Sample records for laboratory-scale membrane bioreactor

  1. Bioreactor Scalability: Laboratory-Scale Bioreactor Design Influences Performance, Ecology, and Community Physiology in Expanded Granular Sludge Bed Bioreactors

    PubMed Central

    Connelly, Stephanie; Shin, Seung G.; Dillon, Robert J.; Ijaz, Umer Z.; Quince, Christopher; Sloan, William T.; Collins, Gavin

    2017-01-01

    Studies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study. Two laboratory-scale idealizations of the EGSB—a one-dimensional and a three- dimensional scale-down of a full-scale design—were built and operated in triplicate under near-identical conditions to a full-scale EGSB. The laboratory-scale bioreactors were seeded using biomass obtained from the full-scale bioreactor, and, spent water from the distillation of whisky from maize was applied as substrate at both scales. Over 70 days, bioreactor performance, microbial ecology, and microbial community physiology were monitored at various depths in the sludge-beds using 16S rRNA gene sequencing (V4 region), specific methanogenic activity (SMA) assays, and a range of physical and chemical monitoring methods. SMA assays indicated dominance of the hydrogenotrophic pathway at full-scale whilst a more balanced activity profile developed during the laboratory-scale trials. At each scale, Methanobacterium was the dominant methanogenic genus present. Bioreactor performance overall was better at laboratory-scale than full-scale. We observed that bioreactor design at laboratory-scale significantly influenced spatial distribution of microbial community physiology and taxonomy in the bioreactor sludge-bed, with 1-D bioreactor types promoting stratification of each. In the 1-D laboratory bioreactors, increased abundance of Firmicutes was associated with both granule position in the sludge bed and increased activity against acetate and ethanol as substrates. We further observed that stratification in the sludge-bed in 1-D laboratory-scale

  2. The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater.

    PubMed

    Cornelissen, E R; Harmsen, D; Beerendonk, E F; Qin, J J; Oo, H; de Korte, K F; Kappelhof, J W M N

    2011-01-01

    An innovative osmotic membrane bioreactor (OMBR) is currently under development for the reclamation of wastewater, which combines activated sludge treatment and forward osmosis (FO) membrane separation with a RO post-treatment. The research focus is FO membrane fouling and performance using different activated sludge investigated both at laboratory scale (membrane area of 112cm2) and at on-site bench scale (flat sheet membrane area of 0.1 m2). FO performance on laboratory-scale (i) increased with temperature due to a decrease in viscosity and (ii) was independent of the type of activated sludge. Draw solution leakage increased with temperature and varied for different activated sludge. FO performance on bench-scale (i) increased with osmotic driving force, (ii) depended on the membrane orientation due to internal concentration polarization and (iii) was invariant to feed flow decrease and air injection at the feed and draw side. Draw solution leakage could not be evaluated on bench-scale due to experimental limitation. Membrane fouling was not found on laboratory scale and bench-scale, however, partially reversible fouling was found on laboratory scale for FO membranes facing the draw solution. Economic assessment indicated a minimum flux of 15L.m-2 h-1 at 0.5M NaCl for OMBR-RO to be cost effective, depending on the FO membrane price.

  3. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor: kinetic study.

    PubMed

    Leyva-Díaz, J C; Poyatos, J M

    2015-01-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass.

  4. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation.

    PubMed

    Brannock, M; Wang, Y; Leslie, G

    2010-05-01

    Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution).

  5. Bacterial community structure of a lab-scale anammox membrane bioreactor.

    PubMed

    Gonzalez-Martinez, Alejandro; Osorio, F; Rodriguez-Sanchez, Alejandro; Martinez-Toledo, Maria Victoria; Gonzalez-Lopez, Jesus; Lotti, Tommaso; van Loosdrecht, M C M

    2015-01-01

    Autotrophic nitrogen removal technologies have proliferated through the last decade. Among these, a promising one is the membrane bioreactor (MBR) Anammox, which can achieve very high solids retention time and therefore sets a proper environment for the cultivation of anammox bacteria. In this sense, the MBR Anammox is an efficient technology for the treatment of effluents with low organic carbon and high ammonium concentrations once it has been treated under partial nitrification systems. A lab-scale MBR Anammox bioreactor has been built at the Technological University of Delft, The Netherlands and has been proven for efficient nitrogen removal and efficient cultivation of anammox bacteria. In this study, next-generation sequencing techniques have been used for the investigation of the bacterial communities of this MBR Anammox for the first time ever. A strong domination of Candidatus Brocadia bacterium and also the presence of a myriad of other microorganisms that have adapted to this environment were detected, suggesting that the MBR Anammox bioreactor might have a more complex microbial ecosystem that it has been thought. Among these, nitrate-reducing heterotrophs and primary producers, among others, were identified. Definition of the ecological roles of the OTUs identified through metagenomic analysis was discussed. © 2014 American Institute of Chemical Engineers.

  6. SANASA Capivari II - the first full-scale municipal membrane bioreactor in Latin America.

    PubMed

    Pagotto, R; Rossetto, R; Gasperi, R L P; Andrade, J P; Trovati, J; Vallero, M V G; Okumura, A; Arntsen, B

    2014-01-01

    The macro region of Campinas (Brazil) is rapidly evolving with new housing developments and industries, creating the challenge of finding new ways to treat wastewater to a quality that can be reused in order to overcome water scarcity problems. To address this challenge, SANASA (a publicly owned water and wastewater concessionaire from Campinas) has recently constructed the 'EPAR (Water Reuse Production Plant) Capivari II' using the GE ZeeWeed 500D(®) ultrafiltration membrane system. This is the first large-scale membrane bioreactor (MBR) system in Latin America with biological tertiary treatment capability (nitrogen and phosphorus removal), being able to treat an average flow of 182 L/s in its first phase of construction. The filtration system is composed of three membrane trains with more than 36,000 m(2) of total membrane filtration area. The membrane bioreactor (MBR) plant was commissioned in April 2012 and the permeate quality has exceeded expectations. Chemical oxygen demand (COD) removal rates are around and above 97% on a consistent basis, with biochemical oxygen demand (BOD5) and NH3 (ammonia) concentrations at very low levels, and turbidity lower than 0.3 nephelometric turbidity unit (NTU). Treated effluent is sent to a water reuse accumulation tank (from where will be distributed as reuse water), and the excess is discharged into the Capivari River.

  7. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry.

    PubMed

    Andersen, M; Kristensen, G H; Brynjolf, M; Grüttner, H

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (< 50 mg/l). To obtain satisfactory treatment, addition of nitrogen was necessary. The biodegradability of the permeate was very low (BOD5 < 2 mg/l). A hydraulic retention time of 1 d turned out to be sufficient at a sludge concentration of 10 g MLSS/l. Through addition of a cationic polymer, a satisfactory dewaterability of the sludge was reached. Membrane tests showed that operating at a trans-membrane pressure of 3 bar and a cross-flow velocity of 4 m/s, a flux of 120 l/m2h can be expected without using chemicals for membrane cleaning. The quality of the permeate was very good when comparing to the reuse quality demands of water to the wash processes. Reuse of the permeate in all rinsing steps requires additional treatment through reverse osmosis.

  8. Computational study of culture conditions and nutrient supply in a hollow membrane sheet bioreactor for large-scale bone tissue engineering.

    PubMed

    Khademi, Ramin; Mohebbi-Kalhori, Davod; Hadjizadeh, Afra

    2014-03-01

    Successful bone tissue culture in a large implant is still a challenge. We have previously developed a porous hollow membrane sheet (HMSh) for tissue engineering applications (Afra Hadjizadeh and Davod Mohebbi-Kalhori, J Biomed. Mater. Res. Part A [2]). This study aims to investigate culture conditions and nutrient supply in a bioreactor made of HMSh. For this purpose, hydrodynamic and mass transport behavior in the newly proposed hollow membrane sheet bioreactor including a lumen region and porous membrane (scaffold) for supporting and feeding cells with a grooved section for accommodating gel-cell matrix was numerically studied. A finite element method was used for solving the governing equations in both homogenous and porous media. Furthermore, the cell resistance and waste production have been included in a 3D mathematical model. The influences of different bioreactor design parameters and the scaffold properties which determine the HMSh bioreactor performance and various operating conditions were discussed in detail. The obtained results illustrated that the novel scaffold can be employed in the large-scale applications in bone tissue engineering.

  9. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor.

    PubMed

    Zhang, Wenjie; Liu, Xiaoning; Wang, Dunqiu; Jin, Yue

    2017-11-01

    Membrane fouling is a problem in full-scale membrane bioreactors. In this study, bamboo charcoal (BC) was evaluated for its efficacy in alleviating membrane fouling in flat-sheet membrane bioreactors treating municipal wastewater. The results showed that BC addition markedly improved treatment performance based on COD, NH 4 + -N, total nitrogen, and total phosphorus levels. Adding BC slowed the increase in the trans-membrane pressure rate and resulted in lower levels of soluble microbial products and extracellular polymeric substances detected in the flat-sheet membrane bioreactor. BC has a porous structure, and a large quantity of biomass was detected using scanning electron microscopy. The microbial community analysis results indicated that BC increased the microbial diversity and Aminomonas, Anaerofustis, uncultured Anaerolineaceae, Anaerolinea, and Anaerotruncus were found in higher abundances in the reactor with BC. BC addition is an effective method for reducing membrane fouling, and can be applied to full-scale flat-sheet membrane bioreactors to improve their function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Performance of a pilot-scale submerged membrane bioreactor (MBR) in treating bathing wastewater.

    PubMed

    Xia, Siqing; Guo, Jifeng; Wang, Rongchang

    2008-10-01

    Bathing wastewater was treated by a pilot-scale submerged membrane bioreactor (MBR) for more than 60 days. The results showed that the removal rates of main pollutants of wastewater such as COD(Cr), LAS, NH(4)(+)-N and total nitrogen (TN) were above 93%, 99%, 99%, and 90%, respectively. The results of denaturing gel gradient electrophoresis (DGGE) and fluorescent in situ hybridization (FISH) indicated that the bacteria were stable. The abundant nitrobacteria intercepted by the membrane led to the high removal rate of ammonia and TN. FISH and 16S rDNA gene sequence analysis revealed that some specific phylogenetic group of bacteria, the Pseudomonas sp. Ochrobactrum anthropi sp. and Enterobacter sp. probably played a major role in the development of the mature biofilms, which led to the severe irreversible membrane biofouling.

  11. Modeling energy consumption in membrane bioreactors for wastewater treatment in north Africa.

    PubMed

    Skouterisl, George; Arnot, Tom C; Jraou, Mouna; Feki, Firas; Sayadi, Sami

    2014-03-01

    Two pilot-scale membrane bioreactors were operated alongside a full-sized activated sludge plant in Tunisia in order to compare specific energy demand and treated water quality. Energy consumption rates were measured for the complete membrane bioreactor systems and for their different components. Specific energy demand was measured for the systems and compared with the activated sludge plant, which operated at around 3 kWh m(-3). A model was developed for each membrane bioreactor based on both dynamic and steady-state mass balances, microbial kinetics and stoichiometry, and energy balance. Energy consumption was evaluated as a function of mixed-liquor suspended solids concentration, net permeate fluxes, and the resultant treated water quality. This work demonstrates the potential for using membrane bioreactors in decentralised domestic water treatment in North Africa, at energy consumption levels similar or lower than conventional activated sludge systems, with the added benefit of producing treated water suitable for unrestricted crop irrigation.

  12. Membrane Bioreactor With Pressure Cycle

    NASA Technical Reports Server (NTRS)

    Efthymiou, George S.; Shuler, Michael L.

    1991-01-01

    Improved class of multilayer membrane bioreactors uses convention forced by differences in pressure to overcome some of diffusional limitations of prior bioreactors. In reactor of new class, flow of nutrient solution reduces adverse gradients of concentration, keeps cells supplied with fresh nutrient, and sweeps away products faster than diffusion alone. As result, overall yield and rate of reaction increased. Pressures in sweeping gas and nutrient alternated to force nutrient liquid into and out of biocatalyst layer through hyrophilic membrane.

  13. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery.

    PubMed

    Cashman, Sarah; Ma, Xin; Mosley, Janet; Garland, Jay; Crone, Brian; Xue, Xiaobo

    2018-04-01

    This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and can produce recycled water to displace potable water. Energy recovery is possible with methane generated from AnMBRs. Scenarios for these technologies were investigated for different scale systems serving various population densities under a number of climate conditions with multiple methane recovery options. When incorporating the displacement of drinking water, AeMBRs started to realize net energy benefits at the 1 million gallons per day (MGD) scale and mesophilic AnMBRs at the 5 MGD scale. For all scales, the psychrophilic AnMBR resulted in net energy benefits. This study provides insights into key performance characteristics needed before an informed decision can be made for a community to transition towards the adoption of MBR technologies. Copyright © 2018. Published by Elsevier Ltd.

  14. Performance evaluation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating ethanol thin stillage.

    PubMed

    Dereli, R K; Urban, D R; Heffernan, B; Jordan, J A; Ewing, J; Rosenberger, G T; Dunaev, T I

    2012-01-01

    The ethanol industry has grown rapidly during the past ten years, mainly due to increasing oil prices. However, efficient and cost-effective solutions for treating thin stillage wastewater have still to be developed. The anaerobic membrane bioreactor (AnMBR) technology combines classical anaerobic treatment in a completely-stirred tank reactor (CSTR) with membrane separation. The combination of these two technologies can achieve a superior effluent quality and also increase biogas production compared to conventional anaerobic solutions. A pilot-scale AnMBR treating thin stillage achieved very high treatment efficiencies in terms of chemical oxygen demand (COD) and total suspended solids (TSS) removal (>98%). An average permeate flux of 4.3 L/m2 x h was achieved at relatively low transmembrane pressure (TMP) values (0.1-0.2 bars) with flat-sheet membranes. Experience gained during the pilot-scale studies provides valuable information for scaling up of AnMBRs treating complex and high-strength wastewaters.

  15. Treatment of Simulated Shipboard Gray Water in a Lab-Scale Membrane Bioreactor

    DTIC Science & Technology

    2005-12-01

    bioreactors ( MBRs ). MBRs with submerged membrane modules are considered a promising wastewater technology for use aboard ships since significant treatment...system, which consisted of an equalization tank, an MBR with submerged hollow fiber membranes, and a UV disinfection system. The reactor was...1999) optimized removal of TN in an intermittently aerated MBR with submerged hollow fiber membranes. They achieved an average TN removal of 83

  16. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment.

    PubMed

    Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J

    2014-01-01

    An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.

  17. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity

    NASA Astrophysics Data System (ADS)

    Abuabdou, Salahaldin M. A.; Bashir, Mohammed J. K.; Aun, Ng Choon; Sethupathi, Sumathi

    2018-04-01

    Sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). The resulted landfill leachate is a highly contaminated liquid. Even small quantities of this high-strength leachate can cause serious damage to surface and ground water receptors. Thus, these leachates must be appropriately treated before being discharged into the environment. In the last years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for leachate treatment due to the significant advantages. In the last decade, many studies have been conducted in which various types of anaerobic reactors were used in combination with membranes. This paper is a review of the potential of anaerobic membrane bioreactor technology for municipal landfill leachate treatment. A critical review in AnMBR performance interesting landfill leachate in lab scale is also done. In addition, the review discusses the impact of the various factors on both biological and filtration performances of anaerobic membrane bioreactors.

  18. Energy efficiency in membrane bioreactors.

    PubMed

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts.

  19. Application of a membrane bioreactor for winery wastewater treatment.

    PubMed

    Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F

    2010-01-01

    Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.

  20. Novel magnetically induced membrane vibration (MMV) for fouling control in membrane bioreactors.

    PubMed

    Bilad, Muhammad R; Mezohegyi, Gergo; Declerck, Priscilla; Vankelecom, Ivo F J

    2012-01-01

    Conventional submerged membrane bioreactors (MBRs) rely on the coarse bubbles aeration to generate shear at the liquid-membrane interface to limit membrane fouling. Unfortunately, it is a very energy consuming method, still often resulting in a rapid decrease of membrane permeability and consequently in higher expenses. In this paper, the feasibility of a novel magnetically induced membrane vibration (MMV) system was studied in a lab-scale MBR treating synthetic wastewater. The effects on membrane fouling of applied electrical power of different operation strategies, of membrane flux and of the presence of multiple membranes on one vibrating engine on membrane fouling were investigated. The filtration performance was evaluated by determining the filtration resistance profiles and critical flux. The results showed clear advantages of the vibrating system over conventional MBR processes by ensuring higher fluxes at lower fouling rates. Intermittent vibration was found a promising strategy for both efficient fouling control and significant energy saving. The optimised MMV system is presumed to lead to significant energy and cost reduction in up-scaled MBR operations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Membrane filtration device for studying compression of fouling layers in membrane bioreactors

    PubMed Central

    Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990

  2. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    PubMed

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  3. Performance assessment of a pilot-size vacuum rotation membrane bioreactor treating urban wastewater

    NASA Astrophysics Data System (ADS)

    Alnaizy, Raafat; Aidan, Ahmad; Luo, Haonan

    2011-12-01

    This study investigated the suitability and performance of a pilot-scale membrane bioreactor (MBR). Huber vacuum rotation membrane (VRM 20/36) bioreactor was installed at the Sharjah sewage treatment plant (STP) in the United Arab Emirate for 12 months. The submerged membranes were flat sheets with a pore size of 0.038 μm. The VRM bioreactor provided a final effluent of very high quality. The average reduction on parameters such as COD was from 620 to 3 mg/l, BOD from 239 to 3 mg/l, Ammonia from 37 to 2 mg/l, turbidity from 225NTU to less than 3NTU, and total suspended solids from 304 mg/l to virtually no suspended solids. The rotating mechanism of the membrane panels permitted the entire membrane surface to receive the same intensive degree of air scouring, which lead to a longer duration. The MBR process holds a promising future because of its smaller footprints in contrast to conventional systems, superior effluent quality, and high loading rate capacity.

  4. Zero Nuisance Piggeries: long-term performance of MBR (membrane bioreactor) for dilute swine wastewater treatment using submerged membrane bioreactor in semi-industrial scale.

    PubMed

    Prado, Nolwenn; Ochoa, Juan; Amrane, Abdeltif

    2009-04-01

    Effective aerobic/anoxic treatment of piggery manure wastewater was achieved in a real farm scale using a small piggery (72 pigs) with reuse of the treated water. The experimental procedure was followed for 9 months. Fresh manure (FM) is formed by daily flush on piggeries and biologically treated after centrifuge pre-treatment. For upgrade liquid/solid separation and pathogen retention in biological treatment, a membrane system was used with the aim of effluent reuse in flush. Despite an evolution of FM through time, centrifuge pre-treatment and bioreactor performances stayed at high level. An elimination of 86% of the suspended solids occurred through pre-treatment, and nitrogen and COD biological degradation remains at 90% all time long. Moreover, interestingly about half of the soluble part of phosphorus (20% of the global phosphorus content) was biologically removed via the recirculation between the anoxic and the aerobic tank which acted as an intermittent aerobic/anoxic sequence. A part of COD was proved not biodegradable and was accumulated via the reuse of the treated water for flushing purpose. This accumulation justifies washing of the biomass between two runs in purpose to enhance the treated water quality and also to meet the membrane tolerance. The membrane was proved reliable as far as the maintenance procedure was respected. Maintenance cleaning had to be operated as soon as the TransMembrane Pressure (TMP) achieved 50 mbar and curative washing was necessary if the TMP increased over 90 mbar or between 2 runs. The temperature was proved to influence both the bioactivity and the membrane fouling kinetic. Finally, it was demonstrated that the process was sustainable for long-term management of swine wastewater at semi-industrial scale.

  5. Nitrile bioconversion by Microbacterium imperiale CBS 498-74 resting cells in batch and ultrafiltration membrane bioreactors.

    PubMed

    Cantarella, M; Cantarella, L; Gallifuoco, A; Spera, A

    2006-03-01

    The biohydration of acrylonitrile, propionitrile and benzonitrile catalysed by the NHase activity contained in resting cells of Microbacterium imperiale CBS 498-74 was operated at 5, 10 and 20 degrees C in laboratory-scale batch and membrane bioreactors. The bioreactions were conducted in buffered medium (50 mM Na(2)HPO(4)/NaH(2)PO(4), pH 7.0) in the presence of distilled water or tap-water, to simulate a possible end-pipe biotreatment process. The integral bioreactor performances were studied with a cell loading (dry cell weight; DCW) varying from 0.1 mg(DCW) per reactor to 16 mg(DCW) per reactor, in order to realize near 100% bioconversion of acrylonitrile, propionitrile and benzonitrile without consistent loss of NHase activity.

  6. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure.

    PubMed

    Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak

    2017-11-01

    A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Membrane bioreactors for the removal of anionic micropollutants from drinking water.

    PubMed

    Crespo, João G; Velizarov, Svetlozar; Reis, Maria A

    2004-10-01

    Biological treatment processes allow for the effective elimination of anionic micropollutants from drinking water. However, special technologies have to be implemented to eliminate the target pollutants without changing water quality, either by adding new pollutants or removing essential water components. Some innovative technologies that combine the use of membranes with the biological degradation of ionic micropollutants in order to minimize the secondary contamination of treated water include pressure-driven membrane bioreactors, gas-transfer membrane bioreactors and ion exchange membrane bioreactors.

  8. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    PubMed

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.

  9. Development of a method for reliable power input measurements in conventional and single‐use stirred bioreactors at laboratory scale

    PubMed Central

    Werner, Sören; Jossen, Valentin; Kraume, Matthias; Eibl, Dieter

    2016-01-01

    Power input is an important engineering and scale‐up/down criterion in stirred bioreactors. However, reliably measuring power input in laboratory‐scale systems is still challenging. Even though torque measurements have proven to be suitable in pilot scale systems, sensor accuracy, resolution, and errors from relatively high levels of friction inside bearings can become limiting factors at smaller scales. An experimental setup for power input measurements was developed in this study by focusing on stainless steel and single‐use bioreactors in the single‐digit volume range. The friction losses inside the air bearings were effectively reduced to less than 0.5% of the measurement range of the torque meter. A comparison of dimensionless power numbers determined for a reference Rushton turbine stirrer (N P = 4.17 ± 0.14 for fully turbulent conditions) revealed good agreement with literature data. Hence, the power numbers of several reusable and single‐use bioreactors could be determined over a wide range of Reynolds numbers between 100 and >104. Power numbers of between 0.3 and 4.5 (for Re = 104) were determined for the different systems. The rigid plastic vessels showed similar power characteristics to their reusable counterparts. Thus, it was demonstrated that the torque‐based technique can be used to reliably measure power input in stirred reusable and single‐use bioreactors at the laboratory scale. PMID:28579937

  10. Applicability of dynamic membrane technology in anaerobic membrane bioreactors.

    PubMed

    Ersahin, Mustafa Evren; Ozgun, Hale; Tao, Yu; van Lier, Jules B

    2014-01-01

    This study investigated the applicability of dynamic membrane technology in anaerobic membrane bioreactors for the treatment of high strength wastewaters. A monofilament woven fabric was used as support material for dynamic membrane formation. An anaerobic dynamic membrane bioreactor (AnDMBR) was operated under a variety of operational conditions, including different sludge retention times (SRTs) of 20 and 40 days in order to determine the effect of SRT on both biological performance and dynamic membrane filtration characteristics. High COD removal efficiencies exceeding 99% were achieved during the operation at both SRTs. Higher filtration resistances were measured during the operation at SRT of 40 days in comparison to SRT of 20 days, applying a stable flux of 2.6 L/m(2) h. The higher filtration resistances coincided with lower extracellular polymeric substances concentration in the bulk sludge at SRT of 40 days, likely resulting in a decreased particle flocculation. Results showed that dynamic membrane technology achieved a stable and high quality permeate and AnDMBRs can be used as a reliable and satisfactory technology for treatment of high strength wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: Role of membrane foulants.

    PubMed

    Zhu, Yijing; Wang, Yayi; Zhou, Shuai; Jiang, Xuxin; Ma, Xiao; Liu, Chao

    2018-03-01

    Antibiotic resistance genes (ARGs) are an emerging concern in wastewater treatment plants (WWTPs), as dissemination of ARGs can pose a serious risk to human health. Few studies, however, have quantified ARGs in membrane bioreactors (MBRs), although MBRs have been widely used for both municipal and industrial wastewater treatment. To reveal the capacity of MBRs for removal of ARGs and the response of membrane fouling after antibiotic exposure, five typical ARG subtypes (sulI, sulII, tetC, tetX and ereA) and int1 were quantified affiliated by systematic membrane foulants analysis in a laboratory-scale anoxic/aerobic membrane bioreactor (A/O-MBR). Sulfamethoxazole and tetracycline hydrochloride additions increased ARG abundances by 0.5-1.4 orders of magnitude in the activated sludge, while the ARG removal performance of the membrane module remained stable (or even increased with ARG absolute abundance in several cases), with the abundance of removed ARGs ranging from 0.6 to 5.6 orders of magnitude. Specifically, the distribution of ARGs in membrane foulants accounted for 13%-25% of the total absolute abundance of all tested MBR samples. Indeed, substantial fouling occurred after the antibiotic additions, with the mean concentrations of soluble microbial product (SMP) and extracellular polymeric substance (EPS) increasing by 340% and 220%, respectively, in a membrane fouling cycle; moreover, the contents of EPS and SMP in the membrane foulants were significantly correlated with the ARG absolute abundance of membrane foulants (p < 0.05), among which more significant correlations occurred between both the protein and polysaccharide of foulants than that with humic acid. The dense membrane fouling layer and the membrane itself constituted dual barriers that effectively avoided the leakage of ARGs from the membrane module. Our findings provide fundamental insights into the proliferation and removal of ARGs in MBR systems, and highlight the contribution of membrane

  12. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors.

    PubMed

    Jin, Le; Ong, Say Leong; Ng, How Yong

    2010-12-01

    Membrane fouling, the key disadvantage that inevitably occurs continuously in the membrane bioreactor (MBR), baffles the wide-scale application of MBR. Ceramic membrane, which possesses high chemical and thermal resistance, has seldom been used in MBR to treat municipal wastewater. Four ceramic membranes with the same materials but different pore sizes, ranging from 80 to 300 nm, were studied in parallel using four lab-scale submerged MBRs (i.e., one type of ceramic membrane in one MBR). Total COD and ammonia nitrogen removal efficiencies were observed to be consistently above 94.5 and 98%, respectively, in all submerged ceramic membrane bioreactors. The experimental results showed that fouling was mainly affected by membrane's microstructure, surface roughness and pore sizes. Ceramic membrane with the roughest surface and biggest pore size (300 nm) had the highest fouling potential with respect to the TMP profile. The 80 nm membrane with a smoother surface and relatively uniform smaller pore openings experienced least membrane fouling with respect to TMP increase. The effects of the molecular weight distribution, particle size distribution and other biomass characteristics such as extracellular polymeric substances, zeta potential and capillary suction time, were also investigated in this study. Results showed that no significant differences of these attributes were observed. These observations indicate that the membrane surface properties are the dominant factors leading to different fouling potential in this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery

    EPA Science Inventory

    This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and...

  14. Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor.

    PubMed

    Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae

    2007-06-01

    A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.

  15. A venturi device reduces membrane fouling in a submerged membrane bioreactor.

    PubMed

    Kayaalp, Necati; Ozturkmen, Gokmen

    2016-01-01

    In this study, for the first time, a venturi device was integrated into a submerged membrane bioreactor (MBR) to improve membrane surface cleaning and bioreactor oxygenation. The performances of a blower and the venturi device were compared in terms of membrane fouling and bioreactor oxygenation. Upon comparing membrane fouling, the performances were similar for a low operation flux (18 L/m(2).h); however, at a medium flux (32 L/m(2).h), the venturi system operated 3.4 times longer than the blower system, and the final transmembrane pressure was one-third that of the blower system. At the highest flux studied (50 L/m(2).h), the venturi system operated 5.4 times longer than the blower system. The most notable advantage of using a venturi device was that the dissolved oxygen (DO) concentration of the MBR was in the range of 7 to 8 mg/L at a 3 L/min aeration rate, while the DO concentration of the MBR was inadequate (a maximum of 0.29 mg/L) in the blower system. A clean water oxygenation test at a 3 L/min aeration rate indicated that the standard oxygen transfer rate for the venturi system was 9.5 times higher than that of the blower system.

  16. Membrane bioreactors' potential for ethanol and biogas production: a review.

    PubMed

    Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J

    2013-01-01

    Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.

  17. Membrane bioreactors for treating waste streams.

    PubMed

    Howell, J A; Arnot, T C; Liu, W

    2003-03-01

    Membrane bioreactors (MBRs) have a number of advantages for treating wastewater containing large quantities of BOD. This paper reviews the inherent advantages of an MBR, which include high potential biomass loadings, lower sludge yields, and retention of specialized organisms that may not settle well in clarifiers. A major problem in effluent treatment occurs when mixed inorganic and organic wastes occur with high concentrations of pollutants. Inorganics that might cause extremes of pH and/or salinity will inhibit microbial growth and only specialized organisms can survive under these conditions. Refractory organics are only biodegraded with difficulty by specialized organisms, which usually do not resist the extreme inorganic environments. The use of membrane bioreactors to help separate the micro-organisms from the inorganic compounds, yet permit the organics to permeate, has been developed in two different designs that are outlined in this paper. The use of membrane contactors in a multimembrane stripping system to treat acidic chlorinated wastes is proposed and discussed.

  18. Biogas Production from Citrus Waste by Membrane Bioreactor

    PubMed Central

    Wikandari, Rachma; Millati, Ria; Cahyanto, Muhammad Nur; Taherzadeh, Mohammad J.

    2014-01-01

    Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF) membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR), the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR) was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor. PMID:25167328

  19. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal.

    PubMed

    Yang, Shuai; Yang, Fenglin; Fu, Zhimin; Lei, Ruibo

    2009-04-01

    A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9-22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR.

  20. The problem of fouling in submerged membrane bioreactors - Model validation and experimental evidence

    NASA Astrophysics Data System (ADS)

    Tsibranska, Irene; Vlaev, Serafim; Tylkowski, Bartosz

    2018-01-01

    Integrating biological treatment with membrane separation has found a broad area of applications and industrial attention. Submerged membrane bioreactors (SMBRs), based on membrane modules immersed in the bioreactor, or side stream ones connected in recycle have been employed in different biotechnological processes for separation of thermally unstable products. Fouling is one of the most important challenges in the integrated SMBRs. A number of works are devoted to fouling analysis and its treatment, especially exploring the opportunity for enhanced fouling control in SMBRs. The main goal of the review is to provide a comprehensive yet concise overview of modeling the fouling in SMBRs in view of the problematics of model validation, either by real system measurements at different scales or by analysis of the obtained theoretical results. The review is focused on the current state of research applying computational fluid dynamics (CFD) modeling techniques.

  1. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    PubMed Central

    Iorhemen, Oliver Terna; Hamza, Rania Ahmed; Tay, Joo Hwa

    2016-01-01

    The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application. PMID:27314394

  2. Considerations on the design and financial feasibility of full-scale membrane bioreactors for municipal applications.

    PubMed

    Brepols, Ch; Schäfer, H; Engelhardt, N

    2010-01-01

    Based on the practical experience in design and operation of three full-scale membrane bioreactors (MBR) for municipal wastewater treatment that were commissioned since 1999, an overview on the different design concepts that were applied to the three MBR plants is given. The investment costs and the energy consumption of the MBRs and conventional activated sludge (CAS) plants (with and without tertiary treatment) in the Erft river region are compared. It is found that the specific investment costs of the MBR plants are lower than those of comparable CAS with tertiary treatment. A comparison of the specific energy demand of MBRs and conventional WWTPs is given. The structure of the MBRs actual operational costs is analysed. It can be seen that energy consumption is only responsible for one quarter to one third of all operational expenses. Based on a rough design and empirical cost data, a cost comparison of a full-scale MBR and a CAS is carried out. In this example the CAS employs a sand filtration and a disinfection in order to achieve comparable effluent quality. The influence of membrane lifetime on life cycle cost is assessed.

  3. Molecular microbial and chemical investigation of the bioremediation of two-phase olive mill waste using laboratory-scale bioreactors.

    PubMed

    Morillo, J A; Aguilera, M; Antízar-Ladislao, B; Fuentes, S; Ramos-Cormenzana, A; Russell, N J; Monteoliva-Sánchez, M

    2008-05-01

    Two-phase olive mill waste (TPOMW) is a semisolid effluent that is rich in contaminating polyphenols and is produced in large amounts by the industry of olive oil production. Laboratory-scale bioreactors were used to investigate the biodegradation of TPOMW by its indigenous microbiota. The effect of nutrient addition (inorganic N and P) and aeration of the bioreactors was studied. Microbial changes were investigated by PCR-temperature time gradient electrophoresis (TTGE) and following the dynamics of polar lipid fatty acids (PLFA). The greatest decrease in the polyphenolic and organic matter contents of bioreactors was concomitant with an increase in the PLFA fungal/bacterial ratio. Amplicon sequences of nuclear ribosomal internal transcribed spacer region (ITS) and 16S rDNA allowed identification of fungal and bacterial types, respectively, by comparative DNA sequence analyses. Predominant fungi identified included members of the genera Penicillium, Candida, Geotrichum, Pichia, Cladosporium, and Aschochyta. A total of 14 bacterial genera were detected, with a dominance of organisms that have previously been associated with plant material. Overall, this work highlights that indigenous microbiota within the bioreactors through stimulation of the fungal fraction, is able to degrade the polyphenolic content without the inoculation of specific microorganisms.

  4. Biological treatment of mixtures of toluene and n-hexane vapours in a hollow fibre membrane bioreactor.

    PubMed

    Zhao, Kang; Xiu, Guangli; Xu, Lihang; Zhang, Danian; Zhang, Xiaofeng; Deshusses, Marc A

    2011-04-01

    Membrane bioreactors are gaining interest for the control of contaminated air streams. In this study, the removal of toluene and n-hexane vapours in a hollow fibre membrane bioreactor (HFMB) was investigated. The focus was on quantifying the possible interactions occurring during the simultaneous biotreatment of the two volatile pollutants. Two lab-scale units fitted with microporous polypropylene hollow fibre membranes were connected in series and inoculated with activated sludge. Contaminated air was passed through the lumen at gas residence times ranging from 2.3 to 9.4 s while a pollutant-degrading biofilm developed on the shell side of the fibres. When toluene was treated alone, very high elimination capacities (up to 750 g m(-3) h(-1) based on lumen volume, or 1.25 g m(-2) h(-1) when normalized by the hollow fibre membrane area) were reached. When toluene and hexane were treated simultaneously, toluene biodegradation was partially inhibited by n-hexane, resulting in lower toluene removal rates. On the other hand, hexane removal was only marginally affected by the presence of toluene and was degraded at very high rates (upwards of 440 g m(-3) h(-1) or 0.73 g m(-2) h(-1) without breakthrough). Overall, this study demonstrates that mixtures of toluene and n-hexane vapours can be effectively removed in hollow fibre membrane bioreactors and that complex biological interactions may affect one or more of the pollutants undergoing treatment in gas-phase membrane bioreactors.

  5. New and practical mathematical model of membrane fouling in an aerobic submerged membrane bioreactor.

    PubMed

    Zuthi, Mst Fazana Rahman; Guo, Wenshan; Ngo, Huu Hao; Nghiem, Duc Long; Hai, Faisal I; Xia, Siqing; Li, Jianxin; Li, Jixiang; Liu, Yi

    2017-08-01

    This study aimed to develop a practical semi-empirical mathematical model of membrane fouling that accounts for cake formation on the membrane and its pore blocking as the major processes of membrane fouling. In the developed model, the concentration of mixed liquor suspended solid is used as a lumped parameter to describe the formation of cake layer including the biofilm. The new model considers the combined effect of aeration and backwash on the foulants' detachment from the membrane. New exponential coefficients are also included in the model to describe the exponential increase of transmembrane pressure that typically occurs after the initial stage of an MBR operation. The model was validated using experimental data obtained from a lab-scale aerobic sponge-submerged membrane bioreactor (MBR), and the simulation of the model agreed well with the experimental findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation.

    PubMed

    Su, Y C; Huang, C P; Pan, Jill R; Lee, H C

    2008-01-01

    Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.

  7. Anaerobic digestion of citrus waste using two-stage membrane bioreactor

    NASA Astrophysics Data System (ADS)

    Millati, Ria; Lukitawesa; Dwi Permanasari, Ervina; Wulan Sari, Kartika; Nur Cahyanto, Muhammad; Niklasson, Claes; Taherzadeh, Mohammad J.

    2018-03-01

    Anaerobic digestion is a promising method to treat citrus waste. However, the presence of limonene in citrus waste inhibits anaerobic digestion process. Limonene is an antimicrobial compound and could inhibit methane forming bacteria that takes a longer time to recover than the injured acid forming bacteria. Hence, volatile fatty acids will be accumulated and methane production will be decreased. One way to solve this problem is by conducting anaerobic digestion process into two stages. The first step is aimed for hydrolysis, acidogenesis, and acetogenesis reactions and the second stage is aimed for methanogenesis reaction. The separation of the system would further allow each stage in their optimum conditions making the process more stable. In this research, anaerobic digestion was carried out in batch operations using 120 ml-glass bottle bioreactors in 2 stages. The first stage was performed in free-cells bioreactor, whereas the second stage was performed in both bioreactor of free cells and membrane bioreactor. In the first stage, the reactor was set into ‘anaerobic’ and ‘semi-aerobic’ conditions to examine the effect of oxygen on facultative anaerobic bacteria in acid production. In the second stage, the protection of membrane towards the cells against limonene was tested. For the first stage, the basal medium was prepared with 1.5 g VS of inoculum and 4.5 g VS of citrus waste. The digestion process was carried out at 55°C for four days. For the second stage, the membrane bioreactor was prepared with 3 g of cells that were encased and sealed in a 3×6 cm2 polyvinylidene fluoride membrane. The medium contained 40 ml basal medium and 10 ml liquid from the first stage. The bioreactors were incubated at 55°C for 2 days under anaerobic condition. The results from the first stage showed that the maximum total sugar under ‘anaerobic’ and ‘semi-aerobic’ conditions was 294.3 g/l and 244.7 g/l, respectively. The corresponding values for total volatile

  8. Assessment of energy-saving strategies and operational costs in full-scale membrane bioreactors.

    PubMed

    Gabarrón, S; Ferrero, G; Dalmau, M; Comas, J; Rodriguez-Roda, I

    2014-02-15

    The energy-saving strategies and operational costs of stand-alone, hybrid, and dual stream full-scale membrane bioreactors (MBRs) with capacities ranging from 1100 to 35,000 m(3) day(-1) have been assessed for seven municipal facilities located in Northeast Spain. Although hydraulic load was found to be the main determinant factor for the energy consumption rates, several optimisation strategies have shown to be effective in terms of energy reduction as well as fouling phenomenon minimization or preservation. Specifically, modifications of the biological process (installation of control systems for biological aeration) and of the filtration process (reduction of the flux or mixed liquor suspended solids concentration and installation of control systems for membrane air scouring) were applied in two stand-alone MBRs. After implementing these strategies, the yearly specific energy demand (SED) in flat-sheet (FS) and hollow-fibre (HF) stand-alone MBRs was reduced from 1.12 to 0.71 and from 1.54 to 1.12 kW h(-1) m(-3), respectively, regardless of their similar yearly averaged hydraulic loads. The strategies applied in the hybrid MBR, namely, buffering the influent flow and optimisation of both biological aeration and membrane air-scouring, reduced the SED values by 14%. These results illustrate that it is possible to apply energy-saving strategies to significantly reduce MBR operational costs, highlighting the need to optimise MBR facilities to reconsider them as an energy-competitive option. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Evaluation of two pilot scale membrane bioreactors for the elimination of selected surfactants from municipal wastewaters

    NASA Astrophysics Data System (ADS)

    González, Susana; Petrovic, Mira; Barceló, Damiá

    2008-07-01

    SummaryThe removal of selected surfactants, linear alkylbenzene sulfonates (LAS), coconut diethanol amides (CDEA) and alkylphenol ethoxylates and their degradation products were investigated using a two membrane bioreactor (MBR) with hollow fiber and plate and frame membranes. The two pilot plants MBR run in parallel to a full-scale conventional activated sludge (CAS) treatment. A total of eight influent samples with the corresponding effluent samples were analysed by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS-MS). The results indicate that both MBR have a better effluent quality in terms of chemical and biological oxygen demand (COD and BOD), NH4+ , concentration and total suspended solids (TSS). MBR showed a better similar performance in the overall elimination of the total nonylphenolic compounds, achieving a 75% of elimination or a 65% (the same elimination reached by CAS). LAS and CDEA showed similar elimination in the three systems investigated and no significant differences were observed.

  10. Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales

    PubMed Central

    Negrete, Alejandro; Kotin, Robert M.

    2007-01-01

    The conventional methods for producing recombinant adeno-associated virus (rAAV) rely on transient transfection of adherent mammalian cells. To gain acceptance and achieve current good manufacturing process (cGMP) compliance, clinical grade rAAV production process should have the following qualities: simplicity, consistency, cost effectiveness, and scalability. Currently, the only viable method for producing rAAV in large-scale, e.g.≥1016 particles per production run, utilizes Baculovirus Expression Vectors (BEVs) and insect cells suspension cultures. The previously described rAAV production in 40 L culture using a stirred tank bioreactor requires special conditions for implementation and operation not available in all laboratories. Alternatives to producing rAAV in stirred-tank bioreactors are single-use, disposable bioreactors, e.g. Wave™. The disposable bags are purchased pre-sterilized thereby eliminating the need for end-user sterilization and also avoiding cleaning steps between production runs thus facilitating the production process. In this study, rAAV production in stirred tank and Wave™ bioreactors was compared. The working volumes were 10 L and 40 L for the stirred tank bioreactors and 5 L and 20 L for the Wave™ bioreactors. Comparable yields of rAAV, ~2e+13 particles per liter of cell culture were obtained in all volumes and configurations. These results demonstrate that producing rAAV in large scale using BEVs is reproducible, scalable, and independent of the bioreactor configuration. Keywords: adeno-associated vectors; large-scale production; stirred tank bioreactor; wave bioreactor; gene therapy. PMID:17606302

  11. Contribution of a submerged membrane bioreactor in the treatment of synthetic effluent contaminated by Bisphenol-A: mechanism of BPA removal and membrane fouling.

    PubMed

    Seyhi, Brahima; Drogui, Patrick; Buelna, Gerardo; Azaïs, Antonin; Heran, Marc

    2013-09-01

    A submerged membrane bioreactor has been operated at the laboratory scale for the treatment of a synthetic effluent containing Bisphenol-A (BPA). COD, NH4-N, PO4-P and BPA were eliminated respectively, at 99%, 99%, 61% and 99%. The increase of volumetric loading rate from 0 to 21.6 g/m(3)/d did not affect the performance of the MBR system. However, the removal rate decreased rapidly when the BPA loading rate increased above 21.6 g/m(3)/d. The adsorption process of BPA on the biomass was very well described by Freundlich and Langmuir isotherms. Subsequently, biodegradation of BPA occurred and followed the first order kinetic reaction, with a constant rate of 1.13 ± 0.22 h(-1). During treatment, membrane fouling was reversible in the first 84 h of filtration, and then became irreversible. The membrane fouling was mainly due to the accumulation of suspended solid and development of biofilm on the membrane surface. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The status of membrane bioreactor technology.

    PubMed

    Judd, Simon

    2008-02-01

    In this article, the current status of membrane bioreactor (MBR) technology for wastewater treatment is reviewed. Fundamental facets of the MBR process and membrane and process configurations are outlined and the advantages and disadvantages over conventional suspended growth-based biotreatment are briefly identified. Key process design and operating parameters are defined and their significance explained. The inter-relationships between these parameters are identified and their implications discussed, with particular reference to impacts on membrane surface fouling and channel clogging. In addition, current understanding of membrane surface fouling and identification of candidate foulants is appraised. Although much interest in this technology exists and its penetration of the market will probably increase significantly, there remains a lack of understanding of key process constraints such as membrane channel clogging, and of the science of membrane cleaning.

  13. Applying fermentation liquid of food waste as carbon source to a pilot-scale anoxic/oxic-membrane bioreactor for enhancing nitrogen removal: Microbial communities and membrane fouling behaviour.

    PubMed

    Tang, Jialing; Wang, Xiaochang C; Hu, Yisong; Ngo, Huu Hao; Li, Yuyou; Zhang, Yongmei

    2017-07-01

    Fermentation liquid of food waste (FLFW) was applied as an external carbon source in a pilot-scale anoxic/oxic-membrane bioreactor (A/O-MBR) system to enhance nitrogen removal for treating low COD/TN ratio domestic wastewater. Results showed that, with the FLFW addition, total nitrogen removal increased from lower than 20% to 44-67% during the 150days of operation. The bacterial metabolic activities were obviously enhanced, and the significant change in microbial community structure promoted pollutants removal and favored membrane fouling mitigation. By monitoring transmembrane pressure and characterizing typical membrane foulants, such as extracellular polymeric substances (EPS), dissolved organic matter (DOM), and inorganics and biopolymers in the cake layer, it was confirmed that FLFW addition did not bring about any additional accumulation of membrane foulants, acceleration of fouling rate, or obvious irreversible membrane fouling in the whole operation period. Therefore, FLFW is a promising alternative carbon source to enhance nitrogen removal for the A/O-MBR system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Bio-layer management in anaerobic membrane bioreactors for wastewater treatment.

    PubMed

    Jeison, D; van Lier, J B

    2006-01-01

    Membrane separation technology represents an alternative way to achieve biomass retention in anaerobic bioreactors for wastewater treatment. Due to high biomass concentrations of anaerobic reactors, cake formation is likely to represent a major cause of flux decline. In the presented research, experiments are performed on the effect of biomass concentration and level of gas sparging on the hydraulic capacity of a submerged anaerobic membrane bioreactor. Both parameters significantly affected the hydraulic capacity, with biomass exerting the most pronounced effect. After 50 days of continuous operation the critical flux remained virtually unchanged, despite an increase in membrane resistance, suggesting that biomass characteristics and hydraulic conditions determine the bio-layer formation rather than the membrane's fouling level. The concept of bio-layer management is introduced to describe the programmed combination of actions performed in order to control the formation of biomass layer over membranes.

  15. Compartmental hollow fiber capillary membrane-based bioreactor technology for in vitro studies on red blood cell lineage direction of hematopoietic stem cells.

    PubMed

    Housler, Greggory J; Miki, Toshio; Schmelzer, Eva; Pekor, Christopher; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Abbot, Stewart; Zeilinger, Katrin; Gerlach, Jörg C

    2012-02-01

    Continuous production of red blood cells (RBCs) in an automated closed culture system using hematopoietic stem cell (HSC) progenitor cell populations is of interest for clinical application because of the high demand for blood transfusions. Previously, we introduced a four-compartment bioreactor that consisted of two bundles of hollow fiber microfiltration membranes for transport of culture medium (forming two medium compartments), interwoven with one bundle of hollow fiber membranes for transport of oxygen (O(2)), carbon dioxide (CO(2)), and other gases (forming one gas compartment). Small-scale prototypes were developed of the three-dimensional (3D) perfusion cell culture systems, which enable convection-based mass transfer and integral oxygenation in the cell compartment. CD34(+) HSC were isolated from human cord blood units using a magnetic separation procedure. Cells were inoculated into 2- or 8-mL scaled-down versions of the previously designed 800-mL cell compartment devices and perfused with erythrocyte proliferation and differentiation medium. First, using the small-scale 2-mL analytical scale bioreactor, with an initial seeding density of 800,000 cells/mL, we demonstrated approximately 100-fold cell expansion and differentiation after 7 days of culture. An 8-mL laboratory-scale bioreactor was then used to show pseudocontinuous production by intermediately harvesting cells. Subsequently, we were able to use a model to demonstrate semicontinuous production with up to 14,288-fold expansion using seeding densities of 800,000 cells/mL. The down-scaled culture technology allows for expansion of CD34(+) cells and stimulating these progenitors towards RBC lineage, expressing approximately 40% CD235(+) and enucleation. The 3D perfusion technology provides an innovative tool for studies on RBC production, which is scalable.

  16. Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale.

    PubMed

    Zhang, Xiaowei; Stettler, Matthieu; De Sanctis, Dario; Perrone, Marco; Parolini, Nicola; Discacciati, Marco; De Jesus, Maria; Hacker, David; Quarteroni, Alfio; Wurm, Florian

    2009-01-01

    Driven by the commercial success of recombinant biopharmaceuticals, there is an increasing demand for novel mammalian cell culture bioreactor systems for the rapid production of biologicals that require mammalian protein processing. Recently, orbitally shaken bioreactors at scales from 50 mL to 1,000 L have been explored for the cultivation of mammalian cells and are considered to be attractive alternatives to conventional stirred-tank bioreactors because of increased flexibility and reduced costs. Adequate oxygen transfer capacity was maintained during the scale-up, and strategies to increase further oxygen transfer rates (OTR) were explored, while maintaining favorable mixing parameters and low-stress conditions for sensitive lipid membrane-enclosed cells. Investigations from process development to the engineering properties of shaken bioreactors are underway, but the feasibility of establishing a robust, standardized, and transferable technical platform for mammalian cell culture based on orbital shaking and disposable materials has been established with further optimizations and studies ongoing.

  17. Use of Orbital Shaken Disposable Bioreactors for Mammalian Cell Cultures from the Milliliter-Scale to the 1,000-Liter Scale

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Stettler, Matthieu; de Sanctis, Dario; Perrone, Marco; Parolini, Nicola; Discacciati, Marco; de Jesus, Maria; Hacker, David; Quarteroni, Alfio; Wurm, Florian

    Driven by the commercial success of recombinant biopharmaceuticals, there is an increasing demand for novel mammalian cell culture bioreactor systems for the rapid production of biologicals that require mammalian protein processing. Recently, orbitally shaken bioreactors at scales from 50 mL to 1,000 L have been explored for the cultivation of mammalian cells and are considered to be attractive alternatives to conventional stirred-tank bioreactors because of increased flexibility and reduced costs. Adequate oxygen transfer capacity was maintained during the scale-up, and strategies to increase further oxygen transfer rates (OTR) were explored, while maintaining favorable mixing parameters and low-stress conditions for sensitive lipid membrane-enclosed cells. Investigations from process development to the engineering properties of shaken bioreactors are underway, but the feasibility of establishing a robust, standardized, and transferable technical platform for mammalian cell culture based on orbital shaking and disposable materials has been established with further optimizations and studies ongoing.

  18. Hydrodynamic optimization of membrane bioreactor by horizontal geometry modification using computational fluid dynamics.

    PubMed

    Yan, Xiaoxu; Wu, Qing; Sun, Jianyu; Liang, Peng; Zhang, Xiaoyuan; Xiao, Kang; Huang, Xia

    2016-01-01

    Geometry property would affect the hydrodynamics of membrane bioreactor (MBR), which was directly related to membrane fouling rate. The simulation of a bench-scale MBR by computational fluid dynamics (CFD) showed that the shear stress on membrane surface could be elevated by 74% if the membrane was sandwiched between two baffles (baffled MBR), compared with that without baffles (unbaffled MBR). The effects of horizontal geometry characteristics of a bench-scale membrane tank were discussed (riser length index Lr, downcomer length index Ld, tank width index Wt). Simulation results indicated that the average cross flow of the riser was negatively correlated to the ratio of riser and downcomer cross-sectional area. A relatively small tank width would also be preferable in promoting shear stress on membrane surface. The optimized MBR had a shear elevation of 21.3-91.4% compared with unbaffled MBR under same aeration intensity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Anaerobic Membrane Bioreactor for Continuous Lactic Acid Fermentation

    PubMed Central

    Fan, Rong; Ebrahimi, Mehrdad; Czermak, Peter

    2017-01-01

    Membrane bioreactor systems can enhance anaerobic lactic acid fermentation by reducing product inhibition, thus increasing productivity. In batch fermentations, the bioconversion of glucose is strongly inhibited in the presence of more than 100 g·L−1 lactic acid and is only possible when the product is simultaneously removed, which can be achieved by ceramic membrane filtration. The crossflow velocity is a more important determinant of flux than the transmembrane pressure. Therefore, to stabilize the performance of the membrane bioreactor system during continuous fermentation, the crossflow velocity was controlled by varying the biomass concentration, which was monitored in real-time using an optical sensor. Continuous fermentation under these conditions, thus, achieved a stable productivity of ~8 g·L−1·h−1 and the concentration of lactic acid was maintained at ~40 g·L−1 at a dilution rate of 0.2 h−1. No residual sugar was detected in the steady state with a feed concentration of 50 g·L−1. PMID:28467384

  20. A submerged tubular ceramic membrane bioreactor for high strength wastewater treatment.

    PubMed

    Sun, D D; Zeng, J L; Tay, J H

    2003-01-01

    A 4 L submerged tubular ceramic membrane bioreactor (MBR) was applied in laboratory scale to treat 2,400 mg-COD/L high strength wastewater. A prolonged sludge retention time (SRT) of 200 day, in contrast to the conventional SRT of 5 to 15 days, was explored in this study, aiming to reduce substantially the amount of disposed sludge. The MBR system was operated for a period of 142 days in four runs, differentiated by specific oxygen utilization rate (SOUR) and hydraulic retention time (HRT). It was found that the MBR system produced more than 99% of suspended solid reduction. Mixed liquor suspended solids (MLSS) was found to be adversely proportional to HRT, and in general higher than the value from a conventional wastewater treatment plant. A chemical oxygen demand (COD) removal efficiency was achieved as high as 98% in Run 1, when SOUR was in the range of 100-200 mg-O/g-MLVSS/hr. Unexpectedly, the COD removal efficiency in Run 2 to 4 was higher than 92%, on average, where higher HRT and abnormally low SOUR of 20-30 mg-O/g-MLVSS/hr prevailed. It was noted that the ceramic membrane presented a significant soluble nutrient rejection when the microbial metabolism of biological treatment broke down.

  1. Treatment of textile wastewater with membrane bioreactor: A critical review.

    PubMed

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Process-Oriented Review of Bacterial Quorum Quenching for Membrane Biofouling Mitigation in Membrane Bioreactors (MBRs)

    PubMed Central

    Bouayed, Naila; Dietrich, Nicolas; Lafforgue, Christine; Lee, Chung-Hak; Guigui, Christelle

    2016-01-01

    Quorum Quenching (QQ) has been developed over the last few years to overcome practical issues related to membrane biofouling, which is currently the major difficulty thwarting the extensive development of membrane bioreactors (MBRs). QQ is the disruption of Quorum Sensing (QS), cell-to-cell communication enabling the bacteria to harmonize their behavior. The production of biofilm, which is recognized as a major part of the biocake formed on a membrane surface, and which leads to biofouling, has been found to be one of the bacterial behaviors controlled by QS. Since the enzymatic disruption of QS was reported to be efficient as a membrane biofouling mitigation technique in MBRs, the application of QQ to lab-scale MBRs has been the subject of much research using different approaches under different operating conditions. This paper gives an overview of the effectiveness of QQ in mitigating membrane biofouling in MBRs. It is based on the results of previous studies, using two microbial strains, Rhodococcus sp. BH4 and Pseudomonas sp. 1A1. The effect of bacterial QQ on the physical phenomena of the MBR process is analyzed, adopting an original multi-scale approach. Finally, the potential influence of the MBR operating conditions on QQ effectiveness is discussed. PMID:27983578

  3. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    PubMed

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Startup of the Anammox Process in a Membrane Bioreactor (AnMBR) from Conventional Activated Sludge.

    PubMed

    Gutwiński, P; Cema, G; Ziembińska-Buczyńska, A; Surmacz-Górska, J; Osadnik, M

    2016-12-01

      In this study, a laboratory-scale anammox process in a membrane bioreactor (AnMBR) was used to startup the anaerobic ammonium oxidation (anammox) process from conventional activated sludge. Stable operation was achieved after 125 days. From that time, nitrogen load was gradually increased. After six months, the average nitrogen removal efficiency exceeded 80%. The highest obtained special anammox activity (SAA) achieved was 0.17 g (-N + -N) (g VSS × d)-1. Fluorescent in situ hybridization also proved the presence of the anammox bacteria, typically a genus of Brocadia anammoxidans and Kuenenia stuttgartiensis.

  5. Cost comparison of full-scale water reclamation technologies with an emphasis on membrane bioreactors.

    PubMed

    Iglesias, Raquel; Simón, Pedro; Moragas, Lucas; Arce, Augusto; Rodriguez-Roda, Ignasi

    2017-06-01

    The paper assesses the costs of full-scale membrane bioreactors (MBRs). Capital expenditures (CAPEX) and operating expenses (OPEX) of Spanish MBR facilities have been verified and compared to activated sludge plants (CAS) using water reclamation treatment (both conventional and advanced). Spanish MBR facilities require a production of 0.6 to 1.2 kWh per m 3 , while extended aeration (EA) and advanced reclamation treatment require 1.2 kWh per m 3 . The energy represents around 40% of the OPEX in MBRs. In terms of CAPEX, the implementation costs of a CAS facility followed by conventional water reclamation treatment (physical-chemical + sand filtration + disinfection) ranged from 730 to 850 €.m -3 d, and from 1,050 to 1,250 €.m -3 d in the case of advanced reclamation treatment facilities (membrane filtration) with a capacity of 8,000 to 15,000 m 3 d -1 . The MBR cost for similar capacities ranges between 700 and 960 €.m -3 d. This study shows that MBRs that have been recently installed represent a cost competitive option for water reuse applications for medium and large capacities (over 10,000 m 3 d -1 ), with similar OPEX to EA and conventional water reclamation treatment. In terms of CAPEX, MBRs are cheaper than EA, followed by advanced water reclamation treatment.

  6. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater.

    PubMed

    Rondon, Hector; El-Cheikh, William; Boluarte, Ida Alicia Rodriguez; Chang, Chia-Yuan; Bagshaw, Steve; Farago, Leanne; Jegatheesan, Veeriah; Shu, Li

    2015-05-01

    An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluation of different configurations of hybrid membrane bioreactors for treatment of domestic wastewater.

    PubMed

    Cuevas-Rodríguez, G; Cervantes-Avilés, P; Torres-Chávez, I; Bernal-Martínez, A

    2015-01-01

    Four membrane bioreactors (MBRs) with the same dimensions were studied for 180 days: three hybrid growth membrane bioreactors with biofilm attached in different packing media and a conventional MBR (C-MBR). The four MBRs had an identical membrane module of hollow fiber with a nominal porous diameter of 0.4 μm. The MBRs were: (1) a C-MBR; (2) a moving bed membrane bioreactor (MB-MBR), which was packed with 2 L of carrier Kaldnes-K1, presenting an exposed surface area of 678.90 m²/m³; (3) a non-submerged organic fixed bed (OFB-MBR) packed with 6.5 L of organic packing media composed of a mixture of cylindrical pieces of wood, providing an exposed surface area of 178.05 m²/m³; and (4) an inorganic fixed bed non-submerged membrane bioreactor (IFB-MBR) packed with 6 L of spherical volcanic pumice stone with an exposed surface area of 526.80 m²/m³. The four MBRs were fed at low organic loading (0.51 ± 0.19 kgCOD/m³ d). The results were recorded according to the behavior of the total resistance, transmembrane pressure (TMP), permeability, and removal percentages of the nutrients during the experimental time. The results showed that the MB-MBR presented the better performance on membrane filtration, while the higher nutrient removals were detected in the OFB-MBR and IFB-MBR.

  8. Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors.

    PubMed

    Inaba, Tomohiro; Hori, Tomoyuki; Aizawa, Hidenobu; Ogata, Atsushi; Habe, Hiroshi

    2017-01-01

    Biofilm formation on the filtration membrane and the subsequent clogging of membrane pores (called biofouling) is one of the most persistent problems in membrane bioreactors for wastewater treatment and reclamation. Here, we investigated the structure and microbiome of fouling-related biofilms in the membrane bioreactor using non-destructive confocal reflection microscopy and high-throughput Illumina sequencing of 16S rRNA genes. Direct confocal reflection microscopy indicated that the thin biofilms were formed and maintained regardless of the increasing transmembrane pressure, which is a common indicator of membrane fouling, at low organic-loading rates. Their solid components were primarily extracellular polysaccharides and microbial cells. In contrast, high organic-loading rates resulted in a rapid increase in the transmembrane pressure and the development of the thick biofilms mainly composed of extracellular lipids. High-throughput sequencing revealed that the biofilm microbiomes, including major and minor microorganisms, substantially changed in response to the organic-loading rates and biofilm development. These results demonstrated for the first time that the architectures, chemical components, and microbiomes of the biofilms on fouled membranes were tightly associated with one another and differed considerably depending on the organic-loading conditions in the membrane bioreactor, emphasizing the significance of alternative indicators other than the transmembrane pressure for membrane biofouling.

  9. An Osmotic Membrane Bioreactor-Membrane Distillation System for Simultaneous Wastewater Reuse and Seawater Desalination: Performance and Implications.

    PubMed

    Luo, Wenhai; Phan, Hop V; Li, Guoxue; Hai, Faisal I; Price, William E; Elimelech, Menachem; Nghiem, Long D

    2017-12-19

    In this study, we demonstrate the potential of an osmotic membrane bioreactor (OMBR)-membrane distillation (MD) hybrid system for simultaneous wastewater reuse and seawater desalination. A stable OMBR water flux of approximately 6 L m -2 h -1 was achieved when using MD to regenerate the seawater draw solution. Water production by the MD process was higher than that from OMBR to desalinate additional seawater and thus account for draw solute loss due to the reverse salt flux. Amplicon sequencing on the Miseq Illumina platform evidenced bacterial acclimatization to salinity build-up in the bioreactor, though there was a reduction in the bacterial community diversity. In particular, 18 halophilic and halotolerant bacterial genera were identified with notable abundance in the bioreactor. Thus, the effective biological treatment was maintained during OMBR-MD operation. By coupling biological treatment and two high rejection membrane processes, the OMBR-MD hybrid system could effectively remove (>90%) all 30 trace organic contaminants of significant concern investigated here and produce high quality water. Nevertheless, further study is necessary to address MD membrane fouling due to the accumulation of organic matter, particularly protein- and humic-like substances, in seawater draw solution.

  10. Impact of virus surface characteristics on removal mechanisms within membrane bioreactors.

    PubMed

    Chaudhry, Rabia M; Holloway, Ryan W; Cath, Tzahi Y; Nelson, Kara L

    2015-11-01

    In this study we investigated the removal of viruses with similar size and shape but with different external surface capsid proteins by a bench-scale membrane bioreactor (MBR). The goal was to determine which virus removal mechanisms (retention by clean backwashed membrane, retention by cake layer, attachment to biomass, and inactivation) were most impacted by differences in the virus surface properties. Seven bench-scale MBR experiments were performed using mixed liquor wastewater sludge that was seeded with three lab-cultured bacteriophages with icosahedral capsids of ∼30 nm diameter (MS2, phiX174, and fr). The operating conditions were designed to simulate those at a reference, full-scale MBR facility. The virus removal mechanism most affected by virus type was attachment to biomass (removals of 0.2 log for MS2, 1.2 log for phiX174, and 3 log for fr). These differences in removal could not be explained by electrostatic interactions, as the three viruses had similar net negative charge when suspended in MBR permeate. Removals by the clean backwashed membrane (less than 1 log) and cake layer (∼0.6 log) were similar for the three viruses. A comparison between the clean membrane removals seen at the bench-scale using a virgin membrane (∼1 log), and the full-scale using 10-year old membranes (∼2-3 logs) suggests that irreversible fouling, accumulated on the membrane over years of operation that cannot be removed by cleaning, also contributes towards virus removal. This study enhances the current mechanistic understanding of virus removal in MBRs and will contribute to more reliable treatment for water reuse applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).

    PubMed

    Jin, Le; Ng, How Yong; Ong, Say Leong

    2009-01-01

    The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.

  12. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.

    PubMed

    Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo

    2017-01-01

    Membrane bioreactor (MBR) technology is becoming increasingly popular as wastewater treatment due to the unique advantages it offers. However, membrane fouling is being given a great deal of attention so as to improve the performance of this type of technology. Recent studies have proven that the application of electrochemical processes to MBR represents a promising technological approach for membrane fouling control. In this work, two intermittent voltage gradients of 1 and 3 V/cm were applied between two cylindrical perforated electrodes, immersed around a membrane module, at laboratory scale with the aim of investigating the treatment performance and membrane fouling formation. For comparison purposes, the reactor also operated as a conventional MBR. Mechanisms of nutrient removal were studied and membrane fouling formation evaluated in terms of transmembrane pressure variation over time and sludge relative hydrophobicity. Furthermore, the impact of electrochemical processes on transparent exopolymeric particles (TEP), proposed as a new membrane fouling precursor, was investigated in addition to conventional fouling precursors such as bound extracellular polymeric substances (bEPS) and soluble microbial products (SMP). All the results indicate that the integration of electrochemical processes into a MBR has the advantage of improving the treatment performance especially in terms of nutrient removal, with an enhancement of orthophosphate (PO 4 -P) and ammonia nitrogen (NH 4 -N) removal efficiencies up to 96.06 and 69.34 %, respectively. A reduction of membrane fouling was also observed with an increase of floc hydrophobicity to 71.72 %, a decrease of membrane fouling precursor concentrations, and, thus, of membrane fouling rates up to 54.33 %. The relationship found between TEP concentration and membrane fouling rate after the application of electrochemical processes confirms the applicability of this parameter as a new membrane fouling indicator.

  13. Monitoring the variations of the oxygen transfer rate in a full scale membrane bioreactor using daily mass balances.

    PubMed

    Racault, Y; Stricker, A-E; Husson, A; Gillot, S

    2011-01-01

    Oxygen transfer in biological wastewater treatment processes with high sludge concentration, such as membrane bioreactor (MBR), is an important issue. The variation of alpha-factor versus mixed liquor suspended solids (MLSS) concentration was investigated in a full scale MBR plant under process conditions, using mass balances. Exhaustive data from the Supervisory Control And Data Acquisition (SCADA) and from additional online sensors (COD, DO, MLSS) were used to calculate the daily oxygen consumption (OC) using a non-steady state mass balance for COD and total N on a 24-h basis. To close the oxygen balance, OC has to match the total oxygen transfer rate (OTRtot) of the system, which is provided by fine bubble (FB) diffusers in the aeration tank and coarse bubbles (CB) in separate membrane tanks. First assessing OTR(CB) then closing the balance OC = OTRtot allowed to calculate OTR(FB) and to fit an exponential relationship between OTR(FB) and MLSS. A comparison of the alpha-factor obtained by this balance method and by direct measurements with the off-gas method on the same plant is presented and discussed.

  14. Ethanol production in a membrane bioreactor: pilot-scale trials in a corn wet mill.

    PubMed

    Escobar, J M; Rane, K D; Cheryan, M

    2001-01-01

    Pilot plant trials were conducted in a corn wet mill with a 7000-L membrane recycle bioreactor (MRB) that integrated ceramic microfiltration membranes in a semi-closed loop configuration with a stirred-tank reactor. Residence times of 7.5-10 h with ethanol outputs of 10-11.5% (v/v) were obtained when the cell concentration was 60-100 g/L dry wt of yeast, equivalent to about 10(9)-10(10) cells/mL. The performance of the membrane was dependent on the startup mode and pressure management techniques. A steady flux of 70 L/(m2 x h) could be maintained for several days before cleaning was necessary. The benefits of the MRB include better productivity; a clear product stream containing no particulates or yeast cells, which should improve subsequent stripping and distillation operations; and substantially reduced stillage handling. The capital cost of the MRB is $21-$34/(m3 x yr) ($0.08-$0.13/[gal x yr]) of ethanol capacity. Operating cost, including depreciation, energy, membrane replacement, maintenance, labor, and cleaning, is $4.5-9/m3 ($0.017-$0.034/gal) of ethanol.

  15. Consecutive anaerobic-aerobic treatment of the organic fraction of municipal solid waste and lignocellulosic materials in laboratory-scale landfill-bioreactors.

    PubMed

    Pellera, Frantseska-Maria; Pasparakis, Emmanouil; Gidarakos, Evangelos

    2016-10-01

    The scope of this study is to evaluate the use of laboratory-scale landfill-bioreactors, operated consecutively under anaerobic and aerobic conditions, for the combined treatment of the organic fraction of municipal solid waste (OFMSW) with two different co-substrates of lignocellulosic nature, namely green waste (GW) and dried olive pomace (DOP). According to the results such a system would represent a promising option for eventual larger scale applications. Similar variation patterns among bioreactors indicate a relatively defined sequence of processes. Initially operating the systems under anaerobic conditions would allow energetic exploitation of the substrates, while the implementation of a leachate treatment system ultimately aiming at nutrient recovery, especially during the anaerobic phase, could be a profitable option for the whole system, due to the high organic load that characterizes this effluent. In order to improve the overall effectiveness of such a system, measures towards enhancing methane contents of produced biogas, such as substrate pretreatment, should be investigated. Moreover, the subsequent aerobic phase should have the goal of stabilizing the residual materials and finally obtain an end material eventually suitable for other purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    PubMed

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Biomass characteristics of two types of submerged membrane bioreactors for nitrogen removal from wastewater.

    PubMed

    Liang, Zhihua; Das, Atreyee; Beerman, Daniel; Hu, Zhiqiang

    2010-06-01

    Biomass characteristics and microbial community diversity between a submerged membrane bioreactor with mixed liquor recirculation (MLE/MBR) and a membrane bioreactor with the addition of integrated fixed biofilm medium (IFMBR) were compared for organic carbon and nitrogen removal from wastewater. The two bench-scale MBRs were continuously operated in parallel at a hydraulic retention time (HRT) of 24h and solids retention time (SRT) of 20d. Both MBRs demonstrated good COD removal efficiencies (>97.7%) at incremental inflow organic loading rates. The total nitrogen removal efficiencies were 67% for MLE/MBR and 41% for IFMBR. The recirculation of mixed liquor from aerobic zone to anoxic zone in the MLE/MBR resulted in higher microbial activities of heterotrophic (46.96mgO(2)/gVSSh) and autotrophic bacteria (30.37mgO(2)/gVSSh) in the MLE/MBR compared to those from IFMBR. Terminal Restriction Fragment Length Polymorphism analysis indicated that the higher nitrifying activities were correlated with more diversity of nitrifying bacterial populations in the MLE/MBR. Membrane fouling due to bacterial growth was evident in both the reactors. Even though the trans-membrane pressure and flux profiles of MLE/MBR and IFMBR were different, the patterns of total membrane resistance changes had no considerable difference under the same operating conditions. The results suggest that metabolic selection via alternating anoxic/aerobic processes has the potential of having higher bacterial activities and improved nutrient removal in MBR systems. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. A comparative study on the anaerobic membrane bioreactor performance during the treatment of domestic wastewaters of various origins.

    PubMed

    Saddoud, A; Ellouze, M; Dhouib, A; Sayadi, S

    2006-09-01

    This study examined the practical performance of a cross-flow ultrafiltration membrane coupled to an anaerobic bioreactor, for treatment of raw domestic wastewater (RDW), at a pilot-scale plant. Wastewaters used in this study originated from two different domestic wastewater treatment plans (DWTPs) (Sfax and Ksour Essef). During the treatment in the membrane bioreactor (MBR) of the RDW originating from Sfax DWTP, the bioreactor did not reach its stationary phase because the anaerobic biomass was unable to adapt to the wastewater. This was explained by the considerable fluctuations in the domestic wastewater composition and a possible contamination of Sfax wastewater by industrial discharges. However, the treatment of RDW originating from Ksour Essef (DWTP) was successful. In both cases, the treatment led to a total removal of all tested pathogens. The quality of treated wastewater fits largely with WHO guidelines for unrestricted irrigation. The phytotoxicity and the microtoxicity tests, using Lepidium sativum and Vibrio fischeri respectively, demonstrated that wastewater from Sfax exhibited higher toxicity than that from Ksour Sssef.

  20. Fabrication Method for Laboratory-Scale High-Performance Membrane Electrode Assemblies for Fuel Cells.

    PubMed

    Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E

    2017-01-03

    Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm 2 ) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.

  1. Interwoven four-compartment capillary membrane technology for three-dimensional perfusion with decentralized mass exchange to scale up embryonic stem cell culture.

    PubMed

    Gerlach, Jörg C; Lübberstedt, Marc; Edsbagge, Josefina; Ring, Alexander; Hout, Mariah; Baun, Matt; Rossberg, Ingrid; Knöspel, Fanny; Peters, Grant; Eckert, Klaus; Wulf-Goldenberg, Annika; Björquist, Petter; Stachelscheid, Harald; Urbaniak, Thomas; Schatten, Gerald; Miki, Toshio; Schmelzer, Eva; Zeilinger, Katrin

    2010-01-01

    We describe hollow fiber-based three-dimensional (3D) dynamic perfusion bioreactor technology for embryonic stem cells (ESC) which is scalable for laboratory and potentially clinical translation applications. We added 2 more compartments to the typical 2-compartment devices, namely an additional media capillary compartment for countercurrent 'arteriovenous' flow and an oxygenation capillary compartment. Each capillary membrane compartment can be perfused independently. Interweaving the 3 capillary systems to form repetitive units allows bioreactor scalability by multiplying the capillary units and provides decentralized media perfusion while enhancing mass exchange and reducing gradient distances from decimeters to more physiologic lengths of <1 mm. The exterior of the resulting membrane network, the cell compartment, is used as a physically active scaffold for cell aggregation; adjusting intercapillary distances enables control of the size of cell aggregates. To demonstrate the technology, mouse ESC (mESC) were cultured in 8- or 800-ml cell compartment bioreactors. We were able to confirm the hypothesis that this bioreactor enables mESC expansion qualitatively comparable to that obtained with Petri dishes, but on a larger scale. To test this, we compared the growth of 129/SVEV mESC in static two-dimensional Petri dishes with that in 3D perfusion bioreactors. We then tested the feasibility of scaling up the culture. In an 800-ml prototype, we cultured approximately 5 x 10(9) cells, replacing up to 800 conventional 100-mm Petri dishes. Teratoma formation studies in mice confirmed protein expression and gene expression results with regard to maintaining 'stemness' markers during cell expansion. Copyright 2010 S. Karger AG, Basel.

  2. Aerobic biological treatment of synthetic municipal wastewater in membrane-coupled bioreactors.

    PubMed

    Klatt, Christian G; LaPara, Timothy M

    2003-05-05

    Membrane-coupled bioreactors (MBRs) offer many benefits compared to conventional biological wastewater treatment systems; however, their performance characteristics are poorly understood. Laboratory-scale MBRs were used to study bacterial adaptations in physiology and community structure. MBRs were fed a mixture of starch, gelatin, and polyoxyethylene-sorbitan monooleate to simulate the polysaccharide, protein, and lipid components of municipal wastewater. Physiological adaptations were detected by measuring ectoenzyme activity while structural dynamics were studied by denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments. As cell biomass accumulated in the MBRs, pollutant removal efficiency initially improved and then stabilized with respect to effluent concentrations of chemical oxygen demand, protein, and carbohydrate. Comparison of the MBR effluent to filtered reactor fluid indicated that a portion of the observed pollutant removal was due to filtration by the membrane rather than microbial activity. The rates of ectoenzyme-mediated polysaccharide (alpha-glucosidase) and protein (leucine aminopeptidase) hydrolysis became relatively constant once pollutant removal efficiency stabilized. However, the maximum rate of lipid hydrolysis (heptanoate esterase) concomitantly increased more than 10-fold. Similarly, alpha-glucosidase and leucine aminopeptidase ectoenzyme affinities were relatively constant, while the heptanoate esterase affinity increased more than 30-fold. Community analysis revealed that a substantial community shift occurred within the first 7 days of operation. A Flavobacterium-like bacterial population dominated the community (>50% of total band intensity) and continued to do so for the remainder of the experiment. Copyright 2003 Wiley Periodicals, Inc.

  3. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.

    PubMed

    Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua

    2016-04-15

    Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Optimization of Wastewater of Batik Buaran Pekalongan by Using Photocatalytic Membrane Bioreactor

    NASA Astrophysics Data System (ADS)

    Arifan, Fahmi; Nugraheni, FS; Lianandaya, Niken Elsa

    2018-02-01

    The purpose of this study is to determine the final COD concentration reduction by changing COD and MLSS concentration on the performance of submerged membrane bioreactor (MBRs) as a waste treatment of Batik in Buaran Pekalongan. The method is covers the process of seeding, the acclimatization process and the main process. Description of the process that we take an active mud from IPLT Buaran Pekalongan, then we analyze the sludge MLSS, MLVSS, COD, BOD, and TSS. After that we enter the active sludge in the bath nursery that has been given aerator (a tool for aeration) and made provision in the form of NPK nutrients and glucose at a ratio of 1:10. Activated sludge from the acclimatization process is inserted into the MBRs (membrane bioreactor submerged) that is equipped with an aerator. Then prepare influent(waste to be lowered concentration of COD). How, liquid waste of Batik Pekalongan Buaran COD diluted concentration of 10,000 mg / l and 15,000 mg / l, and then inserted in influent tub. After that liquid waste of Batik Buaran Pekalongan influent flowed into Photocatalytic Membrane Bioreactor, of MPB effluent flowed into the tub (result).

  5. NOVEL CERAMIC MEMBRANE BIOREACTOR FOR LOW-FLOW SYSTEMS - PHASE I

    EPA Science Inventory

    Improved low-flow (50,000 gallons per day) sanitary wastewater treatment systems are needed. CeraMem Corporation's proposed approach includes a membrane bioreactor (MBR) using fully proven biological processes for biological oxygen demand oxidation and (optionally) fo...

  6. Reverse membrane bioreactor: Introduction to a new technology for biofuel production.

    PubMed

    Mahboubi, Amir; Ylitervo, Päivi; Doyen, Wim; De Wever, Heleen; Taherzadeh, Mohammad J

    2016-01-01

    The novel concept of reverse membrane bioreactors (rMBR) introduced in this review is a new membrane-assisted cell retention technique benefiting from the advantageous properties of both conventional MBRs and cell encapsulation techniques to tackle issues in bioconversion and fermentation of complex feeds. The rMBR applies high local cell density and membrane separation of cell/feed to the conventional immersed membrane bioreactor (iMBR) set up. Moreover, this new membrane configuration functions on basis of concentration-driven diffusion rather than pressure-driven convection previously used in conventional MBRs. These new features bring along the exceptional ability of rMBRs in aiding complex bioconversion and fermentation feeds containing high concentrations of inhibitory compounds, a variety of sugar sources and high suspended solid content. In the current review, the similarities and differences between the rMBR and conventional MBRs and cell encapsulation regarding advantages, disadvantages, principles and applications for biofuel production are presented and compared. Moreover, the potential of rMBRs in bioconversion of specific complex substrates of interest such as lignocellulosic hydrolysate is thoroughly studied. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor.

    PubMed

    Matar, Gerald; Gonzalez-Gil, Graciela; Maab, Husnul; Nunes, Suzana; Le-Clech, Pierre; Vrouwenvelder, Johannes; Saikaly, Pascal E

    2016-05-15

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m(2) h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m(2) h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be

  8. Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate.

    PubMed

    Amaral, Míriam C S; Gomes, Rosimeire F; Brasil, Yara L; Oliveira, Sílvia M A; Moravia, Wagner G

    2017-12-06

    The startup process of a membrane bioreactor inoculated with yeast biomass (Saccharomyces cerevisiae) and used in the treatment of landfill leachate was evaluated. The yeast membrane bioreactor (MBRy) was inoculated with an exogenous inoculum, a granulated active dry commercial bakers' yeast. The MBRy was successfully started up with a progressive increase in the landfill leachate percentage in the MBRy feed and the use of Sabouraud Dextrose Broth. The membrane plays an important role in the startup phase because of its full biomass retention and removal of organic matter. MBRy is a suitable and promising process to treat recalcitrant landfill leachate. After the acclimation period, the COD and NH 3 removal efficiency reached values of 72 ± 3% and 39 ± 2% respectively. MBRy shows a low membrane-fouling potential. The membrane fouling was influenced by soluble microbial products, extracellular polymeric substances, sludge particle size, and colloidal dissolved organic carbon.

  9. Long term operation of high concentration powdered activated carbon membrane bio-reactor for advanced water treatment.

    PubMed

    Seo, G T; Moon, C D; Chang, S W; Lee, S H

    2004-01-01

    A pilot scale experiment was conducted to evaluate the performance of a membrane bioreactor filled with high concentration powdered activated carbon. This hybrid system has great potential to substitute for existing GAC or O3/BAC processes in the drinking water treatment train. The system was installed at a water treatment plant located downstream of the Nakdong river basin, Korea. Effluent of rapid sand filter was used as influent of the system which consists of PAC bio-reactor, submerged MF membrane module and air supply facility. PAC concentration of 20 g/L was maintained at the beginning of the experiment and it was increased to 40 g/L. The PAC has not been changed during the operational periods. The membrane was a hollow fiber type with pore sizes of 0.1 and 0.4 microm. It was apparent that the high PAC concentration could prevent membrane fouling. 40 g/L PAC was more effective to reduce the filtration resistance than 20 g/L. At the flux of 0.36 m/d, TMP was maintained less than 40 kPa for about 3 months by intermittent suction type operation (12 min suction/3 min idling). Adsorption was the dominant role to remove DOC at the initial operational period. However the biological effect was gradually increased after around 3 months operation. Constant DOC removal could be maintained at about 40% without any trouble and then a tremendous reduction of DBPs (HAA5 and THM) higher than 85% was achieved. Full nitrification was observed at the controlled influent ammonia nitrogen concentration of 3 and 7 mg/L. pH was an important parameter to keep stable ammonia oxidation. From almost two years of operation, it is clear that the PAC membrane bioreactor is highly applicable for advanced water treatment under the recent situation of more stringent DBPs regulation in Korea.

  10. Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications.

    PubMed

    Hong, Huachang; Peng, Wei; Zhang, Meijia; Chen, Jianrong; He, Yiming; Wang, Fangyuan; Weng, Xuexiang; Yu, Haiying; Lin, Hongjun

    2013-10-01

    The thermodynamic interactions between membrane and sludge flocs in a submerged membrane bioreactor (MBR) were investigated. It was found that Lewis acid-base (AB) interaction predominated in the total interactions. The interaction energy composition of membrane-sludge flocs combination was quite similar to that of membrane-bovine serum albumin (BSA) combination, indicating the critical role of proteins in adhesion process. Detailed analysis revealed the existence of a repulsive energy barrier in membrane-foulants interaction. Calculation results demonstrated that small flocs possessed higher attractive interaction energy per unit mass, and therefore adhered to membrane surface more easily as compared to large flocs. Meanwhile, initial sludge adhesion would facilitate the following adhesion due to the reduced repulsive energy barrier. Membrane with high electron donor surface tension component was a favor option for membrane fouling abatement. These findings offered new insights into membrane fouling, and also provided significant implications for fouling control in MBRs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Salinity build-up in osmotic membrane bioreactors: Causes, impacts, and potential cures.

    PubMed

    Song, Xiaoye; Xie, Ming; Li, Yun; Li, Guoxue; Luo, Wenhai

    2018-06-01

    Osmotic membrane bioreactor (OMBR), which integrates forward osmosis (FO) with biological treatment, has been developed to advance wastewater treatment and reuse. OMBR is superior to conventional MBR, particularly in terms of higher effluent quality, lower membrane fouling propensity, and higher membrane fouling reversibility. Nevertheless, advancement and future deployment of OMBR are hindered by salinity build-up in the bioreactor (e.g., up to 50 mS/cm indicated by the mixed liquor conductivity), due to high salt rejection of the FO membrane and reverse diffusion of the draw solution. This review comprehensively elucidates the relative significance of these two mechanisms towards salinity build-up and its associated effects in OMBR operation. Recently proposed strategies to mitigate salinity build-up in OMBR are evaluated and compared to highlight their potential in practical applications. In addition, the complementarity of system optimization and modification to effectively manage salinity build-up are recommended for sustainable OMBR development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effect of membrane bioreactor solids retention time on reverse osmosis membrane fouling for wastewater reuse.

    PubMed

    Farias, Elizabeth L; Howe, Kerry J; Thomson, Bruce M

    2014-02-01

    The effect of the solids retention time (SRT) in a membrane bioreactor (MBR) on the fouling of the membranes in a subsequent reverse osmosis (RO) process used for wastewater reuse was studied experimentally using a pilot-scale treatment system. The MBR-RO pilot system was fed effluent from the primary clarifiers at a large municipal wastewater treatment plant. The SRT in the MBRs was adjusted to approximately 2, 10, and 20 days in three experiments. The normalized specific flux through the MBR and RO membranes was evaluated along with inorganic and organic constituents in the influent and effluent of each process. Increasing the SRT in the MBR led to an increase in the removal of bulk DOC, protein, and carbohydrates, as has been observed in previous studies. Increasing the SRT led to a decrease in the fouling of the MBR membranes, which is consistent with previous studies. However, the opposite trend was observed for fouling of the RO membranes; increasing the SRT of the MBR resulted in increased fouling of the RO membranes. These results indicate that the constituents that foul MBR membranes are not the same as those that foul RO membranes; to be an RO membrane foulant in a MBR-RO system, the constituents must first pass through the MBR membranes without being retained. Thus, an intermediate value of SRT may be best choice of operating conditions in an MBR when the MBR is followed by RO for wastewater reuse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal.

    PubMed

    Luo, Wenhai; Phan, Hop V; Xie, Ming; Hai, Faisal I; Price, William E; Elimelech, Menachem; Nghiem, Long D

    2017-02-01

    This study systematically compares the performance of osmotic membrane bioreactor - reverse osmosis (OMBR-RO) and conventional membrane bioreactor - reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure. In addition, the elevated salinity also increased soluble microbial products and extracellular polymeric substances in the mixed liquor, which induced fouling of the forward osmosis (FO) membrane. Nevertheless, microbial analysis indicated that salinity stress resulted in the development of halotolerant bacteria, consequently sustaining biodegradation in the OMBR system. By contrast, biological performance was relatively stable throughout conventional MBR-RO operation. Compared to conventional MBR-RO, the FO process effectively prevented foulants from permeating into the draw solution, thereby significantly reducing fouling of the downstream RO membrane in OMBR-RO operation. Accumulation of organic matter, including humic- and protein-like substances, as well as inorganic salts in the MBR effluent resulted in severe RO membrane fouling in conventional MBR-RO operation. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  14. Quantitative response of nitrifying and denitrifying communities to environmental variables in a full-scale membrane bioreactor.

    PubMed

    Gómez-Silván, C; Vílchez-Vargas, R; Arévalo, J; Gómez, M A; González-López, J; Pieper, D H; Rodelas, B

    2014-10-01

    The abundance and transcription levels of specific gene markers of total bacteria, ammonia-oxidizing Betaproteobacteria, nitrite-oxidizing bacteria (Nitrospira-like) and denitrifiers (N2O-reducers) were analyzed using quantitative PCR (qPCR) and reverse-transcription qPCR during 9 months in a full-scale membrane bioreactor treating urban wastewater. A stable community of N-removal key players was developed; however, the abundance of active populations experienced sharper shifts, demonstrating their fast adaptation to changing conditions. Despite constituting a small percentage of the total bacterial community, the larger abundances of active populations of nitrifiers explained the high N-removal accomplished by the MBR. Multivariate analyses revealed that temperature, accumulation of volatile suspended solids in the sludge, BOD5, NH4(+) concentration and C/N ratio of the wastewater contributed significantly (23-38%) to explain changes in the abundance of nitrifiers and denitrifiers. However, each targeted group showed different responses to shifts in these parameters, evidencing the complexity of the balance among them for successful biological N-removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation.

    PubMed

    Bornare, J B; Adhyapak, U S; Minde, G P; Kalyan Raman, V; Sapkal, V S; Sapkal, R S

    2015-01-01

    Compared with conventional wastewater treatment processes, membrane bioreactors (MBRs) offer several advantages including high biodegradation efficiency, excellent effluent quality and smaller footprint. However, it has some limitations on account of its energy intensive operation. In recent years, there has been growing interest in use of anaerobic membrane bioreactors (AnMBRs) due to their potential advantages over aerobic systems, which include low sludge production and energy generation in terms of biogas. The aim of this study was to evaluate the performance of a submerged AnMBR for the treatment of synthetic wastewater having 4,759 mg/l chemical oxygen demand (COD). The COD removal efficiency was over 95% during the performance evaluation study. Treated effluent with COD concentration of 231 mg/l was obtained for 25.5 hours hydraulic retention time. The obtained total organic carbon concentrations in feed and permeate were 1,812 mg/l and 89 mg/l, respectively. An average biogas generation and yield were 25.77 l/d and 0.36 m3/kg COD, respectively. Evolution of trans-membrane pressure (TMP) as a function of time was studied and an average TMP of 15 kPa was found suitable to achieve membrane flux of 12.17 l/(m2h). Almost weekly back-flow chemical cleaning of the membrane was found necessary to control TMP within the permissible limit of 20 kPa.

  16. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    PubMed

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  17. Modular operation of membrane bioreactors for higher hydraulic capacity utilisation.

    PubMed

    Veltmann, K; Palmowski, L M; Pinnekamp, J

    2011-01-01

    Using data from 6 full-scale municipal membrane bioreactors (MBR) in Germany the hydraulic capacity utilisation and specific energy consumption were studied and their connexion shown. The average hydraulic capacity utilisation lies between 14% and 45%. These low values are justified by the necessity to deal with intense rain events and cater for future flow increases. However, this low hydraulic capacity utilisation leads to high specific energy consumption. The optimisation of MBR operation requires a better utilisation of MBR hydraulic capacity, particularly under consideration of the energy-intensive membrane aeration. A first approach to respond to large influent flow fluctuations consists in adjusting the number of operating modules. This is practised by most MBR operators but so far mostly with variable flux and constant membrane aeration. A second approach is the real-time adjustment of membrane aeration in line with flux variations. This adjustment is not permitted under current manufacturers' warranty conditions. A further opportunity is a discontinuous operation, in which filtration takes place over short periods at high flux and energy for membrane aeration is saved during filtration pauses. The integration of a buffer volume is thereby indispensable. Overall a modular design with small units, which can be activated/ inactivated according to the influent flow and always operate under optimum conditions, enables a better utilisation of MBR hydraulic capacity and forms a solid base to reduce MBR energy demand.

  18. Scale up of diesel oil biodegradation in a baffled roller bioreactor.

    PubMed

    Nikakhtari, Hossein; Song, Wanning; Kumar, Pardeep; Nemati, Mehdi; Hill, Gordon A

    2010-05-01

    Diesel oil is a suitable substance to represent petroleum contamination from accidental spills in operating and transportation facilities. Using a microbial culture enriched from a petroleum contaminated soil, biodegradation of diesel oil was carried out in 2.2, 55, and 220 L roller baffled bioreactors. The effects of bioreactor rotation speed (from 5 to 45 rpm) and liquid loading (from 18% to 73% of total volume) on the biodegradation of diesel oil were studied. In the small scale bioreactor (2.2L), the maximum rotation speed of 45 rpm resulted in the highest biodegradation rate with a first order biodegradation kinetic constant of 0.095 d(-1). In the larger scale bioreactors, rotation speed did not affect the biodegradation rate. Liquid loadings higher than 64% resulted in reduced biodegradation rates in the small scale bioreactor; however, in the larger roller bioreactors liquid loading did not affect the biodegradation rate. Biodegradation of diesel oil at 5 rpm and 73% loading is recommended for operating large scale roller baffled bioreactors. Under these conditions, high diesel oil concentrations up to 50 gL(-1) can be bioremediated at a rate of 1.61 gL(-1)d(-1). Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Metabolic profiling reveals that time related physiological changes in mammalian cell perfusion cultures are bioreactor scale independent.

    PubMed

    Vernardis, Spyros I; Goudar, Chetan T; Klapa, Maria I

    2013-09-01

    Metabolic profiling was used to characterize the time course of cell physiology both in laboratory- and manufacturing-scale mammalian cell perfusion cultures. Two independent experiments were performed involving three vials from the same BHK cell bank, used to inoculate three laboratory-scale bioreactors, from which four manufacturing-scale cultures were initiated. It was shown that metabolomic analysis can indeed enhance the prime variable dataset for the monitoring of perfusion cultures by providing a higher resolution view of the metabolic state. Metabolic profiles could capture physiological state shifts over the course of the perfusion cultures and indicated a metabolic "signature" of the phase transitions, which was not observable from prime variable data. Specifically, the vast majority of metabolites had lower concentrations in the middle compared to the other two phases. Notably, metabolomics provided orthogonal (to prime variables) evidence that all cultures followed this same metabolic state shift with cell age, independently of bioreactor scale. © 2013 Elsevier Inc. All rights reserved.

  20. Improving the performance of membrane bioreactors by powdered activated carbon dosing with cost considerations.

    PubMed

    Yang, W; Paetkau, M; Cicek, N

    2010-01-01

    Effects of powdered activated carbon (PAC) dosing on the overall performance of membrane bioreactors (MBR) were investigated in two bench-scale submerged MBRs. Positive impacts of PAC dosing on membrane fouling and the removal of 17beta-estradiol (E2) and 17alpha-ethyinylestradiol (EE2) were demonstrated over a six-month stable operational period. PAC dosing in the MBR increased the removal rates of E2 and EE2 by 3.4% and 15.8%, respectively. The average soluble extracellular polymeric substances (EPS) and colloidal total organic carbon (TOC) concentrations in the PAC-MBR sludge was 60.1% and 61.8% lower than the control MBR sludge, respectively. Lower soluble EPS and colloidal TOC concentrations in the PAC-MBR sludge resulted in a slower rate of trans-membrane pressure (TMP) increase during MBRs operation, which could prolong the lifespan of membranes. Cost assessment showed that PAC dosing could reduce the operating cost for membrane cleaning and/or membrane replacement by about 25%. The operating cost for PAC dosing could be offset by the benefit from its reducing the cost for membrane maintenance.

  1. The cost of a small membrane bioreactor.

    PubMed

    Lo, C H; McAdam, E; Judd, S

    2015-01-01

    The individual cost contributions to the mechanical components of a small membrane bioreactor (MBR) (100-2,500 m3/d flow capacity) are itemised and collated to generate overall capital and operating costs (CAPEX and OPEX) as a function of size. The outcomes are compared to those from previously published detailed cost studies provided for both very small containerised plants (<40 m3/day capacity) and larger municipal plants (2,200-19,000 m3/d). Cost curves, as a function of flow capacity, determined for OPEX, CAPEX and net present value (NPV) based on the heuristic data used indicate a logarithmic function for OPEX and a power-based one for the CAPEX. OPEX correlations were in good quantitative agreement with those reported in the literature. Disparities in the calculated CAPEX trend compared with reported data were attributed to differences in assumptions concerning cost contributions. More reasonable agreement was obtained with the reported membrane separation component CAPEX data from published studies. The heuristic approach taken appears appropriate for small-scale MBRs with minimal costs associated with installation. An overall relationship of net present value=(a tb)Q(-c lnt+d) was determined for the net present value where a=1.265, b=0.44, c=0.00385 and d=0.868 according to the dataset employed for the analysis.

  2. Effect of mean cell residence time on transmembrane flux, mixed-liquor characteristics and overall performance of a submerged anaerobic membrane bioreactor.

    PubMed

    Pacheco-Ruiz, Santiago; Heaven, Sonia; Banks, Charles J

    2017-05-01

    Kinetic control of Mean Cell Residence Time (MCRT) was shown to have a significant impact on membrane flux under steady-state conditions. Two laboratory-scale flat-plate submerged anaerobic membrane bioreactors were operated for 245 days on a low-to-intermediate strength substrate with high suspended solids. Transmembrane pressure was maintained at 2.2 kPa throughout four experimental phases, while MCRT in one reactor was progressively reduced. This allowed very accurate measurement of sustainable membrane flux rates at different MCRTs, and hence the degree of membrane fouling. Performance data were gathered on chemical oxygen demand (COD) removal efficiency, and a COD mass balance was constructed accounting for carbon converted into new biomass and that lost in the effluent as dissolved methane. Measurements of growth yield at each MCRT were made, with physical characterisation of each mixed liquor based on capillary suction time. The results showed membrane flux and MLSS filterability was highest at short MCRT, although specific methane production (SMP) was lower since a proportion of COD removal was accounted for by higher biomass yield. There was no advantage in operating at an MCRT <25 days. When considering the most suitable MCRT there is thus a trade-off between membrane performance, SMP and waste sludge yield.

  3. On the fluid dynamics of a laboratory scale single-use stirred bioreactor.

    PubMed

    Odeleye, A O O; Marsh, D T J; Osborne, M D; Lye, G J; Micheletti, M

    2014-05-24

    The commercial success of mammalian cell-derived recombinant proteins has fostered an increase in demand for novel single-use bioreactor (SUB) systems that facilitate greater productivity, increased flexibility and reduced costs (Zhang et al., 2010). These systems exhibit fluid flow regimes unlike those encountered in traditional glass/stainless steel bioreactors because of the way in which they are designed. With such disparate hydrodynamic environments between SUBs currently on the market, traditional scale-up approaches applied to stirred tanks should be revised. One such SUB is the Mobius ® 3 L CellReady, which consists of an upward-pumping marine scoping impeller. This work represents the first experimental study of the flow within the CellReady using a Particle Image Velocimetry (PIV) approach, combined with a biological study into the impact of these fluid dynamic characteristics on cell culture performance. The PIV study was conducted within the actual vessel, rather than using a purpose-built mimic. PIV measurements conveyed a degree of fluid compartmentalisation resulting from the up-pumping impeller. Both impeller tip speed and fluid working volume had an impact upon the fluid velocities and spatial distribution of turbulence within the vessel. Cell cultures were conducted using the GS-CHO cell-line (Lonza) producing an IgG 4 antibody. Disparity in cellular growth and viability throughout the range of operating conditions used (80-350 rpm and 1-2.4 L working volume) was not substantial, although a significant reduction in recombinant protein productivity was found at 350 rpm and 1 L working volume (corresponding to the highest Reynolds number tested in this work). The study shows promise in the use of PIV to improve understanding of the hydrodynamic environment within individual SUBs and allows identification of the critical hydrodynamic parameters under the different flow regimes for compatibility and scalability across the range of bioreactor

  4. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment.

    PubMed

    Svojitka, Jan; Dvořák, Lukáš; Studer, Martin; Straub, Jürg Oliver; Frömelt, Heinz; Wintgens, Thomas

    2017-04-01

    Anaerobic treatment of wastewater and waste organic solvents originating from the pharmaceutical and chemical industries was tested in a pilot anaerobic membrane bioreactor, which was operated for 580days under different operational conditions. The goal was to test the long-term treatment efficiency and identify inhibitory factors. The highest COD removal of up to 97% was observed when the influent concentration was increased by the addition of methanol (up to 25gL -1 as COD). Varying and generally lower COD removal efficiency (around 78%) was observed when the anaerobic membrane bioreactor was operated with incoming pharmaceutical wastewater as sole carbon source. The addition of waste organic solvents (>2.5gL -1 as COD) to the influent led to low COD removal efficiency or even to the breakdown of anaerobic digestion. Changes in the anaerobic population (e.g., proliferation of the genus Methanosarcina) resulting from the composition of influent were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    PubMed

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging.

    PubMed

    Chang, I S; Judd, S J

    2003-01-01

    The air sparging technique has been recognised as an effective way to control membrane fouling. However, its application to a submerged MBR (Membrane Bio-Reactor) has not yet been reported. This paper deals with the performances of air sparging on a submerged MBR for wastewater treatment. Two kinds of air sparging techniques were used respectively. First, air is injected into the membrane tube channels so that mixed liquor can circulate in the bioreactor (air-lift mode). Second, a periodic air-jet into the membrane tube is introduced (air-jet mode). Their applicability was evaluated with a series of lab-scale experiments using domestic wastewater. The flux increased from 23 to 33 l m(-2) h(-1) (43% enhancement) when air was injected for the air-lift module. But further increase of flux was not observed as the gas flow increased. The Rc/(Rc+Rf), ratio of cake resistance (Rc) to sum of Rc and Rf (internal fouling resistance), was 23%, indicating that the Rc is not the predominant resistance unlike other MBR studies. It showed that the cake layer was removed sufficiently due to the air injection. Thus, an increase of airflow could not affect the flux performance. The air-jet module suffered from a clogging problem with accumulated sludge inside the lumen. Because the air-jet module has characteristics of dead end filtration, a periodic air-jet was not enough to blast all the accumulated sludge out. But flux was greater than in the air-lift module if the clogging was prevented by an appropriate cleaning regime such as periodical backwashing.

  7. Effect of cycle run time of backwash and relaxation on membrane fouling removal in submerged membrane bioreactor treating sewage at higher flux.

    PubMed

    Tabraiz, Shamas; Haydar, Sajjad; Sallis, Paul; Nasreen, Sadia; Mahmood, Qaisar; Awais, Muhammad; Acharya, Kishor

    2017-08-01

    Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m 2 ·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.

  8. Impact of nitrogen loading rates on treatment performance of domestic wastewater and fouling propensity in submerged membrane bioreactor (MBR).

    PubMed

    Khan, Sher Jamal; Ilyas, Shazia; Zohaib-Ur-Rehman

    2013-08-01

    In this study, performance of laboratory-scale membrane bioreactor (MBR) was evaluated in treating high strength domestic wastewater under two nitrogen loading rates (NLR) i.e., 0.15 and 0.30 kg/m(3)/d in condition 1 and 2, respectively, while organic loading rate (OLR) was constant at 3 kg/m(3)/d in both conditions. Removal efficiencies of COD were above 95.0% under both NLR conditions. Average removal efficiencies of ammonium nitrogen (NH₄(+)-N), total nitrogen (TN) and total phosphorus (TP) were found to be higher in condition 1 (90.5%, 74.0%, and 38.0%, respectively) as compared to that in Condition 2 (89.3%, 35.0%, and 14.0%, respectively). With increasing NLR, particle size distribution shifted from narrow (67-133 μm) towards broader distribution (3-300 μm) inferring lower cake layer porosity over membrane fibers. Soluble extracellular polymer substance (sEPS) concentration increased at higher NLR due to biopolymers released from broken flocs. Higher cake layer resistance (Rc) contributed towards shorter filtration runs during condition 2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Osmotic membrane bioreactor for phenol biodegradation under continuous operation.

    PubMed

    Praveen, Prashant; Loh, Kai-Chee

    2016-03-15

    Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600-2000mg/L, and also at spiked concentrations of 2500mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5-6 days at removal rates varying between 2000 and 5500mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2-7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4h. A washing cycle, comprising 1h osmotic backwashing using 0.5M NaCl and 2h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500cm(-1), 1450-1450cm(-1) and 1200-1000cm(-1), indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Membrane fouling control using a rotary disk in a submerged anaerobic membrane sponge bioreactor.

    PubMed

    Kim, Jungmin; Shin, Jaewon; Kim, Hyemin; Lee, Jung-Yeol; Yoon, Min-Hyuk; Won, Seyeon; Lee, Byung-Chan; Song, Kyung Guen

    2014-11-01

    Despite significant research efforts over the last few decades, membrane fouling in anaerobic membrane bioreactors (AnMBRs) remains an unsolved problem that increases the overall operational costs and obstructs the industrial applications. Herein, we developed a method for effectively controlling the membrane fouling in a sponge-submerged AnMBRs using an anaerobic rotary disk MBR (ARMBR). The disk rotation led the effective collision between the sponge and membrane surface; thus successfully enhanced the membrane permeability in the ARMBR. The effect of the disk rotational speed and sponge volume fraction on the membrane permeability and the relationship between the water flow direction and membrane permeability were investigated. The long-term feasibility was tested over 100days of synthetic wastewater treatment. As a result, stable and economical performance was observed without membrane replacement and washing. The proposed integrated rotary disk-supporting media appears to be a feasible and even beneficial option in the AnMBR technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Model development and parameter estimation for a hybrid submerged membrane bioreactor treating Ametryn.

    PubMed

    Navaratna, Dimuth; Shu, Li; Baskaran, Kanagaratnam; Jegatheesan, Veeriah

    2012-06-01

    A lab-scale membrane bioreactor (MBR) was used to remove Ametryn from synthetic wastewater. It was found that concentrations of MLSS and extra-cellular polymeric substances (EPS) in MBR mixed liquor fluctuated (production and decay) differently for about 40 days (transition period) after the introduction of Ametryn. During the subsequent operations with higher organic loading rates, it was also found that a low net biomass yield (higher death rate) and a higher rate of fouling of membrane (a very high rate during the first 48 h) due to increased levels of bound EPS (eEPS) in MBR mixed liquor. A mathematical model was developed to estimate the kinetic parameters before and after the introduction of Ametryn. This model will be useful in simulating the performance of a MBR treating Ametryn in terms of flux, rate of fouling (in terms of transmembrane pressure and membrane resistance) as well as treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Effect of ambient light on monoclonal antibody product quality during small-scale mammalian cell culture process in clear glass bioreactors.

    PubMed

    Mallaney, Mary; Wang, Szu-Han; Sreedhara, Alavattam

    2014-01-01

    During a small-scale cell culture process producing a monoclonal antibody, a larger than expected difference was observed in the charge variants profile of the harvested cell culture fluid (HCCF) between the 2 L and larger scales (e.g., 400 L and 12 kL). Small-scale studies performed at the 2 L scale consistently showed an increase in acidic species when compared with the material made at larger scale. Since the 2 L bioreactors were made of clear transparent glass while the larger scale reactors are made of stainless steel, the effect of ambient laboratory light on cell culture process in 2 L bioreactors as well as handling the HCCF was carefully evaluated. Photoreactions in the 2 L glass bioreactors including light mediated increase in acidic variants in HCCF and formulation buffers were identified and carefully analyzed. While the acidic variants comprised of a mixture of sialylated, reduced disulfide, crosslinked (nonreducible), glycated, and deamidated forms, an increase in the nonreducible forms, deamidation and Met oxidation was predominantly observed under light stress. The monoclonal antibody produced in glass bioreactors that were protected from light behaved similar to the one produced in the larger scale. Our data clearly indicate that care should be taken when glass bioreactors are used in cell culture studies during monoclonal antibody production. © 2014 American Institute of Chemical Engineers.

  13. Mathematical modeling of continuous ethanol fermentation in a membrane bioreactor by pervaporation compared to conventional system: Genetic algorithm.

    PubMed

    Esfahanian, Mehri; Shokuhi Rad, Ali; Khoshhal, Saeed; Najafpour, Ghasem; Asghari, Behnam

    2016-07-01

    In this paper, genetic algorithm was used to investigate mathematical modeling of ethanol fermentation in a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR) by ethanol permselective polydimethylsiloxane (PDMS) membrane. A lab scale CMBR with medium glucose concentration of 100gL(-1) and Saccharomyces cerevisiae microorganism was designed and fabricated. At dilution rate of 0.14h(-1), maximum specific cell growth rate and productivity of 0.27h(-1) and 6.49gL(-1)h(-1) were respectively found in CMBR. However, at very high dilution rate, the performance of CMBR was quite similar to conventional fermentation on account of insufficient incubation time. In both systems, genetic algorithm modeling of cell growth, ethanol production and glucose concentration were conducted based on Monod and Moser kinetic models during each retention time at unsteady condition. The results showed that Moser kinetic model was more satisfactory and desirable than Monod model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Periodic harvesting of embryonic stem cells from a hollow-fiber membrane based four-compartment bioreactor.

    PubMed

    Knöspel, Fanny; Freyer, Nora; Stecklum, Maria; Gerlach, Jörg C; Zeilinger, Katrin

    2016-01-01

    Different types of stem cells have been investigated for applications in drug screening and toxicity testing. In order to provide sufficient numbers of cells for such in vitro applications a scale-up of stem cell culture is necessary. Bioreactors for dynamic three-dimensional (3D) culture of growing cells offer the option for culturing large amounts of stem cells at high densities in a closed system. We describe a method for periodic harvesting of pluripotent stem cells (PSC) during expansion in a perfused 3D hollow-fiber membrane bioreactor, using mouse embryonic stem cells (mESC) as a model cell line. A number of 100 × 10(6) mESC were seeded in bioreactors in the presence of mouse embryonic fibroblasts (MEF) as feeder cells. Over a cultivation interval of nine days cells were harvested by trypsin perfusion and mechanical agitation every second to third culture day. A mean of 380 × 10(6) mESC could be removed with every harvest. Subsequent to harvesting, cells continued growing in the bioreactor, as determined by increasing glucose consumption and lactate production. Immunocytochemical staining and mRNA expression analysis of markers for pluripotency and the three germ layers showed a similar expression of most markers in the harvested cells and in mESC control cultures. In conclusion, successful expansion and harvesting of viable mESC from bioreactor cultures with preservation of sterility was shown. The present study is the first one showing the feasibility of periodic harvesting of adherent cells from a continuously perfused four-compartment bioreactor including further cultivation of remaining cells. © 2015 American Institute of Chemical Engineers.

  16. Membrane fouling in a submerged membrane bioreactor: effect of pH and its implications.

    PubMed

    Zhang, Ye; Zhang, Meijia; Wang, Fangyuan; Hong, Huachang; Wang, Aijun; Wang, Juan; Weng, Xuexiang; Lin, Hongjun

    2014-01-01

    The effect of pH on membrane fouling in a submerged membrane bioreactor (MBR) was investigated in this study. It was found that, pH increase slightly increased the resistance of virgin membrane and fouled membrane. Pore clogging resistance was quite low, which was not apparently affected by the pH variation. Lower pH resulted in higher adherence of sludge flocs on membrane surface. Thermodynamic analysis showed that a repulsive energy barrier existed in the process of the foulants approaching to membrane surface. This energy barrier would decrease with pH decreased, suggesting the existence of a critical pH below which the repulsive energy barrier would disappear, which would facilitate attachment of the foulants. The resistance of the formed cake layer would significantly increase with the feed pH. This result could be explained by the osmotic pressure mechanism. The obtained findings also provided important implications for membrane fouling mitigation in MBRs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.

    PubMed

    Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian

    2017-06-01

    Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO 2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10 6  cells mL -1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide

  18. Dynamics of the Fouling Layer Microbial Community in a Membrane Bioreactor

    PubMed Central

    Ziegler, Anja S.; McIlroy, Simon J.; Larsen, Poul; Albertsen, Mads; Hansen, Aviaja A.; Heinen, Nicolas; Nielsen, Per Halkjær

    2016-01-01

    Membrane fouling presents the greatest challenge to the application of membrane bioreactor (MBR) technology. Formation of biofilms on the membrane surface is the suggested cause, yet little is known of the composition or dynamics of the microbial community responsible. To gain an insight into this important question, we applied 16S rRNA gene amplicon sequencing with a curated taxonomy and fluorescent in situ hybridization to monitor the community of a pilot-scale MBR carrying out enhanced biological nitrogen and phosphorus removal with municipal wastewater. In order to track the dynamics of the fouling process, we concurrently investigated the communities of the biofilm, MBR bulk sludge, and the conventional activated sludge system used to seed the MBR system over several weeks from start-up. As the biofilm matured the initially abundant betaproteobacterial genera Limnohabitans, Hydrogenophaga and Malikia were succeeded by filamentous Chloroflexi and Gordonia as the abundant species. This study indicates that, although putative pioneer species appear, the biofilm became increasingly similar to the bulk community with time. This suggests that the microbial population in bulk water will largely determine the community structure of the mature biofilm. PMID:27399199

  19. Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.

    PubMed

    Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José

    2015-01-01

    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.

  20. Metaproteomic analysis of biocake proteins to understand membrane fouling in a submerged membrane bioreactor.

    PubMed

    Zhou, Zhongbo; Meng, Fangang; He, Xiang; Chae, So-Ryong; An, Yujia; Jia, Xiaoshan

    2015-01-20

    Metaproteomic analyses, including two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separation and matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/TOF mass spectrometer (MS) detection, were used to trace and identify biocake proteins on membranes in a bench-scale submerged membrane bioreactor (MBR). 2D-PAGE images showed that proteins in the biocake (S3) at a low transmembrane pressure (TMP) level (i.e., before the TMP jump) had larger gray intensities in the pH 5.5–7.0 region regardless of the membrane flux, similar to soluble microbial product (SMP) proteins. However, the biocake (S2 and S4) at a high TMP level (i.e., after the TMP jump) had many more proteins in the pH range of 4.0–5.5, similar to extracellular polymeric substance (EPS) proteins. Such similarities between biocake proteins and SMP or EPS proteins can be useful for tracing the sources of proteins resulting in membrane fouling. In total, 183 differentially abundant protein spots were marked in the three biocakes (S2, S3, and S4). However, only 32 protein spots co-occurred in the 2D gels of the three biocakes, indicating that membrane fluxes and TMP evolution levels had significant effects on the abundance of biocake proteins. On the basis of the MS and MS/MS data, 23 of 71 protein spots were successfully identified. Of the 23 proteins, outer membrane proteins (Omp) were a major contributor (60.87%). These Omps were mainly from potential surface colonizers such as Aeromonas, Enterobacter, Pseudomonas, and Thauera. Generally, the metaproteomic analysis is a useful alternative to trace the sources and compositions of biocake proteins on the levels of molecules and bacteria species that can provide new insight into membrane fouling.

  1. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    PubMed

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  2. On the fluid dynamics of a laboratory scale single-use stirred bioreactor

    PubMed Central

    Odeleye, A.O.O.; Marsh, D.T.J.; Osborne, M.D.; Lye, G.J.; Micheletti, M.

    2014-01-01

    The commercial success of mammalian cell-derived recombinant proteins has fostered an increase in demand for novel single-use bioreactor (SUB) systems that facilitate greater productivity, increased flexibility and reduced costs (Zhang et al., 2010). These systems exhibit fluid flow regimes unlike those encountered in traditional glass/stainless steel bioreactors because of the way in which they are designed. With such disparate hydrodynamic environments between SUBs currently on the market, traditional scale-up approaches applied to stirred tanks should be revised. One such SUB is the Mobius® 3 L CellReady, which consists of an upward-pumping marine scoping impeller. This work represents the first experimental study of the flow within the CellReady using a Particle Image Velocimetry (PIV) approach, combined with a biological study into the impact of these fluid dynamic characteristics on cell culture performance. The PIV study was conducted within the actual vessel, rather than using a purpose-built mimic. PIV measurements conveyed a degree of fluid compartmentalisation resulting from the up-pumping impeller. Both impeller tip speed and fluid working volume had an impact upon the fluid velocities and spatial distribution of turbulence within the vessel. Cell cultures were conducted using the GS-CHO cell-line (Lonza) producing an IgG4 antibody. Disparity in cellular growth and viability throughout the range of operating conditions used (80–350 rpm and 1–2.4 L working volume) was not substantial, although a significant reduction in recombinant protein productivity was found at 350 rpm and 1 L working volume (corresponding to the highest Reynolds number tested in this work). The study shows promise in the use of PIV to improve understanding of the hydrodynamic environment within individual SUBs and allows identification of the critical hydrodynamic parameters under the different flow regimes for compatibility and scalability across the range of bioreactor

  3. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment.

    PubMed

    Chiemchaisri, C; Yamamoto, K

    2005-01-01

    Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.

  4. Membrane bioreactor technology: A novel approach to the treatment of compost leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Kayleigh; Ghoshdastidar, Avik J.; Hanmore, Jillian

    Highlights: • First membrane bioreactor treatment method for compost leachate. • No chemical additive or UV radiation source in this new biological method. • Removal rates of more than 99% for organics and ammonium were achieved. • Heavy metals were reduced by at least 82.7% except copper. - Abstract: Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Watermore » quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.« less

  5. Critical review of membrane bioreactor models--part 2: hydrodynamic and integrated models.

    PubMed

    Naessens, W; Maere, T; Ratkovich, N; Vedantam, S; Nopens, I

    2012-10-01

    Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical modelling. In this paper, the vast literature on hydrodynamic and integrated MBR modelling is critically reviewed. Hydrodynamic models are used at different scales and focus mainly on fouling and only little on system design/optimisation. Integrated models also focus on fouling although the ones including costs are leaning towards optimisation. Trends are discussed, knowledge gaps identified and interesting routes for further research suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    PubMed

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Influence of membrane fouling reducers (MFRs) on filterability of disperse mixed liquor of jet loop bioreactors.

    PubMed

    Koseoglu-Imer, Derya Yuksel; Dizge, Nadir; Karagunduz, Ahmet; Keskinler, Bulent

    2011-07-01

    The effects of membrane fouling reducers (MFRs) (the cationic polyelectrolyte (CPE) and FeCI(3)) on membrane fouling were studied in a lab-scale jet loop submerged membrane bioreactor (JL-SMBR) system. The optimum dosages of MFRs (CPE dosage=20 mg g(-1)MLSS, FeCI(3) dosage=14 mg g(-1)MLSS) were continuously fed to JL-SMBR system. The soluble and bound EPS concentrations as well as MLSS concentration in the mixed liquor of JL-SMBR were not changed substantially by the addition of MFRs. However, significant differences were observed in particle size and relative hydrophobicity. Filtration tests were performed by using different membrane types (polycarbonate (PC) and nitrocellulose mixed ester (ME)) and various pore sizes (0.45-0.22-0.1 μm). The steady state fluxes (J(ss)) of membranes increased at all membranes after MFRs addition to JL-SMBR. The filtration results showed that MFRs addition was an effective approach in terms of improvement in filtration performance for both membrane types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20°C.

    PubMed

    Kampman, Christel; Temmink, Hardy; Hendrickx, Tim L G; Zeeman, Grietje; Buisman, Cees J N

    2014-06-15

    Simultaneous nitrogen and methane removal by the slow growing denitrifying methanotrophic bacterium 'Candidatus Methylomirabilis oxyfera' offers opportunities for a new approach to wastewater treatment. However, volumetric nitrite consumption rates should be increased by an order of magnitude before application in wastewater treatment becomes possible. A maximum volumetric nitrite consumption rate of 36 mg NO2(-)-N/L d was achieved in a membrane bioreactor inoculated with wastewater sludge and operated at 20°C. This rate is similar to maximum rates reported in literature, though it was thought that by strict biomass retention using membranes, higher rates would be achieved. In experiments lasting several years, growth was not stable: every experiment showed a decrease in activity after 1-2 years. The cause remains unknown. Rates increased after addition of copper and operating a membrane bioreactor at shorter hydraulic retention times. Further research should focus on long-term effects of copper addition and operation at hydraulic retention times in the order of hours using membrane bioreactors. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Nitrification performance and microbial ecology of nitrifying bacteria in a full-scale membrane bioreactor treating TFT-LCD wastewater.

    PubMed

    Whang, Liang-Ming; Wu, Yi-Ju; Lee, Ya-Chin; Chen, Hong-Wei; Fukushima, Toshikazu; Chang, Ming-Yu; Cheng, Sheng-Shung; Hsu, Shu-Fu; Chang, Cheng-Huey; Shen, Wason; Huang, Chung Kai; Fu, Ryan; Chang, Barkley

    2012-10-01

    This study investigated nitrification performance and nitrifying community in one full-scale membrane bioreactor (MBR) treating TFT-LCD wastewater. For the A/O MBR system treating monoethanolamine (MEA) and dimethyl sulfoxide (DMSO), no nitrification was observed, due presumably to high organic loading, high colloidal COD, low DO, and low hydraulic retention time (HRT) conditions. By including additional A/O or O/A tanks, the A/O/A/O MBR and the O/A/O MBR were able to perform successful nitrification. The real-time PCR results for quantification of nitrifying populations showed a high correlation to nitrification performance, and can be a good indicator of stable nitrification. Terminal restriction fragment length polymorphism (T-RFLP) results of functional gene, amoA, suggest that Nitrosomonas oligotropha-like AOB seemed to be important to a good nitrification in the MBR system. In the MBR system, Nitrobacter- and Nitrospira-like NOB were both abundant, but the low nitrite environment is likely to promote the growth of Nitrospira-like NOB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. [Anaerobic membrane bioreactors for treating agricultural and food processing wastewater at high strength].

    PubMed

    Wei, Yuan-Song; Yu, Da-Wei; Cao, Lei

    2014-04-01

    As the second largest amounts of COD discharged in 41 kinds of industrial wastewater, it is of great urgency for the agricultural and food processing industry to control water pollution and reduce pollutants. Generally the agricultural and food processing industrial wastewater with high strength COD of 8 000-30 000 mg x L(-1), is mainly treated with anaerobic and aerobic processes in series, but which exists some issues of long process, difficult maintenance and high operational costs. Through coupling anaerobic digestion and membrane separation together, anaerobic membrane bioreactor (AnMBR) has typical advantages of high COD removal efficiency (92%-99%), high COD organic loading rate [2.3-19.8 kg x (m3 x d)(-1)], little sludge discharged (SRT > 40 d) and low cost (HRT of 8-12 h). According to COD composition of high strength industrial wastewater, rate-limiting step of methanation could be either hydrolysis and acidification or methanogenesis. Compared with aerobic membrane bioreactor (MBR), membrane fouling of AnMBR is more complicated in characterization and more difficult in control. Measures for membrane fouling control of AnMBR are almost the same as those of MBR, including cross flow, air sparging and membrane relaxation. For meeting discharging standard of food processing wastewater with high strength, AnMBR is a promising technology with very short process, by enhancing COD removal efficiency, controlling membrane fouling and improving energy recovery.

  11. Low energy consumption vortex wave flow membrane bioreactor.

    PubMed

    Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan

    2017-11-01

    In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.

  12. Microbial Relevant Fouling in Membrane Bioreactors: Influencing Factors, Characterization, and Fouling Control

    PubMed Central

    Wu, Bing; Fane, Anthony G.

    2012-01-01

    Microorganisms in membrane bioreactors (MBRs) play important roles on degradation of organic/inorganic substances in wastewaters, while microbial deposition/growth and microbial product accumulation on membranes potentially induce membrane fouling. Generally, there is a need to characterize membrane foulants and to determine their relations to the evolution of membrane fouling in order to identify a suitable fouling control approach in MBRs. This review summarized the factors in MBRs that influence microbial behaviors (community compositions, physical properties, and microbial products). The state-of-the-art techniques to characterize biofoulants in MBRs were reported. The strategies for controlling microbial relevant fouling were discussed and the future studies on membrane fouling mechanisms in MBRs were proposed. PMID:24958297

  13. A novel membrane distillation-thermophilic bioreactor system: biological stability and trace organic compound removal.

    PubMed

    Wijekoon, Kaushalya C; Hai, Faisal I; Kang, Jinguo; Price, William E; Guo, Wenshan; Ngo, Hao H; Cath, Tzahi Y; Nghiem, Long D

    2014-05-01

    The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs was high and was not significantly affected by the conditions of the bioreactor. All TrOCs investigated here were highly removed (>95%) by the MDBR system. Biodegradation, sludge adsorption, and rejection by MD contribute to the removal of TrOCs by MDBR treatment. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. USE OF MEMBRANE BIOREACTOR FOR BIODEGRADATION OF MTBE IN CONTAMINATED WATER1

    EPA Science Inventory

    An ultrafiltration membrane bioreactor was evaluated for biodegradation of methyl tert-butyl ether (MTBE) in contaminated water. The system was fed 5 mg/L MTBE in granular activated carbon (GAC) treated Cincinnati tap water containing ample buffer and nutrients. Within 120...

  15. New insights into comparison between synthetic and practical municipal wastewater in cake layer characteristic analysis of membrane bioreactor.

    PubMed

    Zhou, Lijie; Zhuang, Wei-Qin; Wang, Xin; Yu, Ke; Yang, Shufang; Xia, Siqing

    2017-11-01

    In previous studies, cake layer analysis in membrane bioreactor (MBR) was both carried out with synthetic and practical municipal wastewater (SMW and PMW), leading to different results. This study aimed to identify the comparison between SMW and PMW in cake layer characteristic analysis of MBR. Two laboratory-scale anoxic/oxic MBRs were operated for over 90days with SMW and PMW, respectively. Results showed that PMW led to rough cake layer surface with particles, and the aggravation of cake layer formation with thinner and denser cake layer. Additionally, inorganic components, especially Si and Al, in PMW accumulated into cake layer and strengthened the cake layer structure, inducing severer biofouling. However, SMW promoted bacterial metabolism during cake layer formation, thus aggravated the accumulation of organic components into cake layer. Therefore, SMW highlighted the organic components in cake layer, but weakened the inorganic functions in practical MBR operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    PubMed Central

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  17. Bioremediation and Detoxification of the Textile Wastewater with Membrane Bioreactor Using the White-rot Fungus and Reuse of Wastewater.

    PubMed

    Hossain, Kaizar; Quaik, Shlrene; Ismail, Norli; Rafatullah, Mohd; Avasan, Maruthi; Shaik, Rameeja

    2016-09-01

    Application of membrane technology to wastewater treatment has expanded over the last decades due to increasingly stringent legislation, greater opportunities for water reuse/recycling processes and continuing advancement in membrane technology. In the present study, a bench-scale submerged microfiltration membrane bioreactor (MBR) was used to assess the treatment of textile wastewater. The decolorization capacity of white-rot fungus coriolus versicolor was confirmed through agar plate and liquid batch studies. The temperature and pH of the reactor were controlled at 29±1°C and 4.5±2, respectively. The bioreactor was operated with an average flux of 0.05 m.d -1 (HRT=15hrs) for a month. Extensive growth of fungi and their attachment to the membrane led to its fouling and associated increase of the transmembrane pressure requiring a periodic withdrawal of sludge and membrane cleaning. However, stable decoloration activity (approx. 98%), BOD (40-50%), COD (50-67%) and total organic carbon (TOC) removal (>95%) was achieved using the entire system (fungi + membrane), while the contribution of the fungi culture alone for TOC removal, as indicated by the quality of the reactor supernatant, was 35-50% and 70%, respectively. The treated wastewater quality satisfied the requirement of water quality for dyeing and finishing process excluding light coloration. Therefore, textile wastewater reclamation and reuse is a promising alternative, which can both conserve or supplement the available water resource and reduce or eliminate the environmental pollution.

  18. Membrane fouling and performance evaluation of conventional membrane bioreactor (MBR), moving biofilm MBR and oxic/anoxic MBR.

    PubMed

    Khan, Sher Jamal; Ahmad, Aman; Nawaz, Muhammad Saqib; Hankins, Nicholas P

    2014-01-01

    In this study, three laboratory scale submerged membrane bioreactors (MBRs) comprising a conventional MBR (C-MBR), moving bed MBR (MB-MBR) and anoxic-oxic MBR (A/O-MBR) were continuously operated with synthesized domestic wastewater (chemical oxygen demand, COD = 500 mg/L) for 150 days under similar operational and environmental conditions. Kaldnes(®) plastic media with 20% dry volume was used as a biofilm carrier in the MB-MBR and A/O-MBR. The treatment performance and fouling propensity of the MBRs were evaluated. The effect of cake layer formation in all three MBRs was almost the same. However, pore blocking caused a major difference in the resultant water flux. The A/O-MBR showed the highest total nitrogen and phosphorus (PO4-P) removal efficiencies of 83.2 and 69.7%, respectively. Due to the high removal of nitrogen, fewer protein contents were found in the soluble and bound extracellular polymeric substances (EPS) of the A/O-MBR. Fouling trends of the MBRs showed 12, 14 and 20 days filtration cycles for C-MBR, MB-MBR and A/O-MBR, respectively. A 25% reduction of the soluble EPS and a 37% reduction of the bound EPS concentrations in A/O-MBR compared with C-MBR was a major contributing factor for fouling retardation and the enhanced filtration capacity of the A/O-MBR.

  19. Effects of filtration modes on membrane fouling behavior and treatment in submerged membrane bioreactor.

    PubMed

    Maqbool, Tahir; Khan, Sher Jamal; Lee, Chung-Hak

    2014-11-01

    Relaxation or backwashing is obligatory for effective operation of membrane module and intermittent aeration is helpful for nutrients removal. This study was performed to investigate effects of different filtration modes on membrane fouling behavior and treatment in membrane bioreactor (MBR) operated at three modes i.e., 12, 10 and 8min filtration and 3, 2, and 2min relaxation corresponding to 6, 5 and 4cycles/hour, respectively. Various parameters including trans-membrane pressure, specific cake resistance, specific oxygen uptake rate, nutrients removal and sludge dewaterability were examined to optimize the filtration mode. TMP profiles showed that MBR(8+2) with 8min filtration and 2min relaxation reduced the fouling rate and depicted long filtration time in MBR treating synthetic wastewater. MBR(12+3) was more efficient in organic and nutrients removal while denitrification rate was high in MBR(8+2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Membrane fouling in a submerged membrane bioreactor: New method and its applications in interfacial interaction quantification.

    PubMed

    Hong, Huachang; Cai, Xiang; Shen, Liguo; Li, Renjie; Lin, Hongjun

    2017-10-01

    Quantification of interfacial interactions between two rough surfaces represents one of the most pressing requirements for membrane fouling prediction and control in membrane bioreactors (MBRs). This study firstly constructed regularly rough membrane and particle surfaces by using rigorous mathematical equations. Thereafter, a new method involving surface element integration (SEI) method, differential geometry and composite Simpson's rule was proposed to quantify the interfacial interactions between the two constructed rough surfaces. This new method were then applied to investigate interfacial interactions in a MBR with the data of surface properties of membrane and foulants experimentally measured. The feasibility of the new method was verified. It was found that asperity amplitude and period of the membrane surface exerted profound effects on the total interaction. The new method had broad potential application fields especially including guiding membrane surface design for membrane fouling mitigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of three-dimensional catalytic electro-Fenton and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng

    2015-12-01

    Laboratorial scale experiments were conducted to investigate a novel system three-dimensional catalytic electro-Fenton (3DCEF, catalyst of sewage sludge based activated carbon which loaded Fe3O4) integrating with membrane bioreactor (3DCEF-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. The results indicated that 3DCEF-MBR represented high efficiencies in eliminating COD and total organic carbon, giving the maximum removal efficiencies of 80% and 75%, respectively. The integrated 3DCEF-MBR system significantly reduced the transmembrane pressure, giving 35% lower than conventional MBR after 30 days operation. The enhanced hydroxyl radical oxidation and bacteria self repair function were the mechanisms for 3DCEF-MBR performance. Therefore, the integrated 3DCEF-MBR was expected to be the promising technology for advanced treatment in engineering applications. Copyright © 2015. Published by Elsevier Ltd.

  2. Critical review of membrane bioreactor models--part 1: biokinetic and filtration models.

    PubMed

    Naessens, W; Maere, T; Nopens, I

    2012-10-01

    Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can significantly benefit from mathematical modelling. In this paper, the vast literature on modelling MBR biokinetics and filtration is critically reviewed. It was found that models cover the wide range of empirical to detailed mechanistic descriptions and have mainly been used for knowledge development and to a lesser extent for system optimisation/control. Moreover, studies are still predominantly performed at lab or pilot scale. Trends are discussed, knowledge gaps identified and interesting routes for further research suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Biomass properties and permeability in an immersed hollow fibre membrane bioreactor at high sludge concentrations.

    PubMed

    Wang, Z Z; Zsirai, T; Connery, K; Fabiyi, M; Larrea, A; Li, J; Judd, S J

    2014-01-01

    This study aimed to investigate the influence of biomass properties and high mixed liquor suspended solids (MLSS) concentrations on membrane permeability in a pilot-scale hollow fibre membrane bioreactor treating domestic wastewater. Auxiliary molasses solution was added to maintain system operation at constant food-to-microorganisms ratio (F/M = 0.13). Various physicochemical and biological biomass parameters were measured throughout the trial, comprising pre-thickening, thickening and post-thickening periods with reference to the sludge concentration and with aerobic biotreatment continuing throughout. Correlations between dynamic changes in biomass characteristics and membrane permeability decline as well as permeability recovery were further assessed by statistical analyses. Results showed the MLSS concentration to exert the greatest influence on sustainable membrane permeability, with a weaker correlation with particle size distribution. The strong dependence of absolute recovered permeability on wet accumulated solids (WACS) concentration, or clogging propensity, revealed clogging to deleteriously affect membrane permeability decline and recovery (from mechanical declogging and chemical cleaning), with WACS levels increasing with increasing MLSS. Evidence from the study indicated clogging may permanently reduce membrane permeability post declogging and chemical cleaning, corroborating previously reported findings.

  4. Dynamic Single-Use Bioreactors Used in Modern Liter- and m(3)- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up.

    PubMed

    Löffelholz, Christian; Kaiser, Stephan C; Kraume, Matthias; Eibl, Regine; Eibl, Dieter

    2014-01-01

    During the past 10 years, single-use bioreactors have been well accepted in modern biopharmaceutical production processes targeting high-value products. Up to now, such processes have mainly been small- or medium-scale mammalian cell culture-based seed inoculum, vaccine or antibody productions. However, recently first attempts have been made to modify existing single-use bioreactors for the cultivation of plant cells and tissue cultures, and microorganisms. This has even led to the development of new single-use bioreactor types. Moreover, due to safety issues it has become clear that single-use bioreactors are the "must have" for expanding human stem cells delivering cell therapeutics, the biopharmaceuticals of the next generation. So it comes as no surprise that numerous different dynamic single-use bioreactor types, which are suitable for a wide range of applications, already dominate the market today. Bioreactor working principles, main applications, and bioengineering data are presented in this review, based on a current overview of greater than milliliter-scale, commercially available, dynamic single-use bioreactors. The focus is on stirred versions, which are omnipresent in R&D and manufacturing, and in particular Sartorius Stedim's BIOSTAT family. Finally, we examine development trends for single-use bioreactors, after discussing proven approaches for fast scaling-up processes.

  5. Microbial Transformation of Biomacromolecules in a Membrane Bioreactor: Implications for Membrane Fouling Investigation

    PubMed Central

    Zhou, Zhongbo; Meng, Fangang; Chae, So-Ryong; Huang, Guocheng; Fu, Wenjie; Jia, Xiaoshan; Li, Shiyu; Chen, Guang-Hao

    2012-01-01

    Background The complex characteristics and unclear biological fate of biomacromolecules (BMM), including colloidal and soluble microbial products (SMP), extracellular polymeric substances (EPS) and membrane surface foulants (MSF), are crucial factors that limit our understanding of membrane fouling in membrane bioreactors (MBRs). Findings In this study, the microbial transformation of BMM was investigated in a lab-scale MBR by well-controlled bioassay tests. The results of experimental measurements and mathematical modeling show that SMP, EPS, and MSF had different biodegradation behaviors and kinetic models. Based on the multi-exponential G models, SMP were mainly composed of slowly biodegradable polysaccharides (PS), proteins (PN), and non-biodegradable humic substances (HS). In contrast, EPS contained a large number of readily biodegradable PN, slowly biodegradable PS and HS. MSF were dominated by slowly biodegradable PS, which had a degradation rate constant similar to that of SMP-PS, while degradation behaviors of MSF-PN and MSF-HS were much more similar to those of EPS-PN and EPS-HS, respectively. In addition, the large-molecular weight (MW) compounds (>100 kDa) in BMM were found to have a faster microbial transformation rate compared to the small-MW compounds (<5 kDa). The parallel factor (PARAFAC) modeling of three-dimensional fluorescence excitation-emission matrix (EEM) spectra showed that the tryptophan-like PN were one of the major fractions in the BMM and they were more readily biodegradable than the HS. Besides microbial mineralization, humification and hydrolysis could be viewed as two important biotransformation mechanisms of large-MW compounds during the biodegradation process. Significance The results of this work can aid in tracking the origin of membrane foulants from the perspective of the biotransformation behaviors of SMP, EPS, and MSF. PMID:22912694

  6. Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater.

    PubMed

    Hasan, Shadi W; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2014-02-01

    Submerged membrane electro-bioreactor (SMEBR) is a new hybrid technology for wastewater treatment employing electrical field and microfiltration in a nutrient-removing activated sludge process. A pilot SMEBR system was located at the wastewater treatment plant in the City of l'Assomption (Quebec, Canada) with the objective of investigating the start-up period performance under variable organic loadings and environmental conditions with respect to effluent quality, membrane fouling, and sludge properties. The pilot SMEBR facility was fed with the raw de-gritted municipal wastewater. At steady state operation, the removal efficiencies of ammonia (as NH3(+)-N), phosphorus (as PO4(3-)-P), and COD were 99%, 99%, and 92%, respectively. No substantial increase in the monitored transmembrane pressure as 0.02kPad(-1) was reported. The time necessary to filter 100mL of the sludge sample has decreased by 78% after treatment whilst the sludge volume index averaged 119mLg(-1). Energy requirements were in the range of 1.1-1.6kWhm(-3) of wastewater. It was concluded that the SMEBR is a very competitive technology when compared to conventional membrane systems as it can enhance treatment performance to an appreciable extent, remove phosphorus and reduce fouling. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    PubMed

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor

    PubMed Central

    Radjenovic, Jelena; Barceló, Damiá

    2006-01-01

    Much attention has recently been devoted to the life and behaviour of pharmaceuticals in the water cycle. In this study the behaviour of several pharmaceutical products in different therapeutic categories (analgesics and anti-inflammatory drugs, lipid regulators, antibiotics, etc.) was monitored during treatment of wastewater in a laboratory-scale membrane bioreactor (MBR). The results were compared with removal in a conventional activated-sludge (CAS) process in a wastewater-treatment facility. The performance of an MBR was monitored for approximately two months to investigate the long-term operational stability of the system and possible effects of solids retention time on the efficiency of removal of target compounds. Pharmaceuticals were, in general, removed to a greater extent by the MBR integrated system than during the CAS process. For most of the compounds investigated the performance of MBR treatment was better (removal rates >80%) and effluent concentrations of, e.g., diclofenac, ketoprofen, ranitidine, gemfibrozil, bezafibrate, pravastatin, and ofloxacin were steadier than for the conventional system. Occasionally removal efficiency was very similar, and high, for both treatments (e.g. for ibuprofen, naproxen, acetaminophen, paroxetine, and hydrochlorothiazide). The antiepileptic drug carbamazepine was the most persistent pharmaceutical and it passed through both the MBR and CAS systems untransformed. Because there was no washout of biomass from the reactor, high-quality effluent in terms of chemical oxygen demand (COD), ammonium content (N-NH4), total suspended solids (TSS), and total organic carbon (TOC) was obtained. PMID:17115140

  9. Isolation and metagenomic characterization of bacteria associated with calcium carbonate and struvite precipitation in a pure moving bed biofilm reactor-membrane bioreactor.

    PubMed

    Gonzalez-Martinez, A; Leyva-Díaz, J C; Rodriguez-Sanchez, A; Muñoz-Palazon, B; Rivadeneyra, A; Poyatos, J M; Rivadeneyra, M A; Martinez-Toledo, M V

    2015-01-01

    A bench-scale pure moving bed bioreactor-membrane bioreactor (MBBR-MBR) used for the treatment of urban wastewater was analyzed for the identification of bacterial strains with the potential capacity for calcium carbonate and struvite biomineral formation. Isolation of mineral-forming strains on calcium carbonate and struvite media revealed six major colonies with a carbonate or struvite precipitation capacity in the biofouling on the membrane surface and showed that heterotrophic bacteria with the ability to precipitate calcium carbonate and struvite constituted ~7.5% of the total platable bacteria. These belonged to the genera Lysinibacillus, Trichococcus, Comamomas and Bacillus. Pyrosequencing analysis of the microbial communities in the suspended cells and membrane biofouling showed a high degree of similarity in all the samples collected with respect to bacterial assemblage. The study of operational taxonomic units (OTUs) identified through pyrosequencing suggested that ~21% of the total bacterial community identified in the biofouling could potentially form calcium carbonate or struvite crystals in the pure MBBR-MBR system used for the treatment of urban wastewater.

  10. Influences of acid-base property of membrane on interfacial interactions related with membrane fouling in a membrane bioreactor based on thermodynamic assessment.

    PubMed

    Zhao, Leihong; Qu, Xiaolu; Zhang, Meijia; Lin, Hongjun; Zhou, Xiaoling; Liao, Bao-Qiang; Mei, Rongwu; Hong, Huachang

    2016-08-01

    Failure of membrane hydrophobicity in predicting membrane fouling requires a more reliable indicator. In this study, influences of membrane acid base (AB) property on interfacial interactions in two different interaction scenarios in a submerged membrane bioreactor (MBR) were studied according to thermodynamic approaches. It was found that both the polyvinylidene fluoride (PVDF) membrane and foulant samples in the MBR had relatively high electron donor (γ(-)) component and low electron acceptor (γ(+)) component. For both of interaction scenarios, AB interaction was the major component of the total interaction. The results showed that, the total interaction monotonically decreased with membrane γ(-), while was marginally affected by membrane γ(+), suggesting that γ(-) could act as a reliable indicator for membrane fouling prediction. This study suggested that membrane modification for fouling mitigation should orient to improving membrane surface γ(-) component rather than hydrophilicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Bioremediation and Detoxification of the Textile Wastewater with Membrane Bioreactor Using the White-rot Fungus and Reuse of Wastewater

    PubMed Central

    Hossain, Kaizar; Quaik, Shlrene; Ismail, Norli; Rafatullah, Mohd; Avasan, Maruthi; Shaik, Rameeja

    2016-01-01

    Background Application of membrane technology to wastewater treatment has expanded over the last decades due to increasingly stringent legislation, greater opportunities for water reuse/recycling processes and continuing advancement in membrane technology. Objectives In the present study, a bench-scale submerged microfiltration membrane bioreactor (MBR) was used to assess the treatment of textile wastewater. Materials and Methods The decolorization capacity of white-rot fungus coriolus versicolor was confirmed through agar plate and liquid batch studies. The temperature and pH of the reactor were controlled at 29±1°C and 4.5±2, respectively. The bioreactor was operated with an average flux of 0.05 m.d-1 (HRT=15hrs) for a month. Results Extensive growth of fungi and their attachment to the membrane led to its fouling and associated increase of the transmembrane pressure requiring a periodic withdrawal of sludge and membrane cleaning. However, stable decoloration activity (approx. 98%), BOD (40-50%), COD (50-67%) and total organic carbon (TOC) removal (>95%) was achieved using the entire system (fungi + membrane), while the contribution of the fungi culture alone for TOC removal, as indicated by the quality of the reactor supernatant, was 35-50% and 70%, respectively. Conclusions The treated wastewater quality satisfied the requirement of water quality for dyeing and finishing process excluding light coloration. Therefore, textile wastewater reclamation and reuse is a promising alternative, which can both conserve or supplement the available water resource and reduce or eliminate the environmental pollution. PMID:28959331

  12. Nitrification denitrification enhanced biological phosphorous removal (NDEBPR) occurs in a lab-scale alternating hypoxic/oxic membrane bioreactor.

    PubMed

    Sibag, Mark; Kim, Han-Seung

    2012-01-01

    Strict anaerobic or anoxic maintenance of the system and process susceptibility to low organic loading are major concerns in nitrification denitrification enhanced biological phosphorous removal (NDEBPR). The study has initiated NDEBPR in a lab-scale alternating hypoxic/oxic membrane bioreactor by developing an enhanced mixed microbial culture capable of removing 97±2% COD, 99±0.84% NH(3)-N, 90±3% TN, and 96±1% TP-PO(4)(3-) with 20-day SRT. The viable cells ranging from 1.6×10(8) to 2.0×10(8)cells/ml estimated from the total bacterial genomic DNA (6.43-7.83 μg DNA/ml) represented only 5% of the MLVSS indicating low microbial biomass concentration. Reducing the organic load from 1250 to 750 mg COD/ml as glucose did not deteriorate the effluent quality (3.77±1.0 mg N-TN/l; 0.08±0.24 mg NH(3)-N/l; and 0.32±0.10 mg PO(4)(3-)-P/l). These observations are characteristics of activated sludge that harbors denitrifying polyphosphate accumulating organisms (DPAOs). The results showed that NDEBPR can be achieved under alternating hypoxic/oxic conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor

    PubMed Central

    Zhang, Q; Shuwen, G; Zhang, J; Fane, AG; Kjelleberg, S; Rice, SA; McDougald, D

    2015-01-01

    Aims Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Methods and Results Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Conclusions Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. Significance and Impact of the Study This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. PMID:25604265

  14. Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer.

    PubMed

    Ramakrishnan, Divakar; Curtis, Wayne R

    2004-10-20

    Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.

  15. Performance of diatomite/iron oxide modified nonwoven membrane used in membrane bioreactor process for wastewater reclamation.

    PubMed

    He, Yueling; Zhang, Wenqi; Rao, Pinhua; Jin, Peng

    2014-01-01

    This study describes an approach for surface modification of a nonwoven membrane by diatomite/iron oxide to examine its filterability. Analysis results showed that nonwoven hydrophilicity is enhanced. Static contact angle decreases dramatically from 122.66° to 39.33°. Scanning electron micrograph images show that diatomite/iron oxide is attached on nonwoven fiber. X-ray diffraction analysis further proves that the compound is mostly magnetite. Fourier transformed infrared spectra results reveal that two new absorption peaks might be attributed to Si-O and Fe-O, respectively. Modified and original membranes were used in double nonwoven membrane bioreactors (MBRs) for synthetic wastewater treatment. High critical flux, long filtration time, slow trans-membrane pressure rise and stable sludge volume index confirmed the advantages of modified nonwoven. Comparing with original nonwoven, similar effluent qualities are achieved, meeting the requirements for wastewater reclamation.

  16. A submerged membrane bioreactor with pendulum type oscillation (PTO) for oily wastewater treatment: membrane permeability and fouling control.

    PubMed

    Qin, Lei; Fan, Zheng; Xu, Lusheng; Zhang, Guoliang; Wang, Guanghui; Wu, Dexin; Long, Xuwei; Meng, Qin

    2015-05-01

    In this study, a novel submerged membrane bioreactor (SMBR) with pendulum type oscillation (PTO) hollow fiber membrane modules was developed to treat oily wastewater and control the problem of membrane fouling. To assess the potential of PTO membrane modules, the effect of oscillation orientation and frequency on membrane permeability was investigated in detail. The forces exerted on sludge flocs in the oscillating SMBR were analyzed to evaluate the impact of membrane oscillating on the cake layer resistance reduction. Results showed that the optimized PTO SMBR system exhibited 11 times higher membrane permeability and better fouling controllability than the conventional MBR system. By hydrodynamic analysis, it was found that the cooperative effect of bubble-induced turbulence and membrane oscillation in PTO SMBR system generated strong shear stress at liquid-membrane interface in vertical and horizontal direction and effectively hindered the particles from depositing on membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Lunn, Griffin M.; Koss, Lawrence L.; Hummerick, Mary E.; Spencer, Lachelle E.; Johnsey, Marissa N.; Richards, Jeffrey T.; Ellis, Ronald; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    Bioreactor research is mostly limited to continuous stirred-tank reactors (CSTRs) which are not an option for microgravity (g) applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. Bioreactors and filtration systems for treating wastewater in g could avoid the need for harsh pretreatment chemicals and improve overall water recovery. Solution: Membrane Aerated Bioreactors (MABRs) for g applications, including possible use for wastewater treatment systems for the International Space Station (ISS).

  18. [Printing and dyeing wastewater treatment using combined process of anaerobic bioreactor and MBR].

    PubMed

    Zheng, Xiang; Liu, Jun-xin

    2004-09-01

    This paper describes a labor-scale experiment for printing and dyeing wastewater treatment of woolen mill using a combined process of an anaerobic reactor and a membrane bioreactor (MBR). The experimental results showed that when the concentration of COD, BOD5 and color in the influent were 128-321 mg/L, 36-95 mg/L and 40-70 dilution times (DT), the average concentrations of COD, BOD5, color and turbidity in the effluent were 36.9 mg/L, 3.7 mg/L, 21 DT and 0.24 NTU, respectively, and the corresponding removal rates were 80.3%, 95%, 59% and 99.3%, respectively. A new integrated membrane bioreactor by gravity drain of liquid level in the bioreactor was developed in this study. It not only lessens suction pump for effluent and controlling unit comparing to the traditional integrated membrane bioreactor, but also has the characters of high and continuous flux, concise configuration and simple operation and maintenance. According to the experimental results, the air flow rate through the membrane module is a significant factor to affect the flux rate and cake layer deposited on the membrane. With application of optimal air flow rate, it is effective to reduce membrane fouling and maintain high flux rate.

  19. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor.

    PubMed

    Fortunato, Luca; Jeong, Sanghyun; Wang, Yiran; Behzad, Ali R; Leiknes, TorOve

    2016-12-01

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Anaerobic membrane bioreactor for the treatment of leachates from Jebel Chakir discharge in Tunisia.

    PubMed

    Zayen, Amal; Mnif, Sami; Aloui, Fathi; Fki, Firas; Loukil, Slim; Bouaziz, Mohamed; Sayadi, Sami

    2010-05-15

    Landfill leachate (LFL) collected from the controlled discharge of Jebel Chakir in Tunisia was treated without any physical or chemical pretreatment in an anaerobic membrane bioreactor (AnMBR). The organic loading rate (OLR) in the AnMBR was gradually increased from 1 g COD l(-1)d(-1) to an average of 6.27 g COD l(-1)d(-1). At the highest OLR, the biogas production was more than 3 volumes of biogas per volume of the bioreactor. The volatile suspended solids (VSSs) reached a value of approximately 3 g l(-1) in the bioreactor. At stable conditions, the treatment efficiency was high with an average COD reduction of 90% and biogas yield of 0.46 l biogas per g COD removed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    PubMed

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Influence of diatomite addition on membrane fouling and performance in a submerged membrane bioreactor.

    PubMed

    Yang, Xiao-Li; Song, Hai-Liang; Lu, Ji-Lai; Fu, Da-Fang; Cheng, Bing

    2010-12-01

    This paper examined the effect of diatomite addition on membrane fouling and process performance in an anoxic/oxic submerged membrane bioreactor (A/O MBR). Particle size distribution, molecular weight distribution and microbial activity have been investigated to characterize the sludge mixed liquor. Results show that diatomite addition is a reliable and effective approach in terms of both membrane fouling mitigation and pollutants removal improvement. The MBR system with diatomite addition of 50 mg/L enhanced the removal of COD, TN and TP by 0.9%, 6.9% and 31.2%, respectively, as compared to the control MBR (without diatomite addition). The NH(4)-N removal always maintained at a high level of over 98% irrespective of diatomite addition. Due to the hybrid effect of adsorption and co-precipitation on fine colloids and dissolved organic matter (DOM) from the addition of diatomite, a reduction in foulants amount, an increase in microbial floc size and an improvement in sludge settleability have been achieved simultaneously. As a result, the membrane fouling rate was mitigated successfully. 2010 Elsevier Ltd. All rights reserved.

  3. Ion exchange membrane textile bioreactor as a new alternative for drinking water denitrification.

    PubMed

    Berdous, Dalila; Akretche, Djamal-Eddine; Abderahmani, Ahmed; Berdous, Sakina; Meknaci, Rima

    2014-06-01

    This work enters in the optics of the denitrification of a polluted water by two membrane techniques, the Donnan dialysis (DD) and the ion exchange membrane bioreactor (IEMB), using a conventional barrier, composed by an anion exchange membrane (AEM), and a hybrid barrier, where the AEM is combined to an anion exchange textile (AET). The effects of the hydrodynamic factor and the nature of the carbon source on the transfer and the reduction of nitrate ions were studied. The study results obtained through the DD showed the effectiveness of the hybrid barrier in the recovery and concentration of nitrate ions. This was also recorded during denitrification by the hybrid process, called the ion exchange membrane textile bioreactor (IEMTB), with a significant reduction of nitrates, compared to IEMB, due to the efficiency of the Pseudomonas aeruginosa biofilm formed at the surface of the AET. Here, the permselectivity of the membrane and the good bioreduction of the pollutants are no longer major conditions to the better performance of the process. The application of IEMTB in the denitrification of groundwater, having a nitrate concentration of 96.67 ppm, shows a total reduction of nitrate ions without changing the quality of the water. Indeed, the analysis of the recovered water, or yet the treated water, shows the absence of the bacterium by-products and concentrations in the nitrates and nitrites which are, respectively, equal to 0.02±0.01 ppm, and inferiors to the detection limit (<0.02 ppm).

  4. Bioreactor technology for production of valuable algal products

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Cai; Cao, Ying

    1998-03-01

    Bioreactor technology has long been employed for the production of various (mostly cheap) food and pharmaceutical products. More recently, research has been mainly focused on the development of novel bioreactor technology for the production of high—value products. This paper reports the employment of novel bioreactor technology for the production of high-value biomass and metabolites by microalgae. These high-value products include microalgal biomass as health foods, pigments including phycocyanin and carotenoids, and polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid. The processes involved include heterotrophic and mixotrophic cultures using organic substrates as the carbon source. We have demonstrated that these bioreactor cultivation systems are particularly suitable for the production of high-value products from various microalgae. These cultivation systems can be further modified to improve cell densities and productivities by using high cell density techniques such as fed-batch and membrane cell recycle systems. For most of the microalgae investigated, the maximum cell concentrations obtained using these bioreactor systems in our laboratories are much higher than any so far reported in the literature.

  5. Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor.

    PubMed

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Du, Bing; Wei, Qin; Tran, Ngoc Han; Nguyen, Nguyen Cong; Chen, Shiao-Shing; Li, Jianxin

    2016-06-01

    The characteristics of activated sludge and membrane fouling were evaluated in a sponge-submerged membrane bioreactor (SSMBR) at different hydraulic retention times (HRTs) (6.67, 5.33 and 4.00h). At shorter HRT, more obvious membrane fouling was caused by exacerbated cake layer formation and aggravated pore blocking. Activated sludge possessed more extracellular polymeric substances (EPS) due to excessive growth of biomass and lower protein to polysaccharide ratio in soluble microbial products (SMP). The cake layer resistance was aggravated by increased sludge viscosity together with the accumulated EPS and biopolymer clusters (BPC) on membrane surface. However, SMP showed marginal effect on membrane fouling when SSMBRs were operated at all HRTs. The SSMBR with Gemfloc® addition at the optimum HRT of 6.67h demonstrated superior sludge characteristics such as larger floc size, less SMP in mixed liquor with higher protein/polysaccharide ratio, less SMP and BPC in cake layer, thereby further preventing membrane fouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Long-term effect on membrane fouling in a new membrane bioreactor as a pretreatment to seawater desalination.

    PubMed

    Jeong, Sanghyun; Rice, Scott A; Vigneswaran, Saravanamuthu

    2014-08-01

    Submerged membrane adsorption bio-reactors (SMABR) were investigated as a new pretreatment for seawater reverse osmosis (SWRO) desalination. They were tested with different doses of powder activated carbon (PAC) on-site for a long-term. The biofouling on the membrane was assessed in terms of DNA (cells) and polysaccharide distribution. MBR without PAC addition resulted in severe fouling on membrane. When PAC is added in the MBR, PAC could reduce the organic fouling. Hence the biofilm formation on membrane was reduced without any membrane damage. PAC also helped to remove low molecular weight (LMW) organics responsible for biofouling of RO membrane. A linear correlation between assimilable organic carbon (AOC) and LMW organics was observed. A small amount of PAC (2.4-8.0g of PAC/m(3) of seawater) was sufficient to reduce biofouling. It indicated that SMABR is an environmentally-friendly biological pretreatment to reduce biofouling for SWRO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Performance of a composite membrane bioreactor treating toluene vapors: inocula selection, reactor performance and behavior under transient conditions.

    PubMed

    Kumar, Amit; Dewulf, Jo; Vercruyssen, Aline; Van Langenhove, Herman

    2009-04-01

    In this study, a membrane biofilm reactor performance for toluene as a model pollutant is presented. A composite membrane consisting of a porous polyacrylonitrile (PAN) support layer coated with a very thin (0.3 microm) dense polydimethylsiloxane (PDMS) top layer was used. Batch experiments were performed to select an appropriate inocula (slaughterhouse wastewater treatment sludge with a specific toluene consumption rate of 118+/-23 microg g(-1) VSS L(-1)) among the three available sources of inoculums. The maximum elimination capacity gas-side reactor volume based (EC)v and membrane based (EC)(m, max) obtained were 609 g m(-3) h(-1) and 1.2 g m(-2) h(-1) respectively, which is much higher than other membrane bioreactors. Further experiments involved the study of the membrane biofilm reactor flexibility when operational parameters as temperature, loading rate etc. were modified. In all cases, the membrane biofilm reactor showed a rapid adaptation and new steady-states were obtained within hours. Overall, the results illustrate that membrane bioreactors can potentially be a good option for treatment of air pollutants such as toluene.

  8. Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater.

    PubMed

    Miura, Yuki; Watanabe, Yoshimasa; Okabe, Satoshi

    2007-11-15

    We operated pilot-scale submerged membrane bioreactors (MBR) treating real municipal wastewater for over 3 months and observed an interesting phenomenon that carbohydrate concentrations in the MBRs rapidly increased, which consequently resulted in membrane fouling, when relative abundance of the member of uncultured Chloroflexi decreased from over 30% of total Bacteria to less than 10%. We, therefore, hypothesized that the uncultured Chloroflexi present in the MBRs could preferentially degrade carbohydrates and consequently prevent membrane fouling. To test this hypothesis, we investigated the phylogenetic identity, diversity, and in situ physiology (substrate utilization characteristics) of Chloroflexi residing in the MBR by using 16S rRNA gene sequencing analysis and microautoradiography combined with fluorescence in situ hybridization (MAR-FISH) technique. Most of the clones related to the phylum Chloroflexiwere affiliated with the Chloroflexi subphylum 1 containing only a few cultured representatives. The MAR-FISH revealed that the members of Chloroflexi were metabolically versatile and could preferentially utilize glucose and N-acetyl glucosamine (a main substantial constituent of the cell wall peptidoglycan) under oxic and anoxic conditions. The utilization of these compounds was low at low pH. These findings suggest that the members of Chloroflexi are ecologically significant in the MBR treating municipal wastewater and are responsible for degradation of SMP including carbohydrates and cellular materials, which consequently reduces membrane fouling potential.

  9. Energy efficient of ethanol recovery in pervaporation membrane bioreactor with mechanical vapor compression eliminating the cold traps.

    PubMed

    Fan, Senqing; Xiao, Zeyi; Li, Minghai

    2016-07-01

    An energy efficient pervaporation membrane bioreactor with mechanical vapor compression was developed for ethanol recovery during the process of fermentation coupled with pervaporation. Part of the permeate vapor at the membrane downstream under the vacuum condition was condensed by running water at the first condenser and the non-condensed vapor enriched with ethanol was compressed to the atmospheric pressure and pumped into the second condenser, where the vapor was easily condensed into a liquid by air. Three runs of fermentation-pervaporation experiment have been carried out lasting for 192h, 264h and 360h respectively. Complete vapor recovery validated the novel pervaporation membrane bioreactor. The total flux of the polydimethylsiloxane (PDMS) membrane was in the range of 350gm(-2)h(-1) and 600gm(-2)h(-1). Compared with the traditional cold traps condensation, mechanical vapor compression behaved a dominant energy saving feature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor.

    PubMed

    Zhang, Q; Shuwen, G; Zhang, J; Fane, A G; Kjelleberg, S; Rice, S A; McDougald, D

    2015-04-01

    Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  11. Effect of membrane characteristics on the performance of membrane bioreactors for oily wastewater treatment.

    PubMed

    Mafirad, S; Mehrnia, M R; Sarrafzadeh, M H

    2011-01-01

    Influence of membrane material and pore size on the performance of a submerged membrane bioreactor (sMBR) for oily wastewater treatment was investigated. The sMBR had a working volume of about 19 L with flat sheet modules at the same hydrodynamic conditions. Five types of micro- and ultra-polymeric membranes containing cellulose acetate (CA), cellulose nitrate (CN), polyamide (PA), polyvinylidene difluoride (PVDF) and polyethersulfone (PES) were used and their filtration performance in terms of permeability, permeate quality and fouling intensity were evaluated. Characterization of the membranes was done by performing some analysis such as pore size distribution; contact angle and scanning electronic microscopy (SEM) microphotograph on all membranes. The quality of permeates from each membrane was identified by measuring chemical oxygen demand (COD). The results showed more irreversible fouling intensity for membranes with larger pore size which can be due to more permeation of bioparticles and colloids inside the pores. Membrane characteristics have a major role in the preliminary time of the filtration before cake layer formation so that the PA with the highest hydrophilicity had the lowest permeability decline by fouling in this period. Also, the PVDF and PES membranes had better performance according to better permeate quality in the preliminary time of the filtration related to smaller pore size and also their better fouling resistance and chemical stability properties. However, all membranes resulted in the same permeability and permeate quality after cake layer formation. An overall efficiency of about 95% in COD removal was obtained for oily wastewater treatment by the membranes used in this study.

  12. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    PubMed

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.

  13. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor

    PubMed Central

    2012-01-01

    Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. Conclusions The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols. PMID:22475724

  14. Bioreactor design concepts

    NASA Technical Reports Server (NTRS)

    Bowie, William

    1987-01-01

    Two parallel lines of work are underway in the bioreactor laboratory. One of the efforts is devoted to the continued development and utilization of a laboratory research system. That system's design is intended to be fluid and dynamic. The sole purpose of such a device is to allow testing and development of equipment concepts and procedures. Some of the results of those processes are discussed. A second effort is designed to produce a flight-like bioreactor contained in a double middeck locker. The result of that effort has been to freeze a particular bioreactor design in order to allow fabrication of the custom parts. The system is expected to be ready for flight in early 1988. However, continued use of the laboratory system will lead to improvements in the space bioreactor. Those improvements can only be integrated after the initial flight series.

  15. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.

    PubMed

    Schmideder, Andreas; Severin, Timm Steffen; Cremer, Johannes Heinrich; Weuster-Botz, Dirk

    2015-09-20

    A pH-controlled parallel stirred-tank bioreactor system was modified for parallel continuous cultivation on a 10 mL-scale by connecting multichannel peristaltic pumps for feeding and medium removal with micro-pipes (250 μm inner diameter). Parallel chemostat processes with Escherichia coli as an example showed high reproducibility with regard to culture volume and flow rates as well as dry cell weight, dissolved oxygen concentration and pH control at steady states (n=8, coefficient of variation <5%). Reliable estimation of kinetic growth parameters of E. coli was easily achieved within one parallel experiment by preselecting ten different steady states. Scalability of milliliter-scale steady state results was demonstrated by chemostat studies with a stirred-tank bioreactor on a liter-scale. Thus, parallel and continuously operated stirred-tank bioreactors on a milliliter-scale facilitate timesaving and cost reducing steady state studies with microorganisms. The applied continuous bioreactor system overcomes the drawbacks of existing miniaturized bioreactors, like poor mass transfer and insufficient process control. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor.

    PubMed

    Yoo, R H; Kim, J H; McCarty, P L; Bae, J H

    2014-01-01

    A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.

  17. Influence of relaxation modes on membrane fouling in submerged membrane bioreactor for domestic wastewater treatment.

    PubMed

    Habib, Rasikh; Asif, Muhammad Bilal; Iftekhar, Sidra; Khan, Zahiruddin; Gurung, Khum; Srivastava, Varsha; Sillanpää, Mika

    2017-08-01

    Relaxation and backwashing have become an integral part of membrane bioreactor (MBR) operations for fouling control. This study was carried out on real municipal wastewater to evaluate the influence of different operational strategies on membrane fouling at equivalent water yield. Four relaxation modes (MBR 10+0, MBR 10+1 , MBR 10+1.5 and MBR 10+2 ) were tested to analyze membrane fouling behavior. For the optimization of relaxation modes, fouling rate in terms of trans-membrane pressure, hydraulic resistances and characteristics of fouling fractions were analyzed. It has been observed that cake layer resistance was minimum in MBR 10+1.5 but pore blockage resistance was increased in all relaxation modes. Moreover, high instantaneous flux contributed significantly to fouling rate at the initial stage of MBR operations. Relaxation modes were also efficient in removing irreversible fouling to some extent. Under all relaxation modes, COD removal efficiency ranged from 92 to 96.5%. Ammonium and TP removal were on the lower side due to the short solids and hydraulic retention time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Simulation of photobioreaction for hydrogen production in membrane bioreactor with an optical fiber

    NASA Astrophysics Data System (ADS)

    Yang, Yanxia; Li, Jing

    2018-05-01

    A generalized lattice Boltzmann (LB) model for porous media is adopted to simulate the hydrodynamics and mass transport combined with biodegradation in membrane bioreactor with a circular optical fiber. The LB model is coupled with a multi-block scheme, as well as non-equilibrium extrapolation method for boundary condition treatment. The effect of porosity and permeability (represented by Darcy number Da) of biofilm on flow and concentration fields are investigated. The performance of biodegradation is evaluated by substrate consumption efficiency. Higher porosity and permeability of biofilm facilitate mass transport of substance and enhance the metabolic activity of bacteria in biofilm, which results in the optimal biodegradation performance is obtained under the condition of Da = 0.001 and ɛ =0.3. For further increasing of these parameters, the substrate consumption efficiency decreases due to the inhibition effect of substrate and shorter hydraulic retention time. Furthermore, the LB results coincide with experimental results, demonstrating that the LB model for porous media is available to optimize the membrane bioreactor for efficient biodegradation.

  19. Fouling mechanisms of gel layer in a submerged membrane bioreactor.

    PubMed

    Hong, Huachang; Zhang, Meijia; He, Yiming; Chen, Jianrong; Lin, Hongjun

    2014-08-01

    The fouling mechanisms underlying gel layer formation and its filtration resistance in a submerged membrane bioreactor (MBR) were investigated. It was found that gel layer rather than cake layer was more easily formed when soluble microbial products content in sludge suspension was relatively high. Thermodynamic analyses showed that gel layer formation process should overcome a higher energy barrier as compared with cake layer formation process. However, when separation distance <2.3 nm, attractive interaction energy of gelling foulant-membrane combination was remarkably higher than that of sludge floc-membrane combination. The combined effects were responsible for gel layer formation. Filtration tests showed that specific filtration resistance (SFR) of gel layer was almost 100 times higher than that of cake layer. The unusually high SFR of gel layer could be ascribed to the gelling propensity and osmotic pressure mechanism. These findings shed significant light on fouling mechanisms of gel layer in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions.

    PubMed

    Molina-Muñoz, M; Poyatos, J M; Sánchez-Peinado, M; Hontoria, E; González-López, J; Rodelas, B

    2009-06-15

    A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD(5) of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the alpha-Proteobacteria, beta-Proteobacteria and gamma-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community

  1. An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor.

    PubMed

    Motta Dos Santos, Luiz Fernando; Coutte, François; Ravallec, Rozenn; Dhulster, Pascal; Tournier-Couturier, Lucie; Jacques, Philippe

    2016-10-01

    Culture medium elements were analysed by a screening DoE to identify their influence in surfactin specific production by a surfactin constitutive overproducing Bacillus subtilis strain. Statistics pointed the major enhancement caused by high glutamic acid concentrations, as well as a minor positive influence of tryptophan and glucose. Successively, a central composite design was performed in microplate bioreactors using a BioLector®, in which variations of these impressive parameters, glucose, glutamic acid and tryptophan concentrations were selected for optimization of product-biomass yield (YP/X). Results were exploited in combination with a RSM. In absolute terms, experiments attained an YP/X 3.28-fold higher than those obtained in Landy medium, a usual culture medium used for lipopeptide production by B. subtilis. Therefore, two medium compositions for enhancing biomass and surfactin specific production were proposed and tested in continuous regime in a bubbleless membrane bioreactor. An YP/X increase of 2.26-fold was observed in bioreactor scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Application of multivariate analysis and mass transfer principles for refinement of a 3-L bioreactor scale-down model--when shake flasks mimic 15,000-L bioreactors better.

    PubMed

    Ahuja, Sanjeev; Jain, Shilpa; Ram, Kripa

    2015-01-01

    Characterization of manufacturing processes is key to understanding the effects of process parameters on process performance and product quality. These studies are generally conducted using small-scale model systems. Because of the importance of the results derived from these studies, the small-scale model should be predictive of large scale. Typically, small-scale bioreactors, which are considered superior to shake flasks in simulating large-scale bioreactors, are used as the scale-down models for characterizing mammalian cell culture processes. In this article, we describe a case study where a cell culture unit operation in bioreactors using one-sided pH control and their satellites (small-scale runs conducted using the same post-inoculation cultures and nutrient feeds) in 3-L bioreactors and shake flasks indicated that shake flasks mimicked the large-scale performance better than 3-L bioreactors. We detail here how multivariate analysis was used to make the pertinent assessment and to generate the hypothesis for refining the existing 3-L scale-down model. Relevant statistical techniques such as principal component analysis, partial least square, orthogonal partial least square, and discriminant analysis were used to identify the outliers and to determine the discriminatory variables responsible for performance differences at different scales. The resulting analysis, in combination with mass transfer principles, led to the hypothesis that observed similarities between 15,000-L and shake flask runs, and differences between 15,000-L and 3-L runs, were due to pCO2 and pH values. This hypothesis was confirmed by changing the aeration strategy at 3-L scale. By reducing the initial sparge rate in 3-L bioreactor, process performance and product quality data moved closer to that of large scale. © 2015 American Institute of Chemical Engineers.

  3. The correlation between biofilm biopolymer composition and membrane fouling in submerged membrane bioreactors.

    PubMed

    Luo, Jinxue; Zhang, Jinsong; Tan, Xiaohui; McDougald, Diane; Zhuang, Guoqiang; Fane, Anthony G; Kjelleberg, Staffan; Cohen, Yehuda; Rice, Scott A

    2014-10-01

    Biofouling, the combined effect of microorganism and biopolymer accumulation, significantly reduces the process efficiency of membrane bioreactors (MBRs). Here, four biofilm components, alpha-polysaccharides, beta-polysaccharides, proteins and microorganisms, were quantified in MBRs. The biomass of each component was positively correlated with the transmembrane pressure increase in MBRs. Proteins were the most abundant biopolymer in biofilms and showed the fastest rate of increase. The spatial distribution and co-localization analysis of the biofouling components indicated at least 60% of the extracellular polysaccharide (EPS) components were associated with the microbial cells when the transmembrane pressure (TMP) entered the jump phase, suggesting that the EPS components were either secreted by the biofilm cells or that the deposition of these components facilitated biofilm formation. It is suggested that biofilm formation and the accumulation of EPS are intrinsically coupled, resulting in biofouling and loss of system performance. Therefore, strategies that control biofilm formation on membranes may result in a significant improvement of MBR performance.

  4. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse.

    PubMed

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Chan, Wen Hao; Ray, Saikat Sinha; Li, Chi-Wang; Hsu, Hung-Te

    2016-06-01

    A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams. Copyright © 2016. Published by Elsevier Ltd.

  5. A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation.

    PubMed

    Hosseinzadeh, Majid; Bidhendi, Gholamreza Nabi; Torabian, Ali; Mehrdadi, Naser; Pourabdullah, Mehdi

    2015-09-01

    This paper introduces a new hybrid electro membrane bioreactor (HEMBR) for reverse osmosis (RO) pretreatment and advanced treatment of effluent by simultaneously integrating electrical coagulation (EC) with a membrane bioreactor (MBR) and its performance was compared with conventional MBR. Experimental results and their statistical analysis showed removal efficiency for suspended solids (SS) of almost 100% for both reactors. HEMBR removal of chemical oxygen demand (COD) improved by 4% and membrane fouling was alleviated according to transmembrane pressure (TMP). The average silt density index (SDI) of HEMBR permeate samples was slightly better indicating less RO membrane fouling. Moreover, based on the SVI comparison of two reactor biomass samples, HEMBR showed better settling characteristics which improved the dewaterability and filterability of the sludge. Analysis the change of membrane surfaces and the cake layer formed over them through field emission scanning electron microscopy (FESEM) and X-ray fluorescence spectrometer (XRF) were also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.

    PubMed

    Mei, Xiaojie; Quek, Pei Jun; Wang, Zhiwei; Ng, How Yong

    2017-09-01

    In this study, a chemically enhanced backflush (CEB) cleaning method using NaOH solution was proposed for fouling mitigation in anaerobic membrane bioreactors (AnMBRs). Ex-situ cleaning tests revealed that NaOH dosages ranging from 0.05 to 1.30mmol/L had positive impacts on anaerobic biomass, while higher dosages (>1.30mmol/L) showed inhibition and/or toxic impacts. In-situ cleaning tests showed that anaerobic biomass could tolerate much higher NaOH concentrations due to the alkali consumption by anaerobic process and/or the buffering role of mixed liquor. More importantly, 10-20mmol-NaOH/L could significantly reduce membrane fouling rates (4-5.5 times over the AnMBR with deionized water backflush) and slightly improve methanogenic activities. COD removal efficiencies were over 87% and peaked at 20mmol-NaOH/L. However, extremely high NaOH concentration had adverse effects on filtration and treatment performance. Economic analysis indicated that 12mmol/L of NaOH was the cost-efficient and optimal fouling-control dosage for the CEB cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pilot study of cold-rolling wastewater treatment using single-stage anaerobic fluidized membrane bioreactor.

    PubMed

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Yi, Tse-Fu; Liu, Cheng-Pin; Lin, Tsair-Fuh; Yeh, Mao-Song

    2018-05-09

    A pilot-scale single-stage anaerobic fluidized membrane bioreactor (AFMBR) was firstly used in this study to treat cold-rolling emulsion wastewater from steel industry. It was continuously operated for 302 days with influent COD concentration of 860-1120 mg/L. Under a hydraulic retention time of 1.5 d, the average effluent COD concentration of 72 mg/L achieved corresponding 90% of COD removal. The permeate flux was varied between 1.7 and 2.9 L/m 2 /h during operation which decreased with increased biomass concentration inside AFMBR. The trans-membrane pressure (TMP) was generally around 35-40 kPa, however, it increased up to 60 kPa when volatile suspended solid increased to above 2.5 g/L. Both flux and TMP data reveal the importance of biomass control for AFMBR operation. Results from terminal restriction fragment length polymorphism (T-RFLP) show the genus Methanosaeta was dominant on GAC and it shared dominance with the genera Methanomethylovorans and Methanosarcina in suspended sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor.

    PubMed

    Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao

    2016-06-01

    Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.

  9. Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor.

    PubMed

    Yogalakshmi, K N; Joseph, Kurian

    2010-09-01

    Membrane bioreactor (MBR) is a promising technological option to meet water reuse demands. Though MBR provides effluent quality of reusable standard, its versatility to shock loads remains unexplored. The present study investigates the robustness of MBR under sodium chloride shock load (5-60 g/L) conditions. A bench scale aerobic submerged MBR (6L working volume) with polyethylene hollow fiber membrane module (pore size 0.4 microm) was operated with synthetic wastewater at steady state OLR of 3.6g COD/L/d and HRT of 8h. This resulted in 99% TSS removal and 95% COD and TKN removal. The COD removal during the salt shock load was in the range of 84-64%. The TSS removal showed maximum disturbance (88%) with a corresponding decrease in biomass MLVSS by 8% at 60 g/L shock. TKN removal was reduced due to inhibition of nitrification with increasing shock loads. It took about 4-9 days for the MBR to regain its steady state performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Luo, Yunlong; Jiang, Qi; Ngo, Huu H; Nghiem, Long D; Hai, Faisal I; Price, William E; Wang, Jie; Guo, Wenshan

    2015-09-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Membrane bioreactor for the drinking water treatment of polluted surface water supplies.

    PubMed

    Li, Xiao-yan; Chu, Hiu Ping

    2003-11-01

    A laboratory membrane bioreactor (MBR) using a submerged polyethylene hollow-fibre membrane module with a pore size of 0.4 microm and a total surface area of 0.2 m2 was used for treating a raw water supply slightly polluted by domestic sewage. The feeding influent had a total organic carbon (TOC) level of 3-5 mg/L and an ammonia nitrogen (NH(3)-N) concentration of 3-4 mg/L. The MBR ran continuously for more than 500 days, with a hydraulic retention time (HRT) as short as 1h or less. Sufficient organic degradation and complete nitrification were achieved in the MBR effluent, which normally had a TOC of less than 2 mg/L and a NH(3)-N of lower than 0.2 mg/L. The process was also highly effective for eliminating conventional water impurities, as demonstrated by decreases in turbidity from 4.50+/-1.11 to 0.08+/-0.03 NTU, in total coliforms from 10(5)/mL to less than 5/mL and in UV(254) absorbance from 0.098+/-0.019 to 0.036+/-0.007 cm(-1). With the MBR treatment, the 3-day trihalomethane formation potential (THMFP) was significantly reduced from 239.5+/-43.8 to 60.4+/-23.1 microg/L. The initial chlorine demand for disinfection decreased from 22.3+/-5.1 to 0.5+/-0. 1mg/L. The biostability of the effluent improved considerably as the assimilable organic carbon (AOC) decreased from 134.5+/-52.7 to 25.3+/-19.9 microg/L. All of these water quality parameters show the superior quality of the MBR-treated water, which was comparable to or even better than the local tap water. Molecular size distribution analysis and the hydrophobic characterisation of the MBR effluent, in comparison to the filtered liquor from the bioreactor, suggest that the MBR had an enhanced filtration mechanism. A sludge layer on the membrane surface could have functioned as an additional barrier to the passage of typical THM precursors, such as large organic molecules and hydrophobic compounds. These results indicate that the MBR with a short HRT could be developed as an effective biological water

  12. Enhancement of operating flux in a membrane bio-reactor coupled with a mechanical sieve unit.

    PubMed

    Park, Seongjun; Yeon, Kyung-Min; Moon, Seheum; Kim, Jong-Oh

    2018-01-01

    Filtration flux is one of the key factors in regulating the performance of membrane bio-reactors (MBRs) for wastewater treatment. In this study, we explore the effectiveness of a mechanical sieve unit for effective flux enhancement through retardation of the fouling effect in a modified MBR system (SiMBR). In brief, the coarse sieve unit having 100 μm and 50 μm permits small size microorganism flocs to adjust the biomass concentration from the suspended basin to the membrane basin. As a result, the reduced biofouling effect due to the lowered biomass concentration from 7800 mg/L to 2400 mg/L, enables higher flux through the membrane. Biomass rejection rate of the sieve is identified to be the crucial design parameter for the flux enhancement through the incorporation of numerical simulations and operating critical-flux measurement in a batch reactor. Then, the sieve unit is prepared for 10 L lab-scale continuous SiMBR based on the correlation between sieve pore size and biomass rejection characteristics. During continuous operation of lab-scale SiMBR, biomass concentration is maintained with a higher biomass concentration in the aerobic basin (7400 mg/L) than that in the membrane basin (2400 mg/L). In addition, the SiMBR operations are conducted using three different commercial hollow fiber membranes to compare the permeability to that of conventional MBR operations. For all cases, the modified MBR having a sieve unit clearly results in enhanced permeability. These results successfully validate that SiMBR can effectively improve flux through direct reduction of biomass concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Microbial adaptation to biodegrade toxic organic micro-pollutants in membrane bioreactor using different sludge sources.

    PubMed

    Boonnorat, Jarungwit; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

    2014-08-01

    Biodegradation of toxic organic micro-pollutants in municipal solid waste (MSW) leachate by membrane bioreactor (MBR) was investigated. The MBR systems were seeded with different sludge sources, one was from a pilot-scale MBR system treating MSW leachate and the other was from an activated sludge sewage treatment plant. The biodegradation of BPA, 2,6-DTBP, BHT, DEP, DBP and DEHP, DCP and BBzP, by sludge from both reactors were found improved with time. However, enhanced biodegradation of micro-pollutants was observed in MBR operated under long sludge age condition. Bacterial population analyses determined by PCR-DGGE revealed the development of phenol and phthalate degrading bacteria consortium in MBR sludge during its operation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of organic matter to nitrogen ratio on membrane bioreactor performance.

    PubMed

    Hao, L; Liao, B Q

    2015-01-01

    Effect of chemical oxygen demand (COD) to nitrogen (COD:N) ratio in feed on the performance of aerobic membrane bioreactor (MBR) for treating a synthetic high-strength industrial waste water containing glucose was studied for over 370 days. The widely recommended nutrients ratio (COD:N:P = 100:5:1) is not necessary for aerobic biological industrial waste water treatment. An increased COD:N ratio from 100:5 to 100:2.5 and 100:1.8 had a limited impact on COD removal efficiency and further led to a significant improvement in membrane performance, a reduced sludge yield, and improved effluent quality in terms of residual nutrients. An increased COD:N ratio will benefit the industrial waste water treatment using MBRs by reducing membrane fouling and sludge yield, saving chemical costs, and reducing secondary pollution by nutrients addition. Optimization of nutrients usage should be conducted for specific industrial waste water streams.

  15. Modelling wastewater treatment in a submerged anaerobic membrane bioreactor.

    PubMed

    Spagni, Alessandro; Ferraris, Marco; Casu, Stefania

    2015-01-01

    Mathematical modelling has been widely applied to membrane bioreactor (MBRs) processes. However, to date, very few studies have reported on the application of the anaerobic digestion model N.1 (ADM1) to anaerobic membrane processes. The aim of this study was to evaluate the applicability of the ADM1 to a submerged anaerobic MBR (SAMBR) treating simulated industrial wastewater composed of cheese whey and sucrose. This study demonstrated that the biological processes involved in SAMBRs can be modelled by using the ADM1. Moreover, the results showed that very few modifications of the parameters describing the ADM1 were required to reasonably fit the experimental data. In particular, adaptation to the specific conditions of the coefficients describing the wastewater characterisation and the reduction of the hydrolysis rate of particulate carbohydrate (khyd,ch) from 0.25 d(-1) (as suggested by the ADM1 for high-rate mesophilic reactors) to 0.13 d(-1) were required to fit the experimental data.

  16. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    PubMed

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (<1 kDa) and lower percentage of large molecular size (>100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Alleviation of membrane fouling in a submerged membrane bioreactor with electrochemical oxidation mediated by in-situ free chlorine generation.

    PubMed

    Chung, Chong Min; Tobino, Tomohiro; Cho, Kangwoo; Yamamoto, Kazuo

    2016-06-01

    The control of membrane fouling is still the biggest challenge that membrane bioreactor (MBR) for wastewater treatment faces with. In this report, we evince that an in-situ electrochemical free chlorine generation is effective for membrane fouling mitigation. An electrochemical oxidation (EO) apparatus with perforated Ti/IrO2 anodes and Ti/Pt cathodes was integrated into a conventional MBR with microfiltration module (EO-MBR). The membrane fouling characteristics of EO-MBR fed with synthetic wastewater were monitored for about 2 months in comparison to control MBRs. In the EO-MBR at a direct current density of 0.4 mA/cm(2), the frequency of membrane fouling when the trans-membrane pressure (TMP) reached 30 kPa was effectively reduced by 40% under a physical membrane cleaning regime. The evolution patterns of TMP together with hydraulic resistance analysis based on resistance-in-series model indicated that the electrochemically generated active chlorine alleviated the physically irremovable membrane fouling. Further analysis on extracellular polymeric substances (EPS) of sludge cake layer (SCL) revealed significant reductions of protein contents in soluble EPS and fluorescence emission intensities from humic acids and other fluorophores in bound EPS, which in-turn would decrease the hydrophobic accumulation of organic foulants on membrane pores. The chlorine dosage from the EO apparatus was estimated to be 4.7 mg Cl2/g MLVSS/day and the overall physicochemical properties (bio-solids concentration, floc diameter, zeta-potential) as well as the microbial activity in terms of specific oxygen utilization rate and removal efficiency of dissolved organic carbon (>97%) were not affected significantly. A T-RFLP (terminal restriction fragment length polymorphism) analysis suggested noticeable shifts in microbial community both in mixed liquor and sludge cake layer. Consequently, our electrochemical chlorination would be an efficient fouling control strategy in membrane

  18. Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR).

    PubMed

    Sahar, Eyal; Messalem, Rami; Cikurel, Haim; Aharoni, Avi; Brenner, Asher; Godehardt, Manuel; Jekel, Martin; Ernst, Mathias

    2011-10-15

    The fates of several macrolide, sulphonamide, and trimethoprim antibiotics contained in the raw sewage of the Tel-Aviv wastewater treatment plant (WWTP) were investigated after the sewage was treated using either a full-scale conventional activated sludge (CAS) system coupled with a subsequent ultrafiltration (UF) step or a pilot membrane bioreactor (MBR) system. Antibiotics removal in the MBR system, once it achieved stable operation, was 15-42% higher than that of the CAS system. This advantage was reduced to a maximum of 20% when a UF was added to the CAS. It was hypothesized that the contribution of membrane separation (in both systems) to antibiotics removal was due either to sorption to biomass (rather than improvement in biodegradation) or to enmeshment in the membrane biofilm (since UF membrane pores are significantly larger than the contaminant molecules). Batch experiments with MBR biomass showed a markedly high potential for sorption of the tested antibiotics onto the biomass. Moreover, methanol extraction of MBR biomass released significant amounts of sorbed antibiotics. This finding implies that more attention must be devoted to the management of excess sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The potential of hybrid forward osmosis membrane bioreactor (FOMBR) processes in achieving high throughput treatment of municipal wastewater with enhanced phosphorus recovery.

    PubMed

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-15

    Extensive research in recent years has explored numerous new features in the forward osmosis membrane bioreactor (FOMBR) process. However, there is an aspect, which is revolutionary but not yet been investigated. In FOMBR, FO membrane shows high rejection for a wide range of soluble contaminants. As a result, hydraulic retention time (HRT) does not correctly reflect the nominal retention of these dissolved contaminants in the bioreactor. This decoupling of contaminants retention time (CRT, i.e. the nominal retention of the dissolved contaminants) from HRT endows FOMBR a potential in significantly reducing the HRT for wastewater treatment. In this work, we report our results in this unexplored treatment potential. Using real municipal wastewater as feed, both a hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) and a newly developed hybrid biofilm-forward osmosis membrane bioreactor (BF-FOMBR) achieved high removal of organic matter and nitrogen under HRT of down to 2.0 h, with significantly enhanced phosphorus recovery capacities. In the BF-FOMBR, the used of fixed bed biofilm not only obviated the need of additional solid/liquid separation (e.g. MF) to extract the side-stream for salt accumulation control and phosphorus recovery, but effectively quarantined the biomass from the FO membrane. The absence of MF in the side-stream further allowed suspended growth to be continuously removed from the system, which produced a selection pressure for the predominance of attached growth. As a result, a significant reduction in FO membrane fouling (by 24.7-54.5%) was achieved in the BF-FOMBR due to substantially reduced bacteria deposition and colonization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor.

    PubMed

    Sahar, E; Ernst, M; Godehardt, M; Hein, A; Herr, J; Kazner, C; Melin, T; Cikurel, H; Aharoni, A; Messalem, R; Brenner, A; Jekel, M

    2011-01-01

    The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8-10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin - at an MLSS of 6-9 g/L - showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.

  1. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    PubMed

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane.

    PubMed

    Vasileva, Nastya; Ivanov, Yavor; Damyanova, Stanka; Kostova, Iliana; Godjevargova, Tzonka

    2016-01-01

    The β-galactosidase was covalently immobilized onto a modified polypropylene membrane, using glutaraldehyde. The optimal conditions for hydrolysis of lactose (4.7%) by immobilized β-galactosidase in a batch process were determined 13.6 U enzyme activity, 40°C, pH 6.8 and 10h. The obtained degree of hydrolysis was compared with results received by a free enzyme. It was found, that the lactose hydrolysis by an immobilized enzyme was 1.6 times more effective than the lactose hydrolysis by a free enzyme. It was determined that the stability of the immobilized enzyme was 2 times higher in comparison with the stability of free enzyme. The obtained immobilized system β-galactosidase/polypropylene membrane was applied to produce glucose-galactose syrup from waste whey. The whey characteristics and the different preliminary treatments of the whey were investigated. Then the whey lactose hydrolysis in a bioreactor by an immobilized enzyme on a spirally wound membrane was performed. The optimal membrane surface and the optimal flow rate of the whey through the membrane module were determined, respectively 100 cm(2) and 1.0 mL min(-1). After 10h, the degree of lactose hydrolysis was increased to 91%. The operation stability was studied. After 20th cycle the yield of bioreactor was 69.7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A comparison of the physical, chemical, and biological properties of sludges from a complete-mix activated sludge reactor and a submerged membrane bioreactor.

    PubMed

    Merlo, Rion P; Trussell, R Shane; Hermanowicz, Slawomir W; Jenkins, David

    2007-03-01

    The properties of sludges from a pilot-scale submerged membrane bioreactor (SMBR) and two bench-scale complete-mix, activated sludge (CMAS) reactors treating municipal primary effluent were determined. Compared with the CMAS sludges, the SMBR sludge contained a higher amount of soluble microbial products (SMP) and colloidal material attributed to the use of a membrane for solid-liquid separation; a higher amount nocardioform bacteria, resulting from efficient foam trapping; and a lower amount of extracellular polymeric substances (EPS), possibly because there was no selective pressure for the sludge to settle. High aeration rates in both the CMAS and SMBR reactors produced sludges with higher numbers of smaller particles. Normalized capillary suction time values for the SMBR sludge were lower than for the CMAS sludges, possibly because of its lower EPS content.

  4. Changes in the physical properties of the dynamic layer and its correlation with permeate quality in a self-forming dynamic membrane bioreactor.

    PubMed

    Guan, Dao; Dai, Ji; Watanabe, Yoshimasa; Chen, Guanghao

    2018-09-01

    The self-forming dynamic membrane bioreactor (SFDMBR) is a biological wastewater treatment technology based on the conventional membrane bioreactor (MBR) with membrane material modification to a large pore size (30-100 μm). This modification requires a dynamic layer formed by activated sludge to provide effective filtration function for high-quality permeate production. The properties of the dynamic layer are therefore important for permeate quality in SFDMBRs. The interaction between the structure of the dynamic layer and the performance of SFDMBRs is little known but understandably complex. To elucidate the interaction, a lab-scale SFDMBR system coupled with a nylon woven mesh as the supporting material was operated. After development of a mature dynamic layer, excellent solid-liquid separation was achieved, as evidenced by a low permeate turbidity of less than 2 NTU. The permeate turbidity stayed below this level for nearly 80 days. In the fouling phase, the dynamic layer was compressed with an increase in the trans-membrane pressure and the quality of the permeate kept deteriorating until the turbidity exceeded 10 NTU. The investigation revealed that the majority of permeate particles were dissociated from the dynamic layer on the back surface of the supporting material, which is caused by the compression, breakdown, and dissociation of the dynamic layer. This phenomenon was observed directly in experiment instead of model prediction or conjecture for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Treatment of domestic wastewater with an anaerobic ceramic membrane bioreactor (AnCMBR).

    PubMed

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-01-01

    In this study, a ceramic membrane with a pore size of 80 nm was incorporated into an anaerobic membrane bioreactor for excellent stability and integrity. Chemical oxygen demand (COD) removal efficiencies by biodegradation reached 78.6 ± 6.0% with mixed liquor suspended solids (MLSS) of 12.8 ± 1.2 g/L. Even though the total methane generated was 0.3 ± 0.03 L/g CODutilized, around 67.4% of it dissolved in permeate and was lost beyond collection. As a result, dissolved methane was 2.7 times of the theoretical saturating concentration calculated from Henry's law. When transmembrane pressure (TMP) of the ceramic membrane reached 30 kPa after 25.3 d, 95.2% of the total resistance was attributed to the cake layer, which made it the major contributor to membrane fouling. Compared to the mixed liquor, cake layer was rich in colloids and soluble products that could bind the solids to form a dense cake layer. The Methanosarcinaceae family preferred to attach to the ceramic membranes.

  6. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.

    PubMed

    Wang, Xinhua; Zhao, Yanxiao; Yuan, Bo; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-02-01

    There are two types of popular forward osmosis (FO) membrane materials applied for researches on FO process, cellulose triacetate (CTA) and thin film composite (TFC) polyamide. However, performance and fouling mechanisms of commercial TFC FO membrane in osmotic membrane bioreactors (OMBRs) are still unknown. In current study, its biofouling behaviors in OMBRs were investigated and further compared to the CTA FO membrane. The results indicated that β-D-glucopyranose polysaccharides and microorganisms accounted for approximately 77% of total biovolume on the CTA FO membrane while β-D-glucopyranose polysaccharides (biovolume ratio of 81.1%) were the only dominant biofoulants on the TFC FO membrane. The analyses on the biofouling structure implied that a tighter biofouling layer with a larger biovolume was formed on the CTA FO membrane. The differences in biofouling behaviors including biofoulants composition and biofouling structure between CTA and TFC FO membranes were attributed to different membrane surface properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation.

    PubMed

    Weiss, Stefan; Jakobs, Jutta; Reemtsma, Thorsten

    2006-12-01

    A set of three benzotriazole corrosion inhibitors was analyzed by liquid chromatography-mass spectrometry in wastewaters and in a partially closed water cycle in the Berlin region. Benzotriazole (BTri) and two isomers of tolyltriazole (TTri) were determined in untreated municipal wastewater with mean dissolved concentrations of 12 microg/L (BTri), 2.1 microg/L (4-TTri), and 1.3 microg/L (5-TTri). Removal in conventional activated sludge (CAS) municipal wastewater treatment ranged from 37% for BTri to insignificant removal for 4-TTri. In laboratory batch tests 5-TTri was mineralized completely and 4-TTri was mineralized to only 25%. This different behavior of the three benzotriazoles was confirmed by following the triazoles through a partially closed water cycle, into bank filtrate used for drinking water production, where BTri (0.1 microg/L) and 4-TTri (0.03 microg/ L) but no 5-TTri were detected after a travel time of several months. The environmental half-life appears to increase from 5-TTri over BTri to 4-TTri. Treatment of municipal wastewater by a lab-scale membrane bioreactor (MBR) instead of CAS improved the removal of BTri and 5-TTri but could not avoid their discharge. Almost complete removal was achieved by ozonation of the treatment plant effluent with 1 mg O3/mg DOC.

  8. Clofibric acid and gemfibrozil removal in membrane bioreactors.

    PubMed

    Gutierrez-Macias, Tania; Nacheva, Petia Mijaylova

    2015-01-01

    The removal of two blood lipid regulators, clofibric acid (CLA) and gemfibrozil (GFZ), was evaluated using two identical aerobic membrane bioreactors with 6.5 L effective volume each. Polysulfone ultrafiltration hollow fiber membranes were submerged in the reactors. Different operating conditions were tested varying the organic load (F/M), hydraulic residence time (HRT), biomass concentration measured as total suspended solids in the mixed liquor (MLTSS) and the sludge retention time (SRT). Complete GFZ removal was obtained with F/M of 0.21-0.48 kg COD kgTSS⁻¹ d⁻¹, HRT of 4-10 hours, SRT of 10-32 d and MLTSS of 6-10 g L⁻¹. The GFZ removal can be attributed to biodegradation and there was no accumulation of the compound in the biomass. The CLA removals improved with the SRT and HRT increase and F/M decrease. Average removals of 78-79% were obtained with SRT 16-32 d, F/M of 0.21-0.34 kgCOD kgTSS⁻¹ d⁻¹, HRT of 7-10 hours and MLTSS of 6-10 g L⁻¹. Biodegradation was found to be the main removal pathway.

  9. Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor.

    PubMed

    Zamalloa, Carlos; De Vrieze, Jo; Boon, Nico; Verstraete, Willy

    2012-01-01

    The biomass of industrially grown Phaeodactylum tricornutum was subjected in a novel way to bio-methanation at 33°C, i.e., in an anaerobic membrane bioreactor (AnMBR) at a hydraulic retention time of 2.5 days, at solid retention times of 20 to 10 days and at loading rates in the range of 2.6-5.9 g biomass-COD L(-1) day(-1) with membrane fluxes ranging from 1 to 0.8 L m(-2) h(-1). The total COD recovered as biogas was in the order of 52%. The input suspension was converted to a clear effluent rich in total ammonium nitrogen (546 mg TAN L(-1)) and phosphate (141 mg PO(4)-P L(-1)) usable as liquid fertilizer. The microbial community richness, dynamics, and organization in the reactor were interpreted using the microbial resource management approach. The AnMBR communities were found to be moderate in species richness and low in dynamics and community organization relative to UASB and conventional CSTR sludges. Quantitative polymerase chain reaction analysis revealed that Methanosaeta sp. was the dominant acetoclastic methanogen species followed by Methanosarcina sp. This work demonstrated that the use of AnMBR for the digestion of algal biomass is possible. The fact that some 50% of the organic matter is not liquefied means that the algal particulates in the digestate constitute a considerable fraction which should be valorized properly, for instance as slow release organic fertilizer. Overall, 1 kg of algae dry matter (DM) could be valorized in the form of biogas ( euro 2.07), N and P in the effluent (euro 0.02) and N and P in the digestate (euro 0.04), thus totaling about euro 2.13 per kilogram algae DM.

  10. Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant▿

    PubMed Central

    Sima, Laura C.; Schaeffer, Julien; Le Saux, Jean-Claude; Parnaudeau, Sylvain; Elimelech, Menachem; Le Guyader, Françoise S.

    2011-01-01

    To evaluate membrane bioreactor wastewater treatment virus removal, a study was conducted in southwest France. Samples collected from plant influent, an aeration basin, membrane effluent, solid sludge, and effluent biweekly from October 2009 to June 2010 were analyzed for calicivirus (norovirus and sapovirus) by real-time reverse transcription-PCR (RT-PCR) using extraction controls to perform quantification. Adenovirus and Escherichia coli also were analyzed to compare removal efficiencies. In the influent, sapovirus was always present, while the norovirus concentration varied temporally, with the highest concentration being detected from February to May. All three human norovirus genogroups (GI, GII, and GIV) were detected in effluent, but GIV was never detected in effluent; GI and GII were detected in 50% of the samples but at low concentrations. In the effluent, sapovirus was identified only once. An adenovirus titer showing temporal variation in influent samples was identified only twice in effluent. E. coli was always below the limit of detection in the effluent. Overall, the removal of calicivirus varied from 3.3 to greater than 6.8 log units, with no difference between the two main genogroups. Our results also demonstrated that the viruses are blocked by the membrane in the treatment plant and are removed from the plant as solid sludge. PMID:21666029

  11. Comparison between mixed liquors of two side-stream membrane bioreactors treating wastewaters from waste management plants with high and low solids anaerobic digestion.

    PubMed

    Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Fernández-Giménez, E; Álvarez-Requena, C; Muñagorri-Mañueco, F; Ortiz-Villalobos, G

    2016-09-01

    In the last years, biological treatment plants for the previously separated organic fraction from municipal solid wastes (OFMSW) have gained importance. In these processes a liquid effluent (liquid fraction from the digestate and leachate from composting piles), which has to be treated previously to its discharge, is produced. In this paper, the characteristics of the mixed liquor from two full-scale membrane bioreactors treating the effluents of two OFMSW treatment plants have been evaluated in view to study their influence on membrane fouling in terms of filterability. For that, the mixed liquor samples have been ultrafiltrated in an UF laboratory plant. Besides, the effect of the influent characteristics to MBRs and the values of the chemical and physical parameters of the mixed liquors on the filterability have been studied. Results showed that the filterability of the mixed liquor was strongly influenced by the soluble microbial products in the mixed liquors and the influent characteristics to MBR. Permeate flux of MBR mixed liquor treating the most polluted wastewater was considerable the lowest (around 20 L/m(2) h for some samples), what was explained by viscosity and soluble microbial products concentration higher than those measured in other MBR mixed liquor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge.

    PubMed

    Pathak, Nirenkumar; Chekli, Laura; Wang, Jin; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Hokyong

    2017-09-01

    The present study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor system for wastewater treatment employing baffles in the reactor. Thus, this reactor design enables both aerobic and anoxic processes in an attempt to reduce the process footprint and energy costs associated with continuous aeration. The process performance was evaluated in terms of water flux, salinity build up in the bioreactor, organic and nutrient removal and microbial activity using synthetic reverse osmosis (RO) brine as draw solution (DS). The incorporation of MF membrane was effective in maintaining a reasonable salinity level (612-1434mg/L) in the reactor which resulted in a much lower flux decline (i.e. 11.48-6.98LMH) as compared to previous studies. The stable operation of the osmotic membrane bioreactor-forward osmosis (OMBR-FO) process resulted in an effective removal of both organic matter (97.84%) and nutrient (phosphate 87.36% and total nitrogen 94.28%), respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Seasonal variations in fate and removal of trace organic chemical contaminants while operating a full-scale membrane bioreactor.

    PubMed

    Trinh, Trang; van den Akker, Ben; Coleman, Heather M; Stuetz, Richard M; Drewes, Jörg E; Le-Clech, Pierre; Khan, Stuart J

    2016-04-15

    Trace organic chemical (TrOC) contaminants are of concern for finished water from water recycling schemes because of their potential adverse environmental and public health effects. Understanding the impacts of seasonal variations on fate and removal of TrOCs is important for proper operation, risk assessment and management of treatment systems for water recycling such as membrane bioreactors (MBRs). Accordingly, this study investigated the fate and removal of a wide range of TrOCs through a full-scale MBR plant during summer and winter seasons. TrOCs included 12 steroidal hormones, 3 xeno-estrogens, 2 pesticides and 23 pharmaceuticals and personal care products. Seasonal differences in the mechanisms responsible for removing some of the TrOCs were evident. In particular the contribution of biotransformation and biomass adsorption to the overall removal of estrone, bisphenol A, 17β-estradiol and triclosan were consistently different between the two seasons. Substantially higher percentage removal via biotransformation was observed during the summer sampling period, which compensated for a reduction in removal attributed to biomass adsorption. The opposite was observed during winter, where the contribution of biotransformation to the overall removal of these TrOCs had decreased, which was offset by an improvement in biomass adsorption. The exact mechanisms responsible for this shift are unknown, however are likely to be temperature related as warmer temperatures can lower sorption efficiency, yet enhance biotransformation of these TrOCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Plastic biofilm carrier after corn cobs reduces nitrate loading in laboratory denitrifying bioreactors

    USDA-ARS?s Scientific Manuscript database

    Nitrate-nitrogen removal rates can be increased substantially in denitrifying bioreactors with a corn cob bed medium compared to woodchips; however, additional organic carbon (C) is released into the effluent. This laboratory column experiment was conducted to test the performance of a post-bed cha...

  15. Characterizing fluorescent dissolved organic matter in a membrane bioreactor via excitation-emission matrix combined with parallel factor analysis.

    PubMed

    Maqbool, Tahir; Quang, Viet Ly; Cho, Jinwoo; Hur, Jin

    2016-06-01

    In this study, we successfully tracked the dynamic changes in different constitutes of bound extracellular polymeric substances (bEPS), soluble microbial products (SMP), and permeate during the operation of bench scale membrane bioreactors (MBRs) via fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). Three fluorescent groups were identified, including two protein-like (tryptophan-like C1 and tyrosine-like C2) and one microbial humic-like components (C3). In bEPS, protein-like components were consistently more dominant than C3 during the MBR operation, while their relative abundance in SMP depended on aeration intensities. C1 of bEPS exhibited a linear correlation (R(2)=0.738; p<0.01) with bEPS amounts in sludge, and C2 was closely related to the stability of sludge. The protein-like components were more greatly responsible for membrane fouling. Our study suggests that EEM-PARAFAC can be a promising monitoring tool to provide further insight into process evaluation and membrane fouling during MBR operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors

    PubMed Central

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-01-01

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs. PMID:25784160

  17. Compartmental Hollow Fiber Capillary Membrane–Based Bioreactor Technology for In Vitro Studies on Red Blood Cell Lineage Direction of Hematopoietic Stem Cells

    PubMed Central

    Housler, Greggory J.; Miki, Toshio; Schmelzer, Eva; Pekor, Christopher; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Abbot, Stewart; Zeilinger, Katrin

    2012-01-01

    Continuous production of red blood cells (RBCs) in an automated closed culture system using hematopoietic stem cell (HSC) progenitor cell populations is of interest for clinical application because of the high demand for blood transfusions. Previously, we introduced a four-compartment bioreactor that consisted of two bundles of hollow fiber microfiltration membranes for transport of culture medium (forming two medium compartments), interwoven with one bundle of hollow fiber membranes for transport of oxygen (O2), carbon dioxide (CO2), and other gases (forming one gas compartment). Small-scale prototypes were developed of the three-dimensional (3D) perfusion cell culture systems, which enable convection-based mass transfer and integral oxygenation in the cell compartment. CD34+ HSC were isolated from human cord blood units using a magnetic separation procedure. Cells were inoculated into 2- or 8-mL scaled-down versions of the previously designed 800-mL cell compartment devices and perfused with erythrocyte proliferation and differentiation medium. First, using the small-scale 2-mL analytical scale bioreactor, with an initial seeding density of 800,000 cells/mL, we demonstrated approximately 100-fold cell expansion and differentiation after 7 days of culture. An 8-mL laboratory-scale bioreactor was then used to show pseudocontinuous production by intermediately harvesting cells. Subsequently, we were able to use a model to demonstrate semicontinuous production with up to 14,288-fold expansion using seeding densities of 800,000 cells/mL. The down-scaled culture technology allows for expansion of CD34+ cells and stimulating these progenitors towards RBC lineage, expressing approximately 40% CD235+ and enucleation. The 3D perfusion technology provides an innovative tool for studies on RBC production, which is scalable. PMID:21933020

  18. Evaluation of fly ash pellets for phosphorus removal in a laboratory scale denitrifying bioreactor.

    PubMed

    Li, Shiyang; Cooke, Richard A; Huang, Xiangfeng; Christianson, Laura; Bhattarai, Rabin

    2018-02-01

    Nitrate and orthophosphate from agricultural activities contribute significantly to nutrient loading in surface water bodies around the world. This study evaluated the efficacy of woodchips and fly ash pellets in tandem to remove nitrate and orthophosphate from simulated agricultural runoff in flow-through tests. The fly ash pellets had previously been developed specifically for orthophosphate removal for this type of application, and the sorption bench testing showed a good promise for flow-through testing. The lab-scale horizontal-flow bioreactor used in this study consisted of an upstream column filled with woodchips followed by a downstream column filled with fly ash pellets (3 and 1 m lengths, respectively; both 0.15 m diameter). Using influent concentrations of 12 mg/L nitrate and 5 mg/L orthophosphate, the woodchip bioreactor section was able to remove 49-85% of the nitrate concentration at three hydraulic retention times ranging from 0.67 to 4.0 h. The nitrate removal rate for woodchips ranged from 40 to 49 g N/m 3 /d. Higher hydraulic retention times (i.e., smaller flow rates) corresponded with greater nitrate load reduction. The fly ash pellets showed relatively stable removal efficiency of 68-75% across all retention times. Total orthophosphate adsorption by the pellets was 0.059-0.114 mg P/g which was far less than the saturated capacity (1.69 mg/g; based on previous work). The fly ash pellets also removed some nitrate and the woodchips also removed some orthophosphate, but these reductions were not significant. Overall, woodchip denitrification followed by fly ash pellet P-sorption can be an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.

    PubMed

    Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2015-01-01

    High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.

  20. Monitoring the bacterial community dynamics in a petroleum refinery wastewater membrane bioreactor fed with a high phenolic load.

    PubMed

    Silva, Cynthia C; Viero, Aline F; Dias, Ana Carolina F; Andreote, Fernando D; Jesus, Ederson C; De Paula, Sergio O; Torres, Ana Paula R; Santiago, Vania M J; Oliveira, Valeria M

    2010-01-01

    The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

  1. Multimembrane Bioreactor

    NASA Technical Reports Server (NTRS)

    Cho, Toohyon; Shuler, Michael L.

    1989-01-01

    Set of hydrophilic and hydrophobic membranes in bioreactor allows product of reaction to be separated, while nutrients fed to reacting cells and byproducts removed from them. Separation process requires no externally supplied energy; free energy of reaction sufficient. Membranes greatly increase productivity of metabolizing cells by continuously removing product and byproducts, which might otherwise inhibit reaction, and by continuously adding oxygen and organic nutrients.

  2. Day/night temperature differences (DNTD) trigger changes in nutrient removal and functional bacteria in membrane bioreactors.

    PubMed

    Zhang, Shaoqing; Sheng, Binbin; Lin, Wenting; Meng, Fangang

    2018-09-15

    Temperature is a well-known environmental stress that influences both microbial metabolism and community structure in the biological wastewater treatment systems. In this study, responses of biological performance and sludge microbiota to the long-term day/night temperature differences (DNTD) were investigated in membrane bioreactors (MBRs). The results showed that the functional bacteria could sustained their ecological functions at low DNTD (20/30 °C), resulting in relatively stable performance with respect to nutrient removal. However, when the activated sludge was subjected to a high DNTD (17/33 °C), the effluent concentrations of COD, TN and TP were significantly higher in MBR-B than that in MBR-A. In addition, more severe membrane fouling occurred under the perturbation of high DNTD as revealed by the transmembrane pressure (TMP) profile, which was mainly attributed to the accumulation of extracellular polymeric substances (EPS). The results of 16S rRNA gene sequencing showed that DNTD showed negligible effect on the bacterial community structures. Nonetheless, the functional bacteria responded differently to DNTD, which were in accordance with the bioreactor performances. Specifically, Nitrospina (NOB) and Tetrasphaera (PAOs) appeared to be sensitive to both low and high DNTD. In contrast, a low DNTD showed marginal effects on the denitrifiers, while a high DNTD significantly decreased their abundances. More strikingly, filamentous bulking bacteria were found to be well-adapted to DNTD, indicating their tolerance to the daily temperature fluctuation. This study will advance our knowledge regarding the response of microbial ecology of activated sludge to daily temperature variations in full-scale MBRs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Removal of trace organic chemical contaminants by a membrane bioreactor.

    PubMed

    Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J

    2012-01-01

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.

  4. Performance and fouling characteristics of a submerged anaerobic membrane bioreactor for kraft evaporator condensate treatment.

    PubMed

    Xie, K; Lin, H J; Mahendran, B; Bagley, D M; Leung, K T; Liss, S N; Liao, B Q

    2010-04-14

    Submerged anaerobic membrane bioreactor (SAnMBR) technology was studied for kraft evaporator condensate treatment at 37 +/- 1 degrees C over a period of 9 months. Under tested organic loading rates of 1-24 kg COD/m3/day, a chemical oxygen demand (COD) removal efficiency of 93-99% was achieved with a methane production rate of 0.35 +/- 0.05 L methane/g COD removed and a methane content of 80-90% in produced biogas. Bubbling of recycled biogas was effective for in-situ membrane cleaning, depending on the biogas sparging rate used. The membrane critical flux increased and the membrane fouling rate decreased with an increase in the biogas sparging rate. The scanning electron microscopy images showed membrane pore clogging was not significant and sludge cake formation on the membrane surface was the dominant mechanism of membrane fouling. The results suggest that the SAnMBR is a promising technology for energy recovery from kraft evaporator condensate.

  5. Sustainable operation of submerged Anammox membrane bioreactor with recycling biogas sparging for alleviating membrane fouling.

    PubMed

    Li, Ziyin; Xu, Xindi; Xu, Xiaochen; Yang, FengLin; Zhang, ShuShen

    2015-12-01

    A submerged anaerobic ammonium oxidizing (Anammox) membrane bioreactor with recycling biogas sparging for alleviating membrane fouling has been successfully operated for 100d. Based on the batch tests, a recycling biogas sparging rate at 0.2m(3)h(-1) was fixed as an ultimate value for the sustainable operation. The mixed liquor volatile suspended solid (VSS) of the inoculum for the long operation was around 3000mgL(-1). With recycling biogas sparging rate increasing stepwise from 0 to 0.2m(3)h(-1), the reactor reached an influent total nitrogen (TN) up to 1.7gL(-1), a stable TN removal efficiency of 83% and a maximum specific Anammox activity (SAA) of 0.56kg TNkg(-1) VSSd(-1). With recycling biogas sparging rate at 0.2 m(3) h(-1) (corresponding to an aeration intensity of 118m(3)m(-2)h(-1)), the membrane operation circle could prolong by around 20 times compared to that without gas sparging. Furthermore, mechanism of membrane fouling was proposed. And with recycling biogas sparging, the VSS and EPS content increasing rate in cake layer were far less than the ones without biogas sparging. The TN removal performance and sustainable membrane operation of this system showed the appealing potential of the submerged Anammox MBR with recycling biogas sparging in treating high-strength nitrogen-containing wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Fouling potential evaluation of soluble microbial products (SMP) with different membrane surfaces in a hybrid membrane bioreactor using worm reactor for sludge reduction.

    PubMed

    Li, Zhipeng; Tian, Yu; Ding, Yi; Chen, Lin; Wang, Haoyu

    2013-07-01

    The fouling characteristics of soluble microbial products (SMP) in the membrane bioreactor coupled with Static Sequencing Batch Worm Reactor (SSBWR-MBR) were tested with different types of membranes. It was noted that the flux decrements of S-SMP (SMP in SSBWR-MBR) with cellulose acetate (CA), polyvinylidene fluoride (PVDF) and polyether sulfones (PES) membranes were respectively 6.7%, 8.5% and 9.5% lower compared to those of C-SMP (SMP in Control-MBR) with corresponding membranes. However, for both the filtration of the C-SMP and S-SMP, the CA membrane exhibited the fastest diminishing rate of flux among the three types of membranes. The surface morphology analysis showed that the CA membrane exhibited more but smaller protuberances compared to the PVDF and PES. The second minimums surrounding each protruding asperity on CA membrane were more than those on the PVDF and PES membranes, enhancing the attachment of SMP onto the membrane surface. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A novel approach for quantitative evaluation of the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor.

    PubMed

    Lin, Hongjun; Zhang, Meijia; Mei, Rongwu; Chen, Jianrong; Hong, Huachang

    2014-11-01

    This study proposed a novel approach for quantitative evaluation of the physicochemical interactions between a particle and rough surface. The approach adopts the composite Simpson's rule to numerically calculate the double integrals in the surface element integration of these physicochemical interactions. The calculation could be achieved by a MATLAB program based on this approach. This approach was then applied to assess the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor (MBR). The results showed that, as compared with smooth membrane surface, rough membrane surface had a much lower strength of interactions with sludge foulants. Meanwhile, membrane surface morphology significantly affected the strength and properties of the interactions. This study showed that the newly developed approach was feasible, and could serve as a primary tool for investigating membrane fouling in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A specific pilot-scale membrane hybrid treatment system for municipal wastewater treatment.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Kim, Sa Dong; Yoon, Yong Soo

    2014-10-01

    A specifically designed pilot-scale hybrid wastewater treatment system integrating an innovative equalizing reactor (EQ), rotating hanging media bioreactor (RHMBR) and submerged flat sheet membrane bioreactor (SMBR) was evaluated for its effectiveness in practical, long-term, real-world applications. The pilot system was operated at a constant flux, but with different internal recycle flow rates (Q) over a long-term operating of 475 days. At 4 Q internal recycle flow rate, BOD5, CODCr, NH4(+)-N, T-N, T-P and TSS was highly removed with efficiencies up to 99.88 ± 0.05%, 95.01 ± 1.62%, 100%, 90.42 ± 2.43%, 73.44 ± 6.03%, and 99.93 ± 0.28%, respectively. Furthermore, the effluent quality was also superior in terms of turbidity (<1 NTU), color (<15 TCU) and taste (inoffensive). The results indicated that with providing only chemically cleaned-in-place (CIP) during the entire period of operation, the membrane could continuously maintain a constant permeate flux of 22.77 ± 2.19 L/m(2)h. In addition, the power consumption was also found to be reasonably low (0.92-1.62 k Wh/m(3)). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Hollow microcarriers for large-scale expansion of anchorage-dependent cells in a stirred bioreactor.

    PubMed

    YekrangSafakar, Ashkan; Acun, Aylin; Choi, Jin-Woo; Song, Edward; Zorlutuna, Pinar; Park, Kidong

    2018-03-26

    With recent advances in biotechnology, mammalian cells are used in biopharmaceutical industries to produce valuable protein therapeutics and investigated as effective therapeutic agents to permanently degenerative diseases in cell based therapy. In these exciting and actively expanding fields, a reliable, efficient, and affordable platform to culture mammalian cells on a large scale is one of the most vital necessities. To produce and maintain a very large population of anchorage-dependent cells, a microcarrier-based stirred tank bioreactor is commonly used. In this approach, the cells are exposed to harmful hydrodynamic shear stress in the bioreactor and the mass transfer rates of nutrients and gases in the bioreactor are often kept below an optimal level to prevent cellular damages from the shear stress. In this paper, a hollow microcarrier (HMC) is presented as a novel solution to protect cells from shear stress in stirred bioreactors, while ensuring sufficient and uniform mass transfer rate of gases and nutrients. HMC is a hollow microsphere and cells are cultured on its inner surface to be protected, while openings on the HMC provide sufficient exchange of media inside the HMC. As a proof of concept, we demonstrated the expansion of fibroblasts, NIH/3T3 and the expansion and cardiac differentiation of human induced pluripotent stem cells, along with detailed numerical analysis. We believe that the developed HMC can be a practical solution to enable large-scale expansion of shear-sensitive anchorage-dependent cells in an industrial scale with stirred bioreactors. © 2018 Wiley Periodicals, Inc.

  10. Membrane bioreactor treatment of a simulated metalworking fluid wastewater containing ethylenediaminetetraacetic acid and dicyclohexylamine.

    PubMed

    Anderson, James E; Lofton, Tiffany V; Kim, Byung R; Mueller, Sherry A

    2009-04-01

    Membrane bioreactors (MBRs) have been installed at automotive plants to treat metalworking fluid (MWF) wastewaters, which are known to contain toxic and/or recalcitrant organic compounds. A laboratory study was conducted to evaluate treatment of a simulated wastewater prepared from a semisynthetic MWF, which contains two such compounds, dicyclohexylamine (DCHA) and ethylenediaminetetraacetic acid (EDTA). Primary findings were as follows: During stable operating periods, almost all chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and EDTA were removed (by > 96%). During somewhat unstable periods, COD removal was still extremely robust, but removal of EDTA and TKN were sensitive to prolonged episodes of low dissolved oxygen. Nitrogen mass balance suggested 30 to 40% TKN removal by assimilation and 60 to 70% by nitrification (including up to 34% TKN removal via subsequent denitrification). Dicyclohexylamine appeared to be readily biodegraded. Maximum DCHA and EDTA degradation rates between pH 7 and 8 were found. An Arthrobacter sp. capable of growth on DCHA as the sole source of carbon and energy was isolated.

  11. Control of membrane fouling with the addition of a nanoporous zeolite membrane fouling reducer to the submerged hollow fiber membrane bioreactor.

    PubMed

    Park, Chul-Hwi; Park, Jun-Won; Han, Gee-Bong

    2016-10-14

    The membrane fouling control via the addition of nanoporous zeolite membrane fouling reducer (Z-MFR) to the submerged membrane bioreactor (MBR) was investigated. Using scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) analysis techniques, the characteristics of fouling on a hollow fiber membrane surface were also analyzed. The addition of Z-MFR to the MBR led to the adsorption of foulants and the flocculation of mixed liquor suspended solids (MLSSs), which resulted in substantially enhancing the membrane filterability. The critical flux values obtained from the sewage mixed liquors of 3400 mg L(-1) at the effective dosage rate of 0.03 mg Z-MFR mg(-1) MLSS was 85 L m(-2) h(-1) (LMH), which was enhanced by 42%. The transmembrane pressure (TMP) variation under the operating conditions of 30 LMH with 3500 mg MLSS L(-1) showed that the addition of Z-MFR extended the time required to reach the critical flux of 0.32 bar by 2.6-fold longer than the control. Thus, due to the hybrid functions of adsorbing foulants and precipitating colloidal substances with the addition of Z-MFR, a decrease in the foulant amount and an improvement of sludge flocculation have been attained simultaneously. As a result, the membrane fouling control was achieved effectively with the addition of the Z-MFR.

  12. Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor.

    PubMed

    Fox, Shalom; Bruner, Tali; Oren, Yoram; Gilron, Jack; Ronen, Zeev

    2016-09-01

    We investigated effective simultaneous removal of high loads of nitrate and perchlorate from synthetic groundwater using an ion exchange membrane bioreactor (IEMB). The aim of this research was to characterize both transport aspects and biodegradation mechanisms involved in the treatment process of high loads of the two anions. Biodegradation process was proven to be efficient with over 99% efficiency of both perchlorate and nitrate, regardless of their load. The maximum biodegradation rates were 18.3 (mmol m(-2)  h(-1) ) and 5.5 (mmol m(-2)  h(-1) ) for nitrate and perchlorate, respectively. The presence of a biofilm on the bio-side of the membrane only slightly increased the nitrate and perchlorate transmembrane flux as compared to the measured flux during a Donnan dialysis experiment where there is no biodegradation of perchlorate and nitrate in the bio-compartment. The nitrate flux in presence of a biofilm was 18.3 (±1.9) (mmole m(-2)  h(-1) ), while without the biofilm, the flux was 16.9 (±1.5) (mmole m(-2)  h(-1) ) for the same feed inlet nitrate concentration of 4 mM. The perchlorate transmembrane flux increased similarly by an average of 5%. Samples of membrane biofilm and suspended bacteria from the bio-reactor were analyzed for diversity and abundance of the perchlorate and nitrate reducing bacteria. Klebsiella oxytoca, known as a glycerol fermenter, accounted for 70% of the suspended bacteria. In contrast, perchlorate and nitrate reducing bacteria predominated in the biofilm present on the membrane. These results are consistent with our proposed two stage biodegradation mechanism where glycerol is first fermented in the suspended phase of the bio-reactor and the fermentation products drive perchlorate and nitrate bio-reduction in the biofilm attached to the membrane. These results suggest that the niche exclusion of microbial populations in between the reactor and membrane is controlled by the fluxes of the electron donors and

  13. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor.

    PubMed

    Dailin, Daniel Joe; Elsayed, Elsayed Ahmed; Othman, Nor Zalina; Malek, Roslinda; Phin, Hiew Siaw; Aziz, Ramlan; Wadaan, Mohamad; El Enshasy, Hesham Ali

    2016-07-01

    Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L(-1), respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L(-1) concomitant with kefiran production of 1.91 g L(-1).

  14. Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane.

    PubMed

    Oh, Hyun-Suk; Yeon, Kyung-Min; Yang, Cheon-Seok; Kim, Sang-Ryoung; Lee, Chung-Hak; Park, Son Young; Han, Jong Yun; Lee, Jung-Kee

    2012-05-01

    Recently, enzymatic quorum quenching has proven its potential as an innovative approach for biofouling control in the membrane bioreactor (MBR) for advanced wastewater treatment. However, practical issues on the cost and stability of enzymes are yet to be solved, which requires more effective quorum quenching methods. In this study, a novel quorum quenching strategy, interspecies quorum quenching by bacterial cell, was elaborated and proved to be efficient and economically feasible biofouling control in MBR. A recombinant Escherichia coli which producing N-acyl homoserine lactonase or quorum quenching Rhodococcus sp. isolated from a real MBR plant was encapsulated inside the lumen of microporous hollow fiber membrane, respectively. The porous membrane containing these functional bacteria (i.e., "microbial-vessel") was put into the submerged MBR to alleviate biofouling on the surface of filtration membrane. The effect of biofouling inhibition by the microbial-vessel was evaluated over 80 days of MBR operation. Successful control of biofouling in a laboratory scale MBR suggests that the biofouling control through the interspecies quorum quenching could be expanded to the plant scale of MBR and various environmental engineering systems with economic feasibility. © 2012 American Chemical Society

  15. Effect of magnetic powder on membrane fouling mitigation and microbial community/composition in membrane bioreactors (MBRs) for municipal wastewater treatment.

    PubMed

    Liu, Yi; Liu, Qiang; Li, Jixiang; Ngo, Huu Hao; Guo, Wenshan; Hu, Jiajun; Gao, Min-Tian; Wang, Qiyuan; Hou, Yuansheng

    2018-02-01

    This study aims to investigate the usefulness of magnetic powder addition in membrane bioreactors (MBRs) for membrane fouling mitigation and its effect on microbial community and composition. The comparison between the two MBRs (one with magnetic powder (MAS-MBR) and one without magnetic powder (C-MBR)) was carried out to treat synthetic municipal wastewater. Results showed that bioflocculation and adsorption of magnetic powder contributed only minimally to membrane fouling mitigation while the slower fouling rate might be ascribed to magnetic bio-effect. The macromolecules (larger than 500 kDa and 300-500 kDa) of soluble microbial product from the MAS-MBR were reduced by 24.06% and 11.11%, respectively. High-throughput sequencing demonstrated the most abundant genera of biofilm sludge indicated lower abundance in bulk sludge from the MAS-MBR compared to the C-MBR. It is possible that less membrane fouling is connected to reductions in large molecules and pioneer bacteria from bulk sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An atomic force microscopy study on fouling characteristics of modified PES membrane in submerged membrane bioreactor for domestic wastewater treatment

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Han, Hongjun; Liu, Yanping; Wang, Baozhen

    2008-10-01

    To investigate the fouling characteristics of modified PES membrane in submerged Membrane Bioreactor (MBR) for domestic wastewater treatment, Atomic Force Microscope (AFM) study was conducted to analyze the microstructure characteristics of PES membrane. Surface roughness and section analysis of both virgin and fouled membrane were achieved by software of NanoScope 6.12. Compared to the virgin membrane, the average roughness (Ra), square average roughness (Rms) and ten points average roughness (Rz) of fouled membrane were increased by 100.6nm, 133.7nm and 330.7nm respectively. The section analysis results indicated that the cake layer formed and membrane pore blocked were the main causes for the increase of TMP. Micro-filtration resistance analysis was conducted to support the results of AFM analysis. It is showed that membrane resistance, cake resistance, pore blocking and irreversible fouling resistance is 0.755, 1.721 and 1.386 respectively, which contributed 20%, 44%, and 36%, respectively, to total resistance of submerged MBR (at MLSS 6000mg/L and flux 21.9L/m2Â.h). The results proved that AFM could be used to properly describe the fouling characteristics of modified PES membrane in submerged MBR through roughness and section analysis.

  17. Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors

    NASA Astrophysics Data System (ADS)

    Moradi, Golshan; Zinadini, Sirus; Rajabi, Laleh; Dadari, Soheil

    2018-01-01

    The nanofibrous Polyacrylonitrile (PAN) membranes embedded with fumarate-alumoxane (Fum-A) nanoparticles were prepared via electrospinning technique as high flux and antifouling membranes for membrane bioreactor (MBR) applications. The effect of Fum-A nanoparticles on membrane morphology, surface hydrophilicity, pure water flux, effluent turbidity and the antifouling property was investigated. Fum-A is a carboxylate-alumoxane nanoparticle covered by extra hydroxyl and carboxylate groups on its surface. By embedding Fum-A nanoparticles into the spinning solution, the surface hydrophilicity and pure water flux of the resulted membranes were improved. The smooth surface of fibers at the low amount of nanoparticles and the agglomeration of nanoparticles at their high concentration were shown in SEM images of the membranes surface. The energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analysis of the prepared Fum-A/PAN membrane confirmed the presence of carboxylate and hydroxyl functional groups of Fum-A nanoparticles on the surface of the Fum-A nanoparticles containing membrane. The results obtained from the filtration of activated sludge suspension revealed that by addition of a low amount of Fum-A nanoparticles, the irreversible fouling was significantly decreased due to the higher hydrophilicity. The Fum-A/PAN membranes showed superior permeate flux and antifouling properties compared to bare electrospun PAN membrane. Finally, 2 wt.% Fum-A/PAN membrane exhibited the highest FRR of 96% and the lowest irreversible fouling of 4% with excellent durability of antifouling property during twenty repeated activated sludge filtrations.

  18. Hydrodynamics of an electrochemical membrane bioreactor.

    PubMed

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-05-22

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.

  19. Hydrodynamics of an Electrochemical Membrane Bioreactor

    PubMed Central

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-01-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment. PMID:25997399

  20. Comparison of Leachate Quality from Aerobic and Anaerobic Municipal Solid Waste Bioreactors

    NASA Astrophysics Data System (ADS)

    Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.

    2002-12-01

    Municipal solid waste landfills are becoming a drain on the resources of local municipalities as the requirements for stabilization and containment become increasingly stringent. Current regulations limit the moisture in the landfill to minimize leachate production and lower the potential for release of leachate to the environment. Recent research has shown that addition and recycling of moisture in the waste optimizes the biodegradation of stabilization and also provides a means for leachate treatment. This study compares the characteristics of leachate produced from aerobic and anaerobic laboratory bioreactors, and leachate collected from a full-scale anaerobic bioreactor. The laboratory reactors consisted of 200-liter tanks filled with fresh waste materials with the following conditions: (a) aerobic (air injection with leachate recirculation), (b) anaerobic (leachate recirculation). The leachate from the reactors was monitored for metals, nutrients, organic carbon, and microbiological activity for up to 500 days. Leachate from the aerobic tank had significantly lower concentrations of all potential contaminants, both organic and metal, after only a few weeks of operation. Metals leaching was low throughout the test period for the aerobic tanks, and decreased over time for the anaerobic tanks. Organic carbon as measured by BOD, COD, TOC, and COD were an order of magnitude higher in the leachate from the anaerobic system. Microbiological assessment by lipid analysis, enzyme activity assays, and cell counts showed high biomass and diversity in both the aerobic and anaerobic bioreactors, with higher activity in the anaerobic leachate. Results from the full-scale anaerobic bioreactor were not significantly different from those of the laboratory anaerobic bioreactor. The reduction in noxious odors was a significant advantage of the aerobic system. These results suggest that aerobic management of landfills could reduce or eliminate the need for leachate treatment

  1. Biocatalytic degradation of pharmaceuticals, personal care products, industrial chemicals, steroid hormones and pesticides in a membrane distillation-enzymatic bioreactor.

    PubMed

    Asif, Muhammad B; Hai, Faisal I; Kang, Jinguo; van de Merwe, Jason P; Leusch, Frederic D L; Price, William E; Nghiem, Long D

    2018-01-01

    Laccase-catalyzed degradation of a broad spectrum of trace organic contaminants (TrOCs) by a membrane distillation (MD)-enzymatic membrane bioreactor (EMBR) was investigated. The MD component effectively retained TrOCs (94-99%) in the EMBR, facilitating their continuous biocatalytic degradation. Notably, the extent of TrOC degradation was strongly influenced by their molecular properties. A significant degradation (above 90%) of TrOCs containing strong electron donating functional groups (e.g., hydroxyl and amine groups) was achieved, while a moderate removal was observed for TrOCs containing electron withdrawing functional groups (e.g., amide and halogen groups). Separate addition of two redox-mediators, namely syringaldehyde and violuric acid, further improved TrOC degradation by laccase. However, a mixture of both showed a reduced performance for a few pharmaceuticals such as primidone, carbamazepine and ibuprofen. Mediator addition increased the toxicity of the media in the enzymatic bioreactor, but the membrane permeate (i.e., final effluent) was non-toxic, suggesting an added advantage of coupling MD with EMBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development.

    PubMed

    Xu, Ping; Clark, Colleen; Ryder, Todd; Sparks, Colleen; Zhou, Jiping; Wang, Michelle; Russell, Reb; Scott, Charo

    2017-03-01

    Demands for development of biological therapies is rapidly increasing, as is the drive to reduce time to patient. In order to speed up development, the disposable Automated Microscale Bioreactor (Ambr 250) system is increasingly gaining interest due to its advantages, including highly automated control, high throughput capacity, and short turnaround time. Traditional early stage upstream process development conducted in 2 - 5 L bench-top bioreactors requires high foot-print, and running cost. The establishment of the Ambr 250 as a scale-down model leads to many benefits in process development. In this study, a comprehensive characterization of mass transfer coefficient (k L a) in the Ambr 250 was conducted to define optimal operational conditions. Scale-down approaches, including dimensionless volumetric flow rate (vvm), power per unit volume (P/V) and k L a have been evaluated using different cell lines. This study demonstrates that the Ambr 250 generated comparable profiles of cell growth and protein production, as seen at 5-L and 1000-L bioreactor scales, when using k L a as a scale-down parameter. In addition to mimicking processes at large scales, the suitability of the Ambr 250 as a tool for clone selection, which is traditionally conducted in bench-top bioreactors, was investigated. Data show that cell growth, productivity, metabolite profiles, and product qualities of material generated using the Ambr 250 were comparable to those from 5-L bioreactors. Therefore, Ambr 250 can be used for clone selection and process development as a replacement for traditional bench-top bioreactors minimizing resource utilization during the early stages of development in the biopharmaceutical industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:478-489, 2017. © 2017 American Institute of Chemical Engineers.

  3. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water.

    PubMed

    Smith, Richard L; Buckwalter, Seanne P; Repert, Deborah A; Miller, Daniel N

    2005-05-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  4. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water

    USGS Publications Warehouse

    Smith, R.L.; Buckwalter, S.P.; Repert, D.A.; Miller, D.N.

    2005-01-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  5. Application of membrane distillation for the treatment of anaerobic membrane bioreactor effluent: An especial attention to the operating conditions.

    PubMed

    Liu, Chang; Chen, Lin; Zhu, Liang

    2018-06-04

    This study was carried out by applying the direct contact membrane distillation (DCMD) into the treatment of effluent from anaerobic membrane bioreactor. The treatment efficiency of DCMD was highly emphasized, which was expected to be improved through the optimization of operating conditions. Three operating conditions, including temperature difference, cross-flow velocity and membrane pore size, were considered. The relative flux (the ratio of actual flux to initial flux) increased from 0.50 to 0.98 as the operating conditions changed and that was enhanced by the increment of temperature difference and cross-flow velocity. Regarding the wastewater treatment efficiency, except for ammonia nitrogen, the interception ratio was greater than 90.0%, which even reached 99.0% for COD Cr , protein and polysaccharide by optimizing operating conditions. In addition, the interception ratio of PO 4 3- -P almost reached 100.0% under any operating condition. Further study about membrane fouling was carried out, and the crystallization fouling was found to be the main fouling type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Application of a low cost ceramic filter to a membrane bioreactor for greywater treatment.

    PubMed

    Hasan, Md Mahmudul; Shafiquzzaman, Md; Nakajima, Jun; Ahmed, Abdel Kader T; Azam, Mohammad Shafiul

    2015-03-01

    The performance of a low cost and simple ceramic filter to a membrane bioreactor (MBR) process was evaluated for greywater treatment. The ceramic filter was submerged in an acrylic cylindrical column bioreactor. Synthetic greywater (prepared by shampoo, dish cleaner and laundry detergent) was fed continuously into the reactor. The filter effluent was obtained by gravitational pressure. The average flux performance was observed to be 11.5 LMH with an average hydraulic retention time of 1.7 days. Complete biodegradation of surfactant (methylene blue active substance removal: 99-100%) as well as high organic removal performance (biochemical oxygen demand: 97-100% and total organic carbon: >88%) was obtained. The consistency of flux (11.5 LMH) indicated that the filter can be operated for a long time without fouling. The application of this simple ceramic filter would make MBR technology cost-effective in developing countries for greywater reclamation and reuse.

  7. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    PubMed Central

    Paul, Parneet; Jones, Franck Anderson

    2016-01-01

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level. PMID:26742053

  8. Model-based analysis of the effect of different operating conditions on fouling mechanisms in a membrane bioreactor.

    PubMed

    Sabia, Gianpaolo; Ferraris, Marco; Spagni, Alessandro

    2016-01-01

    This study proposes a model-based evaluation of the effect of different operating conditions with and without pre-denitrification treatment and applying three different solids retention times on the fouling mechanisms involved in membrane bioreactors (MBRs). A total of 11 fouling models obtained from literature were used to fit the transmembrane pressure variations measured in a pilot-scale MBR treating real wastewater for more than 1 year. The results showed that all the models represent reasonable descriptions of the fouling processes in the MBR tested. The model-based analysis confirmed that membrane fouling started by pore blocking (complete blocking model) and by a reduction of the pore diameter (standard blocking) while cake filtration became the dominant fouling mechanism over long-term operation. However, the different fouling mechanisms occurred almost simultaneously making it rather difficult to identify each one. The membrane "history" (i.e. age, lifespan, etc.) seems the most important factor affecting the fouling mechanism more than the applied operating conditions. Nonlinear regression of the most complex models (combined models) evaluated in this study sometimes demonstrated unreliable parameter estimates suggesting that the four basic fouling models (complete, standard, intermediate blocking and cake filtration) contain enough details to represent a reasonable description of the main fouling processes occurring in MBRs.

  9. A simple eccentric stirred tank mini-bioreactor: mixing characterization and mammalian cell culture experiments.

    PubMed

    Bulnes-Abundis, David; Carrillo-Cocom, Leydi M; Aráiz-Hernández, Diana; García-Ulloa, Alfonso; Granados-Pastor, Marisa; Sánchez-Arreola, Pamela B; Murugappan, Gayathree; Alvarez, Mario M

    2013-04-01

    In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5-100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple-easy to assemble, easy to use, easy to clean-cell culture mini-bioreactors for lab-scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini-bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini-bioreactor were comparable to those observed for 6-well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini-bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini-bioreactor. Copyright © 2012 Wiley Periodicals, Inc.

  10. Definition and validation of operating equations for poly(vinyl alcohol)-poly(lactide-co-glycolide) microfiltration membrane-scaffold bioreactors

    PubMed Central

    Shipley, RJ; Waters, SL; Ellis, MJ

    2010-01-01

    The aim of this work is to provide operating data for biodegradable hollow fiber membrane bioreactors. The physicochemical cell culture environment can be controlled with the permeate flowrate, so this aim necessitates the provision of operating equations that enable end-users to set the pressures and feed flowrates to obtain their desired culture environment. In this paper, theoretical expressions for the pure water retentate and permeate flowrates, derived using lubrication theory, are compared against experimental data for a single fiber poly(vinyl alcohol)–poly(lactide-co-glycolide) crossflow module to give values for the membrane permeability and slip. Analysis of the width of the boundary layer region where slip effects are important, together with the sensitivity of the retentate and permeate equations to the slip parameter, show that slip is insignificant for these membranes, which have a mean pore diameter of 1.1 µm. The experimental data is used to determine a membrane permeability, of k = 1.86 × 10−16 m2, and to validate the model. It was concluded that the operating equation that relates the permeate to feed ratio, c, lumen inlet flowrate, Ql,in, lumen outlet pressure, P1, and ECS outlet pressure, P0, is1 where A and B are constants that depend on the membrane permeability and geometry (and are given explicitly). Finally, two worked examples are presented to demonstrate how a tissue engineer can use Equation 1 to specify operating conditions for their bioreactor. PMID:20641054

  11. EVALUATION PLAN FOR TWO LARGE-SCALE LANDFILL BIOREACTOR TECHNOLOGIES

    EPA Science Inventory

    Abstract - Waste Management, Inc., is operating two long-term bioreactor studies at the Outer Loop Landfill in Louisville, KY, including facultative landfill bioreactor and staged aerobic-anaerobic landfill bioreactor demonstrations. A Quality Assurance Project Plan (QAPP) was p...

  12. A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment

    PubMed Central

    2014-01-01

    Microbial fuel cells (MFCs) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has typically not been sufficient for discharge without further treatment. A two-stage laboratory-scale combined treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor (MFC-AFMBR), was examined here to produce high quality effluent with minimal energy demands. The combined system was operated continuously for 50 days at room temperature (∼25 °C) with domestic wastewater having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time (HRT) for both processes of 9 h, the effluent tCOD was reduced to 16 ± 3 mg/L (92.5% removal), and there was nearly complete removal of total suspended solids (TSS; from 45 ± 10 mg/L to <1 mg/L). The AFMBR was operated at a constant high permeate flux of 16 L/m2/h over 50 days, without the need or use of any membrane cleaning or backwashing. Total electrical energy required for the operation of the MFC-AFMBR system was 0.0186 kWh/m3, which was slightly less than the electrical energy produced by the MFCs (0.0197 kWh/m3). The energy in the methane produced in the AFMBR was comparatively negligible (0.005 kWh/m3). These results show that a combined MFC-AFMBR system could be used to effectively treat domestic primary effluent at ambient temperatures, producing high effluent quality with low energy requirements. PMID:24568605

  13. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly

    PubMed Central

    Griffin, James S; Wells, George F

    2017-01-01

    Seasonal community structure and regionally synchronous population dynamics have been observed in natural microbial ecosystems, but have not been well documented in wastewater treatment bioreactors. Few studies of community dynamics in full-scale activated sludge systems facing similar meteorological conditions have been done to compare the importance of deterministic and neutral community assembly mechanisms. We subjected weekly activated sludge samples from six regional full-scale bioreactors at four wastewater treatment plants obtained over 1 year to Illumina sequencing of 16S ribosomal RNA genes, resulting in a library of over 17 million sequences. All samples derived from reactors treating primarily municipal wastewater. Despite variation in operational characteristics and location, communities displayed temporal synchrony at the individual operational taxonomic unit (OTU), broad phylogenetic affiliation and community-wide scale. Bioreactor communities were dominated by 134 abundant and highly regionally synchronized OTU populations that accounted for over 50% of the total reads. Non-core OTUs displayed abundance-dependent population synchrony. Alpha diversity varied by reactor, but showed a highly reproducible and synchronous seasonal fluctuation. Community similarity was dominated by seasonal changes, but individual reactors maintained minor stable differences after 1 year. Finally, the impacts of mass migration driven by direct biomass transfers between reactors was investigated, but had no significant effect on community similarity or diversity in the sink community. Our results show that population dynamics in activated sludge bioreactors are consistent with niche-driven assembly guided by seasonal temperature fluctuations. PMID:27996980

  14. Hollow Fiber Membrane Bioreactor Systems for Wastewater Processing: Effects of Environmental Stresses Including Dormancy Cycling and Antibiotic Dosing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hummerick, Mary E.; Lunn, Griffin M.; Larson, Brian D.; Spencer, LaShelle E.; Kosiba, Michael L.; Khodadad, Christina L.; Catechis, John A.; Birmele, Michele N.; Wheeler, Raymond M.

    2016-01-01

    Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an alternate approach for treating wastewater streams during space exploration. While the technology provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need for harsh stabilization chemicals, several challenges must be addressed before adoption of the technology in future missions. One challenge is the transportation of bioreactors containing intact, active biofilms as a means for rapid start-up on the International Space Station or beyond. Similarly, there could be a need for placing these biological systems into a dormant state for extended periods when the system is not in use, along with the ability for rapid restart. Previous studies indicated that there was little influence of storage condition (4 or 25 C, with or without bulk fluid) on recovery of bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy within 4 days (approximately 1 residence). Further dormancy and recovery testing is presented here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems. Another challenge that must be addressed is the possibility of antibiotics entering the wastewater stream. Currently, for most laboratory tests of biological water processors, donors providing urine may not contribute to the study when taking antibiotics because the effects on the system are yet uncharacterized. A simulated urinary tract infection event, where an opportunistic, pathogenic organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, was completed to study the effect of the antibiotic on reactor performance and to also examine the development of

  15. Experimental and modelling studies on a laboratory scale anaerobic bioreactor treating mechanically biologically treated municipal solid waste.

    PubMed

    Lakshmikanthan, P; Sughosh, P; White, James; Sivakumar Babu, G L

    2017-07-01

    The performance of an anaerobic bioreactor in treating mechanically biologically treated municipal solid waste was investigated using experimental and modelling techniques. The key parameters measured during the experimental test period included the gas yield, leachate generation and settlement under applied load. Modelling of the anaerobic bioreactor was carried out using the University of Southampton landfill degradation and transport model. The model was used to simulate the actual gas production and settlement. A sensitivity analysis showed that the most influential model parameters are the monod growth rate and moisture. In this case, pH had no effect on the total gas production and waste settlement, and only a small variation in the gas production was observed when the heat transfer coefficient of waste was varied from 20 to 100 kJ/(m d K) -1 . The anaerobic bioreactor contained 1.9 kg (dry) of mechanically biologically treated waste producing 10 L of landfill gas over 125 days.

  16. Membrane fouling in a submerged membrane bioreactor: An unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces.

    PubMed

    Cai, Xiang; Shen, Liguo; Zhang, Meijia; Chen, Jianrong; Hong, Huachang; Lin, Hongjun

    2017-11-01

    Quantitatively evaluating interaction energy between two randomly rough surfaces is the prerequisite to quantitatively understand and control membrane fouling in membrane bioreactors (MBRs). In this study, a new unified approach to construct rough topographies and to quantify interaction energy between a randomly rough particle and a randomly rough membrane was proposed. It was found that, natural rough topographies of both foulants and membrane could be well constructed by a modified two-variable Weierstrass-Mandelbrot (WM) function included in fractal theory. Spatial differential relationships between two constructed surfaces were accordingly established. Thereafter, a new approach combining these relationships, surface element integration (SEI) approach and composite Simpson's rule was deduced to calculate the interaction energy between two randomly rough surfaces in a submerged MBR. The obtained results indicate the profound effects of surface morphology on interaction energy and membrane fouling. This study provided a basic approach to investigate membrane fouling and interface behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Swine manure treatment by anaerobic membrane bioreactor with carbon, nitrogen and phosphorus recovery.

    PubMed

    Bu, Fan; Du, Shiyun; Xie, Li; Cao, Rong; Zhou, Qi

    2017-10-01

    Swine manure wastewater was treated in an anaerobic membrane bioreactor (AnMBR) that combined a continuous stirred tank reactor (CSTR) and a hollow-fiber ultrafiltration membrane, and the feasibility of ammonia and phosphorus recovery in the permeate was investigated. The AnMBR system was operated steadily with a high mixed liquor suspended solids (MLSS) concentration of 32.32 ± 6.24 g/L for 120 days, achieving an average methane yield of 280 mL/gVS added and total chemical oxygen demand removal efficiency of 96%. The methane yield of the AnMBR is 83% higher than that of the single CSTR. The membrane fouling mechanism was examined, and MLSS and the polysaccharide contents of the extracellular polymeric substances were found to be the direct causes of membrane fouling. The effects of the permeation/relaxation rate and physical, chemical cleaning on membrane fouling were assessed for membrane fouling control, and results showed that a decrease in the permeation/relaxation rate together with chemical cleaning effectively reduced membrane fouling. In addition, a crystallization process was used for ammonia and phosphorus recovery from the permeate, and pH 9 was the optimal condition for struvite formation. The study has an instructive significance to the industrial applications of AnMBRs in treating high strength wastewater with nutrient recovery.

  18. Co-Utilization of Glucose and Xylose for Enhanced Lignocellulosic Ethanol Production with Reverse Membrane Bioreactors

    PubMed Central

    Ishola, Mofoluwake M.; Ylitervo, Päivi; Taherzadeh, Mohammad J.

    2015-01-01

    Integrated permeate channel (IPC) flat sheet membranes were examined for use as a reverse membrane bioreactor (rMBR) for lignocellulosic ethanol production. The fermenting organism, Saccharomyces cerevisiae (T0936), a genetically-modified strain with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and hydroxylmethyl furfural (HMF). The synthetic medium was investigated, after which the pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane panels were successfully used as the rMBR during the batch fermentations, which lasted for up to eight days without fouling. With the rMBR, complete glucose and xylose utilization, resulting in 86% of the theoretical ethanol yield, was observed with the synthetic medium. Its application with the pretreated wheat straw resulted in complete glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, the technology would also allow the reuse of the yeast for several batches. PMID:26633530

  19. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor.

    PubMed

    Ogbonna, J C; Mashima, H; Tanaka, H

    2001-01-01

    Production of fuel ethanol from sugar beet juice, using cells immobilized on loofa sponge was investigated. Based on ethanol productivity and ease of cell immobilization, a flocculating yeast strain, Saccharomyces cerevisiae IR2 was selected for ethanol production from sugar beet juice. It was found that raw sugar beet juice was an optimal substrate for ethanol production, requiring neither pH adjustment nor nitrogen source supplement. When compared with a 2 l bubble column bioreactor, mixing was not sufficient in an 8 l bioreactor containing a bed of sliced loofa sponges and consequently, the immobilized cells were not uniformly distributed within the bed. Most of the cells were immobilized in the lower part of the bed and this resulted in decreased ethanol productivity. By using an external loop bioreactor, constructing the fixed bed with cylindrical loofa sponges, dividing the bed into upper, middle and lower sections with approximately 1 cm spaces between them and circulating the broth through the loop during the immobilization, uniform cell distribution within the bed was achieved. Using this method, the system was scaled up to 50 l and when compared with the 2 l bubble column bioreactor, there were no significant differences (P > 0.05) in ethanol productivity and yield. By using external loop bioreactor to immobilize the cells uniformly on the loofa sponge beds, efficient large scale ethanol production systems can be constructed.

  20. Treatment of kraft evaporator condensate using a thermophilic submerged anaerobic membrane bioreactor.

    PubMed

    Liao, B Q; Xie, K; Lin, H J; Bertoldo, Daniel

    2010-01-01

    The feasibility of using a thermophilic submerged anaerobic membrane bioreactor (SAnMBR) for kraft evaporator condensate treatment was studied at 55+/-1 degrees C over 6.5 months. Under tested organic loading rate of 1-7 kg COD/m(3) day, a soluble COD removal efficiency of 85-97% was obtained. The methane production rate was 0.35+/-0.1 L methane/g COD and the produced biogas was of excellent fuel quality with 80-90% methane. A higher membrane fouling rate was related to the presence of a larger portion of fine colloidal particles (1-10 mum). The thermophilic SAnMBR was sensitive to the presence of toxic compounds in feed and unexpected pH probe failure (leading to a higher pH). Feed toxic shock caused sludge deflocculation and thus deteriorated membrane performance. Operating the reactor as a conventional anaerobic reactor to waste some of the fine flocs in treated effluent during the start-up process was an effective strategy to reduce membrane fouling. The experimental results from this study indicate that treatment of kraft evaporator condensate is feasible in terms of COD removal and biogas production using thermophilic SAnMBRs but pre-treatment may be needed to remove toxic sulfur compounds and membrane fouling caused by the large portion of fine particles may be a challenge.

  1. Evaluation of membrane bioreactor for advanced treatment of industrial wastewater and reverse osmosis pretreatment

    PubMed Central

    2013-01-01

    The evaluation of a membrane bioreactor (MBR) for pretreatment of reverse osmosis (RO) in order to reuse and reclamation of industrial town wastewater treatment plant was investigated in this study. Performance of MBR effluent through water quality in term of parameters such as chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN) and total coliform (TC) were measured. Also Silt density index (SDI) was used as indicator for RO feed water. The results of this study demonstrated that MBR produce a high quality permeate water. Approximately 75%, 98%, 74% and 99.9% removal of COD, TSS, TN and TC were recorded, respectively. Also SDI of the permeate effluent from membrane was below 3 for most of the times. It means that pilot yield a high quality treated effluent from the membrane module which can be used as RO feed water. PMID:24355199

  2. In silico multi-scale model of transport and dynamic seeding in a bone tissue engineering perfusion bioreactor.

    PubMed

    Spencer, T J; Hidalgo-Bastida, L A; Cartmell, S H; Halliday, I; Care, C M

    2013-04-01

    Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly-L-lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre-requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection-diffusion-attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large-scale bioreactors. Copyright © 2012 Wiley Periodicals, Inc.

  3. More Efficient Media Design for Enhanced Biofouling Control in a Membrane Bioreactor: Quorum Quenching Bacteria Entrapping Hollow Cylinder.

    PubMed

    Lee, Sang H; Lee, Seonki; Lee, Kibaek; Nahm, Chang H; Kwon, Hyeokpil; Oh, Hyun-Suk; Won, Young-June; Choo, Kwang-Ho; Lee, Chung-Hak; Park, Pyung-Kyu

    2016-08-16

    Recently, membrane bioreactors (MBRs) with quorum quenching (QQ) bacteria entrapping beads have been reported as a new paradigm in biofouling control because, unlike conventional post-biofilm control methods, bacterial QQ can inhibit biofilm formation through its combined effects of physical scouring of the membrane and inhibition of quorum sensing (QS). In this study, using a special reporter strain (Escherichia coli JB525), the interaction between QS signal molecules and quorum quenching bacteria entrapping beads (QQ-beads) was elucidated through visualization of the QS signal molecules within a QQ-bead using a fluorescence microscope. As a result, under the conditions considered in this study, the surface area of QQ-media was likely to be a dominant parameter in enhancing QQ activity over total mass of entrapped QQ bacteria because QQ bacteria located near the core of a QQ-bead were unable to display their QQ activities. On the basis of this information, a more efficient QQ-medium, a QQ hollow cylinder (QQ-HC), was designed and prepared. In batch experiments, QQ-HCs showed greater QQ activity than QQ-beads as a result of their higher surface area and enhanced physical washing effect because of their larger impact area against the membrane surface. Furthermore, it was shown that such advantages of QQ-HCs resulted in more effective mitigation of membrane fouling than from QQ-beads in lab-scale continuous MBRs.

  4. Mechanisms of action of particles used for fouling mitigation in membrane bioreactors.

    PubMed

    Loulergue, P; Weckert, M; Reboul, B; Cabassud, C; Uhl, W; Guigui, C

    2014-12-01

    Adding chemicals to the biofluid is an option to mitigate membrane fouling in membrane bioreactors. In particular, previous studies have shown that the addition of particles could enhance activated sludge filterability. Nevertheless, the mechanisms responsible for the improved filtration performance when particles are added are still unclear. Two main mechanisms might occur: soluble organic matter adsorption onto the particles and/or cake structure modification. To date, no studies have clearly dissociated the impact of these two phenomena as a method was needed for the in-line characterization of the cake structure during filtration. The objective of this study was thus to apply, for the first time, an optical method for in-situ, non-invasive, characterization of cake structure during filtration of a real biofluid in presence of particles. This method was firstly used to study local cake compressibility during the biofluid filtration. It was found that the first layers of the cake were incompressible whereas the cake appeared to be compressible at global scale. This questions the global scale analysis generally used to study cake compressibility and highlights the interest of coupling local characterization with overall process performance analysis. Secondly, the impact of adding submicronic melamine particles into the biofluid was studied. It appears that particles added into the biofluid strongly influence the cake properties, making it thicker and more permeable. Furthermore, by using liquid chromatography with an organic carbon detector to determine the detailed characteristics of the feed and permeate, it was shown that the modification of cake structure also affected the retention of soluble organic compounds by the membrane and thus the cake composition. Simultaneous use of a method for in-situ characterization of the cake structure with a detailed analysis of the fluid composition and monitoring of the global performance is thus a powerful method for

  5. [Membrane fouling alleviation characteristics of sludge/water pre-separation MBR].

    PubMed

    Wang, Hong-Jie; Dong, Wen-Yi; Bai, Wei; Li, Wei-Guang; Yang, Yue

    2009-07-15

    A long-term operation was conducted to investigate the alleviation of membrane fouling by sludge/water pre-separation membrane bioreactor (S/W-MBR). The variation of trans-membrane pressure (TMP), concentration of sludge and extracellular polymeric substances (EPS) on S/W-MBR and submerged membrane bioreactor (SMBR) was also studied. The results showed that the sludge concentration in S/W-MBR was basically identical with that of SMBR's biotic area, while the sludge concentration was significantly decreased in S/W-MBR's membrane area than that of SMBR's. The concentration of EPS was increased with operation time in both two MBRs' biotic area, but it was lower and basically maintained at the level of 15 mg/g in S/W-MBR's membrane area. The S/W-MBR was more capable of alleviating membrane fouling, and it had been cleaned only 2 times while the SMBR who had been cleaned 5 times during the period of about 90 days laboratory performance.

  6. The application of nitric oxide to control biofouling of membrane bioreactors

    PubMed Central

    Luo, Jinxue; Zhang, Jinsong; Barnes, Robert J; Tan, Xiaohui; McDougald, Diane; Fane, Anthony G; Zhuang, Guoqiang; Kjelleberg, Staffan; Cohen, Yehuda; Rice, Scott A

    2015-01-01

    A novel strategy to control membrane bioreactor (MBR) biofouling using the nitric oxide (NO) donor compound PROLI NONOate was examined. When the biofilm was pre-established on membranes at transmembrane pressure (TMP) of 88–90 kPa, backwashing of the membrane module with 80 μM PROLI NONOate for 45 min once daily for 37 days reduced the fouling resistance (Rf) by 56%. Similarly, a daily, 1 h exposure of the membrane to 80 μM PROLI NONOate from the commencement of MBR operation for 85 days resulted in reduction of the TMP and Rf by 32.3% and 28.2%. The microbial community in the control MBR was observed to change from days 71 to 85, which correlates with the rapid TMP increase. Interestingly, NO-treated biofilms at 85 days had a higher similarity with the control biofilms at 71 days relative to the control biofilms at 85 days, indicating that the NO treatment delayed the development of biofilm bacterial community. Despite this difference, sequence analysis indicated that NO treatment did not result in a significant shift in the dominant fouling species. Confocal microscopy revealed that the biomass of biopolymers and microorganisms in biofilms were all reduced on the PROLI NONOate-treated membranes, where there were reductions of 37.7% for proteins and 66.7% for microbial cells, which correlates with the reduction in TMP. These results suggest that NO treatment could be a promising strategy to control biofouling in MBRs. PMID:25752591

  7. Influence of nanoparticles on filterability of fruit-juice industry wastewater using submerged membrane bioreactor.

    PubMed

    Demirkol, Guler Turkoglu; Dizge, Nadir; Acar, Turkan Ormanci; Salmanli, Oyku Mutlu; Tufekci, Nese

    2017-07-01

    In this study, polyethersulfone (PES) ultrafiltration membrane surface was modified with nano-sized zinc oxide (nZnO) and silver (nAg) to improve the membrane filterability of the mixed liquor and used to treat fruit-juice industry wastewater in a submerged membrane bioreactor (MBR). The nAg was synthesized using three different methods. In the first method, named as nAg-M1, PES membrane was placed on the membrane module and nAg solution was passed through the membrane for 24 h at 25 ± 1 °C. In the second method, named as nAg-M2, PES membrane was placed in a glass container and it was shaken for 24 h at 150 rpm at 25 ± 1 °C. In the third method, named as nAg-M3, Ag nanoparticles were loaded onto PES membrane in L-ascorbic acid solution (0.1 mol/L) at pH 2 for 24 h at 150 rpm at 25 ± 1 °C. For the preparation of nZnO coated membrane, nZnO nanoparticles solution was passed through the membrane for 24 h at 25 ± 1 °C. Anti-fouling performance of pristine and coated membranes was examined using the submerged MBR. The results showed that nZnO and nAg-M3 membranes showed lower flux decline compared with pristine membrane. Moreover, pristine and coated PES membranes were characterized using a permeation test, contact angle goniometer, and scanning electron microscopy.

  8. Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal, and membrane fouling.

    PubMed

    Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D

    2018-02-01

    This study investigated the impact of sulphur content on the performance of an anaerobic membrane bioreactor (AnMBR) with an emphasis on the biological stability, contaminant removal, and membrane fouling. Removal of 38 trace organic contaminants (TrOCs) that are ubiquitously present in municipal wastewater by AnMBR was evaluated. Results show that basic biological performance of AnMBR regarding biomass growth and the removal of chemical oxygen demand (COD) was not affected by sulphur addition when the influent COD/SO 4 2- ratio was maintained higher than 10. Nevertheless, the content of hydrogen sulphate in the produced biogas increased significantly and membrane fouling was exacerbated with sulphur addition. Moreover, the increase in sulphur content considerably affected the removal of some hydrophilic TrOCs and their residuals in the sludge phase during AnMBR operation. By contrast, no significant impact on the removal of hydrophobic TrOCs was noted with sulphur addition to AnMBR. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor.

    PubMed

    Lambrechts, Toon; Papantoniou, Ioannis; Rice, Brent; Schrooten, Jan; Luyten, Frank P; Aerts, Jean-Marie

    2016-09-01

    With the increasing scale in stem cell production, a robust and controlled cell expansion process becomes essential for the clinical application of cell-based therapies. The objective of this work was the assessment of a hollow fiber bioreactor (Quantum Cell Expansion System from Terumo BCT) as a cell production unit for the clinical-scale production of human periosteum derived stem cells (hPDCs). We aimed to demonstrate comparability of bioreactor production to standard culture flask production based on a product characterization in line with the International Society of Cell Therapy in vitro benchmarks and supplemented with a compelling quantitative in vivo bone-forming potency assay. Multiple process read-outs were implemented to track process performance and deal with donor-to-donor-related variation in nutrient needs and harvest timing. The data show that the hollow fiber bioreactor is capable of robustly expanding autologous hPDCs on a clinical scale (yield between 316 million and 444 million cells starting from 20 million after ± 8 days of culture) while maintaining their in vitro quality attributes compared with the standard flask-based culture. The in vivo bone-forming assay on average resulted in 10.3 ± 3.7% and 11.0 ± 3.8% newly formed bone for the bioreactor and standard culture flask respectively. The analysis showed that the Quantum system provides a reproducible cell expansion process in terms of yields and culture conditions for multiple donors. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment.

    PubMed

    Aslam, Muhammad; McCarty, Perry L; Shin, Chungheon; Bae, Jaeho; Kim, Jeonghwan

    2017-09-01

    An aluminum dioxide (Al 2 O 3 ) ceramic membrane was used in a single-stage anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for low-strength wastewater treatment. The AFCMBR was operated continuously for 395days at 25°C using a synthetic wastewater having a chemical oxygen demand (COD) averaging 260mg/L. A membrane net flux as high as 14.5-17L/m 2 h was achieved with only periodic maintenance cleaning, obtained by adding 25mg/L of sodium hypochlorite solution. No adverse effect of the maintenance cleaning on organic removal was observed. An average SCOD in the membrane permeate of 23mg/L was achieved with a 1h hydraulic retention time (HRT). Biosolids production averaged 0.014±0.007gVSS/gCOD removed. The estimated electrical energy required to operate the AFCMBR system was 0.039kWh/m 3 , which is only about 17% of the electrical energy that could be generated with the methane produced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Replaceable Sensor System for Bioreactor Monitoring

    NASA Technical Reports Server (NTRS)

    Mayo, Mike; Savoy, Steve; Bruno, John

    2006-01-01

    A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.

  12. Indigenous somatic coliphage removal from a real municipal wastewater by a submerged membrane bioreactor.

    PubMed

    Wu, Jinling; Li, Haitao; Huang, Xia

    2010-03-01

    The membrane bioreactor (MBR) features many advantages, such as its excellent effluent quality and compactness. Moreover, the MBR is well known for its disinfectant capacity. This paper investigates virus removal performance for municipal wastewater using a submerged MBR and the operational conditions affecting the virus removal using indigenous somatic coliphages (SC) as an indicator for viruses. The results revealed that the municipal wastewater acquired by the Qinghe Municipal Wastewater Treatment Plant, Beijing, contained an SC concentration of (2.81+/-1.51)x10(4)PFU ml(-1), which varies seasonally due to spontaneous decay. In the MBR system, the biomass process dominates SC removal. Membrane rejection is an essential supplement of biomass process for SC removal. In this paper, the relative contributions of biomass process and membrane rejection during the start-up and steady operational periods are discussed in detail. The major factors affecting SC removal are biodegradation, membrane pore size, and gel layer formation on the membrane. During long-term experiments, it was demonstrated that high inoculated sludge concentration, long hydraulic retention time, moderate fouling layer, and non-frequent chemical cleaning are favorable for high SC removal in MBR systems. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Definition and validation of operating equations for poly(vinyl alcohol)-poly(lactide-co-glycolide) microfiltration membrane-scaffold bioreactors.

    PubMed

    Shipley, R J; Waters, S L; Ellis, M J

    2010-10-01

    The aim of this work is to provide operating data for biodegradable hollow fiber membrane bioreactors. The physicochemical cell culture environment can be controlled with the permeate flowrate, so this aim necessitates the provision of operating equations that enable end-users to set the pressures and feed flowrates to obtain their desired culture environment. In this paper, theoretical expressions for the pure water retentate and permeate flowrates, derived using lubrication theory, are compared against experimental data for a single fiber poly(vinyl alcohol)-poly(lactide-co-glycolide) crossflow module to give values for the membrane permeability and slip. Analysis of the width of the boundary layer region where slip effects are important, together with the sensitivity of the retentate and permeate equations to the slip parameter, show that slip is insignificant for these membranes, which have a mean pore diameter of 1.1 microm. The experimental data is used to determine a membrane permeability, of k = 1.86 x 10(-16) m(2), and to validate the model. It was concluded that the operating equation that relates the permeate to feed ratio, c, lumen inlet flowrate, Q (l,in), lumen outlet pressure, P (1), and ECS outlet pressure, P (0), is P(1) - P(0) = Q(l),in (Ac + B) where A and B are constants that depend on the membrane permeability and geometry (and are given explicitly). Finally, two worked examples are presented to demonstrate how a tissue engineer can use Equation (1) to specify operating conditions for their bioreactor.

  14. Performance assessment of a submerged membrane bioreactor using a novel microbial consortium.

    PubMed

    Chon, Kangmin; Lee, Kyungpyo; Kim, In-Soo; Jang, Am

    2016-06-01

    The performance of a submerged membrane bioreactor (MBR) with and without a novel microbial consortium (NMBR vs. CMBR) was compared to provide deeper insights into the effects of changes in water quality and dissolved organic matter (DOM) characteristics by a novel microbial consortium on the fouling characteristics of MBR processes. Despite similar operating conditions and identical DOM properties in the feed waters, NMBR exhibited a lower propensity to release polysaccharide-like compounds with low molecular weight by bacterial activities compared to CMBR. These compounds have a great fouling potential for MBR processes. Therefore, an increase in the transmembrane pressure (TMP) of NMBR (normalized TMP (TMP/TMP0): 1.14) was much slower and less significant than that observed in CMBR (TMP/TMP0: 2.61). These observations imply that the novel microbial consortium can efficiently mitigate membrane fouling by hydrophilic DOM in MBR processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Production of Hypoallergenic Antibacterial Peptides from Defatted Soybean Meal in Membrane Bioreactor: A Bioprocess Engineering Study with Comprehensive Product Characterization

    PubMed Central

    2017-01-01

    Summary Hypoallergenic antibacterial low-molecular-mass peptides were produced from defatted soybean meal in a membrane bioreactor. In the first step, soybean meal proteins were digested with trypsin in the bioreactor, operated in batch mode. For the tryptic digestion of soybean meal protein, optimum initial soybean meal concentration of 75 g/L, temperature of 40 °C and pH=9.0 were determined. After enzymatic digestion, low-molecular-mass peptides were purified with cross-flow flat sheet membrane (pore size 100 µm) and then with tubular ceramic ultrafiltration membrane (molecular mass cut-off 5 kDa). Effects of transmembrane pressure and the use of a static turbulence promoter to reduce the concentration polarization near the ultrafiltration membrane surface were examined and their positive effects were proven. For the filtration with ultrafiltration membrane, transmembrane pressure of 3·105 Pa with 3-stage discontinuous diafiltration was found optimal. The molecular mass distribution of purified peptides using ultrafiltration membrane was determined by a liquid chromatography–electrospray ionization quadrupole time-of-flight mass spectrometry setup. More than 96% of the peptides (calculated as relative frequency) from the ultrafiltration membrane permeate had the molecular mass M≤1.7 kDa and the highest molecular mass was found to be 3.1 kDa. The decrease of allergenic property due to the tryptic digestion and membrane filtration was determined by an enzyme-linked immunosorbent assay and it was found to exceed 99.9%. It was also found that the peptides purified in the ultrafiltration membrane promoted the growth of Pediococcus acidilactici HA6111-2 and they possessed antibacterial activity against Bacillus cereus. PMID:29089846

  16. Serum-free culture of primary human hepatocytes in a miniaturized hollow-fibre membrane bioreactor for pharmacological in vitro studies.

    PubMed

    Lübberstedt, Marc; Müller-Vieira, Ursula; Biemel, Klaus M; Darnell, Malin; Hoffmann, Stefan A; Knöspel, Fanny; Wönne, Eva C; Knobeloch, Daniel; Nüssler, Andreas K; Gerlach, Jörg C; Andersson, Tommy B; Zeilinger, Katrin

    2015-09-01

    Primary human hepatocytes represent an important cell source for in vitro investigation of hepatic drug metabolism and disposition. In this study, a multi-compartment capillary membrane-based bioreactor technology for three-dimensional (3D) perfusion culture was further developed and miniaturized to a volume of less than 0.5 ml to reduce demand for cells. The miniaturized bioreactor was composed of two capillary layers, each made of alternately arranged oxygen and medium capillaries serving as a 3D culture for the cells. Metabolic activity and stability of primary human hepatocytes was studied in this bioreactor in the presence of 2.5% fetal calf serum (FCS) under serum-free conditions over a culture period of 10 days. The miniaturized bioreactor showed functions comparable to previously reported data for larger variants. Glucose and lactate metabolism, urea production, albumin synthesis and release of intracellular enzymes (AST, ALT, GLDH) showed no significant differences between serum-free and serum-supplemented bioreactors. Activities of human-relevant cytochrome P450 (CYP) isoenzymes (CYP1A2, CYP3A4/5, CYP2C9, CYP2D6, CYP2B6) analyzed by determination of product formation rates from selective probe substrates were also comparable in both groups. Gene expression analysis showed moderately higher expression in the majority of CYP enzymes, transport proteins and enzymes of Phase II metabolism in the serum-free bioreactors compared to those maintained with FCS. In conclusion, the miniaturized bioreactor maintained stable function over the investigated period and thus provides a suitable system for pharmacological studies on primary human hepatocytes under defined serum-free conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Changes in characteristics of soluble microbial products and extracellular polymeric substances in membrane bioreactor coupled with worm reactor: relation to membrane fouling.

    PubMed

    Tian, Yu; Li, Zhipeng; Lu, Yaobin

    2012-10-01

    The study focused on the membrane fouling mitigation observed in a membrane bioreactor (MBR) coupled with worm reactor system. During the operation time of 100 days, the transmembrane pressure (TMP) in the combined system was maintained less than 5 kPa, while the final TMP in the Control-MBR increased to 30 kPa. The changes in properties of soluble microbial products (SMP) and extracellular polymeric substances (EPS) after worm predation were investigated by means of various analytical techniques. It was found that due to the worm predation, the reduced amount of EPS was far more than the increased amount of SMP leading to a significant decrease of protein-like substances which were dominant in the membrane foulants. Except for the content decrease, worm predation destroyed the functional groups of simple aromatic proteins and tryptophan protein-like substances in EPS, making them have lower tendency attaching to the membrane in the combined system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Denitrification of drinking water in a two-stage membrane bioreactor by using immobilized biomass.

    PubMed

    Ravnjak, Matjaž; Vrtovšek, Janez; Pintar, Albin

    2013-01-01

    Nitrate removal from polluted groundwater was investigated in a two-stage anoxic/oxic biofilm membrane bioreactor. The process was carried out with ethanol as a carbon source (corresponding C/N ratio of 1.4-2.5) and commercially available Biocontact-N biocarriers (Nisshinbo, Japan) to enable immobilization of highly efficient and long-lasting microbiota. At a residence time of the liquid phase equal to 2.5h, nitrate conversions higher than 99% were obtained without the formation of nitrite and ammonium ions. The concentration of total organic carbon in the reactor discharge was very similar to the content of organic matter in tap water. The biocarriers minimized the occurrence of suspended filamentous bacteria, and the utilization of increased shear force facilitated collisions of floating biocarrier particles with the outer membrane surface, preventing membrane fouling and resulting in stable operation of the system for 40 days. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Investigation on removal pathways of Di 2-ethyl hexyl phthalate from synthetic municipal wastewater using a submerged membrane bioreactor.

    PubMed

    Zolfaghari, Mehdi; Drogui, Patrick; Seyhi, Brahima; Brar, Satinder Kaur; Buelna, Gerardo; Dubé, Rino; Klai, Nouha

    2015-11-01

    Highly hydrophobic Di 2-ethyl hexyl phthalate (DEHP) is one of the most prevalent plasticizers in wastewaters. Since its half-life in biological treatment is around 25days, it can be used as an efficiency indicator of wastewater treatment plant for the removal of hydrophobic emerging contaminants. In this study, the performance of submerged membrane bioreactor was monitored to understand the effect of DEHP on the growth of aerobic microorganisms. The data showed that the chemical oxygen demand (COD) and ammonia concentration were detected below 10 and 1.0mg/L, respectively for operating conditions of hydraulic retention time (HRT)=4 and 6hr, sludge retention time (SRT)=140day and sludge concentration between 11.5 and 15.8g volatile solid (VS)/L. The removal efficiency of DEHP under these conditions was higher and ranged between 91% and 98%. Results also showed that the removal efficiency of DEHP in biological treatment depended on the concentration of sludge, as adsorption is the main mechanism of its removal. For the submerged membrane bioreactor, the pore size is the pivotal factor for DEHP removal, since it determines the amount of soluble microbial products coming out of the process. Highly assimilated microorganisms increase the biodegradation rate, as 74% of inlet DEHP was biodegraded; however, the concentration of DEHP inside sludge was beyond the discharge limit. Understanding the fate of DEHP in membrane bioreactor, which is one of the most promising and futuristic treatment process could provide replacement for conventional processes to satisfy the future stricter regulations on emerging contaminants. Copyright © 2015. Published by Elsevier B.V.

  20. Cost effective and advanced phosphorus removal in membrane bioreactors for a decentralised wastewater technology.

    PubMed

    Gnirss, R; Lesjean, B; Adam, C; Buisson, H

    2003-01-01

    Future stringent phosphorus regulations (down to 50 microg/L in some cases) together with the availability of more cost effective and/or innovative membrane processes, are the bases for this project. In contrast to conventional activated sludge plants, process parameters are not optimised and especially enhanced biological phosphorus (Bio-P) removal in membrane bioreactors (MBRs) are not proven yet. Current practice of P-removal in MBRs is the addition of coagulants in a co-precipitation mode. Enhanced biological phosphorus removal, when adapted to MBR technology, might be a cost-effective process. For very stringent effluent criteria additional P-adsorption on activated clay after membrane filtration can be also an interesting solution. The objective of this research project is to identify and test various phosphorus removal processes or process combinations, including MBR technologies. This should enable us to establish efficient and cost effective P-removal strategies for upgrading small sewage treatment units (up to 10,000 PE), as needed in some decentralised areas of Berlin. In particular, enhanced Bio-P removal technology was developed and optimised in MBR. Combinations of co-precipitation and post-adsorption will be tested when low P-values down to 50 microg/L are required in the effluent. One MBR bench-scale plant of 200 to 250 L and two MBR pilot plants of 1 to 3 m3 each were operated in parallel to a conventional wastewater treatment plant (Ruhleben WWTP, Berlin, Germany). The MBR bench-scale and pilot plants were operated under sludge ages of respectively 15 and 25 days. In both cases, Bio-P was possible, and phosphorus effluent concentration of about 0.1 mg/L could be achieved. A similar effluent quality was observed with the conventional WWTP. Investigations with lab columns indicated that P-adsorption could lead to concentrations down to 50 microg/L and no particle accumulation occurred in the filter media. The three tested materials exhibited great

  1. Energy consumption in terms of shear stress for two types of membrane bioreactors used for municipal wastewater treatment processes

    NASA Astrophysics Data System (ADS)

    Ratkovich, Nicolas; Bentzen, Thomas R.; Rasmussen, Michael R.

    2012-10-01

    Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power and the blower power demand per unit of permeate volume. Results showed that for the system geometries considered, in terms the of the blower power, the HF MBR requires less power compared to HS MBR. However, in terms of blower power per unit of permeate volume, the HS MBR requires less energy. The analysis of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved to be overestimated by 28% compared to experimental measurements and CFD results. Therefore, a corrective factor is included in the relationship in order to account for the membrane placed inside the bioreactor.

  2. Bioreactor and process design for biohydrogen production.

    PubMed

    Show, Kuan-Yeow; Lee, Duu-Jong; Chang, Jo-Shu

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong

    2016-05-01

    In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater.

    PubMed

    Couto, Carolina Fonseca; Marques, Larissa Silva; Balmant, Janine; de Oliveira Maia, Andreza Penido; Moravia, Wagner Guadagnin; Santos Amaral, Miriam Cristina

    2018-03-01

    This work investigates the application of a microfiltration (MF)-membrane bioreactor (MBR) hybrid process for textile dyeing process wastewater reclamation. The indigo blue dye was efficiently retained by the MF membrane (100%), which allows its recovery from the concentrate stream. MF promotes 100% of colour removal, and reduces the chemical oxygen demand (COD) and conductivity by about 65% and 25%, respectively, and improves the wastewater biodegradability. MF flux decline was mostly attributed to concentration polarization and the chemical cleaning was efficient enough to recover initial hydraulic resistance. The MBR provides to be a stable process maintaining its COD and ammonia removal efficiency (73% and 100%, respectively) mostly constant throughout and producing a permeate that meets the reuse criteria for some industry activities, such as washing-off and equipment washdown. The use of an MF or ultrafiltration (UF) membrane in the MBR does not impact the MBR performance in terms of COD removal. Although the membrane of MBR-UF shows permeability lower than MBR-MF membrane, the UF membrane contributes to a more stable operation in terms of permeability.

  5. In Situ Bioreactor

    ScienceCinema

    Blackwelder, Brad

    2018-05-11

    At Idaho National Laboratory, researchers have developed bioreactor technology that permits identification, bioremediation testing and treatment at the source using naturally occurring microbes to disarm contaminants.

  6. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters.

    PubMed

    Hua, Guanghui; Salo, Morgan W; Schmit, Christopher G; Hay, Christopher H

    2016-10-01

    Woodchip bioreactors have been increasingly used as an edge-of-field treatment technology to reduce the nitrate loadings to surface waters from agricultural subsurface drainage. Recent studies have shown that subsurface drainage can also contribute substantially to the loss of phosphate from agricultural soils. The objective of this study was to investigate nitrate and phosphate removal in subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. The woodchip bioreactor demonstrated average nitrate removal efficiencies of 53.5-100% and removal rates of 10.1-21.6 g N/m(3)/d for an influent concentration of 20 mg N/L and hydraulic retention times (HRTs) of 6-24 h. When the influent nitrate concentration increased to 50 mg N/L, the bioreactor nitrate removal efficiency and rate averaged 75% and 18.9 g N/m(3)/d at an HRT of 24 h. Nitrate removal by the woodchips followed zero-order kinetics with rate constants of 1.42-1.80 mg N/L/h when nitrate was non-limiting. The steel byproduct filter effectively removed phosphate in the bioreactor effluent and the total phosphate adsorption capacity was 3.70 mg P/g under continuous flow conditions. Nitrite accumulation occurred in the woodchip bioreactor and the effluent nitrite concentrations increased with decreasing HRTs and increasing influent nitrate concentrations. The steel byproduct filter efficiently reduced the level of nitrite in the bioreactor effluent. Overall, the results of this study suggest that woodchip denitrification followed by steel byproduct filtration is an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Published by Elsevier Ltd.

  7. Influence of fermentation liquid from waste activated sludge on anoxic/oxic- membrane bioreactor performance: Nitrogen removal, membrane fouling and microbial community.

    PubMed

    Han, Xiaomeng; Zhou, Zhen; Mei, Xiaojie; Ma, Yan; Xie, Zhenfang

    2018-02-01

    In order to investigate effects of waste activated sludge (WAS) fermentation liquid on anoxic/oxic- membrane bioreactor (A/O-MBR), two A/O-MBRs with and without WAS fermentation liquid addition were operated in parallel. Results show that addition of WAS fermentation liquid clearly improved denitrification efficiency without deterioration of nitrification, while severe membrane fouling occurred. WAS fermentation liquid resulted in an elevated production of proteins and humic acids in bound extracellular polymeric substance (EPS) and release of organic matter with high MW fractions in soluble microbial product (SMP) and loosely bound EPS (LB-EPS). Measurement of deposition rate and fluid structure confirmed increased fouling potential of SMP and LB-EPS. γ-Proteobacteria and Ferruginibacter, which can secrete and export EPS, were also found to be abundant in the MBR with WAS fermentation liquid. It is implied that when WAS fermentation liquid was applied, some operational steps to control membrane fouling should be employed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    PubMed

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  9. Energy-positive food wastewater treatment using an anaerobic membrane bioreactor (AnMBR).

    PubMed

    Galib, Mohamed; Elbeshbishy, Elsayed; Reid, Robertson; Hussain, Abid; Lee, Hyung-Sool

    2016-11-01

    An immersed-membrane anaerobic membrane bioreactor (AnMBR) achieved 88-95% of COD removal for meat-processing wastewater at organic loading rate (OLR) of 0.4-3.2 kgCOD m(-3) d(-1). Membrane flux was stable for low OLR (0.4 and 1.3 kgCOD m(-3) d(-1)), but irrecoverable fouling occurred at high OLR of 3.2 kgCOD m(-3) d(-1). Methane gas yield of 0.13-0.18 LCH4 g(-1)CODremoved was obtained, which accounted for 33-38% of input COD, the most significant electron sink. Dissolved methane was only 3.4-11% of input COD and consistently over-saturated at all OLR conditions. The least accumulation of dissolved methane (25 mg L(-1) and saturation index 1.3) was found for the highest OLR of 3.2 kgCOD m(-3) d(-1) where biogas production rate was the highest. Energy balances showed that AnMBR produced net energy benefit of 0.16-1.82 kWh m(-3), indicating the possibility of energy-positive food wastewater treatment using AnMBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Insight into the effect of organic and inorganic draw solutes on the flux stability and sludge characteristics in the osmotic membrane bioreactor.

    PubMed

    Siddique, Muhammad Saboor; Khan, Sher Jamal; Shahzad, Muhammad Aamir; Nawaz, Muhammad Saqib; Hankins, Nicholas P

    2018-02-01

    In this study, chloride based (CaCl 2 and MgCl 2 ) and acetate based (NaOAc and MgOAc) salts in comparison with NaCl were investigated as draw solutions (DS) to evaluate their viability in the osmotic membrane bioreactor (OMBR). Membrane distillation was coupled with an OMBR setup to develop a hybrid OMBR-MD system, for the production of clean water and DS recovery. Results demonstrate that organic DS were able to mitigate the salinity buildup in the bioreactor as compared to inorganic salts. Prolonged filtration runs were observed with MgCl 2 and MgOAc in contrast with other draw solutes at the same molar concentration. Significant membrane fouling was observed with NaOAc while rapid flux decline due to increased salinity build-up was witnessed with NaCl and CaCl 2 . Improved characteristics of mixed liquor in terms of sludge filterability, particle size, and biomass growth along with the degradation of soluble microbial products (SMP) were found with organic DS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Corn forage biological pretreatment by Trametes versicolor in a tray bioreactor.

    PubMed

    Planinić, Mirela; Zelić, Bruno; Čubel, Ivan; Bucić-Kojić, Ana; Tišma, Marina

    2016-08-01

    Trametes versicolor is a white-rot fungus known to be efficient in lignin removal due to its complex extracellular lignocellulolytic enzymatic system. Therefore, it can be used in the treatment of lignocellulose waste from agro, food, and wood industries. In a first experiment, corn forage treatment with T. versicolor was investigated in laboratory jars. In a second experiment, the process was scaled up to a tray bioreactor. In the tray bioreactor, the process of lignin degradation was improved, resulting in an increase in lignin conversion of up to 71% during seven days' treatment. © The Author(s) 2016.

  12. Submerged membrane adsorption bioreactor as a pretreatment in seawater desalination for biofouling control.

    PubMed

    Jeong, Sanghyun; Naidu, Gayathri; Vigneswaran, Saravanamuthu

    2013-08-01

    Submerged membrane adsorption bioreactor (SMABR) was investigated as a pretreatment to reverse osmosis (RO). SMABR removed organic matter by adsorption and biological degradation. At a powder activated carbon (PAC) residence time of 66 d (1.5% of PAC replacement daily), higher organic removal was achieved with removal of a majority of biopolymers (94-97%) and humics (71-76%). A continuous MBR operation with the optimal PAC residence time of 66 d was conducted and compared with MBR with no PAC replenishment in terms of the removal of organic and microbes. High removal of organics of up to 72% was maintained with only a marginal increment of trans-membrane pressure and stable bioactivity (total cell number and adenosine tri-phosphate) during the 50d of operation. The SMABR was found to be a sustainable biological pretreatment to RO with only a small amount of PAC requirement (2.14 g of PAC/m(3) of seawater treated). Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Removal characteristics of pharmaceuticals and personal care products: Comparison between membrane bioreactor and various biological treatment processes.

    PubMed

    Park, Junwon; Yamashita, Naoyuki; Park, Chulhwi; Shimono, Tatsumi; Takeuchi, Daniel M; Tanaka, Hiroaki

    2017-07-01

    We investigated the concentrations of 57 target compounds in the different treatment units of various biological treatment processes in South Korea, including modified biological nutrient removal (BNR), anaerobic-anoxic-aerobic (A2O), and membrane bioreactor (MBR) systems, to elucidate the occurrence and removal fates of PPCPs in WWTPs. Biological treatment processes appeared to be most effective in eliminating most PPCPs, whereas some PPCPs were additionally removed by post-treatment. With the exception of the MBR process, the A2O system was effective for PPCPs removal. As a result, removal mechanisms were evaluated by calculating the mass balances in A2O and a lab-scale MBR process. The comparative study demonstrated that biodegradation was largely responsible for the improved removal performance found in lab-scale MBR (e.g., in removing bezafibrate, ketoprofen, and atenolol). Triclocarban, ciprofloxacin, levofloxacin and tetracycline were adsorbed in large amounts to MBR sludge. Increased biodegradability was also observed in lab-scale MBR, despite the highly adsorbable characteristics. The enhanced biodegradation potential seen in the MBR process thus likely plays a key role in eliminating highly adsorbable compounds as well as non-degradable or persistent PPCPs in other biological treatment processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [A Comparative Study on Two Membrane Bioreactors for the Treatment of Digested Piggery Wastewater].

    PubMed

    Shui, Yong; Kawagishi, Tomoki; Song, Xiao-yan; Liu, Rui; Chen, Lü-jun

    2015-09-01

    With high concentrations of chemical oxygen demand (COD) and ammonium while low ratio of COD to total nitrogen (TN), digested piggery wastewater is difficult to treat using conventional biological methods. In this study, a biofilm membrane bioreactor (BF-MBR) and a traditional type of membrane bioreactor (MBR) were parallel operated to treat digested piggery wastewater, and the pollutant removal performance were compared at influent COD/TN ratios of 1. 0 ± 0. 2 and 2. 3 ± 0. 4, respectively. The results showed that the effluent quality in both reactors was poor and unstable when the influent COD/TN ratio was 1. 0 ± 0. 2. The effluent quality and stability were greatly improved as the influent COD/TN ratio was increased to 2. 3 ± 0. 4. The removal rates of COD and ammonium were respectively 92. 3% ± 2. 4% and 97. 5% ± 4. 1% in BF-MBR, slightly higher than 91. 9% ± 1. 5% and 91. 2% ± 14. 0% in MBR. Benefited from the biofilm, 36. 7% ± 19. 5% of TN and 54. 0% ± 18. 9% of TP were removed by BF-MBR, significantly higher than the respective values of 19. 2% ± 12. 4% and 29. 0% ± 18. 1% by MBR. Moreover, BF-MBR consumed less than 40% of the alkaline chemicals as MBR. BF-MBR was considered more suitable for treatment of digested piggery wastewater due to its better pollutant removal performance and low consumption of alkaline.

  15. Key process parameters involved in the treatment of olive mill wastewater by membrane bioreactor.

    PubMed

    Jaouad, Y; Villain-Gambier, M; Mandi, L; Marrot, B; Ouazzani, N

    2018-04-18

    The Olive Mill Wastewater (OMWW) biodegradation in an external ceramic membrane bioreactor (MBR) was investigated with a starting acclimation step with a Ultrafiltration (UF) membrane (150 kDa) and no sludge discharge in order to develop a specific biomass adapted to OMWW biodegradation. After acclimation step, UF was replaced by an Microfiltration (MF) membrane (0.1 µm). Sludge Retention Time (SRT) was set around 25 days and Food to Microorganisms ratio (F/M) was fixed at 0.2 kg COD  kg MLVSS -1  d -1 . At stable state, removal of the main phenolic compounds (hydroxytyrosol and tyrosol) and Chemical Oxygen Demand (COD) were successfully reached (95% both). Considered as a predominant fouling factor, but never quantified in MBR treated OMWW, Soluble Microbial Products (SMP) proteins, polysaccharides and humic substances concentrations were determined (80, 110 and 360 mg L -1 respectively). At the same time, fouling was easily managed due to favourable hydraulic conditions of external ceramic MBR. Therefore, OMWW could be efficiently and durably treated by an MF MBR process under adapted operating parameters.

  16. Effect of operating conditions in production of diagnostic Salmonella Enteritidis O-antigen-specific monoclonal antibody in different bioreactor systems.

    PubMed

    Ayyildiz-Tamis, Duygu; Nalbantsoy, Ayse; Elibol, Murat; Deliloglu-Gurhan, Saime Ismet

    2014-01-01

    In this study, different cultivation systems such as roller bottles (RB), 5-L stirred-tank bioreactor (STR), and disposable bioreactors were used to cultivate hybridoma for lab-scale production of Salmonella Enteritidis O-antigen-specific monoclonal antibody (MAb). Hybridoma cell line was cultivated in either serum-containing or serum-free medium (SFM) culture conditions. In STR, MAb production scaled up to 4 L, and production capabilities of the cells were also evaluated in different featured production systems. Moreover, the growth parameters of the cells in all production systems such as glucose consumption, lactate and ammonia production, and also MAb productivities were determined. Collected supernatants from the reactors were concentrated by a cross-flow filtration system. In conclusion, cells were not adapted to SFM in RB and STR. Therefore, less MAb titer in both STR and RB systems with SFM was observed compared to the cultures containing fetal bovine serum-supplemented medium. A higher MAb titer was gained in the membrane-aerated system compared to those in STR and RB. Although the highest MAb titer was obtained in the static membrane bioreactor system, the highest productivity was obtained in STR operated in semicontinuous mode with overlay aeration.

  17. Aggregation of Culture Expanded Human Mesenchymal Stem Cells in Microcarrier-based Bioreactor.

    PubMed

    Yuan, Xuegang; Tsai, Ang-Chen; Farrance, Iain; Rowley, Jon; Ma, Teng

    2018-03-15

    Three-dimensional aggregation of human mesenchymal stem cells (hMSCs) has been used to enhance their therapeutic properties but current fabrication protocols depend on laboratory methods and are not scalable. In this study, we developed thermal responsive poly(N-isopropylacrylamide) grafted microcarriers (PNIPAM-MCs), which supported expansion and thermal detachment of hMSCs at reduced temperature (23.0 °C). hMSCs were cultured on the PNIPAM-MCs in both spinner flask (SF) and PBS Vertical-Wheel (PBS-VW) bioreactors for expansion. At room temperature, hMSCs were detached as small cell sheets, which subsequently self-assembled into 3D hMSC aggregates in PBS-VW bioreactor and remain as single cells in SF bioreactor owing to different hydrodynamic conditions. hMSC aggregates generated from the bioreactor maintained comparable immunomodulation and cytokine secretion properties compared to the ones made from the AggreWell ® . The results of the current study demonstrate the feasibility of scale-up production of hMSC aggregates in the suspension bioreactor using thermal responsive microcarriers for integrated cell expansion and 3D aggregation in a close bioreactor system and highlight the critical role of hydrodynamics in self-assembly of detached hMSC in suspension.

  18. Effects of sludge concentrations and different sponge configurations on the performance of a sponge-submerged membrane bioreactor.

    PubMed

    Nguyen, Tien Thanh; Ngo, Huu Hao; Guo, Wenshan; Li, Jianxin; Listowski, Andrzej

    2012-07-01

    The performance of a novel sponge-submerged membrane bioreactor (SSMBR) was evaluated to treat primary treated sewage effluent at three different activated sludge concentrations. Polyurethane sponge cubes with size of 1 × 1 × 1 cm were used as attached growth media in the bioreactor. The results indicated the successful removal of organic carbon and phosphorous with the efficiency higher than 98% at all conditions. Acclimatised sponge MBR showed about 5% better ammonia nitrogen removal at 5 and 10 g/L sludge concentration as compared to the new sponge system. The respiration test revealed that the specific oxygen uptake rate was around 1.0-3.5 mgO(2)/gVSS.h and likely more stable at 10 g/L sludge concentration. The sludge volume index of less than 100 mL/g during the operation indicated the good settling property of the sludge. The low mixed liquor suspended solid increase indicated that SSMBR could control the sludge production. This SSMBR was also successful in reducing membrane fouling with significant lower transmembrane pressure (e.g. only 0.5 kPa/day) compared to the conventional MBR system. Further study will be conducted to optimise other operating conditions.

  19. [Feasibility study on coke wastewater treatment using membrane bioreactor (MBR) system with complete sludge retention].

    PubMed

    Zhao, Wen-Tao; Huang, Xia; Lee, Duu-Jong; He, Miao; Yuan, Yuan

    2009-11-01

    A laboratory-scale submerged anaerobic-anoxic-oxic membrane bioreactor (A1/A2/O-MBR) system was used to treat real coke wastewater and operated continuously for 160 d with complete sludge retention. Pollutants removal performance of the system was investigated through long-term operation. The characteristics of dissolved organic matters (DOMs) in influent and effluent coke wastewater were analyzed using hydrophilic/hydrophobic fractionation, and further discussed based on fluorescence excitation-emission-matrix (EEM). The results showed that A1/A2/O-MBR system could stably remove 88.0% +/- 1.6% of COD, > 99.9% of volatile phenol, 99.4% +/- 0.2% of turbidity, and 98.3% +/- 1.9% of NH4(+) -N, with individual average effluent concentrations of 249 mg/L +/- 44 mg/L, 0.18 mg/L +/- 0.05 mg/L, 1.0 NTU +/- 0.2 NTU and 4.1 mg/L +/- 4.3 mg/L, respectively; moreover, the maximum TN removal rate also reached 74.9%. During the whole operation period, the MLVSS/MLSS appeared to be constant as 90.2% +/- 1.0% and no inorganic matters accumulation occurred. The observed sludge production (MLVSS/COD) decreased with time and stabilized at 0.035 kg/kg. DOMs in coke wastewater were fractionated as hydrophobic acids (HOA), hydrophobic neutrals (HON), hydrophobic bases (HOB) and hydrophilic substances (HIS); HOA was found to be the most abundant constituent in terms of DOC and color intensity both in influent and effluent, which accounted for 70% and 67% of total DOC, and 75% and 76% of total color intensity, respectively. Humic-like substances were suggested to be the major refractory organic and color-causing compounds coke wastewater effluent according to EEM analysis.

  20. Nitrifying biomass characterization and monitoring during bioaugmentation in a membrane bioreactor.

    PubMed

    D'Anteo, Sibilla; Mannucci, Alberto; Meliani, Matteo; Verni, Franco; Petroni, Giulio; Munz, Giulio; Lubello, Claudio; Mori, Gualtiero; Vannini, Claudia

    2015-01-01

    A membrane bioreactor (MBR), fed with domestic wastewater, was bioaugmented with nitrifying biomass selected in a side-stream MBR fed with a synthetic high nitrogen-loaded influent. Microbial communities evolution was monitored and comparatively analysed through an extensive bio-molecular investigation (16S rRNA gene library construction and terminal-restriction fragment length polymorphism techniques) followed by statistical analyses. As expected, a highly specialized nitrifying biomass was selected in the side-stream reactor fed with high-strength ammonia synthetic wastewater. The bioaugmentation process caused an increase of nitrifying bacteria of the genera Nitrosomonas (up to more than 30%) and Nitrobacter in the inoculated MBR reactor. The overall structure of the microbial community changed in the mainstream MBR as a result of bioaugmentation. The effect of bioaugmentation in the shift of the microbial community was also verified through statistical analysis.

  1. Farm Deployable Microbial Bioreactor for Fuel Ethanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okeke, Benedict

    Research was conducted to develop a farm and field deployable microbial bioreactor for bioethanol production from biomass. Experiments were conducted to select the most efficient microorganisms for conversion of plant fiber to sugars for fermentation to ethanol. Mixtures of biomass and surface soil samples were collected from selected sites in Alabama black belt counties (Macon, Sumter, Choctaw, Dallas, Montgomery, Lowndes) and other areas within the state of Alabama. Experiments were conducted to determine the effects of culture parameters on key biomass saccharifying enzymes (cellulase, beta-glucosidase, xylanase and beta-xylosidase). A wide-scale sampling of locally-grown fruits in Central Alabama was embarked tomore » isolate potential xylose fermenting microorganisms. Yeast isolates were evaluated for xylose fermentation. Selected microorganisms were characterized by DNA based methods. Factors affecting enzyme production and biomass saccharification were examined and optimized in the laboratory. Methods of biomass pretreatment were compared. Co-production of amylolytic enzymes with celluloytic-xylanolytic enzymes was evaluated; and co-saccharification of a combination of biomass, and starch-rich materials was examined. Simultaneous saccharification and fermentation with and without pre-saccharifcation was studied. Whole culture broth and filtered culture broth simultaneous saccahrifcation and fermentation were compared. A bioreactor system was designed and constructed to employ laboratory results for scale up of biomass saccharification.« less

  2. Linking hydrolytic activities to variables influencing a submerged membrane bioreactor (MBR) treating urban wastewater under real operating conditions.

    PubMed

    Gómez-Silván, C; Arévalo, J; Pérez, J; González-López, J; Rodelas, B

    2013-01-01

    The seasonal variation of the hydrolytic activities acid and alkaline phosphatase, α-glucosidase and protease, was studied in both the aerated and anoxic phases of a full-scale membrane bioreactor (MBR) (total operational volume = 28.2 m(3)), operated in pre-denitrification mode and fed real urban wastewater. Non-metric multidimensional scaling (MDS) and BIO-ENV analysis were used to study the distribution of enzyme activities in different seasons of the year (spring, summer and autumn) and unveil their relationships with changes in variables influencing the system (composition of influent wastewater, activated sludge temperature and biomass concentration in the bioreactors). The activities of all the tested hydrolases were remarkably dynamic, and each enzyme showed complex and diverse patterns of variation. Except in the summer season, the variables included in this study gave a good explanation of those patterns and displayed high and consistent correlations with them; however, markedly different correlation trends were found in each season, indicating dissimilar adaptation responses of the community to the influence of changing conditions. A consistent and highly negative correlation between protease and α-glucosidase was revealed in all the experiments. The variables included in this study showed contrary influences on these activities, suggesting an alternation of the major groups of carbon-degrading hydrolases in connection to changes in temperature and the availability and composition of nutrients in the different seasons. Sampling over a long period of time was required to adequately lay down the links between hydrolytic activities and the variables influencing the MBR system. These results highlight the complexity of the regulation of substrate degradation by the mixed microbial sludge communities under real operating conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Succession of biofilm communities responsible for biofouling of membrane bio-reactors (MBRs)

    PubMed Central

    Luo, Jinxue; Lv, Pengyi; Zhang, Jinsong; Fane, Anthony G.; McDougald, Diane

    2017-01-01

    Biofilm formation is one of the main factors associated with membrane biofouling in membrane bioreactors (MBRs). As such, it is important to identify the responsible organisms to develop targeted strategies to control biofouling. This study investigated the composition and changes in the microbial communities fouling MBR membranes over time and correlated those changes with an increase in transmembrane pressure (TMP). Based on qPCR data, bacteria were the dominant taxa of the biofilm (92.9–98.4%) relative to fungi (1.5–6.9%) and archaea (0.03–0.07%). NMDS analysis indicated that during the initial stages of operation, the biofilm communities were indistinguishable from those found in the sludge. However, the biofilm community significantly diverged from the sludge over time and ultimately showed a unique biofilm profile. This suggested that there was strong selection for a group of organisms that were biofilm specialists. This pattern of succession and selection was correlated with the rapid increase in TMP, where bacteria including Rhodospirillales, Sphingomonadales and Rhizobiales dominated the biofilm at this time. While most of the identified fungal OTUs matched Candida sp., the majority of fungal communities were unclassified by 18S rRNA gene sequencing. Collectively, the data suggests that bacteria, primarily, along with fungi may play an important role in the rapid TMP increase and loss of system performance. PMID:28686622

  4. Molecular diversity of mesophilic and thermophilic bacteria in a membrane bioreactor determined by fluorescent in situ hybridization with mxaF- and rRNA-targeted probes.

    PubMed

    Dias, João Carlos T; Silva, Cláudio M; Mounteer, Ann H; Passos, Flavia M L; Linardi, Valter R

    2003-01-01

    An evaluation of the efficiency of treatment of kraft mill foul condensates in a membrane bioreactor was carried out in the laboratory. Efficiency and rate of methanol removal were quantified at operating temperatures of 35, 45 and 55 degrees C. The structure of the bacterial community present in the reactor biomass at the different operating temperatures was evaluated by in situ hybridization of the biomass samples with fluorescently-labelled probes (FISH) targeting the Eubacteria, the alpha, beta and gamma subclasses of the Proteobacteria, the low G + C content Gram-positive bacteria (Bacillus spp.), while community function was evaluated by in situ hybridization with a methanol dehydrogenase gene (mxaF) probe. Methanol removal efficiency decreased from 99.4 to 92%, and removal rate from 2.69 mg MeOH/l x min to 2.49 mg MeOH/l x min when the operating temperature was increased from 35 to 55 degrees C. This decrease in methanol removal was accompanied by a decrease (from 58% to 42%) in the relative proportion of cells that hybridized with the mxaF probe. The relative proportion of Bacillus spp. increased from 5 to 20% while the proportion of members of the alpha subclass of Proteobacteria decreased from 16% to 6% when the bioreactor operating temperature was raised from 35 to 55 degrees C. The relative proportions of bacteria belonging to the beta (22-25%) and gamma (18-20%) subclasses of the Proteobacteria remained relatively constant regardless of operating temperature. Proteobacteria (alpha, beta and gamma subclasses) and Bacillus spp. represented 61, 67 and 71% of the Eubacteria in the biomass sampled at 35, 45 and 55 degrees C, respectively. The FISH technique was shown to be an efficient method for detection of both structural and functional changes in the bacterial communities that could be related to efficiency of methanol removal in a membrane bioreactor operating at different temperatures.

  5. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation - A critical review.

    PubMed

    Skouteris, George; Saroj, Devendra; Melidis, Paraschos; Hai, Faisal I; Ouki, Sabèha

    2015-06-01

    This review concentrates on the effect of activated carbon (AC) addition to membrane bioreactors (MBRs) treating wastewaters. Use of AC-assisted MBRs combines adsorption, biodegradation and membrane filtration. This can lead to advanced removal of recalcitrant pollutants and mitigation of membrane fouling. The relative contribution of adsorption and biodegradation to overall removal achieved by an AC-assisted MBR process can vary, and "biological AC" may not fully develop due to competition of target pollutants with bulk organics in wastewater. Thus periodic replenishment of spent AC is necessary. Sludge retention time (SRT) governs the frequency of spent AC withdrawal and addition of fresh AC, and is an important parameter that significantly influences the performance of AC-assisted MBRs. Of utmost importance is AC dosage because AC overdose may aggravate membrane fouling, increase sludge viscosity, impair mass transfer and reduce sludge dewaterability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Evaluation of a long-term operation of a submerged nanofiltration membrane bioreactor (NF MBR) for advanced wastewater treatment.

    PubMed

    Choi, J H; Fukushi, K; Ng, H Y; Yamamoto, K

    2006-01-01

    Nanofiltration (NF) is considered as one of the most promising separation technologies to obtain a very good-quality permeate in water and wastewater treatment. A submerged NF membrane bioreactor (NF MBR) using polyamide membranes was tested for a long-term operation and the performance of the NF MBR was compared with that of a microfiltration MBR (MF MBR). Total organic carbon (TOC) concentration in the permeate of the NF MBR ranged from 0.5 to 2.0 mg/L, whereas that of the MF MBR showed an average of 5 mg/L. This could be explained by the tightness of the NF membrane. Although the concentration of organic matter in the supernatant of the NF MBR was higher than that in the permeate due to high rejection by the NF membrane, the NF MBR showed excellent treatment efficiency and satisfactory operational stability for a long-term operation.

  7. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply.

    PubMed

    Schmidt, Radomir; Klemme, David A; Scow, Kate; Hristova, Krassimira

    2012-03-30

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, Escherichia coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale.

    PubMed

    Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen

    2013-12-02

    Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

  9. Construction and Characterization of a Novel Vocal Fold Bioreactor

    PubMed Central

    Zerdoum, Aidan B.; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-01-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues. PMID:25145349

  10. Construction and characterization of a novel vocal fold bioreactor.

    PubMed

    Zerdoum, Aidan B; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-08-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.

  11. Two-liquid-phase bioreactors.

    PubMed

    Van Sonsbeek, H M; Beeftink, H H; Tramper, J

    1993-09-01

    The application of two liquid phases that are poorly miscible is a fascinating research topic for biocatalytical conversions because of the promising results. Motives for application include an increase of productivity and achievement of continuous processing, but new limitations arise, e.g., interfacial effects such as biocatalyst accumulation and loss of activity, medium component accumulation, and slow coalescence. Centrifuges, membranes, and immobilization are tools that can overcome part of the problems, but more fundamental knowledge about interfaces and coalescence is still necessary for successful application. For scaleup and further development of processes based on the obtained results, a choice must be made for the configuration of the experimental setup of a bioreactor. Aspects like aeration, shear stress, batch or continuous processing, and immobilization can play an important role. This review article describes these aspects and the proposals that have been made in recent years concerning two-liquid-phase bioreactors. It shows some adaptations to existing bioreactors, such as loop reactors and stirred-tank reactors.

  12. Scaling down of a clinical three-dimensional perfusion multicompartment hollow fiber liver bioreactor developed for extracorporeal liver support to an analytical scale device useful for hepatic pharmacological in vitro studies.

    PubMed

    Zeilinger, Katrin; Schreiter, Thomas; Darnell, Malin; Söderdahl, Therese; Lübberstedt, Marc; Dillner, Birgitta; Knobeloch, Daniel; Nüssler, Andreas K; Gerlach, Jörg C; Andersson, Tommy B

    2011-05-01

    Within the scope of developing an in vitro culture model for pharmacological research on human liver functions, a three-dimensional multicompartment hollow fiber bioreactor proven to function as a clinical extracorporeal liver support system was scaled down in two steps from 800 mL to 8 mL and 2 mL bioreactors. Primary human liver cells cultured over 14 days in 800, 8, or 2 mL bioreactors exhibited comparable time-course profiles for most of the metabolic parameters in the different bioreactor size variants. Major drug-metabolizing cytochrome P450 activities analyzed in the 2 mL bioreactor were preserved over up to 23 days. Immunohistochemical studies revealed tissue-like structures of parenchymal and nonparenchymal cells in the miniaturized bioreactor, indicating physiological reorganization of the cells. Moreover, the canalicular transporters multidrug-resistance-associated protein 2, multidrug-resistance protein 1 (P-glycoprotein), and breast cancer resistance protein showed a similar distribution pattern to that found in human liver tissue. In conclusion, the down-scaled multicompartment hollow fiber technology allows stable maintenance of primary human liver cells and provides an innovative tool for pharmacological and kinetic studies of hepatic functions with small cell numbers.

  13. Treatment of wastewater containing phenol using a tubular ceramic membrane bioreactor.

    PubMed

    Ersu, C B; Ong, S K

    2008-02-01

    The performance of a membrane bioreactor (MBR) with a tubular ceramic membrane for phenol removal was evaluated under varying hydraulic retention times (HRT) and a fixed sludge residence time (SRT) of 30 days. The tubular ceramic membrane was operated with a mode of 15 minutes of filtration followed by 15 seconds of permeate backwashing at a flux of 250 l m(-2)hr(-1) along with an extended backwashing of 30 seconds every 3 hours of operation, which maintained the transmembrane pressure (TMP) below 100 kPa. Using a simulated municipal wastewater with varying phenol concentrations, the chemical oxygen demand (COD) and phenol removals observed were greater than 88% with excellent suspended solids (SS) removal of 100% at low phenol concentrations (approx. 100 mg l(-1) of phenol). Step increases in phenol concentration showed that inhibition was observed between 600 to 800 mg l(-1) of phenol with decreased sludge production rate, mixed liquor suspended solids (MLSS) concentration, and removal performance. The sludge volume index (SVI) of the biomass increased to about 450 ml g(-1) for a phenol input concentration of 800 mg l(-1). When the phenol concentration was decreased to 100 mg l(-1), the ceramic tubular MBR was found to recover rapidly indicating that the MBR is a robust system retaining most of the biomass. Experimental runs using wastewater containing phenol indicated that the MBR can be operated safely without upsets for concentrations up to 600 mg l(-1) of phenol at 2-4 hours HRT and 30 days SRT.

  14. Biohybrid Membrane Systems and Bioreactors as Tools for In Vitro Drug Testing.

    PubMed

    Salerno, Simona; Bartolo, Loredana De

    2017-01-01

    In drug development, in vitro human model systems are absolutely essential prior to the clinical trials, considering the increasing number of chemical compounds in need of testing, and, keeping in mind that animals cannot predict all the adverse human health effects and reactions, due to the species-specific differences in metabolic pathways. The liver plays a central role in the clearance and biotransformation of chemicals and xenobiotics. In vitro liver model systems by using highly differentiated human cells could have a great impact in preclinical trials. Membrane biohybrid systems constituted of human hepatocytes and micro- and nano-structured membranes, represent valuable tools for studying drug metabolism and toxicity. Membranes act as an extracellular matrix for the adhesion of hepatocytes, and compartmentalise them in a well-defined physical and chemical microenvironment with high selectivity. Advanced 3-D tissue cultures are furthermore achieved by using membrane bioreactors (MBR), which ensure the continuous perfusion of cells protecting them from shear stress. MBRs with different configurations allow the culturing of cells at high density and under closely monitored high perfusion, similarly to the natural liver. These devices that promote the long-term maintenance and differentiation of primary human hepatocytes with preserved liver specific functions can be employed in drug testing for prolonged exposure to chemical compounds and for assessing repeated-dose toxicity. The use of primary human hepatocytes in MBRs is the only system providing a faster and more cost-effective method of analysis for the prediction of in vitro human drug metabolism and enzyme induction alternative and/or complementary to the animal experimentation. In this paper, in vitro models for studying drug metabolism and toxicity as advanced biohybrid membrane systems and MBRs will be reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Purification and characterization of two DyP isozymes from Thanatephorus cucumeris Dec 1 specifically expressed in an air-membrane surface bioreactor.

    PubMed

    Shimokawa, Takuya; Shoda, Makoto; Sugano, Yasushi

    2009-02-01

    DyP isozymes (DyP2 and DyP3) from the culture fluid of the fungus Thanatephorus cucumeris Dec 1 by air-membrane surface bioreactor were purified and characterized. The characteristics of DyP2 were almost the same as those of a recombinant DyP reported previously, but different from DyP3.

  16. Change in the fouling propensity of sludge in membrane bioreactors (MBR) in relation to the accumulation of biopolymer clusters.

    PubMed

    Sun, Fei-yun; Wang, Xiao-mao; Li, Xiao-yan

    2011-04-01

    A membrane bioreactor (MBR) and an activated sludge process (ASP) were operated side by side to evaluate the change of sludge supernatant characteristics and the evolution of the sludge fouling propensity. The MBR sludge had a higher organic concentration and more biopolymer clusters (BPC) in the supernatant compared with ASP. BPC increased in both concentration and size in the MBR. The results show that the change in the liquid-phase property had a profound effect on the sludge fouling propensity. MBR operation transformed typical activated sludge to MBR sludge with a higher fouling propensity. Distinct from the ASP, membrane filtration retained soluble microbial products (SMP) within the MBR, and the vast membrane surface provided a unique environment for the transformation of SMP to large size BPC, leading to further sludge deposition on the membrane surface. Thus, membrane filtration is the crucial cause of the inevitable fouling problem in submerged MBRs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Comparison and Analysis of Membrane Fouling between Flocculent Sludge Membrane Bioreactor and Granular Sludge Membrane Bioreactor

    PubMed Central

    Zhi-Qiang, Chen; Jun-Wen, Li; Yi-Hong, Zhang; Xuan, Wang; Bin, Zhang

    2012-01-01

    The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates. PMID:22859954

  18. Filtration Characterization Method as Tool to Assess Membrane Bioreactor Sludge Filterability—The Delft Experience

    PubMed Central

    Lousada-Ferreira, Maria; Krzeminski, Pawel; Geilvoet, Stefan; Moreau, Adrien; Gil, Jose A.; Evenblij, Herman; van Lier, Jules B.; van der Graaf, Jaap H. J. M.

    2014-01-01

    Prevention and removal of fouling is often the most energy intensive process in Membrane Bioreactors (MBRs), responsible for 40% to 50% of the total specific energy consumed in submerged MBRs. In the past decade, methods were developed to quantify and qualify fouling, aiming to support optimization in MBR operation. Therefore, there is a need for an evaluation of the lessons learned and how to proceed. In this article, five different methods for measuring MBR activated sludge filterability and critical flux are described, commented and evaluated. Both parameters characterize the fouling potential in full-scale MBRs. The article focuses on the Delft Filtration Characterization method (DFCm) as a convenient tool to characterize sludge properties, namely on data processing, accuracy, reproducibility, reliability, and applicability, defining the boundaries of the DFCm. Significant progress was made concerning fouling measurements in particular by using straight forward approaches focusing on the applicability of the obtained results. Nevertheless, a fouling measurement method is still to be defined which is capable of being unequivocal, concerning the fouling parameters definitions; practical and simple, in terms of set-up and operation; broad and useful, in terms of obtained results. A step forward would be the standardization of the aforementioned method to assess the sludge filtration quality. PMID:24957174

  19. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale

    PubMed Central

    2013-01-01

    Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110

  20. Large-scale Clinical-grade Retroviral Vector Production in a Fixed-Bed Bioreactor

    PubMed Central

    Wang, Xiuyan; Olszewska, Malgorzata; Qu, Jinrong; Wasielewska, Teresa; Bartido, Shirley; Hermetet, Gregory; Sadelain, Michel

    2015-01-01

    The successful genetic engineering of patient T cells with γ-retroviral vectors expressing chimeric antigen receptors or T-cell receptors for phase II clinical trials and beyond requires the large-scale manufacture of high-titer vector stocks. The production of retroviral vectors from stable packaging cell lines using roller bottles or 10- to 40-layer cell factories is limited by a narrow harvest window, labor intensity, open-system operations, and the requirement for significant incubator space. To circumvent these shortcomings, we optimized the production of vector stocks in a disposable fixed-bed bioreactor using good manufacturing practice–grade packaging cell lines. High-titer vector stocks were harvested over 10 days, representing a much broader harvest window than the 3-day harvest afforded by cell factories. For PG13 and 293Vec packaging cells, the average vector titer and the vector stocks’ yield in the bioreactor were higher by 3.2- to 7.3-fold, and 5.6- to 13.1-fold, respectively, than those obtained in cell factories. The vector production was 10.4 and 18.6 times more efficient than in cell factories for PG13 and 293Vec cells, respectively. Furthermore, the vectors produced from the fixed-bed bioreactors passed the release test assays for clinical applications. Therefore, a single vector lot derived from 293Vec is suitable to transduce up to 500 patients cell doses in the context of large clinical trials using chimeric antigen receptors or T-cell receptors. These findings demonstrate for the first time that a robust fixed-bed bioreactor process can be used to produce γ-retroviral vector stocks scalable up to the commercialization phase. PMID:25751502

  1. In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors.

    PubMed

    Whelan, Jessica; Craven, Stephen; Glennon, Brian

    2012-01-01

    In this study, the application of Raman spectroscopy to the simultaneous quantitative determination of glucose, glutamine, lactate, ammonia, glutamate, total cell density (TCD), and viable cell density (VCD) in a CHO fed-batch process was demonstrated in situ in 3 L and 15 L bioreactors. Spectral preprocessing and partial least squares (PLS) regression were used to correlate spectral data with off-line reference data. Separate PLS calibration models were developed for each analyte at the 3 L laboratory bioreactor scale before assessing its transferability to the same bioprocess conducted at the 15 L pilot scale. PLS calibration models were successfully developed for all analytes bar VCD and transferred to the 15 L scale. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  2. Development of an Intermediate-Scale Aerobic Bioreactor to Regenerate Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Finger, Barry W.; Strayer, Richard F.

    1994-01-01

    Three Intermediate-Scale Aerobic Bioreactors were designed, fabricated, and operated. They utilized mixed microbial communities to bio-degrade plant residues. The continuously stirred tank reactors operated at a working volume of 8 L, and the average oxygen mass transfer coefficient, k(sub L)a, was 0.01 s(exp -1). Mixing time was 35 s. An experiment using inedible wheat residues, a replenishment rate of 0.125/day, and a solids loading rate of 20 gdw/day yielded a 48% reduction in biomass. Bioreactor effluent was successfully used to regenerate a wheat hydroponic nutrient solution. Over 80% of available potassium, calcium, and other minerals were recovered and recycled in the 76-day wheat growth experiment.

  3. Treatment of oil sands process-affected water (OSPW) using a membrane bioreactor with a submerged flat-sheet ceramic microfiltration membrane.

    PubMed

    Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2016-01-01

    The release of oil sands process-affected water (OSPW) into the environment is a concern because it contains persistent organic pollutants that are toxic to aquatic life. A modified Ludzack-Ettinger membrane bioreactor (MLE-MBR) with a submerged ceramic membrane was continuously operated for 425 days to evaluate its feasibility on OSPW treatment. A stabilized biomass concentration of 3730 mg mixed liquor volatile suspended solids per litre and a naphthenic acid (NA) removal of 24.7% were observed in the reactor after 361 days of operation. Ultra Performance Liquid Chromatography/High Resolution Mass Spectrometry analysis revealed that the removal of individual NA species declined with increased ring numbers. Pyrosequencing analysis revealed that Betaproteobacteria were dominant in sludge samples from the MLE-MBR, with microorganisms such as Rhodocyclales and Sphingobacteriales capable of degrading hydrocarbon and aromatic compounds. During 425 days of continuous operation, no severe membrane fouling was observed as the transmembrane pressure (TMP) of the MLE-MBR never exceeded -20 kPa given that the manufacturer's suggested critical TMP for chemical cleaning is -35 kPa. Our results indicated that the proposed MLE-MBR has a good potential for removing recalcitrant organics in OSPW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Inhibition kinetics of nitritation and half-nitritation of old landfill leachate in a membrane bioreactor.

    PubMed

    Li, Yun; Wang, Zhaozhao; Li, Jun; Wei, Jia; Zhang, Yanzhuo; Zhao, Baihang

    2017-04-01

    Nitritation can be used as a pretreatment for anaerobic ammonia oxidation (anammox). Various control strategies for nitritation and half-nitritation of old landfill leachate in a membrane bioreactor were investigated in this study and the inhibition kinetics of substrate, product and old landfill leachate on nitritation were analyzed via batch tests. The results demonstrated that old landfill leachate nitritation in the membrane bioreactor can be achieved by adjusting the influent loading and dissolved oxygen (DO). From days 105-126 of the observation period, the average effluent concentration was 871.3 mg/L and the accumulation rate of [Formula: see text] was 97.2%. Half-nitritation was realized quickly by adjusting hydraulic retention time and DO. A low-DO control strategy appeared to best facilitate long-term and stable operation. Nitritation inhibition kinetic experiments showed that the inhibition of old landfill leachate was stronger than that of the substrate [Formula: see text] or product [Formula: see text] . The ammonia oxidation rate dropped by 22.2% when the concentration of old landfill leachate (calculated in chemical oxygen demand) was 1600.2 mg/L; further, when only free ammonia or free nitrous acid were used as a single inhibition factor, the ammonia oxidation rate dropped by 4.7-6.5% or 14.5-15.9%, respectively. Haldane, Aiba, and a revised inhibition kinetic model were adopted to separately fit the experimental data. The R 2 correlation coefficient values for these three models were 0.982, 0.996, and 0.992, respectively. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Effects of aeration frequency on leachate quality and waste in simulated hybrid bioreactor landfills.

    PubMed

    Ko, Jae Hac; Ma, Zeyu; Jin, Xiao; Xu, Qiyong

    2016-12-01

    Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD 5 ) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD 5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day). In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.

  6. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling.

    PubMed

    Leyva-Díaz, J C; González-Martínez, A; Muñío, M M; Poyatos, J M

    2015-12-01

    The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1).

  7. Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times.

    PubMed

    Yu, Dawei; Chen, Yutao; Wei, Yuansong; Wang, Jianxing; Wang, Yawei; Li, Kun

    2017-04-01

    Membrane fouling, including foulants and factors, was investigated during hydraulic retention time (HRT) optimization of a membrane bioreactor (MBR) that treated wastewater from the production of antibiotics. The results showed that HRT played an important role in membrane fouling. Trans-membrane pressure (TMP), membrane flux, and resistance were stable at -6 kPa, 76 L m -2  h -1  bar -1 , and 4.5 × 10 12  m -1 when HRT was at 60, 48, and 36 h, respectively. Using Fourier transform infrared spectroscopy, foulants were identified as carbohydrates and proteins, which correlated with effluent organic matter and effluent chemical oxygen demand (COD) compounds. Therefore, membrane fouling trends would benefit from low supernatant COD (378 mg L -1 ) and a low membrane removal rate (26 %) at a HRT of 36 h. Serious membrane fouling at 72 and 24 h was related to soluble microbial products and extracellular polymeric substances in mixed liquor, respectively. Based on the TMP decrease and flux recovery after physical and chemical cleaning, irremovable fouling aggravation was related to extracellular polymeric substances' increase and soluble microbial products' decrease. According to changes in the specific oxygen uptake rate (SOUR) and mixed liquor suspended solids (MLSSs) during HRT optimization in this study, antibiotic production wastewater largely inhibited MLSS growth, which only increased from 4.5 to 5.0 g L -1 when HRT was decreased from 72 to 24 h, but did not limit sludge activity. The results of a principal component analysis highlighted both proteins and carbohydrates in extracellular polymeric substances as the primary foulants. Membrane fouling associated with the first principal component was positively related to extracellular polymeric substances and negatively related to soluble microbial products. Principal component 2 was primarily related to proteins in the influent. Additional membrane fouling factors included biomass characteristics

  8. Start-up of two moving bed membrane bioreactors treating saline wastewater contaminated by hydrocarbons.

    PubMed

    Campo, R; Di Prima, N; Freni, G; Giustra, M G; Di Bella, G

    2016-01-01

    This work aims to assess the acclimation of microorganisms to a gradual increase of salinity and hydrocarbons, during the start-up of two moving bed membrane bioreactors (MB-MBRs) fed with saline oily wastewater. In both systems an ultrafiltration membrane was used and two types of carriers were employed: polyurethane sponge cubes (MB-MBRI) and polyethylene cylindrical carriers (MB-MBRII). A decreasing dilution factor of slops has been adopted in order to allow biomass acclimation. The simultaneous effect of salinity and hydrocarbons played an inhibitory role in biomass growth and this resulted in a decrease of the biological removal efficiencies. A reduction of bound extracellular polymeric substances and a simultaneous release of soluble microbial products (SMPs) were observed, particularly in the MB-MBRII system, probably due to the occurrence of a greater suspended biomass stress as response to the recalcitrance of substrate. On the one hand, a clear attachment of biomass occurred only in MB-MBRI and this affected the fouling deposition on the membrane surface. The processes of detachment and entrapment of biomass, from and into the carriers, significantly influenced the superficial cake deposition and its reversibility. On the other hand, in MB-MBRII, the higher production of SMPs implied a predominance of the pore blocking.

  9. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system.

    PubMed

    Kim, Youngjin; Chekli, Laura; Shim, Wang-Geun; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2016-06-01

    In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of C/N shock variation on the performances of a moving bed membrane bioreactor.

    PubMed

    Di Trapani, Daniele; Di Bella, Gaetano; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2015-08-01

    The effect of a sharp variation of C/N ratio in a moving bed membrane bioreactor (MB-MBR) pilot plant treating high strength wastewater has been investigated. The experimental campaign was divided into two periods, each characterized by a different C/N ratio (namely, 2.5 and 15, Period 1 and Period 2, respectively). The MB-MBR system was analyzed in terms of organic carbon removal, nitrification efficiency, biokinetic activity and fouling behavior. The results showed that the nitrification process was severely affected by lower C/N value and by high concentration of ammonia. It was noticed an extensive stress effect on the autotrophic bacteria. Furthermore, it was observed an increase of the resistance related to particle deposition into membrane pores, likely due to a worsening of the cake layer features, with a reduction of the "pre-filter" effect, also related to the increase of the total Extracellular Polymeric Substances production with the C/N ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. New process for alleviation of membrane fouling of modified hybrid MBR system for advanced domestic wastewater treatment.

    PubMed

    Shuo, Liu; Baozhen, Wang; Hongjun, Han; Yanping, Liu

    2008-01-01

    A pilot-scale hybrid membrane bioreactor using a submerged flat panel membrane was designed and applied for advanced treatment of domestic wastewater. The new process adapted to the hybrid membrane bioreactor exhibits substantial decrease in membrane fouling and much easier cleaning. In this study, the new process configurations including the addition of anoxic/anaerobic zones, the package of synthetic fibrous fabric carrier for biofilm attached growth, activated sludge recycling and modified dosage of polished diatomite with high activity and multi-functions were investigated to select the optimal operational parameters for the hybrid membrane bioreactor system. The carrier package in the aerobic zone contributed 3.65 g/L (maximum) of fixed biomass to the system, thus reducing the suspended biomass, and has decreased the membrane cleaning cycle remarkably. The operation performance at the sludge recycle rate 0, 100%, 200% and 300% showed that, the trans-membrane pressure of flat panel membrane declined sharply with the increase of sludge recycling rate within a certain range, and 200% was decided to be optimal for in the membrane bioreactor system. EPS concentration in each sludge recycling rate was 135 mg/L, 92 mg/L, 68 mg/L and 55 mg/L respectively. The addition of anoxic and anaerobic zones degraded some large molecular organic compounds, which facilitated the biodegradation and removal of organic substances in aerobic zone. The modified dosage of polished diatomite has played a major important role for both preventing of membrane from fouling and its much easier cleaning when it formed. Copyright (c) IWA Publishing 2008.

  12. Ten years of industrial and municipal membrane bioreactor (MBR) systems - lessons from the field.

    PubMed

    Larrea, Asun; Rambor, Andre; Fabiyi, Malcolm

    2014-01-01

    The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).

  13. Denitrification of the anaerobic membrane bioreactor (AnMBR) effluent with alternative electron donors in domestic wastewater treatment.

    PubMed

    Pelaz, L; Gómez, A; Garralón, G; Letona, A; Fdz-Polanco, M

    2017-11-01

    A fixed film bioreactor for the denitrification of the effluent from an anaerobic membrane bioreactor (AnMBR) treating domestic wastewater was designed, built and investigated. After anaerobic treatment, the wastewater usually has a low C/N ratio (∼1.3), and a remaining chemical oxygen demand of around 117mg O 2 /L, which is not enough to make conventional heterotrophic denitrification possible. That effluent also holds methane and sulfide dissolved and oversaturated after leaving the AnMBR. This paper demonstrates the feasibility of using these reduced compounds as electron donors in order to remove 80mg NO x - -N/L at 18°C and 2h of hydraulic retention time. In addition, the influence of the NO 2 - /NO 3 - ratios in the feed was studied. Total nitrogen removal was achieved in all the cases studied, except for a feed with 100% NO 3 - . Methane was the main electron donor used to remove the nitrites and nitrates, with a participation rate of over 70%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Optimisation and performance of NaClO-assisted maintenance cleaning for fouling control in membrane bioreactors.

    PubMed

    Wang, Zhizhen; Meng, Fangang; He, Xiang; Zhou, Zhongbo; Huang, Li-Nan; Liang, Shuang

    2014-04-15

    Based on conventional chemical cleaning and physical backflush methods, a novel in situ chemical backflush method, i.e., chemically assisted maintenance cleaning with NaClO as the principal reagent, was developed for membrane fouling control in membrane bioreactors (MBRs). The results demonstrated that, compared with a control MBR with water backflush, the use of low NaClO loads had few adverse effects on nutrient removal; on the contrary, the exposure to NaClO enhanced the denitrification performance of the MBR as a result of the formation of sludge granules. Measurements of transmembrane pressure (TMP) showed that an NaClO backflush at 0.2 ppm could achieve effective membrane fouling control in MBRs. Ex situ backflush tests showed that an NaClO backflush enhanced the detachment of biopolymers from the fouled membranes compared with a water backflush. Comparative 16S rRNA sequencing showed differing bacterial community composition in the fouling layers of the two MBRs. Specifically, the NaClO backflush could suppress filament-caused membrane fouling (i.e., lowered the abundance of Thiothrix eikelboomii in the fouling layers). Both the water and NaClO backflush resulted in significant increases in the pure water permeability of the membranes as a result of the enlargement of membrane pores. The results of Fourier transform infrared spectrometry indicated that the frequent NaClO backflush did not change the functional groups of the active layer of the membranes significantly. This study could provide an alternative for the implementation of membrane cleaning in MBR plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Quantitative assessment of interfacial interactions with rough membrane surface and its implications for membrane selection and fabrication in a MBR.

    PubMed

    Chen, Jianrong; Mei, Rongwu; Shen, Liguo; Ding, Linxian; He, Yiming; Lin, Hongjun; Hong, Huachang

    2015-03-01

    The interfacial interactions between a foulant particle and rough membrane surface in a submerged membrane bioreactor (MBR) were quantitatively assessed by using a new-developed method. It was found that the profile of total interaction versus separation distance was complicated. There were an energy barrier and two negative energy ranges in the profile. Further analysis showed that roughness scale significantly affected the strength and properties of interfacial interactions. It was revealed that there existed a critical range of roughness scale within which the total energy in the separation distance ranged from 0 to several nanometers was continually repulsive. Decrease in foulant size would increase the strength of specific interaction energy, but did not change the existence of a critical roughness scale range. These findings suggested the possibility to "tailor" membrane surface morphology for membrane fouling mitigation, and thus gave significant implications for membrane selection and fabrication in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Does the biological treatment or membrane separation reduce the antibiotic resistance genes from swine wastewater through a sequencing-batch membrane bioreactor treatment process.

    PubMed

    Sui, Qianwen; Jiang, Chao; Zhang, Junya; Yu, Dawei; Chen, Meixue; Wang, Yawei; Wei, Yuansong

    2018-06-12

    Swine wastes are the reservoir of antibiotic resistance genes (ARGs), which can potentially spread from swine farms to the environment. This study establishes a sequencing-batch membrane bioreactor (SMBR) for ARG removal from swine wastewater, and analyzes the effect of biological treatment and membrane separation on the ARG removal at different solid retention times (SRTs). The SMBR removed 2.91 logs (copy number) of ARGs at a short SRT (12 days). Raising the SRT reduced the removal rates of the detected genes by the biological treatment. Under the relative long SRT (30 days), ARGs and mobile genetic elements (MGEs) were maximized within the reactor and were well removed by membrane separation, with the average genes removal rate of 2.95 (copy number) and 1.18 logs (abundance). At the relatively low SRT, the biological treatment showed the dominant ARG removal effect, while the membrane separation took the advantages of ARG removal especially at the relatively long SRT. The ARG profile was related to the shift of the microbial community structure. The ARGs coexisted with the functional bacteria (ammonia oxidizing bacteria, nitrite oxidizing bacteria and denitrifiers), suggesting they are hosted by the functional bacteria. Copyright © 2018. Published by Elsevier Ltd.

  17. Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.

    PubMed

    Kadwell, Sue H; Overton, Laurie K

    2016-01-01

    Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.

  18. An anaerobic membrane bioreactor - membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants.

    PubMed

    Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Price, William E; Nghiem, Long D

    2018-07-01

    In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3-0.5L/g COD added biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  19. Development of a novel proton exchange membrane-free integrated MFC system with electric membrane bioreactor and air contact oxidation bed for efficient and energy-saving wastewater treatment.

    PubMed

    Gao, Changfei; Liu, Lifen; Yang, Fenglin

    2017-08-01

    A novel combined system integrating MFC and electric membrane bioreactor (EMBR) was developed, in which a quartz sand chamber (QSC) was used, replacing expensive proton exchange membrane (PEM). An air contact oxidation bed (ACOB) and embedded trickling filter (TF) with filled volcano rock, was designed to increase dissolved oxygen (DO) in cathodic EMBR to save aeration cost. Membrane fouling in EMBR was successful inhibited/reduced by the generated bioelectricity of the system. The combined system demonstrated superior effluent quality in removing chemical oxygen demand (>97%) and ammonia nitrogen (>93%) during the stable operation, and the phosphorus removal was about 50%. Dominant bacteria (Nitrosomonas sp.; Comamonas sp.; Candidatus Kuenenia) played important roles in the removal of organic matter and ammonia nitrogen. The system has good application prospects in the efficient use of water and the development of sustainable wastewater recycling technology. Copyright © 2017. Published by Elsevier Ltd.

  20. A versatile miniature bioreactor and its application to bioelectrochemistry studies.

    PubMed

    Kloke, A; Rubenwolf, S; Bücking, C; Gescher, J; Kerzenmacher, S; Zengerle, R; von Stetten, F

    2010-08-15

    Often, reproducible investigations on bio-microsystems essentially require a flexible but well-defined experimental setup, which in its features corresponds to a bioreactor. We therefore developed a miniature bioreactor with a volume in the range of a few millilitre that is assembled by alternate stacking of individual polycarbonate elements and silicone gaskets. All the necessary supply pipes are incorporated as bore holes or cavities within the individual elements. Their combination allows for a bioreactor assembly that is easily adaptable in size and functionality to experimental demands. It allows for controlling oxygen transfer as well as the monitoring of dissolved oxygen concentration and pH-value. The system provides access for media exchange or sterile sampling. A mass transfer coefficient for oxygen (k(L)a) of 4.3x10(-3) s(-1) at a flow rate of only 15 ml min(-1) and a mixing time of 1.5s at a flow rate of 11 ml min(-1) were observed for the modular bioreactor. Single reactor chambers can be interconnected via ion-conductive membranes to form a two-chamber test setup for investigations on electrochemical systems such as fuel cells or sensors. The versatile applicability of this modular and flexible bioreactor was demonstrated by recording a growth curve of Escherichia coli (including monitoring of pH and oxygen) saturation, and also as by two bioelectrochemical experiments. In the first electrochemical experiment the use of the bioreactor enabled a direct comparison of electrode materials for a laccase-catalyzed oxygen reduction electrode. In a second experiment, the bioreactor was utilized to characterize the influence of outer membrane cytochromes on the performance of Shewanella oneidensis in a microbial fuel cell. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    NASA Astrophysics Data System (ADS)

    Lunn, Griffin; Wheeler, Raymond; Hummerick, Mary; Birmele, Michele; Richards, Jeffrey; Coutts, Janelle; Koss, Lawrence; Spencer, Lashelle.; Johnsey, Marissa; Ellis, Ronald

    Bioreactor research, even today, is mostly limited to continuous stirred-tank reactors (CSTRs). These are not an option for microgravity applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. This has led to testing of Hollow Fiber Membrane Bioreactors (HFMBs) for microgravity applications, including possible use for wastewater treatment systems for the International Space Station (ISS). Bioreactors and filtration systems for treating wastewater could avoid the need for harsh pretreatment chemicals and improve overall water recovery. However, the construction of these reactors is difficult and commercial off-the-shelf (COTS) versions do not exist in small sizes. We have used 1-L modular HFMBs in the past, but the need to perform rapid testing has led us to consider even smaller systems. To address this, we designed and built 125-mL, rectangular reactors, which we have called the Fiber Attachment Module Experiment (FAME) system. A polycarbonate rack of four square modules was developed with each module containing removable hollow fibers. Each FAME reactor is self-contained and can be easily plumbed with peristaltic and syringe pumps for continuous recycling of fluids and feeding, as well as fitted with sensors for monitoring pH, dissolved oxygen, and gas measurements similar to their larger counterparts. The first application tested in the FAME racks allowed analysis of over a dozen fiber surface treatments and three inoculation sources to achieve rapid reactor startup and biofilm attachment (based on carbon oxidation and nitrification of wastewater). With these miniature FAME reactors, data for this multi-factorial test were collected in duplicate over a six-month period; this greatly compressed time period required for gathering data needed to study and improve bioreactor performance.

  2. Fouling characteristics and cleaning strategies of NF membranes for the advanced treatment of antibiotic production wastewater.

    PubMed

    Wang, Jianxing; Li, Kun; Yu, Dawei; Zhang, Junya; Wei, Yuansong

    2017-04-01

    The nanofiltration (NF) membrane fouling characteristics and cleaning strategies were investigated through a laboratory-scale NF fouling test treating membrane bioreactor (MBR) effluent and MBR-granular activated carbon (GAC) effluent of an antibiotic production wastewater by DK and NF90 membranes, respectively. Results showed that organic fouling is the main NF membrane fouling for treating both the MBR effluent and MBR-GAC effluent. Soluble microbial by-product (SMP)-like and aromatic protein-like substances were the dominant components in the foulants, whereas humic-like substances had little contribution to the NF fouling. The fouling of DK was more severe than that of NF90. However, foulants respond by UV 254 were more easily to foul NF90 membrane. It could get satisfactory effect using combined cleaning of acid (HCl, pH 2.0∼2.5) and alkali (NaOH + 0.3 wt% NaDS, pH 10.0∼10.5). The favorable cleaning strategy is "acid + alkali" for treating MBR-GAC effluent, while it is "alkali + acid" for treating MBR effluent.

  3. Mechanism of charged pollutants removal in an ion exchange membrane bioreactor: drinking water denitrification.

    PubMed

    Velizarov, S; Rodrigues, C M; Reis, M A; Crespo, J G

    The mechanism of anionic pollutant removal in an ion exchange membrane bioreactor (IEMB) was studied for drinking water denitrification. This hybrid process combines continuous ion exchange transport (Donnan dialysis) of nitrate and its simultaneous bioreduction to gaseous nitrogen. A nonporous mono-anion permselective membrane precludes direct contact between the polluted water and the denitrifying culture and prevents secondary pollution of the treated water with dissolved nutrients and metabolic products. Complete denitrification may be achieved without accumulation of NO3(-) and NO2(-) ions in the biocompartment. Focus was given to the effect of the concentration of co-ions, counterions, and ethanol on the IEMB performance. The nitrate overall mass transfer coefficient in this hybrid process was found to be 2.8 times higher compared to that in a pure Donnan dialysis process without denitrification. Furthermore, by adjusting the ratio of co-ions between the biocompartment and the polluted water compartment, the magnitude and direction of each individual anion flux can be easily regulated, allowing for flexible process operation and control. Synthetic groundwater containing 135-350 mg NO3(-) L(-1) was treated in the IEMB system. A surface denitrification rate of 33 g NO3(-) per square meter of membrane per day was obtained at a nitrate loading rate of 360 g NO3(-) m(-3)d(-1), resulting in a nitrate removal efficiency of 85%.

  4. A knowledge-based control system for air-scour optimisation in membrane bioreactors.

    PubMed

    Ferrero, G; Monclús, H; Sancho, L; Garrido, J M; Comas, J; Rodríguez-Roda, I

    2011-01-01

    Although membrane bioreactors (MBRs) technology is still a growing sector, its progressive implementation all over the world, together with great technical achievements, has allowed it to reach a mature degree, just comparable to other more conventional wastewater treatment technologies. With current energy requirements around 0.6-1.1 kWh/m3 of treated wastewater and investment costs similar to conventional treatment plants, main market niche for MBRs can be areas with very high restrictive discharge limits, where treatment plants have to be compact or where water reuse is necessary. Operational costs are higher than for conventional treatments; consequently there is still a need and possibilities for energy saving and optimisation. This paper presents the development of a knowledge-based decision support system (DSS) for the integrated operation and remote control of the biological and physical (filtration and backwashing or relaxation) processes in MBRs. The core of the DSS is a knowledge-based control module for air-scour consumption automation and energy consumption minimisation.

  5. Navigating environmental, economic, and technological trade-offs in the design and operation of submerged anaerobic membrane bioreactors (AnMBRs).

    PubMed

    Pretel, R; Shoener, B D; Ferrer, J; Guest, J S

    2015-12-15

    Anaerobic membrane bioreactors (AnMBRs) enable energy recovery from wastewater while simultaneously achieving high levels of treatment. The objective of this study was to elucidate how detailed design and operational decisions of submerged AnMBRs influence the technological, environmental, and economic sustainability of the system across its life cycle. Specific design and operational decisions evaluated included: solids retention time (SRT), mixed liquor suspended solids (MLSS) concentration, sludge recycling ratio (r), flux (J), and specific gas demand per membrane area (SGD). The possibility of methane recovery (both as biogas and as soluble methane in reactor effluent) and bioenergy production, nutrient recovery, and final destination of the sludge (land application, landfill, or incineration) were also evaluated. The implications of these design and operational decisions were characterized by leveraging a quantitative sustainable design (QSD) framework which integrated steady-state performance modeling across seasonal temperatures (using pilot-scale experimental data and the simulating software DESASS), life cycle cost (LCC) analysis, and life cycle assessment (LCA). Sensitivity and uncertainty analyses were used to characterize the relative importance of individual design decisions, and to navigate trade-offs across environmental, economic, and technological criteria. Based on this analysis, there are design and operational conditions under which submerged AnMBRs could be net energy positive and contribute to the pursuit of carbon negative wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A practitioner's perspective on the application and research needs of membrane bioreactors for municipal wastewater treatment.

    PubMed

    Kraemer, Jeremy T; Menniti, Adrienne L; Erdal, Zeynep K; Constantine, Timothy A; Johnson, Bruce R; Daigger, Glen T; Crawford, George V

    2012-10-01

    The application of membrane bioreactors (MBRs) for municipal wastewater treatment has increased dramatically over the last decade. From a practitioner's perspective, design practice has evolved over five "generations" in the areas of biological process optimization, separating process design from equipment supply, and reliability/redundancy thereby facilitating "large" MBRs (e.g. 150,000 m(3)/day). MBR advantages and disadvantages, and process design to accommodate biological nutrient removal, high mixed liquor suspended solids concentrations, operation and maintenance, peak flows, and procurement are reviewed from the design practitioner's perspective. Finally, four knowledge areas are identified as important to practitioners meriting further research and development: (i) membrane design and performance such as improving peak flow characteristics and decreasing operating costs; (ii) process design and performance such as managing the fluid properties of the biological solids, disinfection, and microcontaminant removal; (iii) facility design such as equipment standardization and decreasing mechanical complexity; and (iv) sustainability such as anaerobic MBRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor.

    PubMed

    Dutta, Kasturi; Lee, Ming-Yi; Lai, Webber Wei-Po; Lee, Chien Hsien; Lin, Angela Yu-Chen; Lin, Cheng-Fang; Lin, Jih-Gaw

    2014-08-01

    The aim of present study was to treat municipal wastewater in two-stage anaerobic fluidized membrane bioreactor (AFMBR) (anaerobic fluidized bed reactor (AFBR) followed by AFMBR) using granular activated carbon (GAC) as carrier medium in both stages. Approximately 95% COD removal efficiency could be obtained when the two-stage AFMBR was operated at total HRT of 5h (2h for AFBR and 3h for AFMBR) and influent COD concentration of 250mg/L. About 67% COD and 99% TSS removal efficiency could be achieved by the system treating the effluent from primary clarifier of municipal wastewater treatment plant, at HRT of 1.28h and OLR of 5.65kg COD/m(3)d. The system could also effectively remove twenty detected pharmaceuticals in raw wastewaters with removal efficiency in the range of 86-100% except for diclofenac (78%). No other membrane fouling control was required except scouring effect of GAC for flux of 16LMH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor.

    PubMed

    Geng, Yi-Kun; Wang, Yunkun; Pan, Xin-Rong; Sheng, Guo-Ping

    2018-01-01

    In this study, a novel electrodialysis membrane bioreactor was used for EBPR sludge treatment for energy and phosphorus resource recovery simultaneously. After 30days stable voltage outputting, the maximum power density reached 0.32W/m 3 . Over 90% of phosphorus in EBPR sludge was released while about 50% of phosphorus was concentrated to 4mmol/L as relatively pure phosphate solution. Nitrogen could be removed from EBPR sludge by desalination and denitrification processes. This study provides an optimized way treating sludge for energy production and in situ phosphorus recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Feasibility of using sodium chloride as a tracer for the characterization of the distribution of matter in complex multi-compartment 3D bioreactors for stem cell culture.

    PubMed

    Gerlach, Jörg C; Witaschek, Tom; Strobel, Catrin; Brayfield, Candace A; Bornemann, Reinhard; Catapano, Gerardo; Zeilinger, Katrin

    2010-06-01

    The experimental characterization of the distribution of matter in complex multi-compartment three-dimensional membrane bioreactors for human cell culture is complicated by tracer interactions with the membranes and other bioreactor constituents. This is due to the fact that membranes with a high specific surface area often feature a hydrophobic chemical backbone that may adsorb tracers often used to this purpose, such as proteins and dyes. Membrane selectivity, and its worsening caused by protein adsorption, may also hinder tracer transfer across neighboring compartments, thus preventing effective characterization of the distribution of matter in the whole bioreactor. Tracer experiments with sodium chloride (NaCl) may overcome some of these limitations and be effectively used to characterize the distribution of matter in complex 3D multi-compartments membrane bioreactors for stem cell culture. NaCl freely permeates most used membranes, it does not adsorb on uncharged membranes, and its concentration may be accurately measured in terms of solution conductivity. In this preliminary study, the feasibility of complex multi-compartment membrane bioreactors was investigated with a NaCl concentration pulse challenge to characterize how their distribution of matter changes when they are operated under different conditions. In particular, bioreactors consisting of three different membrane types stacked on top of one another to form a 3D network were characterized under different feed conditions.

  10. Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater.

    PubMed

    Jeong, Yeongmi; Hermanowicz, Slawomir W; Park, Chanhyuk

    2017-10-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet ceramic membranes was operated at mesophilic conditions (30-35 °C) treating domestic wastewater (DWW) supplemented with food wasterecycling wastewater (FRW) to increase the organic loading rate (OLR) for better biogas production. Coupling ceramic membrane filtration with AnMBR treatment provides an alternative strategy for high organic wastewater treatment at short hydraulic retention times (HRTs) with the potential benefits of membrane fouling because they have a high hydrophilicity and more robust at extreme conditions. The anaerobic ceramic MBR (AnCMBR) treating mixture of actual FRW with DWW (with an influent chemical oxygen demand (COD) of 2,115 mg/L) was studied to evaluate the treatment performance in terms of organic matter removal and methane production. COD removal during actual FRW with DWW operation averaged 98.3 ± 1.0% corresponding to an average methane production of 0.21 ± 0.1 L CH 4 /g COD removed . Biogas sparging, relaxation and permeate back-flushing were concurrently employed to manage membrane fouling. A flux greater than 9.2 L m -2  h -1 (LMH) was maintained at 13 h HRT for approximately 200 days without chemical cleaning at an OLR of 2.95 kg COD m -3  d -1 . On day 100, polyvinyl alcohol (PVA)-gel beads were added into the AnCMBR to alleviate the membrane fouling, suggesting that their mechanical scouring effect contributed positively in reducing the fouling index (FI). Although these bio-carriers might accelerate the breaking up of bio-flocs, which released a higher amount of soluble microbial products (SMP), a 95.4% SMP rejection was achieved. Although the retention efficiency of dissolved organic carbons (DOC) was 91.4% across the ceramic membrane, a meaningful interpretation of organic carbon detection (OCD) fingerprints was conducted to better understand the ceramic membrane performance. Copyright © 2017 Elsevier Ltd. All rights

  11. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor.

    PubMed

    Sun, Weimin; Xiao, Enzong; Kalin, Margarete; Krumins, Valdis; Dong, Yiran; Ning, Zengping; Liu, Tong; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Mao, Jianzhong; Xiao, Tangfu

    2016-08-01

    An on-site field-scale bioreactor for passive treatment of antimony (Sb) contamination was installed downstream of an active Sb mine in Southwest China, and operated for one year (including a six month monitoring period). This bioreactor consisted of five treatment units, including one pre-aerobic cell, two aerobic cells, and two microaerobic cells. With the aerobic cells inoculated with indigenous mine water microflora, the bioreactor removed more than 90% of total soluble Sb and 80% of soluble antimonite (Sb(III)). An increase in pH and decrease of oxidation-reduction potential (Eh) was also observed along the flow direction. High-throughput sequencing of the small subunit ribosomal RNA (SSU rRNA) gene variable (V4) region revealed that taxonomically diverse microbial communities developed in the bioreactor. Metal (loid)-oxidizing bacteria including Ferrovum, Thiomonas, Gallionella, and Leptospirillum, were highly enriched in the bioreactor cells where the highest total Sb and Sb(III) removal occurred. Canonical correspondence analysis (CCA) indicated that a suite of in situ physicochemical parameters including pH and Eh were substantially correlated with the overall microbial communities. Based on an UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis), the microbial composition of each cell was distinct, indicating these in situ physicochemical parameters had an effect in shaping the indigenous microbial communities. Overall, this study was the first to employ a field-scale bioreactor to treat Sb-rich mine water onsite and, moreover, the findings suggest the feasibility of the bioreactor in removing elevated Sb from mine waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Performance of semi-continuous membrane bioreactor in biogas production from toxic feedstock containing D-Limonene.

    PubMed

    Wikandari, Rachma; Youngsukkasem, Supansa; Millati, Ria; Taherzadeh, Mohammad J

    2014-10-01

    A novel membrane bioreactor configuration containing both free and encased cells in a single reactor was proposed in this work. The reactor consisted of 120g/L of free cells and 120g/L of encased cells in a polyvinylidene fluoride membrane. Microcrystalline cellulose (Avicel) and d-Limonene were used as the models of substrate and inhibitor for biogas production, respectively. Different concentrations of d-Limonene i.e., 1, 5, and 10g/L were tested, and an experiment without the addition of d-Limonene was prepared as control. The digestion was performed in a semi-continuous thermophilic reactor for 75 days. The result showed that daily methane production in the reactor with the addition of 1g/L d-Limonene was similar to that of control. A lag phase was observed in the presence of 5g/L d-Limonene; however, after 10 days, the methane production increased and reached a similar production to that of the control after 15 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The influenced of PAC, zeolite, and Moringa oleifera as biofouling reducer (BFR) on hybrid membrane bioreactor of palm oil mill effluent (POME).

    PubMed

    Damayanti, A; Ujang, Z; Salim, M R

    2011-03-01

    The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L(-1) respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Fecal Bacteria, Bacteriophage, and Nutrient Reductions in a Full-Scale Denitrifying Woodchip Bioreactor.

    PubMed

    Rambags, Femke; Tanner, Chris C; Stott, Rebecca; Schipper, Louis A

    2016-05-01

    Denitrifying bioreactors using woodchips or other slow-release carbon sources can be an effective method for removing nitrate (NO) from wastewater and tile drainage. However, the ability of these systems to remove fecal microbes from wastewater has been largely uninvestigated. In this study, reductions in fecal indicator bacteria () and viruses (F-specific RNA bacteriophage [FRNA phage]) were analyzed by monthly sampling along a longitudinal transect within a full-scale denitrifying woodchip bioreactor receiving secondary-treated septic tank effluent. Nitrogen, phosphorus, 5-d carbonaceous biochemical oxygen demand (CBOD), and total suspended solids (TSS) reduction were also assessed. The bioreactor demonstrated consistent and substantial reduction of (2.9 log reduction) and FRNA phage (3.9 log reduction) despite receiving highly fluctuating inflow concentrations [up to 3.5 × 10 MPN (100 mL) and 1.1 × 10 plaque-forming units (100 mL) , respectively]. Most of the removal of fecal microbial contaminants occurred within the first meter of the system (1.4 log reduction for ; 1.8 log reduction for FRNA phage). The system was also efficient at removing NO (>99.9% reduction) and TSS (89% reduction). There was no evidence of consistent removal of ammonium, organic nitrogen, or phosphorus. Leaching of CBOD occurred during initial operation but decreased and stabilized at lower values (14 g O m) after 9 mo. We present strong evidence for reliable microbial contaminant removal in denitrifying bioreactors, demonstrating their broader versatility for wastewater treatment. Research on the removal mechanisms of microbial contaminants in these systems, together with the assessment of longevity of removal, is warranted. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Effects of Bubble-Mediated Processes on Nitrous Oxide Dynamics in Denitrifying Bioreactors

    NASA Astrophysics Data System (ADS)

    McGuire, P. M.; Falk, L. M.; Reid, M. C.

    2017-12-01

    To mitigate groundwater and surface water impacts of reactive nitrogen (N), agricultural and stormwater management practices can employ denitrifying bioreactors (DNBs) as low-cost solutions for enhancing N removal. Due to the variable nature of hydrologic events, DNBs experience dynamic flows which can impact physical and biological processes within the reactors and affect performance. A particular concern is incomplete denitrification, which can release the potent greenhouse gas nitrous oxide (N2O) to the atmosphere. This study aims to provide insight into the effects of varying hydrologic conditions upon the operation of DNBs by disentangling abiotic and biotic controls on denitrification and N2O dynamics within a laboratory-scale bioreactor. We hypothesize that under transient hydrologic flows, rising water levels lead to air entrapment and bubble formation within the DNB porous media. Mass transfer of oxygen (O2) between trapped gas and liquid phases creates aerobic microenvironments that can inhibit N2O reductase (NosZ) enzymes and lead to N2O accumulation. These bubbles also retard N2O transport and make N2O unavailable for biological reduction, further enhancing atmospheric fluxes when water levels fall. The laboratory-scale DNB permits measurements of longitudinal and vertical profiles of dissolved constituents as well as trace gas concentrations in the reactor headspace. We describe a set of experiments quantifying denitrification pathway biokinetics under steady-state and transient hydrologic conditions and evaluate the role of bubble-mediated processes in enhancing N2O accumulation and fluxes. We use sulfur hexafluoride and helium as dissolved gas tracers to examine the impact of bubble entrapment upon retarded gas transport and enhanced trace gas fluxes. A planar optode sensor within the bioreactor provides near-continuous 2-D profiles of dissolved O2 within the bioreactor and allows for identification of aerobic microenvironments. We use qPCR to

  16. High-rate composting of barley dregs with sewage sludge in a pilot scale bioreactor.

    PubMed

    Lu, Li-An; Kumar, Mathava; Tsai, Jen-Chieh; Lin, Jih-Gaw

    2008-05-01

    The feasibility of high-rate composting of barley dregs and sewage sludge was examined using a pilot scale bioreactor. A central composite design (CCD) was used to optimize the mix ratio of barley dregs/sewage sludge and moisture content. The performance of the bioreactor was monitored as a function of carbon decomposition rate (CDR) and total volatile solids (TVS) loss rate. The optimum range of mix ratio and moisture content was found to be 35-40% and 55-60%, respectively. High CO2 evolution rate (CER) and TVS loss rate were observed after 3 days of the composting and the compost was matured/stable after 7 days. Cardinal temperature model with inflection (CTMI) was used to analyze the compost stability with respect to CER as a parameter of composting efficiency. After examining the phytotoxicity, the compost can be promoted for land application.

  17. Large Scale Expansion of Human Umbilical Cord Cells in a Rotating Bed System Bioreactor for Cardiovascular Tissue Engineering Applications

    PubMed Central

    Reichardt, Anne; Polchow, Bianca; Shakibaei, Mehdi; Henrich, Wolfgang; Hetzer, Roland; Lueders, Cora

    2013-01-01

    Widespread use of human umbilical cord cells for cardiovascular tissue engineering requires production of large numbers of well-characterized cells under controlled conditions. In current research projects, the expansion of cells to be used to create a tissue construct is usually performed in static cell culture systems which are, however, often not satisfactory due to limitations in nutrient and oxygen supply. To overcome these limitations dynamic cell expansion in bioreactor systems under controllable conditions could be an important tool providing continuous perfusion for the generation of large numbers of viable pre-conditioned cells in a short time period. For this purpose cells derived from human umbilical cord arteries were expanded in a rotating bed system bioreactor for up to 9 days. For a comparative study, cells were cultivated under static conditions in standard culture devices. Our results demonstrated that the microenvironment in the perfusion bioreactor was more favorable than that of the standard cell culture flasks. Data suggested that cells in the bioreactor expanded 39 fold (38.7 ± 6.1 fold) in comparison to statically cultured cells (31.8 ± 3.0 fold). Large-scale production of cells in the bioreactor resulted in more than 3 x 108 cells from a single umbilical cord fragment within 9 days. Furthermore cell doubling time was lower in the bioreactor system and production of extracellular matrix components was higher. With this study, we present an appropriate method to expand human umbilical cord artery derived cells with high cellular proliferation rates in a well-defined bioreactor system under GMP conditions. PMID:23847691

  18. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    PubMed Central

    Sheu, Jonathan; Beltzer, Jim; Fury, Brian; Wilczek, Katarzyna; Tobin, Steve; Falconer, Danny; Nolta, Jan; Bauer, Gerhard

    2015-01-01

    Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs), we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s) and in 10-layer cell factories (CF10s), while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation. PMID:26151065

  19. Method for culturing mammalian cells in a horizontally rotated bioreactor

    NASA Technical Reports Server (NTRS)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor); Trinh, Tinh T. (Inventor)

    1992-01-01

    A bio-reactor system where cell growth microcarrier beads are suspended in a zero head space fluid medium by rotation about a horizontal axis and where the fluid is continuously oxygenated from a tubular membrane which rotates on a shaft together with rotation of the culture vessel. The oxygen is continuously throughput through the membrane and disbursed into the fluid medium along the length of the membrane.

  20. Large-scale culture of a megakaryocytic progenitor cell line with a single-use bioreactor system.

    PubMed

    Nurhayati, Retno Wahyu; Ojima, Yoshihiro; Dohda, Takeaki; Kino-Oka, Masahiro

    2018-03-01

    The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single-use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large-scale production and feasibility of meeting clinical-grade standards. The current work evaluated the capacity of a single-use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (k L a) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h -1 , respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7-fold with a total cell number of 1.2 ± 0.2 × 10 9 cells L -1 . In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single-use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362-369, 2018. © 2017 American Institute of Chemical Engineers.

  1. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor.

    PubMed

    Sui, Qian; Zhao, Wentao; Cao, Xuqi; Lu, Shuguang; Qiu, Zhaofu; Gu, Xiaogang; Yu, Gang

    2017-02-05

    Knowledge on the pharmaceuticals and personal care products (PPCPs) in landfill leachates, which are an important source of PPCPs in the environment, was very limited. Hence, four sampling campaigns were conducted to determine eighteen PPCPs in the landfill leachates from a landfill reservoir in Shanghai. Five of the target PPCPs were first included in a landfill leachate study. Additionally, their removal from landfill leachates by a full-scale membrane bioreactor (MBR) was illustrated. The results showed fourteen out of eighteen PPCPs were detectable in at least one sampling campaign and achieved individual concentrations ranging from 0.39 to 349μg/L in the landfill leachates. Some PPCPs exhibited higher contamination levels than those reported in other countries. Good removal of PPCPs by MBR led to a largely reduced contamination level (

  2. A Novel Electrochemical Membrane Bioreactor as a Potential Net Energy Producer for Sustainable Wastewater Treatment

    PubMed Central

    Wang, Yun-Kun; Sheng, Guo-Ping; Shi, Bing-Jing; Li, Wen-Wei; Yu, Han-Qing

    2013-01-01

    One possible way to address both water and energy shortage issues, the two of major global challenges, is to recover energy and water resource from wastewater. Herein, a novel electrochemical membrane bioreactor (EMBR) was developed to recover energy from wastewater and meantime harvest clean water for reuse. With the help of the microorganisms in the biocatalysis and biodegradation process, net electricity could be recovered from a low-strength synthetic wastewater after estimating total energy consumption of this system. In addition, high-quality clean water was obtained for reuse. The results clearly demonstrate that, under the optimized operating conditions, it is possible to recover net energy from wastewater, while at the same time to harvest high-quality effluent for reuse with this novel wastewater treatment system. PMID:23689529

  3. Novel anaerobic membrane bioreactor (AnMBR) design for wastewater treatment at long HRT and high solid concentration.

    PubMed

    Berkessa, Yifru Waktole; Yan, Binghua; Li, Tengfei; Tan, Ming; She, Zonglian; Jegatheesan, Veeriah; Jiang, Heqing; Zhang, Yang

    2018-02-01

    Performance of two novel designed anaerobic membrane bioreactor (AnMBRs) for wastewater treatment at long hydraulic retention time (HRT, 47 days) and high sludge concentration (22 g·L -1 ) was investigated. Results showed steady chemical oxygen demand (COD) removal (>98%) and mean biogas generation of 0.29 LCH 4 ·g -1 COD. Average permeates flux of 58.70 L·m -2 ·h -1 and 54.00 L·m -2 ·h -1 were achieved for reactors A and B, respectively. On top of reactor configuration, long HRT caused biofilm reduction by heterotrophic bacteria Chloroflexi resulting in high membrane flux. Mean total membrane resistances (2.23 × 10 9  m -1 ) and fouling rates (4.00 × 10 8  m -1 ·day -1 ) of both reactors were low suggesting better membrane fouling control ability of both AnMBRs. Effluent quality analysis showed the effluent soluble microbial products (SMP) were dominated by proteins compared to carbohydrates, and specific ultraviolet absorbance (SUVA) analysis revealed effluent from both reactors had low aromaticity with SUVA < 1 (L·mg -1 ·m -1 ) except for the first ten days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.

    PubMed

    Bekir Ersu, Cagatayhan; Ong, Say Kee; Arslankaya, Ertan; Brown, Patrick

    2008-03-01

    A 12-L lab-scale membrane bioreactor (MBR), consisting of an anaerobic and anoxic compartment followed by an oxic plate-frame membrane compartment, was evaluated for carbonaceous and nutrient removals by varying the recirculation of mixed liquor and permeate. The hydraulic retention times (HRTs) for the anaerobic, anoxic, and oxic compartments were 2, 2, and 8h, respectively. The solids residence time (SRT) for the oxic compartment was 25 days. Five different recirculation configurations were tested by recirculating mixed liquor and/or permeate recirculation equal to the influent flow rate (identified as 100%) into different locations of the anaerobic and anoxic compartments. Of the five configurations, the configuration with 100% mixed liquor recirculation to the anaerobic compartment and 100% permeate recirculation to the anoxic compartment gave the highest percentage removal with an average 92.3+/-0.5% soluble chemical oxygen demand (sCOD), 75.6+/-0.4% total nitrogen (TN), and 62.4+/-1.3% total phosphorus (TP) removal. When the mixed liquor and permeate recirculation rates were varied for the same configuration, the highest TP removal was obtained for 300% mixed liquor recirculation and 100% permeate recirculation (300%/100%) with a TP removal of 88.1+/-1.3% while the highest TN removal (90.3+/-0.3%) was obtained for 200%/300% recirculation. TN and TP concentrations as low as 4.2+/-0.1 and 1.4+/-0.2mg/L respectively were obtained. Mass loading rates were generally low in the range of 0.11-0.22kgCOD/kgMLSS/d due to high biomass concentrations within the oxic reactor (approx. 8000mg/L). The BioWin model was calibrated against one set of the experimental data and was found to predict the experimental data of effluent TN, TP, and NO(3)(-)-N but over-predicted sCOD and NH(3)-N for various recirculation rates. The anoxic heterotrophic yield for the calibrated model was 0.2kg biomass COD/kg COD utilized while the maximum growth rates were found to be 0.45day(-1) for mu

  5. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  6. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  7. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    PubMed

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  8. Biological treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in a field-scale fluidized bed bioreactor.

    PubMed

    Hatzinger, Paul B; Lewis, Celeste; Webster, Todd S

    2017-12-01

    The ex situ treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in groundwater was evaluated in a field-scale fluidized bed bioreactor (FBR). Both of these compounds, which originally entered groundwater at the test site from the use of liquid rocket propellant, are suspected human carcinogens. The objective of this research was to examine the application of a novel field-scale propane-fed fluidized bed bioreactor as an alternative to ultraviolet irradiation (UV) for treating NDMA and NTDMA to low part-per-trillion (ng/L) concentrations. Previous laboratory studies have shown that the bacterium Rhodococcus ruber ENV425 can biodegrade NDMA and NTDMA during growth on propane as a primary substrate and that the strain can effectively reduce NDMA concentrations in propane-fed bench-scale bioreactors of different design. R. ruber ENV425 was used as a seed culture for the FBR, which operated at a fluidization flow of ∼19 L-per-min (LPM) and received propane, oxygen, and inorganic nutrients in the feed. The reactor effectively treated ∼1 μg/L of influent NDMA to effluent concentrations of less than 10 ng/L at a hydraulic residence time (HRT) of only 10 min. At a 20 min HRT, the FBR reduced NDMA to <4.2 ng/L in the effluent, which was the discharge limit at the test site where the study was conducted. Similarly, NTDMA was consistently treated in the FBR from ∼0.5 μg/L to <10 ng/L at an HRT of 10 min or longer. Based on these removal rates, the average NDMA and NTDMA elimination capacities achieved were 2.1 mg NDMA treated/m 3 of expanded bed/hr of operation and 1.1 mg NTDMA treated/m 3 of expanded bed/hr of operation, respectively. The FBR system was highly resilient to upsets including power outages. Treatment of NDMA, but not NTDMA, was marginally affected when trace co-contaminants including trichloroethene (TCE) and trichlorofluoromethane (Freon 11) were initially added to feed groundwater, but performance recovered over a

  9. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater.

    PubMed

    Wang, Xinhua; Hu, Taozhan; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2017-10-15

    Anaerobic osmotic membrane bioreactor (AnOMBR) has gained increasing interests in wastewater treatment owing to its simultaneous recovery of biogas and water. However, the forward osmosis (FO) membrane fouling was severe during a long-term operation of AnOMBRs. Here, we aim to recover the permeability of fouled FO membranes by chemical cleaning. Specifically speaking, an optimal chemical cleaning procedure was searched for fouled thin film composite polyamide FO (TFC-FO) membranes in a novel microfiltration (MF) assisted AnOMBR (AnMF-OMBR). The results indicated that citric acid, disodium ethylenediaminetetraacetate (EDTA-2Na), hydrochloric acid (HCl), sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) had a low cleaning efficiency of less than 15%, while hydrogen peroxide (H 2 O 2 ) could effectively remove foulants from the TFC-FO membrane surface (almost 100%) through oxidizing the functional group of the organic foulants and disintegrating the colloids and microbe flocs into fine particles. Nevertheless, the damage of H 2 O 2 to the TFC-FO membrane was observed when a high cleaning concentration and a long duration were applied. In this case, the optimal cleaning conditions including cleaning concentration and time for fouled TFC-FO membranes were selected through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM) images and the flux recovery rate. The results suggested that the optimal cleaning procedure for fouled TFC-FO membranes was use of 0.5% H 2 O 2 at 25 °C for 6 h, and after that, the cleaned TFC-FO membrane had the same performance as a virgin one including water flux and rejection for organic matters and phosphorus during the operation of AnMF-OMBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Influence of solids retention time on membrane fouling: characterization of extracellular polymeric substances and soluble microbial products.

    PubMed

    Duan, Liang; Tian, Zhiyong; Song, Yonghui; Jiang, Wei; Tian, Yuan; Li, Shan

    2015-01-01

    The objective of this study was to investigate the influence of solids retention time (SRT) on membrane fouling and the characteristics of biomacromolecules. Four identical laboratory-scale membrane bioreactors (MBRs) were operated with SRTs for 10, 20, 40 and 80 days. The results indicated that membrane fouling occurred faster and more readily under short SRTs. Fouling resistance was the primary source of filtration resistance. The modified fouling index (MFI) results suggested that the more ready fouling at short SRTs could be attributed to higher concentrations of soluble microbial products (SMP). Fourier transform infrared (FTIR) spectra indicated that the SRT had a weak influence on the functional groups of the total extracellular polymeric substances (TEPS) and SMP. However, the MBR under a short SRT had more low-molecular-weight (MW) compounds (<1 kDa) and fewer high-MW compounds (>100 kDa). Aromatic protein and tryptophan protein-like substances were the dominant groups in the TEPS and SMP, respectively.

  11. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  12. Characterization of soluble and bound EPS obtained from 2 submerged membrane bioreactors by 3D-EEM and HPSEC.

    PubMed

    Domínguez Chabaliná, Liuba; Rodríguez Pastor, Manuel; Prats Rico, Daniel

    2013-10-15

    This research study deals with the quantification and characterization of the EPS obtained from two 25 L bench scale membrane bioreactors (MBRs) with micro-(MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. Both reactors were fed with synthetic water and operated for 168 days without sludge extraction, increasing their mixed liquor suspended solid (MLSS) concentration during the experimentation time. The characterization of soluble EPS (EPSs) was achieved by the centrifugation of mixed liquor and bound EPS (EPSb) by extraction using a cationic resin exchange (CER). EPS characterization was carried out by applying the 3-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) and high-performance size exclusion chromatography (HPSEC) with the aim of obtaining structural and functional information thereof. With regard to the 3D-EEM analysis, fluorescence spectra of EPSb and EPSs showed 2 peaks in both MBRs at all the MLSS concentrations studied. The peaks obtained for EPSb were associated to soluble microbial by-product-like (predominantly protein-derived compounds) and to aromatic protein. For EPSs, the peaks were associated with humic and fulvic acids. In both MBRs, the fluorescence intensity (FI) of the peaks increased as MLSS and protein concentrations increased. The FI of the EPSs peaks was much lower than for EPSb. It was verified that the evolution of the FI clearly depends on the concentration of protein and humic acids for EPSb and EPSs, respectively. Chromatographic analysis showed that the intensity of the EPSb peak increased while the concentrations of MLSS did. Additionally, the mean MW calculated was always higher the higher the MLSS concentrations in the reactors. MW was higher for the MF-MBR than for the UF-MBR for the same MLSS concentrations demonstrating that the filtration carried out with a UF membrane lead to retentions of lower MW particles. © 2013 Elsevier B.V. All rights reserved.

  13. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB)

    NASA Astrophysics Data System (ADS)

    Sarzyński, Rafał; Gąszczak, Agnieszka; Janecki, Daniel; Bartelmus, Grażyna

    2017-10-01

    The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene) was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ˜200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution) through packing (polypropylene Ralu rings) covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2). The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 - 84 gm-3 h -1), styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  14. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  15. Study on submerged anaerobic membrane bioreactor (SAMBR) treating high suspended solids raw tannery wastewater for biogas production.

    PubMed

    Umaiyakunjaram, R; Shanmugam, P

    2016-09-01

    This study deals with the treatment of high suspended solids raw tannery wastewater using flat sheet Submerged Anaerobic Membrane (0.4μm) Bioreactor (SAMBR) acclimatized with hypersaline anaerobic seed sludge for recovering biogas. The treatability of SAMBR achieved higher CODremoval efficiency (90%) and biogas yield (0.160L.g(-1) CODremoved) coincided with high r(2) values between permeate flux and TSS (0.95), biogas and COD removed (0.96). The acidification of hypersaline influent wastewater by biogas mixing with high CO2, achieved quadruplet benefit of gas liquid and solid separation, in-situ pH and NH3 control, in-situ CH4 enrichment, and prevention of membrane fouling. The initial high VFA became stable as time elapsed reveals the hydrolysing ability of particulate COD into soluble COD and into biogas, confirms the suitability of SAMBR for high suspended solids tannery wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae.

    PubMed

    Fan, Senqing; Chen, Shiping; Tang, Xiaoyu; Xiao, Zeyi; Deng, Qing; Yao, Peina; Sun, Zhaopeng; Zhang, Yan; Chen, Chunyan

    2015-02-01

    Unstructured kinetic models were proposed to describe the principal kinetics involved in ethanol fermentation in a continuous and closed-circulating fermentation (CCCF) process with a pervaporation membrane bioreactor. After ethanol was removed in situ from the broth by the membrane pervaporation, the secondary metabolites accumulated in the broth became the inhibitors to cell growth. The cell death rate related to the deterioration of the culture environment was described as a function of the cell concentration and fermentation time. In CCCF process, 609.8 g L(-1) and 750.1 g L(-1) of ethanol production were obtained in the first run and second run, respectively. The modified Gompertz model, correlating the ethanol production with the fermentation period, could be used to describe the ethanol production during CCCF process. The fitting results by the models showed good agreement with the experimental data. These models could be employed for the CCCF process technology development for ethanol fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Development and Testing of a Fully Adaptable Membrane Bioreactor Fouling Model for a Sidestream Configuration System

    PubMed Central

    Paul, Parneet

    2013-01-01

    A dead-end filtration model that includes the three main fouling mechanisms mentioned in Hermia (i.e., cake build-up, complete pore blocking, and pore constriction) and that was based on a constant trans-membrane pressure (TMP) operation was extensively modified so it could be used for a sidestream configuration membrane bioreactor (MBR) situation. Modifications and add-ons to this basic model included: alteration so that it could be used for varying flux and varying TMP operations; inclusion of a backwash mode; it described pore constriction (i.e., irreversible fouling) in relation to the concentration of soluble microbial products (SMP) in the liquor; and, it could be used in a cross flow scenario by the addition of scouring terms in the model formulation. The additional terms in this modified model were checked against an already published model to see if they made sense, physically speaking. Next this modified model was calibrated and validated in Matlab© using data collected by carrying out flux stepping tests on both a pilot sidestream MBR plant, and then a pilot membrane filtration unit. The model fit proved good, especially for the pilot filtration unit data. In conclusion, this model formulation is of the right level of complexity to be used for most practical MBR situations. PMID:24958618

  18. Towards high through-put biological treatment of municipal wastewater and enhanced phosphorus recovery using a hybrid microfiltration-forward osmosis membrane bioreactor with hydraulic retention time in sub-hour level.

    PubMed

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-01

    This work uncovers an important feature of the forward osmosis membrane bioreactor (FOMBR) process: the decoupling of contaminants retention time (CRT) and hydraulic retention time (HRT). Based on this concept, the capability of the hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) in achieving high through-put treatment of municipal wastewater with enhanced phosphorus recovery was explored. High removal of TOC and NH4(+)-N (90% and 99%, respectively) was achieved with HRTs down to 47min, with the treatment capacity increased by an order of magnitude. Reduced HRT did not affect phosphorus removal and recovery. As a result, the phosphorus recovery capacity was also increased by the same order. Reduced HRT resulted in increased system loading rates and thus elevated concentrations of mixed liquor suspended solids and increased membrane fouling. 454-pyrosequecing suggested the thriving of Bacteroidetes and Proteobacteria (especially Sphingobacteriales Flavobacteriales and Thiothrix members), as well as the community succession and dynamics of ammonium oxidizing and nitrite oxidizing bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cultivation of Planktonic Anaerobic Ammonium Oxidation (Anammox) Bacteria Using Membrane Bioreactor

    PubMed Central

    Oshiki, Mamoru; Awata, Takanori; Kindaichi, Tomonori; Satoh, Hisashi; Okabe, Satoshi

    2013-01-01

    Enrichment cultures of anaerobic ammonium oxidation (anammox) bacteria as planktonic cell suspensions are essential for studying their ecophysiology and biochemistry, while their cultivation is still laborious. The present study aimed to cultivate two phylogenetically distinct anammox bacteria, “Candidatus Brocadia sinica” and “Ca. Scalindua sp.” in the form of planktonic cells using membrane bioreactors (MBRs). The MBRs were continuously operated for more than 250 d with nitrogen loading rates of 0.48–1.02 and 0.004–0.09 kgN m−3 d−1 for “Ca. Brocadia sinica” and “Ca. Scalindua sp.”, respectively. Planktonic anammox bacterial cells were successfully enriched (>90%) in the MBRs, which was confirmed by fluorescence in-situ hybridization and 16S rRNA gene sequencing analysis. The decay rate and half-saturation constant for NO2− of “Ca. Brocadia sinica” were determined to be 0.0029–0.0081 d−1 and 0.47 mgN L−1, respectively, using enriched planktonic cells. The present study demonstrated that MBR enables the culture of planktonic anammox bacterial cells, which are suitable for studying their ecophysiology and biochemistry. PMID:24200833

  20. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales.

    PubMed

    Jia, Qianqian; Xiong, Huilei; Wang, Hui; Shi, Hanchang; Sheng, Xinying; Sun, Run; Chen, Guoqiang

    2014-11-01

    The generation of polyhydroxyalkanoates (PHA) from excess sludge fermentation liquid (SFL) was studied at lab and pilot scale. A PHA-accumulated bacterial consortium (S-150) was isolated from activated sludge using simulated SFL (S-SFL) contained high concentration volatile fatty acids (VFA) and nitrogen. The maximal PHA content accounted for 59.18% in S-SFL and dropped to 23.47% in actual SFL (L-SFL) of the dry cell weight (DCW) at lab scale. The pilot-scale integrated system comprised an anaerobic fermentation reactor (AFR), a ceramic membrane system (CMS) and a PHA production bio-reactor (PHAR). The PHA content from pilot-scale SFL (P-SFL) finally reached to 59.47% DCW with the maximal PHA yield coefficient (YP/S) of 0.17 g PHA/g COD. The results indicated that VFA-containing SFL was suitable for PHA production. The adverse impact of excess nitrogen and non-VFAs in SFL might be eliminated by pilot-scale domestication, which might resulted in community structure optimization and substrate selective ability improvement of S-150. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  2. [Research progress of in vivo bioreactor as vascularization strategies in bone tissue engineering].

    PubMed

    Zhang, Haifeng; Han, Dong

    2014-09-01

    To review the application and research progress of in vivo bioreactor as vascularization strategies in bone tissue engineering. The original articles about in vivo bioreactor that can enhance vascularization of tissue engineered bone were extensively reviewed and analyzed. The in vivo bioreactor can be created by periosteum, muscle, muscularis membrane, and fascia flap as well as biomaterials. Using in vivo bioreactor can effectively promote the establishment of a microcirculation in the tissue engineered bones, especially for large bone defects. However, main correlative researches, currently, are focused on animal experiments, more clinical trials will be carried out in the future. With the rapid development of related technologies of bone tissue engineering, the use of in vivo bioreactor will to a large extent solve the bottleneck limitations and has the potential values for clinical application.

  3. Ethinylestradiol removal in a conventional and a simultaneous nitrification-denitrification membrane bioreactor.

    PubMed

    Paetkau, M; Yang, W; Cicek, N

    2011-01-01

    The removal of a synthetic estrogen 17α-ethinylestradiol (EE2) was investigated in submerged membrane bioreactors (MBRs) with simultaneous nitrification-denitrification (SND) and conventional nitrification. The influent EE2 concentration was 500 ng/L as EE2. Using a yeast estrogen screen test, the conventional-MBR (C-MBR) and SND MBR (SND-MBR) removed 57 and 58% of the estrogenic activity (EA) respectively; there was no significant difference in their removal efficiencies. Biodegradation was the dominant removal mechanism for both reactors with K(BIO) coefficients of 1.5 ± 0.6 and 1.6 ± 0.4 day(-1) for the C-MBR and the SND-MBR respectively. Sorption to solid particles removed approximately 1% of influent EA in each reactor; the particle partitioning coefficient, K(D), was calculated to be 0.21 ± 0.07 L/(g MLSS) for the C-MBR and 0.27 ± 0.1 L/(g MLSS) for the SND-MBR. These findings suggest that conditions favoring SND in MBRs have no significant impact on EA reduction.

  4. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing.

    PubMed

    Fountoulakis, M S; Markakis, N; Petousi, I; Manios, T

    2016-05-01

    Wastewater recycling has been and continues to be practiced all over the world for a variety of reasons including: increasing water availability, combating water shortages and drought, and supporting environmental and public health protection. Nowadays, one of the most interesting issues for wastewater recycling is the on-site treatment and reuse of grey water. During this study the efficiency of a compact Submerged Membrane Bioreactor (SMBR) system to treat real grey water in a single house in Crete, Greece, was examined. In the study, grey water was collected from a bathtub, shower and washing machine containing significant amounts of organic matter and pathogens. Chemical oxygen demand (COD) removal in the system was approximately 87%. Total suspended solids (TSS) were reduced from 95mgL(-1) in the influent to 8mgL(-1) in the effluent. The efficiency of the system to reduce anionic surfactants was about 80%. Fecal and total coliforms decreased significantly using the SMBR system due to rejection, by the membrane, used in the study. Overall, the SMBR treatment produces average effluent values that would satisfy international guidelines for indoor reuse applications such as toilet flushing. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Membrane fouling in a submerged membrane bioreactor with focus on surface properties and interactions of cake sludge and bulk sludge.

    PubMed

    Yu, Haiying; Lin, Hongjun; Zhang, Meijia; Hong, Huachang; He, Yiming; Wang, Fangyuan; Zhao, Leihong

    2014-10-01

    In this study, the fouling behaviors and surface properties of cake sludge and bulk sludge in a submerged membrane bioreactor (MBR) were investigated and compared. It was found that the specific filtration resistance (SFR) of cake sludge was about 5 times higher than that of bulk sludge. Two types of sludge possessed similar extracellular polymeric substances (EPS) content, particle size distribution (PSD) and zeta potential. However, their surface properties in terms of surface tensions were significantly different. Further analysis showed that cake sludge was more hydrophilic and had worse aggregation ability. Moreover, cake sludge surface possessed more hydrocarbon, less oxygen and nitrogen moieties than bulk sludge surface. It was suggested that, rather than EPS and PSD differences, the differences in the surface composition were the main cause of the great differences in SFR and adhesion ability between cake sludge and bulk sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effects of Bioreactor Retention Time on Aerobic Microbial Decomposition of CELSS Crop Residues

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable, bioreactor retention time, on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.

  7. Detection of microbial communities in continuous and discontinuous membrane bioreactor using high-density oligonucleotide Microarray

    NASA Astrophysics Data System (ADS)

    Duan, Liang; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W.

    2010-11-01

    This study compared the whole composition of microbial communities in continuous-flow (MBR) and batch-fed (discontinuous) (MSBR) aerobic membrane bioreactors using high-density universal 16S rRNA Microarray. The array includes 506,944 probes targeted to 8935 clusters in 16S rRNA gene sequences. The Microarray results showed that both MBR and MSBR had high microbial diversity. 1126 and 1002 bacterial subfamilies were detected and can separate as 37 and 32 phyla in MBR and MSBR, respectively. Proteobacteria was the predominant phylum, 703 and 597 subfamilies were found in two systems, which constituted 62.4% and 59.6% of the whole bacteria. Gamma- and Alpha-were the dominant classes in Proteobacteria. It occupied 38.1% and 26.3%, 31.2% and 39.2% for MBR and MSBR, respectively. Bacteroidetes, Firmicutes and Actinobacteria were the subdominant groups, occupying around 9.4% and 7.6%, 6.1% and 6.5%, 6.0% and 9.0% of the total bacteria in two reactors. Some bacterial groups such as Acidobacteria, Chloroflexi, Cyanobacteria, Verrucomicrobia and Spirochaetes also found more than 15 subfamilies. All the results indicated that the MBR system had more bacteria community diversity than MSBR's. Moreover, it was very interested that MBR and MSBR had almost the same bacterial composition except Enterobacteriaceae. 63 OTUs of Enterobacteriaceae were detected in MBR, while just 10 OTUs were found in MSBR. That's one of the reasons leading to the difference of the bacterial diversity between two bioreactors.

  8. Popular pharmaceutical residues in hospital wastewater: quantification and qualification of degradation products by mass spectroscopy after treatment with membrane bioreactor.

    PubMed

    Chiarello, M; Minetto, L; Giustina, S V Della; Beal, L L; Moura, S

    2016-08-01

    The occurrence of drugs in wastewater has been considered an imminent risk to the population, for the treatments used are usually ineffective. The presence of four popular drug residues (metformin, paracetamol, tetracycline, and enalapril) in hospital effluents, by using ultra-fast liquid chromatography tandem mass spectrometry (UFLC-MS/MS) with electrospray (ESI) ionization, and removal/degradation by membrane bioreactor (MBR) system are investigated in this study. For analysis method, all standard calibration curves showed satisfactory linearity (R (2) ≥ 0.993) within a relatively wide range. The recovery was between 70.4 and 105.0 %, and the relative standard deviation (RSD) values were within the ranges of 8.2 and 13.5 %. The effluent samples were collected at the end of the process treated in a bench-scale MBR treatment system and preconcentrated on solid-phase extraction (SPE) cartridges. Following that procedure, the chemical analysis demonstrated that the MBR system was effective in enalapril 94.3 ± 7.63 %, tetracycline 99.4 ± 0.02 %, and paracetamol 98.8 ± 0.86 % removal. However, the polar metformin was less effectively removed (35.4 ± 12.49 %). Moreover, the degradation products were investigated using high-resolution mass spectrometry (HRMS) by quadrupole-time of flight (Q-TOF), which has been indicated a tetracycline metabolite. In order to investigate the environmental impact, the wastewater potential risk was evaluated. The risk quotient (RQ) by measure environmental concentration (MEC) and its predicted no effect concentration (PNEC) ratio (RQ = MEC/PNEC) was between 0.003 (enalapril) to 0.815 (paracetamol). Finally, this work demonstrates that UFLC-MS/MS (ESI-Q) is a sensitive and selective method for drug analysis in wastewater and with ESI-Q-TOF has the accuracy required for determining the degradation products of these compounds. Also, it indicated that membrane bioreactor systems represent a new generation of

  9. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    PubMed

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.

  10. In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment.

    PubMed

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J; Sheng, Guo-Ping

    2016-07-01

    In the recent years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for wastewater treatment due to the striking advantages such as upgraded effluent quality. However, fouling control is still a problem for the application of AnMBR. This study investigated the performance of an AnMBR using mesh filter as support material to treat low-strength wastewater via in-situ biogas sparging. It was found that mesh AnMBR exhibited high and stable chemical oxygen demand (COD) removal efficiencies with values of 95 ± 5 % and an average methane yield of 0.24 L CH4/g CODremoved. Variation of transmembrane pressure (TMP) during operation indicated that mesh fouling was mitigated by in-situ biogas sparging and the fouling rate was comparable to that of aerobic membrane bioreactor with mesh filter reported in previous researches. The fouling layer formed on the mesh exhibited non-uniform structure; the porosity became larger from bottom layer to top layer. Biogas sparging could not change the composition but make thinner thickness of cake layer, which might be benefit for reducing membrane fouling rate. It was also found that ultrasonic cleaning of fouled mesh was able to remove most foulants on the surface or pores. This study demonstrated that in-situ biogas sparging enhanced the performance of AnMBRs with mesh filter in low-strength wastewater treatment. Apparently, AnMBRs with mesh filter can be used as a promising and sustainable technology for wastewater treatment.

  11. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor.

    PubMed

    Raven, Nicole; Rasche, Stefan; Kuehn, Christoph; Anderlei, Tibor; Klöckner, Wolf; Schuster, Flora; Henquet, Maurice; Bosch, Dirk; Büchs, Jochen; Fischer, Rainer; Schillberg, Stefan

    2015-02-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium. © 2014 Wiley Periodicals, Inc.

  13. A novel bioreactor and culture method drives high yields of platelets from stem cells.

    PubMed

    Avanzi, Mauro P; Oluwadara, Oluwasijibomi E; Cushing, Melissa M; Mitchell, Maxwell L; Fischer, Stephen; Mitchell, W Beau

    2016-01-01

    Platelet (PLT) transfusion is the primary treatment for thrombocytopenia. PLTs are obtained exclusively from volunteer donors, and the PLT product has only a 5-day shelf life, which can limit supply and result in PLT shortages. PLTs derived from stem cells could help to fill this clinical need. However, current culture methods yield far too few PLTs for clinical application. To address this need, a defined, serum-free culture method was designed using a novel bioreactor to increase the yield of PLTs from stem cell-derived megakaryocytes. CD34 cells isolated from umbilical cord blood were expanded with a variety of reagents and on a nanofiber membrane using serum-free medium. These cells were then differentiated into megakaryocytic lineage by culturing with thrombopoietin and stem cell factor in serum-free conditions. Polyploidy was induced by addition of Rho kinase inhibitor or actin polymerization inhibitor to the CD41 cells. A novel bioreactor was developed that recapitulated aspects of the marrow vascular niche. Polyploid megakaryocytes that were subjected to flow in the bioreactor extended proPLTs and shed PLTs, as confirmed by light microscopy, fluorescence imaging, and flow cytometry. CD34 cells were expanded 100-fold. CD41 cells were expanded 100-fold. Up to 100 PLTs per input megakaryocyte were produced from the bioreactor, for an overall yield of 10(6) PLTs per input CD34 cell. The PLTs externalized P-selectin after activation. Functional PLTs can be produced ex vivo on a clinically relevant scale using serum-free culture conditions with a novel stepwise approach and an innovative bioreactor. © 2015 AABB.

  14. Characterization of Microbial Communities Found in Bioreactor Effluent

    NASA Technical Reports Server (NTRS)

    Flowe, Candice

    2013-01-01

    The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.

  15. Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor

    PubMed Central

    Nittami, Tadashi; Hitomi, Tetsuo; Matsumoto, Kanji; Nakamura, Kazuho; Ikeda, Takaharu; Setoguchi, Yoshihiro; Motoori, Manabu

    2012-01-01

    This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE). A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm) was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm). On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri) i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size. PMID:24958174

  16. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells.

    PubMed

    Dos Santos, Francisco; Campbell, Andrew; Fernandes-Platzgummer, Ana; Andrade, Pedro Z; Gimble, Jeffrey M; Wen, Yuan; Boucher, Shayne; Vemuri, Mohan C; da Silva, Cláudia L; Cabral, Joaquim M S

    2014-06-01

    The large cell doses (>1 × 10(6)  cells/kg) used in clinical trials with mesenchymal stem/stromal cells (MSC) will require an efficient production process. Moreover, monitoring and control of MSC ex-vivo expansion is critical to provide a safe and reliable cell product. Bioprocess engineering approaches, such as bioreactor technology, offer the adequate tools to develop and optimize a cost-effective culture system for the rapid expansion of human MSC for cellular therapy. Herein, a xenogeneic (xeno)-free microcarrier-based culture system was successfully established for bone marrow (BM) MSC and adipose tissue-derived stem/stromal cell (ASC) cultivation using a 1L-scale controlled stirred-tank bioreactor, allowing the production of (1.1 ± 0.1) × 10(8) and (4.5 ± 0.2) × 10(7) cells for BM MSC and ASC, respectively, after 7 days. Additionally, the effect of different percent air saturation values (%Airsat ) and feeding regime on the proliferation and metabolism of BM MSC was evaluated. No significant differences in cell growth and metabolic patterns were observed under 20% and 9%Airsat . Also, the three different feeding regimes studied-(i) 25% daily medium renewal, (ii) 25% medium renewal every 2 days, and (iii) fed-batch addition of concentrated nutrients and growth factors every 2 days-yielded similar cell numbers, and only slight metabolic differences were observed. Moreover, the immunophenotype (positive for CD73, CD90 and CD105 and negative for CD31, CD80 and HLA-DR) and multilineage differentiative potential of expanded cells were not affected upon bioreactor culture. These results demonstrated the feasibility of expanding human MSC from different sources in a clinically relevant expansion configuration in a controlled microcarrier-based stirred culture system under xeno-free conditions. The further optimization of this bioreactor culture system will represent a crucial step towards an efficient GMP-compliant clinical-scale MSC

  17. Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure.

    PubMed

    McLamore, E S; Zhang, W; Porterfield, D M; Banks, M K

    2010-09-15

    Bioreactors containing sessile bacteria (biofilms) grown on hollow fiber membranes have been used for treatment of many wastestreams. Real time operational control of bioreactor performance requires detailed knowledge of the relationship between bulk liquid water quality and physiological transport at the biofilm-liquid interface. Although large data sets exist describing membrane-aerated bioreactor effluent quality, very little real time data is available characterizing boundary layer transport under physiological conditions. A noninvasive, microsensor technique was used to quantify real time (≈1.5 s) changes in oxygen and proton flux for mature Nitrosomonas europaea and Pseudomonas aeruginosa biofilms in membrane-aerated bioreactors following exposure to environmental toxins. Stress response was characterized during exposure to toxins with known mode of action (chlorocarbonyl cyanide phenyl-hydrazone and potassium cyanide), and four environmental toxins (rotenone, 2,4-dinitrophenol, cadmium chloride, and pentachlorophenol). Exposure to sublethal concentrations of all environmental toxins caused significant increases in O(2) and/or H(+) flux (depending on the mode of action). These real time microscale signatures (i.e., fingerprints) of O(2) and H(+) flux can be coupled with bulk liquid analysis to improve our understanding of physiology in counter-diffusion biofilms found within membrane aerated bioreactors; leading to enhanced monitoring/modeling strategies for bioreactor control.

  18. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor.

    PubMed

    Munasinghe, Pradeep Chaminda; Khanal, Samir Kumar

    2012-10-01

    In this study, the volumetric mass transfer coefficients (Ka) for CO were examined in a composite hollow fiber (CHF) membrane bioreactor. The mass transfer experiments were conducted at various inlet gas pressures (from 5 to 30 psig (34.5-206.8 kPa(g))) and recirculation flow rates (300, 600, 900, 1200 and 1500 mL/min) through CHF module. The highest Ka value of 946.6 1/h was observed at a recirculation rate of 1500 mL/min and at an inlet gas pressure of 30 psig(206.8 kPa(g)). The findings of this study confirm that the use of CHF membranes is effective and improves the efficiency CO mass transfer into the aqueous phase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor.

    PubMed

    Tsai, Ang-Chen; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are considered as a primary candidate in cell therapy owing to their self-renewability, high differentiation capabilities, and secretions of trophic factors. In clinical application, a large quantity of therapeutically competent hMSCs is required that cannot be produced in conventional petri dish culture. Bioreactors are scalable and have the capacity to meet the production demand. Microcarrier suspension culture in stirred-tank bioreactors is the most widely used method to expand anchorage dependent cells in a large scale. Stirred-tank bioreactors have the potential to scale up and microcarriers provide the high surface-volume ratio. As a result, a spinner flask bioreactor with microcarriers has been commonly used in large scale expansion of adherent cells. This chapter describes a detailed culture protocol for hMSC expansion in a 125 mL spinner flask using microcarriers, Cytodex I, and a procedure for cell seeding, expansion, metabolic sampling, and quantification and visualization using microculture tetrazolium (MTT) reagent.

  20. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment.

    PubMed

    Wang, Jie; Bi, Fanghua; Ngo, Huu-Hao; Guo, Wenshan; Jia, Hui; Zhang, Hongwei; Zhang, Xinbo

    2016-01-01

    A low-cost hybrid system integrating a membrane-less microbial fuel cell (MFC) with an anoxic/oxic membrane bioreactor (MBR) was studied for fouling mitigation. The appended electric field in the MBR was supplied by the MFC with continuous flow. Supernatant from an anaerobic reactor with low dissolved oxygen was used as feed to the MFC in order to enhance its performance compared with that fed with synthetic wastewater. The voltage output of MFC maintained at 0.52±0.02V with 1000Ω resister. The electric field intensity could reach to 0.114Vcm(-1). Compared with the conventional MBR (CMBR), the contents rather than the components of foulants on the cake layer of fouled MFC-MBR system was significantly reduced. Although only 0.5% of the feed COD was translated into electricity and applied to MBR, the hybrid system showed great feasibility without additional consumption but extracting energy from waste water and significantly enhancing the membrane filterability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cultivation of mammalian cells using a single-use pneumatic bioreactor system.

    PubMed

    Obom, Kristina M; Cummings, Patrick J; Ciafardoni, Janelle A; Hashimura, Yasunori; Giroux, Daniel

    2014-10-10

    Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor's software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. A high-efficiency denitrification bioreactor for the treatment of acrylonitrile wastewater using waterborne polyurethane immobilized activated sludge.

    PubMed

    Dong, Honghong; Wang, Wei; Song, Zhaozheng; Dong, Hao; Wang, Jianfeng; Sun, Shanshan; Zhang, Zhongzhi; Ke, Ming; Zhang, Zhenjia; Wu, Wei-Min; Zhang, Guangqing; Ma, Jie

    2017-09-01

    The performance of a laboratory-scale, high-efficiency denitrification bioreactor (15L) using activated sludge immobilized by waterborne polyurethane in treating acrylonitrile wastewater with high concentration of nitrate nitrogen (249mg/L) was investigated. The bioreactor was operated at 30°C for 220days. Batch denitrification experiments showed that the optimal operation parameters were C/NO 3 - -N molar ratio of 2.0 using sodium acetate as electron donor and carrier filling rate of 20% (V/V) in the bioreactor. Stable performance of denitrification was observed with a hydraulic retention time of 30 to 38h. A volumetric removal rate up to 2.1kgN/m 3 ·d was achieved with a total nitrogen removal efficiency of 95%. Pyrosequencing results showed that Rhodocyclaceae and Pseudomonadaceae were the dominant bacterial families in the immobilized carrier and bioreactor effluent. The overall microbial diversity declined as denitrifiers gradually dominated and the relative abundance of other bacteria decreased along with testing time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Prevalence of Nitrosomonas cluster 7 populations in the ammonia-oxidizing community of a submerged membrane bioreactor treating urban wastewater under different operation conditions.

    PubMed

    Cerrone, F; Poyatos, J M; Molina-Muñoz, M; Cortés-Lorenzo, C; González-López, J; Rodelas, B

    2013-07-01

    A pilot-scale ultrafiltration membrane bioreactor (MBR) was used for the aerobic treatment of urban wastewater in four experimental stages influenced by seasonal temperature and different sets of operation conditions. The structure of the ammonia-oxidizing bacteria (AOB) community was profiled by temperature gradient gel electrophoresis (TGGE), based on the amplification and separation of partial ammonia-monoxygenase subunit A (amoA) genes. Canonical correspondence analysis revealed that temperature, hydraulic retention time and percentage of ammonia removal had a significant effect on the fingerprints of AOB communities. Phylogenetic analysis conducted on amoA/AmoA sequences of reamplified TGGE bands showed, however, that closely related ammonia-oxidizing populations inhabited the sludge of the MBR in all experimental stages. Nitrosomonas cluster 7 populations (N. europaea-N. eutropha cluster) prevailed under all conditions tested, even when the MBR was operated under complete biomass retention or at low temperatures, suggesting that the high ammonia concentrations in the system were determinant to select r-strategist AOB.

  6. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.« less

  7. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.« less

  8. Application of membrane bioreactors in the preliminary treatment of early planetary base wastewater for long-duration space missions.

    PubMed

    Zhang, Kai; Choi, Hyeok; Dionysiou, Dionysios D; Oerther, Daniel B

    2008-12-01

    Membrane bioreactors (MBRs) are the preferred technology for the preliminary treatment of Early Planetary Base Wastewater (EPBW) because of their compact configuration and promising treatment performance. For long-duration space missions, irreversible membrane biofouling resulting from the strong attachment of biomass and the formation of biofilms are major concerns for the MBR process. In this study, a MBR was operated for 230 days treating synthetic EPBW. The reactor demonstrated excellent treatment performance, in terms of chemical oxygen demand removal and nitrification. Filtration resistance is mainly caused by concentration polarization, reversible fouling, and irreversible fouling. Analysis of the microbial communities in the planktonic and corresponding sessile biomass suggested that the microbial community of the planktonic biomass was significantly different from the one of the sessile biomass. This study provides valuable information for the development of the water reuse component in the National Aeronautics and Space Administration's (Washington, D.C.) Advanced Life Support system for long-term space missions.

  9. Analysis of Nitrification Efficiency and Microbial Community in a Membrane Bioreactor Fed with Low COD/N-Ratio Wastewater

    PubMed Central

    Ma, Jinxing; Wang, Zhiwei; Zhu, Chaowei; Liu, Shumeng; Wang, Qiaoying; Wu, Zhichao

    2013-01-01

    In this study, an approach using influent COD/N ratio reduction was employed to improve process performance and nitrification efficiency in a membrane bioreactor (MBR). Besides sludge reduction, membrane fouling alleviation was observed during 330 d operation, which was attributed to the decreased production of soluble microbial products (SMP) and efficient carbon metabolism in the autotrophic nitrifying community. 454 high-throughput 16S rRNA gene pyrosequencing revealed that the diversity of microbial sequences was mainly determined by the feed characteristics, and that microbes could derive energy by switching to a more autotrophic metabolism to resist the environmental stress. The enrichment of nitrifiers in an MBR with a low COD/N-ratio demonstrated that this condition stimulated nitrification, and that the community distribution of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) resulted in faster nitrite uptake rates. Further, ammonia oxidation was the rate-limiting step during the full nitrification. PMID:23667573

  10. Evaluation of zosteric acid for mitigating biofilm formation of Pseudomonas putida isolated from a membrane bioreactor system.

    PubMed

    Polo, Andrea; Foladori, Paola; Ponti, Benedetta; Bettinetti, Roberta; Gambino, Michela; Villa, Federica; Cappitelli, Francesca

    2014-05-28

    This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass (-97%) and thickness (-50%), and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition.

  11. Evaluation of Zosteric Acid for Mitigating Biofilm Formation of Pseudomonas putida Isolated from a Membrane Bioreactor System

    PubMed Central

    Polo, Andrea; Foladori, Paola; Ponti, Benedetta; Bettinetti, Roberta; Gambino, Michela; Villa, Federica; Cappitelli, Francesca

    2014-01-01

    This study provides data to define an efficient biocide-free strategy based on zosteric acid to counteract biofilm formation on the membranes of submerged bioreactor system plants. 16S rRNA gene phylogenetic analysis showed that gammaproteobacteria was the prevalent taxa on fouled membranes of an Italian wastewater plant. Pseudomonas was the prevalent genus among the cultivable membrane-fouler bacteria and Pseudomonas putida was selected as the target microorganism to test the efficacy of the antifoulant. Zosteric acid was not a source of carbon and energy for P. putida cells and, at 200 mg/L, it caused a reduction of bacterial coverage by 80%. Biofilm experiments confirmed the compound caused a significant decrease in biomass (−97%) and thickness (−50%), and it induced a migration activity of the peritrichous flagellated P. putida over the polycarbonate surface not amenable to a biofilm phenotype. The low octanol-water partitioning coefficient and the high water solubility suggested a low bioaccumulation potential and the water compartment as its main environmental recipient and capacitor. Preliminary ecotoxicological tests did not highlight direct toxicity effects toward Daphnia magna. For green algae Pseudokirchneriella subcapitata an effect was observed at concentrations above 100 mg/L with a significant growth of protozoa that may be connected to a concurrent algal growth inhibition. PMID:24879523

  12. Phenolic wastewater treatment through extractive recovery coupled with biodegradation in a two-phase partitioning membrane bioreactor.

    PubMed

    Praveen, Prashant; Loh, Kai-Chee

    2015-12-01

    A two-phase partitioning membrane bioreactor (TPPMB) was designed and operated for treatment of high strength phenolic wastewater through extraction/stripping and concomitant biodegradation. Tributyl phosphate dissolved in kerosene was used as the organic phase, sodium hydroxide as the stripping phase and Pseudomonas putida for biodegradation. In a semi-dispersive approach, organic phase dispersed in the stripping solution was contacted with wastewater through semi-permeable membranes for removal of phenol from wastewater, while the microorganisms were inoculated directly into the wastewater for biodegradation. The TPPMB exhibited high phenol removal rates, and phenol concentrations of 1000-3000mg/L were reduced to undetected amounts within 2-4h. Up to 80% phenol was recovered through extraction, while the remaining was metabolized by the microorganisms. Phenol recovery in the TPPMB was enhanced by increasing the mass transfer rate of phenol through the membranes, and it was also estimated that phenol diffusion through the aqueous boundary layer on the tube side was the rate limiting step. The flexibility in adjusting inoculation time in the TPPMB prevented microorganisms from adverse effects of substrate inhibition, which facilitated complete removal of phenol from the wastewater. TPPMB retained the advantages of both solvent extraction and biodegradation, and it can be highly promising for the treatment of toxic industrial wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    PubMed

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  14. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  15. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. Scale-up from shake flasks to bioreactor, based on power input and Streptomyces lividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis.

    PubMed

    Gamboa-Suasnavart, Ramsés A; Marín-Palacio, Luz D; Martínez-Sotelo, José A; Espitia, Clara; Servín-González, Luis; Valdez-Cruz, Norma A; Trujillo-Roldán, Mauricio A

    2013-08-01

    Culture conditions in shake flasks affect filamentous Streptomyces lividans morphology, as well the productivity and O-mannosylation of recombinant Ala-Pro-rich O-glycoprotein (known as the 45/47 kDa or APA antigen) from Mycobacterium tuberculosis. In order to scale up from previous reported shake flasks to bioreactor, data from the literature on the effect of agitation on morphology of Streptomyces strains were used to obtain gassed volumetric power input values that can be used to obtain a morphology of S. lividans in bioreactor similar to the morphology previously reported in coiled/baffled shake flasks by our group. Morphology of S. lividans was successfully scaled-up, obtaining similar mycelial sizes in both scales with diameters of 0.21 ± 0.09 mm in baffled and coiled shake flasks, and 0.15 ± 0.01 mm in the bioreactor. Moreover, the specific growth rate was successfully scaled up (0.09 ± 0.02 and 0.12 ± 0.01 h(-1), for bioreactors and flasks, respectively), and the recombinant protein productivity measured by densitometry, as well. More interestingly, the quality of the recombinant glycoprotein measured as the amount of mannoses attached to the C-terminal of APA was also scaled- up; with up to five mannose residues in cultures carried out in shake flasks; and six in the bioreactor. However, final biomass concentration was not similar, indicating that although the process can be scaled-up using the power input, others factors like oxygen transfer rate, tip speed or energy dissipation/circulation function can be an influence on bacterial metabolism.

  19. Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties.

    PubMed

    Tong, Tiezheng; Zhao, Song; Boo, Chanhee; Hashmi, Sara M; Elimelech, Menachem

    2017-04-18

    We investigated the relationship between membrane surface properties and silica scaling in reverse osmosis (RO). The effects of membrane hydrophilicity, free energy for heterogeneous nucleation, and surface charge on silica scaling were examined by comparing thin-film composite polyamide membranes grafted with a variety of polymers. Results show that the rate of silica scaling was independent of both membrane hydrophilicity and free energy for heterogeneous nucleation. In contrast, membrane surface charge demonstrated a strong correlation with the extent of silica scaling (R 2 > 0.95, p < 0.001). Positively charged membranes significantly facilitated silica scaling, whereas a more negative membrane surface charge led to reduced scaling. This observation suggests that deposition of negatively charged silica species on the membrane surface plays a critical role in silica scale formation. Our findings provide fundamental insights into the mechanisms governing silica scaling in reverse osmosis and highlight the potential of membrane surface modification as a strategy to reduce silica scaling.

  20. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production

    PubMed Central

    Fan, Rong; Ebrahimi, Mehrdad; Quitmann, Hendrich; Aden, Matthias; Czermak, Peter

    2016-01-01

    Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L−1. The specific cell growth rate (µ) during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L−1). The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µmax was measured under different filtration conditions (transmembrane pressure 0.3–1.2 bar, crossflow velocity 0.5–1.5 m·s−1), showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems. PMID:27007380

  1. Cycle-time determination and process control of sequencing batch membrane bioreactors.

    PubMed

    Krampe, J

    2013-01-01

    In this paper a method to determine the cycle time for sequencing batch membrane bioreactors (SBMBRs) is introduced. One of the advantages of SBMBRs is the simplicity of adapting them to varying wastewater composition. The benefit of this flexibility can only be fully utilised if the cycle times are optimised for the specific inlet load conditions. This requires either proactive and ongoing operator adjustment or active predictive instrument-based control. Determination of the cycle times for conventional sequencing batch reactor (SBR) plants is usually based on experience. Due to the higher mixed liquor suspended solids concentrations in SBMBRs and the limited experience with their application, a new approach to calculate the cycle time had to be developed. Based on results from a semi-technical pilot plant, the paper presents an approach for calculating the cycle time in relation to the influent concentration according to the Activated Sludge Model No. 1 and the German HSG (Hochschulgruppe) Approach. The approach presented in this paper considers the increased solid contents in the reactor and the resultant shortened reaction times. This allows for an exact calculation of the nitrification and denitrification cycles with a tolerance of only a few minutes. Ultimately the same approach can be used for a predictive control strategy and for conventional SBR plants.

  2. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    PubMed

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture

    NASA Astrophysics Data System (ADS)

    Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.

    2005-12-01

    Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6

  4. Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy.

    PubMed

    Liu, Ting; Chen, Zhong-lin; Yu, Wen-zheng; You, Shi-jie

    2011-02-01

    This study focuses on organic membrane foulants in a submerged membrane bioreactor (MBR) process with pre-ozonation compared to an individual MBR using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy. While the influent was continuously ozonated at a normal dosage, preferable organic matter removal was achieved in subsequent MBR, and trans-membrane pressure increased at a much lower rate than that of the individual MBR. EEM fluorescence spectroscopy was employed to characterize the dissolved organic matter (DOM) samples, extracellular polymeric substance (EPS) samples and membrane foulants. Four main peaks could be identified from the EEM fluorescence spectra of the DOM samples in both MBRs. Two peaks were associated with the protein-like fluorophores, and the other ones were related to the humic-like fluorophores. The results indicated that pre-ozonation decreased fluorescence intensities of all peaks in the EEM spectra of influent DOM especially for protein-like substances and caused red shifts of all fluorescence peaks to different extents. The peak intensities of the protein-like substances represented by Peak T(1) and T(2) in EPS spectra were obviously decreased as a result of pre-ozonation. Both external and internal fouling could be effectively mitigated by the pre-ozonation. The most primary component of external foulants was humic acid-like substance (Peak C) in the MBR with pre-ozonation and protein-like substance (Peak T(1)) in the individual MBR, respectively. The content decrease of protein-like substances and structural change of humic-like substances were observed in external foulants from EEM fluorescence spectra due to pre-ozonation. However, it could be seen that ozonation resulted in significant reduction of intensities but little location shift of all peaks in EEM fluorescence spectra of internal foulants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy.

    PubMed

    Wang, Zhiwei; Wu, Zhichao; Tang, Shujuan

    2009-04-01

    Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy was employed to characterize dissolved organic matter (DOM) in a submerged membrane bioreactor (MBR). Three fluorescence peaks could be identified from the EEM fluorescence spectra of the DOM samples in the MBR. Two peaks were associated with the protein-like fluorophores, and the third was related to the visible humic acid-like fluorophores. Only two main peaks were observed in the EEM fluorescence spectra of the extracellular polymeric substance (EPS) samples, which were due to the fluorescence of protein-like and humic acid-like matters, respectively. However, the EEM fluorescence spectra of membrane foulants were observed to have three peaks. It was also found that the dominant fluorescence substances in membrane foulants were protein-like substances, which might be due to the retention of proteins in the DOM and/or EPS in the MBR by the fine pores of the membrane. Quantitative analysis of the fluorescence spectra including peak locations, fluorescence intensity, and different peak intensity ratios and the fluorescence regional integration (FRI) analysis were also carried out in order to better understand the similarities and differences among the EEM spectra of the DOM, EPS, and membrane foulant samples and to further provide an insight into membrane fouling caused by the fluorescence substances in the DOM in submerged MBRs.

  6. Rapid Startup and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    NASA Technical Reports Server (NTRS)

    Meyer, Caitlin; Vega, Leticia

    2014-01-01

    The Membrane Aerated Bioreactor (MABR) is an attached-growth biological system for simultaneous nitrification and denitrification. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal. Implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to two weeks and that the surface area to volume ratio baseline used in the Alternative Water Processor (AWP) test was higher than what was needed to remove the organic carbon and ammonium from the system.

  7. Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor.

    PubMed

    Wang, Wei; Wang, Shun; Ren, Xuesong; Hu, Zhenhu; Yuan, Shoujun

    2017-11-01

    Although toxic and refractory organics, such as phenol and quinoline, are decomposed by anaerobic bacteria, the establishment of specific degrading consortia is a relatively slow process. An anaerobic membrane bioreactor allows for complete biomass retention that can aid the establishment of phenol- and quinoline-degrading consortia. In this study, the anaerobic digestion of phenol (500 mg L -1 ) and quinoline (50 mg L -1 ) was investigated using an anaerobic baffled ceramic membrane bioreactor (ABCMBR). The results showed that, within 30 days, 99% of phenol, 98% of quinoline and 88% of chemical oxygen demand (COD) were removed. The substrate utilisation rates of the cake layer for phenol and quinoline, and specific methanogenic activity of the cake layer, were 7.58 mg phenol g -1  mixed liquor volatile suspended solids (MLVSS) day -1 , 8.23 mg quinoline g -1  MLVSS day -1 and 0.55 g COD CH4  g -1  MLVSS day -1 , respectively. The contribution of the cake layer to the removals of phenol and quinoline was extremely underestimated because the uncounted scoured cake layer was disregarded. Syntrophus was the key population for phenol and quinoline degradation, and it was more abundant in the cake layer than in the bulk sludge. The highly active scattered cake layer sped up the establishment of phenol- and quinoline-degrading consortia in the ABCMBR.

  8. The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor.

    PubMed

    Erkan, Hanife Sari; Engin, Guleda Onkal

    2017-10-01

    The paper mill industry produces high amounts of wastewater and, for this reason, stringent discharge limits are applied for sustainable reclamation and reuse of paper mill industry wastewater in many countries. Submerged membrane bioreactor (sMBR) systems can create new opportunities to eliminate dissolved substances present in paper mill wastewater including. In this study, a sMBR was operated for the treatment of paper mill industry wastewater at 35 h of hydraulic retention time (HRT) and 40 d of sludge retention time (SRT). The chemical oxygen demand (COD), NH 3 -N and total phosphorus (TP) removal efficiencies were found to be 98%, 92.99% and 96.36%. The results demonstrated that sMBR was a suitable treatment for the removal of organic matter and nutrients for treating paper mill wastewater except for the problem of calcium accumulation. During the experimental studies, it was noted that the inorganic fraction of the sludge increased as a result of calcium accumulation in the reactor and increased membrane fouling was observed on the membrane surface due to the calcification problem encountered. The properties of the sludge, such as extracellular polymeric substances (EPS) and soluble microbial products (SMP), relative hydrophobicity, zeta potential and floc size distribution were also monitored. According to the obtained results, the total EPS was found to be 43.93 mg/gMLSS and the average total SMP rejection by the membrane was determined as 66.2%.

  9. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qiyong; Tian, Ying; Wang, Shen

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. Themore » hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.« less

  10. Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times.

    PubMed

    Shin, Hang-Sik; Kang, Seok-Tae

    2003-01-01

    The formation and fate of soluble microbial products (SMP) in membrane bioreactor (MBR) was investigated at various sludge retention times (SRT) for 170 days. The SMP concentration was estimated by feeding glucose, which could be completely degraded, and by measuring the dissolved organic carbon (DOC) of the effluent from MBR. Under the conditions of SRT of 20 days, influent DOC of 112 mg/l and HRT of 6 h, the produced SMP was 4.7 mg DOC/l of which 57% was removed or retained by the membrane. DOC of MBR supernatant increased during 100 days and then gradually decreased. Specific UV absorbance showed that the accumulated compounds had a portion of larger, more aromatic, more hydrophobic and double-bond-rich organics, which originated from the decayed biomass. Molecular weight distributions of SMP in MBR supernatant showed that the acclimated microorganisms in a long SRT could decompose high molecular weight organics, it caused the shift of molecular weight distributions of SMP to a lower range. During the operation period, enumeration of active cells in the MBR showed that microbial inhibitions by accumulated SMP was not observed.

  11. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. Modeling microbiological and chemical processes in municipal solid waste bioreactor, Part II: Application of numerical model BIOKEMOD-3P.

    PubMed

    Gawande, Nitin A; Reinhart, Debra R; Yeh, Gour-Tsyh

    2010-02-01

    Biodegradation process modeling of municipal solid waste (MSW) bioreactor landfills requires the knowledge of various process reactions and corresponding kinetic parameters. Mechanistic models available to date are able to simulate biodegradation processes with the help of pre-defined species and reactions. Some of these models consider the effect of critical parameters such as moisture content, pH, and temperature. Biomass concentration is a vital parameter for any biomass growth model and often not compared with field and laboratory results. A more complex biodegradation model includes a large number of chemical and microbiological species. Increasing the number of species and user defined process reactions in the simulation requires a robust numerical tool. A generalized microbiological and chemical model, BIOKEMOD-3P, was developed to simulate biodegradation processes in three-phases (Gawande et al. 2009). This paper presents the application of this model to simulate laboratory-scale MSW bioreactors under anaerobic conditions. BIOKEMOD-3P was able to closely simulate the experimental data. The results from this study may help in application of this model to full-scale landfill operation.

  13. Nitrous oxide emissions in a membrane bioreactor treating saline wastewater contaminated by hydrocarbons.

    PubMed

    Mannina, Giorgio; Cosenza, Alida; Di Trapani, Daniele; Laudicina, Vito Armando; Morici, Claudia; Ødegaard, Hallvard

    2016-11-01

    The joint effect of wastewater salinity and hydrocarbons on nitrous oxide emission was investigated. The membrane bioreactor pilot plant was operated with two phases: i. biomass acclimation by increasing salinity from 10gNaClL(-1) to 20gNaClL(-1) (Phase I); ii. hydrocarbons dosing at 20mgL(-1) with a constant salt concentration of 20gNaClL(-1) (Phase II). The Phase I revealed a relationship between nitrous oxide emissions and salinity. During the end of the Phase I, the activity of nitrifiers started to recover, indicating a partial acclimatization. During the Phase II, the hydrocarbon shock induced a temporary inhibition of the biomass with the suppression of nitrous oxide emissions. The results revealed that the oxic tank was the major source of nitrous oxide emission, likely due to the gas stripping by aeration. The joint effect of salinity and hydrocarbons was found to be crucial for the production of nitrous oxide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization.

    PubMed

    Velez-Suberbie, M Lourdes; Betts, John P J; Walker, Kelly L; Robinson, Colin; Zoro, Barney; Keshavarz-Moore, Eli

    2018-01-01

    High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled-up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale-up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58-68, 2018. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  15. A membrane stirrer for product recovery and substrate feeding.

    PubMed

    Femmer, T; Carstensen, F; Wessling, M

    2015-02-01

    During fermentation processes, in situ product recovery (ISPR) using submerged membranes allows a continuous operation mode with effective product removal. Continuous recovery reduces product inhibition and organisms in the reactor are not exposed to changing reaction conditions. For an effective in situ product removal, submerged membrane systems should have a sufficient large membrane area and an anti-fouling concept integrated in a compact device for the limited space in a lab-scale bioreactor. We present a new membrane stirrer with integrated filtration membranes on the impeller blades as well as an integrated gassing concept in an all-in-one device. The stirrer is fabricated by rapid prototyping and is equipped with a commercial micromesh membrane. Filtration performance is tested using a yeast cell suspension with different stirring speeds and aeration fluxes. We reduce membrane fouling by backflushing through the membrane with the product stream. © 2014 Wiley Periodicals, Inc.

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  18. Rapid Start-up and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    NASA Technical Reports Server (NTRS)

    Meyer, Caitlin E.; Pensinger, Stuart; Pickering, Karen D.; Barta, Daniel; Shull, Sarah A.; Vega, Letticia M.; Christenson, Dylan; Jackson, W. Andrew

    2015-01-01

    Membrane aerated bioreactors (MABR) are attached-growth biological systems used for simultaneous nitrification and denitrification to reclaim water from waste. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal and implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to under two weeks, and that despite low ammonium removal rates, the MABRs are oversized.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. Fixed-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

  1. Plant cell cultures: bioreactors for industrial production.

    PubMed

    Ruffoni, Barbara; Pistelli, Laura; Bertoli, Alessandra; Pistelli, Luisa

    2010-01-01

    The recent biotechnology boom has triggered increased interest in plant cell cultures, since a number of firms and academic institutions investigated intensively to rise the production of very promising bioactive compounds. In alternative to wild collection or plant cultivation, the production of useful and valuable secondary metabolites in large bioreactors is an attractive proposal; it should contribute significantly to future attempts to preserve global biodiversity and alleviate associated ecological problems. The advantages of such processes include the controlled production according to demand and a reduced man work requirement. Plant cells have been grown in different shape bioreactors, however, there are a variety of problems to be solved before this technology can be adopted on a wide scale for the production of useful plant secondary metabolites. There are different factors affecting the culture growth and secondary metabolite production in bioreactors: the gaseous atmosphere, oxygen supply and CO2 exchange, pH, minerals, carbohydrates, growth regulators, the liquid medium rheology and cell density. Moreover agitation systems and sterilization conditions may negatively influence the whole process. Many types ofbioreactors have been successfully used for cultivating transformed root cultures, depending on both different aeration system and nutrient supply. Several examples of medicinal and aromatic plant cultures were here summarized for the scale up cultivation in bioreactors.

  2. Bioreactor principles

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater

    USDA-ARS?s Scientific Manuscript database

    The performance of wood-based denitrifying bioreactors to treat high-nitrate wastewaters from aquaculture systems has not previously been demonstrated. Four pilot-scale woodchip bioreactors (approximately 1:10 scale) were constructed and operated for 268 d to determine the optimal range of design hy...

  4. A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium

    PubMed Central

    Raredon, Micha Sam Brickman; Ghaedi, Mahboobe; Calle, Elizabeth A.; Niklason, Laura E.

    2015-01-01

    Respiratory epithelium is difficult to grow in vitro, as it requires a well-maintained polarizing air–liquid interface (ALI) to maintain differentiation. Traditional methods rely on permeable membrane culture inserts, which are difficult to work with and are ill-suited for the production of large numbers of cells, such as the quantities required for cell-based clinical therapies. Herein, we investigate an alternative form of culture in which the cells are placed on a porous substrate that is continuously rolled, such that the monolayer of cells is alternately submerged in media or apically exposed to air. Our prototype bioreactor is reliable for up to 21 days of continuous culture and is designed for scale-up for large-scale cell culture with continuous medium and gas exchange. Normal human bronchial epithelial (NHBE) cells were cultured on an absorbent substrate in the reactor for periods of 7, 14, and 21 days and were compared to static controls that were submerged in media. Quantification by immunohistochemistry and quantitative PCR of markers specific to differentiated respiratory epithelium indicated increased cilia, mucous production, and tight junction formation in the rolled cultures, compared to static. Together with scanning electron microscopy and paraffin histology, the data indicate that the intermittent ALI provided by the rolling bioreactor promotes a polarized epithelial phenotype over a period of 21 days. PMID:26858899

  5. Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture

    PubMed Central

    Gambelli, Lavinia; Cremers, Geert; Mesman, Rob; Guerrero, Simon; Dutilh, Bas E.; Jetten, Mike S. M.; Op den Camp, Huub J. M.; van Niftrik, Laura

    2016-01-01

    With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale bioreactors can experience setbacks due to, for example, bacteriophage blooms. By shaping microbial communities through mortality, horizontal gene transfer, and metabolic reprogramming, bacteriophages are important players in most ecosystems. Here, we analyzed an infected Methylomirabilis sp. bioreactor enrichment culture using (advanced) electron microscopy, viral metagenomics and bioinformatics. Electron micrographs revealed four different viral morphotypes, one of which was observed to infect Methylomirabilis cells. The infected cells contained densely packed ~55 nm icosahedral bacteriophage particles with a putative internal membrane. Various stages of virion assembly were observed. Moreover, during the bacteriophage replication, the host cytoplasmic membrane appeared extremely patchy, which suggests that the bacteriophages may use host bacterial lipids to build their own putative internal membrane. The viral metagenome contained 1.87 million base pairs of assembled viral sequences, from which five putative complete viral genomes were assembled and manually annotated. Using bioinformatics analyses, we could not identify which viral genome belonged to the Methylomirabilis- infecting bacteriophage, in part because the obtained viral genome sequences were novel and unique to this reactor system. Taken together these results show that new bacteriophages can be detected in anaerobic cultivation systems and that the effect of bacteriophages on the microbial community in these systems is a topic for further study. PMID:27877158

  6. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells

    PubMed Central

    Osiecki, Michael J.; Michl, Thomas D.; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B.; Griesser, Hans J.; Doran, Michael R.

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs. PMID:26660475

  7. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.

    PubMed

    Osiecki, Michael J; Michl, Thomas D; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B; Griesser, Hans J; Doran, Michael R

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.

  8. Impact of hazardous events on the removal of nutrients and trace organic contaminants by an anoxic-aerobic membrane bioreactor receiving real wastewater.

    PubMed

    Phan, Hop V; Hai, Faisal I; McDonald, James A; Khan, Stuart J; van de Merwe, Jason P; Leusch, Frederic D L; Zhang, Ren; Price, William E; Broeckmann, Andreas; Nghiem, Long D

    2015-09-01

    The impacts of four simulated hazardous events, namely, aeration failure, power loss, and chemical shocks (ammonia or bleach) on the performance of an anoxic-aerobic membrane bioreactor (MBR) receiving real wastewater were investigated. Hazardous events could alter pH and/or oxidation reduction potential of the mixed liquor and inhibit biomass growth, thus affecting the removal of bulk organics, nutrients and trace organic contaminants (TrOC). Chemical shocks generally exerted greater impact on MBR performance than aeration/power failure events, with ammonia shock exerting the greatest impact. Compared to total organic carbon, nutrient removal was more severely affected. Removal of the hydrophilic TrOCs that are resistant and/or occur at high concentrations in wastewater was notably affected. The MBR effectively reduced estrogenicity and toxicity from wastewater, but chemical shocks could temporarily increase the endocrine activity of the effluent. Depending on the chemical shock-dose and the membrane flux, hazardous events can exacerbate membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Investigation on the response of anaerobic membrane bioreactor to temperature decrease from 25°C to 10°C in sewage treatment.

    PubMed

    Watanabe, Ryoya; Nie, Yulun; Wakahara, Shinichiro; Komori, Daisuke; Li, Yu-You

    2017-11-01

    Anaerobic membrane bioreactor (AnMBR) for sewage treatment was operated for 650days with the decrease of temperature from 25°C to 10°C. At higher temperature >15°C, COD removal was above 94% while sewage treatment efficiency and relevant CH 4 production decreased below 15°C. The effluent COD at 10°C was 134mg/L at HRT of 16h. Moreover, low temperature can result in a higher membrane fouling rate due to the microbial self-protection behavior in coping with the temperature decrease by releasing soluble microbial products (SMP) and extracellular polymeric substances (EPS). The contribution of pore blocking to membrane fouling caused by protein from SMP and EPS increased from 17% to 45% and that of cake layer decreased from 81% to 53% at 25°C and 15°C respectively. The inhibition to hydrolysis and acidification process was responsible to the decrease of sewage treatment at lower temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds.

    PubMed

    Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H

    1998-03-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.

  11. Membrane-less microfiltration using inertial microfluidics

    PubMed Central

    Warkiani, Majid Ebrahimi; Tay, Andy Kah Ping; Guan, Guofeng; Han, Jongyoon

    2015-01-01

    Microfiltration is a ubiquitous and often crucial part of many industrial processes, including biopharmaceutical manufacturing. Yet, all existing filtration systems suffer from the issue of membrane clogging, which fundamentally limits the efficiency and reliability of the filtration process. Herein, we report the development of a membrane-less microfiltration system by massively parallelizing inertial microfluidics to achieve a macroscopic volume processing rates (~ 500 mL/min). We demonstrated the systems engineered for CHO (10–20 μm) and yeast (3–5 μm) cells filtration, which are two main cell types used for large-scale bioreactors. Our proposed system can replace existing filtration membrane and provide passive (no external force fields), continuous filtration, thus eliminating the need for membrane replacement. This platform has the desirable combinations of high throughput, low-cost, and scalability, making it compatible for a myriad of microfiltration applications and industrial purposes. PMID:26154774

  12. Impact of Coagulant and Flocculant Addition to an Anaerobic Dynamic Membrane Bioreactor (AnDMBR) Treating Waste-Activated Sludge.

    PubMed

    Kooijman, Guido; Lopes, Wilton; Zhou, Zhongbo; Guo, Hongxiao; de Kreuk, Merle; Spanjers, Henri; van Lier, Jules

    2017-03-23

    In this work, we investigated the effects of flocculation aid (FA) addition to an anaerobic dynamic membrane bioreactor (AnDMBR) (7 L, 35 °C) treating waste-activated sludge (WAS). The experiment consisted of three distinct periods. In period 1 (day 1-86), the reactor was operated as a conventional anaerobic digester with a solids retention time (SRT) and hydraulic retention time (HRT) of 24 days. In period 2 (day 86-303), the HRT was lowered to 18 days with the application of a dynamic membrane while the SRT was kept the same. In period 3 (day 303-386), a cationic FA in combination with FeCl₃ was added. The additions led to a lower viscosity, which was expected to lead to an increased digestion performance. However, the FAs caused irreversible binding of the substrate, lowering the volatile solids destruction from 32% in period 2 to 24% in period 3. An accumulation of small particulates was observed in the sludge, lowering the average particle size by 50%. These particulates likely caused pore blocking in the cake layer, doubling the trans-membrane pressure. The methanogenic consortia were unaffected. Dosing coagulants and flocculants into an AnDMBR treating sludge leads to a decreased cake layer permeability and decreased sludge degradation.

  13. Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.

    A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquidmore » films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.« less

  14. Evaluation of parallel milliliter-scale stirred-tank bioreactors for the study of biphasic whole-cell biocatalysis with ionic liquids.

    PubMed

    Dennewald, Danielle; Hortsch, Ralf; Weuster-Botz, Dirk

    2012-01-01

    As clear structure-activity relationships are still rare for ionic liquids, preliminary experiments are necessary for the process development of biphasic whole-cell processes involving these solvents. To reduce the time investment and the material costs, the process development of such biphasic reaction systems would profit from a small-scale high-throughput platform. Exemplarily, the reduction of 2-octanone to (R)-2-octanol by a recombinant Escherichia coli in a biphasic ionic liquid/water system was studied in a miniaturized stirred-tank bioreactor system allowing the parallel operation of up to 48 reactors at the mL-scale. The results were compared to those obtained in a 20-fold larger stirred-tank reactor. The maximum local energy dissipation was evaluated at the larger scale and compared to the data available for the small-scale reactors, to verify if similar mass transfer could be obtained at both scales. Thereafter, the reaction kinetics and final conversions reached in different reactions setups were analysed. The results were in good agreement between both scales for varying ionic liquids and for ionic liquid volume fractions up to 40%. The parallel bioreactor system can thus be used for the process development of the majority of biphasic reaction systems involving ionic liquids, reducing the time and resource investment during the process development of this type of applications. Copyright © 2011. Published by Elsevier B.V.

  15. Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor.

    PubMed

    Oliveira, Felisbela; Salgado, José Manuel; Abrunhosa, Luís; Pérez-Rodríguez, Noelia; Domínguez, José M; Venâncio, Armando; Belo, Isabel

    2017-07-01

    Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH 4 ) 2 SO 4 . Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g -1 (dry basis) was obtained after 7 days of fermentation.

  16. Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells.

    PubMed

    Lara, Alvaro R; Galindo, Enrique; Ramírez, Octavio T; Palomares, Laura A

    2006-11-01

    The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and practical constraints during large-scale bioreactor design and operation. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell metabolism, yields, and quality of the products of interest. In this review, the theoretical analyses that predict the existence of environmental gradients in bioreactors and their experimental confirmation are reviewed. The origins of gradients in common culture parameters and their effects on various organisms of biotechnological importance are discussed. In particular, studies based on the scale-down methodology, a convenient tool for assessing the effect of environmental heterogeneities, are surveyed.

  17. Performance of a sequencing-batch membrane bioreactor (SMBR) with an automatic control strategy treating high-strength swine wastewater.

    PubMed

    Sui, Qianwen; Jiang, Chao; Yu, Dawei; Chen, Meixue; Zhang, Junya; Wang, Yawei; Wei, Yuansong

    2018-01-15

    Due to high-strength of organic matters, nutrients and pathogen, swine wastewater is a major source of pollution to rural environment and surface water. A sequencing-batch membrane bioreactor (SMBR) system with an automatic control strategy was developed for high-strength swine wastewater treatment. Short-cut nitrification and denitrification (SND) was achieved at nitrite accumulation rate of 83.6%, with removal rates of COD, NH 4 + -N and TN at 95%, 99% and 93%, respectively, at reduced HRT of 6.0 d and TN loading rate of 0.02kgN/(kgVSS d). With effective membrane separation, the reduction of total bacteria (TB) and putative pathogen were 2.77 logs and 1%, respectively. The shift of microbial community was well responded to controlling parameters. During the SND process, ammonia oxidizing bacteria (AOB) (Nitrosomonas, Nitrosospira) and nitrite oxidizing bacteria (NOB) (Nitrospira) were enriched by 52 times and reduced by 2 times, respectively. The denitrifiers (Thauera) were well enriched and the diversity was enhanced. Copyright © 2017. Published by Elsevier B.V.

  18. Plastic Biofilm Carrier after Corn Cobs Reduces Nitrate Loading in Laboratory Denitrifying Bioreactors.

    PubMed

    Feyereisen, Gary W; Christianson, Laura E; Moorman, Thomas B; Venterea, Rodney T; Coulter, Jeffrey A

    2017-07-01

    Nitrate-nitrogen (nitrate-N) removal rates can be increased substantially in denitrifying bioreactors with a corn ( L.) cob bed medium compared with woodchips; however, additional organic carbon (C) is released into the effluent. This laboratory column experiment was conducted to test the performance of a postbed chamber of inert plastic biofilm carrier (PBC) after corn cobs (CC) to extend the area of biofilm colonization, enhance nitrate-N removal, lower total organic C losses, and reduce nitrous oxide (NO) production at warm (15.5°C) and cold (1.5°C) temperatures. Treatments were CC only and CC plus PBC in series (CC-PBC). Across the two temperatures, nitrate-N load removal was 21% greater with CC-PBC than CC, with 54 and 44% of total nitrate N load, respectively. However, total organic C concentrations and loads were not significantly different between treatments. Colonization of the PBC by denitrifiers occurred, although gene abundance at the outlet (PBC) was less than at the inlet (CC). The PBC chamber increased nitrate-N removal rate and reduced cumulative NO production at 15.5°C, but not at 1.5°C. Across temperatures and treatments, NO production was 0.9% of nitrate-N removed. Including an additional chamber filled with PBC downstream from the CC bioreactor provided benefits in terms nitrate-N removal but did not achieve C removal. The presence of excess C, as well as available nitrate, in the PBC chamber suggests another unidentified limiting factor for nitrate removal. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Osmotically-driven membrane processes for water reuse and energy recovery

    NASA Astrophysics Data System (ADS)

    Achilli, Andrea

    Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  1. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.

    PubMed

    Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu

    2010-11-01

    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.

  2. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment.

    PubMed

    Lin, Hongjun; Wang, Fangyuan; Ding, Linxian; Hong, Huachang; Chen, Jianrong; Lu, Xiaofeng

    2011-09-15

    The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH(4)(+)-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Schisandra lignans production regulated by different bioreactor type.

    PubMed

    Szopa, Agnieszka; Kokotkiewicz, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2017-04-10

    Schisandra chinensis (Chinese magnolia vine) is a rich source of therapeutically relevant dibenzocyclooctadiene lignans with anticancer, immunostimulant and hepatoprotective activities. In this work, shoot cultures of S. chinensis were grown in different types of bioreactors with the aim to select a system suitable for the large scale in vitro production of schisandra lignans. The cultures were maintained in Murashige-Skoog (MS) medium supplemented with 3mg/l 6-benzylaminopurine (BA) and 1mg/l 1-naphthaleneacetic acid (NAA). Five bioreactors differing with respect to cultivation mode were tested: two liquid-phase systems (baloon-type bioreactor and bubble-column bioreactor with biomass immobilization), the gas-phase spray bioreactor and two commercially available temporary immersion systems: RITA ® and Plantform. The experiments were run for 30 and 60 days in batch mode. The harvested shoots were evaluated for growth and lignan content determined by LC-DAD and LC-DAD-ESI-MS. Of the tested bioreactors, temporary immersion systems provided the best results with respect to biomass production and lignan accumulation: RITA ® bioreactor yielded 17.86g/l (dry weight) during 60 day growth period whereas shoots grown for 30 days in Plantform bioreactor contained the highest amount of lignans (546.98mg/100g dry weight), with schisandrin, deoxyschisandrin and gomisin A as the major constituents (118.59, 77.66 and 67.86mg/100g dry weight, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor

    PubMed Central

    Dasa, Kris Triwulan; Westman, Supansa Y.; Cahyanto, Muhammad Nur; Niklasson, Claes

    2016-01-01

    Anaerobic digestion of lipid-containing wastes for biogas production is often hampered by the inhibitory effect of long-chain fatty acids (LCFAs). In this study, the inhibitory effects of LCFAs (palmitic, stearic, and oleic acid) on biogas production as well as the protective effect of a membrane bioreactor (MBR) against LCFAs were examined in thermophilic batch digesters. The results showed that palmitic and oleic acid with concentrations of 3.0 and 4.5 g/L resulted in >50% inhibition on the biogas production, while stearic acid had an even stronger inhibitory effect. The encased cells in the MBR system were able to perform better in the presence of LCFAs. This system exhibited a significantly lower percentage of inhibition than the free cell system, not reaching over 50% at any LCFA concentration tested. PMID:27699172

  5. Evaluating the effect of different draw solutes in a baffled osmotic membrane bioreactor-microfiltration using optical coherence tomography with real wastewater.

    PubMed

    Pathak, Nirenkumar; Fortunato, Luca; Li, Sheng; Chekli, Laura; Phuntsho, Sherub; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong

    2018-05-02

    This study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor for real sewage employing baffles in the reactor. To study the biofouling development on forward osmosis membranes optical coherence tomography (OCT) technique was employed. On-line monitoring of biofilm growth on a flat sheet cellulose triacetate forward osmosis (CTA-FO) membrane was conducted for 21 days. Further, the process performance was evaluated in terms of water flux, organic and nutrient removal, microbial activity in terms of soluble microbial products (SMP) and extracellular polymeric substance (EPS), and floc size. The measured biofouling layer thickness was in the order sodium chloride (NaCl) > ammonium sulfate (SOA) > potassium dihydrogen phosphate (KH 2 PO 4 ). Very high organic removal (96.9 ± 0.8%) and reasonably good nutrient removal efficiency (85.2 ± 1.6% TN) was achieved. The sludge characteristics and biofouling layer thickness suggest that less EPS and higher floc size were the governing factors for less fouling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Laccase production in bioreactor scale under saline condition by the marine-derived basidiomycete Peniophora sp. CBMAI 1063.

    PubMed

    Mainardi, Pedro H; Feitosa, Valker A; Brenelli de Paiva, Livia B; Bonugli-Santos, Rafaella C; Squina, Fabio M; Pessoa, Adalberto; Sette, Lara D

    2018-05-01

    Laccase production in saline conditions is still poorly studied. The aim of the present study was to investigate the production of laccase in two different types of bioreactors by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. The highest laccase activity and productivity were obtained in the Stirred Tank (ST) bioreactor, while the highest biomass concentration in Air-lift (AL) bioreactor. The main laccase produced was purified by ion exchange and size exclusion chromatography and appeared to be monomeric with molecular weight of approximately 55 kDa. The optimum oxidation activity was obtained at pH 5.0. The thermal stability of the enzyme ranged from 30 to 50 °C (120 min). The Far-UV Circular Dichroism revealed the presence of high β-sheet and low α-helical conformation in the protein structure. Additional experiments carried out in flask scale showed that the marine-derived fungus was able to produce laccase only in the presence of artificial seawater and copper sulfate. Results from the present study confirmed the fungal adaptation to marine conditions and its potential for being used in saline environments and/or processes. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. Comparison of biological activated carbon (BAC) and membrane bioreactor (MBR) for pollutants removal in drinking water treatment.

    PubMed

    Tian, J Y; Chen, Z L; Liang, H; Li, X; Wang, Z Z; Li, G B

    2009-01-01

    Biological activated carbon (BAC) and membrane bioreactor (MBR) were systematically compared for the drinking water treatment from slightly polluted raw water under the same hydraulic retention time (HRT) of 0.5 h. MBR exhibited excellent turbidity removal capacity due to the separation of the membrane; while only 60% of influent turbidity was intercepted by BAC. Perfect nitrification was achieved by MBR with the 89% reduction in ammonia; by contrast, BAC only eliminated a moderate amount of influent ammonia (by 54.5%). However, BAC was able to remove more dissolved organic matter (DOM, especially for organic molecules of 3,000 approximately 500 Daltons) and corresponding disinfection by-product formation potential (DBPFP) in raw water than MBR. Unfortunately, particulate organic matter (POM) was detected in the BAC effluent. On the other hand, BAC and MBR displayed essentially the same capacity for biodegradable organic matter (BOM) removal. Fractionation of DOM showed that the removal efficiencies of hydrophobic neutrals, hydrophobic acids, weakly hydrophobic acids and hydrophilic organic matter through BAC treatment were 11.7%, 8.8%, 13.9% and 4.8% higher than that through MBR; while MBR achieved 13.8% higher hydrophobic bases removal as compared with BAC.

  8. Characterization of nitrifying microbial community in a submerged membrane bioreactor at short solids retention times.

    PubMed

    Duan, Liang; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-12-01

    This study investigated the nitrifying bacterial community in membrane bioreactor (MBR) at short solids retention times (SRTs) of 3, 5 and 10 days. The denaturing gradient gel electrophoresis results showed that different types of ammonia-oxidizing bacteria (AOB) can survive at different operating conditions. The diversity of AOB increased as the SRT increased. The real-time PCR results showed that the amoA gene concentrations were similar when MBRs were stabilized, and it can be a good indicator of stabilized nitrification. The results of clone library indicated that Nitrosomonas was the dominant group of AOB in three reactors. The microarray results showed that Nitrospira was the dominant group of nitrite-oxidizing bacteria (NOB) in the system. All groups of AOB and NOB except Nitrosolobus and Nitrococcus were found in MBR, indicated that the nitrifying bacterial community structure was more complicated. The combination of some molecular tools can provide more information of microbial communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Fate and behavior of dissolved organic matter in a submerged anoxic-aerobic membrane bioreactor (MBR).

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine Prandota; Luo, Jinxue; Stuckey, David C; Tan, Soon Keat

    2018-02-01

    In this study, the production, composition, and characteristics of dissolved organic matter (DOM) in an anoxic-aerobic submerged membrane bioreactor (MBR) were investigated. The average concentrations of proteins and carbohydrates in the MBR aerobic stage were 3.96 ± 0.28 and 8.36 ± 0.89 mg/L, respectively. After membrane filtration, these values decreased to 2.9 ± 0.2 and 2.8 ± 0.2 mg/L, respectively. High performance size exclusion chromatograph (HP-SEC) analysis indicated a bimodal molecular weight (MW) distribution of DOMs, and that the intensities of all the peaks were reduced in the MBR effluent compared to the influent. Three-dimensional fluorescence excitation emission matrix (FEEM) indicated that fulvic and humic acid-like substances were the predominant DOMs in biological treatment processes. Precise identification and characterization of low-MW DOMs was carried out using gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis indicated that the highest peak numbers (170) were found in the anoxic stage, and 54 (32%) compounds were identified with a similarity greater than 80%. Alkanes (28), esters (11), and aromatics (7) were the main compounds detected. DOMs exhibited both biodegradable and recalcitrant characteristics. There were noticeable differences in the low-MW DOMs present down the treatment process train in terms of numbers, concentrations, molecular weight, biodegradability, and recalcitrance.

  10. Enhancement of surfactant biodegradation with an anaerobic membrane bioreactor by introducing microaeration.

    PubMed

    Cheng, Zhenmin; Wei, Yuansong; Zhang, Qingqing; Zhang, Junya; Lu, Tiedong; Pei, Yuanmei

    2018-06-01

    In controlled ecological life support system (CELSS), 100% water recycle efficiency is needed. Both water and nutrients in wastewater needs reclaiming. In an anaerobic membrane bioreactor (AnMBR) designed to hydrolyze organic matters and convert organic nitrogen, accumulation of anionic surfactants and organic compounds was observed in the supernatant. To solve the problem, microaeration which had rarely been reported to enhance surfactants biodegradation in anaerobic process was introduced and it was proved to be an effective approach that resulted in concentrations of surfactants and soluble chemical oxygen demand (SCOD) in the supernatant decreasing from 9000 mg/L and 40000 mg/L to 2000 mg/L and 10000 mg/L, respectively. And the degradations followed the kinetic characteristics of zero order reaction with R 2 values of 0.9472 and 0.949. Three-dimensional excitation emission matrix (3D-EEM) analysis revealed that some activities of microbes were activated and enhanced by microaeration, which resulted in the disintegration of aggregates of large molecules, indicated by the size exclusion chromatography (SEC). After the introduction of microaeration, the emerging genera Aquamicrobium, Flaviflexus, Pseudomonas and Thiopseudomonas in the microbial community might be responsible for the effective biodegradation of the surfactants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Risk assessment of Giardia from a full scale MBR sewage treatment plant caused by membrane integrity failure.

    PubMed

    Zhang, Yu; Chen, Zhimin; An, Wei; Xiao, Shumin; Yuan, Hongying; Zhang, Dongqing; Yang, Min

    2015-04-01

    Membrane bioreactors (MBR) are highly efficient at intercepting particles and microbes and have become an important technology for wastewater reclamation. However, many pathogens can accumulate in activated sludge due to the long residence time usually adopted in MBR, and thus may pose health risks when membrane integrity problems occur. This study presents data from a survey on the occurrence of water-borne Giardia pathogens in reclaimed water from a full-scale wastewater treatment plant with MBR experiencing membrane integrity failure, and assessed the associated risk for green space irrigation. Due to membrane integrity failure, the MBR effluent turbidity varied between 0.23 and 1.90 NTU over a period of eight months. Though this turbidity level still met reclaimed water quality standards (≤5 NTU), Giardia were detected at concentrations of 0.3 to 95 cysts/10 L, with a close correlation between effluent turbidity and Giardia concentration. All β-giardin gene sequences of Giardia in the WWTP influents were genotyped as Assemblages A and B, both of which are known to infect humans. An exponential dose-response model was applied to assess the risk of infection by Giardia. The risk in the MBR effluent with chlorination was 9.83×10(-3), higher than the acceptable annual risk of 1.0×10(-4). This study suggested that membrane integrity is very important for keeping a low pathogen level, and multiple barriers are needed to ensure the biological safety of MBR effluent. Copyright © 2015. Published by Elsevier B.V.

  12. Evaluation of a membrane bioreactor system as post-treatment in waste water treatment for better removal of micropollutants.

    PubMed

    Arriaga, Sonia; de Jonge, Nadieh; Nielsen, Marc Lund; Andersen, Henrik Rasmus; Borregaard, Vibeke; Jewel, Kevin; Ternes, Thomas A; Nielsen, Jeppe Lund

    2016-12-15

    Organic micropollutants (OMPs) such as pharmaceuticals are persistent pollutants that are only partially degraded in waste water treatment plants (WWTPs). In this study, a membrane bioreactor (MBR) system was used as a polishing step on a full-scale WWTP, and its ability to remove micropollutants was examined together with the development and stability of the microbial community. Two stages of operation were studied during a period of 9 months, one with (S1) and one without (S2) the addition of exogenous OMPs. Ibuprofen and naproxen had the highest degradation rates with values of 248 μg/g VSS ·h and 71 μg/g VSS ·h, whereas diclofenac was a more persistent OMP (7.28 μg/g VSS ·h). Mineralization of 14 C-labeled OMPs in batch kinetic experiments indicates that higher removal rates (∼0.8 ng/mg T SS ·h) with a short lag phase can be obtained when artificial addition of organic micropollutants was performed. Similar microbial populations dominated S1 and S2, despite the independent operations. Hydrogenophaga, Nitrospira, p55-a5, the actinobacterial Tetrasphaera, Propionicimonas, Fodinicola, and Candidatus Microthrix were the most abundant groups in the polishing MBR. Finally, potential microbial candidates for ibuprofen and naproxen degradation are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The environmental footprint of a membrane bioreactor treatment process through Life Cycle Analysis.

    PubMed

    Ioannou-Ttofa, L; Foteinis, S; Chatzisymeon, E; Fatta-Kassinos, D

    2016-10-15

    This study includes an environmental analysis of a membrane bioreactor (MBR), the objective being to quantitatively define the inventory of the resources consumed and estimate the emissions produced during its construction, operation and end-of-life deconstruction. The environmental analysis was done by the life cycle assessment (LCA) methodology, in order to establish with a broad perspective and in a rigorous and objective way the environmental footprint and the main environmental hotspots of the examined technology. Raw materials, equipment, transportation, energy use, as well as air- and waterborne emissions were quantified using as a functional unit, 1m(3) of urban wastewater. SimaPro 8.0.3.14 was used as the LCA analysis tool, and two impact assessment methods, i.e. IPCC 2013 version 1.00 and ReCiPe version 1.10, were employed. The main environmental hotspots of the MBR pilot unit were identified to be the following: (i) the energy demand, which is by far the most crucial parameter that affects the sustainability of the whole process, and (ii) the material of the membrane units. Overall, the MBR technology was found to be a sustainable solution for urban wastewater treatment, with the construction phase having a minimal environmental impact, compared to the operational phase. Moreover, several alternative scenarios and areas of potential improvement, such as the diversification of the electricity mix and the material of the membrane units, were examined, in order to minimize as much as possible the overall environmental footprint of this MBR system. It was shown that the energy mix can significantly affect the overall sustainability of the MBR pilot unit (i.e. up to 95% reduction of the total greenhouse gas emissions was achieved with the use of an environmentally friendly energy mix), and the contribution of the construction and operational phase to the overall environmental footprint of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Production of Recombinant Rabies Virus Glycoprotein by Insect Cells in a Single-Use Fixed-Bed Bioreactor.

    PubMed

    Ventini-Monteiro, Daniella C; Astray, Renato M; Pereira, Carlos A

    2018-01-01

    A single-use fixed-bed bioreactor (iCELLis nano) can be used for cultivating non adherent insect cells, which can be then recovered for scaling up or for harvesting a membrane-associated viral glycoprotein with high quality in terms of preserved protein structure and biological function. Here, we describe the procedures for establishing genetically modified Drosophila melanogaster Schneider 2 (S2) cell cultures in the iCELLis nano bioreactor and for quantifying by ELISA the recombinant rabies virus glycoprotein (rRVGP) synthesized. By using the described protocol of production, the following performance can be regularly achieved: 1.7 ± 0.6 × 1E10 total cells; 2.4 ± 0.8 × 1E7 cells/mL and 1.2 ± 0.9 μg of rRVGP/1E7 cells; 1.5 ± 0.8 mg of total rRVGP.

  15. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes.

    PubMed

    Díaz, I; Pérez, C; Alfaro, N; Fdz-Polanco, F

    2015-06-01

    In this study, the potential of a pilot hollow-fiber membrane bioreactor for the conversion of H2 and CO2 to CH4 was evaluated. The system transformed 95% of H2 and CO2 fed at a maximum loading rate of 40.2 [Formula: see text] and produced 0.22m(3) of CH4 per m(3) of H2 fed at thermophilic conditions. H2 mass transfer to the liquid phase was identified as the limiting step for the conversion, and kLa values of 430h(-1) were reached in the bioreactor by sparging gas through the membrane module. A simulation showed that the bioreactor could upgrade biogas at a rate of 25m(3)/mR(3)d, increasing the CH4 concentration from 60 to 95%v. This proof-of-concept study verified that gas sparging through a membrane module can efficiently transfer H2 from gas to liquid phase and that the conversion of H2 and CO2 to biomethane is feasible on a pilot scale at noteworthy load rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Bacterial Community Dynamics during Start-Up of a Trickle-Bed Bioreactor Degrading Aromatic Compounds

    PubMed Central

    Stoffels, Marion; Amann, Rudolf; Ludwig, Wolfgang; Hekmat, Dariusch; Schleifer, Karl-Heinz

    1998-01-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a car painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor. PMID:9501433

  17. JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr

    NASA Image and Video Library

    1991-06-27

    S91-40049 (27 June 1991) --- JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.

  18. JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr

    NASA Technical Reports Server (NTRS)

    1991-01-01

    JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.

  19. [Analysis of Microbial Community in the Membrane Bio-Reactor (MBR) Rural Sewage Treatment System].

    PubMed

    Kong, Xiao; Cui, Bing-jian; Jin, De-cai; Wu, Shang-hua; Yang, Bo; Deng, Ye; Zhuang, Guo-qiang; Zhuang, Xu-liang

    2015-09-01

    Uncontrolled release and arbitrary irrigation reuse of rural wastewater may lead to water pollution, and the microbial pathogens could threaten the safety of freshwater resources and public health. To understand the microbial community structure of rural wastewater and provide the theory for microbial risk assessment of wastewater irrigation, microbial community diversities in the Membrane Bio-Reactor (MBR) process for rural wastewater treatment was studied by terminal restriction fragment length polymorphism (T-RFLP) and 16S rDNA gene clone library. Meanwhile, changes of Arcobacter spp. and total bacteria before and after treatment were detected through real-time quantitative PCR. The clone library results showed that there were 73 positive clones included Proteobacteria (91. 80%), Firmicutes (2. 70%), Bacteroidetes (1. 40%), and uncultured bacteria (4. 10%) in the untreated wastewater. The typical pathogenic genus Arcobacter belonging to e-Proteobacteria was the dominant component of the library, accounting for 68. 5% of all clones. The main groups and their abundance in different treatments were significantly distinct. The highest values of species abundance (S), Shannon-Wiener (H) and Evenness (E) were observed in the adjusting tank, which were 43. 0, 3. 56 and 0. 95, respectively. The real-time quantitative PCR results showed that the copy number of Arcobacter spp. was (1. 09 ± 0. 064 0) x 10(11) copies.L-1 in the untreated sewage, which was consistent with the result of 16S rDNA gene clone library. Compared to untreated wastewater, bacterial copy number in the treated effluent decreased 100 to 1 000 times, respectively, suggesting that MBR treatment system could remove the microbial quantity in such scale. In the recycled water, the physicochemical parameters and indicator bacteria met the water quality standard of farmland irrigation. However, further research is needed to estimate the potential health risks caused by residual pathogenic microorganisms in

  20. Analysis of mass transfer characteristics in a tubular membrane using CFD modeling.

    PubMed

    Yang, Jixiang; Vedantam, Sreepriya; Spanjers, Henri; Nopens, Ingmar; van Lier, Jules B

    2012-10-01

    In contrast to the large amount of research into aerobic membrane bioreactors, little work has been reported on anaerobic membrane bioreactors (AMBRs). As to the application of membrane bioreactors, membrane fouling is a key issue. Membrane fouling generally occurs more seriously in AMBRs than in aerobic membrane bioreactors. However, membrane fouling could be managed through the application of suitable shear stress that can be introduced by the application of a two-phase flow. When the two-phase flow is applied in AMBRs, little is known about the mass transfer characteristics, which is of particular importance, in tubular membranes of AMBRs. In our present work, we have employed fluid dynamic modeling to analyze the mass transfer characteristics in the tubular membrane of a side stream AMBR in which, gas-lift two-phase flow was applied. The modeling indicated that the mass transfer capacity at the membrane surface at the noses of gas bubbles was higher than the mass transfer capacity at the tails of the bubbles, which is in contrast to the results when water instead of sludge is applied. At the given mass transfer rate, the filterability of the sludge was found to have a strong influence on the transmembrane pressure at a steady flux. In addition, the model also showed that the shear stress in the internal space of the tubular membrane was mainly around 20 Pa but could be as high as about 40 Pa due to gas bubble movements. Nonetheless, at these shear stresses a stable particle size distribution was found for sludge particles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Plantform Bioreactor for Mass Micropropagation of Date Palm.

    PubMed

    Almusawi, Abdulminam H A; Sayegh, Abdullah J; Alshanaw, Ansam M S; Griffis, John L

    2017-01-01

    A novel protocol for the commercial production of date palm through micropropagation is presented. This protocol includes the use of a semisolid medium alternation or in combination with a temporary immersion system (TIS, Plantform bioreactor) in date palm micropropagation. The use of the Plantform bioreactor for date palm results in an improved multiplication rate, reduced micropropagation time, and improved weaning success. It also reduces the cost of saleable units and thus improves economic return for commercial micropropagation. The use of the Plantform bioreactor successfully addresses other hindrances that can occur during the scale-up of date palm micropropagation, including asynchrony of somatic embryos, limited maturation of somatic embryos, and highly variable germination frequencies of embryos.

  2. A hybrid bioreactor based on insolubilized tyrosinase and laccase catalysis and microfiltration membrane remove pharmaceuticals from wastewater.

    PubMed

    Ba, Sidy; Haroune, Lounès; Soumano, Lassine; Bellenger, Jean-Phillipe; Jones, J Peter; Cabana, Hubert

    2018-06-01

    The increasing presence of pharmaceutical products (PPs) and other organic contaminants of emerging concern (CECs) in aquatic systems has become one of the major global environmental contamination concerns. Sewage treatment plants (STPs) are one of the major sources of PPs discharge into natural waters due to the deficiencies of conventional treatment processes to deal with these micropollutants. Numerous new treatment processes and technologies have been investigated for the removals of CECs in wastewaters with more or less success. In the present study, we investigated the efficiency of a hybrid bioreactor (HBR) of a combined crosslinked tyrosinase and laccase aggregates and hollow fiber microfiltration (MF) membrane to remove a mixture of 14 PPs from municipal wastewater at environmentally relevant concentration of 10 μg/L. After a 5-day continuous operation, the HBR achieved complete removal of all tested PPs. Results also highlight that these high performances result from a synergistic action of the MF membrane and the insoluble enzymes. The biocatalyst retained nearly 70% of its initial enzymatic activity over the treatment period. The removal of PPs is unlikely to result from their sole sorption on the membrane. Overall, the results suggest that the HBR is well suited to the biocatalysts (i.e. insolubilized tyrosinase and laccase). The results invite to further investigate how the HBR can be tailored with various types of enzymes and membranes for either specific or non-specific target substrates and to further explore the applicability of this technology for the continuous treatment of wastewater at environmentally relevant concentration of PPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch.

    PubMed

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-08

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.

  4. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-01

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.

  5. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch

    PubMed Central

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-01

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system. PMID:26743465

  6. Biomass viability: An experimental study and the development of an empirical mathematical model for submerged membrane bioreactor.

    PubMed

    Zuthi, M F R; Ngo, H H; Guo, W S; Nghiem, L D; Hai, F I; Xia, S Q; Zhang, Z Q; Li, J X

    2015-08-01

    This study investigates the influence of key biomass parameters on specific oxygen uptake rate (SOUR) in a sponge submerged membrane bioreactor (SSMBR) to develop mathematical models of biomass viability. Extra-cellular polymeric substances (EPS) were considered as a lumped parameter of bound EPS (bEPS) and soluble microbial products (SMP). Statistical analyses of experimental results indicate that the bEPS, SMP, mixed liquor suspended solids and volatile suspended solids (MLSS and MLVSS) have functional relationships with SOUR and their relative influence on SOUR was in the order of EPS>bEPS>SMP>MLVSS/MLSS. Based on correlations among biomass parameters and SOUR, two independent empirical models of biomass viability were developed. The models were validated using results of the SSMBR. However, further validation of the models for different operating conditions is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Perchlorate remediation using packed-bed bioreactors and electricity generation in microbial fuel cells (MFCs)

    NASA Astrophysics Data System (ADS)

    Min, Booki

    Two pilot-scale fixed bed bioreactors were operated in continuous mode in order to treat groundwater contaminated by perchlorate. The bioreactors were constructed and operated side-by-side at the Texas Street Well Facility in Redlands, California. Each reactor was packed with either sand or plastic media. A perchlorate-reducing bacterium, Dechlorosoma sp. KJ, was used to inoculate the bioreactors. Perchlorate was successfully removed down to a non-detectable level (<4mug/L) in both bioreactors with acetate as a carbon source and nutrients at loading rates less than 0.063 L/s (1 gpm; 0.34 L/m2s). The sand medium bioreactor could achieve complete-perchlorate removal up to flow rate of 0.126 L/s. A regular backwashing cycle (once a week) was an important factor for completely removing perchlorate in groundwater. Power generation directly from pure or mixed organic matter was examined using microbial fuel cells (MFCs), which were run either in batch or continuous mode. In batch experiments, both a pure culture (Geobactor metallireducens) and a mixed culture (wastewater inoculum) were used as the biocatalyst, and acetate was added as substrate in the anode chamber of the MFC. Power output in a membrane MFC with either inoculum was essentially the same, with 40 +/- 1 mW/m2 for G. metallireducens and 38 +/- 1 mW/m2 for mixed culture. A different type of the MFC containing a salt bridge instead of a membrane system was examined to generate power using the same substrate and pure culture as used in the membrane MFC. Power output in the salt bridge MFC was 2.2 mW/m 2. It was found that the lower power output was directly attributed to the higher internal resistance of the salt bridge system (19920 +/- 50 O) in comparison with that of the membrane system (1286 +/- 1 O). Continuous electricity generation was examined in a flat plate microbial fuel cell (FPMFC) using domestic wastewater and specific organic substrates. The FPMFC, containing a combined electrode/proton exchange

  8. A novel perfused rotary bioreactor for cardiomyogenesis of embryonic stem cells.

    PubMed

    Teo, Ailing; Mantalaris, Athanasios; Song, Kedong; Lim, Mayasari

    2014-05-01

    Developments in bioprocessing technology play an important role for overcoming challenges in cardiac tissue engineering. To this end, our laboratory has developed a novel rotary perfused bioreactor for supporting three-dimensional cardiac tissue engineering. The dynamic culture environments provided by our novel perfused rotary bioreactor and/or the high-aspect rotating vessel produced constructs with higher viability and significantly higher cell numbers (up to 4 × 10(5) cells/bead) than static tissue culture flasks. Furthermore, cells in the perfused rotary bioreactor showed earlier gene expressions of cardiac troponin-T, α- and β-myosin heavy chains with higher percentages of cardiac troponin-I-positive cells and better uniformity of sacromeric α-actinin expression. A dynamic and perfused environment, as provided by this bioreactor, provides a superior culture performance in cardiac differentiation for embryonic stem cells particularly for larger 3D constructs.

  9. Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess.

    PubMed

    Craven, Stephen; Shirsat, Nishikant; Whelan, Jessica; Glennon, Brian

    2013-01-01

    A Monod kinetic model, logistic equation model, and statistical regression model were developed for a Chinese hamster ovary cell bioprocess operated under three different modes of operation (batch, bolus fed-batch, and continuous fed-batch) and grown on two different bioreactor scales (3 L bench-top and 15 L pilot-scale). The Monod kinetic model was developed for all modes of operation under study and predicted cell density, glucose glutamine, lactate, and ammonia concentrations well for the bioprocess. However, it was computationally demanding due to the large number of parameters necessary to produce a good model fit. The transferability of the Monod kinetic model structure and parameter set across bioreactor scales and modes of operation was investigated and a parameter sensitivity analysis performed. The experimentally determined parameters had the greatest influence on model performance. They changed with scale and mode of operation, but were easily calculated. The remaining parameters, which were fitted using a differential evolutionary algorithm, were not as crucial. Logistic equation and statistical regression models were investigated as alternatives to the Monod kinetic model. They were less computationally intensive to develop due to the absence of a large parameter set. However, modeling of the nutrient and metabolite concentrations proved to be troublesome due to the logistic equation model structure and the inability of both models to incorporate a feed. The complexity, computational load, and effort required for model development has to be balanced with the necessary level of model sophistication when choosing which model type to develop for a particular application. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  10. Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor.

    PubMed

    Abeille, F; Mittler, F; Obeid, P; Huet, M; Kermarrec, F; Dolega, M E; Navarro, F; Pouteau, P; Icard, B; Gidrol, X; Agache, V; Picollet-D'hahan, N

    2014-09-21

    Microfluidic bioreactors are expected to impact cell therapy and biopharmaceutical production due to their ability to control cellular microenvironments. This work presents a novel approach for continuous cell culture in a microfluidic system. Microcarriers (i.e., microbeads) are used as growth support for anchorage-dependent mammalian cells. This approach eases the manipulation of cells within the system and enables harmless extraction of cells. Moreover, the microbioreactor uses a perfusion function based on the biocompatible integration of a porous membrane to continuously feed the cells. The perfusion rate is optimized through simulations to provide a stable biochemical environment. Thermal management is also addressed to ensure a homogeneous bioreactor temperature. Eventually, incubator-free cell cultures of Drosophila S2 and PC3 cells are achieved over the course of a week using this bioreactor. In future applications, a more efficient alternative to harvesting cells from microcarriers is also anticipated as suggested by our positive results from the microcarrier digestion experiments.

  11. Review of hydrophilic PP membrane for organic waste removal

    NASA Astrophysics Data System (ADS)

    Ariono, Danu; Wardani, Anita Kusuma

    2017-05-01

    The acceleration of industrialization in developing countries has given an impact of environmental pollution rapidly, such as contamination of groundwater with organic waste. To solve this problem, some membrane techniques have been performed to remove organic waste from water, such as membrane contactors, membrane bioreactors, and supported liquid membranes. Polypropylene (PP) membrane is one of the promising candidates for these membrane processes due to its chemical stability, low cost, good mechanical resistance, and being easily available. However, different processes require membranes with different surface properties. Hydrophobic PP membranes with excellent chemical stability can be directly used in membrane contactors, in which the organic phase wets the porous membrane and slightly excessive pressure applied to the other phase. On the other hand, hydrophilization of PP membrane is necessary for some other processes, such as for fouling reduction on membrane bioreactors due to organic matters deposition. The aim of this paper is to give a brief overview of removal of organic waste by PP membrane. Moreover, the effects of PP surface hydrophilization on antifouling properties are also discussed.

  12. Visualizing medium and biodistribution in complex cell culture bioreactors using in vivo imaging.

    PubMed

    Ratcliffe, E; Thomas, R J; Stacey, A J

    2014-01-01

    There is a dearth of technology and methods to aid process characterization, control and scale-up of complex culture platforms that provide niche micro-environments for some stem cell-based products. We have demonstrated a novel use of 3d in vivo imaging systems to visualize medium flow and cell distribution within a complex culture platform (hollow fiber bioreactor) to aid characterization of potential spatial heterogeneity and identify potential routes of bioreactor failure or sources of variability. This can then aid process characterization and control of such systems with a view to scale-up. Two potential sources of variation were observed with multiple bioreactors repeatedly imaged using two different imaging systems: shortcutting of medium between adjacent inlet and outlet ports with the potential to create medium gradients within the bioreactor, and localization of bioluminescent murine 4T1-luc2 cells upon inoculation with the potential to create variable seeding densities at different points within the cell growth chamber. The ability of the imaging technique to identify these key operational bioreactor characteristics demonstrates an emerging technique in troubleshooting and engineering optimization of bioreactor performance. © 2013 American Institute of Chemical Engineers.

  13. Laboratory-Scale Evidence for Lightning-Mediated Gene Transfer in Soil

    PubMed Central

    Demanèche, Sandrine; Bertolla, Franck; Buret, François; Nalin, Renaud; Sailland, Alain; Auriol, Philippe; Vogel, Timothy M.; Simonet, Pascal

    2001-01-01

    Electrical fields and current can permeabilize bacterial membranes, allowing for the penetration of naked DNA. Given that the environment is subjected to regular thunderstorms and lightning discharges that induce enormous electrical perturbations, the possibility of natural electrotransformation of bacteria was investigated. We demonstrated with soil microcosm experiments that the transformation of added bacteria could be increased locally via lightning-mediated current injection. The incorporation of three genes coding for antibiotic resistance (plasmid pBR328) into the Escherichia coli strain DH10B recipient previously added to soil was observed only after the soil had been subjected to laboratory-scale lightning. Laboratory-scale lightning had an electrical field gradient (700 versus 600 kV m−1) and current density (2.5 versus 12.6 kA m−2) similar to those of full-scale lightning. Controls handled identically except for not being subjected to lightning produced no detectable antibiotic-resistant clones. In addition, simulated storm cloud electrical fields (in the absence of current) did not produce detectable clones (transformation detection limit, 10−9). Natural electrotransformation might be a mechanism involved in bacterial evolution. PMID:11472916

  14. Minimizing hydrodynamic stress in mammalian cell culture through the lobed Taylor-Couette bioreactor.

    PubMed

    Sorg, Robin; Tanzeglock, Timm; Soos, Miroslav; Morbidelli, Massimo; Périlleux, Arnaud; Solacroup, Thomas; Broly, Hervé

    2011-12-01

    The objective of the present study was to investigate the effect of hydrodynamic stress heterogeneity on metabolism and productivity of an industrial mammalian cell line. For this purpose, a novel Lobed Taylor-Couette (LTC) mixing unit combining a narrow distribution of hydrodynamic stresses and a membrane aeration system to prevent cell damage by bubble bursting was developed. A hydrodynamic analysis of the LTC was developed to reproduce, in a uniform hydrodynamic environment, the same hydrodynamic stress encountered locally by cells in a stirred tank, particularly at the large scale, e.g., close and far from the impeller. The developed LTC was used to simulate the stress values near the impeller of a laboratory stirred tank bioreactor, equal to about 0.4 Pa, which is however below the threshold value leading to cell death. It was found that the cells actively change their metabolism by increasing lactate production and decreasing titer while the consumption of the main nutrients remains substantially unchanged. When considering average stress values ranging from 1 to 10 Pa found by other researchers to cause physiological response of cells to the hydrodynamic stress in heterogeneous stirred vessels, our results are close to the lower boundary of this interval. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of human patient plasma ex vivo treatment on gene expression and progenitor cell activation of primary human liver cells in multi-compartment 3D perfusion bioreactors for extra-corporeal liver support.

    PubMed

    Schmelzer, Eva; Mutig, Kerim; Schrade, Petra; Bachmann, Sebastian; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Cultivation of primary human liver cells in innovative 3D perfusion multi-compartment capillary membrane bioreactors using decentralized mass exchange and integral oxygenation provides in vitro conditions close to the physiologic environment in vivo. While a few scale-up bioreactors were used clinically, inoculated liver progenitors in these bioreactors were not investigated. Therefore, we characterized regenerative processes and expression patterns of auto- and paracrine mediators involved in liver regeneration in bioreactors after patient treatment. Primary human liver cells containing parenchymal and non-parenchymal cells co-cultivated in bioreactors were used for clinical extra-corporeal liver support to bridge to liver transplantation. 3D tissue re-structuring in bioreactors was studied; expression of proteins and genes related to regenerative processes and hepatic progenitors was analyzed. Formation of multiple bile ductular networks and colonies of putative progenitors were observed within parenchymal cell aggregates. HGF was detected in scattered cells located close to vascular-like structures, expression of HGFA and c-Met was assigned to biliary cells and hepatocytes. Increased expression of genes associated to hepatic progenitors was detected following clinical application. The results confirm auto- and paracrine interactions between co-cultured cells in the bioreactor. The 3D bioreactor provides a valuable tool to study mechanisms of progenitor activation and hepatic regeneration ex vivo under patient plasma treatment. (c) 2009 Wiley Periodicals, Inc.

  16. Membrane properties change in fine-pore aeration diffusers: full-scale variations of transfer efficiency and headloss.

    PubMed

    Rosso, Diego; Libra, Judy A; Wiehe, Wolfgang; Stenstrom, Michael K

    2008-05-01

    Fine-pore diffusers are the most common aeration system in municipal wastewater treatment. Punched polymeric membranes are often used in fine-pore aeration due to their advantageous initial performance. These membranes are subject to fouling and scaling, resulting in increased headloss and reduced oxygen transfer efficiency, both contributing to increased plant energy costs. This paper describes and discusses the change in material properties for polymeric fine-pore diffusers, comparing new and used membranes. Three different diffuser technologies were tested and sample diffusers from two wastewater treatment facilities were analysed. The polymeric membranes analysed in this paper were composed of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicon. Transfer efficiency is usually lower with longer times in operation, as older, dilated orifices produce larger bubbles, which are unfavourable to mass transfer. At the same time, headloss increases with time in operation, since membranes increase in rigidity and hardness, and fouling and scaling phenomena occur at the orifice opening. Change in polymer properties and laboratory test results correlate with the decrease in oxygen transfer efficiency.

  17. Effect of sparging rate on permeate quality in a submerged anaerobic membrane bioreactor (SAMBR) treating leachate from the organic fraction of municipal solid waste (OFMSW).

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2016-03-01

    This paper focuses on the treatment of leachate from the organic fraction of municipal solid waste (OFMSW) in a submerged anaerobic membrane bioreactor (SAMBR). Operation of the SAMBR for this type of high strength wastewater was shown to be feasible at 5 days hydraulic retention time (HRT), 10 L min(-1) (LPM) biogas sparging rate and membrane fluxes in the range of 3-7 L m(-2) hr(-1) (LMH). Under these conditions, more than 90% COD removal was achieved during 4 months of operation without chemical cleaning the membrane. When the sparging rate was reduced to 2 LPM, the transmembrane pressure increased dramatically and the bulk soluble COD concentration increased due to a thicker fouling layer, while permeate soluble COD remained constant. Permeate soluble COD concentration increased by 20% when the sparging rate increased to 10 LPM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Characterization of the proton binding sites of extracellular polymeric substances in an anaerobic membrane bioreactor.

    PubMed

    Liu, Yi; Chang, Sheng; Defersha, Fantahun M

    2015-07-01

    This paper focuses on the characterization of the chemical compositions and acidic constants of the extracellular polymeric substances (EPSs) in an anaerobic membrane bioreactor treating synthetic brewery wastewater by using chemical analysis, linear programming analysis (LPA) of titration data, and FT-IR analysis. The linear programming analysis of titration data revealed that the EPSs have proton binding sites with pKa values from pKa ≤ 6, between 6 and 7, and approximately 9.8. The strong acidic sites (pKa ≤ 6) and some weak acidic sites (7.5 < pKa < 9.0) were found to be readily removed by 0.45-μm membrane filtration. In addition, the FT-IR analysis confirmed the presence of proteins, carbohydrates, nucleic acids, and lipids in the EPS samples. Based on the FT-IR analysis and the main chemical functional groups at the bacterial cell surfaces, the identified proton binding sites were related to carboxyl, phosphate, and hydroxyl/amine groups with pKa values of 4.6 ± 0.7, 6.6 ± 0.01, and 9.7 ± 0.1, respectively, with the corresponding respective intensities of 0.31 ± 0.05, 0.96 ± 0.3, and 1.53 ± 0.3 mmole/g-EPS. The pKa values and intensities of the proton binding sites are the fundamental molecular properties of EPSs that affect the EPS charge, molecular interactions, and metal complexation characteristics. Determination of such properties can advance Derjaguin-Landau-Verwey-Overbeek (DLVO)-based concentration polarization modeling, facilitate the estimation of the osmotic pressure of the EPS concentration polarization layers, and lead to a deeper understanding of the role of metal complexation in membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of upflow velocity on the performance of an inclined plate membrane bioreactor treating municipal wastewater.

    PubMed

    Fontanos, P M; Yamamoto, K; Nakajima, F

    2011-01-01

    An inclined plate membrane bioreactor (iPMBR) was introduced to meet the challenge of handling high mixed liquor suspended solids when operating at long sludge retention times. During the first 407 days of operation, the iPMBR was able to rezone more sludge (1.5-10.5 times greater) in its upstream, anoxic tank compared to its downstream, aerobic tank. This could extend membrane filtration by diverting most of the sludge from the aerobic zone. During this period, the upflow velocities through the inclined plates of the anoxic tank ranged from 2.3 x 10(-4) to 7.7 x 10(-4) m/s. After Day 407, the operating conditions were changed to determine whether the iPMBR would fail to create a sludge concentration difference between its two tanks. When the upflow velocity was increased to 1.8 x 10(-3) m/s, the sludge concentration difference between the two zones was removed. This indicated that the upflow velocity had increased sufficiently to overcome the settling velocities of most flocs, resulting in more solids being carried from the anoxic to the aerobic tank. For the configuration of this iPMBR, operating at flow rates where the upflow velocity through the inclined plates was less than 1.0 x 10(-3) m/s would be necessary to keep a significant sludge concentration difference between its two zones.

  20. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    PubMed

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.