral information from the simulations is essential because the response of detectors is influenced by neutron energy. Comparisons are made with the simple r(-2) law, which holds for a DPF in infinite vacuum. The results from the simulations will ultimately be used both in the design and optimisation of the neutron detectors and in their final calibration and placement inside the laboratory.

  20. General Motors and the University of Michigan smart materials and structures collaborative research laboratory

    NASA Astrophysics Data System (ADS)

    Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.

    2007-04-01

    The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.

  1. University of Rochester, Laboratory for Laser Energetics

    NASA Astrophysics Data System (ADS)

    1987-01-01

    In FY86 the Laboratory has produced a list of accomplishments in which it takes pride. LLE has met every laser-fusion program milestone to date in a program of research for direct-drive ultraviolet laser fusion originally formulated in 1981. LLE scientists authored or co-authored 135 scientific papers during 1985 to 1986. The collaborative experiments with NRL, LANL, and LLNL have led to a number of important ICF results. The cryogenic target system developed by KMS Fusion for LLE will be used in future high-density experiments on OMEGA to demonstrate the compression of thermonuclear fuel to 100 to 200 times that of solid (20 to 40 g/cm) in a test of the direct-drive concept, as noted in the National Academy of Sciences' report. The excellence of the advanced technology efforts at LLE is illustrated by the establishment of the Ultrafast Science Center by the Department of Defense through the Air Force Office of Scientific Research. Research in the Center will concentrate on bridging the gap between high-speed electronics and ultrafast optics by providing education, research, and development in areas critical to future communications and high-speed computer systems. The Laboratory for Laser Energetics continues its pioneering work on the interaction of intense radiation with matter. This includes inertial-fusion and advanced optical and optical electronics research; training people in the technology and applications of high-power, short-pulse lasers; and interacting with the scientific community, business, industry, and government to promote the growth of laser technology.

  2. Mosaic of Jupiter's Great Red Spot (Methane Filter)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Great Red Spot of Jupiter as seen through the methane (886 nm) filter of the Galileo imaging system. The image is a mosaic of six images that have been map-projected to a uniform grid of latitude and longitude. North is at the top. The mosaic was taken over a 76 second interval beginning at universal time 14 hours, 33 minutes, 22 seconds, on June 26, 1996. The Red Spot is 20,000 km long and has been followed by observers on Earth since the telescope was invented 300 years ago. It is a huge storm made visible by variations in the composition of the cloud particles. The Red Spot is not unique, but is simply the largest of a class of long-lived vortices, some of which are visible in the lower part of the image. The range is 1.46 million kilometers.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA s Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  3. Laboratory errors and patient safety.

    PubMed

    Miligy, Dawlat A

    2015-01-01

    Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that

  4. An Investigation into Prospective Science Teachers' Attitudes towards Laboratory Course and Self-Efficacy Beliefs in Laboratory Use

    ERIC Educational Resources Information Center

    Aka, Elvan Ince

    2016-01-01

    The aim of the current study is to identify the attitudes towards the laboratory course and self-efficacy beliefs in the laboratory use of prospective teachers who are attending Gazi University Gazi Education Faculty Primary Education Science Teaching program, and to investigate the relationship between the attitudes and self-efficacy beliefs.…

  5. Assessing the Use of Smartphone in the University General Physics Laboratory

    ERIC Educational Resources Information Center

    Shi, Wei-Zhao; Sun, Jiajun; Xu, Chong; Huan, Weiliang

    2016-01-01

    In this study, smartphone was used to alter the traditional procedure by involving students in active learning experiences prior to the laboratory meeting. The researcher surveyed students' view on the effect of using smartphone to enhance learning in the general physics laboratory. The use of smartphone was evaluated by having 120 students who…

  6. Wundt's laboratory at Leipzig in 1891.

    PubMed

    Nicolas, S; Ferrand, L

    1999-08-01

    This article describes Wundt's laboratory at Leipzig in 1891 as viewed by a Belgian psychologist, J.J. Van Biervliet (1859-1945). Although few French-speaking psychologists worked in Wundt's laboratory, several of those who did reports wrote on how students were trained there. Van Biervliet decided to visit Wundt's laboratory at Leipzig in order to strengthen the foundation of his own laboratory at the University of Ghent and to become familiar with Wundt's experimental techniques. A translation of J.J. Van Biervliet's (1892) article "Experimental Psychology. Wundt's Institute at Leipzig" is presented here as one of the first and most complete articles in French describing the functioning of Wundt's laboratory.

  7. Environmental Testing in Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Inside a thermal vacuum at Lockheed Martin Space Systems, Denver, technicians prepare NASA's Phoenix Mars Lander for environmental testing.

    The Phoenix lander was encapsulated in its aeroshell -- which included both the back shell and heat shield -- as it was subjected to extreme cold and heat in a vacuum, space-like condition. The spacecraft undergoes extensive environmental testing to confirm Phoenix will perform in the extreme conditions it will experience during its trip from Earth to Mars, during its arrival and landing, and while it works on the surface of Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  8. Illuminating the Universe's Ignition

    DOE PAGES

    Gedenk, Eric

    2016-06-24

    This paper tells the story of how a research team based at the University of Texas at Austin used supercomputing resources at the US Department of Energy's (DOE's) Oak Ridge National Laboratory to create the first fully coupled simulation of the reionization of our universe's local group. The team's models helped researchers understand how reionization helped form the universe as we know it today, predict the impact of dwarf galaxies on reionization, and set the stage for simulating larger volumes of the universe in greater detail.

  9. Multidimensional Screening as a Pharmacology Laboratory Experience.

    ERIC Educational Resources Information Center

    Malone, Marvin H.; And Others

    1979-01-01

    A multidimensional pharmacodynamic screening experiment that addresses drug interaction is included in the pharmacology-toxicology laboratory experience of pharmacy students at the University of the Pacific. The student handout with directions for the procedure is reproduced, drug compounds tested are listed, and laboratory evaluation results are…

  10. The Exercise Physiology Laboratory--A Source of Health Promotion.

    ERIC Educational Resources Information Center

    Norris, William; Norred, Robert

    1988-01-01

    A visit to the Exercise Physiology Laboratory at the University of Tennessee is part of a physical education class required of all undergraduate students. The laboratory demonstration stimulates student interest and enrollment in physical education. Benefits to students, the laboratory, and the school are described. (MT)

  11. Web-Based Evaluation System for a Problem-Based Laboratory

    ERIC Educational Resources Information Center

    Azli, Naziha Ahmadi; Othman, Mohd Shahizan

    2008-01-01

    The Faculty of Electrical Engineering, University Technology Malaysia is currently moving towards a Problem-Based Laboratory implementation rather than the conventional instructional-based laboratory for final year students. The laboratory has commenced session with about 500 students' registration in the 2007/08/1. The Problem-Based Laboratory…

  12. First TEGA Oven is Ready to Accept a Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Evolved Gas Analyzer instrument has been checked out and has been approved to accept the sample from the location informally called 'Baby Bear'. Although the doors did not fully open, tests have shown that enough sample will get in to fill the tiny oven. This image was taken on the eighth day of the Mars mission, or Sol 8 (June 2, 2008) by the Robotic Arm Camera aboard NASA's Phoenix Mars Lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Nighttime Clouds in Martian Arctic (Accelerated Movie)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    An angry looking sky is captured in a movie clip consisting of 10 frames taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander.

    The clip accelerates the motion. The images were take around 3 a.m. local solar time at the Phoenix site during Sol 95 (Aug. 30), the 95th Martian day since landing.

    The swirling clouds may be moving generally in a westward direction over the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Fish Eye View of Horizon and Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    North is up (12 o'clock position) in this seam-corrected 360 degree polar projection using downsampled images from sols 1 and 3. Seam boundaries show different times of day, e.g. 9 o'clock (west) position shows scoop of RA, 7 o'clock view shows the MET mast with telltale (mast contains three temperature sensors).

    Note: hummocky terrain with troughs, typical of Earth polar terrain where we would see permafrost and ice beneath surface.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Animated Optical Microscope Zoom in from Phoenix Launch to Martian Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animated camera view zooms in from NASA's Phoenix Mars Lander launch site all the way to Phoenix's Microscopy and Electrochemistry and C Eonductivity Analyzer (MECA) aboard the spacecraft on the Martian surface. The final frame shows the soil sample delivered to MECA as viewed through the Optical Microscope (OM) on Sol 17 (June 11, 2008), or the 17th Martian day.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. First Dodo Trench with White Layer Visible in Dig Area

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These color images were taken by NASA's Phoenix Mars Lander's Stereo Surface Imager on the ninth Martian day of the mission, or Sol 9 (June 3, 2008). The images of the trench shows a white layer that has been uncovered by the Robotic Arm (RA) scoop and is now visible in the wall of the trench. This trench was the first one dug by the RA to understand the Martian soil and plan the digging strategy.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Safety in the Chemical Laboratory: Flood Control.

    ERIC Educational Resources Information Center

    Pollard, Bruce D.

    1983-01-01

    Describes events leading to a flood in the Wehr Chemistry Laboratory at Marquette University, discussing steps taken to minimize damage upon discovery. Analyzes the problem of flooding in the chemical laboratory and outlines seven steps of flood control: prevention; minimization; early detection; stopping the flood; evaluation; clean-up; and…

  18. Solution Techniques for Large Eigenvalue Problems in Structural Dynamics.

    DTIC Science & Technology

    1979-06-01

    Pasadena, California 91109 Washington, D.C. 20553 Professor Paul M. Naghdi National Academy of Sciences University of California National Research...Engineering Washington, D.C. 20064 : S oProfessor Burt Paul University of Pennsylvania Dr. Samuel B. Batdorf Towns School of Civil and University of...Universities (Con’t) Dr. V. K. Varadan Professor V. H. Neubert Ohio State University Research Foundation Pennsylvania State University Department of

  19. Calgary Laboratory Services

    PubMed Central

    2015-01-01

    Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million) and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context. PMID:28725754

  20. Enhancing the Bandwidth Utilization in the Millimeter Wave Band and to Modernize the Digital Signal Processing Laboratory at the California State University, Bakersfield

    DTIC Science & Technology

    2016-03-16

    PIs at Boise State University. . . . 39 3.16 Phase noise measurement results via mm-wave test bed. . . . . . . . 40 iv Chapter 1 Foreword WIRELESS...enabling the PI to acquire various testing 1 and measurement equipment that can be used to enhance instructional, research, and outreach activities at...etc. Although the Digital Signal Processing and Communication Laboratory (DSPCL) at CSUB was equipped with basic testing and measurement equipment and

  1. Electromedical devices test laboratories accreditation

    NASA Astrophysics Data System (ADS)

    Murad, C.; Rubio, D.; Ponce, S.; Álvarez Abri, A.; Terrón, A.; Vicencio, D.; Fascioli, E.

    2007-11-01

    In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University.

  2. A Laboratory Course for Teaching Laboratory Techniques, Experimental Design, Statistical Analysis, and Peer Review Process to Undergraduate Science Students

    ERIC Educational Resources Information Center

    Gliddon, C. M.; Rosengren, R. J.

    2012-01-01

    This article describes a 13-week laboratory course called Human Toxicology taught at the University of Otago, New Zealand. This course used a guided inquiry based laboratory coupled with formative assessment and collaborative learning to develop in undergraduate students the skills of problem solving/critical thinking, data interpretation and…

  3. University Nanosatellite Program ION-F Constellation

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Fullmer, Rees; Redd, Frank

    2002-01-01

    The Space Engineering program at Utah State University has developed a small satellite, known as USUSat, under funding from AFOSR, AFRL, NASA and Utah State University's Space Dynamics Laboratory. This satellite was designed and significantly manufactured by students in the Mechanical and Aerospace Engineering and the Electrical and Computer Engineering Departments within the College of Engineering. USUSat is one of three spacecraft being designed for the Ionospheric Observation Nanosatellite Formation (ION- F). This formation comprises three 15 kg. spacecraft designed and built in cooperation by Utah State University, University of Washington, and Virginia Polytechnic Institute. The ION-F satellites are being designed and built by students at the three universities, with close coordination to insure compatibility for launch, deployment, and the formation flying mission. The JON-F mission is part of the U.S. Air Force Research Laboratory (AFRL) University Nanosatellite Program, which provides technology development and demonstrations for the TechSat2l Program. The University Nanosatellite Program involves 10 universities building nanosatellites for a launch in 2004 on two separate space shuttle missions. Additional support for the formation flying demonstration has been provided by NASA's Goddard Space Flight Center.

  4. Connecting QGP-Heavy Ion Physics to the Early Universe

    NASA Astrophysics Data System (ADS)

    Rafelski, Johann

    2013-10-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  5. Brain-computer interaction research at the Computer Vision and Multimedia Laboratory, University of Geneva.

    PubMed

    Pun, Thierry; Alecu, Teodor Iulian; Chanel, Guillaume; Kronegg, Julien; Voloshynovskiy, Sviatoslav

    2006-06-01

    This paper describes the work being conducted in the domain of brain-computer interaction (BCI) at the Multimodal Interaction Group, Computer Vision and Multimedia Laboratory, University of Geneva, Geneva, Switzerland. The application focus of this work is on multimodal interaction rather than on rehabilitation, that is how to augment classical interaction by means of physiological measurements. Three main research topics are addressed. The first one concerns the more general problem of brain source activity recognition from EEGs. In contrast with classical deterministic approaches, we studied iterative robust stochastic based reconstruction procedures modeling source and noise statistics, to overcome known limitations of current techniques. We also developed procedures for optimal electroencephalogram (EEG) sensor system design in terms of placement and number of electrodes. The second topic is the study of BCI protocols and performance from an information-theoretic point of view. Various information rate measurements have been compared for assessing BCI abilities. The third research topic concerns the use of EEG and other physiological signals for assessing a user's emotional status.

  6. Lowering SAM Instrument into Curiosity Mars Rover

    NASA Image and Video Library

    2011-01-18

    In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.

  7. Installing SAM Instrument into Curiosity Mars Rover

    NASA Image and Video Library

    2011-01-18

    In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.

  8. Wheel Installation

    NASA Image and Video Library

    2010-07-07

    In this picture, the Curiosity rover sports a set of six new wheels. The wheels were installed on June 28 and 29 in the Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  9. Surrogate Robot

    NASA Image and Video Library

    2014-08-21

    The Surrogate robot Surge, built at NASA Jet Propulsion Laboratory in Pasadena, CA., is being developed in order to extend humanity reach into hazardous environments to perform tasks such as using environmental test equipment.

  10. [Trend survey of ocular infections with bacteria at Toyama University Hospital over the past six years--from the standpoint of laboratory examination].

    PubMed

    Kubota, Tomomi; Hayashi, Shirou; Niimi, Hideki; Kitajima, Isao

    2012-07-01

    Specimens of bacterial ocular infections are frequently received in the clinical laboratory. However, a comprehensive trend survey of ocular infections with bacteria is very rare. Our objective is to understand the current tendency of ocular infections with bacteria in patients at Toyama University Hospital from the standpoint of laboratory examination. We studied 263 cases of ocular infection with bacteria diagnosed at Toyama University Hospital from January 2006 to December 2011. 123 were male and 140 were female, with a mean age of 61.2(0-98) years. Specimens were subjected to direct microscopy and culture. Cultures were positive in 174(66.2%) patients. The most common bacterial isolate was Staphylococcus (28.1%), followed by Corynebacterium (19.3%), Streptococcus (9.3%), and Propionibacterium (8.6%). MRSA accounted for 18.8% of all S. aureus isolates, and has increased in recent years. The number of bacteria detected was larger in March, June, July, August, and October. Age distribution indicated that around 70% of bacterial isolates were detected from patients over 60 years old. The most common specimen of ocular infections with bacteria was eye discharge (detection rate; 87.8%), followed by corneal scraping(41%), aqueous humor (19%), and vitreous body (27%). Nearly 80% of bacterial isolates were detected from patients with keratitis, endophthalmitis, dacryocystitis, and conjunctivitis. As for the disease specific detection rate, endophthalmitis was very low (38.3%). The detection rate by years indicated that the way doctors pick up the specimens greatly affects the detection rate. Based on this survey, we need close cooperation with medical doctors concerning laboratory examination in ocular infection with bacteria, and we must improve the detection sensitivity of specimens from patients with endophthalmitis.

  11. District, state or regional veterinary diagnostic laboratories.

    PubMed

    Gosser, H S; Morehouse, L G

    1998-08-01

    The district, regional or state laboratory is the local laboratory to which veterinarian practitioners usually submit samples, and consequently these laboratories are usually the first to observe a suspected disease problem. In most countries, these laboratories are under the jurisdiction of the State or region in which they are located. In the United States of America (USA), most veterinary diagnostic laboratories are State-associated and operate under the aegis of either the State Department of Agriculture or a university. The national laboratory provides reference assistance to the State laboratories. In the USA, the national Laboratory (the National Veterinary Services Laboratories) acts as a consultant to confirm difficult diagnoses and administer performance tests for State-associated laboratories. District, state or regional laboratories need to share information regarding technological advances in diagnostic procedures. This need was met in the USA by the formation of the American Association of Veterinary Laboratory Diagnosticians (AAVLD) in the late 1950s. Another requirement of district, state or regional diagnostic laboratories is a method to confirm quality assurance, which was fulfilled in the USA by an accreditation programme established through the AAVLD. The Accreditation Committee evaluates laboratories (on request) in terms of organisation, personnel, physical facilities and equipment, records, finance and budget. Those laboratories which meet the standards as established in the 'Essential Requirements for Accreditation' are given accreditation status, which indicates that they have the expertise and facilities to perform tests on food-producing animals for shipment in national or international commerce and on companion, laboratory or zoo animals. While confidentiality of test records is most important, it is becoming necessary to release certain types of animal disease test information if a country is to participate in the exportation of animals

  12. Frequent Questions About Managing Hazardous Waste at Academic Laboratories

    EPA Pesticide Factsheets

    FAQs about Alternative Requirements for Hazardous Waste Determination and Accumulation of Unwanted Material for Laboratories Owned by Colleges and Universities and Other Eligible Academic Entities Formally Affiliated with Colleges and Universities.

  13. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Director of NASA's Planetary Science Division, Jim Green, is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  15. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  16. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, center row, calls out the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  17. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini-Huygens spacecraft is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  18. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    director of NASA's Planetary Science Division, Jim Green answers questions a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans speaks with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, speaks to NASA Social attendees about the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA JPL digital and social media lead Stephanie Smith, introduces technical producer for NASA's Eyes at JPL, Jason Craig, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Director of NASA's Planetary Science Division, Jim Green, speaks to NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees film director of NASA's Planetary Science Division, Jim Green as he discusses the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. The Influence of Laboratory Safety on Capital Planning.

    ERIC Educational Resources Information Center

    Francis, Robert A.

    1980-01-01

    Discusses state and federal legislation concerning the handling of dangerous materials and its impact on the design of college and university buildings. Lists federal legislation affecting laboratory safety, the objectives of each act, and the influence of each act on laboratory safety. (IRT)

  7. Virtual Instruction: A Qualitative Research Laboratory Course

    ERIC Educational Resources Information Center

    Stadtlander, Lee M.; Giles, Martha J.

    2010-01-01

    Online graduate programs in psychology are becoming common; however, a concern has been whether instructors in the programs provide adequate research mentoring. One issue surrounding research mentoring is the absence of research laboratories in the virtual university. Students attending online universities often do research without peer or lab…

  8. Laboratory Astrophysics White Paper: Summary of Laboratory Astrophysics Needs

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Laboratory Astrophysics Workshop (NASA LAW) met at NASA Ames Research Center from 1-3 May 2002 to assess the role that laboratory astrophysics plays in the optimization of NASA missions, both at the science conception level and at the science return level. Space missions provide understanding of fundamental questions regarding the origin and evolution of galaxies, stars, and planetary systems. In all of these areas the interpretation of results from NASA's space missions relies crucially upon data obtained from the laboratory. We stress that Laboratory Astrophysics is important not only in the interpretation of data, but also in the design and planning of future missions. We recognize a symbiosis between missions to explore the universe and the underlying basic data needed to interpret the data from those missions. In the following we provide a summary of the consensus results from our Workshop, starting with general programmatic findings and followed by a list of more specific scientific areas that need attention. We stress that this is a 'living document' and that these lists are subject to change as new missions or new areas of research rise to the fore.

  9. KSC-2011-2275

    NASA Image and Video Library

    2011-03-11

    ORLANDO, Fla. – Robotics Engineer Michael Garrett from NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., talks about the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. JPL unveiled an inflatable, full-size model of the rover at the competition. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson

  10. Sojourner near the Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Sojourner rover was taken near the end of daytime operations on Sol 42. The rover is between the rocks 'Wedge' (left) and 'Flute Top' (right). Other rocks visible include 'Flat Top' (behind Flute Top) and those in the Rock Garden, at the top of the frame. The cylindrical object extending from the back end of Sojourner is the Alpha Proton X-Ray Spectrometer.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. RoboSimian to the Rescue

    NASA Image and Video Library

    2013-07-03

    This artist concept depicts RoboSimian, a disaster-relief and -mitigation robot, grasping the rung of a ladder. RoboSimian is an ape-like robot designed and built at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  12. Curiosity at Center of Attention During Test

    NASA Image and Video Library

    2010-07-29

    Technicians and engineers in clean-room garb monitor the first drive test of NASA Curiosity rover, on July 23, 2010. Technicians and engineers conducted the drive test at the Jet Propulsion Laboratory in Pasadena, Calif.

  13. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Director of NASA's Jet Propulsion Laboratory, Michael Watkins speaks during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Duane Roth, of Cassini's navigation team, left, speaks with director of NASA's Jet Propulsion Laboratory, Michael Watkins, right, after Cassini's mission was declared over, Friday, Sept. 15, 2017 in mission control at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  15. The Virtual Robotics Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Love, L.J.

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well asmore » many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.« less

  16. Decoding Student Satisfaction: How to Manage and Improve the Laboratory Experience

    ERIC Educational Resources Information Center

    Nikolic, Sasha; Ritz, Christian; Vial, Peter James; Ros, Montserrat; Stirling, David

    2015-01-01

    The laboratory plays an important role in teaching engineering skills. An Electrical Engineering department at an Australian University implemented a reform to monitor and improve student satisfaction with the teaching laboratories. A Laboratory Manager was employed to oversee the quality of 27 courses containing instructional laboratories.…

  17. [Industry-Academia Collaboration in the Clinical Laboratory Field: Chairmen's Introductory Remarks].

    PubMed

    Inaba, Tohru; Ikemoto, Toshiyuki

    2016-01-01

    Industry-academia collaboration has become essential in contemporary medicine. Therefore, many institutes including university corporations have promoted the establishment of an endowed chair and/or performed collaborative research. This symposium was held to overview the present status of industry-academia collaboration in the clinical laboratory field. As a representative of the industry, Mr. Taniguchi (Sysmex) presented the development process of M2BP Glycosylation Isomer, a new marker for liver fibrosis. Mr. Saitoh (Horiba) introduced the achievements of joint collaborative research with Kyoto Prefectural University of Medicine, especially the practical realization of an automated hematology analyzer capable of simultaneously measuring C-reactive protein. Mr. Setoyama (LSI Medience) presented on the characteristic collaboration between academia and commercial laboratories such as Tsukuba Medical Laboratory of Education and Research (TMER). On the other hand, as a representative of academia, Associate Prof. Imai (Kyoto Prefectural University of Medicine) summarized the necessity of clinical laboratories spread regenerative medicine. Finally, Prof. Koshiba (Hyogo College of Medicine) presented on the industry-academia collaboration in routine laboratory work in his institute.

  18. Extratropical Cyclone

    Atmospheric Science Data Center

    2013-04-16

    ... using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  19. Voyager Testing

    NASA Image and Video Library

    2017-07-05

    This image shows one of the Voyagers in the 25-foot space simulator chamber at NASA's Jet Propulsion Laboratory, Pasadena, California. The photo is dated April 27, 1977. https://photojournal.jpl.nasa.gov/catalog/PIA21737

  20. Self-Portrait of Curiosity Stunt Double

    NASA Image and Video Library

    2012-12-11

    Camera and robotic-arm maneuvers for taking a self-portrait of the NASA Curiosity rover on Mars were checked first, at NASA Jet Propulsion Laboratory in Pasadena, Calif., using the main test rover for the Curiosity.

  1. Curiosity on Tilt Table with Mast Up

    NASA Image and Video Library

    2011-03-25

    The Mast Camera Mastcam on NASA Mars rover Curiosity has two rectangular eyes near the top of the rover remote sensing mast. This image shows Curiosity on a tilt table NASA Jet Propulsion Laboratory, Pasadena, California.

  2. Laboratory Particle Velocity Experiments on (JVE) Analog Rock

    DTIC Science & Technology

    1990-10-01

    1620 Dr. Richard LaCoss Prof. William Menke MIT-Lincoln Laboratory Lamont-Doherty Geological Observatory M-200B of Columbia University P. 0. Box 73...Building #77 University Park University of Arizona Los Angeles, CA 90089-0741 Tucson, AZ 85721 Prof. Christopher H. Scholz Dr. William Wortman Lamont...Stt"d University 11800 Sunrise Valley Drive, Suite 1212 Stanfora, CA 94305 Reston, VA 22091 Mr William J. Best Prof. Robert W. Clayton 907 Westwood

  3. Laboratory medicine education in Lithuania.

    PubMed

    Kucinskiene, Zita Ausrele; Bartlingas, Jonas

    2011-01-01

    In Lithuania there are two types of specialists working in medical laboratories and having a university degree: laboratory medicine physicians and medical biologists. Both types of specialists are officially being recognized and regulated by the Ministry of Health of Lithuania. Laboratory medicine physicians become specialists in laboratory medicine after an accredited 4-year multidisciplinary residency study program in Laboratory Medicine. The residency program curriculum for laboratory medicine physicians is presented. On December 9, 2009 the Equivalence of Standards for medical specialists was accepted and Lithuanian medical specialists in Clinical Chemistry and Laboratory Medicine can now apply for EC4 registration. Medical biologists become specialists in laboratory medicine after an accredited 2-year master degree multidisciplinary study program in Medical Biology, consisting of 80 credits. Various postgraduate advanced training courses for the continuous education of specialists in laboratory medicine were first introduced in 1966. Today it covers 1-2-week courses in different subspecialties of laboratory medicine. They are obligatory for laboratory medicine physicians for the renewal of their license. It is not compulsory for medical biologists to participate in these courses. The Centre of Laboratory Diagnostics represents a place for the synthesis and application of the basic sciences, the performance of research in various fields of laboratory medicine, as well as performance of thousands of procedures daily and provision of specific teaching programs.

  4. Oregon Fires

    Atmospheric Science Data Center

    2014-05-15

    ... were aided by earlier dry conditions and fed by heavy fuel loads, regeneration timbers, and large tracts of beetle-killed dead woods. ... path 44. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ... MISR Team. Text acknowledgment: Clare Averill (Raytheon/Jet Propulsion Laboratory). Animation acknowledgment: Michael Garay (UCLA/Jet ...

  5. The National Program of Educational Laboratories. Final Report.

    ERIC Educational Resources Information Center

    Chase, Francis S.

    This report presents results of a critical analysis of 20 regional educational laboratories and nine university research and development centers established under ESEA Title IV. Observations, supported by specific examples, are made concerning the laboratories and centers and deal with their roles, programs definitions, impact on educational…

  6. In the physics class: university physics students' enactment of class and gender in the context of laboratory work

    NASA Astrophysics Data System (ADS)

    Danielsson, Anna T.

    2014-06-01

    This article explores how the doing of social class and gender can intersect with the learning of science, through case studies of two male, working-class university students' constitutions of identities as physics students. In doing so, I challenge the taken-for-granted notion that male physics students have an unproblematic relation to their chosen discipline, and nuance the picture of how working-class students relate to higher education by the explicit focus on one disciplinary culture. Working from the perspective of situated learning theory, the interviews with the two male students were analysed for how they negotiated the practice of the physics student laboratory and their own classed and gendered participation in this practice. By drawing on the heterogeneity of the practice of physics the two students were able to use the practical and technological aspects of physics as a gateway into the discipline. However, this is not to say that their participation in physics was completely frictionless. The students were both engaged in a continuous negotiation of how skills they had learned to value in the background may or may not be compatible with the ones they perceived to be valued in the university physicist community.

  7. Environmental Literacy and Action at Tufts University.

    ERIC Educational Resources Information Center

    Creighton, Sarah Hammond; Cortese, Anthony D.

    1992-01-01

    In 1990, Tufts University (Massachusetts) became the first major university to establish environmental education and protection as institutional priorities. The day-to-day environmental impacts of a university make it an ideal laboratory for exploring new ways to reduce hazards, improve efficiency, reuse and recycle waste, and develop incentives…

  8. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Weck, Phillippe F. (Editor); Kwong, Victor H. S. (Editor); Salama, Farid (Editor)

    2006-01-01

    This report is a collection of papers presented at the 2006 NASA Workshop on Laboratory Astrophysics held in the University of Nevada, Las Vegas (UNLV) from February 14 to 16, 2006. This workshop brings together producers and users of laboratory astrophysics data so that they can understand each other's needs and limitations in the context of the needs for NASA's missions. The last NASA-sponsored workshop was held in 2002 at Ames Research Center. Recent related meetings include the Topical Session at the AAS meeting and the European workshop at Pillnitz, Germany, both of which were held in June 2005. The former showcased the importance of laboratory astrophysics to the community at large, while the European workshop highlighted a multi-laboratory approach to providing the needed data. The 2006 NASA Workshop on Laboratory Astrophysics, sponsored by the NASA Astrophysics Division, focused on the current status of the field and its relevance to NASA. This workshop attracted 105 participants and 82 papers of which 19 were invited. A White Paper identifying the key issues in laboratory astrophysics during the break-out sessions was prepared by the Scientific Organizing Committee, and has been forwarded to the Universe Working Group (UWG) at NASA Headquarters. This White Paper, which represented the collective inputs and opinions from experts and stakeholders in the field of astrophysics, should serve as the working document for the future development of NASA's R&A program in laboratory astrophysics.

  9. Hurricane Jeanne

    Atmospheric Science Data Center

    2013-04-19

    ... view. The cloud height map was produced by automated computer recognition of the distinctive spatial features between images ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  10. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Multi-layer Clouds Over the South Indian Ocean     View Larger Image ... System-2 path 155. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  11. Mystery #25

    Atmospheric Science Data Center

    2016-12-22

    ... lies a World Heritage Site surrounded by water. What location is shown in this image?   Mystery Solved ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  12. Examining Student Outcomes in University Computer Laboratory Environments: Issues for Educational Management

    ERIC Educational Resources Information Center

    Newby, Michael; Marcoulides, Laura D.

    2008-01-01

    Purpose: The purpose of this paper is to model the relationship between student performance, student attitudes, and computer laboratory environments. Design/methodology/approach: Data were collected from 234 college students enrolled in courses that involved the use of a computer to solve problems and provided the laboratory experience by means of…

  13. Evaluating Astronomy Laboratories

    NASA Astrophysics Data System (ADS)

    Zirbel, E. L.

    2002-12-01

    A set of non-traditional astronomy laboratories for non-science majors will be presented along with evaluations of lab technicians (these labs were originally developed at the College of Staten Island of the City University of New York). The goal of these labs is twofold: (a) to provide the students with hands-on experiences of scientific methodology and (b) to provoke critical thinking. Because non-science majors are often rather resistant to learning the relevant methodology - and especially to thinking critically - this manual is structured differently. It does not only provide traditional cook-book recipes but also contains several leading questions to make the students realize why they are doing what. The students are encouraged to write full sentences and explain how they reach which conclusions. This poster summarizes the experiences of the laboratory assistants that worked with the instructor and presents how they judge the effectiveness of the laboratories.

  14. Spectral Discrimination between Explosions and Earthquakes in Central Eurasia

    DTIC Science & Technology

    1990-08-01

    Maxwell Laboratory Chestnut Hill, MA 02167 P.O. Box 1620 La Jolla, CA 92038-1620 Dr. Richard LaCoss Prof. William Menke MIT-Lincoln Laboratory Lamont...Reston, VA 22091 Mr. William J. Best Prof. Robert W. Clayton 907 Westwood Drive Seismological Laboratory Vienna, VA 22180 Division of Geological...Planetary Sciences California Institute of Technology Pasadena, CA 91125 Dr. N. Biswas Prof. F. A. Dahlen Geophysical Institute Geological and

  15. Biomedical research, development, and engineering at the Johns Hopkins University Applied Physics Laboratory. Annual report 1 October 1978-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less

  16. SAFETY IN THE DESIGN OF SCIENCE LABORATORIES AND BUILDING CODES.

    ERIC Educational Resources Information Center

    HOROWITZ, HAROLD

    THE DESIGN OF COLLEGE AND UNIVERSITY BUILDINGS USED FOR SCIENTIFIC RESEARCH AND EDUCATION IS DISCUSSED IN TERMS OF LABORATORY SAFETY AND BUILDING CODES AND REGULATIONS. MAJOR TOPIC AREAS ARE--(1) SAFETY RELATED DESIGN FEATURES OF SCIENCE LABORATORIES, (2) LABORATORY SAFETY AND BUILDING CODES, AND (3) EVIDENCE OF UNSAFE DESIGN. EXAMPLES EMPHASIZE…

  17. Willow Run Laboratories: Separating from the University of Michigan

    ERIC Educational Resources Information Center

    Walsh, John

    1972-01-01

    Outlines the reasons for, and the problems involved in, separation of a research center from the University of Michigan in order to become an independent research organization contracting for private and military research. (AL)

  18. Von Kármán between Aachen and Pasadena

    NASA Astrophysics Data System (ADS)

    Krause, Egon; Kalkmann, Ulrich

    2013-05-01

    In the Introduction the reader is referred back to the academic ceremonials held after Theodore von Kármán's death in Aachen in May 1963. His work as the first director of the Aerodynamisches Institut (Institute of Aerodynamics) of the RWTH Aachen University of Technology from 1913 on and his initiative to re-establish international cooperation after World War I, resulting in the International Union of Theoretical and Applied Mechanics (IUTAM), are commented on. The following chapter describes von Kármán's relation to his former teacher Ludwig Prandtl. Some of von Kármán's scientific contributions during his time in Aachen are briefly reviewed. Thereafter, his first contacts to the California Institute of Technology are covered. Finally, the scientific and political circumstances, which led to von Kármán's decision to leave Germany in the early thirties, are elucidated in some detail. The English translation of the titles of the Aachen papers is given in Appendix I.

  19. Modernisation of the intermediate physics laboratory

    NASA Astrophysics Data System (ADS)

    Kontro, Inkeri; Heino, Olga; Hendolin, Ilkka; Galambosi, Szabolcs

    2018-03-01

    The intermediate laboratory courses at the Department of Physics, University of Helsinki, were reformed using desired learning outcomes as the basis for design. The reformed laboratory courses consist of weekly workshops and small-group laboratory sessions. Many of the laboratory exercises are open-ended and have several possible ways of execution. They were designed around affordable devices, to allow for the purchase of multiple sets of laboratory equipment. This allowed students to work on the same problems simultaneously. Thus, it was possible to set learning goals which build on each other. Workshop sessions supported the course by letting the students solve problems related to conceptual and technical aspects of each laboratory exercise. The laboratory exercises progressed biweekly to allow for iterative problem solving. Students reached the learning goals well and the reform improved student experiences. Neither positive or negative changes in expert-like attitudes towards experimental physics (measured by E-CLASS questionnaire) were observed.

  20. Nonlocal Continuum Theory for Dislocation and Fracture.

    DTIC Science & Technology

    1984-04-01

    Pasadena, California 91109 Washington, D.C. 20553 Professor Paul M. Naghdi National Academy of Sciences University of California National Research...Burt Paul University of Pennsylvania Dr. Samuel B. Batdorf Towne School of Civil and University of California Mechanical Engineering School of...Pittsburgh, Pennsylvania 15213 474:NP:716:lab 78u474 -619 Universities (Con’t) Universities (Con’t) Dr. V. K. Varadan Professor V. 9. Neubert Ohio

  1. Interaction of a Dislocation with a Crack.

    DTIC Science & Technology

    1983-08-01

    Agency Pasadena, California 91109 Washington, D.C. 20553 Professor Paul M. Naghdi National Academy of Sciences University of California National...Professor Burt Paul University of Pennsylvania Dr. Samuel B. Batdorf Towne School of Civil and University of California Mechanical Engineering School of...14214 Pittsburgh, Pennsylvania 15213 474:NP:716:lab 78u474-619 Universities (Con’t) Universities (Con’t) Dr. V. K. Varadan Professor V. H. Neubert

  2. Nile Delta

    Atmospheric Science Data Center

    2013-04-16

    ... civilizations since ancient times. It has also been an important transportation waterway, although in the twentieth century that role ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  3. Ireland

    Atmospheric Science Data Center

    2013-04-17

    ... Patrick. The asteroids were discovered in July 1987 by planetary astronomer Eleanor Helin, Principal Investigator of JPL's Near-Earth ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  4. Galapagos

    Atmospheric Science Data Center

    2013-04-19

    ... camera on October 26, 2001. There are many interesting facts about the Galapagos Islands:       Endemic genera ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  5. Remote RF Laboratory Requirements: Engineers' and Technicians' Perspective

    ERIC Educational Resources Information Center

    Cagiltay, Nergiz Ercil; Aydin, Elif Uray; Kara, Ali

    2007-01-01

    This study aims to find out requirements and needs to be fulfilled in developing remote Radio Frequency (RF) laboratory. Remote laboratories are newly emerging solutions for better supporting of e-learning platforms and for increasing their efficiency and effectiveness in technical education. By this way, modern universities aim to provide…

  6. Mine, thine, and ours: collaboration and co-authorship in the material culture of the mid-twentieth century chemical laboratory.

    PubMed

    Nye, Mary Jo

    2014-08-01

    Patterns of collaboration and co-authorship in chemical science from the 1920s to the 1960s are examined with an eye to frequency of co-authorship and differences in allocation of credit during a period of increasing team research and specialization within chemical research groups. Three research leaders in the cross-disciplinary and cutting edge field of X-ray crystallography and molecular structure are the focus of this historical study within a framework of sociological literature on different collaborative patterns followed by eminent scientists. The examples of Michael Polanyi in Berlin and Manchester, Linus Pauling in Pasadena, and Dorothy Crowfoot Hodgkin in Oxford demonstrate the need to de-centre historical narrative from the heroic 'he' or 'she' to the collaborative 'they.' These cases demonstrate, too, the roles of disciplinary apprenticeships, local conditions, and individual personalities for historical explanation that transcends universal generalizations about scientific practice, material culture, and sociological trends.

  7. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker answers questions from members of the media during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini program manager at JPL, Earl Maize, center, answers questions from members of the media during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini-Huygens spacecraft is seen in the von Kármán Auditorium during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waites, peaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Cassini project scientist at JPL, Linda Spilker, right, looks on as Cassini program manager at JPL, Earl Maize speaks during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Nechnical producer for NASA's Eyes at JPL, Jason Craig discusses the Cassini mission as seen through the NASA Eyes program during a NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans discusses an image of Saturn's moon Daphnis with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini NASA Social attendees speak with members of the Cassini mission team in the Charles Elachi Mission Control Center in the Space Flight Operation Center, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  15. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  16. Changing scene highlights III. [Iowa State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fassel, V. A.; Harl, Neil E.; Legvold, Sam

    1979-01-01

    The research programs in progress at Ames Laboratory, Iowa State University, are reviewed: hydrogen (storage), materials, catalysts, TRISTAN (their laboratory isotope separator), coal preparation, coal classification, land reclamation (after surface mining, nitinol, neutron radiography, grain dust explosions, biomass conversion, etc). (LTC)

  17. Steady advance of stem cell therapies: report from the 2011 World Stem Cell Summit, Pasadena, California, October 3-5.

    PubMed

    Swan, Melanie

    2011-12-01

    Stem cell research and related therapies (including regenerative medicine and cellular therapies) could have a significant near-term impact on worldwide public health and aging. One reason is the industry's strong linkage between policy, science, industry, and patient advocacy, as was clear in the attendance and programming at the 7(th) annual World Stem Cell Summit held in Pasadena, California, October 3-5, 2011. A special conference session sponsored by the SENS Foundation discussed how stem cell therapies are being used to extend healthy life span. Stem cells are useful not only in cell-replacement therapies, but also in disease modeling, drug discovery, and drug toxicity screening. Stem cell therapies are currently being applied to over 50 diseases, including heart, lung, neurodegenerative, and eye disease, cancer, and human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). Dozens of companies are developing therapeutic solutions that are in different stages of clinical use and clinical trials. Some high-profile therapies include Dendreon's Provenge for prostate cancer, Geron's first-ever embryonic stem cell trials for spinal cord injury, Fibrocell's laViv cellular therapy for wrinkles, and well-established commercial skin substitutes (Organogenesis' Apligraf and Advanced BioHealing's Dermagraft). Stem cell policy issues under consideration include medical tourism, standards for large-scale stem cell manufacturing, and lingering ethical debates over the use of embryonic stem cells. Contemporary stem cell science advances include a focus on techniques for the direct reprogramming of cells from one lineage to another without returning to pluripotency as an intermediary step, improved means of generating and characterizing induced pluripotent cells, and progress in approaches to neurodegenerative disease.

  18. University Research Consortium annual review meeting program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  19. Naval stores research at the Forest Products Laboratory, past and present

    Treesearch

    Duane F. Zinkel

    1987-01-01

    As many of you may not be familiar with Forest Products Laboratory, allow me to introduce it to you. The Forest Products Laboratory is a Federal government laboratory of the United States Department of Agriculture and, more specifically, of the Forest Service. The Laboratory was built in Madison, Wisconsin in close cooperation with the University of Wisconsin to serve...

  20. Progress In Electromagnetics Research Symposium (PIERS)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The third Progress In Electromagnetics Research Symposium (PIERS) was held 12-16 Jul. 1993, at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California. More than 800 presentations were made, and those abstracts are included in this publication.

  1. Yarlung Tsangpo

    Atmospheric Science Data Center

    2013-04-16

    ... camera on April 12, 2001. There are many interesting facts about the Yarlung Tsangpo: Within the image area, the river ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  2. Solar System Montage

    NASA Image and Video Library

    1997-01-15

    This is a montage of planetary images taken by spacecraft managed by NASA’s Jet Propulsion Laboratory in Pasadena, CA. Included are from top to bottom images of Mercury, Venus, Earth and Moon, Mars, Jupiter, Saturn, Uranus and Neptune.

  3. Zambia Wetland

    Atmospheric Science Data Center

    2013-04-16

    ... and are influenced by terrain, vegetation structure, soil type and soil moisture content. Wet surfaces or areas with standing water ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  4. How Phoenix Talks to Earth

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for the animation

    This animation shows how NASA's Phoenix Mars Lander stays in contact with Earth. As NASA's Mars Odyssey orbiter passes overhead approximately every two hours, Phoenix transmits images and scientific data from the surface to the orbiter, which then relays the data to NASA's Deep Space Network of antennas on Earth. Similarly, NASA's Deep Space Network transmits instructions from Earth to Odyssey, which then relays the information to Phoenix.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Phoenix Animation Looking North

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation is a series of images, taken by NASA's Phoenix Mars Lander's Surface Stereo Imager, combined into a panoramic view looking north from the lander. The area depicted is beyond the immediate workspace of the lander and shows a system of polygons and troughs that connect with the ones Phoenix will be investigating in depth.

    The images were taken on sol 14 (June 8, 2008) or the 14th Martian day after landing.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. How Phoenix Creates Color Images (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This simple animation shows how a color image is made from images taken by Phoenix.

    The Surface Stereo Imager captures the same scene with three different filters. The images are sent to Earth in black and white and the color is added by mission scientists.

    By contrast, consumer digital cameras and cell phones have filters built in and do all of the color processing within the camera itself.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASAaE(TM)s Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Happy Mars Solstice!

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) in the late afternoon of the 30th Martian day of the mission, or Sol 30 (June 25, 2008). This is hours after the beginning of Martian northern summer. SSI used its natural-color filters, therefore the color is the color you would see on Mars. The image shows shadows from the SSI (left) and from the meteorological station mast (right) stretching toward the east as the sun dropped low in the west.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver

  8. Sampling Strategy

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Three locations to the right of the test dig area are identified for the first samples to be delivered to the Thermal and Evolved Gas Analyzer (TEGA), the Wet Chemistry Lab (WCL), and the Optical Microscope (OM) on NASA's Phoenix Mars Lander. These sampling areas are informally labeled 'Baby Bear', 'Mama Bear', and 'Papa Bear' respectively. This image was taken on the seventh day of the Mars mission, or Sol 7 (June 1, 2008) by the Surface Stereo Imager aboard NASA's Phoenix Mars Lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Dark Skies and Clouds Move in at Phoenix site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Clouds of dust and ice swirl past the Surface Stereo Imager (SSI) camera on NASA's Phoenix Mars Lander in a series of images taken on the 132nd Martian day of the mission (Oct. 7, 2008). The images show the increase in storm activity and potential for snowfall.

    The solar powered spacecraft was disabled by decreased light from heavy dust storms in the area a few weeks later. The last communication heard from the lander occurred on Nov. 2, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Overnight Changes Recorded by Phoenix Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This graph presents simplified data from overnight measurements by the Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander from noon of the mission's 70th Martian day, or sol, to noon the following sol (Aug. 5 to Aug. 6, 2008).

    The graph shows that water disappeared from the atmosphere overnight, at the same time that electrical measurements detected changes consistent with addition of water to the soil.

    Water in soil appears to increase overnight, when water in the atmosphere disappears.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Phoenix Telltale Movement

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of a camera pushing through NASA's Phoenix Mars Lander's Stereo Surface Imager (SSI). At the conclusion of the animation is a set of SSI images of the telltale taken on the first, second, and third days of the mission, or sols 1, 2, and 3 (May 26, 27, and 28, 2008). The last set of images were taken one minute apart and shows the telltale moving in the wind.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Conductivity Probe Inserted in Martian Soil, Sol 46

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Thermal and Electrical Conductivity Probe (TECP), at the end of the Robotic Arm, on the 46th Martian day, or sol, of the mission (July 11, 2008).

    The TECP is inserted at a site called Vestri, which was monitored several times over the course of the mission. The probe's measurements at this site yielded evidence that water was exchanged, daily and seasonally, between the soil and atmosphere.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Phoenix Again Carries Soil to Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Robotic Arm scoop positioned over the Wet Chemistry Lab Cell 1 delivery funnel on Sol 41, the 42nd Martian day after landing, or July 6, 2008, after a soil sample was delivered to the instrument.

    The instrument's Cell 1 is second one from the foreground of the image. The first cell, Cell 0, received a soil sample two weeks earlier.

    This image has been enhanced to brighten the scene.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Underneath the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Robotic Arm Camera on NASA's Phoenix Mars Lander took this image on Oct. 18, 2008, during the 142nd Martian day, or sol, since landing. The flat patch in the center of the image has the informal name 'Holy Cow,' based on researchers' reaction when they saw the initial image of it only a few days after the May 25, 2008 landing. Researchers first saw this flat patch in an image taken by the Robotic Arm Camera on May 30, the fifth Martian day of the mission.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. A Software Laboratory Environment for Computer-Based Problem Solving.

    ERIC Educational Resources Information Center

    Kurtz, Barry L.; O'Neal, Micheal B.

    This paper describes a National Science Foundation-sponsored project at Louisiana Technological University to develop computer-based laboratories for "hands-on" introductions to major topics of computer science. The underlying strategy is to develop structured laboratory environments that present abstract concepts through the use of…

  16. 4. Credit WCT. Original 2'" x 21" color negative is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit WCT. Original 2-'" x 2-1" color negative is housed in the JPL Photography Laboratory, Pasadena, California. This view shows the control room in use, with JPL employees Ron Wright, Harold Anderson, and John Morrow presiding. (JPL negative no. JPL-10288A, 27 January 1989.) - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  17. Sandia National Laboratories: Contact Us

    Science.gov Websites

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New )* Non-mail deliveries: 1515 Eubank SE Albuquerque, NM 87123 Sandia National Laboratories, California P.O

  18. 75 FR 57477 - Accreditation and Approval of Camin Cargo Control, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ..., pursuant to 19 CFR 151.12 and 19 CFR 151.13, Camin Cargo Control, Inc., 1800 Dabney Drive, Pasadena, TX... purposes, in accordance with the provisions of 19 CFR 151.12 and 19 CFR 151.13. Anyone wishing to employ...

  19. Mississippi River

    Atmospheric Science Data Center

    2014-05-15

    ... 3780 kilometers long and has flooded many times during its history. In April 2001, residents of Minnesota, Wisconsin, Iowa, and Illinois ... flood of 1993. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  20. Mexico Fires

    Atmospheric Science Data Center

    2013-04-18

    ... on the right. This quantity is retrieved using an automated computer algorithm that takes advantage of MISR's multi-angle capability. Areas ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  1. Hurricane Juliette

    Atmospheric Science Data Center

    2013-04-19

    ... right is the cloud-top height field derived using automated computer processing of the data from multiple MISR cameras. Relative height ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  2. Norway

    Atmospheric Science Data Center

    2013-04-17

    ... of the North Sea region. Fishing remains one of the most important occupations in coastal Norway. Gadus morhua (Atlantic Cod) and ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  3. Mystery #22 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... objects of relevance to Indian art and history. An important painting style from Bihar is the art of the Madhubani, which is ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  4. Mast Camera View of Curiosity Deck

    NASA Image and Video Library

    2011-05-31

    NASA Mars rover Curiosity took the images combined into this mosaic of the rover upper deck. The images were taken in March 2011. At the time, Curiosity was inside a space simulation chamber at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  5. Solar System Montage Updated

    NASA Image and Video Library

    1999-05-03

    This is an updated montage of planetary images taken by spacecraft managed by NASA’s Jet Propulsion Laboratory in Pasadena, CA. Included are from top to bottom images of Mercury, Venus, Earth and Moon, Mars, Jupiter, Saturn, Uranus and Neptune.

  6. Devon Island

    Atmospheric Science Data Center

    2013-04-17

    ... researchers from NASA's Haughton-Mars Project and the Mars Society reside at this "polar desert" location to study the geologic and ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  7. India: Bihar

    Atmospheric Science Data Center

    2013-04-16

    ... an immense wintertime pool of pollution over the northern Indian state of Bihar. The discovery was made by researchers analyzing four ... Urbana-Champaign . MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  8. Hurricane Hermine Approaching Florida

    Atmospheric Science Data Center

    2016-12-30

    ... as it approached the coast of Florida. Hermine began life as Tropical Depression Nine, originating off the coast of Cuba on Aug. 28. ... Jet Propulsion Laboratory, Pasadena, California, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  9. Hurricane Wilma

    Atmospheric Science Data Center

    2014-05-15

    ... Information on cloud top heights at different stages in the life cycle of the rapidly intensifying Hurricane Wilma may prove useful for ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  10. Pine Island Glacier

    Atmospheric Science Data Center

    2013-04-16

    ... that affect the transformation of the ice during its life. The multi-angle view also reveals subtle roughness variations on the ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  11. Close Look at Curiosity First Drive

    NASA Image and Video Library

    2010-07-29

    A test operator in clean-room garb observes rolling of the wheels during the first drive test of NASA Curiosity rover, on July 23, 2010. Technicians and engineers conducted the drive test at the Jet Propulsion Laboratory in Pasadena, Calif.

  12. Volga Delta

    Atmospheric Science Data Center

    2013-04-17

    ... oceans has enabled the preservation of several unique animal and plant species. The Volga provides most of the Caspian's fresh water ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  13. Georgia: Okefenokee Swamp

    Atmospheric Science Data Center

    2014-05-15

    ... the swamp ecosystem, however, and a number of key plant and animal species within the Okefenokee National Wildlife Refuge ecosystems are ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  14. Help wanted: Space ambassadors

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    It might be one of the more unusual part-time jobs around. NASA's Jet Propulsion Laboratory in Pasadena, California, is inviting motivated space enthusiasts from across the United States to apply to become volunteers in its 2002 Solar System Ambassador program.

  15. Niger River

    Atmospheric Science Data Center

    2013-04-15

    ... They are an agrarian people, and use a number of ingenious soil and water conservation techniques to grow millet and sorghum for ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  16. Queensland Pastures

    Atmospheric Science Data Center

    2013-04-16

    ... or space is absorbed by either the vegetation or the soil. The fraction of PAR radiation absorbed by green vegetation, known as ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  17. Wind effects on Martian soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false-color combination image highlights details of wind effects on the Martian soil at the Pathfinder landing site. Red and blue filter images have been combined to enhance brightness contrasts among several soil units. Martian winds have distributed these lighter and darker fine materials in complex patterns around the rocks in the scene (blue). For scale, the rock at right center is 16 centimeters (6.3 inches) long. This scene is one of several that will be monitored weekly for changes caused by wind activity.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. Pooh Bear rock and Mermaid Dune

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the two forward cameras aboard Sojourner imaged this area of Martian terrain on Sol 26. The large rock dubbed 'Pooh Bear' is at far left, and stands between four and five inches high. Mermaid Dune is the smooth area stretching horizontally across the top quarter of the image. The Alpha Proton X-Ray Spectrometer (APXS) instrument aboard Sojourner will be deployed on Mermaid Dune, and the rover will later use its cleated wheels to dig into it.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  19. Sojourner Sits Near Rock Garden

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Mars Pathfinder Rover Sojourner is images by the Imager for Mars Pathfinder as it nears the rock 'Wedge.' Part of the Rock Garden is visible in the upper right of the image.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over the next ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. 'Rosy Red' Soil in Phoenix's Scoop

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows fine-grained material inside the Robotic Arm scoop as seen by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander on June 25, 2008, the 30th Martian day, or sol, of the mission.

    The image shows fine, fluffy, red soil particles collected in a sample called 'Rosy Red.' The sample was dug from the trench named 'Snow White' in the area called 'Wonderland.' Some of the Rosy Red sample was delivered to Phoenix's Optical Microscope and Wet Chemistry Laboratory for analysis.

    The RAC provides its own illumination, so the color seen in RAC images is color as seen on Earth, not color as it would appear on Mars.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Mosaic of Commemorative Microscope Substrate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Written by electron beam lithography in the Microdevices Laboratory of NASA's Jet Propulsion Laboratory, this Optical Microscope substrate helps the Phoenix Mars Mission science team learn how to assemble individual microscope images into a mosaic by aligning rows of text.

    Each line is about 0.1 millimeter tall, the average thickness of a human hair. Except for the Mogensen twins, the names are of babies born and team members lost during the original development of MECA (the Microscopy, Electrochemistry and Conductivity Analyzer) for the canceled 2001 Mars lander mission. The plaque also acknowledges the MECA 2001 principal investigator, now retired.

    This image was taken by the MECA Optical Microscope on Sol 111, or the 111th day of the Phoenix mission (Sept. 16, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  2. Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image from the Pathfinder lander shows the rock 'Shark' at upper right (Shark is about 0.69 m wide, 0.40 m high, and 6.4 m from the lander). The rock looks like a conglomerate in Sojourner rover images, but only the large elements of its surface textures can be seen here. This demonstrates the usefulness of having a robot rover geologist able to examine rocks up close.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  3. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    NASA Astrophysics Data System (ADS)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  4. 40 CFR 262.107 - Under what circumstances will a university's participation in this environmental management...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... university's participation in this environmental management standard pilot be terminated? 262.107 Section 262...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE University Laboratories XL Project-Laboratory Environmental Management Standard § 262.107 Under what circumstances will a university's participation in this...

  5. Assessment of Tutoring Laboratories in a Learning Assistance Center

    ERIC Educational Resources Information Center

    Fullmer, Patricia

    2012-01-01

    The Learning Resource Center at Lincoln University, Pennsylvania, provides tutoring laboratories that are required for developmental reading, writing, and math courses. This article reviews the processes used to plan and determine the effectiveness of the tutoring laboratories, including logic models, student learning outcomes, and the results of…

  6. Star Formation in Galaxies: Proceedings of a Conference Held in Pasadena, California

    DTIC Science & Technology

    1987-05-01

    Spirals of the Virgo Cluster B. Guiderdoni 283 - 286 Molecular Gas and Star Formation in HI-Deficient Virgo Cluster Galaxies J.D. Kenney and J.S. Young...in developing the image processing tasks. The research described in this paper was carried out in part at the Jet Propul- sion Laboratory, California...of 34 SO galaxies in the Virgo cluster were detected by IRAS. The 60Pin/lOOPm color temperatures of these galaxies are similar to those of normal

  7. Voss and Kelly in the Laboratory

    NASA Image and Video Library

    2001-03-19

    STS102-E-5310 (19 March 2001) --- Astronauts James S. Voss (left) and James M. Kelly share a friendly moment onboard the International Space Station's U.S. laboratory Destiny in spite of the long-standing academic/athletic rivalry between their respective alma maters--Auburn University and the University of Alabama. Voss, STS-102 mission specialist-turned Expedition Two flight engineer and a 1972 alumnus of Auburn with a bachelor of science degree in aerospace engineering, sports a T-shirt paying tribute to his university. Kelly, STS-102 pilot and masters of science degree graduate in aerospace engineering from the University of Alabama in 1996, is wearing a cap from that institution of higher learning.

  8. Voss and Kelly in the Laboratory

    NASA Image and Video Library

    2001-03-19

    STS102-E-5307 (19 March 2001) --- Astronauts James S. Voss (left) and James M. Kelly share a friendly moment onboard the International Space Station's U.S. laboratory Destiny in spite of the long-standing academic/athletic rivalry between their respective alma maters--Auburn University and the University of Alabama. Voss, STS-102 mission specialist-turned Expedition Two flight engineer and a 1972 alumnus of Auburn with a bachelor of science degree in aerospace engineering, sports a T-shirt paying tribute to his university. Kelly, STS-102 pilot and masters of science degree graduate in aerospace engineering from the University of Alabama in 1996, is wearing a cap from that institution of higher learning.

  9. Utilizing On-Campus Foodservice Facilities as a Laboratory

    ERIC Educational Resources Information Center

    Dallmeyer, Martha A.

    2012-01-01

    In 2008, the Family and Consumer Sciences Department at Bradley University recognized the need to improve the quality of the laboratory experience in foodservice classes. A hands-on, real-world, learning experience was desired. Simultaneously, the university administration wanted to provide an on-campus foodservice for students from 8:00 p.m. to…

  10. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  11. A professional development model for medical laboratory scientists working in the immunohematology laboratory.

    PubMed

    Garza, Melinda N; Pulido, Lila A; Amerson, Megan; Ali, Faheem A; Greenhill, Brandy A; Griffin, Gary; Alvarez, Enrique; Whatley, Marsha; Hu, Peter C

    2012-01-01

    Transfusion medicine, a section of the Department of Laboratory Medicine at The University of Texas MD Anderson Cancer Center is committed to the education and advancement of its health care professionals. It is our belief that giving medical laboratory professionals a path for advancement leads to excellence and increases overall professionalism in the Immunohematology Laboratory. As a result of this strong commitment to excellence and professionalism, the Immunohematology laboratory has instituted a Professional Development Model (PDM) that aims to create Medical Laboratory Scientists (MLS) that are not only more knowledgeable, but are continually striving for excellence. In addition, these MLS are poised for advancement in their careers. The professional development model consists of four levels: Discovery, Application, Maturation, and Expert. The model was formulated to serve as a detailed path to the mastery of all process and methods in the Immunohematology Laboratory. Each level in the professional development model consists of tasks that optimize the laboratory workflow and allow for concurrent training. Completion of a level in the PDM is rewarded with financial incentive and further advancement in the field. The PDM for Medical Laboratory Scientists in the Immunohematology Laboratory fosters personal development, rewards growth and competency, and sets high standards for all services and skills provided. This model is a vital component of the Immunohematology Laboratory and aims to ensure the highest quality of care and standards in their testing. It is because of the success of this model and the robustness of its content that we hope other medical laboratories aim to reach the same level of excellence and professionalism, and adapt this model into their own environment.

  12. The Human Interface Technology Laboratory.

    ERIC Educational Resources Information Center

    Washington Univ., Seattle. Washington Technology Center.

    This booklet contains information about the Human Interface Technology Laboratory (HITL), which was established by the Washington Technology Center at the University of Washington to transform virtual world concepts and research into practical, economically viable technology products. The booklet is divided into seven sections: (1) a brief…

  13. RUNNING A LANGUAGE LABORATORY.

    ERIC Educational Resources Information Center

    REES, ALUN L.W.

    THIS ARTICLE DESCRIBES THE LANGUAGE LABORATORY AT THE NATIONAL UNIVERSITY OF TRUJILLO AS IT IS USED IN THE FIVE-YEAR ENGLISH TEACHER TRAINING PROGRAM. THE FIRST TWO YEARS OF THIS COURSE ARE INTENSIVE, BASED ON A STUDY OF ENGLISH USING LADO-FRIES MATERIALS (FOR LATIN AMERICAN LEARNERS) WHICH REQUIRE FIVE HOURS OF CLASSWORK A WEEK SUPPLEMENTED BY…

  14. Laboratory and Space Plasma Studies

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1996-08-01

    The work performed by Science Applications International Corporation (SAIC), encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by sub-contracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.

  15. 2011 Einstein Fellows Chosen

    NASA Astrophysics Data System (ADS)

    2011-03-01

    ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/

  16. Pedagogical Evaluation of Remote Laboratories in eMerge Project

    ERIC Educational Resources Information Center

    Lang, Daniela; Mengelkamp, Christoph; Jaeger, Reinhold S.; Geoffroy, Didier; Billaud, Michel; Zimmer, Thomas

    2007-01-01

    This study investigates opportunities for conducting electrical engineering experiments via the Internet rather than in an actual laboratory. Eighty-four French students of electrical engineering (semester 1, 2004) at Bordeaux University 1 participated in practical courses. Half of the students performed experiments in a laboratory while the other…

  17. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  18. Laboratory Astrophysics: Enabling Scientific Discovery and Understanding

    NASA Technical Reports Server (NTRS)

    Kirby, K.

    2006-01-01

    NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.

  19. 40 CFR 262.103 - What is the scope of the laboratory environmental management standard?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.103 What is the scope of the laboratory environmental management standard? The Laboratory Environmental Management Standard... environmental management standard? 262.103 Section 262.103 Protection of Environment ENVIRONMENTAL PROTECTION...

  20. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses.

    PubMed

    Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

    2014-07-30

    The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases.

  1. Building leadership among laboratory-based and clinical and translational researchers: the University of California, San Francisco experience.

    PubMed

    Wides, Cynthia; Mertz, Elizabeth; Lindstaedt, Bill; Brown, Jeanette

    2014-02-01

    In 2005 the University of California, San Francisco (UCSF) implemented the Scientific Leadership and Management (SLM) course, a 2-day leadership training program to assist laboratory-based postdoctoral scholars in their transition to independent researchers managing their own research programs. In 2011, the course was expanded to clinical and translational junior faculty and fellows. The course enrollment was increased from approximate 100 to 123 participants at the same time. Based on course evaluations, the number and percent of women participants appears to have increased over time from 40% (n = 33) in 2007 to 53% (n = 58) in 2011. Course evaluations also indicated that participants found the course to be relevant and valuable in their transition to academic leadership. This paper describes the background, structure, and content of the SLM and reports on participant evaluations of the course offerings from 2007 through 2011. © 2014 Wiley Periodicals, Inc.

  2. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, left, Cassini project scientist at JPL, Linda Spilker, second from left, director of NASA's Jet Propulsion Laboratory, Michael Watkins, center, director of NASA's Planetary Science Division, Jim Green, second from right, and director of the interplanetary network directorate at NASA's Jet Propulsion Laboratory, Keyur Patel, left, are seen in mission control, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Computer laboratory in medical education for medical students.

    PubMed

    Hercigonja-Szekeres, Mira; Marinović, Darko; Kern, Josipa

    2009-01-01

    Five generations of second year students at the Zagreb University School of Medicine were interviewed through an anonymous questionnaire on their use of personal computers, Internet, computer laboratories and computer-assisted education in general. Results show an advance in students' usage of information and communication technology during the period from 1998/99 to 2002/03. However, their positive opinion about computer laboratory depends on installed capacities: the better the computer laboratory technology, the better the students' acceptance and use of it.

  4. Laboratory animals and respiratory allergies: The prevalence of allergies among laboratory animal workers and the need for prophylaxis

    PubMed Central

    Ferraz, Erica; Arruda, Luisa Karla de Paula; Bagatin, Ericson; Martinez, Edson Z; Cetlin, Andrea A; Simoneti, Christian S; Freitas, Amanda S; Martinez, José A B; Borges, Marcos C; Vianna, Elcio O

    2013-01-01

    OBJECTIVE: Subjects exposed to laboratory animals are at a heightened risk of developing respiratory and allergic diseases. These diseases can be prevented by simple measures such as the use of personal protective equipment. We report here the primary findings of the Laboratory Animals and Respiratory Allergies Study regarding the prevalence of allergic diseases among laboratory animal workers, the routine use of preventive measures in laboratories and animal facilities, and the need for prevention programs. METHODS: Animal handlers and non-animal handlers from 2 Brazilian universities (University of São Paulo and State University of Campinas) answered specific questionnaires to assess work conditions and symptoms. These subjects also underwent spirometry, a bronchial challenge test with mannitol, and skin prick tests for 11 common allergens and 5 occupational allergens (rat, mouse, guinea pig, hamster, and rabbit). RESULTS: Four hundred fifty-five animal handlers (32±10 years old [mean±SD], 209 men) and 387 non-animal handlers (33±11 years old, 121 men) were evaluated. Sensitization to occupational allergens was higher among animal handlers (16%) than non-animal handlers (3%, p<0.01). Accessibility to personal protective equipment was measured at 85% (median, considering 73 workplaces of the animal handler group). Nineteen percent of the animal handlers indicated that they wear a respirator at all times while handling animals or working in the animal room, and only 25% of the animal handlers had received an orientation about animal-induced allergies, asthma, or rhinitis. CONCLUSION: In conclusion, our data indicate that preventive programs are necessary. We suggest providing individual advice to workers associated with institutional programs to promote a safer work environment. PMID:23778494

  5. KSC-2011-6171

    NASA Image and Video Library

    2011-08-03

    CAPE CANAVERAL, Fla. -- Media representatives question the participants of a Juno mission science briefing in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are Scott Bolton, Juno principal investigator, Southwest Research Institute, San Antonio; Toby Owen, Juno co-investigator, University of Hawaii; Jack Connerney, Juno MAG Instrument Lead, Goddard Space Flight Center, Greenbelt, Md.; Steve Levin, Juno project scientist, Jet Propulsion Laboratory, Pasadena, Calif.; Fran Bagenai, Juno co-investigator, University of Colorado, Boulder, Colo.; and Candy Hansen, Juno co-investigator, Planetary Science Institute, Tucson, Ariz. Juno is scheduled to launch Aug. 5 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information, visit www.nasa.gov/juno. Photo credit: NASA/Kim Shiflett

  6. KSC-2011-6170

    NASA Image and Video Library

    2011-08-03

    CAPE CANAVERAL, Fla. -- A Juno mission science briefing is held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are Scott Bolton, Juno principal investigator, Southwest Research Institute, San Antonio; Toby Owen, Juno co-investigator, University of Hawaii; Jack Connerney, Juno MAG Instrument Lead, Goddard Space Flight Center, Greenbelt, Md.; Steve Levin, Juno project scientist, Jet Propulsion Laboratory, Pasadena, Calif.; Fran Bagenai, Juno co-investigator, University of Colorado, Boulder, Colo.; and Candy Hansen, Juno co-investigator, Planetary Science Institute, Tucson, Ariz. Juno is scheduled to launch Aug. 5 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information, visit www.nasa.gov/juno. Photo credit: NASA/Kim Shiflett

  7. IBBR and Frederick National Laboratory Collaborate to Study Vaccine-Boosting Compounds | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the im

  8. Promoting Good Clinical Laboratory Practices and Laboratory Accreditation to Support Clinical Trials in Sub-Saharan Africa

    PubMed Central

    Shott, Joseph P.; Saye, Renion; Diakité, Moussa L.; Sanogo, Sintry; Dembele, Moussa B.; Keita, Sekouba; Nagel, Mary C.; Ellis, Ruth D.; Aebig, Joan A.; Diallo, Dapa A.; Doumbo, Ogobara K.

    2012-01-01

    Laboratory capacity in the developing world frequently lacks quality management systems (QMS) such as good clinical laboratory practices, proper safety precautions, and adequate facilities; impacting the ability to conduct biomedical research where it is needed most. As the regulatory climate changes globally, higher quality laboratory support is needed to protect study volunteers and to accurately assess biological parameters. The University of Bamako and its partners have undertaken a comprehensive QMS plan to improve quality and productivity using the Clinical and Laboratory Standards Institute standards and guidelines. The clinical laboratory passed the College of American Pathologists inspection in April 2010, and received full accreditation in June 2010. Our efforts to implement high-quality standards have been valuable for evaluating safety and immunogenicity of malaria vaccine candidates in Mali. Other disease-specific research groups in resource-limited settings may benefit by incorporating similar training initiatives, QMS methods, and continual improvement practices to ensure best practices. PMID:22492138

  9. Public Outcry Increasingly Becoming Safeguard of University Forests

    ERIC Educational Resources Information Center

    Straka, Thomas J.

    2010-01-01

    Many universities and colleges own forestland. Although these lands can be worth billions of dollars, most are devoted to the institutional goals of education, research, and outreach. These forests become an integral part of the university and serve as teaching and research laboratories. They are usually called university or college forests or…

  10. Mississippi River

    Atmospheric Science Data Center

    2014-05-15

    ... is approximately 2348 miles long. Over the course of it's history, the mighty river has flooded many times. The largest flood recorded in ... Wisconsin has receded. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  11. Mystery #3 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... of the North Sea region. 3.   Which fish play important roles in the lifestyle and economy of this coastal region? Choose A, ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  12. Siberian Fires

    Atmospheric Science Data Center

    2013-04-16

    ... not be retrieved are shown as dark gray. Fire is an important ecological factor in the taiga forests, but in this region a ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  13. Mystery #1

    Atmospheric Science Data Center

    2013-04-22

    ... is approximately 380 kilometers wide. Choose any reference material you like and see if you can answer these questions: 1.   This ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  14. Washington: Hanford Nuclear Reservation

    Atmospheric Science Data Center

    2014-05-15

    ... is seen wending its way around the area, and the Snake River branches off to the right. According to Idaho's National Interagency Fire ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  15. Mystery #8 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... and the American team sponsored by the National Geographic Society in 1998 had to turn back after their most experienced kayaker was   ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  16. Mystery #22

    Atmospheric Science Data Center

    2013-04-22

    ... and duration of the annual flooding.   D.   An animal belonging to the order Cetacea can be found in this river. 5. ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  17. Mystery #13

    Atmospheric Science Data Center

    2013-04-22

    ... April.   C.   They are both landlocked.   D.   Soil in both countries has been subjected to increasing salinization. 2. ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  18. Rural neurosurgical and spinal laboratory setup.

    PubMed

    Smith, Adam; Gagliardi, Filippo; Pelzer, Nicholas Robert; Hampton, Jacob; Chau, Anthony Minh Tien; Stewart, Fiona; Mortini, Pietro; Gragnaniello, Cristian

    2015-12-01

    Increasing focus has been placed on the use of simulation in neurosurgical and spinal surgical training worldwide, with the establishment of many surgical laboratories dedicated to such purpose. So far, the opportunities for hands-on cadaveric training in the areas of neurosurgery and spine surgery remain limited in Australia, owing to various factors, including the abolition of dissection in many medical schools, high maintenance requirements and widespread geographical distribution of surgical trainees. We established a cadaver-based neurosurgical laboratory based at the medical school of the University of New England in Armidale, Australia, which is used by the surgical dissection course for junior surgical trainees offered by the university. We reported our experiences in setting up a neurosurgical research laboratory, and explored the feasibility of establishing a cost-effective anatomical research facility in a rural setting in Australia. We found that Genelyn(TM)-fixed cadavers had limited movements of the head as required for adequate surgical positioning and exposure. Furthermore, we discovered that bodies embalmed via the femoral vein had poorly perfused heads after surgical exposure, and thus decapitation had to be performed unfortunately for our purpose. Cadaver samples and surgical equipment were sourced from various veterinary practices and commercial companies. Using human and animal cadavers, this laboratory provided trainees with hands-on opportunities to improve their surgical skills and neuroanatomical knowledge, as well as develop familiarity with highly specialized surgical equipment. We demonstrated the feasibility of establishing a cost-effective neurosurgical research laboratory in Australia and discussed various aspects of its maintenance.

  19. Laboratory Projects: Should Students Do Them or Design Them?

    ERIC Educational Resources Information Center

    Middelberg, Anton P. J.

    1995-01-01

    Describes changes initiated in the Level-Three laboratory course of the chemical engineering curriculum at the University of Adelaide that were useful in fostering higher-level skills and reducing the reliance on reports handed down from previous years. Highlights report writing and data analysis workshops and the laboratory project design…

  20. Laboratory-based educational and outreach activities in the framework of a CAREER award at the University of Oregon

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.

    2011-12-01

    The Stable Isotope Laboratory at the University of Oregon has been used as a learning and outreach center in the framework of the 09 award entitled "Stable isotope insights into large-volume volcanic eruptions". The PI and other members of the group have actively recruitted undergraduate students, summer session and catalytic outreach undergraduates, and hosted international students, visitors, and collaborators from Russia, Iceland, France, the UK, Australia, and Switzerland. We also integrated closely with the Oregon-wide summer program that brings community college students to the University of Oregon for 2.5 months summer research residence (UCORE). In total we gave supervised five undergraduate students and three UCORE students. Additionally, we recruited undergraduates from U of Chicago, Colorado and Pomona Colleges to spend summers in the lab and in the field. In conjunction with the NSF funded PIRE program, two female graduate and one female undergraduate students participated in fieldwork in Kamchatka, and three Kamchatka undergraduates, and one Moscow graduate student visited the University Oregon. Students performed their own projects or Senior Theses and reported their results locally and at AGU conferences. We developed a management structure in which graduate students, a postdoc, and lab technician co-supervised students and visitors and this exposed them into the supervisory roles, contributed to the project progress, and liberated PI from micromanagement duties. The talk will present our experience with this management concept of a lab-based-learning initiative, which defines roles for each member of the lab. Our outreach activities included public lectures at community colleges by PI and a graduate student, and the topical Penrose conference co-organized by the PI, which attracted many students and visitors who collected their data in the lab. PI has introduced a voluntary fieldtrip as a part of his Volcanoes and Earthquake large enrollment class

  1. Laboratory biological safety cabinet (BSC) explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Dahhan, Wedad H.; Al-Zuhairi, Ali Jasim; Hussein, Falah H.

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories in order to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript is the first in a series of five case studies describing laboratory incidents and accidents in Iraqi university laboratories in order to share lessons learned and minimize the possibility of similar incidents in the future. In this study, we describe a serious event that resulted in a postgraduate student sustaining serious injuries when the biological safety cabinet (BSC) she wasmore » using exploded. Of particular note, the paper highlights how a combination of failures and deficiencies at many levels within an organization and its technical community (rather than a single piece of faulty equipment or the careless behavior of one person) can lead to a dangerous, potentially life-threatening incident. By openly sharing what happened along with the lessons learned from the accident, we hope to minimize the possibility of another researcher being injured in a similar incident in the future.« less

  2. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    A jar of peanuts is seen sitting on a console in mission control of the Space Flight Operations Center as the Cassini mission team await the final downlink of the spacecraft's data recorder, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    Principle investigator for the Ion and Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, points to the location of the INMS during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Cassini program manager at JPL, Earl Maize, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, standing, watches telemetry come in from Cassini with Julie Bellerose, left, Duane Roth, second from left, and Mar Vaquero of the Cassini navigation team in the mission control room, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, is seen in mission control as he monitors the Cassini spacecraft, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    A monitor in mission control shows the time remaining until Cassini makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, embrace after the Cassini spacecraft plunged into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. From Cookbook to Collaborative: Transforming a University Biology Laboratory Course

    ERIC Educational Resources Information Center

    Herron, Sherry S.

    2009-01-01

    As described in "How People Learn," "Developing Biological Literacy," and by the Commission on Undergraduate Education in the Biological Sciences during the 1960s and early 1970s, laboratories should promote guided-inquiries or investigations, and not simply consist of cookbook or verification activities. However, the only word that could describe…

  11. Credit WCT. Original 21/4"x21/4" color negative is housed in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 2-1/4"x2-1/4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff member Leonard "Dutch" Sebring loads propellant grain into tube for a BATES (Ballistic And Test Evaluation System) test (JPL negative no. JPL-10279BC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Weigh & Test Preparation Building, Edwards Air Force Base, Boron, Kern County, CA

  12. 6. Credit WCT. Original 21" x 2Y" color negative is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Credit WCT. Original 2-1" x 2-Y" color negative is housed in the JPL Photography Laboratory, Pasadena, California. JPL staff members Harold Anderson and John Morrow weigh out small amounts of an undetermined substance according to a solid propellant formula (JPL negative no. JPL-10277AC, 27 January 1989). - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  13. A General Chemistry Laboratory Course Designed for Student Discussion

    ERIC Educational Resources Information Center

    Obenland, Carrie A.; Kincaid, Kristi; Hutchinson, John S.

    2014-01-01

    We report a study of the general chemistry laboratory course at one university over four years. We found that when taught as a traditional laboratory course, lab experiences do not encourage students to deepen their understanding of chemical concepts. Although the lab instructor emphasized that the lab experiences were designed to enhance…

  14. A Choice of Terminals: Spatial Patterning in Computer Laboratories

    ERIC Educational Resources Information Center

    Spennemann, Dirk; Cornforth, David; Atkinson, John

    2007-01-01

    Purpose: This paper seeks to examine the spatial patterns of student use of machines in each laboratory to whether there are underlying commonalities. Design/methodology/approach: The research was carried out by assessing the user behaviour in 16 computer laboratories at a regional university in Australia. Findings: The study found that computers…

  15. Improving undergraduate biology education in a large research university.

    PubMed Central

    Bender, C; Ward, S; Wells, M A

    1994-01-01

    The campus-wide Undergraduate Biology Research Program (UBRP) at the University of Arizona improves undergraduate science education by expanding student opportunities for independent research in faculty laboratories. Within the supportive community of a research laboratory, underclassmen, nonscience majors, and those aspiring to scientific careers all learn to appreciate the process of science. The Program impacts more than the students, promoting departmental cooperation, interdisciplinary collaborations, and improvements in undergraduate science education throughout a Research I University. PMID:8018999

  16. [The experimental surgery and your relation with the university: an experience report].

    PubMed

    Yamaki, Vitor Nagai; Teixeira, Renan Kleber Costa; Feijo, Daniel Haber; Silva, José Antonio Cordero da; Botelho, Nara Macedo; Henriques, Marcus Vinicius

    2014-01-01

    The laboratory of experimental surgery represents one of the key points for the university, especially in the biomedical area. This focuses on the university's tripod of primary structure that are teaching, research and extension, which are essential for formation of humanistic and practice of a good doctor that is based, first of all, on scientific evidence and critical knowledge. The importance of a laboratory of experimental surgery centers for medical education was regulated from the new curriculum guidelines of the Ministério da Educação e Cultura, establishing a mandatory laboratory within college centers. Therefore, it is of great importance to the contribution of the laboratories of experimental surgery in the curriculum, both in the discipline of surgical technics and experimental surgery, and an incentive for basic research. Thus, the study presents the experience of 15 years of the Laboratory of Experimental Surgery from Universidade do Estado do Pará, with the goal show the importance of this to medical graduation and the university.

  17. [Standardization in laboratory hematology by participating in external quality assurance programs].

    PubMed

    Nazor, Aida; Siftar, Zoran; Flegar-Mestrić, Zlata

    2011-09-01

    Since 1985, Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, has been participating in the International External Quality Assessment Scheme for Hematology (IEQAS-H) organized by the World Health Organization (WHO). Owing to very good results, in 1987 the Department received a certificate of participation in this control scheme. Department has been cooperating in the external quality assessment program in laboratory hematology which has been continuously performed in Croatia since 1986 by the Committee for External Quality Assessment Schemes under the auspices of the Croatian Society of Medical Biochemists and School of Pharmacy and Biochemistry, University of Zagreb. Nowadays, 186 medical biochemical laboratories are included in the National External Quality Assessment program, which is performed three times per year. Our Department has participated in the international projects of the European Committee for External Quality Assurance Programs in Laboratory Medicine (EQALM).

  18. Imagine the Universe. 4

    NASA Technical Reports Server (NTRS)

    White, Nicholas

    1999-01-01

    This CD-ROM contains compilations of three NASA Website pages from the Laboratory for High Energy Astrophysics at the Goddard Space Flight Center. The three sites on the CD-ROM are: (1) the Imagine the Universe!, (for ages 14 on up), which is dedicated to discussion of the Universe, what we know, how it is evolving and the kinds of objects and phenomena it contains; (2) StarChild: A learning center for young astronomers, (for ages 4-14), contains information about the Solar System, the Universe and space explorations; and (3) the Astronomy picture of the day, which offers a new astronomical image and caption for each calendar day.

  19. Challenges in small screening laboratories: implementing an on-demand laboratory information management system.

    PubMed

    Lemmon, Vance P; Jia, Yuanyuan; Shi, Yan; Holbrook, S Douglas; Bixby, John L; Buchser, William

    2011-11-01

    The Miami Project to Cure Paralysis, part of the University of Miami Miller School of Medicine, includes a laboratory devoted to High Content Analysis (HCA) of neurons. The goal of the laboratory is to uncover signaling pathways, genes, compounds, or drugs that can be used to promote nerve growth. HCA permits the quantification of neuronal morphology, including the lengths and numbers of axons. HCA of various libraries on primary neurons requires a team-based approach, a variety of process steps and complex manipulations of cells and libraries to obtain meaningful results. HCA itself produces vast amounts of information including images, well-based data and cell-based phenotypic measures. Documenting and integrating the experimental workflows, library data and extensive experimental results is challenging. For academic laboratories generating large data sets from experiments involving thousands of perturbagens, a Laboratory Information Management System (LIMS) is the data tracking solution of choice. With both productivity and efficiency as driving rationales, the Miami Project has equipped its HCA laboratory with an On Demand or Software As A Service (SaaS) LIMS to ensure the quality of its experiments and workflows. The article discusses how the system was selected and integrated into the laboratory. The advantages of a SaaS based LIMS over a client-server based system are described. © 2011 Bentham Science Publishers

  20. Voyager Proof Test Model and Cleanroom

    NASA Image and Video Library

    1977-01-12

    This archival photo shows the Voyager Proof Test Model (in the foreground right of center) undergoing a mechanical preparation and weight center of gravity test at NASA's Jet Propulsion Laboratory, Pasadena, California, on January 12, 1977. https://photojournal.jpl.nasa.gov/catalog/PIA21476

  1. Ireland Seasons

    Atmospheric Science Data Center

    2013-04-17

    ... since 1766. Despite being one of the warmest years in recent history, a cold snap arrived between Christmas and New Year's Day. According to ... Kerry and Cork. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  2. Alaska

    Atmospheric Science Data Center

    2014-05-15

    ... help to darken the room lights when viewing the image on a computer screen. The Yukon River is seen wending its way from upper left to ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  3. Nile Delta

    Atmospheric Science Data Center

    2013-04-15

    ... west are the Great Pyramids of Giza. North of here the Nile branches into two distributaries, the Rosetta to the west and the Damietta to ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  4. Ladies And Gentlemen, Boot Your Robots!

    NASA Image and Video Library

    2014-01-14

    Known as Clyde, RoboSimian is an an ape-like robot designed and built at Jet Propulsion Laboratory, Pasadena, Ca. The robot is four-footed but can also stand on two feet. It has four general-purpose limbs and hands capable of mobility and manipulation.

  5. Himalayas

    Atmospheric Science Data Center

    2013-04-16

    ... million years ago as a result of the collision between the Indian and Eurasian plates, driven by tectonic processes. They continue to grow ... 14, 2000) Blocks 65-75 MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  6. Cyclone Dera

    Atmospheric Science Data Center

    2013-04-19

    ... March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is ... 380 kilometers wide. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...

  7. Lake Eyre

    Atmospheric Science Data Center

    2013-04-16

    ... lake, and becomes dense with birds, frogs and colorful plant life. The Lake responds to extended dry periods (often associated with El Niño ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  8. Zambia and Botswana

    Atmospheric Science Data Center

    2013-04-16

    ... town of Maun is at its southeastern edge. Note how the plant life, which is highly reflective in the near-infrared, shows up as bright red ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  9. Origins of the Lunar and Planetary Laboratory, University of Arizona

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Hartmann, W. K.

    2014-01-01

    The roots of the Lunar and Planetary Laboratory (LPL) extend deep into the rich fabric of G. P. Kuiper's view of the Earth as a planet and planetary systems as expected companions to most stars, as well as the post-war emergent technology of infrared detectors suitable for astronomy. These concepts and events began with Kuiper's theoretical work at Yerkes Observatory on the origin of the Solar System, his discovery of two planetary satellites and observational work with his near-infrared spectrometer on the then-new McDonald 82-inch telescope in the mid- to late-1940s. A grant for the production of a photographic atlas of the Moon in the mid-1950s enabled him to assemble the best existing images of the Moon and acquire new photographs. This brought E. A. Whitaker and D. W. G. Arthur to Yerkes. Others who joined in the lunar work were geologist Carl S. Huzzen and grad student E. P. Moore, as well as undergrad summer students A. B. Binder and D. P. Cruikshank (both in 1958). The Atlas was published in 1959, and work began on an orthographic lunar atlas. Kuiper's view of planetary science as an interdisciplinary enterprise encompassing astronomy, geology, and atmospheric physics inspired his vision of a research institution and an academic curriculum tuned to the combination of all the scientific disciplines embraced in a comprehensive study of the planets. Arrangements were made with the University of Arizona (UA) to establish LPL in affiliation with the widely recognized Inst. of Atmospheric Physics. Kuiper moved to the UA in late 1960, taking the lunar experts, graduate student T. C. Owen (planetary atmospheres), and associate B. M. Middlehurst along. G. van Biesbroeck also joined the migration to Tucson; Binder and Cruikshank followed along as new grad students. Astronomy grad student W. K. Hartmann came into the academic program at UA and the research group at LPL in 1961. Senior faculty affiliating with LPL in the earliest years were T. Gehrels, A. B. Meinel, H

  10. A Universal Biosensor for Infectious Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Harshini

    With increased travel and globalization, the spread of new diseases has become a threat to global health—and global security. Whether in a rural village or an urban medical clinic, healthcare workers need diagnostics that provide answers then and there, for any disease, in order to effectively treat individual patients or widespread outbreaks. That’s why Harshini Mukundan and her team at Los Alamos National Laboratory are working to develop a universal biosensor. “If we are able to mimic the body’s immune recognition in the laboratory, we could have a universal strategy for the early diagnosis of all infections,” said Mukundan. Ourmore » immune system recognizes pathogens, regardless of their origin, by identifying discrete signatures in the human host. Mukundan's team is working to imitate this ability in the laboratory, which could lead to a simple solution to diagnose all diseases and improve lives across the world.« less

  11. A Universal Biosensor for Infectious Disease

    ScienceCinema

    Mukundan, Harshini

    2018-05-31

    With increased travel and globalization, the spread of new diseases has become a threat to global health—and global security. Whether in a rural village or an urban medical clinic, healthcare workers need diagnostics that provide answers then and there, for any disease, in order to effectively treat individual patients or widespread outbreaks. That’s why Harshini Mukundan and her team at Los Alamos National Laboratory are working to develop a universal biosensor. “If we are able to mimic the body’s immune recognition in the laboratory, we could have a universal strategy for the early diagnosis of all infections,” said Mukundan. Our immune system recognizes pathogens, regardless of their origin, by identifying discrete signatures in the human host. Mukundan's team is working to imitate this ability in the laboratory, which could lead to a simple solution to diagnose all diseases and improve lives across the world.

  12. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    range acoustic systems, whether for acoustic surveillance, communication, or remote sensing of the ocean interior . The data from the NPAL network, and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water... Acoustics PI James A. Mercer Applied Physics Laboratory, University of Washington 1013 NE 40th Street Seattle, WA 98105 phone: (206) 543-1361 fax

  13. North Polar Water Ice by Weight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 8, 2003

    This map shows the percent of water by weight in near-surface materials of Mars' north polar region. It is derived from the gamma ray spectrometer component of the gamma ray spectrometer suite of instruments on NASA's Mars Odyssey spacecraft.

    Significant concentrations of water (greater than 20 percent) are poleward of 55 degrees north latitude. The highest concentration, greater than 50 percent, is between 75 degrees north and the pole. Another area with a high concentration of water by weight is in the north polar plains between longitudes minus 105 degrees and minus 140 degrees, and between latitudes 60 degrees and 75 degrees.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for the NASA Office of Space Science in Washington. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Space Systems, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

  14. Building capacity in laboratory medicine in Africa by increasing physician involvement: a laboratory medicine course for clinicians.

    PubMed

    Guarner, Jeannette; Amukele, Timothy; Mehari, Meheretu; Gemechu, Tufa; Woldeamanuel, Yimtubezinash; Winkler, Anne M; Asrat, Daniel; Wilson, Michael L; del Rio, Carlos

    2015-03-01

    To describe a 4-day laboratory medicine course for clinicians given at Addis Ababa University, Ethiopia, designed to improve the use of laboratory-based diagnoses. Each day was dedicated to one of the following topics: hematology, blood bank/transfusion medicine and coagulation, chemistry, and microbiology. The course included lectures, case-based learning, laboratory tours, and interactive computer case-based homework. The same 12-question knowledge quiz was given before and after the course. Twenty-eight participants took the quiz before and 21 after completing the course. The average score was 5.28 (range, 2-10) for the initial quiz and 8.09 (range, 4-11) for the second quiz (P = .0001). Two of 12 and 8 of 12 questions were answered correctly by more than 60% of trainees on the initial and second quiz, respectively. Knowledge and awareness of the role of the laboratory increased after participation in the course. Understanding of laboratory medicine principles by clinicians will likely improve use of laboratory services and build capacity in Africa. Copyright© by the American Society for Clinical Pathology.

  15. An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Russo, D.; Fagan, R. D.; Hesjedal, T.

    2011-01-01

    The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…

  16. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  17. The Mars Simulation Laboratory, University of Aarhus

    NASA Astrophysics Data System (ADS)

    Merrison, J. P.; Field, D.; Finster, K.; Lomstein, B. Aa.; Nørnberg, P.; Ramsing, N. B.; Uggerhøj, E.

    2001-08-01

    Present day Mars presents an extremely hostile environment to organic material. The average temperature is low (-50C), the atmospheric pressure is also low (7mbar) and there is little water over most of the planet. Chemically the surface is extremely oxidising and no signs of organic material have been detected. There is also a strong component of ultra violet radiation in the Martian sun light, lethal to most organisms. At Aarhus University we have constructed a Mars simulation environment which reproduces the physical, chemical and mineralogical conditions on Mars. It is hoped to set limits on where organic matter (or even life) might exist on Mars, for example at some depth under the surface, beneath the polar ice or within rocks. It is also possible to adjust the conditions in the simulation to investigate the most extreme environments in which organisms can be preserved or still function.

  18. Validation of a laboratory and hospital information system in a medical laboratory accredited according to ISO 15189.

    PubMed

    Biljak, Vanja Radisic; Ozvald, Ivan; Radeljak, Andrea; Majdenic, Kresimir; Lasic, Branka; Siftar, Zoran; Lovrencic, Marijana Vucic; Flegar-Mestric, Zlata

    2012-01-01

    The aim of the study was to present a protocol for laboratory information system (LIS) and hospital information system (HIS) validation at the Institute of Clinical Chemistry and Laboratory Medicine of the Merkur University Hospital, Zagreb, Croatia. Validity of data traceability was checked by entering all test requests for virtual patient into HIS/LIS and printing corresponding barcoded labels that provided laboratory analyzers with the information on requested tests. The original printouts of the test results from laboratory analyzer(s) were compared with the data obtained from LIS and entered into the provided template. Transfer of data from LIS to HIS was examined by requesting all tests in HIS and creating real data in a finding generated in LIS. Data obtained from LIS and HIS were entered into a corresponding template. The main outcome measure was the accuracy of transfer obtained from laboratory analyzers and results transferred from LIS and HIS expressed as percentage (%). The accuracy of data transfer from laboratory analyzers to LIS was 99.5% and of that from LIS to HIS 100%. We presented our established validation protocol for laboratory information system and demonstrated that a system meets its intended purpose.

  19. Laboratory testing of gross solids removal devices.

    DOT National Transportation Integrated Search

    2005-05-01

    This report details the outcome of tests carried out at the Hydraulics Laboratory : of the University of California, Davis to assess the performance of three : alternative Gross Solids Removal Devices (GSRDs) developed by Caltrans to : remove litter ...

  20. Teaching and Research with Accelerators at Tarleton State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marble, Daniel K.

    2009-03-10

    Tarleton State University students began performing both research and laboratory experiments using accelerators in 1998 through visitation programs at the University of North Texas, US Army Research Laboratory, and the Naval Surface Warfare Center at Carderock. In 2003, Tarleton outfitted its new science building with a 1 MV pelletron that was donated by the California Institution of Technology. The accelerator has been upgraded and supports a wide range of classes for both the Physics program and the ABET accredited Engineering Physics program as well as supplying undergraduate research opportunities on campus. A discussion of various laboratory activities and research projectsmore » performed by Tarleton students will be presented.« less