Sample records for labrid xyrichtys novacula

  1. Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes?

    PubMed Central

    2009-01-01

    Background Major modifications to the pharyngeal jaw apparatus are widely regarded as a recurring evolutionary key innovation that has enabled adaptive radiation in many species-rich clades of percomorph fishes. However one of the central predictions of this hypothesis, that the acquisition of a modified pharyngeal jaw apparatus will be positively correlated with explosive lineage diversification, has never been tested. We applied comparative methods to a new time-calibrated phylogeny of labrid fishes to test whether diversification rates shifted at two scales where major pharyngeal jaw innovations have evolved: across all of Labridae and within the subclade of parrotfishes. Results Diversification patterns within early labrids did not reflect rapid initial radiation. Much of modern labrid diversity stems from two recent rapid diversification events; one within julidine fishes and the other with the origin of the most species-rich clade of reef-associated parrotfishes. A secondary pharyngeal jaw innovation was correlated with rapid diversification within the parrotfishes. However diversification rate shifts within parrotfishes are more strongly correlated with the evolution of extreme dichromatism than with pharyngeal jaw modifications. Conclusion The temporal lag between pharyngeal jaw modifications and changes in diversification rates casts doubt on the key innovation hypothesis as a simple explanation for much of the richness seen in labrids and scarines. Although the possession of a secondarily modified PJA was correlated with increased diversification rates, this pattern is better explained by the evolution of extreme dichromatism (and other social and behavioral characters relating to sexual selection) within Scarus and Chlorurus. The PJA-innovation hypothesis also fails to explain the most dominant aspect of labrid lineage diversification, the radiation of the julidines. We suggest that pharyngeal jaws might have played a more important role in enabling

  2. Ecomorphology of the eyes and skull in zooplanktivorous labrid fishes

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Wainwright, P. C.

    2011-06-01

    Zooplanktivory is one of the most distinct trophic niches in coral reef fishes, and a number of skull traits are widely recognized as being adaptations for feeding in midwater on small planktonic prey. Previous studies have concluded that zooplanktivores have larger eyes for sharper visual acuity, reduced mouth structures to match small prey sizes, and longer gill rakers to help retain captured prey. We tested these three traditional hypotheses plus two novel adaptive hypotheses in labrids, a clade of very diverse coral reef fishes that show multiple independent evolutionary origins of zooplanktivory. Using phylogenetic comparative methods with a data set from 21 species, we failed to find larger eyes in three independent transitions to zooplanktivory. Instead, an impression of large eyes may be caused by a size reduction of the anterior facial region. However, two zooplanktivores ( Clepticus parrae and Halichoeres pictus) possess several features interpreted as adaptations to zooplankton feeding, namely large lens diameters relative to eye axial length, round pupil shape, and long gill rakers. The third zooplanktivore in our analysis, Cirrhilabrus solorensis, lacks all above features. It remains unclear whether Cirrhilabrus shows optical specializations for capturing planktonic prey. Our results support the prediction that increased visual acuity is adaptive for zooplanktivory, but in labrids increases in eye size are apparently not part of the evolutionary response.

  3. Integrated diversification of locomotion and feeding in labrid fishes.

    PubMed

    Collar, David C; Wainwright, Peter C; Alfaro, Michael E

    2008-02-23

    An organism's performance of any ecological task involves coordination of multiple functional systems. Feeding performance is influenced by locomotor abilities which are used during search and capture of prey, as well as cranial mechanics, which affect prey capture and processing. But, does this integration of functional systems manifest itself during evolution? We asked whether the locomotor and feeding systems evolved in association in one of the most prominent and diverse reef fish radiations, the Labridae. We examined features of the pectoral fins that affect swimming performance and aspects of the skull that describe force and motion of the jaws. We applied a recent phylogeny, calculated independent contrasts for 60 nodes and performed principal components analyses separately on contrasts for fin and skull traits. The major axes of fin and skull diversification are highly correlated; modifications of the skull to amplify the speed of jaw movements are correlated with changes in the pectoral fins that increase swimming speed, and increases in force capacity of the skull are associated with changes towards fins that produce high thrust at slow speeds. These results indicate that the labrid radiation involved a strong connection between locomotion and feeding abilities.

  4. A review of the razorfishes (Perciformes: Labridae) of the eastern Pacific Ocean.

    PubMed

    Victor, B C; Wellington, G M; Caldow, C

    2001-07-01

    Several new species of the razorfish genus Xyrichtys have been discovered recently in the tropical eastern Pacific region. The taxonomy of this group of fishes is not clear, since juveniles, females, and males often have different color patterns and morphologies, and some species descriptions are incomplete. We review the members of this genus in this region based on our recent collections and describe the juvenile, initial, and terminal phase color patterns of the Cape razorfish, Xyrichtys mundiceps. We question the validity of Xyrichtys perlas, which appears to represent the initial phase of X. mundiceps. We conclude that six species of Xyrichtys are present in the tropical eastern Pacific, including one undescribed species we have collected from the Galapagos Islands and one uncollected new species from the Revillagigedos Islands. Xyrichtys mundiceps is found in Baja California and in Panama Xyrichtys pavo is a large species found throughout the Indo-Pacific and eastern Pacific. Xyrichtys victori is a colorful species native to the Galapagos and Cocos Islands, and Xyrichtys wellingtoni is apparently endemic to Clipperton Atoll. The undescribed species is known only from the Galapagos Islands and has a dark-colored juvenile with extended first dorsal fin rays that are not separated from the remainder of the fin. The terminal phase of this species is unknown. We present keys to the known juvenile and initial phase stages of five species. In addition, we document the allometric growth of the head of razorfishes and show that the head shape of small individuals of Xyrichtys razorfishes is no different from that of the razorfish genus Novaculichthys, and therefore we suggest caution in using this character to distinguish these genera.

  5. Locomotion in labrid fishes: implications for habitat use and cross-shelf biogeography on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bellwood, D.; Wainwright, P.

    2001-09-01

    Coral reefs exhibit marked zonation patterns within single reefs and across continental shelves. For sessile organisms these zones are often related to wave exposure. We examined the extent to which wave exposure may shape the distribution patterns of fishes. We documented the distribution of 98 species of wrasses and parrotfishes at 33 sites across the Great Barrier Reef. The greatest difference between labrid assemblages was at the habitat level, with exposed reef flats and crests on mid- and outer reefs possessing a distinct faunal assemblage. These exposed sites were dominated by individuals with high pectoral fin aspect ratios, i.e. fishes believed to be capable of lift-based swimming which often achieve high speeds. Overall, there was a strong correlation between estimated swimming performance, as indicated by fin aspect ratio, and degree of water movement. We propose that swimming performance in fishes limits access to high-energy locations and may be a significant factor influencing habitat use and regional biogeography of reef fishes.

  6. Bayesian State-Space Modelling of Conventional Acoustic Tracking Provides Accurate Descriptors of Home Range Behavior in a Small-Bodied Coastal Fish Species

    PubMed Central

    Alós, Josep; Palmer, Miquel; Balle, Salvador; Arlinghaus, Robert

    2016-01-01

    State-space models (SSM) are increasingly applied in studies involving biotelemetry-generated positional data because they are able to estimate movement parameters from positions that are unobserved or have been observed with non-negligible observational error. Popular telemetry systems in marine coastal fish consist of arrays of omnidirectional acoustic receivers, which generate a multivariate time-series of detection events across the tracking period. Here we report a novel Bayesian fitting of a SSM application that couples mechanistic movement properties within a home range (a specific case of random walk weighted by an Ornstein-Uhlenbeck process) with a model of observational error typical for data obtained from acoustic receiver arrays. We explored the performance and accuracy of the approach through simulation modelling and extensive sensitivity analyses of the effects of various configurations of movement properties and time-steps among positions. Model results show an accurate and unbiased estimation of the movement parameters, and in most cases the simulated movement parameters were properly retrieved. Only in extreme situations (when fast swimming speeds are combined with pooling the number of detections over long time-steps) the model produced some bias that needs to be accounted for in field applications. Our method was subsequently applied to real acoustic tracking data collected from a small marine coastal fish species, the pearly razorfish, Xyrichtys novacula. The Bayesian SSM we present here constitutes an alternative for those used to the Bayesian way of reasoning. Our Bayesian SSM can be easily adapted and generalized to any species, thereby allowing studies in freely roaming animals on the ecological and evolutionary consequences of home ranges and territory establishment, both in fishes and in other taxa. PMID:27119718

  7. Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae.

    PubMed

    Westneat, Mark W; Alfaro, Michael E; Wainwright, Peter C; Bellwood, David R; Grubich, Justin R; Fessler, Jennifer L; Clements, Kendall D; Smith, Lydia L

    2005-05-22

    The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual 'breakthroughs' in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes.

  8. Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae

    PubMed Central

    Westneat, Mark W; Alfaro, Michael E; Wainwright, Peter C; Bellwood, David R; Grubich, Justin R; Fessler, Jennifer L; Clements, Kendall D; Smith, Lydia L

    2005-01-01

    The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual ‘breakthroughs’ in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes. PMID:16024356

  9. Multiple Genetic Mechanisms Contribute to Visual Sensitivity Variation in the Labridae

    PubMed Central

    Phillips, Genevieve A.C.; Carleton, Karen L.; Marshall, N. Justin

    2016-01-01

    Coral reefs are one of the most spectrally diverse environments, both in terms of habitat and animal color. Species identity, sex, and camouflage are drivers of the phenotypic diversity seen in coral reef fishes, but how the phenotypic diversity is reflected in the genotype remains to be answered. The labrids are a large, polyphyletic family of coral reef fishes that display a diverse range of colors, including developmental color morphs and extensive behavioral ecologies. Here, we assess the opsin sequence and expression diversity among labrids from the Great Barrier Reef, Australia. We found that labrids express a diverse palette of visual opsins, with gene duplications in both RH2 and LWS genes. The majority of opsins expressed were within the mid-to-long wavelength sensitive classes (RH2 and LWS). Three of the labrid species expressed SWS1 (ultra-violet sensitive) opsins with the majority expressing the violet-sensitive SWS2B gene and none expressing SWS2A. We used knowledge about spectral tuning sites to calculate approximate spectral sensitivities (λmax) for individual species’ visual pigments, which corresponded well with previously published λmax values for closely related species (SWS1: 356–370 nm; SWS2B: 421–451 nm; RH2B: 452–492 nm; RH2A: 516–528 nm; LWS1: 554–555 nm; LWS2: 561–562 nm). In contrast to the phenotypic diversity displayed via color patterns and feeding ecology, there was little amino acid diversity within the known opsin sequence tuning sites. However, gene duplications and differential expression provide alternative mechanisms for tuning visual pigments, resulting in variable visual sensitivities among labrid species. PMID:26464127

  10. Do the maximum sizes, ages and patterns of growth of three reef-dwelling labrid species at two latitudes differ in a manner conforming to the metabolic theory of ecology?

    PubMed

    Lek, E; Fairclough, D V; Hall, N G; Hesp, S A; Potter, I C

    2012-11-01

    The size and age data and patterns of growth of three abundant, reef-dwelling and protogynous labrid species (Coris auricularis, Notolabrus parilus and Ophthalmolepis lineolata) in waters off Perth at c. 32° S and in the warmer waters of the Jurien Bay Marine Park (JBMP) at c. 30° S on the lower west coast of Australia are compared. Using data for the top 10% of values and a randomization procedure, the maximum total length (L(T) ) and mass of each species and the maximum age of the first two species were estimated to be significantly greater off Perth than in the JBMP (all P < 0.001) and the maximum ages of O. lineolata in the two localities did not differ significantly (P > 0.05). These latitudinal trends, thus, typically conform to those frequently exhibited by fish species and the predictions of the metabolic theory of ecology (MTE). While, in terms of mass, the instantaneous growth rates of each species were similar at both latitudes during early life, they were greater at the higher latitude throughout the remainder and thus much of life, which is broadly consistent with the MTE. When expressed in terms of L(T), however, instantaneous growth rates did not exhibit consistent latitudinal trends across all three species. The above trends with mass, together with those for reproductive variables, demonstrate that a greater amount of energy is directed into somatic growth and gonadal development by each of these species at the higher latitude. The consistency of the direction of the latitudinal trends for maximum body size and age and pattern of growth across all three species implies that each species is responding in a similar manner to differences between the environmental characteristics, such as temperature, at those two latitudes. The individual maximum L(T), mass and age and pattern of growth of O. lineolata at a higher and thus cooler latitude on the eastern Australian coast are consistent with the latitudinal trends exhibited by those characteristics

  11. Phylo-Allometric Analyses Showcase the Interplay between Life-History Patterns and Phenotypic Convergence in Cleaner Wrasses.

    PubMed

    Baliga, Vikram B; Mehta, Rita S

    2018-05-01

    Phenotypic convergence is a macroevolutionary pattern that need not be consistent across life history. Ontogenetic transitions in dietary specialization clearly illustrate the dynamics of ecological selection as organisms grow. The extent of phenotypic convergence among taxa that share a similar ecological niche may therefore vary ontogenetically. Because ontogenetic processes have been shown to evolve, phylogenetic comparative methods can be useful in examining how the scaling of traits relates to ecology. Cleaning, a behavior in which taxa consume ectoparasites off clientele, is well represented among wrasses (Labridae). Nearly three-fourths of labrids that clean do so predominately as juveniles, transitioning away as adults. We examine the scaling patterns of 33 labrid species to understand how life-history patterns of cleaning relate to ontogenetic patterns of phenotypic convergence. We find that as juveniles, cleaners exhibit convergence in body and cranial traits that enhance ectoparasitivory. We then find that taxa that transition away from cleaning exhibit ontogenetic trajectories that are distinct from those of other wrasses. Obligate and facultative species that continue to clean over ontogeny, however, maintain characteristics that are conducive to cleaning. Collectively, we find that life-history patterns of cleaning behavior are concordant with ontogenetic patterns in phenotype in wrasses.

  12. Influence of sexual selection and feeding functional morphology on diversification rate of parrotfishes (Scaridae).

    PubMed

    Kazancioglu, Erem; Near, Thomas J; Hanel, Reinhold; Wainwright, Peter C

    2009-10-07

    Scaridae (parrotfishes) is a prominent clade of 96 species that shape coral reef communities worldwide through their actions as grazing herbivores. Phylogenetically nested within Labridae, the profound ecological impact and high species richness of parrotfishes suggest that their diversification and ecological success may be linked. Here, we ask whether parrotfish evolution is characterized by a significant burst of lineage diversification and whether parrotfish diversity is shaped more strongly by sexual selection or modifications of the feeding mechanism. We first examined scarid diversification within the greater context of labrid diversity. We used a supermatrix approach for 252 species to propose the most extensive phylogenetic hypothesis of Labridae to date, and time-calibrated the phylogeny with fossil and biogeographical data. Using divergence date estimates, we find that several parrotfish clades exhibit the highest diversification rates among all labrid lineages. Furthermore, we pinpoint a rate shift at the shared ancestor of Scarus and Chlorurus, a scarid subclade characterized by territorial behaviour and strong sexual dichromatism, suggesting that sexual selection was a major factor in parrotfish diversification. Modifications of the pharyngeal and oral jaws that happened earlier in parrotfish evolution may have contributed to this diversity by establishing parrotfishes as uniquely capable reef herbivores.

  13. Rediscovery of Sagittalarva inornata n. gen., n. comb. (Gilbert, 1890) (Perciformes: Labridae), a long-lost deepwater fish from the eastern Pacific Ocean: a case study of a forensic approach to taxonomy using DNA barcoding.

    PubMed

    Victor, Benjamin C; Alfaro, Michael E; Sorenson, Laurie

    2013-01-01

    Some of the more valuable contributions of a standardized DNA sequence database (the DNA barcode) are matching specimens of different life stages and confirming the species identity of individuals from distant locations. These applications can facilitate the detective work required to solve difficult taxonomic problems. In this case, a match was made between the COI mtDNA sequence of an adult male wrasse recently caught at the tip of Baja California in Mexico in deep water (30-100m) and sequences from a series of unusual larvae collected about 3500 km to the south, in the open ocean over the Galápagos Rift hydrothermal vents in 1985. The Baja adults fit the recent description of Halichoeres raisneri Baldwin & McCosker, 2001 from the Galápagos and Cocos Islands. However, another deepwater labrid is known from the same site and depth in Baja; it is the type locality for the century-old holotype and only specimen of the Cape Wrasse Pseudojulis inornatus Gilbert, 1890 (later as Pseudojuloides inornatus). Deepwater video images from the tip of Baja show wrasses identical to H. raisneri photographed in Galápagos but who also fit the description of Pseudojulis inornatus. This coincidence led to a closer investigation of the holotype with x-ray, which revealed unanticipated caniniform teeth (vs. incisiform in Pseudojuloides) and an error in the fin-ray count in the original description, both of which mistakenly separated Halichoeres raisneri. The two species now match in markings, meristics, and morphology as well as overlapping range and are therefore synonymized. Phenetic and phylogenetic trees using mtDNA and nuclear DNA sequences show the species is not close to any other lineage and does not group with the other julidine labrids of the New World or the Pseudojuloides or Halichoeres of the Indo-Pacific. The distinctive larval morphology, long, thin, and flattened with a sharply pointed black-tipped snout, resembles no other described labrid larvae and, without an

  14. Fast and behavior-selective exploitation of a marine fish targeted by anglers

    PubMed Central

    Alós, Josep; Palmer, Miquel; Rosselló, Rosario; Arlinghaus, Robert

    2016-01-01

    Harvesting of wild-living animals is often intensive and may selectively target heritable behavioral traits. We studied the exploitation dynamics and the vulnerability consequences of individual heterogeneity in movement-related behaviors in free-ranging pearly razorfish (Xyrichthys novacula). Using underwater-video recording, we firstly document a fast and high exploitation rate of about 60% of the adult population removed in just few days after the opening of the season. Subsequently, we tagged a sample of individuals with acoustic transmitters and studied whether behavioral traits were significant predictors of the vulnerability to angling. Tagged individuals revealed repeatable behaviors in several home range-related traits, suggesting the presence of spatial behavioral types. The individuals surviving the experimental fishery showed only localized and low-intensity movement patterns. Our study provides new insights for understanding the harvesting pressures and selective properties acting on behavioral traits of recreational fishing. Many fish stocks around the globe are today predominantly exploited by recreational fisheries. The fisheries-induced change in fish behavior described here may be therefore widespread, and has the potential to alter food-webs, profitability of the fisheries and to affect stock assessment by eroding catchability in the long-term. PMID:27922022

  15. Fast and behavior-selective exploitation of a marine fish targeted by anglers

    NASA Astrophysics Data System (ADS)

    Alós, Josep; Palmer, Miquel; Rosselló, Rosario; Arlinghaus, Robert

    2016-12-01

    Harvesting of wild-living animals is often intensive and may selectively target heritable behavioral traits. We studied the exploitation dynamics and the vulnerability consequences of individual heterogeneity in movement-related behaviors in free-ranging pearly razorfish (Xyrichthys novacula). Using underwater-video recording, we firstly document a fast and high exploitation rate of about 60% of the adult population removed in just few days after the opening of the season. Subsequently, we tagged a sample of individuals with acoustic transmitters and studied whether behavioral traits were significant predictors of the vulnerability to angling. Tagged individuals revealed repeatable behaviors in several home range-related traits, suggesting the presence of spatial behavioral types. The individuals surviving the experimental fishery showed only localized and low-intensity movement patterns. Our study provides new insights for understanding the harvesting pressures and selective properties acting on behavioral traits of recreational fishing. Many fish stocks around the globe are today predominantly exploited by recreational fisheries. The fisheries-induced change in fish behavior described here may be therefore widespread, and has the potential to alter food-webs, profitability of the fisheries and to affect stock assessment by eroding catchability in the long-term.

  16. Repeatability of circadian behavioural variation revealed in free-ranging marine fish.

    PubMed

    Alós, Josep; Martorell-Barceló, Martina; Campos-Candela, Andrea

    2017-02-01

    Repeatable between-individual differences in the behavioural manifestation of underlying circadian rhythms determine chronotypes in humans and terrestrial animals. Here, we have repeatedly measured three circadian behaviours, awakening time, rest onset and rest duration, in the free-ranging pearly razorfish, Xyrithchys novacula , facilitated by acoustic tracking technology and hidden Markov models. In addition, daily travelled distance, a standard measure of daily activity as fish personality trait, was repeatedly assessed using a State-Space Model. We have decomposed the variance of these four behavioural traits using linear mixed models and estimated repeatability scores ( R ) while controlling for environmental co-variates: year of experimentation, spatial location of the activity, fish size and gender and their interactions. Between- and within-individual variance decomposition revealed significant R s in all traits suggesting high predictability of individual circadian behavioural variation and the existence of chronotypes. The decomposition of the correlations among chronotypes and the personality trait studied here into between- and within-individual correlations did not reveal any significant correlation at between-individual level. We therefore propose circadian behavioural variation as an independent axis of the fish personality, and the study of chronotypes and their consequences as a novel dimension in understanding within-species fish behavioural diversity.

  17. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes.

    PubMed

    Price, S A; Holzman, R; Near, T J; Wainwright, P C

    2011-05-01

    Although coral reefs are renowned biodiversity hotspots it is not known whether they also promote the evolution of exceptional ecomorphological diversity. We investigated this question by analysing a large functional morphological dataset of trophic characters within Labridae, a highly diverse group of fishes. Using an analysis that accounts for species relationships, the time available for diversification and model uncertainty we show that coral reef species have evolved functional morphological diversity twice as fast as non-reef species. In addition, coral reef species occupy 68.6% more trophic morphospace than non-reef species. Our results suggest that coral reef habitats promote the evolution of both trophic novelty and morphological diversity within fishes. Thus, the preservation of coral reefs is necessary, not only to safeguard current biological diversity but also to conserve the underlying mechanisms that can produce functional diversity in future. © 2011 Blackwell Publishing Ltd/CNRS.

  18. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes

    PubMed Central

    Mouillot, D.; Parravicini, V.; Bellwood, D. R.; Leprieur, F.; Huang, D.; Cowman, P. F.; Albouy, C.; Hughes, T. P.; Thuiller, W.; Guilhaumon, F.

    2016-01-01

    Although coral reefs support the largest concentrations of marine biodiversity worldwide, the extent to which the global system of marine-protected areas (MPAs) represents individual species and the breadth of evolutionary history across the Tree of Life has never been quantified. Here we show that only 5.7% of scleractinian coral species and 21.7% of labrid fish species reach the minimum protection target of 10% of their geographic ranges within MPAs. We also estimate that the current global MPA system secures only 1.7% of the Tree of Life for corals, and 17.6% for fishes. Regionally, the Atlantic and Eastern Pacific show the greatest deficit of protection for corals while for fishes this deficit is located primarily in the Western Indian Ocean and in the Central Pacific. Our results call for a global coordinated expansion of current conservation efforts to fully secure the Tree of Life on coral reefs. PMID:26756609

  19. Global ecological success of Thalassoma fishes in extreme coral reef habitats.

    PubMed

    Fulton, Christopher J; Wainwright, Peter C; Hoey, Andrew S; Bellwood, David R

    2017-01-01

    Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma , with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.

  20. A comparative analysis of sex change in Labridae supports the size advantage hypothesis.

    PubMed

    Kazancioğlu, Erem; Alonzo, Suzanne H

    2010-08-01

    The size advantage hypothesis (SAH) predicts that the rate of increase in male and female fitness with size (the size advantage) drives the evolution of sequential hermaphroditism or sex change. Despite qualitative agreement between empirical patterns and SAH, only one comparative study tested SAH quantitatively. Here, we perform the first comparative analysis of sex change in Labridae, a group of hermaphroditic and dioecious (non-sex changer) fish with several model sex-changing species. We also estimate, for the first time, rates of evolutionary transitions between sex change and dioecy. Our analyses support SAH and indicate that the evolution of hermaphroditism is correlated to the size advantage. Furthermore, we find that transitions from sex change to dioecy are less likely under stronger size advantage. We cannot determine, however, how the size advantage affects transitions from dioecy to sex change. Finally, contrary to what is generally expected, we find that transitions from dioecy to sex change are more likely than transitions from sex change to dioecy. The similarity of sexual differentiation in hermaphroditic and dioecious labrids might underlie this pattern. We suggest that elucidating the developmental basis of sex change is critical to predict and explain patterns of the evolutionary history of sequential hermaphroditism.

  1. Comparative visual ecophysiology of mid-Atlantic temperate reef fishes

    PubMed Central

    Horodysky, Andrij Z.; Brill, Richard W.; Crawford, Kendyl C.; Seagroves, Elizabeth S.; Johnson, Andrea K.

    2013-01-01

    Summary The absolute light sensitivities, temporal properties, and spectral sensitivities of the visual systems of three mid-Atlantic temperate reef fishes (Atlantic spadefish [Ephippidae: Chaetodipterus faber], tautog [Labridae: Tautoga onitis], and black sea bass [Serranidae: Centropristis striata]) were studied via electroretinography (ERG). Pelagic Atlantic spadefish exhibited higher temporal resolution but a narrower dynamic range than the two more demersal foragers. The higher luminous sensitivities of tautog and black sea bass were similar to other benthic and demersal coastal mid-Atlantic fishes. Flicker fusion frequency experiments revealed significant interspecific differences at maximum intensities that correlated with lifestyle and habitat. Spectral responses of the three species spanned 400–610 nm, with high likelihood of cone dichromacy providing the basis for color and contrast discrimination. Significant day-night differences in spectral responses were evident in spadefish and black sea bass but not tautog, a labrid with characteristic structure-associated nocturnal torpor. Atlantic spadefish responded to a wider range of wavelengths than did deeper-dwelling tautog or black sea bass. Collectively, these results suggest that temperate reef-associated fishes are well-adapted to their gradient of brighter to dimmer photoclimates, representative of their unique ecologies and life histories. Continuing anthropogenic degradation of water quality in coastal environments, at a pace faster than the evolution of visual systems, may however impede visual foraging and reproductive signaling in temperate reef fishes. PMID:24285711

  2. Mechanosensation is evolutionarily tuned to locomotor mechanics

    PubMed Central

    Aiello, Brett R.; Westneat, Mark W.; Hale, Melina E.

    2017-01-01

    The biomechanics of animal limbs has evolved to meet the functional demands for movement associated with different behaviors and environments. Effective movement relies not only on limb mechanics but also on appropriate mechanosensory feedback. By comparing sensory ability and mechanics within a phylogenetic framework, we show that peripheral mechanosensation has evolved with limb biomechanics, evolutionarily tuning the neuromechanical system to its functional demands. We examined sensory physiology and mechanics of the pectoral fins, forelimb homologs, in the fish family Labridae. Labrid fishes exhibit extraordinary morphological and behavioral diversity and use pectoral fin-based propulsion with fins ranging in shape from high aspect ratio (AR) wing-like fins to low AR paddle-like fins. Phylogenetic character analysis demonstrates that high AR fins evolved independently multiple times in this group. Four pairs of species were examined; each included a plesiomorphic low AR and a high AR species. Within each species pair, the high AR species demonstrated significantly stiffer fin rays in comparison with the low AR species. Afferent sensory nerve activity was recorded during fin ray bending. In all cases, afferents of stiffer fins were more sensitive at lower displacement amplitudes, demonstrating mechanosensory tuning to fin mechanics and a consistent pattern of correlated evolution. We suggest that these data provide a clear example of parallel evolution in a complex neuromechanical system, with a strong link between multiple phenotypic characters: pectoral fin shape, swimming behavior, fin ray stiffness, and mechanosensory sensitivity. PMID:28396411

  3. Threats posed by artisanal fisheries to the reproduction of coastal fish species in a Mediterranean marine protected area

    NASA Astrophysics Data System (ADS)

    Lloret, J.; Muñoz, M.; Casadevall, M.

    2012-11-01

    Artisanal fisheries are frequently considered as a sustainable activity compatible with the conservation objectives of marine protected areas (MPAs). Few studies have examined the impacts of these fisheries on the reproductive potential of exploited fish species within the marine reserves. This study evaluated the potential impact of artisanal fishing on the reproduction of coastal fish species in a Mediterranean MPA through onboard sampling from January 2008 to December 2010. Eleven sex-changing fish species constituted an important part of the catch (20% overall and up to 60% of the total gill net catch) and, in five of them, most individuals were of one sex. Artisanal fishing can negatively affect the sustainability of those coastal fishes showing sex reversal, particularly the protogynous ones such as Diplodus cervinus and Epinephelus marginatus, as well as the species with complex mating systems (e.g. some sparids, labrids and scorpaenids). In all species the average size for the individuals captured was above the minimum landing size (where this exists), but in four species (Conger conger, Diplodus puntazzo, Sphyraena spp. and Sparus aurata) it was below the size of first maturity (L50). Results show that sex and size selection by artisanal fishing not only can have an impact on the reproduction of coastal fish species but may also be exacerbating rather than reducing the impact of fishing on coastal resources. Thus, new management actions need to be urgently implemented in the MPAs where artisanal fisheries are allowed to operate in order to protect the reproductive potential of these species, particularly those showing a complicated reproductive strategy.

  4. The role of peripheral endemism and habitat associations in the evolution of the Indo-West Pacific tuskfishes (Labridae: Choerodon).

    PubMed

    Puckridge, Melody; Last, Peter R; Andreakis, Nikos

    2015-03-01

    The unrivalled level of biodiversity across the tropical Indo-Australian Archipelago (IAA) has been the subject of wide debate. Attempts to understand its origins have focussed on the timing of speciation, rates of diversification and the directionality of colonisation across geographical and climatic gradients in an array of marine groups. We investigate origins and evolution in the Choerodon tuskfishes, a group of labrids whose centre of diversity coincides with this region. Mitochondrial (COI, 16S) and nuclear (RAG2, Tmo4c4) molecular phylogenies and biogeographic analyses, coupled with molecular clock dating, were inferred from 19 of the 23 valid Choerodon species. Two additional, undescribed Choerodon species were also included, showing reciprocal monophyly in both genomes, confirming their species level status. Choerodon diverged from their ancestral sister group, the Odacines, at the onset of the Miocene, coinciding with the collision of the Australian and Eurasian Plates when extensive areas of shallow-water habitat formed. Despite subsequent evolutionary patterns being partially obscured by overlapping distribution ranges between many species and a lack of clear evidence for climatically driven lineage divergences, our data support an evolutionary scenario of peripheral endemics budding from once widespread populations across this biodiversity hotspot. Interestingly, these peripheral endemics tend to occupy more specialised reef or non-reef habitats whereas widespread groups appear to generally take advantage of both reef and non-reef environments. Our results are discussed in light of the most accredited hypotheses proposed to explain species richness in the IAA, with some support for processes such as centrifugal speciation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Mesophotic and Deep-sea Demersal Fish Assemblages on Rugged Hardbottoms of the Greater-Lesser Antilles Transition Zone

    NASA Astrophysics Data System (ADS)

    Quattrini, A.; Chaytor, J. D.; Demopoulos, A. W.

    2016-02-01

    Caribbean fish communities in shallow waters have been well studied along the Greater and Lesser Antilles for decades; however, the mesophotic (>50 m) and deep (>200 m) assemblages remain poorly known due to the technical challenges associated with surveying greater depths. Numerous seafloor features (e.g., seamounts, island ridges, banks) punctuate the insular margins and increase habitat heterogeneity, which may lead to enhanced diversity of the deeper demersal fish community in the region. Recent (2013-2015) expeditions in the area using the E/Vs Nautilus and Okeanos Explorer and ROVs Hercules and Deep Discoverer surveyed fish communities during 18 dives across different seafloor features at depths ranging from 64 to 2944 m. These surveys enabled us to investigate whether demersal fish assemblages differed among these seafloor features and/or in response to other (e.g., dissolved oxygen, microhabitat) abiotic factors. A totla of 3,532 fishes representing at least 140 species in 53 families were documented. Assemblage differences were primarily influenced by depth, but differences in microhabitat (i.e., soft substrate, profile, slope) further influenced assemblage structure. Several range and depth extensions were documented. The morid Lepidion sp., previously known only from the eastern and the western North Atlantic, was documented on Norôit Seamount. A new species of labrid, Polylepion sp. A, known only from Curacao, was documented on Conrad Seamount. Many mesophotic reef species were observed deeper than previously known, including the butterflyfishes Chaetodon sedentarius and Prognathodes aculeatus. This study further supports the importance of environmental conditions, particularly depth and microhabitat, influencing local-scale distribution of demersal fishes, while demonstrating how little is still known about the biogeography of numerous deep-sea and mesophotic species.

  6. The Impact of Organismal Innovation on Functional and Ecological Diversification.

    PubMed

    Wainwright, Peter C; Price, Samantha A

    2016-09-01

    Innovations in organismal functional morphology are thought to be a major force in shaping evolutionary patterns, with the potential to drive adaptive radiation and influence the evolutionary prospects for lineages. But the evolutionary consequences of innovation are diverse and usually do not result in adaptive radiation. What factors shape the macroevolutionary impact of innovations? We assert that little is known in general about the macroevolutionary outcomes associated with functional innovations and we discuss a framework for studying biological innovations in an evolutionary context. Innovations are novel functional mechanisms that enhance organismal performance. The ubiquity of trade-offs in functional systems means that enhanced performance on one axis often occurs at the expense of performance on another axis, such that many innovations result in an exchange of performance capabilities, rather than an expansion. Innovations may open up new resources for exploitation but their consequences for functional and ecological diversification depend heavily on the adaptive landscape around these novel resources. As an example of a broader program that we imagine, we survey five feeding innovations in labrid fishes, an exceptionally successful and ecologically diverse group of reef fishes, and explore their impact on the rate of evolution of jaw functional morphology. All of the innovations provide performance enhancements and result in changes in patterns of resource use, but most are not associated with subsequent functional diversification or substantial ecological diversification. Because selection acts on a specific performance enhancement and not on the evolutionary potential of an innovation, the enhancement of diversity may be highly serendipitous. The macroevolutionary potential of innovations depends critically on the interaction between the performance enhancement and the ecological opportunity that is exposed. © The Author 2016. Published by Oxford

  7. Coastal Fish Assemblages Reflect Geological and Oceanographic Gradients Within An Australian Zootone

    PubMed Central

    Harvey, Euan S.; Cappo, Mike; Kendrick, Gary A.; McLean, Dianne L.

    2013-01-01

    Distributions of mobile animals have been shown to be heavily influenced by habitat and climate. We address the historical and contemporary context of fish habitats within a major zootone: the Recherche Archipelago, southern western Australia. Baited remote underwater video systems were set in nine habitat types within three regions to determine the species diversity and relative abundance of bony fishes, sharks and rays. Constrained ordinations and multivariate prediction and regression trees were used to examine the effects of gradients in longitude, depth, distance from islands and coast, and epibenthic habitat on fish assemblage composition. A total of 90 species from 43 families were recorded from a wide range of functional groups. Ordination accounted for 19% of the variation in the assemblage composition when constrained by spatial and epibenthic covariates, and identified redundancy in the use of distance from the nearest emergent island as a predictor. A spatial hierarchy of fourteen fish assemblages was identified using multivariate prediction and regression trees, with the primary split between assemblages on macroalgal reefs, and those on bare or sandy habitats supporting seagrass beds. The characterisation of indicator species for assemblages within the hierarchy revealed important faunal break in fish assemblages at 122.30 East at Cape Le Grand and subtle niche partitioning amongst species within the labrids and monacanthids. For example, some species of monacanthids were habitat specialists and predominantly found on seagrass (Acanthaluteres vittiger, Scobinichthys granulatus), reef (Meuschenia galii, Meuschenia hippocrepis) or sand habitats (Nelusetta ayraudi). Predatory fish that consume molluscs, crustaceans and cephalopods were dominant with evidence of habitat generalisation in reef species to cope with local disturbances by wave action. Niche separation within major genera, and a sub-regional faunal break, indicate future zootone mapping should

  8. Prevalence and proposal for cost-effective management of the ciguatera risk in the Noumea fish market, New Caledonia (South Pacific).

    PubMed

    Clua, Eric; Brena, Pierpaolo F; Lecasble, Côme; Ghnassia, Reine; Chauvet, Claude

    2011-11-01

    Ciguatera fish poisoning (CFP) is a common intoxication associated with the consumption of reef fish, which constitutes a critical issue for public health in many countries. The complexity of its epidemiology is responsible for the poor management of the risk in tropical fish markets. We used the example of the Noumea fish market in New Caledonia to develop a cost-effective methodology of assessing the CFP risk. We first used published reports and the knowledge of local experts to define a list of potentially poisonous local species, ranked by their ciguatoxic potential. Based on two 1-month surveys in the market, conducted in winters 2008 and 2009, we then calculated the consolidated ratio of biomass of potentially poisonous species vs. total biomass of fish sold on the market. The prevalence of high CFP-risk species in the market was 16.1% and 18.9% in 2008 and 2009, respectively. The most common high CFP risk species were groupers (serranids), king mackerels (scombrids), snappers (lutjanids), barracudas (sphyaraenids), emperors (lethrinids) and wrasses (labrids). The size (age) of the fish also plays a critical role in the potential ciguatoxic risk. According to proposals of average size thresholds provided by experts for high-risk species, we were also able to assess the additional risk induced by the sale of some large fish on the market. The data collected both from experts and from the market allowed us to develop a cost-effective proposal for improving the management of the CFP risk in this market. However, the successful implementation of any regulation aiming to ban some specific species and sizes from the market, with an acceptable economical impact, will require the improvement of the expertise in fish identification by public health officers and, ideally, the commitment of retailers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Phylogenetic perspectives on reef fish functional traits.

    PubMed

    Floeter, Sergio R; Bender, Mariana G; Siqueira, Alexandre C; Cowman, Peter F

    2018-02-01

    Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef-associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid-sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait-environment interactions as well as by species and trait-trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a

  10. Cold-water corals and large hydrozoans provide essential fish habitat for Lappanella fasciata and Benthocometes robustus

    NASA Astrophysics Data System (ADS)

    Gomes-Pereira, José Nuno; Carmo, Vanda; Catarino, Diana; Jakobsen, Joachim; Alvarez, Helena; Aguilar, Ricardo; Hart, Justin; Giacomello, Eva; Menezes, Gui; Stefanni, Sergio; Colaço, Ana; Morato, Telmo; Santos, Ricardo S.; Tempera, Fernando; Porteiro, Filipe

    2017-11-01

    Many fish species are well-known obligatory inhabitants of shallow-water tropical coral reefs but such associations are difficult to study in deep-water environments. We address the association between two deep-sea fish with low mobility and large sessile invertebrates using a compilation of 20 years of unpublished in situ observations. Data were collected on Northeast Atlantic (NEA) island slopes and seamounts, from the Azores to the Canary Islands, comprising 127 new records of the circalittoral Labridae Lappanella fasciata and 15 of the upper bathyal Ophiididae Benthocometes robustus. Observations by divers, remote operated vehicles (ROV SP, Luso, Victor, Falcon Seaeye), towed vehicles (Greenpeace) and manned submersibles (LULA, Nautile) validated the species association to cold water corals (CWC) and large hydrozoans. L. fasciata occurred from lower infralittoral (41 m) throughout the circalittoral, down to the upper bathyal at 398 m depth. Smaller fishes (< 10 cm) tend to form larger schools up to five individuals, with larger fishes (10-15 cm) occurring alone or in smaller groups at greater depths. The labrids favoured areas with large sessile invertebrates (> 10 cm) occurring at < 1 body-length, swimming inside or in close vicinity to the tallest and most complex three-dimensional structure in the field of observation. These included hydrozoans (Polyplumaria flabellata, Nemertesia antennina), CWC (e.g. Antipathella wollastoni, Acanthogorgia armata, Stichopathes sp.), and less frequently sponges (e.g. Pseudotrachya hystrix). B. robustus presented a coral-cryptic behavior, being recorded in the bathyal zone between 350 and 734 m depth, always inside CWC (e.g. Acanthogorgia spp., Antipathella spp., Callogorgia verticillata, Dendrophyllia alternata, Leiopathes spp.), and remaining within the coral branching. B. robustus were collected with baited traps providing biological information and dietary information reinforcing the trophic linkage between the CWC

  11. Dietary variations within a family of ambush predators (Platycephalidae) occupying different habitats and environments in the same geographical region.

    PubMed

    Coulson, P G; Platell, M E; Clarke, K R; Potter, I C

    2015-03-01

    the three species that fed predominantly on teleosts underwent serial size-related changes. Although L. inops and the co-occurring P. laevigatus both consume large volumes of teleosts, the former ingests larger, less demersal and more mobile prey, e.g. the labrids Haletta semifasciata and Neoodax balteatus, than the latter, e.g. the scorpaenid Gymnapistes marmoratus, reflecting the possession by L. inops of a far longer head and larger buccal cavity. Circumstantial evidence suggests that the large differences in the volumes of crustaceans and teleosts consumed by each platycephalid species are related to differences in the relative availability of these prey in the different habitats or environments of each species. © 2015 The Fisheries Society of the British Isles.