Science.gov

Sample records for lacking ganglioside gm3

  1. [The regulation of ganglioside GM3 synthesis].

    PubMed

    Uemura, Satoshi

    2012-01-01

    Glycosphingolipids (GSLs) exist in the outer leaflet of the plasma membrane, where they form lipid microdomains that function as platforms for the regulation of trans-membrane signal transduction. In mammals, complex GSLs differing in the number and/or type of sugar species are produced in a cell-type specific manner, and the variety of glycan structures in GSLs are believed to determine specific cell functions. The glycan moieties of GSLs are synthesized at the luminal side of the Golgi apparatus by multiple Golgi-resident glycosyltransferases. Since the expression levels of most endogenous glycosyltransferases are relatively low, their detection is generally difficult. Nevertheless, we have succeeded in detecting endogenous mouse GM3 synthase (GM3S), the primary glycosyltransferase responsible for the biosynthesis of ganglio-series gangliosides. Mouse GM3S (mGM3S) has three isoforms (M1-GM3S, M2-GM3S, and M3-GM3S), each with a distinct length in its NH2-terminal cytoplasmic tail. These isoforms are produced by leaky scanning from two mRNA variants, mGM3Sa and mGM3Sb. M1-GM3S is stably localized in the endoplasmic reticulum (ER), as a result of retrograde transport signals (arginine [R]-based motifs); consequently, its in vivo GM3 synthesis activity is very low compared with that of other isoforms. In contrast, both M2-GM3S and M3-GM3S are localized in the Golgi apparatus, yet each exhibits a distinct intracellular fate. M2-GM3S is rapidly degraded in the lysosomes, whereas M3-GM3S is retained in the Golgi apparatus. A system that produces GM3S isoforms having such distinct characteristics is likely to be of critical importance in the regulation of GM3 biosynthesis under various pathological and physiological conditions.

  2. Physiopathological function of hematoside (GM3 ganglioside)

    PubMed Central

    INOKUCHI, Jin-ichi

    2011-01-01

    Since I was involved in the molecular cloning of GM3 synthase (SAT-I), which is the primary enzyme for the biosynthesis of gangliosides in 1998, my research group has been concentrating on our efforts to explore the physiological and pathological implications of gangliosides especially for GM3. During the course of study, we demonstrated the molecular pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction between insulin receptor and gangliosides in membrane microdomains and propose a new concept: Life style-related diseases, such as type 2 diabetes, are a membrane microdomain disorder caused by aberrant expression of gangliosides. We also encountered an another interesting aspect indicating the indispensable role of gangliosides in auditory system. After careful behavioral examinations of SAT-I knockout mice, their hearing ability was seriously impaired with selective degeneration of the stereocilia of hair cells in the organ of Corti. This is the first observation demonstrating a direct link between gangliosides and hearing functions. PMID:21558756

  3. Impairment of neuropsychological behaviors in ganglioside GM3-knockout mice.

    PubMed

    Niimi, Kimie; Nishioka, Chieko; Miyamoto, Tomomi; Takahashi, Eiki; Miyoshi, Ichiro; Itakura, Chitoshi; Yamashita, Tadashi

    2011-03-25

    The ganglioside GM3 synthase (SAT-I), encoded by a single-copy gene, is a primary glycosyltransferase for the synthesis of complex gangliosides. Although its expression is tightly controlled during early embryo development and postnatal development and maturation in the brain, the physiological role of ganglioside GM3 in the regulation of neuronal functions has not been elucidated. In the present study, we examined motor activity, cognitive and emotional behaviors, and drug administration in juvenile GM3-knockout (GM3-KO) mice. GM3-KO male and female mice showed hyperactivity in the motor activity test, Y-maze test, and elevated plus maze test. In the Y-maze test, there was significantly less spontaneous alternation behavior in GM3-KO male mice than in wild-type mice. In the elevated plus maze test, the amount of time spent on the open arms by GM3-KO male mice was significantly higher than that of sex-matched wild-type mice. In contrast, there was no significant difference between GM3-KO and wild-type female mice in these tests. Thus, juvenile GM3-KO mice show gender-specific phenotypes resembling attention-deficit hyperactivity disorder (ADHD), namely hyperactivity, reduced attention, and increased impulsive behaviors. However, administration of methylphenidate hydrochloride (MPH) did not ameliorate hyperactivity in either male or female GM3-KO mice. Although these data demonstrate the involvement of ganglioside GM3 in ADHD and the ineffectiveness of MPH, the first-choice psychostimulant for ADHD medication, our studies indicate that juvenile GM3-KO mice are a useful tool for neuropsychological studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Cutaneous dyspigmentation in patients with ganglioside GM3 synthase deficiency.

    PubMed

    Wang, Heng; Bright, Alicia; Xin, Baozhong; Bockoven, J R; Paller, Amy S

    2013-04-01

    Ganglioside GM3 synthase deficiency is a rare autosomal recessive metabolic disorder characterized by infantile onset of severe irritability and epilepsy, failure to thrive, developmental stagnation, and cortical blindness. Because of the lack of easily recognizable dysmorphism and specific neurologic manifestations, identification of patients with this condition is extremely challenging. Here we report on previously undescribed pigmentary abnormalities in 20 of 38 patients with GM3 synthase deficiency. All 20 of the patients showed freckle-like hyperpigmented macules, ranging in size from 2 to 5 mm in diameter and usually found bilaterally on the extremities, especially the dorsal aspects of the hands and feet. Seven of these patients also had depigmented macules and patches, especially on the face and extremities. These cutaneous changes were asymptomatic, and were not associated with the severity or particular phenotype of the neurologic disease. They became visible only after the first years of life with an increased incidence with advancing age. These distinct pigmentary features are not identified in 54 normal siblings, and may provide a useful clue in identifying patients with ganglioside metabolic disorders. Copyright © 2013 Wiley Periodicals, Inc.

  5. Synthesis and cytotoxicity assay of four ganglioside GM3 analogues.

    PubMed

    Qu, Huanhuan; Liu, Jian-Miao; Wdzieczak-Bakala, Joanna; Lu, Dan; He, Xianran; Sun, Wenji; Sollogoub, Matthieu; Zhang, Yongmin

    2014-03-21

    A concise and efficient synthetic route for preparation of four ganglioside GM3 analogues was described. The key step is a highly regioselective and stereoselective α-sialylation from a suitably protected glycoside acceptor with a sialyl xanthate to provide the sialo-oligosaccharide in good yield. The cytotoxic properties of the synthetic gangliosides were evaluated against normal human keratinocytes and human HCT116 and K562 cancer cells. Two of them exhibited good antiproliferative activity and displayed a better cytotoxicity against cancer cell than HaCaT normal cell. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Alteration of ganglioside synthesis by GM3 synthase knockout in murine embryonic fibroblasts.

    PubMed

    Shevchuk, Nikolai A; Hathout, Yetrib; Epifano, Olga; Su, Yan; Liu, Yihui; Sutherland, Margaret; Ladisch, Stephan

    2007-09-01

    To probe the functions of membrane gangliosides, the availability of ganglioside-depleted cells would be a valuable resource. To attempt to identify a useful genetic model of ganglioside depletion, we assessed ganglioside metabolism in murine GM3 synthase (GM3S)-/- knockout primary embryonic fibroblasts (MEF), because normal fibroblast gangliosides (GM3, GM2, GM1, and GD1a), all downstream products of GM3S, should be absent. We found that heterozygote MEF (GM3S+/-) did have a 36% reduced content of qualitatively normal gangliosides (7.0+/-0.8 nmol LBSA/mg cell protein; control: 11+/-1.6 nmol). However, two unexpected findings characterized the homozygous (GM3-/-) MEF. Despite complete knockout of GM3S, (i) GM3-/- MEF retained substantial ganglioside content (21% of normal or 2.3+/-1.1 nmol) and (ii) these gangliosides were entirely different from those of wild type MEF by HPTLC. Mass spectrometry identified them as GM1b, GalNAc-GM1b, and GD1alpha, containing both N-acetyl and N-glycolylneuraminic acid and diverse ceramide structures. All are products of the 0 pathway of ganglioside synthesis, not normally expressed in fibroblasts. The results suggest that complete, but not partial, inhibition of GM3 synthesis results in robust activation of an alternate pathway that may compensate for the complete absence of the products of GM3S.

  7. Renal distribution of ganglioside GM3 in rat models of types 1 and 2 diabetes.

    PubMed

    Novak, Anela; Režić Mužinić, Nikolina; Cikeš Čulić, Vedrana; Božić, Joško; Tičinović Kurir, Tina; Ferhatović, Lejla; Puljak, Livia; Markotić, Anita

    2013-12-01

    Ganglioside GM3 is particularly abundant in the kidney tissue and is thought to play an important role in the maintenance of the charge-selective filtration barrier of glomeruli. Altered expression of ganglioside GM3 was pathologically related with glomerular hypertrophy occurring in diabetic human and rat kidneys. Considering the role of GM3 ganglioside in kidney function, the aim of this study was to determine the difference in expression of GM3 ganglioside in glomeruli and tubules using immunofluorescence microscopy both in rat models of types 1 and 2 diabetes mellitus. Diabetes was induced with streptozotocin (55 mg/kg for type 1 diabetes and 35 mg/kg for type 2 diabetes) injection to male Sprague-Dawley rats which were fed with normal pellet diet (type 1 diabetes) or high-fat diet (type 2 diabetes). Rats were sacrificed 2 weeks after diabetes induction, frozen renal sections were stained with primary antibody GM3(Neu5Ac) and visualized by secondary antibody coupled with Texas red. In addition, renal gangliosides GM3 were analyzed by high-performance thin-layer chromatography followed by GM3 immunostaining. Immunofluorescent microscopy detected 1.7-fold higher GM3 expression in tubules and 1.25-fold higher GM3 in glomeruli of type 1 diabetes mellitus compared with control group. Type 2 diabetes mellitus rats showed slight GM3 increase in whole kidney, unchanged GM3 in glomeruli, but significant higher GM3 expression in tubules, compared with control animals. Taking into consideration increased tubular GM3 content in both types of diabetes, we could hypothesize the role of GM3 in early pathogenesis of diabetic nephropathy.

  8. Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation.

    PubMed

    Go, Shinji; Go, Shiori; Veillon, Lucas; Ciampa, Maria Grazia; Mauri, Laura; Sato, Chihiro; Kitajima, Ken; Prinetti, Alessandro; Sonnino, Sandro; Inokuchi, Jin-Ichi

    2017-04-28

    Gangliosides (sialic acid-containing glycosphingolipids) help regulate many important biological processes, including cell proliferation, signal transduction, and differentiation, via formation of functional microdomains in plasma membranes. The structural diversity of gangliosides arises from both the ceramide moiety and glycan portion. Recently, differing molecular species of a given ganglioside are suggested to have distinct biological properties and regulate specific and distinct biological events. Elucidation of the function of each molecular species is important and will provide new insights into ganglioside biology. Gangliosides are also suggested to be involved in skeletal muscle differentiation; however, the differential roles of ganglioside molecular species remain unclear. Here we describe striking changes in quantity and quality of gangliosides (particularly GM3) during differentiation of mouse C2C12 myoblast cells and key roles played by distinct GM3 molecular species at each step of the process. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. [Activation of ganglioside GM3 biosynthesis in human blood mononuclear cells in atherosclerosis].

    PubMed

    Gracheva, E V; Samovilova, N N; Piksina, G F; Shishkina, V S; Prokazova, N V

    2013-01-01

    Using blood monocytes and lymphocytes from atherosclerotic patients and healthy subjects we have investigated activity of GM3 synthase, cellular levels of ganglioside GM3 and its role in monocyte adhesion to cultured human umbilical vein endothelial cells (HUVEC). The results showed that activity of GM3 synthase and cellular levels of ganglioside GM3 in blood mononuclear cells from atherosclerotic patients were several-fold higher than those from healthy subjects. In monocytes the activity of GM3 synthase was one an order of magnitude higher than in lymphocytes from both groups studied; this suggests the major contribution of monocytes to enhanced biosynthesis and levels of GM3 in mononuclear cells in atherosclerosis. Enrichment of monocytes from healthy subjects with ganglioside GM3 by incubation in medium containing this ganglioside increased adherence of these monocytes to HUVEC up to the values typical for monocytes from atherosclerotic patients. In addition, an increase in CD1 1b integrin expression was observed that was comparable to that seen in lipopolysaccharide-activated monocytes. It is suggested that in atherosclerosis the enhanced cellular levels of GM3 in monocytes and lymphocytes may be an important element of cell activation that facilitates their adhesion to endothelial cells and penetration into intima.

  10. Synthesis and characterization of N-parinaroyl analogs of ganglioside GM3 and de-N-acetyl GM3. Interactions with the EGF receptor kinase

    NASA Technical Reports Server (NTRS)

    Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.

  11. Synthesis and characterization of N-parinaroyl analogs of ganglioside GM3 and de-N-acetyl GM3. Interactions with the EGF receptor kinase

    NASA Technical Reports Server (NTRS)

    Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.

  12. Differentiation of oligodendrocytes cultured from developing rat brain is enhanced by exogenous GM3 ganglioside.

    PubMed

    Yim, S H; Farrer, R G; Hammer, J A; Yavin, E; Quarles, R H

    1994-06-15

    Cultures consisting primarily of O-2A progenitor cells and immature oligodendrocytes with a few microglia and astrocytes were obtained by shaking primary cultures from neonatal rat brain after 12-14 days in vitro. Addition of 50 micrograms/ml exogenous Neu-NAc alpha 2-3Gal beta 1-4Glc beta 1-1'ceramide (GM3 ganglioside) to the cultures resulted in an increase in the number and thickness of cell processes that stained intensely for sulfatide and galactocerebroside (galC) in comparison to control cultures without added GM3. The treated cultures also contained fewer astrocytes than control cultures as revealed by immunostaining for glial fibrillary acidic protein (GFAP). Cells that immunostained for both GFAP and sulfatide/galC were very rare in control cultures but were frequently seen in the GM3-treated cultures, suggesting that these may represent cells changing their direction of differentiation away from type II astrocytes toward oligodendrocytes under the influence of GM3. These effects on the developing rat oligodendrocytes were specific for GM3 ganglioside and were not produced by adding GM1, GM2, GD3, or GD1a to the cultures. Lactosyl ceramide and neuraminyl lactose were also ineffective. When control cultures were initially plated on polylysine and incubated with [14C]galactose, GD3 was the principal labeled ganglioside. However, as the control cells differentiated over time in culture without the addition of exogenous GM3 and produced increasing amounts of myelin-related components, the incorporation of [14C]galactose into endogenous GM3 increased to become the predominant labeled ganglioside by 6 days after plating. Metabolic labeling of the GM3-treated oligodendrocytes with [14C]galactose revealed increased incorporation into galC and sulfatide in comparison to control cultures, but a decreased labeling of endogenous GM3. Similarly, incorporation of an amino acid precursor into the myelin-associated glycoprotein (MAG) was increased by GM3 treatment, but

  13. The Ganglioside GM3 Is Associated with Cisplatin-Induced Apoptosis in Human Colon Cancer Cells

    PubMed Central

    Kim, Seok-Jo; Kwak, Choong-Hwan; Song, Kwon-Ho; Jin, Un-Ho; Chang, Young-Chae; Chang, Hyeun Wook; Lee, Young-Choon; Ha, Ki-Tae; Kim, Cheorl-Ho

    2014-01-01

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is a well-known chemotherapeutic agent for the treatment of several cancers. However, the precise mechanism underlying apoptosis of cancer cells induced by CDDP remains unclear. In this study, we show mechanistically that CDDP induces GM3-mediated apoptosis of HCT116 cells by inhibiting cell proliferation, and increasing DNA fragmentation and mitochondria-dependent apoptosis signals. CDDP induced apoptosis within cells through the generation of reactive oxygen species (ROS), regulated the ROS-mediated expression of Bax, Bcl-2, and p53, and induced the degradation of the poly (ADP-ribosyl) polymerase (PARP). We also checked expression levels of different gangliosides in HCT116 cells in the presence or absence of CDDP. Interestingly, among the gangliosides, CDDP augmented the expression of only GM3 synthase and its product GM3. Reduction of the GM3 synthase level through ectopic expression of GM3 small interfering RNA (siRNA) rescued HCT116 cells from CDDP-induced apoptosis. This was evidenced by inhibition of apoptotic signals by reducing ROS production through the regulation of 12-lipoxigenase activity. Furthermore, the apoptotic sensitivity to CDDP was remarkably increased in GM3 synthase-transfected HCT116 cells compared to that in controls. In addition, GM3 synthase-transfected cells treated with CDDP exhibited an increased accumulation of intracellular ROS. These results suggest the CDDP-induced oxidative apoptosis of HCT116 cells is mediated by GM3. PMID:24829158

  14. The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells.

    PubMed

    Chung, Tae-Wook; Choi, Hee-Jung; Kim, Seok-Jo; Kwak, Choong-Hwan; Song, Kwon-Ho; Jin, Un-Ho; Chang, Young-Chae; Chang, Hyeun Wook; Lee, Young-Choon; Ha, Ki-Tae; Kim, Cheorl-Ho

    2014-01-01

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is a well-known chemotherapeutic agent for the treatment of several cancers. However, the precise mechanism underlying apoptosis of cancer cells induced by CDDP remains unclear. In this study, we show mechanistically that CDDP induces GM3-mediated apoptosis of HCT116 cells by inhibiting cell proliferation, and increasing DNA fragmentation and mitochondria-dependent apoptosis signals. CDDP induced apoptosis within cells through the generation of reactive oxygen species (ROS), regulated the ROS-mediated expression of Bax, Bcl-2, and p53, and induced the degradation of the poly (ADP-ribosyl) polymerase (PARP). We also checked expression levels of different gangliosides in HCT116 cells in the presence or absence of CDDP. Interestingly, among the gangliosides, CDDP augmented the expression of only GM3 synthase and its product GM3. Reduction of the GM3 synthase level through ectopic expression of GM3 small interfering RNA (siRNA) rescued HCT116 cells from CDDP-induced apoptosis. This was evidenced by inhibition of apoptotic signals by reducing ROS production through the regulation of 12-lipoxigenase activity. Furthermore, the apoptotic sensitivity to CDDP was remarkably increased in GM3 synthase-transfected HCT116 cells compared to that in controls. In addition, GM3 synthase-transfected cells treated with CDDP exhibited an increased accumulation of intracellular ROS. These results suggest the CDDP-induced oxidative apoptosis of HCT116 cells is mediated by GM3.

  15. Ganglioside GM3 participates in the TGF-β1-induced epithelial-mesenchymal transition of human lens epithelial cells.

    PubMed

    Kim, Seok-Jo; Chung, Tae-Wook; Choi, Hee-Jung; Kwak, Choong-Hwan; Song, Kwon-Ho; Suh, Seok-Jong; Kwon, Kyung-Min; Chang, Young-Chae; Park, Young-Guk; Chang, Hyeun Wook; Kim, Kyoung-Sook; Kim, Cheorl-Ho; Lee, Young-Choon

    2013-01-01

    TGF-β (transforming growth factor-β)-induced EMT (epithelial-mesenchymal transition) induces the proliferation and migration of the HLE (human lens epithelial) cells. Ganglioside GM3, simple sialic-acid-containing glycosphingolipids on mammalian cell membranes, regulates various pathological phenomena such as insulin resistance and tumour progression. However, the relationship between ganglioside GM3 and TGF-β-induced EMT in the HLE B-3 cells is poorly understood. In the present study we demonstrated that ganglioside GM3 was involved in TGF-β1-induced EMT in HLE B-3 cells. Our results indicated that the expression of ganglioside GM3 and GM3 synthase mRNA were significantly increased in TGF-β1-induced HLE B-3 cells. Reporter gene analysis also demonstrated that transcriptional activation of the GM3 synthase gene was regulated by Sp1 (specificity protein 1) in HLE B-3 cells upon TGF-β1 stimulation. Interestingly, the inhibition of ganglioside GM3 expression by d-PDMP [d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol] and GM3 synthase shRNA (short hairpin RNA) resulted significantly in the suppression of cell migration and EMT-related signalling in HLE B-3 cells stimulated by TGF-β. Furthermore, exogenous treatment of ganglioside GM3 rescued the expression of EMT molecules and cell migration suppressed by the depletion of ganglioside GM3 in TGF-β1-induced HLE B-3 cells. We also found that ganglioside GM3 interacted with TGFβRs (TGF-β receptors) in TGF-β1-induced HLE B-3 cells. Taken together, these results suggest that ganglioside GM3 induced by TGF-β1 regulates EMT by potential interaction with TGFβRs.

  16. Monosialic ganglioside GM3 specifically suppresses the monocyte adhesion to endothelial cells for inflammation.

    PubMed

    Kim, Seok-Jo; Chung, Tae-Wook; Choi, Hee-Jung; Jin, Un-Ho; Ha, Ki-Tae; Lee, Young-Choon; Kim, Cheorl-Ho

    2014-01-01

    Vascular endothelial growth factor (VEGF) is well known as a significant angiogenic factor, and also functions as a proinflammatory cytokine, which induces adhesion of leukocyte to endothelial cells in inflammation reaction. In this study, we show that ganglioside GM3 inhibits the VEGF-induced expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) through activation of nuclear factor-κB (NF-κB) via protein kinase B (AKT) signaling in human umbilical vein endothelial cells (HUVECs), relating with leukocyte recruitment to endothelial cells under inflammatory conditions. In addition, ganglioside GM3 significantly reduced the monocyte adhesion to HUVECs as determined by the monolayer cell adhesion assay. Furthermore, in VEGF-injected mice for the inflammatory condition, ganglioside GM3 markedly decreased the expression of ICAM-1 and VCAM-1 in vein tissues. These results suggest that ganglioside GM3 has an anti-inflammatory role by suppressing the expression of inflammatory-related molecules during in vitro and in vivo inflammation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Sialidase activities of cultured human fibroblasts and the metabolism of GM3 ganglioside

    SciTech Connect

    Usuki, S.; Lyu, S.C.; Sweeley, C.C.

    1988-05-15

    Free sialic acid has been found in the cell-conditioned medium of human foreskin fibroblasts. It is proposed that the accumulation of extracellular sialic acid may result from the hydrolysis of GM3 ganglioside on the cell surface of these fibroblasts. Sialidase activities with GM3 ganglioside and sialyllactitol as substrates were demonstrated in cell-conditioned medium, and the levels of their activities correlated positively with cell density. The GM3 sialidase activity at pH 4.5 was 4.1 and 38 pmol/h/ml of medium at sparse and confluent densities, respectively; the corresponding activities with sialyllactitol as the substrate were 12 and 75 pmol/h/ml of medium (pH 4.5). The pH versus activity profiles with GM3 as the substrate suggested the presence of a second sialidase with an optimal activity at pH 6.5 in the conditioned medium of preconfluent cells. This activity was virtually absent in the medium of contact-inhibited cells and could not be assayed with sialyllactitol as the substrate. The turnover of cell surface GM3 was assessed by pulse labeling human foreskin fibroblasts with a radioactive precursor of sialic acid ((1-14C)N-acetylmannosamine) and a radioactive precursor of ceramide ((3,3-3H2)serine). During a chase period of 24 h turnover of the doubly labeled cellular GM3 was observed; there was a loss of about 35% of the 14C-labeled sialic acid without any measureable loss of 3H-labeled ceramide from GM3. We have speculated that the enzyme-catalyzed removal of sialic acid from the GM3 ganglioside on the extracellular aspect of the plasma membrane may be a necessary event involved in the modulation of cell growth.

  18. Ganglioside GM3 as a gatekeeper of obesity-associated insulin resistance: Evidence and mechanisms.

    PubMed

    Lipina, Christopher; Hundal, Harinder S

    2015-10-24

    Gangliosides constitute a large family of sialic acid-containing glycosphingolipids which play a key regulatory role in a diverse array of cellular processes, including receptor-associated signalling. Accordingly, the aberrant production of the ganglioside GM3 has been linked to pathophysiological changes associated with obesity, which in turn can lead to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. This review examines the role of GM3 in mediating obesity-induced perturbations in metabolic function, including impaired insulin action. By doing so, we highlight the potential use of therapies targeting GM3 biosynthesis in order to counteract obesity-related metabolic disorders. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. NGcGM3 Ganglioside: A Privileged Target for Cancer Vaccines

    PubMed Central

    Fernandez, Luis E.; Gabri, Mariano R.; Guthmann, Marcelo D.; Gomez, Roberto E.; Gold, Silvia; Fainboim, Leonardo; Gomez, Daniel E.; Alonso, Daniel F.

    2010-01-01

    Active specific immunotherapy is a promising field in cancer research. N-glycolyl (NGc) gangliosides, and particularly NGcGM3, have received attention as a privileged target for cancer therapy. Many clinical trials have been performed with the anti-NGc-containing gangliosides anti-idiotype monoclonal antibody racotumomab (formerly known as 1E10) and the conjugated NGcGM3/VSSP vaccine for immunotherapy of melanoma, breast, and lung cancer. The present paper examines the role of NGc-gangliosides in tumor biology as well as the available preclinical and clinical data on these vaccine products. A brief discussion on the relevance of prioritization of cancer antigens in vaccine development is also included. PMID:21048926

  20. Monosialyl Ganglioside GM3 Decreases Apolipoprotein B-100 Secretion in Liver Cells.

    PubMed

    Choi, Hyunju; Jin, Un-Ho; Kang, Sung-Koo; Abekura, Fukushi; Park, Jun-Young; Kwon, Kyung-Min; Suh, Seok-Jong; Cho, Seung-Hak; Ha, Ki-Tae; Lee, Young-Coon; Chung, Tae-Wook; Kim, Cheorl-Ho

    2017-08-01

    Some sialic acid-containing glycolipids are known to regulate development of atherosclerosis with accumulated plasma apolipoprotein B-100 (Apo-B)-containing lipoproteins, because Apo-B as an atherogenic apolipoprotein is assembled mainly in VLDL and LDL. Previously, we have elucidated that disialyl GD3 promotes the microsomal triglyceride transfer protein (MTP) gene expression and secretion of triglyceride (TG)-assembled ApoB, claiming the GD3 role in ApoB lipoprotein secretion in liver cells. In the synthetic pathway of gangliosides, GD3 is synthesized by addition of a sialic acid residue to GM3. Thus, there should be some regulatory links between GM3 and GD3. In this study, exogenous and endogenous monosialyl GM3 has been examined how GM3 plays a role in ApoB secretion in Chang liver cells in a view point of MTP and ApoB degradation in the same cells. The level of GM3 ganglioside in the GM3 synthase gene-transfected cells was increased in the cell extract, but not in the medium. In addition, GM3 synthase gene-transfected cells showed a diminished secretion of TG-enriched ApoB with a lower content of TG in the medium. Exogenous GM3 treatment for 24 h exerted a dose dependent inhibitory effect on ApoB secretion together with TG, while a liver-specific albumin was unchanged, indicating that GM3 effect is limited to ApoB secretion. GM3 decreased the mRNA level of MTP gene, too. ApoB protein assembly dysregulated by GM3 indicates the impaired ApoB secretion is caused by a proteasome-dependent pathway. Treatment with small interfering RNAs (siRNAs) decreased ApoB secretion, but GM3-specific antibody did not. These results indicate that plasma membrane associated GM3 inhibits ApoB secretion, lowers development of atherosclerosis by decreasing the secretion of TG-enriched ApoB containing lipoproteins, suggesting that GM3 is an inhibitor of ApoB and TG secretion in liver cells. J. Cell. Biochem. 118: 2168-2181, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  1. Antitumor effects of exogenous ganglioside GM3 on bladder cancer in an orthotopic cancer model.

    PubMed

    Wang, Hua; Isaji, Tomoya; Satoh, Makoto; Li, Dechuan; Arai, Yoichi; Gu, Jianguo

    2013-01-01

    To investigate the therapeutic effects of exogenous gangliosides GM3 on human bladder cancer cell lines and the severe combined immunodeficiency mouse model of orthotopic bladder cancer. Human bladder cancer cell lines YTS-1, T24, 5637, and KK47 were used in the study. In vitro cytotoxicity of GM3 was assessed using the cell counting kit-8. Cell adhesion was determined using a spreading assay. Phosphorylation of epidermal growth factor receptor was determined by Western blotting. In vivo, the orthotopic bladder cancer model was established using severe combined immunodeficiency mice and GM3 was administered intravesically by way of a transurethral catheter. GM3 inhibited the proliferation of all the bladder cancer cell lines tested. The addition of GM3 decreased cell adhesion and epidermal growth factor-dependent phosphorylation of epidermal growth factor receptor. Direct instillation of GM3 into the bladder of the orthotopic model significantly inhibited tumor growth. Our results suggest exogenous GM3 as a potential therapeutic agent for treating bladder cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Ganglioside GM3 is essential for the structural integrity and function of cochlear hair cells.

    PubMed

    Yoshikawa, Misato; Go, Shinji; Suzuki, Shun-ichi; Suzuki, Akemi; Katori, Yukio; Morlet, Thierry; Gottlieb, Steven M; Fujiwara, Michihiro; Iwasaki, Katsunori; Strauss, Kevin A; Inokuchi, Jin-ichi

    2015-05-15

    GM3 synthase (ST3GAL5) is the first biosynthetic enzyme of a- and b-series gangliosides. Patients with GM3 synthase deficiency suffer severe neurological disability and deafness. Eight children (ages 4.1 ± 2.3 years) homozygous for ST3GAL5 c.694C>T had no detectable GM3 (a-series) or GD3 (b-series) in plasma. Their auditory function was characterized by the absence of middle ear muscle reflexes, distortion product otoacoustic emissions and cochlear microphonics, as well as abnormal auditory brainstem responses and cortical auditory-evoked potentials. In St3gal5(-/-) mice, stereocilia of outer hair cells showed signs of degeneration as early as postnatal Day 3 (P3); thereafter, blebs devoid of actin or tubulin appeared at the region of vestigial kinocilia, suggesting impaired vesicular trafficking. Stereocilia of St3gal5(-/-) inner hair cells were fused by P17, and protein tyrosine phosphatase receptor Q, normally linked to myosin VI at the tapered base of stereocilia, was maldistributed along the cell membrane. B4galnt1(-/-) (GM2 synthase-deficient) mice expressing only GM3 and GD3 gangliosides had normal auditory structure and function. Thus, GM3-dependent membrane microdomains might be essential for the proper organization and maintenance of stereocilia in auditory hair cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Ganglioside GM3 is essential for the structural integrity and function of cochlear hair cells

    PubMed Central

    Yoshikawa, Misato; Go, Shinji; Suzuki, Shun-ichi; Suzuki, Akemi; Katori, Yukio; Morlet, Thierry; Gottlieb, Steven M.; Fujiwara, Michihiro; Iwasaki, Katsunori; Strauss, Kevin A.; Inokuchi, Jin-ichi

    2015-01-01

    GM3 synthase (ST3GAL5) is the first biosynthetic enzyme of a- and b-series gangliosides. Patients with GM3 synthase deficiency suffer severe neurological disability and deafness. Eight children (ages 4.1 ± 2.3 years) homozygous for ST3GAL5 c.694C>T had no detectable GM3 (a-series) or GD3 (b-series) in plasma. Their auditory function was characterized by the absence of middle ear muscle reflexes, distortion product otoacoustic emissions and cochlear microphonics, as well as abnormal auditory brainstem responses and cortical auditory-evoked potentials. In St3gal5−/− mice, stereocilia of outer hair cells showed signs of degeneration as early as postnatal Day 3 (P3); thereafter, blebs devoid of actin or tubulin appeared at the region of vestigial kinocilia, suggesting impaired vesicular trafficking. Stereocilia of St3gal5−/− inner hair cells were fused by P17, and protein tyrosine phosphatase receptor Q, normally linked to myosin VI at the tapered base of stereocilia, was maldistributed along the cell membrane. B4galnt1−/− (GM2 synthase-deficient) mice expressing only GM3 and GD3 gangliosides had normal auditory structure and function. Thus, GM3-dependent membrane microdomains might be essential for the proper organization and maintenance of stereocilia in auditory hair cells. PMID:25652401

  4. Control of homeostatic and pathogenic balance in adipose tissue by ganglioside GM3.

    PubMed

    Nagafuku, Masakazu; Sato, Takashige; Sato, Saya; Shimizu, Kyoko; Taira, Toshio; Inokuchi, Jin-Ichi

    2015-03-01

    Ganglioside GM3 (Siaα2-3Galβ1-4Glcβ1-1Cer) has been known to participate in insulin signaling by regulating the association of the insulin receptor in caveolae microdomains (lipid rafts), which is essential for the execution of the complete insulin metabolic signaling in adipocytes. Macrophage-secreted factors including proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β, in adipose tissues have been known to limit the local adipogenesis and induce insulin resistance; however, the interplay between adipocytes and macrophages upon regulation of GM3 expression is not clear. GM3 was virtually absent in primary adipocytes differentiated from macrophage-depleted mesenteric stromal vesicular cells, which accompanies enhancement of insulin signaling and adipogenesis. We found that the expression of GM3 is governed by soluble factors including steady-state levels of proinflammatory cytokines secreted from resident macrophages. The direct involvement of GM3 in insulin signaling is demonstrated by the fact that embryonic fibroblasts obtained from GM3 synthase (GM3S)-deficient mice have increased insulin signaling, when compared with wild-type embryonic fibroblasts, which in turn leads to enhanced adipogeneis. In addition, GM3 expression in primary adipocytes is increased under proinflammatory conditions as well as in adipose tissue of diet-induced obese mice. Moreover, GM3S-deficient mice fed high-fat diets become obese but are resistant to the development of insulin resistance and chronic low-grade inflammatory states. Thus, GM3 functions as a physiological regulatory factor of the balance between homeostatic and pathological states in adipocytes by modulating insulin signaling in lipid rafts. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Longitudinal evolution of the concentration of gangliosides GM3 and GD3 in human milk.

    PubMed

    Giuffrida, Francesca; Elmelegy, Isabelle Masserey; Thakkar, Sagar K; Marmet, Cynthia; Destaillats, Frédéric

    2014-10-01

    It has been reported that dietary gangliosides may have an important role in preventing infections and in brain development during early infancy. However, data related to the evolution of their concentration over the different stages of lactation are scarce. Liquid chromatography coupled with electrospray ionization high resolution mass spectrometer (LC/ESI-HR-MS) has been optimized to quantify the two major ganglioside classes, i.e., aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer (GD3) and aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)Cer (GM3) in human milk. Gangliosides were extracted using chloroform and methanol, further purified by solid-phase extraction and separated by reversed-phase liquid chromatography. Repeatability, intermediate reproducibility, and recovery values were assessed to validate the method. In human milk, GD3 and GM3 could be quantified at the level of 0.1 and 0.2 μg/mL, respectively, with relative standard deviation of repeatability [CV(r)] and intermediate reproducibility [CV(iR)] values ranging from 1.9 to 15.0 % and 1.9 to 22.5 %, respectively. The described method was used to quantify GD3 and GM3 in human milk samples collected from 450 volunteers between 0 and 11 days and at 30, 60 and 120 days postpartum, providing for the first time the concentration of these minor lipids in a large cohort. The content of total gangliosides ranged from 8.1 and 10.7 μg/mL and the mean intake of gangliosides in infants 30, 60 and 120 days postpartum could be estimated at about 5.5, 7.0 and 8.6 mg of total gangliosides per day, respectively, when infants were exclusively breastfed.

  6. Ganglioside depletion and EGF responses of human GM3 synthase-deficient fibroblasts.

    PubMed

    Liu, Yihui; Su, Yan; Wiznitzer, Max; Epifano, Olga; Ladisch, Stephan

    2008-08-01

    Recognition of important roles of gangliosides in normal and abnormal cell function has motivated pharmacological modification of cellular ganglioside content. However, constitutive depletion of gangliosides in untransformed human cells has not been reported. In this context, the recent identification of a kindred carrying a point mutation in the GM3 synthase [ST3Gal5, Siat9] gene (Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC, Reinkensmeier G, Wang H, Wiznitzer M, Gurtz K, Verganelaki A, Pryde A, Patton MA, Dwek RA, Butters TD, Platt FM, Crosby AH. 2004. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet. 36:1225-1229) provided an opportunity to explore this possibility. We established primary cultures of skin fibroblasts of three patients homozygous for this autosomal recessive defect. They exhibited a 93% reduction in ganglioside content (0.8 +/- 0.2 nmol lipid-bound sialic acid per 10(7) cells versus 12.7 +/- 1.3 nmol per 10(7) normal fibroblasts). Importantly, this marked reduction was not compensated by the activation of an alternate pathway of ganglioside synthesis, as occurs in murine GM3 synthase knockout fibroblasts. Cell morphology appeared unaffected, but under stringent conditions EGF-induced proliferation and migration of the mutant fibroblasts were reduced by 80% and 60%, respectively. Probing potential explanations, we found that EGF binding (effective membrane EGF receptor (EGFR) number) was reduced by 52% (to 6.2 +/- 1.9 from 12.8 +/- 2.0 pmol/10(8) normal fibroblasts, P < 0.01), despite normal total EGFR protein. EGFR activation was likewise reduced as was EGF-induced Rho/Rac1 phosphorylation, which is associated with cell migration. We conclude that this GM3 synthase point mutation almost completely depletes human fibroblast cellular gangliosides, dampens membrane EGFR activation, and modulates related critical cell functions such as proliferation and migration

  7. Early growth and development impairments in patients with ganglioside GM3 synthase deficiency.

    PubMed

    Wang, H; Wang, A; Wang, D; Bright, A; Sency, V; Zhou, A; Xin, B

    2016-05-01

    Ganglioside GM3 synthase is a key enzyme involved in the biosynthesis of gangliosides. GM3 synthase deficiency (GSD) causes a complete absence of GM3 and all downstream biosynthetic derivatives. The individuals affected by this disorder manifest severe irritability, intractable seizures and profound intellectual disability. However, we have found that most newborns seem symptom-free for a period of time after birth. In order to further understand the onset of the disease, we investigated the early growth and development of patients with this condition through this study. We compared 37 affected individuals with their normal siblings and revealed that all children with GSD had relatively normal intrauterine growth and development, as their weight, length and head circumference were similar to their normal siblings at birth. However, the disease progresses quickly after birth and causes significant constitutional impairments of growth and development by 6 months of age. Neither breastfeeding nor gastrostomy tube placement made significant difference on growth and development as all groups of patients showed the similar pattern. We conclude that GSD causes significant postnatal growth and developmental impairments and the amount of gangliosides in breast milk and general nutritional intervention do not seem to alter these outcomes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Ganglioside GM3 levels are altered in a mouse model of HIBM: GM3 as a cellular marker of the disease.

    PubMed

    Paccalet, Thomas; Coulombe, Zoé; Tremblay, Jacques P

    2010-04-07

    HIBM (Hereditary Inclusion Body Myopathy) is a recessive hereditary disease characterized by adult-onset, slowly progressive muscle weakness sparing the quadriceps. It is caused by a single missense mutation of each allele of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, a bifunctional enzyme catalyzing the first two steps of sialic acid synthesis in mammals. However, the mechanisms and cellular pathways affected by the GNE mutation and causing the muscle weakness could not be identified so far. Based on recent evidence in literature, we investigated a new hypothesis, i.e. the involvement in the disease of the GM3 ganglioside, a specific glycolipid implicated in muscle cell proliferation and differentiation. qRT-PCR analysis of St3gal5 (GM3 synthase) gene expression and HPLC quantification of GM3 ganglioside were conducted on muscle tissue from a mouse model of HIBM harboring the M712T mutation of GNE (Gne(M712T/M712T) mouse) vs control mice (Gne(+/+) mouse). St3gal5 mRNA levels were significantly lower in Gne(M712T/M712T) mouse muscles vs Gne(+/+) mouse muscles (64.41%+/-10% of Gne(+/+) levels). GM3 ganglioside levels showed also a significant decrease in Gne(M712T/M712T) mouse muscle compared to Gne(+/+) mouse muscle (18.09%+/-5.33% of Gne(+/+) levels). Although these Gne(M712T/M712T) mice were described to suffer severe glomerular proteinuria, no GM3 alterations were noted in kidneys, highlighting a tissue specific alteration of gangliosides. The M712T mutation of GNE hampers the muscle ability to synthesize normal levels of GM3. This is the first time that a mutation of GNE can be related to the molecular pathological mechanism of HIBM.

  9. Clostridium botulinum type C hemagglutinin affects the morphology and viability of cultured mammalian cells via binding to the ganglioside GM3.

    PubMed

    Sugawara, Yo; Iwamori, Masao; Matsumura, Takuhiro; Yutani, Masahiro; Amatsu, Sho; Fujinaga, Yukako

    2015-09-01

    Botulinum neurotoxin is conventionally divided into seven serotypes, designated A-G, and is produced as large protein complexes through associations with non-toxic components, such as hemagglutinin (HA) and non-toxic non-HA. These non-toxic proteins dramatically enhance the oral toxicity of the toxin complex. HA is considered to have a role in toxin transport through the intestinal epithelium by carbohydrate binding and epithelial barrier-disrupting activity. Type A and B HAs disrupt E-cadherin-mediated cell adhesion, and, in turn, the intercellular epithelial barrier. Type C HA (HA/C) disrupts the barrier function by affecting cell morphology and viability, the mechanism of which remains unknown. In this study, we identified GM3 as the target molecule of HA/C. We found that sialic acid binding of HA is essential for the activity. It was abolished when cells were pre-treated with an inhibitor of ganglioside synthesis. Consistent with this, HA/C bound to a-series gangliosides in a glycan array. In parallel, we isolated clones resistant to HA/C activity from a susceptible mouse fibroblast strain. These cells lacked expression of ST-I, the enzyme that transfers sialic acid to lactosylceramide to yield GM3. These clones became sensitive to HA/C activity when GM3 was expressed by transfection with the ST-I gene. The sensitivity of fibroblasts to HA/C was reduced by expressing ganglioside synthesis genes whose products utilize GM3 as a substrate and consequently generate other a-series gangliosides, suggesting a GM3-specific mechanism. Our results demonstrate that HA/C affects cells in a GM3-dependent manner. © 2015 FEBS.

  10. Ganglioside GM3 Mediates Glucose-Induced Suppression of IGF-1 Receptor-Rac1 Activation to Inhibit Keratinocyte Motility.

    PubMed

    Dam, Duncan Hieu M; Wang, Xiao-Qi; Sheu, Sarah; Vijay, Mahima; Shipp, Desmond; Miller, Luke; Paller, Amy S

    2017-02-01

    Activation of insulin-like growth factor-1 (IGF-1) receptor (IGF1R) signaling induces keratinocyte migration, but little is known about its regulation, including in diabetic wounds. GM3, a lipid raft ganglioside synthesized by GM3 synthase (GM3S), regulates receptor signaling. In diabetic mice, knockout or topically applied nanoconstruct-mediated knockdown of GM3S promotes wound edge IGF1R phosphorylation and re-epithelialization. Through modulating GM3 expression, we explored the role of GM3 in regulating human keratinocyte IGF1R signaling. Increases in GM3 and GM3S expression, including by exposure to high glucose, inhibit keratinocyte migration and IGF-1-induced chemotaxis in association with inhibition of IGF1R phosphorylation, suppression of Rac1 signaling, and activation of RhoA signaling. In contrast, GM3 depletion accelerates cell migration; increases cell velocity, displacement, and persistence; and activates IGF1R-Rac1 signaling. These data implicate GM3 in mediating glucose-induced suppression of IGF1R-Rac1 signaling. Furthermore, our findings provide evidence of a pivotal role for GM3-induced insulin resistance in impairing keratinocyte migration and reinforce the previously published studies in diabetic mice supporting GM3-depleting strategies as an approach for accelerating the healing of human diabetic wounds. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Frequent co-expression of EGFR and NeuGcGM3 ganglioside in cancer: it's potential therapeutic implications.

    PubMed

    Palomo, Addys González; Santana, Rancés Blanco; Pérez, Xiomara Escobar; Santana, Damián Blanco; Gabri, Mariano Rolando; Monzon, Kalet León; Pérez, Adriana Carr

    2016-10-01

    Interaction between epidermal growth factor receptor (EGFR) signaling with GM3 ganglioside expression has been previously described. However, little is known about EGFR and NeuGcGM3 co-expression in cancer patients and their therapeutic implications. In this paper, we evaluate the co-expression of EGFR and NeuGcGM3 ganglioside in tumors from 92 patients and in two spontaneous lung metastasis models of mice (Lewis lung carcinoma (3LL-D122) in C57BL/6 and mammary carcinoma (4T1) in BALB/c). As results, co-expression of EGFR and NeuGcGM3 ganglioside was frequently observed in 63 of 92 patients (68 %), independently of histological subtype. Moreover, EGFR is co-expressed with NeuGcGM3 ganglioside in the metastasis of 3LL-D122 and 4T1 murine models. Such dual expression appears to be therapeutically relevant, since combined therapy with mAbs against these two molecules synergistically increase the survival of mice treated. Overall, our results suggest that NeuGcGM3 and EGFR may coordinately contribute to the tumor cell biology and that therapeutic combinations against these two targets might be a valid strategy to explore.

  12. Ganglioside GM3 synthase depletion reverses neuropathic pain and small fiber neuropathy in diet-induced diabetic mice

    PubMed Central

    Jayaraj, Nirupa D; Wilson, Heather M; Ren, Dongjun; Flood, Kelsey; Wang, Xiao-Qi; Shum, Andrew; Miller, Richard J; Paller, Amy S

    2016-01-01

    Background Small fiber neuropathy is a well-recognized complication of type 2 diabetes and has been shown to be responsible for both neuropathic pain and impaired wound healing. In previous studies, we have demonstrated that ganglioside GM3 depletion by knockdown of GM3 synthase fully reverses impaired wound healing in diabetic mice. However, the role of GM3 in neuropathic pain and small fiber neuropathy in diabetes is unknown. Purpose Determine whether GM3 depletion is able to reverse neuropathic pain and small fibers neuropathy and the mechanism of the reversal. Results We demonstrate that GM3 synthase knockout and the resultant GM3 depletion rescues the denervation in mouse footpad skin and fully reverses the neuropathic pain in diet-induced obese diabetic mice. In cultured dorsal root ganglia from diet-induced diabetic mice, GM3 depletion protects against increased intracellular calcium influx in vitro. Conclusions These studies establish ganglioside GM3 as a new candidate responsible for neuropathic pain and small fiber neuropathy in diabetes. Moreover, these observations indicate that systemic or topically applied interventions aimed at depleting GM3 may improve both the painful neuropathy and the wound healing impairment in diabetes by protecting against nerve end terminal degeneration, providing a disease-modifying approach to this common, currently intractable medical issue. PMID:27590073

  13. Ganglioside GM3 depletion reverses impaired wound healing in diabetic mice by activating IGF-1 and insulin receptors.

    PubMed

    Wang, Xiao-Qi; Lee, Sarah; Wilson, Heather; Seeger, Mark; Iordanov, Hristo; Gatla, Nandita; Whittington, Adam; Bach, Daniel; Lu, Jian-Yun; Paller, Amy S

    2014-05-01

    Ganglioside GM3 mediates adipocyte insulin resistance, but the role of GM3 in diabetic wound healing, a major cause of morbidity, is unclear. The purpose of this study was to determine whether GM3 depletion promotes diabetic wound healing and directly activates keratinocyte (KC) insulin pathway signaling. GM3 synthase (GM3S) expression is increased in human diabetic foot skin, ob/ob and diet-induced obese diabetic mouse skin, and in mouse KCs exposed to increased glucose. GM3S knockout in diet-induced obese mice prevents the diabetic wound-healing defect. KC proliferation, migration, and activation of insulin receptor (IR) and insulin growth factor-1 receptor (IGF-1R) are suppressed by excess glucose in wild-type cells, but increased in GM3S (-/-) KCs with supplemental glucose. Co-immunoprecipitation of IR, IR substrate 1 (IRS-1), and IGF-1R, and increased IRS-1 and Akt phosphorylation accompany receptor activation. GM3 supplementation or inhibition of IGF-1R or PI3K reverses the increased migration of GM3S(-/-) KCs, whereas IR knockdown only partially suppresses migration.

  14. Prognostic Significance of N-Glycolyl GM3 Ganglioside Expression in Non-Small Cell Lung Carcinoma Patients: New Evidences.

    PubMed

    Blanco, Rancés; Domínguez, Elizabeth; Morales, Orlando; Blanco, Damián; Martínez, Darel; Rengifo, Charles E; Viada, Carmen; Cedeño, Mercedes; Rengifo, Enrique; Carr, Adriana

    2015-01-01

    The prognostic role of N-glycolyl GM3 ganglioside (NeuGcGM3) expression in non-small cell lung carcinoma (NSCLC) still remains controversial. In this study, the NeuGcGM3 expression was reevaluated using an increased number of NSCLC cases and the 14F7 Mab (a highly specific IgG1 raised against NeuGcGM3). An immunohistochemical score integrating the percentage of 14F7-positive cells and the intensity of reaction was applied to reassess the relationship between NeuGcGM3 expression, some clinicopathological features, and the overall survival (OS) of NSCLC patients. The double and the triple expression of NeuGcGM3 with the epidermal growth factor receptor (EGFR) and/or its ligand, the epidermal growth factor (EGF), were also evaluated. NeuGcGM3 expression correlates with both S-Phase fraction (p = 0.006) and proliferation index (p = 0.000). Additionally, NeuGcGM3 expression was associated with a poor OS of patients in both univariate (p = 0.020) and multivariate (p = 0.010) analysis. Moreover, the double and/or the triple positivity of tumors to NeuGcGM3, EGFR, and/or EGF permitted us to identify phenotypes of NSCLC with a more aggressive biological behavior. Our results are in agreement with the negative prognostic significance of NeuGcGM3 expression in NSCLC patients. However, standardization of techniques to determine the expression of NeuGcGM3 in NSCLC as well as the implementation of a universal scoring system is recommended.

  15. Prognostic Significance of N-Glycolyl GM3 Ganglioside Expression in Non-Small Cell Lung Carcinoma Patients: New Evidences

    PubMed Central

    Blanco, Rancés; Domínguez, Elizabeth; Morales, Orlando; Blanco, Damián; Martínez, Darel; Rengifo, Charles E.; Viada, Carmen; Cedeño, Mercedes; Rengifo, Enrique; Carr, Adriana

    2015-01-01

    The prognostic role of N-glycolyl GM3 ganglioside (NeuGcGM3) expression in non-small cell lung carcinoma (NSCLC) still remains controversial. In this study, the NeuGcGM3 expression was reevaluated using an increased number of NSCLC cases and the 14F7 Mab (a highly specific IgG1 raised against NeuGcGM3). An immunohistochemical score integrating the percentage of 14F7-positive cells and the intensity of reaction was applied to reassess the relationship between NeuGcGM3 expression, some clinicopathological features, and the overall survival (OS) of NSCLC patients. The double and the triple expression of NeuGcGM3 with the epidermal growth factor receptor (EGFR) and/or its ligand, the epidermal growth factor (EGF), were also evaluated. NeuGcGM3 expression correlates with both S-Phase fraction (p = 0.006) and proliferation index (p = 0.000). Additionally, NeuGcGM3 expression was associated with a poor OS of patients in both univariate (p = 0.020) and multivariate (p = 0.010) analysis. Moreover, the double and/or the triple positivity of tumors to NeuGcGM3, EGFR, and/or EGF permitted us to identify phenotypes of NSCLC with a more aggressive biological behavior. Our results are in agreement with the negative prognostic significance of NeuGcGM3 expression in NSCLC patients. However, standardization of techniques to determine the expression of NeuGcGM3 in NSCLC as well as the implementation of a universal scoring system is recommended. PMID:26634172

  16. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown.

    PubMed

    Randeria, Pratik S; Seeger, Mark A; Wang, Xiao-Qi; Wilson, Heather; Shipp, Desmond; Mirkin, Chad A; Paller, Amy S

    2015-05-05

    Spherical nucleic acid (SNA) gold nanoparticle conjugates (13-nm-diameter gold cores functionalized with densely packed and highly oriented nucleic acids) dispersed in Aquaphor have been shown to penetrate the epidermal barrier of both intact mouse and human skin, enter keratinocytes, and efficiently down-regulate gene targets. ganglioside-monosialic acid 3 synthase (GM3S) is a known target that is overexpressed in diabetic mice and responsible for causing insulin resistance and impeding wound healing. GM3S SNAs increase keratinocyte migration and proliferation as well as insulin and insulin-like growth factor-1 (IGF1) receptor activation under both normo- and hyperglycemic conditions. The topical application of GM3S SNAs (50 nM) to splinted 6-mm-diameter full-thickness wounds in diet-induced obese diabetic mice decreases local GM3S expression by >80% at the wound edge through an siRNA pathway and fully heals wounds clinically and histologically within 12 d, whereas control-treated wounds are only 50% closed. Granulation tissue area, vascularity, and IGF1 and EGF receptor phosphorylation are increased in GM3S SNA-treated wounds. These data capitalize on the unique ability of SNAs to naturally penetrate the skin and enter keratinocytes without the need for transfection agents. Moreover, the data further validate GM3 as a mediator of the delayed wound healing in type 2 diabetes and support regional GM3 depletion as a promising therapeutic direction.

  17. GM3 ganglioside and phosphatidylethanolamine-containing lipids are adipose tissue markers of insulin resistance in obese women.

    PubMed

    Wentworth, J M; Naselli, G; Ngui, K; Smyth, G K; Liu, R; O'Brien, P E; Bruce, C; Weir, J; Cinel, M; Meikle, P J; Harrison, L C

    2016-04-01

    The association between central obesity and insulin resistance reflects the properties of visceral adipose tissue. Our aim was to gain further insight into this association by analysing the lipid composition of subcutaneous and omental adipose tissue in obese women with and without insulin resistance. Subcutaneous and omental adipose tissue and serum were obtained from 29 obese non-diabetic women, 13 of whom were hyperinsulinemic. Histology, lipid and gene profiling were performed. In omental adipose tissue of obese, insulin-resistant women, adipocyte hypertrophy and macrophage infiltration were accompanied by an increase in GM3 ganglioside and its synthesis enzyme ST3GAL5; in addition, phosphatidylethanolamine (PE) lipids were increased and their degradation enzyme, phosphatidylethanolamine methyl transferase (PEMT), decreased. ST3GAL5 was expressed predominantly in adipose stromovascular cells and PEMT in adipocytes. Insulin resistance was also associated with an increase in PE lipids in serum. The relevance of these findings to insulin resistance in humans is supported by published mouse studies, in which adipocyte GM3 ganglioside, increased by the inflammatory cytokine tumour necrosis factor-α, impaired insulin action and PEMT was required for adipocyte lipid storage. Thus in visceral adipose tissue of obese humans, an increase in GM3 ganglioside secondary to inflammation may contribute to insulin resistance and a decrease in PEMT may be a compensatory response to adipocyte hypertrophy.

  18. Generation and characterization of an anti-idiotype monoclonal antibody related to GM3(NeuGc) ganglioside.

    PubMed

    Rodríguez, Mabel; Llanes, Leticia; Pérez, Alexis; Pérez, Rolando; Vázquez, Ana María

    2003-10-01

    The 14F7 monoclonal antibody (MAb), IgG1 isotype, which reacts specifically to GM3(NeuGc) ganglioside induced a specific IgG anti-idiotypic antibody (Ab2) response in syngeneic mice when it was administered coupled with KLH and in the presence of Freund's adjuvant. Spleen cells from these mice were used in somatic-cell hybridization experiments using the murine myeloma cell line P3-X63-Ag8 653 as fusion partner. An IgG1 Ab2 MAb was selected. This Ab2 MAb, called 4G9, was able to block the binding of 14F7 MAb to GM3(NeuGc) ganglioside and developed a strong IgG anti-anti-idiotypic antibody (Ab3) response, when injected into syngeneic mice. These Ab3 antibodies were characterized to bear 14F7 MAb idiotopes, but did not have the same specificity as 14F7 MAb. In the other hand, a very specific anti-NeuGc-containing ganglioside response was generated in chickens immunized with this Ab2 MAb, thus behaving, in this species as an "internal image" antibody.

  19. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation.

    PubMed

    Yoshinaga, Ayana; Kajiya, Natsuki; Oishi, Kazuki; Kamada, Yuko; Ikeda, Asami; Chigwechokha, Petros Kingstone; Kibe, Toshiro; Kishida, Michiko; Kishida, Shosei; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2016-07-05

    Naringin, which is one of the flavonoids contained in citrus fruits, is well known to possess various healthy functions to humans. It has been reported that naringin suppresses cancer cell growth in vitro and in vivo, although the underlying mechanisms are not fully understood. Recently, the roles of glycoconjugates, such as gangliosides, in cancer cells have been focused because of their regulatory effects of malignant phenotypes. Here, to clarify the roles of naringin in the negative-regulation of cancer cell growth, the alteration of glycoconjugates induced by naringin exposure and its significance on cell signaling were investigated. Human cancer cells, HeLa and A549, were exposed to various concentrations of naringin. Naringin treatment induced the suppression of cell growth toward HeLa and A549 cells accompanied with an increase of apoptotic cells. In naringin-exposed cells, GM3 ganglioside was drastically increased compared to the GM3 content prior to the treatment. Furthermore, naringin inhibited NEU3 sialidase, a GM3 degrading glycosidase. Similarly, NEU3 inhibition activities were also detected by other flavanone, such as hesperidin and neohesperidin dihydrocalcone, but their aglycones showed less inhibitions. Naringin-treated cancer cells showed suppressed EGFR and ERK phosphorylation levels. These results suggest a novel mechanism of naringin in the suppression of cancer cell growth through the alteration of glycolipids. NEU3 inhibitory effect of naringin induced GM3 accumulation in HeLa and A549 cells, leading the attenuation of EGFR/ERK signaling accompanied with a decrease in cell growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ganglioside GM3 inhibits hepatoma cell motility via down-regulating activity of EGFR and PI3K/AKT signaling pathway.

    PubMed

    Huang, X; Li, Y; Zhang, J; Xu, Y; Tian, Y; Ma, K

    2013-07-01

    Two related sublines derived from murine ascites hepatoma cell lines Hca-F25, which were selected for their markedly different metastatic potential to lymph nodes, were found to be distinct in their ganglioside patterns. The low metastatic cell line (HcaP) contained a major ganglioside GM3, whereas the high metastatic cell line (HcaF) contained a major ganglioside GM2. Suppression of GM3 by P4 enhanced the mobility and migration of the low metastatic HcaP cells in vitro. Increase in GM3 content in high metastatic HcaF cells by addition of exogenous GM3 inhibited the mobility and migration. These results suggested that the differences in lymphatic metastasis potential between these two cell lines could be attributed to the differences in their ganglioside compositions, and GM3 could suppress the motility and migration of these cells. Further, we investigated the mechanism by which GM3 suppressed the cell mobility and migration. The results showed that suppression of GM3 synthesis by P4 in low metastatic HcaP cells promoted PKB/Akt phosphorylation at Ser473 and Thr308, and phosphorylation of EGFR at the Tyr1173. In contrast, increase in GM3 content in high metastatic HcaF cells by addition of exogenous GM3 into the culture medium suppressed phosphorylation of PKB/Akt and EGFR at the same residues. Taken together, these results suggested that the mechanism of GM3-suppressed cell motility and migration may involve the inhibition of phosphorylation of EGFR and the activity of PI3K/AKT signaling pathway. Copyright © 2013 Wiley Periodicals, Inc.

  1. Ganglioside GM3 is required for caffeic acid phenethyl ester-induced megakaryocytic differentiation of human chronic myelogenous leukemia K562 cells.

    PubMed

    Jin, Un-Ho; Chung, Tae-Wook; Song, Kwon-Ho; Kwak, Choong-Hwan; Choi, Hee-Jung; Ha, Ki-Tae; Chang, Young-Chae; Lee, Young-Choon; Kim, Cheorl-Ho

    2014-08-01

    The human chronic myelogenous cell line K562 has been used extensively as a model for the study of leukemia differentiation. We show here that treatment of K562 cells with caffeic acid phenethyl ester (CAPE) induced a majority of cells to differentiate towards the megakaryocytic lineage. Microscopy analysis showed that K562 cells treated with CAPE exhibited characteristic features of physiological megakaryocytic differentiation, including the presence of vacuoles and demarcation membranes. Differentiation of K562 cells treated with CAPE was also accompanied by a net increase in megakaryocytic markers. The transcriptional activity of lactosylceramide α-2,3-sialyltransferase (GM3 synthase) and synthesis of ganglioside GM3 were increased by CAPE treatment. The promoter analysis of GM3 synthase demonstrated that CAPE induced the expression of GM3 synthase mRNA via activation of the cAMP response element-binding protein (CREB), transcription factor in nucleus. Interestingly, the inhibition of ganglioside GM3 synthesis by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propranol (D-PDMP) and GM3 synthase-siRNA blocked the CAPE-induced expression of the megakaryocytic markers and differentiation of K562 cells. Taken together, these results suggest that CAPE induces ganglioside GM3-mediated megakaryocytic differentiation of human chronic myelogenous cells.

  2. A liquid chromatography/tandem mass spectrometric approach for the determination of gangliosides GD3 and GM3 in bovine milk and infant formulae.

    PubMed

    Sørensen, Lambert K

    2006-01-01

    A liquid chromatographic/tandem mass spectrometric method using pneumatically assisted electrospray ionisation (LC/ESI-MS/MS) was developed for the determination of gangliosides GD3 and GM3 in milk and infant formulae. The gangliosides were extracted in a chloroform/methanol/water environment and cleaned up by solid-phase extraction (SPE) on an end-capped C8 sorbent. The gangliosides were detected in negative ion mode after separation on a reversed-phase (RP) C5 analytical column. From the different ganglioside molecular species, product ions at m/z 290 corresponding to an N-acetylneuraminic acid fragment were produced in the collision cell and used in selected reaction monitoring. A standard addition technique was applied for quantification. The relative repeatability standard deviations were less than 5% for GD3 (level 10 mg/L) and 14% for GM3 (level 0.1-0.2 mg/L). Copyright 2006 John Wiley & Sons, Ltd.

  3. Atomic-resolution conformational analysis of the GM3 ganglioside in a lipid bilayer and its implications for ganglioside–protein recognition at membrane surfaces

    PubMed Central

    DeMarco, Mari L; Woods, Robert J

    2009-01-01

    Eukaryotic cells depend on external surface markers, such as gangliosides, to recognize and bind various other molecules as part of normal growth and maturation. The localization of gangliosides in the outer leaflet of the plasma membrane, also make them targets for pathogens trying to invade the host cells. Since ganglioside-mediated interactions are critical to both beneficial and pathological processes, much effort has been directed at determining the 3D structures of their carbohydrate head groups; however, technical difficulties have generally prevented the characterization of the head group in intact membrane-bound gangliosides. Determining the 3D structure and presentation of gangliosides at the surface of membranes is important in understanding how cells interact with their local environment. Here, we employ all-atom explicit solvent molecular dynamics (MD) simulations, using the GLYCAM06 force field, to model the conformation and dynamics of ganglioside GM3 (α-Neu5Ac-(2-3)-β-Gal-(1-4)-β-Glc-ceramide) in a DMPC lipid bilayer. By comparison with MD simulations of the carbohydrate head-group fragment of GM3 alone, it was possible to quantify and characterize the extent of changes in head-group presentation and dynamics associated with membrane anchoring. The accuracy of data from the MD simulations was determined by comparison to NMR and crystallographic data for the head group in solution and for GM3 in membrane-mimicking environments. The experimentally consistent model of GM3, in a lipid bilayer, was then used to model the recognition of GM3 at the cell surface by known protein receptors. PMID:19056784

  4. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

    PubMed Central

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  5. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    PubMed

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.

  6. Ganglioside GM3 exerts opposite effects on motility via epidermal growth factor receptor and hepatocyte growth factor receptor-mediated migration signaling.

    PubMed

    Li, Ying; Huang, Xiaohua; Wang, Congcong; Li, Yuzhong; Luan, Mingchun; Ma, Keli

    2015-04-01

    The ganglioside GM3 exerts its different effects via various growth factor receptors. The present study investigated and comparatively analyzed the opposing effects exerted by GM3 on the migration of mouse hepatocellular carcinoma Hepa1‑6 cells via epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (HGFR/cMet). The results demonstrated that GM3 inhibited EGF‑stimulated motility, but promoted HGF‑stimulated motility of the Hepa1‑6 cells via phosphatidylinositol 3‑kinase/Akt‑mediated migration signaling. It is well established that the main cytokines modulating cell proliferation, invasion and metastasis are different in different types of tumor. This difference may, at least in part, explain why GM3 exerted its actions in a tumor‑type specific manner.

  7. Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of Aβ Toxicity and Stroke.

    PubMed

    Caughlin, Sarah; Hepburn, Jeffrey D; Park, Dae Hee; Jurcic, Kristina; Yeung, Ken K-C; Cechetto, David F; Whitehead, Shawn N

    2015-01-01

    The aging brain is often characterized by the presence of multiple comorbidities resulting in synergistic damaging effects in the brain as demonstrated through the interaction of Alzheimer's disease (AD) and stroke. Gangliosides, a family of membrane lipids enriched in the central nervous system, may have a mechanistic role in mediating the brain's response to injury as their expression is altered in a number of disease and injury states. Matrix-Assisted Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (IMS) was used to study the expression of A-series ganglioside species GD1a, GM1, GM2, and GM3 to determine alteration of their expression profiles in the presence of beta-amyloid (Aβ) toxicity in addition to ischemic injury. To model a stroke, rats received a unilateral striatal injection of endothelin-1 (ET-1) (stroke alone group). To model Aβ toxicity, rats received intracerebralventricular (i.c.v.) injections of the toxic 25-35 fragment of the Aβ peptide (Aβ alone group). To model the combination of Aβ toxicity with stroke, rats received both the unilateral ET-1 injection and the bilateral icv injections of Aβ25-35 (combined Aβ/ET-1 group). By 3 d, a significant increase in the simple ganglioside species GM2 was observed in the ischemic brain region of rats who received a stroke (ET-1), with or without Aβ. By 21 d, GM2 levels only remained elevated in the combined Aβ/ET-1 group. GM3 levels however demonstrated a different pattern of expression. By 3 d GM3 was elevated in the ischemic brain region only in the combined Aβ/ET-1 group. By 21 d, GM3 was elevated in the ischemic brain region in both stroke alone and Aβ/ET-1 groups. Overall, results indicate that the accumulation of simple ganglioside species GM2 and GM3 may be indicative of a mechanism of interaction between AD and stroke.

  8. Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of Aβ Toxicity and Stroke

    PubMed Central

    Caughlin, Sarah; Hepburn, Jeffrey D.; Park, Dae Hee; Jurcic, Kristina; Yeung, Ken K.-C.; Cechetto, David F.; Whitehead, Shawn N.

    2015-01-01

    The aging brain is often characterized by the presence of multiple comorbidities resulting in synergistic damaging effects in the brain as demonstrated through the interaction of Alzheimer’s disease (AD) and stroke. Gangliosides, a family of membrane lipids enriched in the central nervous system, may have a mechanistic role in mediating the brain’s response to injury as their expression is altered in a number of disease and injury states. Matrix-Assisted Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (IMS) was used to study the expression of A-series ganglioside species GD1a, GM1, GM2, and GM3 to determine alteration of their expression profiles in the presence of beta-amyloid (Aβ) toxicity in addition to ischemic injury. To model a stroke, rats received a unilateral striatal injection of endothelin-1 (ET-1) (stroke alone group). To model Aβ toxicity, rats received intracerebralventricular (icv) injections of the toxic 25-35 fragment of the Aβ peptide (Aβ alone group). To model the combination of Aβ toxicity with stroke, rats received both the unilateral ET-1 injection and the bilateral icv injections of Aβ₂₅₋₃₅ (combined Aβ/ET-1 group). By 3 d, a significant increase in the simple ganglioside species GM2 was observed in the ischemic brain region of rats who received a stroke (ET-1), with or without Aβ. By 21 d, GM2 levels only remained elevated in the combined Aβ/ET-1 group. GM3 levels however demonstrated a different pattern of expression. By 3 d GM3 was elevated in the ischemic brain region only in the combined Aβ/ET-1 group. By 21 d, GM3 was elevated in the ischemic brain region in both stroke alone and Aβ/ET-1 groups. Overall, results indicate that the accumulation of simple ganglioside species GM2 and GM3 may be indicative of a mechanism of interaction between AD and stroke. PMID:26086081

  9. Prognostic Role of 14F7 Mab Immunoreactivity against N-Glycolyl GM3 Ganglioside in Colon Cancer.

    PubMed

    Lahera, Tania; Calvo, Adanays; Torres, Griselda; Rengifo, Charles E; Quintero, Santiago; Arango, María Del Carmen; Danta, Debora; Vázquez, José M; Escobar, Xiomara; Carr, Adriana

    2014-01-01

    Purpose. To assess the prognostic role of 14F7 Mab immunoreactivity, against N-Glycolyl GM3 ganglioside, in patients with colon cancer (CC) and to evaluate the relationship between its expression and clinicopathological features. Methods. Paraffin-embedded specimens were retrospectively collected from 50 patients with CC operated between 2004 and 2008. 14F7 Mab staining was determined by immunohistochemistry technique and its relation with survival and clinicopathologic features was evaluated. Results. The reactivity of 14F7 Mab was detected in all cases. Most cases had high level of immunostaining (70%) that showed statistical correlation with TNM stage (P = 0.025). In univariate survival analysis, level of 14F7 Mab immunoreactivity (P = 0.0078), TNM Stage (P = 0.0007) and lymphovascular invasion (0.027) were significant prognostic factors for overall survival. Among these variables, level of 14F7 Mab immunoreactivity (HR = 0.268; 95% CI  0.078-0.920; P = 0.036) and TNM stage (HR = 0.249; 95% CI 0.066-0.932; P = 0.039) were independent prognostic factors on multivariate analysis. Conclusions. This study is the first approach on the prognostic significance of 14F7 Mab immunoreactivity in patients with colon adenocarcinoma and this assessment might be used in the prognostic estimate of CC, although further studies will be required to validate these findings.

  10. Ganglioside GM3 content in skeletal muscles is increased in type 2 but decreased in type 1 diabetes rat models: Implications of glycosphingolipid metabolism in pathophysiology of diabetes.

    PubMed

    Bozic, Josko; Markotic, Anita; Cikes-Culic, Vedrana; Novak, Anela; Borovac, Josip A; Vucemilovic, Hrvoje; Trgo, Gorana; Ticinovic Kurir, Tina

    2017-05-22

    Ganglioside GM3 is found in the plasma membrane, where its accumulation attenuates insulin receptor signaling. Considering the role of skeletal muscles in insulin-stimulated glucose uptake, the aim of the present study was to determine the expression of GM3 and its precursors in skeletal muscles of rat models of type 1 and type 2 diabetes mellitus (T1DM and T2DM, respectively). Diabetes was induced in male Sprague-Dawley rats by streptozotocin injection (55 mg/kg, i.p., for T1DM induction; 35 mg/kg, i.p., for T2DM induction), followed by feeding of rats with either a normal pellet diet (T1DM) or a high-fat diet (T2DM). Rats were killed 2 weeks after diabetes induction and samples of skeletal muscle were collected. Frozen quadriceps muscle sections were stained with a primary antibody against GM3 (Neu5Ac) and visualized using a secondary antibody coupled with Texas Red. The muscle content of ganglioside GM3 and its precursors was analyzed by high-performance thin-layer chromatography (HPTLC) followed by GM3 immunostaining. Muscle GM3 content was significantly higher in T2DM compared with control rats (P < 0.001). Furthermore, levels of the GM3 precursors ceramide, glucosylceramide, and lactosylceramide were significantly higher in T2DM compared with control rats (P < 0.05), whereas ceramide content was significantly lower in T1DM rats (P < 0.05). The intensity of the GM3 band on HPTLC was significantly higher in T2DM rats (P < 0.001) and significantly lower in T1DM rats (P < 0.05) compared with control. The expression patterns of GM3 ganglioside and its precursors in diabetic rats suggest that the role of glycosphingolipid metabolism may differ between T2DM and T1DM. © 2017 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  11. Tissue Reactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Tumors of Neuroectodermal, Mesodermal, and Epithelial Origin

    PubMed Central

    Blanco, Rancés; Quintana, Yisel; Blanco, Damián; Cedeño, Mercedes; Rengifo, Charles E.; Frómeta, Milagros; Ríos, Martha; Rengifo, Enrique; Carr, Adriana

    2013-01-01

    The expression of N-glycolylneuraminic acid forming the structure of gangliosides and/or other glycoconjugates (Hanganutziu-Deicher antigen) in human has been considered as a tumor-associated antigen. Specifically, some reports of 14F7 Mab (a highly specific Mab raised against N-glycolyl GM3 ganglioside) reactivity in human tumors have been recently published. Nevertheless, tumors of epithelial origin have been mostly evaluated. The goal of the present paper was to evaluate the immunohistochemical recognition of 14F7 Mab in different human tumors of neuroectodermal, mesodermal, and epithelial origins using an immunoperoxidase staining method. Samples of fetal, normal, and reactive astrocytosis of the brain were also included in the study. In general, nontumoral tissues, as well as, low-grade brain tumors showed no or a limited immunoreaction with 14F7 Mab. Nevertheless, high-grade astrocytomas (III-IV) and neuroblastomas, as well as, sarcomas and thyroid carcinomas were mostly reactive with 14F7. No reaction was evidenced in medulloblastomas and ependymoblastomas. Our data suggest that the expression of N-glycolyl GM3 ganglioside could be related to the aggressive behavior of malignant cells, without depending on the tumor origin. Our data could also support the possible use of N-glycolyl GM3 as a target for both active and passive immunotherapies of malignancies expressing this molecule. PMID:26317019

  12. Tissue Reactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Tumors of Neuroectodermal, Mesodermal, and Epithelial Origin.

    PubMed

    Blanco, Rancés; Quintana, Yisel; Blanco, Damián; Cedeño, Mercedes; Rengifo, Charles E; Frómeta, Milagros; Ríos, Martha; Rengifo, Enrique; Carr, Adriana

    2013-01-01

    The expression of N-glycolylneuraminic acid forming the structure of gangliosides and/or other glycoconjugates (Hanganutziu-Deicher antigen) in human has been considered as a tumor-associated antigen. Specifically, some reports of 14F7 Mab (a highly specific Mab raised against N-glycolyl GM3 ganglioside) reactivity in human tumors have been recently published. Nevertheless, tumors of epithelial origin have been mostly evaluated. The goal of the present paper was to evaluate the immunohistochemical recognition of 14F7 Mab in different human tumors of neuroectodermal, mesodermal, and epithelial origins using an immunoperoxidase staining method. Samples of fetal, normal, and reactive astrocytosis of the brain were also included in the study. In general, nontumoral tissues, as well as, low-grade brain tumors showed no or a limited immunoreaction with 14F7 Mab. Nevertheless, high-grade astrocytomas (III-IV) and neuroblastomas, as well as, sarcomas and thyroid carcinomas were mostly reactive with 14F7. No reaction was evidenced in medulloblastomas and ependymoblastomas. Our data suggest that the expression of N-glycolyl GM3 ganglioside could be related to the aggressive behavior of malignant cells, without depending on the tumor origin. Our data could also support the possible use of N-glycolyl GM3 as a target for both active and passive immunotherapies of malignancies expressing this molecule.

  13. Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after Pandemrix vaccination against 2009 pandemic H1N1 type influenza virus.

    PubMed

    Saariaho, Anna-Helena; Vuorela, Arja; Freitag, Tobias L; Pizza, Fabio; Plazzi, Giuseppe; Partinen, Markku; Vaarala, Outi; Meri, Seppo

    2015-09-01

    Following the mass vaccinations against pandemic influenza A/H1N1 virus in 2009, a sudden increase in juvenile onset narcolepsy with cataplexy (NC) was detected in several European countries where AS03-adjuvanted Pandemrix vaccine had been used. NC is a chronic neurological disorder characterized by excessive daytime sleepiness and cataplexy. In human NC, the hypocretin-producing neurons in the hypothalamus or the hypocretin signaling pathway are destroyed by an autoimmune reaction. Both genetic (e.g. HLA-DQB1*0602) and environmental risk factors (e.g. Pandemrix) contribute to the disease development, but the underlying and the mediating immunological mechanisms are largely unknown. Influenza virus hemagglutinin is known to bind gangliosides, which serve as host cell virus receptors. Anti-ganglioside antibodies have previously been linked to various neurological disorders, like the Guillain-Barré syndrome which may develop after infection or vaccination. Because of these links we screened sera of NC patients and controls for IgG anti-ganglioside antibodies against 11 human brain gangliosides (GM1, GM2, GM3, GM4, GD1a, GD1b, GD2, GD3, GT1a, GT1b, GQ1b) and a sulfatide by using a line blot assay. Samples from 173 children and adolescents were analyzed: 48 with Pandemrix-associated NC, 20 with NC without Pandemrix association, 57 Pandemrix-vaccinated and 48 unvaccinated healthy children. We found that patients with Pandemrix-associated NC had more frequently (14.6%) anti-GM3 antibodies than vaccinated healthy controls (3.5%) (P = 0.047). Anti-GM3 antibodies were significantly associated with HLA-DQB1*0602 (P = 0.016) both in vaccinated NC patients and controls. In general, anti-ganglioside antibodies were more frequent in vaccinated (18.1%) than in unvaccinated (7.3%) individuals (P = 0.035). Our data suggest that autoimmunity against GM3 is a feature of Pandemrix-associated NC and that autoantibodies against gangliosides were induced by Pandemrix vaccination

  14. Immunoreactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Primary Lymphoid Tumors and Lymph Node Metastasis.

    PubMed

    Blanco, Rancés; Blanco, Damián; Quintana, Yisel; Escobar, Xiomara; Rengifo, Charles E; Osorio, Marta; Gutiérrez, Zailí; Lamadrid, Janet; Cedeño, Mercedes; Frómeta, Milagros; Carr, Adriana; Rengifo, Enrique

    2013-01-01

    The reactivity of the 14F7 Mab, a highly specific IgG1 against N-glycolyl GM3 ganglioside (NeuGcGM3) in normal tissues, lymphomas, lymph node metastasis, and other metastatic sites was assessed by immunohistochemistry. In addition, the effect of chemical fixation on the 14F7 Mab staining using monolayers of P3X63Ag.653 cells was also evaluated. Moreover, the ability of 14F7 to bind NeuGcGM3 ganglioside inducing complement-independent cytotoxicity by a flow cytometry-based assay was measured. The 14F7 Mab was reactive in unfixed, 4% paraformaldehyde, 4% formaldehyde, and acetone fixed cells. Postfixation with acetone did not alter the localization of NeuGcGM3, while the staining with 14F7 Mab was significantly eliminated in both cells fixed and postfixed with methanol but only partially reduced with ethanol. The staining with 14F7 Mab was evidenced in the 89.2%, 89.4%, and 88.9% of lymphomas, lymph node metastasis, and other metastatic sites, respectively, but not in normal tissues. The treatment with 14F7 Mab affected both morphology and membrane integrity of P3X63Ag.653 cells. This cytotoxic activity was dose-dependent and ranged from 24.0 to 84.7% (10-1000  μ g/mL) as compared to the negative control. Our data could support the possible use of NeuGcGM3 as target for both active and passive immunotherapy against malignancies expressing this molecule.

  15. Immunoreactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Primary Lymphoid Tumors and Lymph Node Metastasis

    PubMed Central

    Blanco, Rancés; Blanco, Damián; Quintana, Yisel; Escobar, Xiomara; Rengifo, Charles E.; Osorio, Marta; Gutiérrez, Zailí; Lamadrid, Janet; Cedeño, Mercedes; Frómeta, Milagros; Carr, Adriana; Rengifo, Enrique

    2013-01-01

    The reactivity of the 14F7 Mab, a highly specific IgG1 against N-glycolyl GM3 ganglioside (NeuGcGM3) in normal tissues, lymphomas, lymph node metastasis, and other metastatic sites was assessed by immunohistochemistry. In addition, the effect of chemical fixation on the 14F7 Mab staining using monolayers of P3X63Ag.653 cells was also evaluated. Moreover, the ability of 14F7 to bind NeuGcGM3 ganglioside inducing complement-independent cytotoxicity by a flow cytometry-based assay was measured. The 14F7 Mab was reactive in unfixed, 4% paraformaldehyde, 4% formaldehyde, and acetone fixed cells. Postfixation with acetone did not alter the localization of NeuGcGM3, while the staining with 14F7 Mab was significantly eliminated in both cells fixed and postfixed with methanol but only partially reduced with ethanol. The staining with 14F7 Mab was evidenced in the 89.2%, 89.4%, and 88.9% of lymphomas, lymph node metastasis, and other metastatic sites, respectively, but not in normal tissues. The treatment with 14F7 Mab affected both morphology and membrane integrity of P3X63Ag.653 cells. This cytotoxic activity was dose-dependent and ranged from 24.0 to 84.7% (10–1000 μg/mL) as compared to the negative control. Our data could support the possible use of NeuGcGM3 as target for both active and passive immunotherapy against malignancies expressing this molecule. PMID:24381785

  16. A shift from N-glycolyl- to N-acetyl-sialic acid in the GM3 ganglioside impairs tumor development in mouse lymphocytic leukemia cells.

    PubMed

    Casadesús, Ana Victoria; Fernández-Marrero, Yuniel; Clavell, Marilyn; Gómez, José Alberto; Hernández, Tays; Moreno, Ernesto; López-Requena, Alejandro

    2013-10-01

    Humans, in contrast to other mammals, do not synthesize N-glycolyl-neuraminic acid (Neu5Gc) due to a deletion in the gene (cmah) encoding the enzyme responsible for this conversion, the cytidine monophospho-N-acetyl-neuraminic acid hydroxylase (CMP-Neu5Ac hydroxylase). The detection of considerable amounts of Neu5Gc-sialoconjugates, in particular gangliosides, in human malignancies makes these antigens attractive targets for immunotherapy, in particular with monoclonal antibodies (mAbs). We have previously described a GM3(Neu5Gc) ganglioside-specific mAb, named 14F7, with the ability to kill tumor cells in a complement-independent manner. Silencing the cmah gene in GM3(Neu5Gc)-expressing L1210 mouse lymphocytic leukemia B cells caused the abrogation of this cytotoxic effect. We now show that cmah-silenced L1210 cells (cmah-kd) express a high level of GM3(Neu5Ac) and have an impaired ability for anchorage-independent cell growth and tumor development in vivo. No evidences of increased immunogenicity of the cmah-kd cell line were found. These results provide new evidences on the role of GM3(Neu5Gc), or Neu5Gc-sialoconjugates in general, in tumor biology. As an important tool in this study, we used the humanized version (here referred to as 7C1 mAb) of a recently described, rationally-designed mutant of 14F7 mAb that is able to bind to both GM3(Neu5Gc) and GM3(Neu5Ac). In contrast to its parental antibody, the humanized 14F7 (14F7hT) mAb, 7C1 mAb was able to kill not only GM3(Neu5Gc)-expressing L1210 wild type cells, but also GM3(Neu5Ac)-expressing cmah-kd cells, which endorses this antibody as a potential agent for cancer immunotherapy.

  17. Ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling.

    PubMed

    Li, Ying; Huang, Xiaohua; Zhong, Weiliang; Zhang, Jianing; Ma, Keli

    2013-10-01

    Ganglioside GM3 plays a well-documented and important role in the regulation of tumor cell proliferation, invasion, and metastasis by modulating tyrosine kinase growth factor receptors. However, the effect of GM3 on the hepatocyte growth factor receptor (HGFR, cMet) has not been fully delineated. In the current study, we investigated how GM3 affects cMet signaling and HGF-stimulated cell motility and migration using three hepatic cancer cell lines of mouse (Hca/A2, Hca/16A3, and Hepa1-6). Decreasing GM3 expression with the use of P4, a specific inhibitor for ganglioside synthesis inhibited the HGF-stimulated phosphorylation of cMet and activity of PI3K/Akt signaling pathway. In contrast, the increased expression of GM3 as a result of adding exogenous GM3 enhanced the HGF-stimulated phosphorylation of cMet and activity of PI3K/Akt signaling pathway. Furthermore, HGF-stimulated cell motility and migration in vitro were inhibited by reduced expression of GM3 and enhanced by increased expression of GM3. All the observations indicate that ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling.

  18. Anti-ganglioside antibodies induced in chickens by an alum-adsorbed anti-idiotype antibody targeting NeuGcGM3

    PubMed Central

    Guthmann, Marcelo D.; Venier, Cecilia; Toledo, Darien; Segatori, Valeria I.; Alonso, Daniel F.; Fainboim, Leonardo; Vázquez, Ana M.; Ostrowski, Hector

    2013-01-01

    Racotumomab is a murine anti-idiotype cancer vaccine targeting NeuGcGM3 on melanoma, breast, and lung cancer. In order to characterize the immunogenicity of alum-adsorbed racotumomab in a non-clinical setting, Leghorn chickens were immunized in dose levels ranging from 25 μg to 1600 μg. Racotumomab was administered subcutaneously in the birds' neck with three identical boosters and serum samples were collected before, during and after the immunization schedule. A strong antibody response was obtained across the evaluated dose range, confirming the immunogenicity of racotumomab even at dose levels as low as 25 μg. As previously observed when using Freund's adjuvant, alum-adsorbed racotumomab induced an idiotype-specific response in all the immunized birds and ganglioside-specific antibodies in 60–100% of the animals. In contrast to the rapid induction anti-idiotype response, detection of ganglioside-specific antibodies in responsive animals may require repeated boosting. Kinetics of anti-NeuGcGM3 antibody titers showed a slight decline 2 weeks after each booster, arguing in favor of repeated immunizations in order to maintain antibody titer. Interestingly, the intensity of the anti-NeuGcGM3 response paralleled that of anti-mucin antibodies and anti-tumor antibodies, suggesting that the in vitro detection of anti-ganglioside antibodies might be a surrogate for an in vivo activity of racotumomab. Taken together, these results suggest that Leghorn chicken immunization might become the means to test the biological activity of racotumomab intended for clinical use. PMID:23335925

  19. Fine specificity of natural killer T cells against GD3 ganglioside and identification of GM3 as an inhibitory natural killer T-cell ligand.

    PubMed

    Park, Jun-Eui; Wu, Dianna Y; Prendes, Maria; Lu, Sharon X; Ragupathi, Govind; Schrantz, Nicolas; Chapman, Paul B

    2008-01-01

    GD3, a ganglioside expressed on melanoma, is the only tumour-associated glycolipid described to date that can induce a CD1d-restricted natural killer T (NKT)-cell response. We analysed the fine specificity of GD3-reactive NKT cells and discovered that immunization with GD3 induced two populations of GD3-reactive NKT cells. One population was CD4+ CD8- and was specific for GD3; the other population was CD4- CD8- and cross-reacted with GM3 in a CD1d-restricted manner, but did not cross-react with GM2, GD2, or lactosylceramide. This indicated that the T-cell receptors reacting with GD3 recognize glucose-galactose linked to at least one N-acetyl-neuraminic acid but will not accommodate a terminal N-acetylgalactosamine. Immunization with GM2, GM3, GD2, or lactosylceramide did not induce an NKT-cell response. Coimmunization of GM3-loaded antigen-presenting cells (APCs) with GD3-loaded APCs suppressed the NKT-cell response to GD3 in a CD1d-restricted manner. This suppressive effect was specific for GM3 and was a local effect lasting 2-4 days. In vitro, GM3-loaded APCs also suppressed the interleukin-4 response, but not the interferon-gamma response, of NKT cells to alpha-galactosylceramide. However, there was no effect on the T helper type 2 responses of conventional T cells. We found that this suppression was not mediated by soluble factors. We hypothesize that GM3 induces changes to the APC that lead to suppression of T helper type 2-like NKT-cell responses.

  20. Altered ion channel formation by the Parkinson's-disease-linked E46K mutant of alpha-synuclein is corrected by GM3 but not by GM1 gangliosides.

    PubMed

    Di Pasquale, Eric; Fantini, Jacques; Chahinian, Henri; Maresca, Marc; Taïeb, Nadira; Yahi, Nouara

    2010-03-19

    Alpha-synuclein (alpha-syn) is an amyloidogenic protein that plays a key role in the pathogenesis of Parkinson's disease (PD). The ability of alpha-syn oligomers to form ionic channels is postulated as a channelopathy mechanism in human brain. Here we identified a ganglioside-binding domain in alpha-syn (fragment 34-50), which includes the mutation site 46 linked to a familial form of PD (E46K). We show that this fragment is structurally related to the common glycosphingolipid-binding domain (GBD) shared by various microbial and amyloid proteins, including Alzheimer's beta-amyloid peptide. alpha-Syn GBD interacts with several glycosphingolipids but has a marked preference for GM3, a minor brain ganglioside whose expression increases with aging. The alpha-syn mutant E46K has a stronger affinity for GM3 than the wild-type protein, and the interaction is inhibited by 3'-sialyllactose (the glycone part of GM3). Alanine substitutions of Lys34 and Tyr39 in synthetic GBD peptides resulted in limited interaction with GM3, demonstrating the critical role of these residues in GM3 recognition. When incubated with reconstituted phosphatidylcholine bilayers, the E46K protein formed channels that are five times less conductive than those formed by wild-type alpha-syn, exhibit a higher selectivity for cations, and present an asymmetrical response to voltage and nonstop single-channel activity. This E46K-associated channelopathy was no longer observed when GM3 was present in phosphatidylcholine bilayers. This corrective effect was highly specific for GM3, since it was not obtained with the major brain ganglioside GM1 but was still detected in bilayer membranes containing both GM3 and GM1. Moreover, synthetic GBD peptides prevented the interaction of alpha-syn proteins with GM3, thus abolishing the regulatory effects of GM3 on alpha-syn-mediated channel formation. Overall, these data show that GM3 can specifically regulate alpha-syn-induced channel formation and raise the

  1. Structural characterization of gangliosides isolated from mullet milt using electrospray ionization-tandem mass spectrometry.

    PubMed

    Zhu, J; Li, Y T; Li, S C; Cole, R B

    1999-10-01

    Electrospray ionization (ESI) coupled with tandem mass spectrometry has been used in conjunction with microwave-mediated saponification, periodate oxidation, and clostridial sialidase hydrolysis to enable detailed structural characterization of gangliosides and their derivatives present in mullet milt. The gangliosides extracted from mullet milt were determined to be GM3, GM3 lactone, GM3 methyl ester, and 9-O-acetyl GM3. For the major ganglioside GM3 and all GM3 derivatives, the ceramide composition was revealed to be C18:1/C16:0. GM3 with a C18:0/C16:0 ceramide was also found as a minor ganglioside. Both the ganglioside intramolecular ester and the ganglioside methyl ester (lacking carboxylic acid groups) showed dominant chloride attachment peaks (M + Cl)- in negative ion ESI-MS in addition to low intensity peaks corresponding to (M-H)-. GM3 and O-acetyl GM3 bearing carboxylic acid functions showed only (M-H)-. In positive ion ESI, GM3 and O-acetyl GM3 revealed (M + 2Na-H)+ peaks in addition to (M + Na)+, indicating free exchange of the carboxylic acid proton with a sodium cation, while the ganglioside intramolecular ester and ganglioside methyl ester with no acidic protons yielded only (M + Na)+. The strategy of employing ESI-MS to detect products of established wet chemical reactions represents a general approach for elucidation of ganglioside structural details.

  2. Growth inhibition of human lung adenocarcinoma cells by antibodies against epidermal growth factor receptor and by ganglioside GM3: involvement of receptor-directed protein tyrosine phosphatase(s).

    PubMed

    Suarez Pestana, E; Greiser, U; Sánchez, B; Fernández, L E; Lage, A; Perez, R; Böhmer, F D

    1997-01-01

    Growth of the EGF receptor-expressing non-small-cell lung carcinoma cell line H125 seems to be at least partially driven by autocrine activation of the resident EGF receptors. Thus, the possibility of an EGF receptor-directed antiproliferative treatment was investigated in vitro using a monoclonal antibody (alpha EGFR ior egf/r3) against the human EGF receptor and gangliosides which are known to possess antiproliferative and anti-tyrosine kinase activity. The moderate growth-inhibitory effect of alpha EGFR ior egf/r3 was strongly potentiated by the addition of monosialoganglioside GM3. Likewise, the combination of alpha EGFR ior egf/r3 and GM3 inhibited EGF receptor autophosphorylation activity in H125 cells more strongly than either agent alone. A synergistic inhibition of EGF receptor autophosphorylation by alpha EGFR ior egf/r3 and GM3 was also observed in the human epidermoid carcinoma cell line A431. In both cell lines, the inhibition of EGF receptor autophosphorylation by GM3 was prevented by pretreatment of the cells with pervanadate, a potent inhibitor of protein tyrosine phosphatases (PTPases). Also, GM3 accelerated EGF receptor dephosphorylation in isolated A431 cell membranes. These findings indicate that GM3 has the capacity to activate EGF receptor-directed PTPase activity and suggest a novel possible mechanism for the regulation of cellular PTPases.

  3. Growth inhibition of human lung adenocarcinoma cells by antibodies against epidermal growth factor receptor and by ganglioside GM3: involvement of receptor-directed protein tyrosine phosphatase(s).

    PubMed Central

    Suarez Pestana, E.; Greiser, U.; Sánchez, B.; Fernández, L. E.; Lage, A.; Perez, R.; Böhmer, F. D.

    1997-01-01

    Growth of the EGF receptor-expressing non-small-cell lung carcinoma cell line H125 seems to be at least partially driven by autocrine activation of the resident EGF receptors. Thus, the possibility of an EGF receptor-directed antiproliferative treatment was investigated in vitro using a monoclonal antibody (alpha EGFR ior egf/r3) against the human EGF receptor and gangliosides which are known to possess antiproliferative and anti-tyrosine kinase activity. The moderate growth-inhibitory effect of alpha EGFR ior egf/r3 was strongly potentiated by the addition of monosialoganglioside GM3. Likewise, the combination of alpha EGFR ior egf/r3 and GM3 inhibited EGF receptor autophosphorylation activity in H125 cells more strongly than either agent alone. A synergistic inhibition of EGF receptor autophosphorylation by alpha EGFR ior egf/r3 and GM3 was also observed in the human epidermoid carcinoma cell line A431. In both cell lines, the inhibition of EGF receptor autophosphorylation by GM3 was prevented by pretreatment of the cells with pervanadate, a potent inhibitor of protein tyrosine phosphatases (PTPases). Also, GM3 accelerated EGF receptor dephosphorylation in isolated A431 cell membranes. These findings indicate that GM3 has the capacity to activate EGF receptor-directed PTPase activity and suggest a novel possible mechanism for the regulation of cellular PTPases. Images Figure 5 Figure 6 PMID:9010029

  4. Study on systematizing the synthesis of the a-series ganglioside glycans GT1a, GD1a, and GM1 using the newly developed N-Troc-protected GM3 and GalN intermediates.

    PubMed

    Komori, Tatsuya; Imamura, Akihiro; Ando, Hiromune; Ishida, Hideharu; Kiso, Makoto

    2009-08-17

    A first systematic synthesis of the glycan parts of the a-series gangliosides (GT1a, GD1a, and GM1) utilizing the newly developed N-Troc-protected GM3 and galactosaminyl building blocks is described. The key processes, including the assembly of the GM2 sequence and its conversion into the 3-hydroxy acceptor, were facilitated mainly by the high degree of participation and chemoselective cleavability of the Troc group in the galactosaminyl unit. Furthermore, the novel GM2 acceptor served as a good coupling partner during glycosylation with galactosyl, sialyl galactosyl, and disialyl galactosyl donors, successfully producing the GM1, GD1a, and GT1a glycans.

  5. Involvement of Ganglioside GM3 in G2/M Cell Cycle Arrest of Human Monocytic Cells Induced by Actinobacillus actinomycetemcomitans Cytolethal Distending Toxin

    PubMed Central

    Mise, Koji; Akifusa, Sumio; Watarai, Shinobu; Ansai, Toshihiro; Nishihara, Tatsuji; Takehara, Tadamichi

    2005-01-01

    Actinobacillus actinomycetemcomitans produces a toxin called cytolethal distending toxin (CDT), which causes host cell DNA damage leading to the induction of DNA damage checkpoint pathways. CDT consists of three subunits, CdtA, CdtB, and CdtC. CdtB is the active subunit of CDT and exerts its effect as a nuclease that damages nuclear DNA, triggering cell cycle arrest. In the present study, we confirmed that the only combination of toxin proteins causing cell cycle arrest was that of all three recombinant CDT (rCDT) protein subunits. Furthermore, in order for rCDT to demonstrate toxicity, it was necessary for CdtA and CdtC to access the cell before CdtB. The coexistence of CdtA and CdtC was necessary for these subunits to bind to the cell. Cells treated with the glucosylceramide synthesis inhibitor 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol showed resistance to the cytotoxicity induced by rCDT. Furthermore, LY-B cells, which are deficient in the biosynthesis of sphingolipid, also showed resistance to the cytotoxicity induced by rCDT. To evaluate the binding of each subunit for glucosylceramides, we performed thin-layer chromatography immunostaining. The results indicated that each subunit reacted with the glycosphingolipids GM1, GM2, GM3, Gb3, and Gb4. The rCDT mixture incubated with liposomes containing GM3 displayed partially reduced toxicity. These results indicate that GM3 can act as a CDT receptor. PMID:16040998

  6. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations

    PubMed Central

    2016-01-01

    Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Because the detailed behavior of gangliosides and protein-ganglioside interactions are poorly known, we investigated the interactions between the gangliosides GM1 and GM3 and the proteins aquaporin (AQP1) and WALP23 using equilibrium molecular dynamics simulations and potential of mean force calculations at both coarse-grained (CG) and atomistic levels. In atomistic simulations, on the basis of the GROMOS force field, ganglioside aggregation appears to be a result of the balance between hydrogen bond interactions and steric hindrance of the headgroups. GM3 clusters are slightly larger and more ordered than GM1 clusters due to the smaller headgroup of GM3. The different structures of GM1 and GM3 clusters from atomistic simulations are not observed at the CG level based on the Martini model, implying a difference in driving forces for ganglioside interactions in atomistic and CG simulations. For protein-ganglioside interactions, in the atomistic simulations, GM1 lipids bind to specific sites on the AQP1 surface, whereas they are depleted from WALP23. In the CG simulations, the ganglioside binding sites on the AQP1 surface are similar, but ganglioside aggregation and protein-ganglioside interactions are more prevalent than in the atomistic simulations. Using the polarizable Martini water model, results were closer to the atomistic simulations. Although experimental data for validation is lacking, we proposed modified Martini parameters for gangliosides to more closely mimic the sizes and structures of ganglioside clusters observed at the atomistic level. PMID:27610460

  7. Heterogeneity of gangliosides among T cell subsets.

    PubMed

    Inokuchi, Jin-ichi; Nagafuku, Masakazu; Ohno, Isao; Suzuki, Akemi

    2013-09-01

    Gangliosides are major components of highly organized membrane microdomains or rafts, yet little is known about the role of gangliosides in raft organization. This is also the case of gangliosides in TCR-mediated activation. Comprehensive structural analysis of gangliosides in the primary thymocytes and CD4(+) T and CD8(+) T cells was not achieved due to technical difficulties. We have found that CD8(+) T cells express very high levels of o-series gangliosides, but on the other hand, CD4(+) T cells preferably express a-series gangliosides. In the TCR-dependent activation, CD4(+) T cells selectively require a-series gangliosides, but CD8(+) T cells do require only o-series gangliosides but not a-series gangliosides. Ganglioside GM3 synthase-deficient mice lacking a-series gangliosides neither exhibited the TCR-dependent activation of CD4(+) T nor developed ovalbumin-induced allergic airway inflammation. These findings imply that the distinct expression pattern of ganglioside species in CD4(+) and CD8(+) T cells define the immune function of each T cell subset.

  8. Variants of BALB/c 3T3 cells lacking complex gangliosides retain a fibronectin matrix and spread normally on fibronectin-coated substrates

    PubMed Central

    1986-01-01

    Evidence has accumulated that di- and trisialogangliosides are involved in the interaction of cells with fibronectin. We have therefore tested the ability of variants of BALB/c 3T3 deficient in such gangliosides to organize a fibronectin matrix and to spread on fibronectin-coated substrates. Whereas BALB/c 3T3 cells contained gangliosides GM3, GM1, and GD1a, direct chemical analysis showed that five out of six variants isolated contained no detectable GD1a. By the overlaying of thin layer chromatograms of cellular gangliosides with 125I-cholera toxin, these variants were also found to lack ganglioside GM1. In contrast, the sialogalactoprotein profile of these cells, analyzed using an 125I- ricin/SDS polyacrylamide gel overlay technique, was similar to that of the parent cell line. All variants organized an extensive fibronectin matrix comparable to that of BALB/c 3T3, as shown using either immunofluorescence or lactoperoxidase-catalyzed iodination. The variants could also spread on fibronectin-coated substrates and adopt a morphology similar to that of BALB/c 3T3 cells, with little or no difference in the concentration of fibronectin required for 50% cell spreading. Cell spreading of the variants was accompanied by the formation of focal contacts and microfilament bundles, in a manner closely resembling that seen with BALB/c 3T3 cells. Treatment of BALB/c 3T3 cells with neuraminidase, which converts much of the cellular GD1a to GM1, did not affect cell spreading on fibronectin. The results clearly demonstrate that complex gangliosides are not essential for retention of a fibronectin matrix or for spreading on fibronectin- coated substrates. PMID:2935542

  9. Ganglioside synthase knockout in oncogene-transformed fibroblasts depletes gangliosides and impairs tumor growth.

    PubMed

    Liu, Y; Yan, S; Wondimu, A; Bob, D; Weiss, M; Sliwinski, K; Villar, J; Notario, V; Sutherland, M; Colberg-Poley, A M; Ladisch, S

    2010-06-03

    Biologically active membrane gangliosides, expressed and released by many human tumors, are hypothesized to significantly impact tumor progression. Lack of a model of complete and specific tumor ganglioside depletion in vivo, however, has hampered elucidation of their role. Here, we report the creation of a novel, stable, genetically induced tumor cell system resulting in specific and complete blockade of ganglioside synthesis. Wild-type (WT) and GM3 synthase/GM2 synthase double knockout (DKO) murine embryonic fibroblasts were transformed using amphotropic retrovirus-transduced oncogenes (pBABE-c-Myc(T58A)+H-RasG12V). The transformed cells, WT(t) and DKO(t) respectively, evidenced comparable integrated copy numbers and oncogene expression. Ganglioside synthesis was completely blocked in the DKO(t) cells, importantly without triggering an alternate pathway of ganglioside synthesis. Ganglioside depletion (to <0.5 nmol/10(7) cells from 9 to 11 nmol/10(7) WT(t) or untransfected normal fibroblasts) did not adversely affect cell proliferation kinetics but did reduce cell migration on fibronectin-coated wells, consistent with our previous observations in ganglioside-depleted normal human fibroblasts. Strikingly, despite similar oncogene expression and growth kinetics, DKO(t) cells evidenced significantly impaired tumor growth in syngeneic immunocompetent mice, underscoring the pivotal role of tumor cell gangliosides and providing an ideal system for probing their mechanisms of action in vivo.

  10. Ganglioside synthase knockout in oncogene-transformed fibroblasts depletes gangliosides and impairs tumor growth

    PubMed Central

    Liu, Yihui; Yan, Su; Wondimu, Assefa; Bob, Daniel; Weiss, Michael; Sliwinski, Konrad; Villar, Joaquín; Notario, Vicente; Sutherland, Margaret; Colberg-Poley, Anamaris M.; Ladisch, Stephan

    2010-01-01

    Biologically active membrane gangliosides, expressed and released by many human tumors, are hypothesized to significantly impact tumor progression. Lack of a model of complete and specific tumor ganglioside depletion in vivo, however, has hampered elucidation of their role. Here we report the creation of a novel, stable, genetically induced tumor cell system resulting in specific and complete blockade of ganglioside synthesis. Wild type (WT) and GM3 synthase/GM2 synthase double knockout (DKO) murine embryonic fibroblasts were transformed using amphotropic retrovirus-transduced oncogenes (pBABE-c-MycT58A+H-RasG12V). The transformed cells, WTt and DKOt respectively, evidenced comparable integrated copy numbers and oncogene expression. Ganglioside synthesis was completely blocked in the DKOt cells, importantly without triggering an alternate pathway of ganglioside synthesis. Ganglioside depletion (to <0.5 nmol/107 cells from 9-11 nmol/107 WTt or untransfected normal fibroblasts) did not adversely affect cell proliferation kinetics but did reduce cell migration on fibronectin-coated wells, consistent with our previous observations in ganglioside-depleted normal human fibroblasts. Strikingly, despite similar oncogene expression and growth kinetics, DKOt cells evidenced significantly impaired tumor growth in syngeneic immunocompetent mice, underscoring the pivotal role of tumor cell gangliosides and providing an ideal system for probing their mechanisms of action in vivo. PMID:20305696

  11. Expression machinery of GM4: the excess amounts of GM3/GM4S synthase (ST3GAL5) are necessary for GM4 synthesis in mammalian cells.

    PubMed

    Uemura, Satoshi; Go, Shinji; Shishido, Fumi; Inokuchi, Jin-ichi

    2014-02-01

    The ganglioside GM4 is a sialic acid-containing glycosphingolipid mainly expressed in mammalian brain and erythrocytes. GM4 is synthesized by the sialylation of galactosylceramide (GalCer), while the ganglioside GM3 is synthesized by the sialylation of lactosylceramide (LacCer). Recently, the enzyme GM3 synthase was found to be responsible for the synthesis of GM4 in vitro and in vivo, yet the mechanism behind GM4 expression in cells remains unclear. In this study, we attempted to establish GM4-reconstituted cells to reveal the regulation of GM4 synthesis. Interestingly, GM4 was not detected in RPMI 1846 cells expressing LacCer, GalCer, and GM3. Similarly, GM4 was not detected in CHO-K1 cells, even when such cells expressing LacCer and GM3 were stably transfected with the GalCer synthase (GalCerS) gene. GM4 became detectable only when the GM3/GM4 synthase (GM3/GM4S, ST3GAL5) gene was overexpressed in either RPMI 1846 or CHO-K1/GalCerS cells. A mutant of the B16 melanoma cell line, GM-95, lacks GlcCer and LacCer, due to an absence of GlcCer synthase, but carries endogenous LacCer synthase and GM3/GM4S. GalCer became detectable after transfection of GalCerS into GM95 cells, but the GM95/GalCerS reconstituted cells did not express GM4, indicating that competition between the substrates LacCer and GalCer for GM3/GM4S does not cause the failure of GM4 synthesis. These results suggest that the expression machinery of GM4 under physiological conditions is independent from that of GM3.

  12. Glucosylceramide synthase inhibitors D-PDMP and D-EtDO-P4 decrease the GM3 ganglioside level, differ in their effects on insulin receptor autophosphorylation but increase Akt1 kinase phosphorylation in human hepatoma HepG2 cells.

    PubMed

    Fedoryszak-Kuśka, Natalia; Panasiewicz, Mirosława; Domek, Hanna; Pacuszka, Tadeusz

    2016-01-01

    Gangliosides function as modulators of several cell growth related receptors. It was shown for caveolin-rich adipocytes, that GM3 ganglioside binds to insulin receptor (IR), dissociates its complex with caveolin, and thus lowers IR autophosphorylation following insulin treatment. We extended those studies into human hepatocyte-derived HepG2 cells, characterized by a high level of IR but low of caveolin. To lower the glycosphingolipid content, estimated by GM3 concentration, two glucosylceramide synthase inhibitors d-threo-1-pheny-2-decanoylamino-3-morpholino-1-propanol (d-PDMP) and d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (d-EtDO-P4) were used. d-PDMP at 40 µM or d-EtDO-P4 at 1 µM concentrations in culture medium decreased the GM3 content to 22.3% (17.8-26.1%) and 18.1% (13.7-24.4%), respectively, of the control value. The reduction of GM3 obtained with d-PDMP was accompanied by a 185.1% (153.5-423.8%) significant increase in the level of IR autophosphorylation following cell stimulation with 100 nM insulin. The effect of d-EtDO-P4 on IR autophosphorylation was smaller amounting to an increase by 134.8% (111.3-167.8%) of the control level and statistically non-significant. The effects of d-PDMP and d-EtDO-P4 could also be detected at the level of Akt1 kinase. In cells grown in the presence of d-PDMP the level of phosphorylated Akt1 was 286.0% (151.4%-621.1%) of that in the control. In this case the effect of d-EtDO-P4 was similar: 223.0% (181.4-315.4%) significant increase in phosphorylated Akt1. We assume that glycosphingolipid depletion in HepG2 cells may affect not only IR autophosphorylation but also, independently, the phosphorylation of Akt1, by modifying the membrane microenvironment of this kinase.

  13. Immunoglobulin G-class mouse monoclonal antibodies to major brain gangliosides.

    PubMed

    Schnaar, Ronald L; Fromholt, Susan E; Gong, Yanping; Vyas, Alka A; Laroy, Wouter; Wayman, Dawn M; Heffer-Lauc, Marija; Ito, Hiromi; Ishida, Hideharu; Kiso, Makoto; Griffin, John W; Shiekh, Kazim A

    2002-03-15

    Mice genetically engineered to lack complex gangliosides are improved hosts for raising antibodies against those gangliosides. We report the generation and characterization of nine immunoglobulin G (IgG)-class monoclonal antibodies (mAbs) raised against the four major brain gangliosides in mammals. These include (designated as ganglioside specificity-IgG subclass) two anti-GM1 mAbs (GM1-1, GM1-2b), three anti-GD1a mAbs (GD1a-1, GD1a-2a, GD1a-2b), one anti-GD1b mAb (GD1b-1), and three anti-GT1b mAbs (GT1b-1, GT1b-2a, GT1b-2b). Each mAb demonstrated high specificity, with little or no cross-reactivity with other major brain gangliosides. Enzyme-linked immunosorbent assay (ELISA) screening against 14 closely related synthetic and purified gangliosides confirmed the high specificity, with no significant cross-reactivity except that of the anti-GD1a mAbs for the closely related minor ganglioside GT1a alpha. All of the mAbs were useful for ELISA, TLC immunooverlay, and immunocytochemistry. Neural cells from wild-type rats and mice were immunostained to differing levels with the anti-ganglioside antibodies, whereas neural cells from mice engineered to lack complex gangliosides (lacking the ganglioside-specific biosynthetic enzyme UDP-GalNAc:GM3/GD3 N-acetylgalactosaminyltransferase) remained unstained, demonstrating that most of the mAbs react only with gangliosides and not with related structures on glycoproteins. These mAbs may provide useful tools for delineation of the expression and function of the major brain gangliosides and for probing the pathology of anti-ganglioside autoimmune diseases.

  14. Gangliosides and hearing.

    PubMed

    Inokuchi, Jin-Ichi; Go, Shinji; Yoshikawa, Misato; Strauss, Kevin

    2017-10-01

    Severe auditory impairment observed in GM3 synthase-deficient mice and humans indicates that glycosphingolipids, especially sialic-acid containing gangliosides, are indispensable for hearing. Gangliosides associate with glycoproteins to form membrane microdomains, the composition of which plays a special role in maintaining the structural and functional integrity of hair cells. These microdomains, also called lipid rafts, connect with intracellular signaling and cytoskeletal systems to link cellular responses to environmental cues. During development, ganglioside species are expressed in distinctive spatial and temporal patterns throughout the cochlea. In both mice and humans, blocking particular steps of ganglioside metabolism produces distinctive neurological and auditory phenotypes. Thus each ganglioside species may have specific, non-overlapping functions within the cochlea, central auditory network, and brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. High-affinity anti-ganglioside IgG antibodies raised in complex ganglioside knockout mice: reexamination of GD1a immunolocalization.

    PubMed

    Lunn, M P; Johnson, L A; Fromholt, S E; Itonori, S; Huang, J; Vyas, A A; Hildreth, J E; Griffin, J W; Schnaar, R L; Sheikh, K A

    2000-07-01

    Gangliosides, sialic acid-bearing glycosphingolipids, are highly enriched in the vertebrate nervous system. Anti-ganglioside antibodies are associated with various human neuropathies, although the pathogenicity of these antibodies remains unproven. Testing the pathogenic role of anti-ganglioside antibodies will be facilitated by developing high-affinity IgG-class complement-fixing monoclonal anti-bodies against major brain gangliosides, a goal that has been difficult to achieve. In this study, mice lacking complex gangliosides were used as immune-naive hosts to raise anti-ganglioside antibodies. Wild-type mice and knockout mice with a disrupted gene for GM2/GD2 synthase (UDP-N-acetyl-D-galactosamine : GM3/GD3 N-acetyl-D-glactosaminyltransferase) were immunized with GD1a conjugated to keyhole limpet hemocyanin. The knockout mice produced a vigorous anti-GD1a IgG response, whereas wildtype littermates failed to do so. Fusion of spleen cells from an immunized knockout mouse with myeloma cells yielded numerous IgG anti-GD1a antibody-producing colonies. Ganglioside binding studies revealed two specificity classes; one colony representing each class was cloned and characterized. High-affinity monoclonal antibody was produced by each hybridoma : an IgG1 that bound nearly exclusively to GD1a and an IgG2b that bound GD1a, GT1b, and GT1aalpha. Both antibodies readily readily detected gangliosides via ELISA, TLC immune overlay, immunohistochemistry, and immunocytochemistry. In contrast to prior reports using anti-GD1a and anti-GT1b IgM class monoclonal antibodies, the new antibodies bound avidly to granule neurons in brain tissue sections and cell cultures. Mice lacking complex gangliosides are improved hosts for raising high-affinity, high-titer anti-ganglioside IgG antibodies for probing for the distribution and physiology of gangliosides and the pathophysiology of anti-ganglioside antibodies.

  16. Elevated GM3 plasma concentration in idiopathic Parkinson’s disease: A lipidomic analysis

    PubMed Central

    Chan, Robin B.; Perotte, Adler J.; Zhou, Bowen; Liong, Christopher; Shorr, Evan J.; Marder, Karen S.; Kang, Un J.; Waters, Cheryl H.; Levy, Oren A.; Xu, Yimeng; Shim, Hong Bin; Pe’er, Itsik; Di Paolo, Gilbert

    2017-01-01

    Parkinson’s disease (PD) is a common neurodegenerative disease whose pathological hallmark is the accumulation of intracellular α-synuclein aggregates in Lewy bodies. Lipid metabolism dysregulation may play a significant role in PD pathogenesis; however, large plasma lipidomic studies in PD are lacking. In the current study, we analyzed the lipidomic profile of plasma obtained from 150 idiopathic PD patients and 100 controls, taken from the ‘Spot’ study at Columbia University Medical Center in New York. Our mass spectrometry based analytical panel consisted of 520 lipid species from 39 lipid subclasses including all major classes of glycerophospholipids, sphingolipids, glycerolipids and sterols. Each lipid species was analyzed using a logistic regression model. The plasma concentrations of two lipid subclasses, triglycerides and monosialodihexosylganglioside (GM3), were different between PD and control participants. GM3 ganglioside concentration had the most significant difference between PD and controls (1.531±0.037 pmol/μl versus 1.337±0.040 pmol/μl respectively; p-value = 5.96E-04; q-value = 0.048; when normalized to total lipid: p-value = 2.890E-05; q-value = 2.933E-03). Next, we used a collection of 20 GM3 and glucosylceramide (GlcCer) species concentrations normalized to total lipid to perform a ROC curve analysis, and found that these lipids compare favorably with biomarkers reported in previous studies (AUC = 0.742 for males, AUC = 0.644 for females). Our results suggest that higher plasma GM3 levels are associated with PD. GM3 lies in the same glycosphingolipid metabolic pathway as GlcCer, a substrate of the enzyme glucocerebrosidase, which has been associated with PD. These findings are consistent with previous reports implicating lower glucocerebrosidase activity with PD risk. PMID:28212433

  17. Elevated GM3 plasma concentration in idiopathic Parkinson's disease: A lipidomic analysis.

    PubMed

    Chan, Robin B; Perotte, Adler J; Zhou, Bowen; Liong, Christopher; Shorr, Evan J; Marder, Karen S; Kang, Un J; Waters, Cheryl H; Levy, Oren A; Xu, Yimeng; Shim, Hong Bin; Pe'er, Itsik; Di Paolo, Gilbert; Alcalay, Roy N

    2017-01-01

    Parkinson's disease (PD) is a common neurodegenerative disease whose pathological hallmark is the accumulation of intracellular α-synuclein aggregates in Lewy bodies. Lipid metabolism dysregulation may play a significant role in PD pathogenesis; however, large plasma lipidomic studies in PD are lacking. In the current study, we analyzed the lipidomic profile of plasma obtained from 150 idiopathic PD patients and 100 controls, taken from the 'Spot' study at Columbia University Medical Center in New York. Our mass spectrometry based analytical panel consisted of 520 lipid species from 39 lipid subclasses including all major classes of glycerophospholipids, sphingolipids, glycerolipids and sterols. Each lipid species was analyzed using a logistic regression model. The plasma concentrations of two lipid subclasses, triglycerides and monosialodihexosylganglioside (GM3), were different between PD and control participants. GM3 ganglioside concentration had the most significant difference between PD and controls (1.531±0.037 pmol/μl versus 1.337±0.040 pmol/μl respectively; p-value = 5.96E-04; q-value = 0.048; when normalized to total lipid: p-value = 2.890E-05; q-value = 2.933E-03). Next, we used a collection of 20 GM3 and glucosylceramide (GlcCer) species concentrations normalized to total lipid to perform a ROC curve analysis, and found that these lipids compare favorably with biomarkers reported in previous studies (AUC = 0.742 for males, AUC = 0.644 for females). Our results suggest that higher plasma GM3 levels are associated with PD. GM3 lies in the same glycosphingolipid metabolic pathway as GlcCer, a substrate of the enzyme glucocerebrosidase, which has been associated with PD. These findings are consistent with previous reports implicating lower glucocerebrosidase activity with PD risk.

  18. Ganglioside patterns in human spinal cord.

    PubMed

    Vorwerk, C K

    2001-12-01

    To examine the distribution of gangliosides in human cervical and lumbar spinal cord. Magdeburg, Germany. The ganglioside distribution of human cervical and lumbar spinal cord enlargements from 10 neurological normal patients was analyzed. Gangliosides were isolated from different areas corresponding to the columna anterior, columna lateralis and columna posterior. Ganglioside GfD1b/GD1b and GD3 were the most abundant gangliosides in all examined tissues. The total concentration of sialic acid bound gangliosides GM2 and GM3 was less than 5%. The GD3 fraction constantly consisted of a double band as assessed by TLC after lipid extraction. There were significant differences in the ganglioside distribution when comparing tissue from the columna anterior, columna lateralis and columna posterior of the lumbar enlargement of the spinal cord. Differences in the ganglioside composition in human spinal cord regions may reflect the different function of those molecules in the two regions investigated.

  19. Synthesis of gangliosides by cultured oligodendrocytes

    SciTech Connect

    Mack, S.R.; Szuchet, S.; Dawson, G.

    1981-01-01

    Gangliosides are enriched in the nervous system compared to other tissues. The synthesis of gangliosides by monolayer cultures of isolated oligodendrocytes has not previously been investigated. Cells were labeled with (3H) galactose at preselected times and gangliosides isolated by phase partition, purified, and identified by chromatography. Cultured oligodendrocytes showed selectivity in their synthesis of gangliosides, which was expressed in the type of ganglioside synthesized as well as in the change of incorporation over time in culture. For the first ten days, there was very little incorporation of (3H) galactose in gangliosides, but this was followed by a stimulation of uptake for GM3, GM1/GD3, and GD1 gangliosides, reaching a maximum after approximately 25-30 days in vitro. There was little incorporation into GM2 or trisialogangliosides throughout the life of the cultures. Since oligodendrocytes synthesize extensive membranes during this period, one may speculate that the de novo-synthesized gangliosides are used for membranes.

  20. Transfer of gangliosides across the human placenta.

    PubMed

    Mitchell, M D; Henare, K; Balakrishnan, B; Lowe, E; Fong, B Y; McJarrow, P

    2012-04-01

    Gangliosides are structural and functional glycosphingolipids, considered to have important roles in neuronal development in fetal and neonatal development and in memory formation. In this report, we have investigated the ability of bovine milk-derived gangliosides GM3 and GD3 to cross the human placenta. We have employed the ex-vivo model of dually-perfused isolated human placental lobules. There was significant uptake of both GD3 and GM3 from the maternal perfusate. There was significant increase of GM3 in the fetal side and a non-statistically significant trend for GD3 to increase on the fetal side. Hence an apparent preference for GM3 release into fetal circulation. We suggest that gangliosides consumed by the mother enter her circulation, can be transferred across the placenta and may be available to the developing fetus for building neural connections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Modification of Ganglioside Content of Human Gastric Epithelial Cell Membrane Decreases Helicobacter pylori Adhesion.

    PubMed

    Rivas-Serna, Irma Magaly; Mazurak, Vera C; Keelan, Monika; Clandinin, Michael Thomas

    2017-10-01

    In polarized cells, ganglioside location determines ganglioside function. Diet alters ganglioside content and composition in cell membranes. Ganglioside acts as a receptor for Helicobacter pylori. H pylori infects the stomach epithelium and may cause peptic ulcer disease and gastric cancer. The present study used purified gangliosides to modify the ganglioside composition of human gastric epithelial cells in vitro to reduce H pylori adhesion. A human gastric epithelial cell line (NCI-N87) was cultured with a ganglioside mix or with pure ganglioside (GM3 or GD3) at different concentrations (0-30 μg/mL) and ganglioside membrane content of gastric cells was determined after 48 hours. LC/triple quadrupole MS was used to analyse ganglioside concentration. H pylori was inoculated into the culture media of gastric cells previously treated with gangliosides GM3 or GD3 or a combination of GM3 and GD3. GD3 and GM3 content increased in the plasma membrane in a dose-dependent manner. Gastric cells treated with GD3 showed more GM3 content than GD3 (P < 0.01). Ganglioside content was modified in the apical membrane, but GM3 and GD3 were also found in the basolateral membrane after treatments. Gastric cells treated with GM3, GD3 or the combination of GM3:GD3 decreased H pylori adhesion to gastric cells at all ganglioside concentrations tested by 80% compared with untreated gastric cells (P < 0.05). These observations suggest that GD3 and GM3 present in the stomach lumen may be taken up into the apical gastric membrane and decrease H pylori adhesion to the epithelium.

  2. Tumor gangliosides accelerate murine tumor angiogenesis.

    PubMed

    Liu, Yihui; Wondimu, Assefa; Yan, Su; Bobb, Daniel; Ladisch, Stephan

    2014-07-01

    Tumor cells shed gangliosides and populate their microenvironment with these biologically active membrane glycosphingolipids. In vitro, ganglioside enrichment amplifies receptor tyrosine kinase signaling and activation of vascular endothelial cells. However, a long-standing question is whether in the actual microenvironment of a neoplasm, in vivo, tumor cell ganglioside shedding stimulates angiogenesis. Here we tested the hypothesis that tumor gangliosides have a critical proangiogenic role in vivo using novel murine tumor cells, GM3synthase/GM2synthase double knockout (DKO) cells, genetically completely incapable of ganglioside synthesis and impaired in tumor growth versus wild-type (WT) ganglioside-rich cells. We studied angiogenesis during tumor formation by these ganglioside-depleted cells, quantifying vessel formation, angiogenic factor production/release, and consequences of reconstitution with purified WT gangliosides. DKO cells formed virtually avascular tumors, much smaller than ganglioside-rich WT tumors and displaying a striking paucity of blood vessels, despite levels of VEGF and other angiogenic factors that were similar to those of WT cells. Transient enrichment of the ganglioside milieu of the DKO cell inoculum by adding purified WT gangliosides partially restored angiogenesis and tumor growth. We conclude that tumor gangliosides trigger robust angiogenesis important for tumor growth. Our findings suggest strategies to eliminate their synthesis and shedding by tumor cells should be pursued.

  3. Endosomal/Lysosomal Processing of Gangliosides Affects Neuronal Cholesterol Sequestration in Niemann-Pick Disease Type C

    PubMed Central

    Zhou, Sharon; Davidson, Cristin; McGlynn, Robert; Stephney, Gloria; Dobrenis, Kostantin; Vanier, Marie T.; Walkley, Steven U.

    2011-01-01

    Niemann-Pick disease type C (NPC) is a severe neurovisceral lysosomal storage disorder caused by defects in NPC1 or NPC2 proteins. Although numerous studies support the primacy of cholesterol storage, neurons of double-mutant mice lacking both NPC1 and an enzyme required for synthesis of all complex gangliosides (β1,4GalNAc transferase) have been reported to exhibit dramatically reduced cholesterol sequestration. Here we show that NPC2-deficient mice lacking this enzyme also exhibit reduced cholesterol, but that genetically restricting synthesis to only a-series gangliosides fully restores neuronal cholesterol storage to typical disease levels. Examining the subcellular locations of sequestered compounds in neurons lacking NPC1 or NPC2 by confocal microscopy revealed that cholesterol and the two principal storage gangliosides (GM2 and GM3) were not consistently co-localized within the same intracellular vesicles. To determine whether the lack of GM2 and GM3 co-localization was due to differences in synthetic versus degradative pathway expression, we generated mice lacking both NPC1 and lysosomal β-galactosidase, and therefore unable to generate GM2 and GM3 in lysosomes. Double mutants lacked both gangliosides, indicating that each is the product of endosomal/lysosomal processing. Unexpectedly, GM1 accumulation in double mutants increased compared to single mutants consistent with a direct role for NPC1 in ganglioside salvage. These studies provide further evidence that NPC1 and NPC2 proteins participate in endosomal/lysosomal processing of both sphingolipids and cholesterol. PMID:21708114

  4. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis.

    PubMed

    Harlalka, Gaurav V; Lehman, Anna; Chioza, Barry; Baple, Emma L; Maroofian, Reza; Cross, Harold; Sreekantan-Nair, Ajith; Priestman, David A; Al-Turki, Saeed; McEntagart, Meriel E; Proukakis, Christos; Royle, Louise; Kozak, Radoslaw P; Bastaki, Laila; Patton, Michael; Wagner, Karin; Coblentz, Roselyn; Price, Joy; Mezei, Michelle; Schlade-Bartusiak, Kamilla; Platt, Frances M; Hurles, Matthew E; Crosby, Andrew H

    2013-12-01

    Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.

  5. Structural analysis of brain ganglioside acetylation patterns in mice with altered ganglioside biosynthesis.

    PubMed

    Mlinac, Kristina; Fabris, Dragana; Vukelić, Zeljka; Rožman, Marko; Heffer, Marija; Bognar, Svjetlana Kalanj

    2013-12-15

    Gangliosides are sialylated membrane glycosphingolipids especially abundant in mammalian brain tissue. Sialic acid O-acetylation is one of the most common structural modifications of gangliosides which considerably influences their chemical properties. In this study, gangliosides extracted from brain tissue of mice with altered ganglioside biosynthesis (St8sia1 null and B4galnt1 null mice) were structurally characterized and their acetylation pattern was analyzed. Extracted native and alkali-treated gangliosides were resolved by high performance thin layer chromatography. Ganglioside mixtures as well as separated individual ganglioside fractions were further analyzed by tandem mass spectrometry. Several O-acetylated brain ganglioside species were found in knockout mice, not present in the wild-type mice. To the best of our knowledge this is the first report on the presence of O-acetylated GD1a in St8sia1 null mice and O-acetylated GM3 species in B4galnt1 null mice. In addition, much higher diversity of abnormally accumulated brain ganglioside species regarding the structure of ceramide portion was observed in knockout versus wild-type mice. Obtained findings indicate that the diversity of brain ganglioside structures as well as acetylation patterns in mice with altered ganglioside biosynthesis, is even higher than previously reported. Further investigation is needed in order to explore the effects of acetylation on ganglioside interactions with other molecules and consequently the physiological role of acetylated ganglioside species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Depletion of gangliosides enhances cartilage degradation in mice.

    PubMed

    Sasazawa, F; Onodera, T; Yamashita, T; Seito, N; Tsukuda, Y; Fujitani, N; Shinohara, Y; Iwasaki, N

    2014-02-01

    Glycosphingolipids (GSLs) are ubiquitous membrane components that play a functional role in maintaining chondrocyte homeostasis. We investigated the potential role of gangliosides, one of the major components of GSLs, in osteoarthritis (OA) pathogenesis. Both age-associated and instability-induced OA models were generated using GM3 synthase knockout (GM3S(-/-)) mice. A cartilage degradation model and transiently GM3S-transfected chondrocytes were analyzed to evaluate the function of gangliosides in OA development. The amount of each series of GSLs in chondrocytes after IL-1α stimulation was profiled using mass spectrometry (MS). OA changes in GM3S(-/-) mice were dramatically enhanced with aging compared to those in wild-type (WT) mice. GM3S(-/-) mice showed more severe instability-induced pathologic OA in vivo. Ganglioside deficiency also led to the induction of matrix metalloproteinase (MMP)-13 and ADAMTS-5 secretion and chondrocyte apoptosis in vitro. In contrast, transient GM3S transfection of chondrocytes suppressed MMP-13 and ADAMTS-5 expression after interleukin (IL)-1α stimulation. GSL profiling revealed the presence of abundant gangliosides in chondrocytes after IL-1α stimulation. Gangliosides play a critical role in OA pathogenesis by regulating the expression of MMP-13 and ADAMTS-5 and chondrocyte apoptosis. Based on the obtained results, we propose that gangliosides are potential target molecules for the development of novel OA treatments. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. [Gangliosides in the serum in lung carcinoma].

    PubMed

    Fumić, K; Vladović-Relja, T; Karada, J; Kracun, I; Stavljenić, A; Kubat, M; Cosović, C; Oberman, B

    1990-01-01

    In this study, tumor and serum gangliosides were analyzed in patients bearing lung planocellular carcinoma (LPC) before and after operative therapy. Tumor tissue, pathohistologically characterized as carcinoma planocellulare corneum (Ca. epidermoide, type 8070/3, WHO, Geneva, 1981), showed an elevated concentration of gangliosides in comparison to normal tung tissue. The composition of gangliosides in LPC tissue varied from one tumor sample to another, however, two general features were observed. First, LPC contained an increased amount of GM3 and a decreased amount of GD3 gangliosides. Second, an elevated proportion of gangliosides migrating as polysialogangliosides (x3, x5, x6) characterized the majority of LPC tissues. On the other hand, serum of patients with LPC contained an elevated amount of gangliosides (15.8 +/- 0.3 mumols/L) in comparison to control serum (6.1 +/- 0.8 mumols/L) (P less than 0.01). However, analyzing the composition of serum gangliosides by thin-layer chromatography, all serum gangliosides were more or less elevated. By day 21 after the surgical removal of LPC, serum gangliosides dropped by approximately 50% approaching the normal values. It seems that elevated serum gangliosides in LPC patients were secreted from carcinoma cells, because they normalized after surgical removal of LPC. Thus, serum gangliosides might be a useful biochemical tool for diagnosis and therapy monitoring of this carcinoma.

  8. NGcGM3/VSSP vaccine as treatment for melanoma patients.

    PubMed

    Pérez, Kirenia; Osorio, Marta; Hernández, Julio; Carr, Adriana; Fernández, Luis Enrique

    2013-06-01

    Gangliosides are glycosphingolipids that are present in the plasma membranes of vertebrates and are involved in multiple cellular processes. In the Center of Molecular Immunology an NGcGM3 ganglioside based vaccine has been developed and is conceptualized as a targeted therapy in cancer. NGcGM3/VSSP vaccine had been used as treatment of metastatic melanoma patients and had showed to be safe and immunogenic. The treatment improved antitumoral response or maintain the response obtained with previous onco-specific treatment as chemotherapy. The results indicate that the vaccine improved overall survival of metastatic melanoma patients after first line-chemotherapy. The clinical trial ongoing currently will allow corroborating these results.

  9. Studies on the biosynthesis and intracellular transport of gangliosides

    SciTech Connect

    Farrer, R.G.

    1987-01-01

    Ganglioside biosynthesis and transport to myelin was studied in brainstem of 17-21 day old rats. Brainstem slices were incubated for up to 2 hours with (/sup 3/H)glucosamine, and gangliosides were isolated by column chromatography and HPTLC. Results from these experiments showed that: (a) ganglioside synthesis was decreased in the slices compared to in vivo, and this decrease was greater in the more complex gangliosides than in the simpler ones; (b) label incorporation into gangliosides GM3 and GM2 increased in a linear fashion, whereas the rate of incorporation continuously increased over the 2 hour period for the more complex gangliosides; (c) label incorporated into gangliosides, which showed almost no effect of chase after 30 minutes; (d) monensin at 0.1 uM inhibited the synthesis of all gangliosides except GM3, GM2 and GD3. Compartmentation of ganglioside biosynthesis was examined by analyzing the subcellular location of two ganglioside synthesizing enzymes, lactosylceramide sialosyltransferase (LCST) and GDlb sialosyltransferase (GDlbST), acting early and late in the ganglioside pathway, respectively.

  10. Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging.

    PubMed

    Tajima, Orie; Egashira, Nobuaki; Ohmi, Yuhsuke; Fukue, Yoshihiko; Mishima, Kenichi; Iwasaki, Katsunori; Fujiwara, Michihiro; Inokuchi, Jinichi; Sugiura, Yasuo; Furukawa, Keiko; Furukawa, Koichi

    2009-03-02

    Sialic acid-containing glycosphingolipids (gangliosides) have been believed to play a role in the regulation and protection of nervous tissues. To clarify their function in the nervous system in vivo, double knockout (DKO) mice of GM2/GD2 synthase and GD3 synthase genes were generated and abnormal behaviors were analyzed. Mutant mice exhibited reduced weight and a round shape of the whole brain that progressively emerged with aging, and displayed motor dysfunction in the footprint, traction, open-field, and 24h locomotion activity tests. Sensory functions were also reduced in the von Frey and hot plate tests and greatly reduced in the acoustic startle response test. For emotional behavior, fear response was clearly decreased. Numerous neuronal dysfunctions were found even in younger mutant mice examined at 10-23 weeks after birth, which were exacerbated with aging. These results suggest that a lack of gangliosides other than GM3 induces severe neuronal degeneration in the early stage of life, and that the expression of complex gangliosides is essential to maintain the integrity of the nervous system throughout life.

  11. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... Testing (1 link) Genetic Testing Registry: Amish infantile epilepsy syndrome Other Diagnosis and Management Resources (2 links) ...

  12. Ganglioside-magnetosome complex formation enhances uptake of gangliosides by cells

    PubMed Central

    Guan, Feng; Li, Xiang; Guo, Jia; Yang, Ganglong; Li, Xiang

    2015-01-01

    Bacterial magnetosomes, because of their nano-scale size, have a large surface-to-volume ratio and are able to carry large quantities of bioactive substances such as enzymes, antibodies, and genes. Gangliosides, a family of sialic acid-containing glycosphingolipids, function as distinctive cell surface markers and as specific determinants in cellular recognition and cell-to-cell communication. Exogenously added gangliosides are often used to study biological functions, transport mechanisms, and metabolism of their endogenous counterparts. Absorption of gangliosides into cells is typically limited by their tendency to aggregate into micelles in aqueous media. We describe here a simple strategy to remove proteins from the magnetosome membrane by sodium dodecyl sulfate treatment, and efficiently immobilize a ganglioside (GM1 or GM3) on the magnetosome by mild ultrasonic treatment. The maximum of 11.7±1.2 µg GM1 and 11.6±1.5 μg GM3 was loaded onto 1 mg magnetosome, respectively. Complexes of ganglioside-magnetosomes stored at 4°C for certain days presented the consistent stability. The use of GM1-magnetosome complex resulted in the greatest enhancement of ganglioside incorporation by cells. GM3-magnetosome complex significantly inhibited EGF-induced phosphorylation of the epidermal growth factor receptor. Both of these effects were further enhanced by the presence of a magnetic field. PMID:26609230

  13. Ganglioside-magnetosome complex formation enhances uptake of gangliosides by cells.

    PubMed

    Guan, Feng; Li, Xiang; Guo, Jia; Yang, Ganglong; Li, Xiang

    2015-01-01

    Bacterial magnetosomes, because of their nano-scale size, have a large surface-to-volume ratio and are able to carry large quantities of bioactive substances such as enzymes, antibodies, and genes. Gangliosides, a family of sialic acid-containing glycosphingolipids, function as distinctive cell surface markers and as specific determinants in cellular recognition and cell-to-cell communication. Exogenously added gangliosides are often used to study biological functions, transport mechanisms, and metabolism of their endogenous counterparts. Absorption of gangliosides into cells is typically limited by their tendency to aggregate into micelles in aqueous media. We describe here a simple strategy to remove proteins from the magnetosome membrane by sodium dodecyl sulfate treatment, and efficiently immobilize a ganglioside (GM1 or GM3) on the magnetosome by mild ultrasonic treatment. The maximum of 11.7±1.2 µg GM1 and 11.6±1.5 μg GM3 was loaded onto 1 mg magnetosome, respectively. Complexes of ganglioside-magnetosomes stored at 4°C for certain days presented the consistent stability. The use of GM1-magnetosome complex resulted in the greatest enhancement of ganglioside incorporation by cells. GM3-magnetosome complex significantly inhibited EGF-induced phosphorylation of the epidermal growth factor receptor. Both of these effects were further enhanced by the presence of a magnetic field.

  14. Approaches in the study of ganglioside metabolism

    SciTech Connect

    Tettamanti, G.; Ghidoni, R.; Sonnino, S.; Chigorno, V.; Venerando, B.; Giuliani, A.; Fiorilli, A.

    1984-01-01

    Ganglioside GM1, /sup 3/H-labeled in the sphingosine or terminal galactose moiety was injected into mice and its metabolic fate in the liver was followed. After administration of sphingosine-labeled GM1 all major liver gangliosides (GM3, GM2, GM1, GD1a-NeuAc, NeuG1) became radioactive, the radioactivity residing in all cases on the sphingosine moiety. The specific radioactivity was highest on GM1, followed by GM2, GM3 and GD1a-NeuAc, NeuG1. Several neutral glycosphingolipids and sphingomyelin were also formed. After administration of galactose-labelled GM1 the only radioactive gangliosides present in the liver were GM1 and GD1a-NeuAc, NeuG1, both carrying the radioactivity on the terminal galactose residue, with no formation of labelled neutral glycosphingolipids. Subcellular studies gave clear evidence that GM1, after being taken up by the liver, was mainly degraded to GM2, GM3 and neutral glycosphingolipids at the level of lysosomes. A part of it was sialylated to more complex gangliosides and some of its metabolic by-products were used for the biosynthesis of other sphingolipid species, likely at the level of the Golgi apparatus. All this suggests that exogenous GM1 is introduced in the metabolic routes of endogenous gangliosides and of other sphingolipids, which are operating in the liver.

  15. Ganglioside binding pattern of CD33-related siglecs.

    PubMed

    Rapoport, Eugenia; Mikhalyov, Ilya; Zhang, Jiquan; Crocker, Paul; Bovin, Nicolai

    2003-02-24

    Our study deals with the interaction of CD33 related-siglecs-5,-7,-8,-9,-10 with gangliosides GT1b, GQ1b, GD3, GM2, GM3 and GD1a. Siglec-5 bound preferentially to GQ1b, but weakly to GT1b, whereas siglec-10 interacted only with GT1b ganglioside. Siglec-7 and siglec-9 displayed binding to gangliosides GD3, GQ1b and GT1b bearing a disialoside motif, though siglec-7 was more potent; besides, siglec-9 interacted also with GM3. Siglec-8 demonstrated low affinity to the gangliosides tested compared with other siglecs. Despite high structural similarity of CD33 related siglecs, they demonstrated different ganglioside selectivity, in particular to the Neu5Acalpha2-8Neu5Ac motif.

  16. Detection of N-glycolyated gangliosides in non-small-cell lung cancer using GMR8 monoclonal antibody.

    PubMed

    Hayashi, Nobuyoshi; Chiba, Hirofumi; Kuronuma, Koji; Go, Shinji; Hasegawa, Yoshihiro; Takahashi, Motoko; Gasa, Shinsei; Watanabe, Atsushi; Hasegawa, Tadashi; Kuroki, Yoshio; Inokuchi, Jinichi; Takahashi, Hiroki

    2013-01-01

    Gangliosides are glycosphingolipids found on the cell surface. They act as recognition molecules or signal modulators and regulate cell proliferation and differentiation. N-glycolylneuraminic acid (NeuGc)-containing gangliosides have been detected in some neoplasms in humans, although they are usually absent in normal human tissues. Our aim was to evaluate the presence of NeuGc-containing gangliosides including GM3 (NeuGc) and assess their relationship with the prognosis of non-small-cell lung cancer (NSCLC). NeuGc-containing ganglioside expression in NSCLC tissues was analyzed immunohistochemically using the mouse monoclonal antibody GMR8, which is specific for gangliosides with NeuGc alpha 2,3Gal-terminal structures. On the basis of NeuGc-containing ganglioside expression, we performed survival analysis. We also investigated the differences in the effects of GM3 (N-acetylneuraminic acid [NeuAc]) and GM3 (NeuGc) on inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase in A431 cells. As a result, the presence of NeuGc-containing gangliosides was evident in 86 of 93 (93.5%) NSCLC samples. The NSCLC patients with high NeuGc-containing ganglioside expression had a low overall survival rate and a significantly low progression-free survival rate. In the in vitro study, the inhibitory effect of GM3 on EGFR tyrosine kinase in A431 cells after exposure to GM3 (NeuGc) was lower than that after exposure to GM3 (NeuAc). In conclusion, NeuGc-containing gangliosides including GM3 (NeuGc) are widely expressed in NSCLC, and NeuGc-containing ganglioside expression is associated with patient survival. The difference in the effects of GM3 (NeuGc) and GM3 (NeuAc) on the inhibition of EGFR tyrosine kinase might contribute to improvement in the prognosis of NSCLC patients. © 2012 Japanese Cancer Association.

  17. Suppression of vascular smooth muscle cell responses induced by TNF-α in GM3 synthase gene transfected cells.

    PubMed

    Park, Sung-Suk; Kim, Wun-Jae; Moon, Sung-Kwon

    2011-01-01

    The natural accumulation of ganglioside GM3 (N-glycolylneuraminic acid) on atherosclerotic lesions is a common theory. The present study is the first to examine the effects of the GM3 synthase gene on the responses of vascular smooth muscle cells (VSMC) to tumor necrosis factor-α (TNF-α). We found that overexpression of the GM3 synthase gene inhibited DNA synthesis and ERK1/2 activity induced by TNF-α in VSMC, whereas the basal levels of DNA synthesis and ERK1/2 activity remained unchanged. In addition, GM3 synthase gene transfectants significantly reduced the migration and invasion of VSMC following TNF-α treatment, compared with empty vector transfectants. Furthermore, TNF-α-induced matrix metalloproteinase-9 (MMP-9) expression and promoter activity were also decreased in GM3 synthase gene transfectants. GM3 synthase gene expression markedly suppressed the TNF-α-stimulated transcriptional activity of activator protein-1 (AP-1) and nuclear factor-κB (NF-κB), which are the controlling factors of MMP-9 expression. Consistent with these results, the addition of anti-GM3 antibody into the GM3 synthase gene transfectants blocked inhibition of DNA synthesis, ERK1/2 activity, migration and invasion. Finally, GM3 synthase gene transfectants treated with anti-GM3 antibody reversed the suppression of MMP-9 expression by reducing AP-1 and NF-κB binding activity. These results suggest regulatory roles for the GM3 synthase gene in VSMC proliferation and migration during the formation of atherosclerotic lesions.

  18. Insights into the immunogenetic basis of two ganglioside-associated idiotypic networks.

    PubMed

    Rodríguez, Mabel; Roque-Navarro, Lourdes; López-Requena, Alejandro; Moreno, Ernesto; Mateo de Acosta, Cristina; Pérez, Rolando; María Vázquez, Ana

    2007-01-01

    The heavy-chain variable regions (VH) from 14F7 MAb, an IgG1 antibody specific for GM3(NeuGc) ganglioside, and its anti-idiotype, the 4G9 MAb, were cloned and sequenced. Comparison with previously reported sequences showed that VH 14F7 belongs to the J558(VHI) gene family and that it is highly mutated. VH 4G9 belongs to the Q52(VHII) gene family. The HCDR3 14F7 sequence contains three basic residues that could be involved in the binding to 4G9 MAb, which bears acidic residues in its HCDR3. Studies performed in the syngeneic model showed that 14F7 MAb requires both coupling to KLH and the use of Freund's adjuvant to induce an effective anti-idiotypic IgG (Ab2) response. In contrast, P3 MAb, a germline gene-encoded Ab1 that also recognizes the GM3(NeuGc) ganglioside through a basic motif in its H-CDRs, has been reported to be immunogenic in syngeneic mice, even when injected in saline. In addition, when Leghorn chickens were immunized with 14F7 or P3 MAbs emulsified in Freund's adjuvant, only P3-immunized animals were able to develop antibodies that recognized NeuGc-containing gangliosides, antigens which are not present in the normal tissues of this animal species. This phenomenon could be due to the lack of idiotypic connectivity of 14F7MAb.

  19. Anchored and soluble gangliosides contribute to myelosupportivity of stromal cells

    SciTech Connect

    Ziulkoski, Ana L.; Santos, Aline X.S. dos; Andrade, Claudia M.B.; Trindade, Vera M.T.; Daniotti, Jose Luis; Borojevic, Radovan; Guma, Fatima C.R.

    2009-10-09

    Stroma-mediated myelopoiesis depends upon growth factors and an appropriate intercellular microenvironment. Previous studies have demonstrated that gangliosides, produced by hepatic stromal cell types, are required for optimal myelosupportive function. Here, we compared the mielossuportive functions of a bone marrow stroma (S17) and skin fibroblasts (SF) regarding their ganglioside pattern of synthesis and shedding. The survival and proliferation of a myeloid precursor cell (FDC-P1) were used as reporter. Although the ganglioside synthesis of the two stromal cells was similar, their relative content and shedding were distinct. The ganglioside requirement for mielossuportive function was confirmed by the decreased proliferation of FDC-P1 cells in ganglioside synthesis-inhibited cultures and in presence of an antibody to GM3 ganglioside. The distinct mielossuportive activities of the S17 and SF stromata may be related to differences on plasma membrane ganglioside concentrations or to differences on the gangliosides shed and their subsequent uptake by myeloid cells, specially, GM3 ganglioside.

  20. Gangliosides Have a Functional Role during Rotavirus Cell Entry

    PubMed Central

    Martínez, Miguel Angel; López, Susana; Arias, Carlos F.

    2013-01-01

    Cell entry of rotaviruses is a complex process, which involves sequential interactions with several cell surface molecules. Among the molecules implicated are gangliosides, glycosphingolipids with one or more sialic acid (SA) residues. The role of gangliosides in rotavirus cell entry was studied by silencing the expression of two key enzymes involved in their biosynthesis—the UDP-glucose:ceramide glucosyltransferase (UGCG), which transfers a glucose molecule to ceramide to produce glucosylceramide GlcCer, and the lactosyl ceramide-α-2,3–sialyl transferase 5 (GM3-s), which adds the first SA to lactoceramide-producing ganglioside GM3. Silencing the expression of both enzymes resulted in decreased ganglioside levels (as judged by GM1a detection). Four rotavirus strains tested (human Wa, simian RRV, porcine TFR-41, and bovine UK) showed a decreased infectivity in cells with impaired ganglioside synthesis; however, their replication after bypassing the entry step was not affected, confirming the importance of gangliosides for cell entry of the viruses. Interestingly, viral binding to the cell surface was not affected in cells with inhibited ganglioside synthesis, but the infectivity of all strains tested was inhibited by preincubation of gangliosides with virus prior to infection. These data suggest that rotaviruses can attach to cell surface in the absence of gangliosides but require them for productive cell entry, confirming their functional role during rotavirus cell entry. PMID:23135722

  1. Gangliosides have a functional role during rotavirus cell entry.

    PubMed

    Martínez, Miguel Angel; López, Susana; Arias, Carlos F; Isa, Pavel

    2013-01-01

    Cell entry of rotaviruses is a complex process, which involves sequential interactions with several cell surface molecules. Among the molecules implicated are gangliosides, glycosphingolipids with one or more sialic acid (SA) residues. The role of gangliosides in rotavirus cell entry was studied by silencing the expression of two key enzymes involved in their biosynthesis--the UDP-glucose:ceramide glucosyltransferase (UGCG), which transfers a glucose molecule to ceramide to produce glucosylceramide GlcCer, and the lactosyl ceramide-α-2,3-sialyl transferase 5 (GM3-s), which adds the first SA to lactoceramide-producing ganglioside GM3. Silencing the expression of both enzymes resulted in decreased ganglioside levels (as judged by GM1a detection). Four rotavirus strains tested (human Wa, simian RRV, porcine TFR-41, and bovine UK) showed a decreased infectivity in cells with impaired ganglioside synthesis; however, their replication after bypassing the entry step was not affected, confirming the importance of gangliosides for cell entry of the viruses. Interestingly, viral binding to the cell surface was not affected in cells with inhibited ganglioside synthesis, but the infectivity of all strains tested was inhibited by preincubation of gangliosides with virus prior to infection. These data suggest that rotaviruses can attach to cell surface in the absence of gangliosides but require them for productive cell entry, confirming their functional role during rotavirus cell entry.

  2. Anchored and soluble gangliosides contribute to myelosupportivity of stromal cells.

    PubMed

    Ziulkoski, Ana L; dos Santos, Aline X S; Andrade, Cláudia M B; Trindade, Vera M T; Daniotti, José Luis; Borojevic, Radovan; Guma, Fátima C R

    2009-10-09

    Stroma-mediated myelopoiesis depends upon growth factors and an appropriate intercellular microenvironment. Previous studies have demonstrated that gangliosides, produced by hepatic stromal cell types, are required for optimal myelosupportive function. Here, we compared the mielossuportive functions of a bone marrow stroma (S17) and skin fibroblasts (SF) regarding their ganglioside pattern of synthesis and shedding. The survival and proliferation of a myeloid precursor cell (FDC-P1) were used as reporter. Although the ganglioside synthesis of the two stromal cells was similar, their relative content and shedding were distinct. The ganglioside requirement for mielossuportive function was confirmed by the decreased proliferation of FDC-P1 cells in ganglioside synthesis-inhibited cultures and in presence of an antibody to GM3 ganglioside. The distinct mielossuportive activities of the S17 and SF stromata may be related to differences on plasma membrane ganglioside concentrations or to differences on the gangliosides shed and their subsequent uptake by myeloid cells, specially, GM3 ganglioside.

  3. Inhibition of GM3 Synthase Attenuates Neuropathology of Niemann-Pick Disease Type C by Affecting Sphingolipid Metabolism

    PubMed Central

    Lee, Hyun; Lee, Jong Kil; Bae, Yong Chul; Yang, Song Hyun; Okino, Nozomu; Schuchman, Edward H.; Yamashita, Tadashi; Bae, Jae-sung; Jin, Hee Kyung

    2014-01-01

    In several lysosomal storage disorders, including Niemann-Pick disease Type C (NP-C), sphingolipids, including glycosphingolipids, particularly gangliosides, are the predominant storage materials in the brain, raising the possibility that accumulation of these lipids may be involved in the NP-C neurodegenerative process. However, correlation of these accumulations and NP-C neuropathology has not been fully characterized. Here we derived NP-C mice with complete and partial deletion of the Siat9 (encoding GM3 synthase) gene in order to investigate the role of ganglioside in NP-C pathogenesis. According to our results, NPC mice with homozygotic deletion of GM3 synthase exhibited an enhanced neuropathological phenotype and died significantly earlier than NP-C mice. Notably, in contrast to complete depletion, NP-C mice with partial deletion of the GM3 synthase gene showed ameliorated NP-C neuropathology, including motor disability, demyelination, and abnormal accumulation of cholesterol and sphingolipids. These findings indicate the crucial role of GM3 synthesis in the NP-C phenotype and progression of CNS pathologic abnormality, suggesting that well-controlled inhibition of GM3 synthesis could be used as a therapeutic strategy. PMID:24599001

  4. Ganglioside and Non-ganglioside Mediated Host Responses to the Mouse Polyomavirus

    PubMed Central

    Velupillai, Palanivel; Castle, Sherry; Garcea, Robert L.; Benjamin, Thomas

    2015-01-01

    Gangliosides serve as receptors for internalization and infection by members of the polyomavirus family. Specificity is determined by recognition of carbohydrate moieties on the ganglioside by the major viral capsid protein VP1. For the mouse polyomavirus (MuPyV), gangliosides with terminal sialic acids in specific linkages are essential. Although many biochemical and cell culture experiments have implicated gangliosides as MuPyV receptions, the role of gangliosides in the MuPyV-infected mouse has not been investigated. Here we report results of studies using ganglioside-deficient mice and derived cell lines. Knockout mice lacking complex gangliosides were completely resistant to the cytolytic and pathogenic effects of the virus. Embryo fibroblasts from these mice were likewise resistant to infection, and supplementation with specific gangliosides restored infectibility. Although lacking receptors for viral infection, cells from ganglioside-deficient mice retained the ability to respond to the virus. Ganglioside-deficient fibroblasts responded rapidly to virus exposure with a transient induction of c-fos as an early manifestation of a mitogenic response. Additionally, splenocytes from ganglioside-deficient mice responded to MuPyV by secretion of IL-12, previously recognized as a key mediator of the innate immune response. Thus, while gangliosides are essential for infection in the animal, gangliosides are not required for mitogenic responses and innate immune responses to the virus. PMID:26474471

  5. Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice.

    PubMed

    Saito, Mariko; Wu, Gusheng; Hui, Maria; Masiello, Kurt; Dobrenis, Kostantin; Ledeen, Robert W; Saito, Mitsuo

    2015-08-01

    Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration.

  6. Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice

    PubMed Central

    Saito, Mariko; Wu, Gusheng; Hui, Maria; Masiello, Kurt; Dobrenis, Kostantin; Ledeen, Robert W.; Saito, Mitsuo

    2015-01-01

    Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration. PMID:26063460

  7. Amyloid Precursor Protein (APP) Mediated Regulation of Ganglioside Homeostasis Linking Alzheimer's Disease Pathology with Ganglioside Metabolism

    PubMed Central

    Grimm, Marcus O. W.; Zinser, Eva G.; Grösgen, Sven; Hundsdörfer, Benjamin; Rothhaar, Tatjana L.; Burg, Verena K.; Kaestner, Lars; Bayer, Thomas A.; Lipp, Peter; Müller, Ulrike; Grimm, Heike S.; Hartmann, Tobias

    2012-01-01

    Gangliosides are important players for controlling neuronal function and are directly involved in AD pathology. They are among the most potent stimulators of Aβ production, are enriched in amyloid plaques and bind amyloid beta (Aβ). However, the molecular mechanisms linking gangliosides with AD are unknown. Here we identified the previously unknown function of the amyloid precursor protein (APP), specifically its cleavage products Aβ and the APP intracellular domain (AICD), of regulating GD3-synthase (GD3S). Since GD3S is the key enzyme converting a- to b-series gangliosides, it therefore plays a major role in controlling the levels of major brain gangliosides. This regulation occurs by two separate and additive mechanisms. The first mechanism directly targets the enzymatic activity of GD3S: Upon binding of Aβ to the ganglioside GM3, the immediate substrate of the GD3S, enzymatic turnover of GM3 by GD3S was strongly reduced. The second mechanism targets GD3S expression. APP cleavage results, in addition to Aβ release, in the release of AICD, a known candidate for gene transcriptional regulation. AICD strongly down regulated GD3S transcription and knock-in of an AICD deletion mutant of APP in vivo, or knock-down of Fe65 in neuroblastoma cells, was sufficient to abrogate normal GD3S functionality. Equally, knock-out of the presenilin genes, presenilin 1 and presenilin 2, essential for Aβ and AICD production, or of APP itself, increased GD3S activity and expression and consequently resulted in a major shift of a- to b-series gangliosides. In addition to GD3S regulation by APP processing, gangliosides in turn altered APP cleavage. GM3 decreased, whereas the ganglioside GD3, the GD3S product, increased Aβ production, resulting in a regulatory feedback cycle, directly linking ganglioside metabolism with APP processing and Aβ generation. A central aspect of this homeostatic control is the reduction of GD3S activity via an Aβ-GM3 complex and AICD

  8. Amyloid precursor protein (APP) mediated regulation of ganglioside homeostasis linking Alzheimer's disease pathology with ganglioside metabolism.

    PubMed

    Grimm, Marcus O W; Zinser, Eva G; Grösgen, Sven; Hundsdörfer, Benjamin; Rothhaar, Tatjana L; Burg, Verena K; Kaestner, Lars; Bayer, Thomas A; Lipp, Peter; Müller, Ulrike; Grimm, Heike S; Hartmann, Tobias

    2012-01-01

    Gangliosides are important players for controlling neuronal function and are directly involved in AD pathology. They are among the most potent stimulators of Aβ production, are enriched in amyloid plaques and bind amyloid beta (Aβ). However, the molecular mechanisms linking gangliosides with AD are unknown. Here we identified the previously unknown function of the amyloid precursor protein (APP), specifically its cleavage products Aβ and the APP intracellular domain (AICD), of regulating GD3-synthase (GD3S). Since GD3S is the key enzyme converting a- to b-series gangliosides, it therefore plays a major role in controlling the levels of major brain gangliosides. This regulation occurs by two separate and additive mechanisms. The first mechanism directly targets the enzymatic activity of GD3S: Upon binding of Aβ to the ganglioside GM3, the immediate substrate of the GD3S, enzymatic turnover of GM3 by GD3S was strongly reduced. The second mechanism targets GD3S expression. APP cleavage results, in addition to Aβ release, in the release of AICD, a known candidate for gene transcriptional regulation. AICD strongly down regulated GD3S transcription and knock-in of an AICD deletion mutant of APP in vivo, or knock-down of Fe65 in neuroblastoma cells, was sufficient to abrogate normal GD3S functionality. Equally, knock-out of the presenilin genes, presenilin 1 and presenilin 2, essential for Aβ and AICD production, or of APP itself, increased GD3S activity and expression and consequently resulted in a major shift of a- to b-series gangliosides. In addition to GD3S regulation by APP processing, gangliosides in turn altered APP cleavage. GM3 decreased, whereas the ganglioside GD3, the GD3S product, increased Aβ production, resulting in a regulatory feedback cycle, directly linking ganglioside metabolism with APP processing and Aβ generation. A central aspect of this homeostatic control is the reduction of GD3S activity via an Aβ-GM3 complex and AICD

  9. Ganglioside glycosyltransferases and newly synthesized gangliosides are excluded from detergent-insoluble complexes of Golgi membranes.

    PubMed

    Crespo, Pilar M; Zurita, Adolfo R; Giraudo, Claudio G; Maccioni, Hugo J F; Daniotti, Jose L

    2004-02-01

    GEM (glycosphingolipid-enriched microdomains) are specialized detergent-resistant domains of the plasma membrane in which some gangliosides concentrate. Although genesis of GEM is considered to occur in the Golgi complex, where the synthesis of gangliosides also occurs, the issue concerning the incorporation of ganglioside species into GEM is still poorly understood. In this work, using Chinese hamster ovary K1 cell clones with different glycolipid compositions, we compared the behaviour with cold Triton X-100 solubilization of plasma membrane ganglioside species with the same species newly synthesized in Golgi membranes. We also investigated whether three ganglioside glycosyltransferases (a sialyl-, a N-acetylgalactosaminyl- and a galactosyl-transferase) are included or excluded from GEM in Golgi membranes. Our data show that an important fraction of plasma membrane G(M3), and most G(D3) and G(T3), reside in GEM. Immunocytochemical examination of G(D3)-expressing cells showed G(D3) to be distributed as cold-detergent-resistant patches in the plasma membrane. These patches did not co-localize with a glycosylphosphatidylinositol-anchored protein used as GEM marker, indicating a heterogeneous composition of plasma membrane GEM. In Golgi membranes we were unable to find evidence for GEM localization of either ganglioside glycosyltransferases or newly synthesized gangliosides. Since the same ganglioside species appear in plasma membrane GEM, it was concluded that in vivo nascent G(D3), G(T3) and G(M3) segregate from their synthesizing transferases and then enter GEM. This latter event could have taken place shortly after synthesis in the Golgi cisternae, along the secretory pathway and/or at the cell surface.

  10. Efficacy of tumor cell vaccine after incorporating monophosphoryl lipid A (MPL) in tumor cell membranes containing tumor-associated ganglioside.

    PubMed

    Ravindranath, M H; Brazeau, S M; Morton, D L

    1994-07-15

    Murine B16 melanoma expresses the ganglioside GM3. GM3 shed from tumor cells is immunosuppressive and promotes tumor growth. Reduction or elimination of the shed GM3 could be therapeutic, and the anti-GM3 antibodies may reduce and clear the shed ganglioside. To test this hypothesis, mice were challenged with tumor cells, with or without inducing anti-GM3 antibody response. Since gangliosides are poor immunogens and T-cell independent antigens, an adjuvant (monophosphoryl lipid A (MPL), a non-toxic lipid A of Salmonella), directed against B-cells, was employed. MPL was incorporated onto liposomes and into the surface membrane of B16 mouse melanoma cells; both are rich in GM3. C57BL/6J mice immunized with MPL-liposomes or MPL-B16 cells responded with elevated levels of anti-GM3 IgM. Non-immunized mice or mice immunized with B16 cells alone or ganglioside GM3 alone (without MPL) elicited poor anti-GM3 IgM response, confirming the GM3's immunologic crypticity and MPL's immunopotentiating effect. MPL's immunopotentiating effect was improved by coupling it to melanoma cell membranes. C57BL/6J mice were immunized with irradiated B16 alone or MPL alone or MPL-conjugated irradiated B16. After three weekly immunizations, each mouse received a challenge dose of viable syngeneic B16. Neither MPL alone nor B16 alone had a significant effect on tumor growth or host survival; however, administration of MPL-conjugated B16 cells significantly prevented tumor growth and prolonged survival. Our results indicate that MPL-incorporated B16 cells augment the anti-GM3 IgM response, which may reverse GM3-induced immunosuppression by eliminating tumor-derived GM3, and restore immunocompetence.

  11. Ganglioside Biochemistry

    PubMed Central

    Kolter, Thomas

    2012-01-01

    Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized. PMID:25969757

  12. Plasmatic Ganglioside Profile and Age-Related Macular Degeneration: A Case-Control Study.

    PubMed

    Dossarps, Denis; Martine, Lucy; Berdeaux, Olivier; Sibille, Estelle; Bron, Alain M; Creuzot-Garcher, Catherine P; Bretillon, Lionel; Masson, Elodie A Y

    2016-01-01

    Gangliosides are glycosphingolipids that are particularly abundant in the nervous system, including the retina. However, their precise role in this tissue and its pathologies remain poorly understood. The objective of the present study was to characterize the ganglioside profile of human plasma and to determine whether it is affected in age-related macular degeneration (AMD). Eighty-three subjects were included: control subjects (n = 25), atrophic AMD patients (n = 27) and exudative AMD patients (n = 31). For each subject, gangliosides were extracted from plasma and analyzed by liquid chromatography coupled to mass spectrometry. GM3 appeared to be by far the major ganglioside of human plasma, associated with GD3. No specific ganglioside class was detected in the plasma of AMD patients. Fourteen molecular species of GM3 and 9 species of GD3, accounting for the variability of the ceramide moiety of the ganglioside molecule, were identified and characterized. Analyses revealed no significant differences in the proportion of these species between control, atrophic and exudative AMD patient groups. Total GM3 levels did not differ either. Although gangliosides are considered important for the retina's structure and function, it seems that circulating gangliosides are not associated with the retinal damage occurring during the course of AMD. © 2016 S. Karger AG, Basel.

  13. Depletion of Gangliosides Enhances Articular Cartilage Repair in Mice

    PubMed Central

    Matsuoka, Masatake; Onodera, Tomohiro; Homan, Kentaro; Sasazawa, Fumio; Furukawa, Jun-ichi; Momma, Daisuke; Baba, Rikiya; Hontani, Kazutoshi; Joutoku, Zenta; Matsubara, Shinji; Yamashita, Tadashi; Iwasaki, Norimasa

    2017-01-01

    Elucidation of the healing mechanisms in damaged tissues is a critical step for establishing breakthroughs in tissue engineering. Articular cartilage is clinically one of the most successful tissues to be repaired with regenerative medicine because of its homogeneous extracellular matrix and few cell types. However, we only poorly understand cartilage repair mechanisms, and hence, regenerated cartilage remains inferior to the native tissues. Here, we show that glycosylation is an important process for hypertrophic differentiation during articular cartilage repair. GM3, which is a precursor molecule for most gangliosides, was transiently expressed in surrounding damaged tissue, and depletion of GM3 synthase enhanced cartilage repair. Gangliosides also regulated chondrocyte hypertrophy via the Indian hedgehog pathway. These results identify a novel mechanism of cartilage healing through chondrocyte hypertrophy that is regulated by glycosylation. Manipulation of gangliosides and their synthases may have beneficial effects on articular cartilage repair. PMID:28252046

  14. Determination of disialoganglioside GD3 and monosialoganglioside GM3 in infant formulas and whey protein concentrates by ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Zhang, Jingshun; Ren, Yiping; Huang, Baifen; Tao, Baohua; Pedersen, Marlene Ransborg; Li, Duo

    2012-04-01

    A method of ultra-performance liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry (UPLC-ESI-MS/MS) has been established for simultaneous determination of major disialoganglioside 3 (GD3) and monosialoganglioside 3 (GM3) in infant formulas and whey protein concentrates. Gangliosides were extracted by using the technique of Svennerholm and Fredman and then cleaned up with OASIS HLB solid-phase extraction (SPE) cartridges. The various molecular species of gangliosides were separated on an Acquity UPLC BEH C8 column and analyzed under the negative ion mode. GD3 and GM3 were rapidly quantified using internal standard (IS) method. The developed method was further validated by determining the linearity, average recovery, sensitivity (limit of quantification), and precision. The results presented high correlation coefficients (R(2) > 0.993) of the selected 16 gangliosides molecular species and provided the respective linear ranges. The limit of quantification was 0.325-0.734 mg/100 g for eight molecular species of GD3 and 0.008-0.312 mg/100 g for eight molecular species of GM3, respectively. The reasonable average recoveries (81-95%) and precision (relative standard deviation [RSD] ≤15%) were also demonstrated in three different spiked levels. This new method would be very useful in the quantitative determination of gangliosides in infant formulas and whey protein concentrates. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A comparison of the ganglioside distributions of fat tissues in various animals by two-dimensional thin layer chromatography.

    PubMed

    Ohashi, M

    1979-01-01

    The ganglioside distributions of various fat tissues from human, rabbit, rat, mouse, chicken and frog were compared with pig adipose gangliosides by two-dimensional thin layer chromatography. It was found that there is a remarkable species variation in ganglioside distribution, especially in the composition and relative concentration of complex gangliosides. Differing from pig adipose tissues, those of human, rabbit, rat, mouse, chicken, but not frog, contained GM3 as a most abundant ganglioside. The data for human, rabbit and chicken indicated a simple distribution of only NeuAc-type gangliosides, while those for rat and mouse indicated a rather complicated pattern containing both NeuAc- and NeuGc-type gangliosides. The ganglioside pattern of the frog fat body differed markedly from those of mammalian fat tissues because of the presence of three different, unusual monosialosylgangliosides as major components. In other respects, a substantial amount of disialosylgangliosides was commonly found in all animal fat tissues.

  16. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells.

    PubMed

    Bennaceur, Karim; Popa, Iuliana; Chapman, Jessica Alice; Migdal, Camille; Péguet-Navarro, Josette; Touraine, Jean-Louis; Portoukalian, Jacques

    2009-06-01

    Tumor escape is linked to multiple mechanisms, notably the liberation, by tumor cells, of soluble factors that inhibit the function of dendritic cells (DC). We have shown that melanoma gangliosides impair DC differentiation and induce their apoptosis. The present study was aimed to give insight into the mechanisms involved. DC apoptosis was independent of the catabolism of gangliosides since lactosylceramide did not induce cell death. Apoptosis induced by GM3 and GD3 gangliosides was not blocked by inhibitors of de novo ceramide biosynthesis, whereas the acid sphingomyelinase inhibitor desipramine only prevented apoptosis induced by GM3. Furthermore, our results suggest that DC apoptosis was triggered via caspase activation, and it was ROS dependent with GD3 ganglioside, suggesting that GM3 and GD3 induced apoptosis through different mechanisms.

  17. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells

    PubMed Central

    Bennaceur, Karim; Popa, Iuliana; Chapman, Jessica Alice; Migdal, Camille; Péguet-Navarro, Josette; Touraine, Jean-Louis; Portoukalian, Jacques

    2009-01-01

    Tumor escape is linked to multiple mechanisms, notably the liberation, by tumor cells, of soluble factors that inhibit the function of dendritic cells (DC). We have shown that melanoma gangliosides impair DC differentiation and induce their apoptosis. The present study was aimed to give insight into the mechanisms involved. DC apoptosis was independent of the catabolism of gangliosides since lactosylceramide did not induce cell death. Apoptosis induced by GM3 and GD3 gangliosides was not blocked by inhibitors of de novo ceramide biosynthesis, whereas the acid sphingomyelinase inhibitor desipramine only prevented apoptosis induced by GM3. Furthermore, our results suggest that DC apoptosis was triggered via caspase activation, and it was ROS dependent with GD3 ganglioside, suggesting that GM3 and GD3 induced apoptosis through different mechanisms. PMID:19240275

  18. Neuroprotective Ganglioside Derivatives

    DTIC Science & Technology

    2002-09-01

    In this study, neuroprotective ganglioside derivatives are examined so they can be targeted to specific points in cell death pathways. GM1... ganglioside and several of its chemically modified derivatives are neuroprotective in several neurotoxic models. Here, ganglioside functional groups required... ganglioside derivatives intervene in the cell death process. In the first year, substantial quantities of GM1 have been isolated and purified.

  19. Identification of GM3 as a marker of therapy-resistant periradicular lesions.

    PubMed

    Zuolo, M L; Toledo, M S; Nogueira, H E; Straus, A H; Takahashi, H K

    2001-02-01

    The purpose of this study was to analyze the profile of glycosphingolipids (GSLs) in periradicular lesions refractory to endodontic treatment. Sixteen periapical lesions were removed surgically from patients (experimental group) and compared with 10 samples of periodontal ligament removed from extracted intact third molars (control group). After the GSLs extraction and purification procedures were performed the neutral and acidic GSL fractions were analyzed by high-performance thin-layer chromatography and quantified by densitometry. Data reported herein show that: (i) tissues in the experimental group presented about twice as much GSLs as the control group; (ii) lesion tissues express lactoneotetraosylceramide, and lactofucopentaosyl (IV) ceramide, whereas these neutral GSLs are absent in normal tissues; and (iii) normal tissues express GT1b, whereas lesions cells do not express this ganglioside. In contrast lesion tissues express GM3, which is conspicuously absent in normal tissues.

  20. GM2 ganglioside and pyramidal neuron dendritogenesis.

    PubMed

    Walkley, S U; Siegel, D A; Dobrenis, K

    1995-11-01

    GM2 ganglioside, although scarce in normal adult brain, is the predominant ganglioside accumulating in several types of lysosomal disorders, most notably Tay-Sachs disease. Pyramidal neurons of cerebral cortex in Tay-Sachs, as well as many other types of neuronal storage disorders, are known to exhibit a phenomenon believed unique to storage disorders: growth of ectopic dendrites. Recent studies have shown that a common metabolic abnormality shared by storage diseases with ectopic dendrite growth is the abnormal accumulation of GM2 ganglioside. The correlation between increased levels of GM2 and the presence of ectopic dendrites has been found in both ganglioside and nonganglioside storage disorders, the latter including sphingomyelin-cholesterol lipidosis, mucopolysaccharidosis, and alpha-mannosidosis. Quantitative HPTLC analysis has shown that increases in GM2 occur in proportion to the incidence of ectopic dendrite growth, whereas other gangliosides, including GM1, lack similar increases. Immunocytochemical studies of all nonganglioside storage diseases which exhibit ectopic dendritogenesis have revealed heightened GM2 ganglioside-immunoreactivity in the cortical pyramidal cell population, whereas nerurons in normal adult brain exhibit little or no staining for this ganglioside. Further, studies examining disease development have consistently shown that accumulation of GM2 ganglioside precedes growth of ectopic dendrites, indicating that it is not simply occurring secondary to new membrane production. These findings have prompted an examination for a similar relationship between GM2 ganglioside and dendritogenesis in cortical neurons of normal developing brain. Results show that GM2 ganglioside-immunoreactivity is consistently elevated in immature neurons during the period when they are undergoing active dendritic initiation, but this staining diminishes dramatically as the dendritic trees of these cells mature. Collectively, these studies on diseased and normal

  1. A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation

    PubMed Central

    Boccuto, Luigi; Aoki, Kazuhiro; Flanagan-Steet, Heather; Chen, Chin-Fu; Fan, Xiang; Bartel, Frank; Petukh, Marharyta; Pittman, Ayla; Saul, Robert; Chaubey, Alka; Alexov, Emil; Tiemeyer, Michael; Steet, Richard; Schwartz, Charles E.

    2014-01-01

    ‘Salt & Pepper’ syndrome is an autosomal recessive condition characterized by severe intellectual disability, epilepsy, scoliosis, choreoathetosis, dysmorphic facial features and altered dermal pigmentation. High-density SNP array analysis performed on siblings first described with this syndrome detected four shared regions of loss of heterozygosity (LOH). Whole-exome sequencing narrowed the candidate region to chromosome 2p11.2. Sanger sequencing confirmed a homozygous c.994G>A transition (p.E332K) in the ST3GAL5 gene, which encodes for a sialyltransferase also known as GM3 synthase. A different homozygous mutation of this gene has been previously associated with infantile-onset epilepsy syndromes in two other cohorts. The ST3GAL5 enzyme synthesizes ganglioside GM3, a glycosophingolipid enriched in neural tissue, by adding sialic acid to lactosylceramide. Unlike disorders of glycosphingolipid (GSL) degradation, very little is known regarding the molecular and pathophysiologic consequences of altered GSL biosynthesis. Glycolipid analysis confirmed a complete lack of GM3 ganglioside in patient fibroblasts, while microarray analysis of glycosyltransferase mRNAs detected modestly increased expression of ST3GAL5 and greater changes in transcripts encoding enzymes that lie downstream of ST3GAL5 and in other GSL biosynthetic pathways. Comprehensive glycomic analysis of N-linked, O-linked and GSL glycans revealed collateral alterations in response to loss of complex gangliosides in patient fibroblasts and in zebrafish embryos injected with antisense morpholinos that targeted zebrafish st3gal5 expression. Morphant zebrafish embryos also exhibited increased apoptotic cell death in multiple brain regions, emphasizing the importance of GSL expression in normal neural development and function. PMID:24026681

  2. Major and c-series gangliosides in lenticular tissues: mammals to molluscs.

    PubMed

    Saito, M; Sugiyama, K

    2001-10-01

    Gangliosides of eye lenses were examined in mammals (rat, rabbits, pig, cow), bird (chicken), reptile (terrapin), amphibian (bullfrog), bony fish (red sea bream, bluefin tuna, bonito, Pacific mackerel) and molluscs (common squid, Pacific octopus). Besides the fact that GM3 was the common ganglioside species, the composition of major gangliosides in mammalian eye lenses significantly differed from each other. While gangliotetraose gangliosides were abundant in rat eye lens, they did not constitute major components in porcine and bovine tissues. The c-series ganglioside GT3 was expressed in rat eye lenses but were practically absent in other mammalian tissues. The composition of major gangliosides in eye lenses of lower animals varied from species to species, whereas c-series gangliosides were consistently expressed, showing similar compositional profiles. Our results demonstrate the species-specific compositions of lenticular gangliosides. Evidence was also provided suggesting that eye lenses of common squid (Todarodes pacificus) and Pacific octopus (Octopus vulgaris) express gangliosides including gangliotetraose species and c-series gangliosides.

  3. Characterization and chronological changes of preterm human milk gangliosides.

    PubMed

    Uchiyama, Shin-ichi; Sekiguchi, Kazuhito; Akaishi, Mutsumi; Anan, Aki; Maeda, Tomoki; Izumi, Tatsuro

    2011-10-01

    Gangliosides are present in high concentrations in the nervous tissue, and some are observed in small amounts in many extraneural tissues and body fluids. Human milk may play important roles in energy supplementation, prophylaxis of infection, and brain development. For preterm infants, human milk gangliosides are also very important substances during the early lactation stage. However, there are no data on human milk gangliosides from mothers at preterm delivery. We investigated the characterization of gangliosides and chronologic changes in human preterm milk earlier than 30 wk of gestation from 1 to 60 d after birth. Forty-one samples were analyzed by high-performance thin-layer chromatography and a microtechnique using 1 mL of milk from each lactation and compared with 61 full-term human milk samples. Total lipid-bound sialic acid of human milk gangliosides after preterm delivery showed a peak concentration at 2 to 3 d postpartum and then remained at a high concentration until approximately 10 d. GD3 was the major ganglioside in the colostrum until approximately 7 to 10 d postpartum. GM3 was scarcely detected until 7 d postpartum and then increased gradually. There was no difference in the GD3 concentration per 1 mL of human milk between preterm and full-term human milk until approximately 5 to 8 d postpartum. After that time, the GD3 concentration decreased sharply. In contrast, the total concentrations of GM3 per 1 mL of human milk from mothers after preterm delivery were lower than those from mothers after full-term delivery throughout the entire period examined. This finding is essential to elucidate the composition of human milk gangliosides after preterm delivery, which may contribute to the analysis of the physiologic composition and formulation appropriate preterm infant nutrition. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Hydrolysis of milk gangliosides by infant-gut associated bifidobacteria determined by microfluidic chips and high-resolution mass spectrometry.

    PubMed

    Lee, Hyeyoung; Garrido, Daniel; Mills, David A; Barile, Daniela

    2014-06-01

    Gangliosides are receiving considerable attention because they participate in diverse biological processes. Milk gangliosides appear to block pathogen adhesion and modify the intestinal ecology of newborns. However, the interaction of milk gangliosides with gut bifidobacteria has been little investigated. The digestion products of a mixture of gangliosides isolated from milk following incubation with six strains of bifidobacteria were studied using nanoHPLC Chip Q-TOF MS. To understand ganglioside catabolism in vitro, the two major milk gangliosides--GM3 and GD3--remaining in the media after incubation with bifidobacteria were quantified. Individual gangliosides were identified through postprocessing precursor ion scans, and quantitated with the "find by molecular feature" algorithm of MassHunter Qualitative Analysis software. Bifidobacterium infantis and B. bifidum substantially degraded the GM3 and GD3, whereas B. longum subsp. longum and B. animalis subsp. lactis only showed moderate degradation. MALDI FTICR MS analysis enabled a deeper investigation of the degradation and identified ganglioside degradation specifically at the outer portions of the glycan molecules. These results indicate that certain infant gut-associated bifidobacteria have the ability to degrade milk gangliosides releasing sialic acid, and that these glycolipids could play a prebiotic role in the infant gut. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Neuroprotective Ganglioside Derivatives

    DTIC Science & Technology

    2004-09-01

    In this study, neuroprotective ganglioside derivatives are studied in an attempt to devise neuroprotective agents targeted to specific points in cell...death pathways. GMl ganglioside and several of its chemically modified derivatives are neuroprotective in a variety of neurotoxic models. Here... ganglioside functional groups required for neuroprotection and blood-brain barrier (BBB) permeance are determined. Cell death mechanisms are also defined

  6. Increased catabolism and decreased unsaturation of ganglioside in patients with inflammatory bowel disease

    PubMed Central

    Miklavcic, John J; Hart, Tasha DL; Lees, Gordon M; Shoemaker, Glen K; Schnabl, Kareena L; Larsen, Bodil MK; Bathe, Oliver F; Thomson, Alan BR; Mazurak, Vera C; Clandinin, M Tom

    2015-01-01

    AIM: To investigate whether accelerated catabolism of ganglioside and decreased ganglioside content contribute to the etiology of pro-inflammatory intestinal disease. METHODS: Intestinal mucosa from terminal ileum or colon was obtained from patients with ulcerative colitis or inflammatory Crohn’s disease (n = 11) undergoing bowel resection and compared to control samples of normal intestine from patients with benign colon polyps (n = 6) and colorectal cancer (n = 12) in this observational case-control study. Gangliosides and phospholipids of intestinal mucosa were characterized by class and ceramide or fatty acid composition using liquid chromatography triple-quad mass spectrometry. Content and composition of ganglioside classes GM1, GM3, GD3, GD1a, GT1 and GT3 were compared among subject groups. Content and composition of phospholipid classes phosphatidylcholine (PC) and phosphatidylethanolamine were compared among subject groups. Unsaturation index of individual ganglioside and phospholipid classes was computed and compared among subject groups. Ganglioside catabolism enzymes beta-hexosaminidase A (HEXA) and sialidase-3 (NEU3) were measured in intestinal mucosa using western blot and compared among subject groups. RESULTS: Relative GM3 ganglioside content was 2-fold higher (P < 0.05) in intestine from patients with inflammatory bowel disease (IBD) compared to control intestine. The quantity of GM3 and ratio of GM3/GD3 was also higher in IBD intestine than control tissue (P < 0.05). Control intestine exhibited 3-fold higher (P < 0.01) relative GD1a ganglioside content than IBD intestine. GD3 and GD1a species of ganglioside containing three unsaturated bonds were present in control intestine, but were not detected in IBD intestine. The relative content of PC containing more than two unsaturated bonds was 30% lower in IBD intestine than control intestine (P < 0.05). The relative content of HEXA in IBD intestine was increased 1.7-fold (P < 0.05) and NEU3 was

  7. Increased catabolism and decreased unsaturation of ganglioside in patients with inflammatory bowel disease.

    PubMed

    Miklavcic, John J; Hart, Tasha D L; Lees, Gordon M; Shoemaker, Glen K; Schnabl, Kareena L; Larsen, Bodil M K; Bathe, Oliver F; Thomson, Alan B R; Mazurak, Vera C; Clandinin, M Tom

    2015-09-21

    To investigate whether accelerated catabolism of ganglioside and decreased ganglioside content contribute to the etiology of pro-inflammatory intestinal disease. Intestinal mucosa from terminal ileum or colon was obtained from patients with ulcerative colitis or inflammatory Crohn's disease (n = 11) undergoing bowel resection and compared to control samples of normal intestine from patients with benign colon polyps (n = 6) and colorectal cancer (n = 12) in this observational case-control study. Gangliosides and phospholipids of intestinal mucosa were characterized by class and ceramide or fatty acid composition using liquid chromatography triple-quad mass spectrometry. Content and composition of ganglioside classes GM1, GM3, GD3, GD1a, GT1 and GT3 were compared among subject groups. Content and composition of phospholipid classes phosphatidylcholine (PC) and phosphatidylethanolamine were compared among subject groups. Unsaturation index of individual ganglioside and phospholipid classes was computed and compared among subject groups. Ganglioside catabolism enzymes beta-hexosaminidase A (HEXA) and sialidase-3 (NEU3) were measured in intestinal mucosa using western blot and compared among subject groups. Relative GM3 ganglioside content was 2-fold higher (P < 0.05) in intestine from patients with inflammatory bowel disease (IBD) compared to control intestine. The quantity of GM3 and ratio of GM3/GD3 was also higher in IBD intestine than control tissue (P < 0.05). Control intestine exhibited 3-fold higher (P < 0.01) relative GD1a ganglioside content than IBD intestine. GD3 and GD1a species of ganglioside containing three unsaturated bonds were present in control intestine, but were not detected in IBD intestine. The relative content of PC containing more than two unsaturated bonds was 30% lower in IBD intestine than control intestine (P < 0.05). The relative content of HEXA in IBD intestine was increased 1.7-fold (P < 0.05) and NEU3 was increased 8.3-fold (P < 0

  8. Induction of GM1a/GD1b synthase triggers complex ganglioside expression and alters neuroblastoma cell behavior; a new tumor cell model of ganglioside function

    PubMed Central

    Dong, Lixian; Liu, Yihui; Colberg-Poley, Anamaris M.; Kaucic, Karen; Ladisch, Stephan

    2011-01-01

    Neuroblastoma is the most common extracranial solid tumor in children and tumor ganglioside composition has been linked to its biological and clinical behavior. We recently found that high expression of complex gangliosides that are products of the enzyme GM1a/GD1b synthase predicts a more favorable outcome in human neuroblastoma, and others have shown that complex gangliosides such as GD1a inhibit metastasis of murine tumors. To determine how a switch from structurally simple to structurally complex ganglioside expression affects neuroblastoma cell behavior, we engineered IMR32 human neuroblastoma cells, which contain almost exclusively (89%) the simple gangliosides (SG) GM2, GD2, GM3, and GD3, to overexpress the complex gangliosides (CG) GM1, GD1a, GD1b and GT1b, by stable retroviral-mediated transduction of the cDNA encoding GM1a/GD1b synthase. This strikingly altered cellular ganglioside composition without affecting total ganglioside content: There was a 23-fold increase in the ratio of complex to simple gangliosides in GM1a/GD1b synthase-transduced cells (IMR32-CG) vs. wild type (IMR32) or vector-transfected (IMR32-V) cells with essentially no expression of the clinical neuroblastoma marker, GD2, confirming effectiveness of this molecular switch from simple to complex ganglioside synthesis. Probing for consequences of the switch, we found that among functional properties of IMR32-CG cells, cell migration was inhibited and Rho/Rac1 activities were altered, while proliferation kinetics and cell differentiation were unaffected. These findings further implicate cellular ganglioside composition in determining cell migration characteristics of tumor cells. This IMR32 model system should be useful in delineating the impact of ganglioside composition on tumor cell function. PMID:21519903

  9. Induction of GM1a/GD1b synthase triggers complex ganglioside expression and alters neuroblastoma cell behavior; a new tumor cell model of ganglioside function.

    PubMed

    Dong, Lixian; Liu, Yihui; Colberg-Poley, Anamaris M; Kaucic, Karen; Ladisch, Stephan

    2011-05-01

    Neuroblastoma is the most common extracranial solid tumor in children and tumor ganglioside composition has been linked to its biological and clinical behavior. We recently found that high expression of complex gangliosides that are products of the enzyme GM1a/GD1b synthase predicts a more favorable outcome in human neuroblastoma, and others have shown that complex gangliosides such as GD1a inhibit metastasis of murine tumors. To determine how a switch from structurally simple to structurally complex ganglioside expression affects neuroblastoma cell behavior, we engineered IMR32 human neuroblastoma cells, which contain almost exclusively (89%) the simple gangliosides (SG) GM2, GD2, GM3, and GD3, to overexpress the complex gangliosides (CG) GM1, GD1a, GD1b and GT1b, by stable retroviral-mediated transduction of the cDNA encoding GM1a/GD1b synthase. This strikingly altered cellular ganglioside composition without affecting total ganglioside content: There was a 23-fold increase in the ratio of complex to simple gangliosides in GM1a/GD1b synthase-transduced cells (IMR32-CG) vs. wild type (IMR32) or vector-transfected (IMR32-V) cells with essentially no expression of the clinical neuroblastoma marker, GD2, confirming effectiveness of this molecular switch from simple to complex ganglioside synthesis. Probing for consequences of the switch, we found that among functional properties of IMR32-CG cells, cell migration was inhibited and Rho/Rac1 activities were altered, while proliferation kinetics and cell differentiation were unaffected. These findings further implicate cellular ganglioside composition in determining cell migration characteristics of tumor cells. This IMR32 model system should be useful in delineating the impact of ganglioside composition on tumor cell function.

  10. Cancer vaccines: an update with special focus on ganglioside antigens.

    PubMed

    Bitton, Roberto J; Guthmann, Marcel D; Gabri, Mariano R; Carnero, Ariel J L; Alonso, Daniel F; Fainboim, Leonardo; Gomez, Daniel E

    2002-01-01

    the (CIM) from La Havana, Cuba, to developed new strategies for specific active immunotherapy. The project included two ganglioside based vaccines and one anti-idiotypic vaccine. We focused on two antigens: first GM3, an ubiquitous antigen which is over-expressed in several epithelial tumor types; and a second one, N-Glycolyl-GM3 a more molecule, not being expressed in normal tissues and recently found in several neoplastic cells, in particular breast, melanoma and neuroectodermal cancer cells. We developed two vaccines, one with each antigen, both using proteins derived from the outer membrane proteins (OMP) of Neisseria Meningitidis B, as carriers. We developed also the 1E10 vaccine; an anti-idiotype vaccine designed to mimic the N-Glycolyl-GM3 gangliosides. This monoclonal antibody is an Ab2-type-antibody which recognizes the Ab1 antibody called P3, the latter is a monoclonal antibody that specifically recognizes gangliosides as antigens. Since 1998 we initiated a clinical development program for these three compounds. Results of the phase I clinical trials proved that the three vaccines were safe and able to elicit specific antibody responses. In addition we were able to demonstrate the activation of the cellular arm of the immune response in patients treated with the GM3 vaccine. Although phase I trials are not designed to evaluate antitumor efficacy, it was encouraging to observe tumor shrinkage in some patients treated both with the GM3 and N-Glycolyl-GM3 vaccines. We have already begun a phase II program in several neoplastic diseases, with all three vaccines.

  11. Ganglioside Regulation of AMPA Receptor Trafficking

    PubMed Central

    Prendergast, Jillian; Umanah, George K.E.; Yoo, Seung-Wan; Lagerlöf, Olof; Motari, Mary G.; Cole, Robert N.; Huganir, Richard L.; Dawson, Ted M.; Dawson, Valina L.

    2014-01-01

    Gangliosides are major cell-surface determinants on all vertebrate neurons. Human congenital disorders of ganglioside biosynthesis invariably result in intellectual disability and are often associated with intractable seizures. To probe the mechanisms of ganglioside functions, affinity-captured ganglioside-binding proteins from rat cerebellar granule neurons were identified by quantitative proteomic mass spectrometry. Of the six proteins that bound selectively to the major brain ganglioside GT1b (GT1b:GM1 > 4; p < 10−4), three regulate neurotransmitter receptor trafficking: Thorase (ATPase family AAA domain-containing protein 1), soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (γ-SNAP), and the transmembrane protein Nicalin. Thorase facilitates endocytosis of GluR2 subunit-containing AMPA-type glutamate receptors (AMPARs) in an ATPase-dependent manner; its deletion in mice results in learning and memory deficits (J. Zhang et al., 2011b). GluR2-containing AMPARs did not bind GT1b, but bound specifically to another ganglioside, GM1. Addition of noncleavable ATP (ATPγS) significantly disrupted ganglioside binding, whereas it enhanced AMPAR association with Thorase, NSF, and Nicalin. Mutant mice lacking GT1b expressed markedly higher brain Thorase, whereas Thorase-null mice expressed higher GT1b. Treatment of cultured hippocampal neurons with sialidase, which cleaves GT1b (and other sialoglycans), resulted in a significant reduction in the size of surface GluR2 puncta. These data support a model in which GM1-bound GluR2-containing AMPARs are functionally segregated from GT1b-bound AMPAR-trafficking complexes. Release of ganglioside binding may enhance GluR2-containing AMPAR association with its trafficking complexes, increasing endocytosis. Disrupting ganglioside biosynthesis may result in reduced synaptic expression of GluR2-contianing AMPARs resulting in intellectual deficits and seizure susceptibility in mice and humans. PMID:25253868

  12. Ganglioside regulation of AMPA receptor trafficking.

    PubMed

    Prendergast, Jillian; Umanah, George K E; Yoo, Seung-Wan; Lagerlöf, Olof; Motari, Mary G; Cole, Robert N; Huganir, Richard L; Dawson, Ted M; Dawson, Valina L; Schnaar, Ronald L

    2014-09-24

    Gangliosides are major cell-surface determinants on all vertebrate neurons. Human congenital disorders of ganglioside biosynthesis invariably result in intellectual disability and are often associated with intractable seizures. To probe the mechanisms of ganglioside functions, affinity-captured ganglioside-binding proteins from rat cerebellar granule neurons were identified by quantitative proteomic mass spectrometry. Of the six proteins that bound selectively to the major brain ganglioside GT1b (GT1b:GM1 > 4; p < 10(-4)), three regulate neurotransmitter receptor trafficking: Thorase (ATPase family AAA domain-containing protein 1), soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (γ-SNAP), and the transmembrane protein Nicalin. Thorase facilitates endocytosis of GluR2 subunit-containing AMPA-type glutamate receptors (AMPARs) in an ATPase-dependent manner; its deletion in mice results in learning and memory deficits (J. Zhang et al., 2011b). GluR2-containing AMPARs did not bind GT1b, but bound specifically to another ganglioside, GM1. Addition of noncleavable ATP (ATPγS) significantly disrupted ganglioside binding, whereas it enhanced AMPAR association with Thorase, NSF, and Nicalin. Mutant mice lacking GT1b expressed markedly higher brain Thorase, whereas Thorase-null mice expressed higher GT1b. Treatment of cultured hippocampal neurons with sialidase, which cleaves GT1b (and other sialoglycans), resulted in a significant reduction in the size of surface GluR2 puncta. These data support a model in which GM1-bound GluR2-containing AMPARs are functionally segregated from GT1b-bound AMPAR-trafficking complexes. Release of ganglioside binding may enhance GluR2-containing AMPAR association with its trafficking complexes, increasing endocytosis. Disrupting ganglioside biosynthesis may result in reduced synaptic expression of GluR2-contianing AMPARs resulting in intellectual deficits and seizure susceptibility in mice and humans.

  13. Hydrolysis of milk gangliosides by infant-gut associated bifidobacteria determined by microfluidic chips and high-resolution mass spectrometry

    PubMed Central

    Lee, Hyeyoung; Garrido, Daniel; Mills, David A.; Barile, Daniela

    2014-01-01

    Gangliosides are receiving considerable attention because they participate in diverse biological processes. Milk gangliosides appear to block pathogen adhesion and modify the intestinal ecology of newborns. However, the interaction of milk gangliosides with gut bifidobacteria has been little investigated. The digestion products of a mixture of gangliosides isolated from milk following incubation with six strains of bifidobacteria were studied using nanoHPLC ChipQ-TOF MS. To understand ganglioside catabolism in vitro, the two major milk gangliosides—GM3 and GD3—remaining in the media after incubation with bifidobacteria were quantified. Individual gangliosides were identified through post-processing precursor ion scans, and quantitated with the “find by molecular feature” algorithm of MassHunter Qualitative Analysis software. B. infantis and B. bifidum substantially degraded the GM3 and GD3, whereas B. longum subsp. longum and B. animalis subsp. lactis only showed moderate degradation. MALDI FTICR MS analysis enabled a deeper investigation of the degradation and identified ganglioside degradation specifically at the outer portions of the glycan molecules. These results indicate that certain infant gut-associated bifidobacteria have the ability to degrade milk gangliosides releasing sialic acid, and that these glycolipids could play a prebiotic role in the infant gut. PMID:24519724

  14. Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders.

    PubMed

    McGlynn, Robert; Dobrenis, Kostantin; Walkley, Steven U

    2004-12-20

    The mucopolysaccharidoses (MPSs) are a complex family of lysosomal storage disorders characterized by failure to degrade heparan sulfate (HS) and/or other types of glycosaminoglycans (GAGs) secondary to the absence of specific lysosomal enzymes. An accompanying storage of glycosphingolipids (GSLs), most notably GM2 and GM3 gangliosides, has also been documented to occur in many types of MPS disease and is believed to be caused by secondary inhibition of GSL-degradative enzymes by intracellular GAG accumulation. We have documented the presence of secondary ganglioside accumulation in mouse models of several MPS disorders (types I, IIIA, IIIB, and VII) and report that this storage is accompanied by sequestration of free cholesterol in a manner similar to that observed in primary gangliosidoses. Using confocal microscopy, we evaluated the cellular distribution of cholesterol, GM2 and GM3 gangliosides, and HS in brains of mice with MPS IIIA disease. Unexpectedly, we found that although both gangliosides often accumulated in the same neurons, they were consistently located in separate populations of cytoplasmic vesicles. Additionally, GM3 ganglioside only partially co-localized with the primary storage material (HS), and cholesterol likewise only partially co-localized with the GM2 and GM3 gangliosides. These findings raise significant questions about the mechanism(s) responsible for secondary accumulation of storage materials in MPS disease. Furthermore, given that GSLs and cholesterol are constituents of membrane rafts believed critical in signal transduction events in neurons, their co-sequestration in individual neurons suggests the presence of defects in the composition, trafficking, and/or recycling of raft components and thus possible new mechanisms to explain neuronal dysfunction in MPS disorders.

  15. Neuroprotective Ganglioside Derivatives

    DTIC Science & Technology

    2003-09-01

    In this study, neuroprotective ganglioside derivatives are examined so they can be targeted to specific points in cell death pathways. Here... ganglioside functional groups required for neuroprotection and blood-brain barrier permeance are determined. Cell death mechanisms and the mechanism(s) by...which semisynthetic gangliosides intervene in the cell death process are also studied. In the second year C2, C4, CS, C14, C20, and C26 fatty acid GMl

  16. Molecular subtyping of metastatic melanoma based on cell ganglioside metabolism profiles.

    PubMed

    Tringali, Cristina; Silvestri, Ilaria; Testa, Francesca; Baldassari, Paola; Anastasia, Luigi; Mortarini, Roberta; Anichini, Andrea; López-Requena, Alejandro; Tettamanti, Guido; Venerando, Bruno

    2014-08-01

    In addition to alterations concerning the expression of oncogenes and onco-suppressors, melanoma is characterized by the presence of distinctive gangliosides (sialic acid carrying glycosphingolipids). Gangliosides strongly control cell surface dynamics and signaling; therefore, it could be assumed that these alterations are linked to modifications of cell behavior acquired by the tumor. On these bases, this work investigated the correlations between melanoma cell ganglioside metabolism profiles and the biological features of the tumor and the survival of patients. Melanoma cell lines were established from surgical specimens of AJCC stage III and IV melanoma patients. Sphingolipid analysis was carried out on melanoma cell lines and melanocytes through cell metabolic labeling employing [3-3H]sphingosine and by FACS. N-glycolyl GM3 was identified employing the 14 F7 antibody. Gene expression was assayed by Real Time PCR. Cell invasiveness was assayed through a Matrigel invasion assay; cell proliferation was determined through the soft agar assay, MTT, and [3H] thymidine incorporation. Statistical analysis was performed using XLSTAT software for melanoma hierarchical clustering based on ganglioside profile, the Kaplan-Meier method, the log-rank (Mantel-Cox) test, and the Mantel-Haenszel test for survival analysis. Based on the ganglioside profiles, through a hierarchical clustering, we classified melanoma cells isolated from patients into three clusters: 1) cluster 1, characterized by high content of GM3, mainly in the form of N-glycolyl GM3, and GD3; 2) cluster 2, characterized by the appearance of complex gangliosides and by a low content of GM3; 3) cluster 3, which showed an intermediate phenotype between cluster 1 and cluster 3. Moreover, our data demonstrated that: a) a correlation could be traced between patients' survival and clusters based on ganglioside profiles, with cluster 1 showing the worst survival; b) the expression of several enzymes (sialidase NEU3

  17. Imaging mass spectrometry identifies prognostic ganglioside species in rodent intracranial transplants of glioma and medulloblastoma.

    PubMed

    Ermini, Leonardo; Morganti, Elena; Post, Alexander; Yeganeh, Behzad; Caniggia, Isabella; Leadley, Michael; Faria, Claudia C; Rutka, James T; Post, Martin

    2017-01-01

    Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (MALDI-MSI) allows us to investigate the distribution of lipid molecules within tissues. We used MALDI-MSI to identify prognostic gangliosides in tissue sections of rat intracranial allografts of rat glioma and mouse intracranial xenografts of human medulloblastoma. In the healthy adult rodent brain, GM1 and GD1 were the main types of glycolipids. Both gangliosides were absent in both intracranial transplants. The ganglioside GM3 was not present in the healthy adult brain but was highly expressed in rat glioma allografts. In combination with tandem mass spectrometry GM3 (d18:1/C24:0) was identified as the most abundant ganglioside species in the glioma allotransplant. By contrast, mouse xenografts of human medulloblastoma were characterized by prominent expression of the ganglioside GM2 (d18:0/C18:0). Together, these data demonstrate that tissue-based MALDI-MSI of gangliosides is able to discriminate between different brain tumors and may be a useful clinical tool for their classification and grading.

  18. Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase outside of sialic acid biosynthesis: modulation of sialyltransferase and BiP expression, GM3 and GD3 biosynthesis, proliferation, and apoptosis, and ERK1/2 phosphorylation.

    PubMed

    Wang, Zhiyun; Sun, Zhonghui; Li, Adrienne V; Yarema, Kevin J

    2006-09-15

    Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) beyond controlling flux into the sialic acid biosynthetic pathway by converting UDP-GlcNAc to N-acetylmannosamine are described in this report. Overexpression of recombinant GNE in human embryonic kidney (HEK AD293) cells led to an increase in mRNA levels for ST3Gal5 (GM3 synthase) and ST8Sia1 (GD3 synthase) as well as the biosynthetic products of these sialyltransferases, the GM3 and GD3 gangliosides. Conversely, down-regulation of GNE by RNA interference methods had the opposite, but consistent, effect of lowering ST3Gal5 and ST8Sia1 mRNAs and reducing GM3 and GD3 levels. Control experiments ensured that GNE-mediated changes in sialyltransferase expression and ganglioside biosynthesis were not the result of altered flux through the sialic acid pathway. Interestingly, exogenous GM3 and GD3 also changed the expression of GNE and led to reduced ST3Gal5 and ST8Sia1 mRNA levels, demonstrating a reciprocating feedback mechanism where gangliosides regulate upstream biosynthetic enzymes. Cellular responses to the GNE-mediated changes in ST3Gal5 and ST8Sia1 expression and GM3 and GD3 levels were investigated next. Conditions that led to reduced ganglioside production (e.g. short hairpin RNA exposure) stimulated proliferation, whereas conditions that resulted in increased ganglioside levels (e.g. recombinant GNE and exogenous gangliosides) led to reduced proliferation with a concomitant increase in apoptosis. Finally, changes to BiP expression and ERK1/2 phosphorylation consistent with apoptosis and proliferation, respectively, were observed. These results provide examples of specific biochemical pathways, other than sialic acid metabolism, that are influenced by GNE.

  19. Alterations of membrane lipids and in gene expression of ganglioside metabolism in different brain structures in a mouse model of mucopolysaccharidosis type I (MPS I).

    PubMed

    Kreutz, Fernando; dos Santos Petry, Fernanda; Camassola, Melissa; Schein, Vanessa; Guma, Fátima C R; Nardi, Nance Beyer; Trindade, Vera Maria Treis

    2013-09-15

    Mucopolysaccharidosis I (MPS I) is a congenital disorder caused by the deficiency of α-l-iduronidase (IDUA), with the accumulation of glycosaminoglycans (GAGs) in the CNS. Although GAG toxicity is not fully understood, previous works suggest a GAG-induced alteration in neuronal membrane composition. This study is aimed to evaluate the levels and distribution of gangliosides and cholesterol in different brain regions (cortex, cerebellum, hippocampus and hypothalamus) in a model using IDUA knockout (KO) mice (C57BL/6). Lipids were extracted with chloroform-methanol and then total gangliosides and cholesterol were determined, followed by ganglioside profile analyses. While no changes in cholesterol content were observed, the results showed a tissue dependent ganglioside alteration in KO mice: a total ganglioside increase in cortex and cerebellum, and a selective presence of GM3, GM2 and GD3 gangliosides in the hippocampus and hypothalamus. To elucidate this, we evaluated gene expression of ganglioside synthesis (GM3, GD3 and GM2/GD2 synthases) and degradation of (Neuraminidase1) enzymes in the cerebellum and hippocampus by RT-sq-PCR. The results obtained with KO mice showed a reduced expression of GD3 and GM2/GD2 synthases and Neuraminidase1 in cerebellum; and a decrease in GM2/GD2 synthase and Neuraminidase1 in the hippocampus. These data suggest that the observed ganglioside changes result from a combined effect of GAGs on ganglioside biosynthesis and degradation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Enhanced expression of membrane-associated sialidase Neu3 decreases GD3 and increases GM3 on the surface of Jurkat cells during etoposide-induced apoptosis.

    PubMed

    Azuma, Yutaro; Sato, Hirotaka; Higai, Koji; Matsumoto, Kojiro

    2007-09-01

    We previously reported that, in Jurkat human T cells, the topoisomerase II inhibitor etoposide enhances sialidase activity and reduces cell surface sialic acid levels at an early stage of apoptosis and that the decreases in sialic acid are suppressed by the sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid [Azuma Y., et al., Glycoconj. J., 17, 301-306 (2000)]. In the current studies, we treated Jurkat cells with etoposide and examined the changes in the cell surface levels of gangliosides GM1, GM2, GM3, GD1a, and GD3 at physiological pH using anti-ganglioside antibodies. We also examined the sialidase activity on the cell surface using 4-methylumbelliferyl N-acetylneuraminic acid and measured the mRNA expression of the plasma membrane-associated sialidase Neu3 and the lysozomal Neu1 using real-time PCR. We found an increase in GM3 and a decrease in GD3 during the early stage (4 h) of etoposide-induced apoptosis that preceded the increase in cell surface exposure of phosphatidylserine (4 to 6 h). The caspase 3 inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde significantly suppressed changes in GM3 and GD3 and blocked the enhanced cell surface sialidase activity. Furthermore, etoposide caused a gradual up-regulation of Neu3 mRNA expression but not Neu1 mRNA expression. Enhanced Neu3 mRNA expression was suppressed in the presence of caspase 3 inhibitor. These results indicate that Neu3 is up-regulated in Jurkat cells undergoing etoposide-induced apoptosis through intracellular signaling events downstream of caspase 3 activation and that enhanced Neu3 activity is closely related to the changes of cell surface ganglioside composition.

  1. Purification of human milk gangliosides by silica gel chromatography and analysis of trifluoroacetate derivatives by gas chromatography.

    PubMed

    Laegreid, A; Kolstø Otnaess, A B; Bryn, K

    1986-04-25

    Two of the main gangliosides in human milk were purified by silica gel (230-400 mesh) column chromatography. The gangliosides were identified as GD3 and GM3 by methanolysis (2 M hydrochloric acid; 60 or 85 degrees C) and gas chromatography of trifluoroacetate derivatives on a fused-silica capillary column. The molar ratios of galactose, glucose and sialic acid were 1:1:2 and 1:1:1, respectively, and the sequence in both gangliosides comprised sialic acid--galactose--glucose--ceramide, as indicated by the time course of cleavage of individual components during methanolysis at 60 degrees C.

  2. Effect of vaccination with N-glycolyl GM3/VSSP vaccine by subcutaneous injection in patients with advanced cutaneous melanoma

    PubMed Central

    Osorio, Marta; Gracia, Elias; Reigosa, Edmundo; Hernandez, Julio; de la Torre, Ana; Saurez, Giselle; Perez, Kirenia; Viada, Carmen; Cepeda, Meylán; Carr, Adriana; Ávila, Yisel; Rodríguez, Migdalia; Fernandez, Luis E

    2012-01-01

    NeuGc-containing gangliosides have been described in melanoma cells and are an attractive target for cancer immunotherapy because they are minimally or not expressed in normal human tissues. Melanoma patients treated with a vaccine based on N-glycolyl gangliosides have shown benefit in progression free survival and overall survival. We conducted a multicenter Phase I/II clinical trial in patients with metastatic cutaneous melanoma treated with the N-gycolyl GM3/very-small-size proteoliposomes vaccine by the subcutaneous route. Selecting the optimal biological dose of the vaccine was the principal objective based on immunogenicity, efficacy, and safety results. Six dose levels were studied and the treatment schedule consisted of five doses administered every 2 weeks and then monthly until 15 doses had been given. Dose levels evaluated were 150, 300, 600, 900, 1200, and 1500 μg with five patients included in each dose level except the 900 μg dose (n = 10). Immunogenicity was determined by antibody titers generated in patients after vaccination. Antitumor effect was measured by response criteria of evaluation in solid tumors and safety was evaluated by common toxicity criteria of adverse events. The vaccine was safe and immunogenic at all doses levels. The most frequent adverse events related to vaccination were mild to moderate injection site reactions and flu-like symptoms. Vaccination induced specific anti-NeuGcGM3 immunoglobulin M and immunoglobulin G antibody responses in all patients. Disease control (objective response or stable disease) was obtained in 38.46% of patients. Global median overall survival was 20.20 months. Two patients achieved overall survival duration of about 4 and 5 years, respectively. The 900 μg dose resulted in overall survival duration of 19.40 months and was selected as the biological optimal dose. PMID:23055778

  3. Effect of vaccination with N-glycolyl GM3/VSSP vaccine by subcutaneous injection in patients with advanced cutaneous melanoma.

    PubMed

    Osorio, Marta; Gracia, Elias; Reigosa, Edmundo; Hernandez, Julio; de la Torre, Ana; Saurez, Giselle; Perez, Kirenia; Viada, Carmen; Cepeda, Meylán; Carr, Adriana; Avila, Yisel; Rodríguez, Migdalia; Fernandez, Luis E

    2012-01-01

    NeuGc-containing gangliosides have been described in melanoma cells and are an attractive target for cancer immunotherapy because they are minimally or not expressed in normal human tissues. Melanoma patients treated with a vaccine based on N-glycolyl gangliosides have shown benefit in progression free survival and overall survival. We conducted a multicenter Phase I/II clinical trial in patients with metastatic cutaneous melanoma treated with the N-gycolyl GM3/very-small-size proteoliposomes vaccine by the subcutaneous route. Selecting the optimal biological dose of the vaccine was the principal objective based on immunogenicity, efficacy, and safety results. Six dose levels were studied and the treatment schedule consisted of five doses administered every 2 weeks and then monthly until 15 doses had been given. Dose levels evaluated were 150, 300, 600, 900, 1200, and 1500 μg with five patients included in each dose level except the 900 μg dose (n = 10). Immunogenicity was determined by antibody titers generated in patients after vaccination. Antitumor effect was measured by response criteria of evaluation in solid tumors and safety was evaluated by common toxicity criteria of adverse events. The vaccine was safe and immunogenic at all doses levels. The most frequent adverse events related to vaccination were mild to moderate injection site reactions and flu-like symptoms. Vaccination induced specific anti-NeuGcGM3 immunoglobulin M and immunoglobulin G antibody responses in all patients. Disease control (objective response or stable disease) was obtained in 38.46% of patients. Global median overall survival was 20.20 months. Two patients achieved overall survival duration of about 4 and 5 years, respectively. The 900 μg dose resulted in overall survival duration of 19.40 months and was selected as the biological optimal dose.

  4. Production of Multiple Brain-Like Ganglioside Species Is Dispensable for Fas-Induced Apoptosis of Lymphoid Cells

    PubMed Central

    Carpentier, Stéphane; Levade, Thierry; Cuvillier, Olivier; Portoukalian, Jacques

    2011-01-01

    Activation of an acid sphingomyelinase (aSMase) leading to a biosynthesis of GD3 disialoganglioside has been associated with Fas-induced apoptosis of lymphoid cells. The present study was undertaken to clarify the role of this enzyme in the generation of gangliosides during apoptosis triggered by Fas ligation. The issue was addressed by using aSMase-deficient and aSMase-corrected cell lines derived from Niemann-Pick disease (NPD) patients. Fas cross-linking elicited a rapid production of large amounts of complex a- and b-series species of gangliosides with a pattern and a chromatographic behavior as single bands reminiscent of brain gangliosides. The gangliosides were synthesized within the first ten minutes and completely disappeared within thirty minutes after stimulation. Noteworthy is the observation that GD3 was not the only ganglioside produced. The production of gangliosides and the onset of apoptotic hallmarks occurred similarly in both aSMase-deficient and aSMase-corrected NPD lymphoid cells, indicating that aSMase activation is not accountable for ganglioside generation. Hampering ganglioside production by inhibiting the key enzyme glucosylceramide synthase did not abrogate the apoptotic process. In addition, GM3 synthase-deficient lymphoid cells underwent Fas-induced apoptosis, suggesting that gangliosides are unlikely to play an indispensable role in transducing Fas-induced apoptosis of lymphoid cells. PMID:21629700

  5. Gangliosides influence EGFR/ErbB2 heterodimer stability but they do not modify EGF-dependent ErbB2 phosphorylation.

    PubMed

    Milani, Simona; Sottocornola, Elena; Zava, Stefania; Galbiati, Mariarita; Berra, Bruno; Colombo, Irma

    2010-06-01

    Gangliosides are well-known regulators of cell differentiation through specific interactions with growth factor receptors. Previously, our group provided the first evidence about stable association of ganglioside GM(3) to EGFR/ErbB2 heterodimers in mammary epithelial cells. Goals of the present study were to better define the role of gangliosides in EGFR/ErbB2 heterodimerization and receptor phosphorylation events and to analyze their involvement in mammary cell differentiation. Experiments have been conducted using the ceramide analogue (+/-)-treo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ceramide glucosyltransferase resulting in the endogenous ganglioside depletion, and the lactogenic hormone mix DIP (dexamethasone, insulin, prolactin), which induces cell differentiation and beta-casein mRNA synthesis. In addition, treatments of ganglioside-depleted cells with exogenous GM(3) have been carried out to ascertain the specific involvement of this ganglioside. Results from co-immunoprecipitation and Western blot experiments have shown that the endogenous ganglioside depletion resulted in the disappearance of SDS-stable EGFR/ErbB2 heterodimers and in the appearance of tyrosine-phosphorylated EGFR also in the absence of EGF stimulation; exogenous GM(3) added in combination with [D]-PDMP reversed both these effects. In contrast, the tyrosine phosphorylation of ErbB2 in ganglioside-depleted cells occurred only after EGF stimulation. Moreover, when ganglioside-depleted cells were treated with DIP in absence of EGF, beta-casein gene expression appeared strongly down-regulated, and beta-casein mRNA levels were partially restored by exogenous GM(3) treatment. Altogether, although the involvement of other ganglioside species cannot be excluded, these findings sustain the ganglioside GM(3) as an essential molecule for EGFR/ErbB2 heterodimer stability and important regulator of EGFR tyrosine phosphorylation, but it is not crucial

  6. Large scale biosynthesis of ganglioside analogues by RERF-LC-AI cells cultured in HYPERFlask.

    PubMed

    Shimura, Yumiko; Suzuki, Junya; Muraoka, Miho; Kasuya, Maria Carmelita Zulueta; Matsuoka, Koji; Hatanaka, Kenichi

    2012-01-01

    The efficient production of ganglioside analogues was accomplished using RERF-LC-AI cells cultured in HYPERFlask (High Yield PERformance Flask). Eight kinds of ganglioside analogues (GM3, GM2, sialylparagloboside, GD3, di-sialylated lacto-N-tetraose, and another three kinds of analogues with intricate structures) were synthesized by the saccharide primer method using lung squamous-cell carcinoma line RERF-LC-AI and 12-azidododecyl β-lactoside primer. The yield for each analogue obtained using HYPERFlask was higher than yields obtained from 100-mm dishes.

  7. Lactational changes in concentration and distribution of ganglioside molecular species in human breast milk from Chinese mothers.

    PubMed

    Ma, Lin; Liu, Xihong; MacGibbon, Alastair K H; Rowan, Angela; McJarrow, Paul; Fong, Bertram Y

    2015-11-01

    Gangliosides play a critical role in human brain development and function. Human breast milk (HBM) is an important dietary source of gangliosides for the growing infant. In this study, ganglioside concentrations were measured in the breast milk from a cross-sectional sample of Chinese mothers over an 8-month lactation period. The average total ganglioside concentration increased from 13.1 mg/l during the first month to 20.9 mg/l by 8 months of lactation. The average concentration during the typically solely breast-feeding period of 1‒6 months was 18.9 mg/l. This is the first study to report the relative distribution of the individual ganglioside molecular species through lactation for any population group. The ganglioside molecular species are made up of different fatty acid moieties that influence the physical properties of these gangliosides, and hence affect their function. The GM(3) molecular species containing long-chain acyl fatty acids had the most prominent changes, increasing in both concentration and relative distribution. The equivalent long-chain acyl fatty acid GD(3) molecular species typically decreased in concentration and relative distribution. The lactational trends for both concentration and relative distribution for the very long-chain acyl fatty acid molecular species were more varied. The major GM(3) and GD(3) molecular species during lactation were d40:1 and d42:1, respectively. An understanding of ganglioside molecular species distribution in HBM is essential for accurate application of mass spectrometry methods for ganglioside quantification.

  8. Gangliosides and sialosylglycoproteins in coated vesicles from bovine brain.

    PubMed Central

    Gravotta, D; Maccioni, H J

    1985-01-01

    The content of gangliosides and sialosylglycoproteins was investigated in a coated-vesicle-enriched fraction prepared from bovine brain by the method of Pearse [(1975) J. Mol. Biol. 97, 93-98] and further purified by g.p.c. (glass-permeation chromatography) [Pfeffer & Kelly (1981) J. Cell Biol. 91, 385-391]. From morphological criteria and from the analysis of the polypeptide pattern on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis the coated-vesicle fraction (CV-fraction) appeared more than 95% pure. The ganglioside-NeuAc (N-acetylneuraminate), glycoprotein-NeuAc, phospholipid and cholesterol contents of CV-fraction were compared with those of bovine brain synaptic plasma membranes (SPM). The cholesterol to phospholipid molar ratio was 0.47 +/- 0.07 in CV-fraction and 1.06 +/- 0.08 in SPM. The ganglioside-NeuAc and glycoprotein-NeuAc to phospholipid molar ratios were 0.047 and 0.020 respectively in CV-fraction and 0.039 and 0.016 respectively in SPM. The (Na+ + K+)-dependent ATPase activity sensitive to ouabain (in mumol of Pi/h per nmol of phospholipid) was 1.04 in CV-fraction and 0.63 in SPM; the ratio between this activity and the activity resistant to ouabain was 2 in CV-fraction and 1.4 in SPM. A t.l.c. analysis of the ganglioside fractions showed that most of the ganglioside species present in SPM were present in CV-fraction. In a rat brain coated-vesicle preparation not subjected to g.p.c., the activities [as sugar-radioactivity (c.p.m.) transferred/h per mumol of phospholipid] of the enzymes CMP-NeuAc:sialosyl-lactosylceramide (GM3) sialosyl-, UDP-Gal:N-acetylgalactosaminyl(sialosyl)lactosylceramide (GM2) galactosyl- and UDP-GalNAc:sialosyl-lactosylceramide (GM3) N-acetylgalactosaminyl-transferases, which were considered Golgi-apparatus markers, were about 19, 16 and 10% respectively of those determined in rat brain neuronal perikaryon-enriched fractions. Taken together, the results indicate that most of the major gangliosides are constituents

  9. NGlycolylGM3/VSSP Vaccine in Metastatic Breast Cancer Patients: Results of Phase I/IIa Clinical Trial

    PubMed Central

    de la Torre, Ana; Hernandez, Julio; Ortiz, Ramón; Cepeda, Meylán; Perez, Kirenia; Car, Adriana; Viada, Carmen; Toledo, Darién; Guerra, Pedro Pablo; García, Elena; Arboláez, Migdacelys; Fernandez, Luis E

    2012-01-01

    Patients treated with vaccines based on NGlycolil gangliosides have showed benefit in progression free survival and overall survival. These molecules, which have been observed in breast cancer cells, are minimally or not expressed in normal human tissue and have been considered as antigen tumor-specific. For this reason they are very attractive to immunotherapy. A phase I/II clinical trial was carried out in metastatic breast cancer patients with the NGlycolylGM3/VSSP vaccine administered by subcutaneous route. Selecting the optimal biological doses of the vaccine in these patients was the principal objective based on the immunogenicity, efficacy and safety results. Six levels of doses of vaccine were studied. Treatment schedule consisted of five doses every two weeks and then monthly until reaching a fifteenth doses. Doses levels studied were 150, 300, 600, 900, 1200 and 1500 μg. Five patients in each level were included except at the 900 μg dose, in which ten patients were included. Immunogenicity was determined by levels of antibodies generated in patients after vaccination. The response criteria of evaluation in solid tumors (RECIST) was used to evaluate antitumoral effect. Safety was evaluated by Common Toxicity Criteria of Adverse Event (CTCAE). The vaccine administration was safe and immunogenic in all does levels. Most frequent adverse events related to vaccination were mild or moderate and were related to injection site reactions and “flu-like” symptoms. Vaccination induced specific anti-NeuGcGM3 IgM and IgG antibodies responses in all patients. Disease control (objective response or stable disease) was obtained in 72.7% of evaluated patients. Median overall survival was 15.9 months. Two patients of two different dose levels achieved overall survival values of about six years. The dose of 900 μg was selected as biological optimal dose in which overall survival was 28.5 months. PMID:23055739

  10. NGlycolylGM3/VSSP Vaccine in Metastatic Breast Cancer Patients: Results of Phase I/IIa Clinical Trial.

    PubMed

    de la Torre, Ana; Hernandez, Julio; Ortiz, Ramón; Cepeda, Meylán; Perez, Kirenia; Car, Adriana; Viada, Carmen; Toledo, Darién; Guerra, Pedro Pablo; García, Elena; Arboláez, Migdacelys; Fernandez, Luis E

    2012-01-01

    Patients treated with vaccines based on NGlycolil gangliosides have showed benefit in progression free survival and overall survival. These molecules, which have been observed in breast cancer cells, are minimally or not expressed in normal human tissue and have been considered as antigen tumor-specific. For this reason they are very attractive to immunotherapy. A phase I/II clinical trial was carried out in metastatic breast cancer patients with the NGlycolylGM3/VSSP vaccine administered by subcutaneous route. Selecting the optimal biological doses of the vaccine in these patients was the principal objective based on the immunogenicity, efficacy and safety results. Six levels of doses of vaccine were studied. Treatment schedule consisted of five doses every two weeks and then monthly until reaching a fifteenth doses. Doses levels studied were 150, 300, 600, 900, 1200 and 1500 μg. Five patients in each level were included except at the 900 μg dose, in which ten patients were included. Immunogenicity was determined by levels of antibodies generated in patients after vaccination. The response criteria of evaluation in solid tumors (RECIST) was used to evaluate antitumoral effect. Safety was evaluated by Common Toxicity Criteria of Adverse Event (CTCAE). The vaccine administration was safe and immunogenic in all does levels. Most frequent adverse events related to vaccination were mild or moderate and were related to injection site reactions and "flu-like" symptoms. Vaccination induced specific anti-NeuGcGM3 IgM and IgG antibodies responses in all patients. Disease control (objective response or stable disease) was obtained in 72.7% of evaluated patients. Median overall survival was 15.9 months. Two patients of two different dose levels achieved overall survival values of about six years. The dose of 900 μg was selected as biological optimal dose in which overall survival was 28.5 months.

  11. Ganglioside and related-sphingolipid profiles are altered in a cellular model of Alzheimer's disease.

    PubMed

    Noel, Anastasia; Ingrand, Sabrina; Barrier, Laurence

    2017-06-01

    Sphingolipid-related issues are increasingly discussed to contribute to the neuropathological process of Alzheimer's disease (AD). In this study, gangliosides and related-sphingolipids (ceramides, neutral glycosphingolipids and sphingomyelins) were analyzed in neuroglioma (H4) cells expressing the Swedish mutation of the human amyloid precursor protein (H4APPsw) and compared with those of wild-type control H4 cells. These cells were chosen since H4APPsw cells were previously reported to reproduce well some essential features of AD. We found that H4APPsw cells exhibited a striking elevation of the simplest ganglioside GM3, an abnormality that was consistently reported in AD patients and animal models of AD. Concomitantly, the levels of both lactosylceramide (the immediate metabolic precursor of GM3) and ganglioside GD1a increased, suggesting a deregulation in the biosynthesis of gangliosides in the H4APPsw cells. Moreover, while the total ceramide level remained unaltered in H4APPsw cells, a shift in ceramide composition from long chain - to very long chain fatty acid-ceramide species was recorded. Because sphingolipid alterations occurring in H4APPsw cells were similar to those observed in transgenic mice and in human brains, this cellular model might be useful to further explore the complex role of sphingolipids in AD pathogenesis. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Superior Efficacy and Safety of a Nonemulsive Variant of the NGcGM3/VSSP Vaccine in Advanced Breast Cancer Patients.

    PubMed

    de la Torre, Ana; Pérez, Kirenia; Vega, Aliz M; Santiesteban, Eduardo; Ruiz, Raiza; Hernández, Leonardo; Durrutí, Dayamí; Viada, Carmen E; Sánchez, Liset; Álvarez, Mabel; Durán, Yunier; Moreno, Yoisbel G; Arencibia, Maylén; Cepeda, Meylán; Domecq, Milagros; Cabrera, Leticia; Sánchez, Jorge L; Hernández, José J; Valls, Ana R; Fernández, Luis E

    2016-01-01

    NGcGM3 ganglioside is a tumor-specific antigen expressed in human breast tumors. The NGcGM3/VSSP vaccine, consisting in very small-sized proteoliposomes (VSSP) obtained by the incorporation of NGcGM3 into the outer membrane protein complex of Neisseria meningitidis, has been previously tested in a Phase II trial in patients with metastatic breast cancer (MBC) but emulsified with Montanide ISA 51. An Expanded Access study was carried out in MBC patients aiming to find if a nonemulsive formulation of NGcGM3/VSSP, without Montanide ISA 51, could be more safe and effective. A total of 104 patients were vaccinated with the nonemulsive formulation (900 μg), subcutaneously (SC), or with the emulsive formulation (200 μg), intramuscularly (IM). An intent-to-treat analysis of efficacy was performed with all patients, and 93 patients were split off according to the site of metastases (visceral/nonvisceral). Of note, SC-treated patients exhibited a superior median overall survival (OS) than IM-treated patients (23.6 vs. 8.2 months; log rank P = 0.001). Even though in the subset of patients with nonvisceral metastases SC vaccination duplicated the median OS compared to the alternative option (31.6 vs. 16.5 months), this difference did not reach statistical significance (log rank P = 0.118). Curiously, in patients with visceral metastases, the advantage of the nonemulsive formulation was more apparent (median OS 21.0 vs. 6.2 months; log rank P = 0.005). The vaccine was safe for both formulations.

  13. Superior Efficacy and Safety of a Nonemulsive Variant of the NGcGM3/VSSP Vaccine in Advanced Breast Cancer Patients

    PubMed Central

    de la Torre, Ana; Pérez, Kirenia; Vega, Aliz M.; Santiesteban, Eduardo; Ruiz, Raiza; Hernández, Leonardo; Durrutí, Dayamí; Viada, Carmen E.; Sánchez, Liset; Álvarez, Mabel; Durán, Yunier; Moreno, Yoisbel G.; Arencibia, Maylén; Cepeda, Meylán; Domecq, Milagros; Cabrera, Leticia; Sánchez, Jorge L.; Hernández, José J.; Valls, Ana R.; Fernández, Luis E.

    2016-01-01

    NGcGM3 ganglioside is a tumor-specific antigen expressed in human breast tumors. The NGcGM3/VSSP vaccine, consisting in very small-sized proteoliposomes (VSSP) obtained by the incorporation of NGcGM3 into the outer membrane protein complex of Neisseria meningitidis, has been previously tested in a Phase II trial in patients with metastatic breast cancer (MBC) but emulsified with Montanide ISA 51. An Expanded Access study was carried out in MBC patients aiming to find if a nonemulsive formulation of NGcGM3/VSSP, without Montanide ISA 51, could be more safe and effective. A total of 104 patients were vaccinated with the nonemulsive formulation (900 μg), subcutaneously (SC), or with the emulsive formulation (200 μg), intramuscularly (IM). An intent-to-treat analysis of efficacy was performed with all patients, and 93 patients were split off according to the site of metastases (visceral/nonvisceral). Of note, SC-treated patients exhibited a superior median overall survival (OS) than IM-treated patients (23.6 vs. 8.2 months; log rank P = 0.001). Even though in the subset of patients with nonvisceral metastases SC vaccination duplicated the median OS compared to the alternative option (31.6 vs. 16.5 months), this difference did not reach statistical significance (log rank P = 0.118). Curiously, in patients with visceral metastases, the advantage of the nonemulsive formulation was more apparent (median OS 21.0 vs. 6.2 months; log rank P = 0.005). The vaccine was safe for both formulations. PMID:26917965

  14. Induction of Glycosphingolipid GM3 Expression by Valproic Acid Suppresses Cancer Cell Growth.

    PubMed

    Kawashima, Nagako; Nishimiya, Yoshiyuki; Takahata, Shouta; Nakayama, Ken-Ichi

    2016-10-07

    Glycosphingolipid GM3, a known suppressor of epidermal growth factor receptor (EGFR) phosphorylation, inhibits cell proliferation. Valproic acid, conversely, is known as an up-regulator of GM3 synthase gene (ST3GAL5). To test the possibility that valproic acid could inhibit EGFR phosphorylation by increasing the level of GM3 in cells, we treated A431 epidermoid carcinoma cells with valproic acid and found that valproic acid treatment caused an about 6-fold increase in the GM3 level but only a marginal increase in the GM2 level in these cells and that the observed increase in GM3 level was valproic acid dose-dependent. Consistent with this observation, valproic acid treatment induced GM3 synthase gene expression by about 8-fold. Furthermore, phosphorylation of EGFR was reduced, and cell proliferation was inhibited following valproic acid treatment. Consistent with these results, transient expression of GM3 synthase gene in A431 cells also increased cellular level of GM3, reduced phosphorylation of EGFR, and inhibited cell proliferation. Treatment with l-phenyl-2-decanoylamino-3-morpholino-l-propanol, an inhibitor of glucosylceramide synthesis, decreased the cellular level of GM3 and reduced the inhibitory effects of valproic acid on EGFR phosphorylation and cell proliferation. These results suggested that induction of GM3 synthesis was enough to inhibit proliferation of cancer cells by suppressing EGFR activity. Valproic acid treatment similarly increased the GM3 level and reduced phosphorylation of EGFR in U87MG glioma cells and inhibited their proliferation. These results suggested that up-regulators of GM3 synthase gene, such as valproic acid, are potential suppressors of cancer cell proliferation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Studies on Human Platelet Gangliosides

    PubMed Central

    Marcus, Aaron J.; Ullman, Harris L.; Safier, Lenore B.

    1972-01-01

    Gangliosides, glycosphingolipids which contain sialic acid, were studied in human platelets. They represented 0.5% of the platelet lipids and accounted for 6% of the total neuraminic acid content of platelets. Three major ganglioside fractions were identified and characterized. Ganglioside I was hematoside (G6) and comprised 92% of the platelet gangliosides. It contained glucose, galactose, and sialic acid in molar ratios of 1:1:1 and no hexosamine. The major fatty acid was behenate (22:0). Ganglioside I was also identified in isolated platelet granules and membranes. Ganglioside II (5%) contained glucose, galactose, sialic acid, and hexosamines (molar ratios 1:2:1:1). The hexosamines were glucosamine (72%) and galactosamine (28%). It was therefore designated as ganglioside lacto-N-neotetraose. Ganglioside III (2%) contained disialosyllactosyl ceramide (G3A) as well as two other gangliosides which could not be precisely characterized. Gangliosides I, II, and III were susceptible to the action of Clostridium perfringens neuraminidase as evidenced by full recovery of sialic acid in its free form after incubation. Neutral platelet glycolipids were qualitatively examined by thin-layer chromatography. The major component was lactosyl ceramide. Interactions of gangliosides I and III and serotonin-14C were examined in an equilibrium dialysis system at 4°C. The gangliosides bound serotonin-14C in relatively small quantities, whereas control lipids were negative. The binding was essentially unchanged by reverse dialysis, ultracentrifugation and subsequent thin-layer chromatography. The results are comparable to the previously observed nonmetabolic interactions between whole platelets and serotonin in the cold. It is suggested that the orientation and specific distribution of platelet membrane glycolipids may be important determinants of the unique surface properties of platelets. Images PMID:4341436

  16. Partial synthesis of ganglioside and lysoganglioside lipoforms as internal standards for MS quantification.

    PubMed

    Gantner, Martin; Schwarzmann, Günter; Sandhoff, Konrad; Kolter, Thomas

    2014-12-01

    Within recent years, ganglioside patterns have been increasingly analyzed by MS. However, internal standards for calibration are only available for gangliosides GM1, GM2, and GM3. For this reason, we prepared homologous internal standards bearing nonnatural fatty acids of the major mammalian brain gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, and of the tumor-associated gangliosides GM2 and GD2. The fatty acid moieties were incorporated after selective chemical or enzymatic deacylation of bovine brain gangliosides. For modification of the sphingoid bases, we developed a new synthetic method based on olefin cross metathesis. This method was used for the preparation of a lyso-GM1 and a lyso-GM2 standard. The total yield of this method was 8.7% for the synthesis of d17:1-lyso-GM1 from d20:1/18:0-GM1 in four steps. The title compounds are currently used as calibration substances for MS quantification and are also suitable for functional studies. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Partial synthesis of ganglioside and lysoganglioside lipoforms as internal standards for MS quantification

    PubMed Central

    Gantner, Martin; Schwarzmann, Günter; Sandhoff, Konrad; Kolter, Thomas

    2014-01-01

    Within recent years, ganglioside patterns have been increasingly analyzed by MS. However, internal standards for calibration are only available for gangliosides GM1, GM2, and GM3. For this reason, we prepared homologous internal standards bearing nonnatural fatty acids of the major mammalian brain gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, and of the tumor-associated gangliosides GM2 and GD2. The fatty acid moieties were incorporated after selective chemical or enzymatic deacylation of bovine brain gangliosides. For modification of the sphingoid bases, we developed a new synthetic method based on olefin cross metathesis. This method was used for the preparation of a lyso-GM1 and a lyso-GM2 standard. The total yield of this method was 8.7% for the synthesis of d17:1-lyso-GM1 from d20:1/18:0-GM1 in four steps. The title compounds are currently used as calibration substances for MS quantification and are also suitable for functional studies. PMID:25341943

  18. Characterization of the cholera toxin receptor on Balb/c 3T3 cells as a ganglioside similar to, or identical with, ganglioside GM1. No evidence for galactoproteins with receptor activity.

    PubMed

    Critchley, D R; Streuli, C H; Kellie, S; Ansell, S; Patel, B

    1982-04-15

    Balb/c 3T3 cells contain a large number [(0.8-1.6) x 10(6)] of high-affinity (half-maximal binding at 0.2 nM) binding sites for cholera toxin that are resistant to proteolysis, but are quantitatively extracted with chloroform/methanol. The following evidence rigorously establishes that the receptor is a ganglioside similar to, or identical with, ganglioside GM1 by the galactose oxidase/NaB3H4 technique on intact cells was inhibited by cholera toxin. (2) Ganglioside GM1 was specifically adsorbed from Nonidet P40 extracts of both surface- (galactose oxidase/NaB3H4 technique) and metabolically ([1-14C]palmitate) labelled cells in the presence of cholera toxin, anti-toxin and Staphylococcus aureus. (3) Ganglioside GM1 was the only ganglioside labelled when total cellular gangliosides separated on silica-gel sheets were overlayed with 125I-labelled cholera toxin, although GM3 and GD1a were the major gangliosides present. In contrast no evidence for a galactoprotein with receptor activity was obtained. Cholera toxin did not protect the terminal galactose residues of cell-surface glycoproteins from labelling by the galactose oxidase/NaB3H4 technique. No toxin-binding proteins could be identified in Nonidet P40 extracts of [35S]-methionine-labelled cells by immunochemical means. After sodium dodecyl sulphate/polyacrylamide-gel electrophoresis none of the major cellular galactoproteins identified by overlaying gels with 125I-labelled ricin were able to bind 125I-labelled cholera toxin. It is concluded that the cholera toxin receptor on Balb/c 3T3 cells is exclusively ganglioside GM1 (or a related species), and that cholera toxin can therefore be used to probe the function and organisation of gangliosides in these cells as previously outlined [Critchley, Ansell, Perkins, Dilks & Ingram (1979) J. Supramol. Struct. 12, 273-291].

  19. Botulinum Neurotoxin Serotype C Associates with Dual Ganglioside Receptors to Facilitate Cell Entry*

    PubMed Central

    Karalewitz, Andrew P.-A.; Fu, Zhuji; Baldwin, Michael R.; Kim, Jung-Ja P.; Barbieri, Joseph T.

    2012-01-01

    Botulinum neurotoxins (BoNTs) cleave SNARE proteins in motor neurons that inhibits synaptic vesicle (SV) exocytosis, resulting in flaccid paralysis. There are seven BoNT serotypes (A–G). In current models, BoNTs initially bind gangliosides on resting neurons and upon SV exocytosis associate with the luminal domains of SV-associated proteins as a second receptor. The entry of BoNT/C is less clear. Characterizing the heavy chain receptor binding domain (HCR), BoNT/C was shown to utilize gangliosides as dual host receptors. Crystallographic and biochemical studies showed that the two ganglioside binding sites, termed GBP2 and Sia-1, were independent and utilized unique mechanisms to bind complex gangliosides. The GBP2 binding site recognized gangliosides that contained a sia5 sialic acid, whereas the Sia-1 binding site recognized gangliosides that contained a sia7 sialic acid and sugars within the backbone of the ganglioside. Utilizing gangliosides that uniquely recognized the GBP2 and Sia-1 binding sites, HCR/C entry into Neuro-2A cells required both functional ganglioside binding sites. HCR/C entered cells differently than the HCR of tetanus toxin, which also utilizes dual gangliosides as host receptors. A point-mutated HCR/C that lacked GBP2 binding potential retained the ability to bind and enter Neuro-2A cells. This showed that ganglioside binding at the Sia-1 site was accessible on the plasma membrane, suggesting that SV exocytosis may not be required to expose BoNT/C receptors. These studies highlight the utility of BoNT HCRs as probes to study the role of gangliosides in neurotransmission. PMID:23027864

  20. Serum Deprivation-Induced Human GM3 Synthase (hST3Gal V) Gene Expression Is Mediated by Runx2 in Human Osteoblastic MG-63 Cells.

    PubMed

    Yoon, Hyun-Kyoung; Lee, Ji-Won; Kim, Kyoung-Sook; Mun, Seo-Won; Kim, Dong-Hyun; Kim, Hyun-Jun; Kim, Cheorl-Ho; Lee, Young-Choon

    2015-12-29

    Serum deprivation (SD) is well known to induce G0/G1 cell cycle arrest and apoptosis in various cells. In the present study, we firstly found that SD could induce G1 arrest and the differentiation of human osteoblastic MG-63 cells, as evidenced by the increase of osteoblastic differentiation markers, such as bone morphogenetic protein-2 (BMP-2), osteocalcin and runt-related transcription factor 2 (Runx2). In parallel, gene expression of human GM3 synthase (hST3Gal V) catalyzing ganglioside GM3 biosynthesis was upregulated by SD in MG-63 cells. The 5'-flanking region of the hST3Gal V gene was functionally characterized to elucidate transcriptional regulation of hST3Gal V in SD-induced MG-63 cells. Promoter analysis using 5'-deletion constructs of the hST3Gal V gene demonstrated that the -432 to -177 region functions as the SD-inducible promoter. Site-directed mutagenesis revealed that the Runx2 binding sites located side-by-side at positions -232 and -222 are essential for the SD-induced expression of hST3Gal V in MG-63 cells. In addition, the chromatin immunoprecipitation assay also showed that Runx2 specifically binds to the hST3Gal V promoter region containing Runx2 binding sites. These results suggest that SD triggers upregulation of hST3Gal V gene expression through Runx2 activation by BMP signaling in MG-63 cells.

  1. Neutral glycolipid and ganglioside composition of type-1 and type-2 astrocytes from rat cerebral hemisphere.

    PubMed

    Murakami, K; Asou, H; Adachi, T; Takagi, T; Kunimoto, M; Saito, H; Uyemura, K

    1999-02-01

    We reported previously that the major gangliosides in primary mixed-type astrocyte cultures are GM3 and GD3. To obtain more information regarding the exact distribution of glycosphingolipids in different types of astrocytes, we established a line of type-1 astrocytes that are characterized by a Ran-2 positive, broad flat morphology, and by the absence of binding to A2B5 antibodies. We also purified O-2A progenitor cells by immunopanning and cultured them in the presence of 10% newborn calf serum. They differentiated into type-2 astrocytes that were identified by immunostaining for each of GD3, A2B5, and GFAP. Using these cell cultures, we demonstrate that the major gangliosides were GM3 in type-1 astrocytes and GM3 and GD3 in type-2 astrocytes. In addition, a set of neutral glycolipids was identified based on the HP-TLC migration properties of CMH, CDH, CTH, and Glob, but the component distribution of these glycolipids is related to that of glycolipids of astrocytes. A marked increase in the expression of CTH and Glob was shown in type-2 astrocytes. The amount of neutral glycolipid-sugar was higher in the type-2 astrocytes than in the type-1 astrocytes. These results suggest that the increase in the total glycosphingolipid content and the change in the neutral glycolipid composition produced by type-2 astrocytes may be related to their biological functions and the cellular compositions.

  2. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    SciTech Connect

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C. |

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance are similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.

  3. Lack of ceramide generation and altered sphingolipid composition are associated with drug resistance in human ovarian carcinoma cells

    PubMed Central

    Prinetti, Alessandro; Millimaggi, Danilo; D'Ascenzo, Sandra; Clarkson, Matilda; Bettiga, Arianna; Chigorno, Vanna; Sonnino, Sandro; Pavan, Antonio; Dolo, Vincenza

    2005-01-01

    PTX (Paclitaxel®) is an antimitotic agent used in the treatment of a number of major solid tumours, particularly in breast and ovarian cancer. This study was undertaken to gain insight into the molecular alterations producing PTX resistance in ovarian cancer. PTX treatment is able to induce apoptosis in the human ovarian carcinoma cell line, CABA I. PTX-induced apoptosis in CABA I cells was accompanied by an increase in the cellular Cer (ceramide) levels and a decrease in the sphingomyelin levels, due to the activation of sphingomyelinases. The inhibition of acid sphingomyelinase decreased PTX-induced apoptosis. Under the same experimental conditions, PTX had no effect on Cer and sphingomyelin levels in the stable PTX-resistant ovarian carcinoma cell line, CABA-PTX. The acquisition of the PTX-resistant phenotype is accompanied by unique alterations in the complex sphingolipid pattern found on lipid extraction. In the drug-resistant cell line, the levels of sphingomyelin and neutral glycosphingolipids were unchanged compared with the drug-sensitive cell line. The ganglioside pattern in CABA I cells is more complex compared with that of CABA-PTX cells. Specifically, we found that the total ganglioside content in CABA-PTX cells was approximately half of that in CABA I cells, and GM3 ganglioside content was remarkably higher in the drug-resistant cell line. Taken together our findings indicate that: i) Cer generated by acid sphingomyelinase is involved in PTX-induced apoptosis in ovarian carcinoma cells, and PTX-resistant cells are characterized by their lack of increased Cer upon drug treatment, ii) PTX resistance might be correlated with an alteration in metabolic Cer patterns specifically affecting cellular ganglioside composition. PMID:16356169

  4. Gangliosides of myelosupportive stroma cells are transferred to myeloid progenitors and are required for their survival and proliferation

    PubMed Central

    Ziulkoski, Ana L.; Andrade, Cláudia M. B.; Crespo, Pilar M.; Sisti, Elisa; Trindade, Vera M. T.; Daniotti, Jose L.; Guma, Fátima C. R.; Borojevic, Radovan

    2005-01-01

    In previous studies, we have shown that the myelopoiesis dependent upon myelosupportive stroma required production of growth factors and heparan-sulphate proteoglycans, as well as generation of a negatively charged sialidase-sensitive intercellular environment between the stroma and the myeloid progenitors. In the present study, we have investigated the production, distribution and role of gangliosides in an experimental model of in vitro myelopoiesis dependent upon AFT-024 murine liver-derived stroma. We used the FDC-P1 cell line, which is dependent upon GM-CSF (granulocyte/macrophage colony-stimulating factor) for both survival and proliferation, as a reporter system to monitor bioavailability and local activity of GM-CSF. GM3 was the major ganglioside produced by stroma, but not by myeloid cells, and it was required for optimal stroma myelosupportive function. It was released into the supernatant and selectively incorporated into the myeloid progenitor cells, where it segregated into rafts in which it co-localized with the GM-CSF-receptor α chain. This ganglioside was also metabolized further by myeloid cells into gangliosides of the a and b series, similar to endogenous GM3. In these cells, GM1 was the major ganglioside and it was segregated at the interface by stroma and myeloid cells, partially co-localizing with the GM-CSF-receptor α chain. We conclude that myelosupportive stroma cells produce and secrete the required growth factors, the cofactors such as heparan sulphate proteoglycans, and also supply gangliosides that are transferred from stroma to target cells, generating on the latter ones specific membrane domains with molecular complexes that include growth factor receptors. PMID:16321139

  5. Novel ganglioside-mediated entry of botulinum neurotoxin serotype D into neurons.

    PubMed

    Kroken, Abby R; Karalewitz, Andrew P-A; Fu, Zhuji; Kim, Jung-Ja P; Barbieri, Joseph T

    2011-07-29

    Botulinum Neurotoxins (BoNTs) are organized into seven serotypes, A-G. Although several BoNT serotypes enter neurons through synaptic vesicle cycling utilizing dual receptors (a ganglioside and a synaptic vesicle-associated protein), the entry pathway of BoNT/D is less well understood. Although BoNT/D entry is ganglioside-dependent, alignment and structural studies show that BoNT/D lacks key residues within a conserved ganglioside binding pocket that are present in BoNT serotypes A, B, E, F, and G, which indicate that BoNT/D-ganglioside interactions may be unique. In this study BoNT/D is shown to have a unique association with ganglioside relative to the other BoNT serotypes, utilizing a ganglioside binding loop (GBL, residues Tyr-1235-Ala-1245) within the receptor binding domain of BoNT/D (HCR/D) via b-series gangliosides, including GT1b, GD1b, and GD2. HCR/D bound gangliosides and entered neurons dependent upon the aromatic ring of Phe-1240 within the GBL. This is the first BoNT-ganglioside interaction that is mediated by a phenylalanine. In contrast, Trp-1238, located near the N terminus of the ganglioside binding loop, was mostly solvent-inaccessible and appeared to contribute to maintaining the loop structure. BoNT/D entry and intoxication were enhanced by membrane depolarization via synaptic vesicle cycling, where HCR/D colocalized with synaptophysin, a synaptic vesicle marker, but immunoprecipitation experiments did not detect direct association with synaptic vesicle protein 2. Thus, BoNT/D utilizes unique associations with gangliosides and synaptic vesicles to enter neurons, which may facilitate new neurotoxin therapies.

  6. Novel Ganglioside-mediated Entry of Botulinum Neurotoxin Serotype D into Neurons

    SciTech Connect

    Kroken, Abby R.; Karalewitz, Andrew P.-A.; Fu, Zhuji; Kim, Jung-Ja P.; Barbieri, Joseph T.

    2012-02-07

    Botulinum Neurotoxins (BoNTs) are organized into seven serotypes, A-G. Although several BoNT serotypes enter neurons through synaptic vesicle cycling utilizing dual receptors (a ganglioside and a synaptic vesicle-associated protein), the entry pathway of BoNT/D is less well understood. Although BoNT/D entry is ganglioside-dependent, alignment and structural studies show that BoNT/D lacks key residues within a conserved ganglioside binding pocket that are present in BoNT serotypes A, B, E, F, and G, which indicate that BoNT/D-ganglioside interactions may be unique. In this study BoNT/D is shown to have a unique association with ganglioside relative to the other BoNT serotypes, utilizing a ganglioside binding loop (GBL, residues Tyr-1235-Ala-1245) within the receptor binding domain of BoNT/D (HCR/D) via b-series gangliosides, including GT1b, GD1b, and GD2. HCR/D bound gangliosides and entered neurons dependent upon the aromatic ring of Phe-1240 within the GBL. This is the first BoNT-ganglioside interaction that is mediated by a phenylalanine. In contrast, Trp-1238, located near the N terminus of the ganglioside binding loop, was mostly solvent-inaccessible and appeared to contribute to maintaining the loop structure. BoNT/D entry and intoxication were enhanced by membrane depolarization via synaptic vesicle cycling, where HCR/D colocalized with synaptophysin, a synaptic vesicle marker, but immunoprecipitation experiments did not detect direct association with synaptic vesicle protein 2. Thus, BoNT/D utilizes unique associations with gangliosides and synaptic vesicles to enter neurons, which may facilitate new neurotoxin therapies.

  7. Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry.

    PubMed

    Karalewitz, Andrew P-A; Fu, Zhuji; Baldwin, Michael R; Kim, Jung-Ja P; Barbieri, Joseph T

    2012-11-23

    How botulinum neurotoxin serotype C (BoNT/C) enters neurons is unclear. BoNT/C utilizes dual gangliosides as host cell receptors. BoNT/C accesses gangliosides on the plasma membrane. Plasma membrane accessibility of the dual ganglioside receptors suggests synaptic vesicle exocytosis may not be necessary to expose BoNT/C receptors. Botulinum neurotoxins (BoNTs) cleave SNARE proteins in motor neurons that inhibits synaptic vesicle (SV) exocytosis, resulting in flaccid paralysis. There are seven BoNT serotypes (A-G). In current models, BoNTs initially bind gangliosides on resting neurons and upon SV exocytosis associate with the luminal domains of SV-associated proteins as a second receptor. The entry of BoNT/C is less clear. Characterizing the heavy chain receptor binding domain (HCR), BoNT/C was shown to utilize gangliosides as dual host receptors. Crystallographic and biochemical studies showed that the two ganglioside binding sites, termed GBP2 and Sia-1, were independent and utilized unique mechanisms to bind complex gangliosides. The GBP2 binding site recognized gangliosides that contained a sia5 sialic acid, whereas the Sia-1 binding site recognized gangliosides that contained a sia7 sialic acid and sugars within the backbone of the ganglioside. Utilizing gangliosides that uniquely recognized the GBP2 and Sia-1 binding sites, HCR/C entry into Neuro-2A cells required both functional ganglioside binding sites. HCR/C entered cells differently than the HCR of tetanus toxin, which also utilizes dual gangliosides as host receptors. A point-mutated HCR/C that lacked GBP2 binding potential retained the ability to bind and enter Neuro-2A cells. This showed that ganglioside binding at the Sia-1 site was accessible on the plasma membrane, suggesting that SV exocytosis may not be required to expose BoNT/C receptors. These studies highlight the utility of BoNT HCRs as probes to study the role of gangliosides in neurotransmission.

  8. Mass spectrometry of gangliosides in extracranial tumors: Application to adrenal neuroblastoma.

    PubMed

    Robu, Adrian C; Vukelić, Željka; Schiopu, Catalin; Capitan, Florina; Zamfir, Alina D

    2016-09-15

    We report here on the introduction of mass spectrometry (MS) for profiling of native gangliosides from an extracranial tumor. The analytical approach was based on a modern platform combining the superior sensitivity and reproducibility of fully automated chip-based nanoelectrospray ionization (nanoESI) with the high resolution and mass accuracy provided by a hybrid quadrupole time-of-flight (QTOF) instrument. The feasibility of the method for the analysis of gangliosides, which are much less expressed in extracranial tissues, was here tested using as the model substrate an adrenal neuroblastoma (NB) specimen located in the abdominal region of a 2-year-old infant. Under properly optimized conditions, MS profiling revealed information on at least 61 different gangliosides exhibiting heterogeneity of the glycan and lipid compositions. NB was found dominated by species bearing short-chain oligosaccharide cores with a reduced overall Neu5Ac content. By chip-nanoESI MS, preceding findings related to the GD2 role in NB were confirmed. Moreover, the screening experiments offered novel information supporting the possible biomarker role of GM4, GM3, and GM1 ganglioside classes. Structural analysis of GM1(d18:1/18:2) and GD1(d18:0/19:0) possibly tumor-associated markers, carried out by tandem MS (MS/MS) using collision-induced dissociation (CID) at low energies, indicated that both GM1a and GD1b isomers are present in NB. Copyright © 2016. Published by Elsevier Inc.

  9. Trans-activity of Plasma Membrane-associated Ganglioside Sialyltransferase in Mammalian Cells*

    PubMed Central

    Vilcaes, Aldo A.; Demichelis, Vanina Torres; Daniotti, Jose L.

    2011-01-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  10. New trends in ganglioside chemistry

    SciTech Connect

    Sonnino, S.; Ghidoni, R.; Gazzotti, G.; Acquotti, D.; Tettamanti, G.

    1988-01-01

    New methods have been developed for the preparation of highly purified gangliosides, homogeneous in the saccharide, long chain base, and fatty acid moieties and gangliosides carrying different kinds of labelled probes. Gangliosides, homogeneous in the oligosaccharide portion, were prepared by preparative normal phase HPLC on a Lichrosorb-NH-2 column, using a gradient of acetonitrile-phosphate buffer, pH 5.6, as solvent system. Each class of ganglioside (from monosialo- to tetrasialogangliosides) was then submitted to reversed phase HPLC on a preparative RP-8 column, using acetonitrile-5 mM phosphate buffer, pH 7, as solvent system, to obtain gangliosides homogeneous in the long chain base moiety. Gangliosides containing C18 and C20 sphinganine were prepared by catalytic hydrogenation of the corresponding unsaturated gangliosides. GM1 with homogeneous acyl chain was prepared by alkaline hydrolysis in the presence of tetramethylammonium hydroxide, followed by re-N-acylation, carried out in the presence of dimethylaminopropyl, ethylcarbodiimide and natural fatty acids, or of mixed anhydride of ethylchloroformate and 14C-stearic acid, and re-N-acetylation performed with acetic anhydride or labelled acetic anhydride. The GM1 derivative, de-acetylated at the level of sialic acid, also produced by alkaline treatment of GM1, was submitted to re-N-acetylation with 14C-acetic anhydride to produce specifically 14C-labelled GM1. Re-N-acylation was carried out a) in the presence of dimethylaminopropyl, ethylcarbodiimide and natural fatty acids, b) with mixed anhydride of ethylchloroformate and 14C-stearic acid. After re-N-acylations, re-N-acetylation was performed with acetic anhydride or labelled acetic anhydride. 53 references.

  11. Labeling of the retina and optic tectum gangliosides and glycoproteins of chickens in darkness or exposed to light

    SciTech Connect

    Caputto, R.

    1984-01-01

    Chickens that received an intraocular injection of /sup 3/H-ManNAc and were exposed to light had more labeled gangliosides in the retina ganglion cell layer and in the contralateral optic tectum than similarly treated animals that remained in darkness. The effect is not due to the turning on or off of the light. The sialyl groups of sialoglycoproteins showed similar effect but the labeling of proteins in chickens that received /sup 3/H-proline did not show significant differences. So far the effect has been obtained only with retina linked to the optic tectum through the optic nerve. If the nerve is severed the effect disappears. The gangliosides GD1a and GT1 are powerful inhibitors of the GM3-N-acetylgalactosaminyl transferase. The main effect of those gangliosides is expressed when they are linked to the membranes containing the enzyme in such a form that they are not released by washing with water. The hypothesis is advanced that the utilization of gangliosides in the nerve ending during the interneuronal transmission produces a small decrease in their concentration that in turn is transmitted backwards to the neuronal perikarya where it accelerates the synthesis of new gangliosides.

  12. Tumor gangliosides accelerate murine tumor angiogenesis

    PubMed Central

    Liu, Yihui; Wondimu, Assefa; Yan, Su; Bob, Daniel; Ladisch, Stephan

    2013-01-01

    Tumor cells shed gangliosides and populate their microenvironment with these biologically active membrane glycosphingolipids. In vitro, ganglioside enrichment amplifies receptor tyrosine kinase signaling and activation of vascular endothelial cells. However, a long-standing question is whether in the actual microenvironment of a neoplasm, in vivo, tumor cell ganglioside shedding stimulates angiogenesis. Here we tested the hypothesis that tumor gangliosides have a critical proangiogenic role in vivo using novel murine tumor cells (DKO) genetically completely incapable of ganglioside synthesis and impaired in tumor growth vs. wild-type (WT) ganglioside-rich cells. We studied angiogenesis during tumor formation by these ganglioside-depleted cells, quantifying vessel formation, angiogenic factor production/release, and consequences of reconstitution with purified WT gangliosides. DKO cells formed virtually avascular tumors, much smaller than ganglioside-rich WT tumors and displaying a striking paucity of blood vessels, despite levels of VEGF and other angiogenic factors that were similar to those of WT cells. Transient enrichment of the ganglioside milieu of the DKO cell inoculum by adding purified WT gangliosides partially restored angiogenesis and tumor growth. We conclude that tumor gangliosides trigger robust angiogenesis important for tumor growth. Our findings suggest strategies to eliminate their synthesis and shedding by tumor cells should be pursued. PMID:24165965

  13. Neuraminidase-1 contributes significantly to the degradation of neuronal B-series gangliosides but not to the bypass of the catabolic block in Tay-Sachs mouse models.

    PubMed

    Timur, Z K; Akyildiz Demir, S; Marsching, C; Sandhoff, R; Seyrantepe, V

    2015-09-01

    Tay–Sachs disease is a severe lysosomal storage disorder caused by mutations in the HEXA gene coding for α subunit of lysosomal β-Hexosaminidase A enzyme, which converts GM2 to GM3 ganglioside. HexA(−/−) mice, depleted of the β-Hexosaminidase A iso-enzyme, remain asymptomatic up to 1 year of age because of a metabolic bypass by neuraminidase(s). These enzymes remove a sialic acid residue converting GM2 to GA2, which is further degraded by the still intact β-Hexosaminidase B iso-enzyme into lactosylceramide. A previously identified ganglioside metabolizing neuraminidase, Neu4, is abundantly expressed in the mouse brain and has activity against gangliosides like GM2in vitro. Neu4(−/−) mice showed increased GD1a and decreased GM1 ganglioside in the brain suggesting the importance of the Neu4 in ganglioside catabolism. Mice with targeted disruption of both HexA and Neu4 genes showed accumulating GM2 ganglioside and epileptic seizures with 40% penetrance, indicating that the neuraminidase Neu4 is a modulatory gene, but may not be the only neuraminidase contributing to the metabolic bypass in HexA(−/−) mice. Therefore, we elucidated the biological role of neuraminidase-1 in ganglioside degradation in mouse. Analysis of HexA(−/−) Neu1(−/−) and HexA(−/−) Neu4(−/−) Neu1(−/−) mice models showed significant contribution of neuraminidase-1 on B-series ganglioside degradation in the brain. Therefore, we speculate that other neuraminidase/neuraminidases such as Neu2 and/or Neu3 might be also involved in the ganglioside degradation pathway in HexA(−/−) mice.

  14. Wisp2/CCN5 up-regulated in the central nervous system of GM3-only mice facilitates neurite formation in Neuro2a cells via integrin-Akt signaling

    SciTech Connect

    Ohkawa, Yuki; Ohmi, Yuhsuke; Tajima, Orie; Yamauchi, Yoshio; Furukawa, Keiko; Furukawa, Koichi

    2011-08-05

    Highlights: {yields} Wisp2/CCN5 was up-regulated in nervous tissues of GM3-only mutant mice. {yields} Wisp2/CCN5 was found in neurons more strongly in the mutant mice. {yields} Wisp2/CCN5 induces Akt phosphorylation via integrins and facilitates neurite formation. {yields} Wisp2/CCN5 conferred resistance to H{sub 2}O{sub 2}-induced apoptosis. {yields} Up-regulation of Wisp2/CCN5 in GM3-only mice seemed for protection of brains from neurodegeneration. -- Abstract: Wisp2/CCN5 belongs to CCN family proteins which are involved in cell proliferation, angiogenesis, tumorigenesis and wound healing. Although a number of studies on the roles of Wisp2/CCN5 in cancers have been reported, no study on the expression and function of Wisp2/CCN5 in the central nervous system has been reported. In this study, we focused on Wisp2/CCN5 that was up-regulated in nervous tissues in GM3-only mice. Over-expression of Wisp2/CCN5 enhanced neurite outgrowth potently after serum withdrawal with increased phosphorylation levels of Akt and ERKs. When cells were cultured with recombinant Wisp2/CCN5 proteins, more and longer neurites were formed than in the controls. Thus, we demonstrated for the first time that Wisp2/CCN5 facilitates neurite formation in a mouse neuroblastoma cell line, Neuro2a. Akt phosphorylation induced by recombinant Wisp2/CCN5 was suppressed after knockdown of integrin {beta}1. Moreover, Wisp2/CCN5-over-expressing cells were resistant to apoptosis induced by H{sub 2}O{sub 2}. These results suggested that secreted Wisp2/CCN5 induces Akt and ERK phosphorylation via integrins, and consequently facilitates neurite formation and conferred resistance to apoptosis. Up-regulation of Wisp2/CCN5 in GM3-only mice should be, therefore, a reaction to protect nervous tissues from neurodegeneration caused by ganglioside deficiency.

  15. Quantitative analysis of gangliosides in bovine milk and colostrum-based dairy products by ultrahigh performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Lee, Hyeyoung; German, J Bruce; Kjelden, Randy; Lebrilla, Carlito B; Barile, Daniela

    2013-10-09

    Milk gangliosides have gained considerable attention because they participate in diverse biological processes, including neural development, pathogen binding, and activation of the immune system. Herein, we present a quantitative measurement of the gangliosides present in bovine milk and other dairy products and byproducts. Ultrahigh performance liquid chromatography separation was used for high-throughput analysis and achieved a short running time without sacrificing chromatographic resolution. Dynamic multiple reaction monitoring was conducted for 12 transitions for GM3 and 12 transitions for GD3. Transitions to sialic acid fragments (m/z 290.1) were chosen for the quantitation. There was a considerable amount of gangliosides in day 2 milk (GM3, 0.98 mg/L; GD3, 15.2 mg/L) which dramatically decreased at day 15 and day 90. GM3 and GD3 were also analyzed in pooled colostrum, colostrum cream, colostrum butter, and colostrum buttermilk. The separation and analytical approaches here proposed could be integrated into the dairy industry processing adding value to side-streams.

  16. Rapid Profiling of Bovine and Human Milk Gangliosides by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Lee, Hyeyoung; An, Hyun Joo; Lerno, Larry A.; German, J. Bruce; Lebrilla, Carlito B.

    2010-01-01

    Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments

  17. GM3 suppresses anchorage-independent growth via Rho GDP dissociation inhibitor beta in melanoma B16 cells.

    PubMed

    Wang, Pu; Xu, Su; Wang, Yinan; Wu, Peixing; Zhang, Jinghai; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2011-08-01

    Ly-GDI, Rho GTPase dissociation inhibitor beta, was found to be expressed parallel to the GM3 level in mouse B16 cells whose GM3 contents were modified by B4galt6 sense, B4galt6 antisense cDNA, or St3galt5 siRNA transfection. Ly-GDI expression was increased on GM3 addition to these cells and decreased with D-PDMP treatment, a glucosylceramide synthesis inhibitor. Suppression of GM3 or Ly-GDI by RNAi was concomitantly associated with an increase in anchorage-independent growth in soft agar. These results clearly indicate that GM3 suppresses anchorage-independent growth through Ly-GDI. GM3 signals regulating Ly-GDI expression was inhibited by LY294002, siRNA against Akt1 and Akt2 and rapamycin, showing that GM3 signals are transduced via the PI3K/Akt/mTOR pathway. Either siRNA towards Rictor or Raptor suppressed Ly-GDI expression. The Raptor siRNA suppressed the effects of GM3 on Ly-GDI expression and Akt phosphorylation at Thr(308) , suggesting GM3 signals to be transduced to mTOR-Raptor and Akt-Thr(308) , leading to Ly-GDI stimulation. siRNA targeting Pdpk1 reduced Akt phosphorylation at Thr(308) and rendered the cells insensitive to GM3 stimulation, indicating that Akt-Thr(308) plays a critical role in the pathway. The components aligned in this pathway showed similar effects on anchorage-independent growth as GM3 and Ly-GDI. Taken together, GM3 signals are transduced in B16 cells through PI3K, Pdpk1, Akt(Thr308) and the mTOR/Raptor pathway, leading to enhanced expression of Ly-GDI mRNA, which in turn suppresses anchorage-independent growth in melanoma B16 cells.

  18. Gangliosides induce autophagic cell death in astrocytes

    PubMed Central

    Hwang, Jaegyu; Lee, Shinrye; Lee, Jung Tae; Kwon, Taeg Kyu; Kim, Deok Ryong; Kim, Ho; Park, Hae-Chul; Suk, Kyoungho

    2010-01-01

    Background and purpose: Gangliosides, sialic acid-containing glycosphingolipids, abundant in brain, are involved in neuronal function and disease, but the precise molecular mechanisms underlying their physiological or pathological activities are poorly understood. In this study, the pathological role of gangliosides in the extracellular milieu with respect to glial cell death and lipid raft/membrane disruption was investigated. Experimental approach: We determined the effect of gangliosides on astrocyte death or survival using primary astrocyte cultures and astrocytoma/glioma cell lines as a model. Signalling pathways of ganglioside-induced autophagic cell death of astrocytes were examined using pharmacological inhibitors and biochemical and genetic assays. Key results: Gangliosides induced autophagic cell death in based on the following observations. Incubation of the cells with a mixture of gangliosides increased a punctate distribution of fluorescently labelled microtubule-associated protein 1 light chain 3 (GFP-LC3), the ratio of LC3-II/LC3-I and LC3 flux. Gangliosides also increased the formation of autophagic vacuoles as revealed by monodansylcadaverine staining. Ganglioside-induced cell death was inhibited by either a knockdown of beclin-1/Atg-6 or Atg-7 gene expression or by 3-methyladenine, an inhibitor of autophagy. Reactive oxygen species (ROS) were involved in ganglioside-induced autophagic cell death of astrocytes, because gangliosides induced ROS production and ROS scavengers decreased autophagic cell death. In addition, lipid rafts played an important role in ganglioside-induced astrocyte death. Conclusions and implications: Gangliosides released under pathological conditions may induce autophagic cell death of astrocytes, identifying a neuropathological role for gangliosides. PMID:20067473

  19. Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery.

    PubMed

    Whitehead, Shawn N; Chan, Kenneth H N; Gangaraju, Sandhya; Slinn, Jacqueline; Li, Jianjun; Hou, Sheng T

    2011-01-01

    Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18:1, d20:1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury.

  20. Imaging Mass Spectrometry Detection of Gangliosides Species in the Mouse Brain following Transient Focal Cerebral Ischemia and Long-Term Recovery

    PubMed Central

    Whitehead, Shawn N.; Chan, Kenneth H. N.; Gangaraju, Sandhya; Slinn, Jacqueline; Li, Jianjun; Hou, Sheng T.

    2011-01-01

    Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18∶1, d20∶1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury. PMID:21687673

  1. Interaction of Fibroblast Growth Factor-2 (FGF-2) with Free Gangliosides: Biochemical Characterization and Biological Consequences in Endothelial Cell Cultures

    PubMed Central

    Rusnati, Marco; Tanghetti, Elena; Urbinati, Chiara; Tulipano, Giovanni; Marchesini, Sergio; Ziche, Marina; Presta, Marco

    1999-01-01

    Exogenous gangliosides affect the angiogenic activity of fibroblast growth factor-2 (FGF-2), but their mechanism of action has not been elucidated. Here, a possible direct interaction of sialo-glycolipids with FGF-2 has been investigated. Size exclusion chromatography demonstrates that native, but not heat-denatured, 125I-FGF-2 binds to micelles formed by gangliosides GT1b, GD1b, or GM1. Also, gangliosides protect native FGF-2 from trypsin digestion at micromolar concentrations, the order of relative potency being GT1b > GD1b > GM1 = GM2 = sulfatide > GM3 = galactosyl-ceramide, whereas asialo-GM1, neuraminic acid, and N-acetylneuramin-lactose were ineffective. Scatchard plot analysis of the binding data of fluorochrome-labeled GM1 to immobilized FGF-2 indicates that FGF–2/GM1 interaction occurs with a Kd equal to 6 μM. This interaction is inhibited by the sialic acid-binding peptide mastoparan and by the synthetic fragments FGF-2(112–129) and, to a lesser extent, FGF-2(130–155), whereas peptides FGF-2(10–33), FGF-2(39–59), FGF-2(86–96), and the basic peptide HIV-1 Tat(41–60) were ineffective. These data identify the COOH terminus of FGF-2 as a putative ganglioside-binding region. Exogenous gangliosides inhibit the binding of 125I-FGF-2 to high-affinity tyrosine-kinase FGF-receptors (FGFRs) of endothelial GM 7373 cells at micromolar concentrations. The order of relative potency was GT1b > GD1b > GM1 > sulfatide a = sialo-GM1. Accordingly, GT1b,GD1b, GM1, and GM2, but not GM3 and asialo-GM1, prevent the binding of 125I-FGF-2 to a soluble, recombinant form of extracellular FGFR-1. Conversely, the soluble receptor and free heparin inhibit the interaction of fluorochrome-labeled GM1 to immobilized FGF-2. In agreement with their FGFR antagonist activity, free gangliosides inhibit the mitogenic activity exerted by FGF-2 on endothelial cells in the same range of concentrations. Also in this case, GT1b was the most effective among the gangliosides tested

  2. A new liquid chromatography/tandem mass spectrometry method for quantification of gangliosides in human plasma.

    PubMed

    Huang, Qianyang; Zhou, Xiang; Liu, Danting; Xin, Baozhong; Cechner, Karen; Wang, Heng; Zhou, Aimin

    2014-06-15

    Gangliosides are a family of glycosphingolipids characterized by mono- or polysialic acid-containing oligosaccharides linked through 1,3- and 1,4-β glycosidic bonds with subtle differences in structure that are abundantly present in the central nervous systems of many living organisms. Their cellular surface expression and physiological malfunction are believed to be pathologically implicated in considerable neurological disorders, including Alzheimer and Parkinson diseases. Recently, studies have tentatively elucidated that mental retardation or physical stagnation deteriorates as the physiological profile of gangliosides becomes progressively and distinctively abnormal during the development of these typical neurodegenerative syndromes. In this work, a reverse-phase liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay using standard addition calibration for determination of GM2, GM3, GD2, and GD3 in human plasma has been developed and validated. The analytes and internal standard were extracted from human plasma using a simple protein precipitation procedure. Then the samples were analyzed by reverse-phase ultra-performance liquid chromatography (UPLC)/MS/MS interfaced to mass spectrometry with electrospray ionization using a multiple reaction monitoring mode to obtain superior sensitivity and specificity. This assay was validated for extraction recovery, calibration linearity, precision, and accuracy. Our quick and sensitive method can be applied to monitor ganglioside levels in plasma from normal people and neurodegenerative patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F

    SciTech Connect

    Fu, Zhuji; Chen, Chen; Barbieri, Joseph T.; Kim, Jung-Ja P.; Baldwin, Michael R.

    2010-02-22

    Botulinum neurotoxin causes rapid flaccid paralysis through the inhibition of acetylcholine release at the neuromuscular junction. The seven BoNT serotypes (A-G) have been proposed to bind motor neurons via ganglioside-protein dual receptors. To date, the structure-function properties of BoNT/F host receptor interactions have not been resolved. Here, we report the crystal structures of the receptor binding domains (HCR) of BoNT/A and BoNT/F and the characterization of the dual receptors for BoNT/F. The overall polypeptide fold of HCR/A is essentially identical to the receptor binding domain of the BoNT/A holotoxin, and the structure of HCR/F is very similar to that of HCR/A, except for two regions implicated in neuronal binding. Solid phase array analysis identified two HCR/F binding glycans: ganglioside GD1a and oligosaccharides containing an N-acetyllactosamine core. Using affinity chromatography, HCR/F bound native synaptic vesicle glycoproteins as part of a protein complex. Deglycosylation of glycoproteins using {alpha}(1-3,4)-fucosidase, endo-{beta}-galactosidase, and PNGase F disrupted the interaction with HCR/F, while the binding of HCR/B to its cognate receptor, synaptotagmin I, was unaffected. These data indicate that the HCR/F binds synaptic vesicle glycoproteins through the keratan sulfate moiety of SV2. The interaction of HCR/F with gangliosides was also investigated. HCR/F bound specifically to gangliosides that contain {alpha}2,3-linked sialic acid on the terminal galactose of a neutral saccharide core (binding order GT1b = GD1a GM3; no binding to GD1b and GM1a). Mutations within the putative ganglioside binding pocket of HCR/F decreased binding to gangliosides, synaptic vesicle protein complexes, and primary rat hippocampal neurons. Thus, BoNT/F neuronal discrimination involves the recognition of ganglioside and protein (glycosylated SV2) carbohydrate moieties, providing a structural basis for the high affinity and specificity of BoNT/F for neurons.

  4. New Insights on Non-Enzymatic Oxidation of Ganglioside GM1 Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Couto, Daniela; Melo, Tânia; Maciel, Elisabete; Campos, Ana; Alves, Eliana; Guedes, Sofia; Domingues, M. Rosário M.; Domingues, Pedro

    2016-12-01

    Gangliosides are acidic glycosphingolipids that are present in cell membranes and lipid raft domains, being particularly abundant in central nervous systems. They participate in modulating cell membrane properties, cell-cell recognition, cell regulation, and signaling. Disturbance in ganglioside metabolism has been correlated with the development of diseases, such as neurodegenerative diseases, and in inflammation. Both conditions are associated with an increased production of reactive oxidation species (ROS) that can induce changes in the structure of biomolecules, including lipids, leading to the loss or modification of their function. Oxidized phospholipids are usually involved in chronic diseases and inflammation. However, knowledge regarding oxidation of gangliosides is scarce. In order to evaluate the effect of ROS in gangliosides, an in vitro biomimetic model system was used to study the susceptibility of GM1 (Neu5Ac α2-3(Gal β1-3GalNAc β1-4)Gal β1-4Glc β1Cer) to undergo oxidative modifications. Oxidation of GM1 under Fenton reaction conditions was monitored using high resolution electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). Upon oxidation, GM1 underwent oxidative cleavages in the carbohydrate chain, leading to the formation of other gangliosides GM2 (GalNAcβ1-4Gal(Neu5Acα2-3)1-4Glcβ1Cer), GM3 (Neu5Acα2-3Galβ1-4Glcβ1Cer), asialo-GM1 (Gal β1-3GalNAc β1-4Gal β1-4Glc β1Cer), asialo-GM2 (GalNAc β1-4Gal β1-4Glc β1Cer), of the small glycolipids lactosylceramide (LacCer), glucosylceramide (GlcCer), and of ceramide (Cer). In addition, oxygenated GM1 and GM2 (as keto and hydroxy derivatives), glycans, oxidized glycans, and oxidized ceramides were also identified. Nonenzymatic oxidation of GM1 under oxidative stress contributes to the generation of other gangliosides that may participate in the imbalance of gangliosides metabolism in vivo, through uncontrolled enzymatic pathways and, consequently, play

  5. Ganglioside mimicry and peripheral nerve disease.

    PubMed

    Yuki, Nobuhiro

    2007-06-01

    Four criteria must be satisfied to conclude that a given microorganism causes Guillain-Barré (GBS) or Fisher (FS) syndrome associated with anti-ganglioside antibodies: (1) an epidemiological association between the infecting microbe and GBS or FS; (2) isolation in the acute progressive phase of illness of that microorganism from GBS or FS patients with associated anti-ganglioside IgG antibodies; (3) identification of a microbial ganglioside mimic; and (4) a GBS or FS with associated anti-ganglioside antibodies model produced by sensitization with the microbe itself or its component, as well as with ganglioside. Campylobacter jejuni is a definitive causative microorganism of acute motor axonal neuropathy and may cause FS and related conditions. Haemophilus influenzae and Mycoplasma pneumoniae are possible causative microorganisms of acute motor axonal neuropathy or FS. Acute and chronic inflammatory demyelinating polyneuropathies may be produced by mechanisms other than ganglioside mimicry.

  6. Cloning and transcriptional regulation of genes responsible for synthesis of gangliosides.

    PubMed

    Zeng, Guichao; Yu, Robert K

    2008-04-01

    Ganglioside synthases are glycosyltransferases involved in the biosynthesis of glycoconjugates. A number of ganglioside synthase genes have been cloned and characterized. They are classified into different families of glycosyltransferases based on similarities of their amino acid sequences. Tissue-specific expression of these genes has been analyzed by hybridization using cDNA fragments. Enzymatic characterization with the expressed recombinant enzymes showed these enzymes differ in their donor and acceptor substrate specificities and other biochemical parameters. In vitro enzymatic analysis also showed that one linkage can be synthesized by multiple enzymes and one enzyme may be responsible for synthesis of multiple gangliosides. Following the cloning of the ganglioside synthase genes, the promoters of the key synthase genes in the ganglioside biosynthetic pathway have been cloned and analyzed. All of the promoters are TATA-less, lacking a CCAAT box but containing GC-rich boxes, characteristic of the house-keeping genes, although transcription of ganglioside synthase genes is subject to complex developmental and tissue-specific regulation. A set of cis-acting elements and transcription factors, including Sp1, AP2, and CREB, function in the proximal promoters. Negative-regulatory regions have also been defined in most of the promoters. We present here an overview of these genes and their transcriptional regulation.

  7. Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration.

    PubMed

    Vyas, A A; Schnaar, R L

    2001-07-01

    Gangliosides, sialylated glycosphingolipids which are the predominant glycans on vertebrate nerve cell surfaces, are emerging as components of membrane rafts, where they can mediate important physiological functions. Myelin associated glycoprotein (MAG), a minor constituent of myelin, is a sialic acid binding lectin with two established physiological functions: it is involved in myelin-axon stability and cytoarchitecture, and controls nerve regeneration. MAG is found selectively on the myelin membranes directly apposed to the axon surface, where it has been proposed to mediate myelin-axon interactions. Although the nerve cell surface ligands for MAG remain to be established, evidence supports a functional role for sialylated glycoconjugates. Here we review recent studies that reflect on the role of gangliosides, sialylated glycosphingolipids, as functional MAG ligands. MAG binds to gangliosides with the terminal sequence 'NeuAc alpha 3Gal beta 3GalNAc' which is found on the major nerve gangliosides GD1a and GT1b. Gangliosides lacking that terminus (e.g., GM1 or GD1b), or having any biochemical modification of the terminal NeuAc residue fail to support MAG binding. Genetically engineered mice lacking the GalNAc transferase required for biosynthesis of the 'NeuAc alpha 3Gal beta 3GalNAc' terminus have grossly impaired myelination and progressive neurodegeneration. Notably the MAG level in these animals is dysregulated. Furthermore, removal of NeuAc residues from nerve cells reverses MAG-mediated inhibition of neuritogenesis, and neurons from mice lacking the 'NeuAc alpha 3 Gal beta 3GalNAc' terminus have an attenuated response to MAG. Cross-linking nerve cell surface gangliosides can mimic MAG-mediated inhibition of nerve regeneration. Taken together these observations implicate gangliosides as functional MAG ligands.

  8. Endogenous immune response to gangliosides in patients with confined prostate cancer.

    PubMed

    Ravindranath, Mepur H; Muthugounder, Sakunthala; Presser, Naftali; Ye, Xing; Brosman, Stanley; Morton, Donald L

    2005-09-01

    Our study investigated whether endogenous IgM antibodies to gangliosides occur in patients with early stages of prostate cancer (CaP) patients, after defining ganglioside profiles of CaP cell lines. Immune and resorcinol staining detected the presence of gangliosides GM3, GM2, GD3, GD2 and GD1a but not GM1a, GD1b or GT1b in the extracts of normal prostatic epithelial cells (PrEC) and neoplastic androgen-insensitive (PC-3, DU145) and -sensitive (LNCaP-FGC and LNCaP-FGC-10) CaP cells. Using a sensitive ELISA, developed and validated in our laboratory, the titers of IgM against 8 gangliosides from sera of patients with benign prostatic hyperplasia (BPH) (n = 11), organ-confined (T1/T2, n = 36) and unconfined (T3/T4, n = 27) CaP and age-matched healthy men (n = 11) were determined double-blinded. Using ANOVA and Fisher's least significant difference (LSD) methods, the log-titers among different groups were compared. CaP patients differed from healthy and BPH patients in increased titers against GD1a and decreased titers against GD3. Titers of antibodies to other gangliosides exhibited no difference between CaP patients and others. The specific augmentation of anti-GD1a IgM in patients with organ-confined CaP (stage T1/T2) but not in patients with unconfined CaP (stage T3/T4) or BPH or in healthy controls is striking. This finding together with identification of GD1a as a major ganglioside in CaP cell lines and with the accruing studies on the immunosuppressive nature of GD1a indicates that augmentation of anti-GD1a IgM in confined CaP may signify an early endogenous immune response to eliminate a "danger signal" from tumor microenvironment and circulation.

  9. Gangliosides of the Vertebrate Nervous System.

    PubMed

    Schnaar, Ronald L

    2016-08-14

    Gangliosides, sialylated glycosphingolipids, found on all vertebrate cells and tissues, are major molecular determinants on the surfaces of vertebrate nerve cells. Composed of a sialylated glycan attached to a ceramide lipid, the same four structures-GM1, GD1a, GD1b, and GT1b-represent the vast majority (>90%) of gangliosides in the brains of all mammals and birds. Primarily found on the outer surface of the plasma membrane with their glycans facing outward, gangliosides associate laterally with each other, sphingomyelin, cholesterol, and select proteins in lipid rafts-the dynamic functional subdomains of the plasma membrane. The functions of gangliosides in the human nervous system are revealed by congenital mutations in ganglioside biosynthetic genes. Mutations in ST3GAL5, which codes for an enzyme early in brain ganglioside biosynthesis, result in an early-onset seizure disorder with profound motor and cognitive decay, whereas mutations in B4GALNT1, a gene encoding a later step, result in hereditary spastic paraplegia accompanied by intellectual deficits. The molecular functions of brain gangliosides include regulation of receptors in the same membrane via lateral (cis) associations and regulation of cell-cell recognition by trans interaction with ganglioside binding proteins on apposing cells. Gangliosides also affect the aggregation of Aβ (Alzheimer's disease) and α-synuclein (Parkinson's Disease). As analytical, biochemical, and genetic tools advance, research on gangliosides promises to reveal mechanisms of molecular control related to nerve and glial cell differentiation, neuronal excitability, axon outgrowth after nervous system injury, and protein folding in neurodegenerative diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Immunoreactivity of the 14F7 Mab (Raised against N-Glycolyl GM3 Ganglioside) as a Positive Prognostic Factor in Non-Small-Cell Lung Cancer

    PubMed Central

    Blanco, Rancés; Rengifo, Charles E.; Cedeño, Mercedes; Frómeta, Milagros; Rengifo, Enrique; Carr, Adriana

    2012-01-01

    Lung carcinoma is the leading cause of cancer-related mortality worldwide. Therefore, numerous studies are focusing on the assessment of other biological and molecular prognostic factors in these tumors. We evaluated the relationship between 14F7 Mab reactivity, pathological features, DNA-content and S-phase fraction (SPF), and their impact in the survival of NSCLC patients. Hematoxylin and eosin staining and immunohistochemistry optical microscopy assays as well as DNA content and SPF measuring using flow cytometry were performed. The 14F7 reactivity was widely observed in NSCLC sections, no depending of the clinicopathological characteristics. We also obtained differences in the intensity of reaction with 14F7 as well as in the SPF between diploid and aneuploid carcinomas. Patients with diploid tumors showing higher SPF and 14F7 reaction joint to a low mitotic index displayed higher survival rates. Our results are in agreement with the assumption of the possible positive prognostic value of 14F7 staining in NSCLC. PMID:22482082

  11. Involvement of gangliosides in the suppression of the immune response: an explanation for the progression of UV-induced fibrosarcomas

    SciTech Connect

    Frey, J.L.

    1987-01-01

    Ultraviolet-irradiation-induced fibrosarcoma cells with either progressor or regressor properties were studied for structural differences in their glycosphingolipid (GSL) content and composition. UV-progressor tumor cells contained a ganglioside, G/sub Dla/, which the UV-regressor cells lacked. This ganglioside was found in the serum of tumor bearing animals and was shed from the UV-progressor tumor cells. In our analysis of the role gangliosides might play in the tumor progression, we found that both spent medium and crude ganglioside preparations from progressor UV-tumor cells inhibited the mitogenic proliferation of normal lymphocytes. In vitro analysis with purified preparations of G/sub Dla/ showed that this ganglioside had immunosuppressive properties in mitogen-stimulated cultures. The kinetics of the inhibition response showed that maximal inhibition occurred if G/sub Dla/ was present at the prereplicative stage of lymphocyte proliferation. If lymphocytes are precultured with G/sub Dla/, exogenous ganglioside could be removed without loss of the inhibitory activity on lymphocyte proliferation. These results suggest that the presence of the ganglioside, G/sub Dla/, on the cell surface of progressor tumors could alter an immune response

  12. Unique Ganglioside Recognition Strategies for Clostridial Neurotoxins

    SciTech Connect

    Benson, Marc A.; Fu, Zhuji; Kim, Jung-Ja P.; Baldwin, Michael R.

    2012-03-15

    Botulinum neurotoxins (BoNTs) and tetanus neurotoxin are the causative agents of the paralytic diseases botulism and tetanus, respectively. The potency of the clostridial neurotoxins (CNTs) relies primarily on their highly specific binding to nerve terminals and cleavage of SNARE proteins. Although individual CNTs utilize distinct proteins for entry, they share common ganglioside co-receptors. Here, we report the crystal structure of the BoNT/F receptor-binding domain in complex with the sugar moiety of ganglioside GD1a. GD1a binds in a shallow groove formed by the conserved peptide motif E ... H ... SXWY ... G, with additional stabilizing interactions provided by two arginine residues. Comparative analysis of BoNT/F with other CNTs revealed several differences in the interactions of each toxin with ganglioside. Notably, exchange of BoNT/F His-1241 with the corresponding lysine residue of BoNT/E resulted in increased affinity for GD1a and conferred the ability to bind ganglioside GM1a. Conversely, BoNT/E was not able to bind GM1a, demonstrating a discrete mechanism of ganglioside recognition. These findings provide a structural basis for ganglioside binding among the CNTs and show that individual toxins utilize unique ganglioside recognition strategies.

  13. Ceramide structure predicts tumor ganglioside immunosuppressive activity.

    PubMed Central

    Ladisch, S; Li, R; Olson, E

    1994-01-01

    Molecular determinants of biological activity of gangliosides are generally believed to be carbohydrate in nature. However, our studies of immunomodulation by highly purified naturally occurring tumor gangliosides provide another perspective: while the immunosuppressive activity of gangliosides requires the intact molecule (both carbohydrate and ceramide moieties), ceramide structure strikingly influences ganglioside immunosuppressive activity. Molecular species of human neuroblastoma GD2 ganglioside in which the ceramide contains a shorter fatty acyl chain (C16:0, C18:0) were 6- to 10-fold more active than those with a longer fatty acyl chain (C22:0/C24:1, C24:0). These findings were confirmed in studies of ceramide species of human leukemia sialosylparagloboside and murine lymphoma GalNAcGM1b. Gangliosides that contain shorter-chain fatty acids (and are most immunosuppressive) are known to be preferentially shed by tumor cells. Therefore, the results suggest that the tumor cell is optimized to protect itself from host immune destruction by selective shedding of highly active ceramide species of gangliosides. Images PMID:8127917

  14. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration.

    PubMed

    Ribeiro-Resende, Victor Túlio; Araújo Gomes, Tiago; de Lima, Silmara; Nascimento-Lima, Maiara; Bargas-Rega, Michele; Santiago, Marcelo Felipe; Reis, Ricardo Augusto de Melo; de Mello, Fernando Garcia

    2014-01-01

    The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration.

  15. Mice Lacking GD3 Synthase Display Morphological Abnormalities in the Sciatic Nerve and Neuronal Disturbances during Peripheral Nerve Regeneration

    PubMed Central

    Ribeiro-Resende, Victor Túlio; Gomes, Tiago Araújo; de Lima, Silmara; Nascimento-Lima, Maiara; Bargas-Rega, Michele; Santiago, Marcelo Felipe; Reis, Ricardo Augusto de Melo; de Mello, Fernando Garcia

    2014-01-01

    The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration. PMID:25330147

  16. Influence of dietary gangliosides on neonatal brain development.

    PubMed

    McJarrow, Paul; Schnell, Nicholas; Jumpsen, Jacqueline; Clandinin, Tom

    2009-08-01

    Gangliosides are sialic acid-containing glycosphingolipids. Gangliosides are found in human milk; understanding of the potential role of gangliosides in infant development is emerging, with suggested roles in the brain and gut. Ganglioside accretion in the developing brain is highest in utero and in early neonatal life, during the periods of dendritic branching and new synapse formation. Further, brain contains the highest relative ganglioside content in the body, particularly in neuronal cell membranes concentrated in the area of the synaptic membrane. Gangliosides are known to play a role in neuronal growth, migration and maturation, neuritogenesis, synaptogenesis, and myelination. In addition to their roles in development and structure of the brain, gangliosides also play a functional role in nerve cell communication. It is less well known whether dietary gangliosides can influence the development of cognitive function. This review summarizes current knowledge on the role gangliosides play in brain development.

  17. A FRET probe for cell-based imaging of ganglioside-processing enzyme activity and high-throughput screening.

    PubMed

    Yang, Guang-Yu; Li, Caishun; Fischer, Michael; Cairo, Christopher W; Feng, Yan; Withers, Stephen G

    2015-04-27

    Gangliosides are important signaling molecules in the cell membrane and are processed by several enzymes. Deficiencies in these enzymes can cause human lysosomal storage diseases. Building an understanding of the pathways of glycosphingolipid catabolism requires methods for the analysis of these enzymatic activities A GM3-derived FRET probe was synthesized chemoenzymatically for the detection and quantitation of a range of ganglioside-degrading enzymes, both in cell lysates and in living cells. This is the first substrate that enables the ratiometric fluorogenic assay of sphingolipid ceramide N-deacylase and endoglycoceramidase and can detect and localize neuraminidase activity in living cells. It is therefore a valuable tool for building a better understanding of membrane-confined enzymology. It also enables the robust and reliable assay of ganglioside-degrading enzymes in a microtiter plate, thus opening the door to screening for novel or engineered biocatalysts or for new inhibitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Deciphering the Glycolipid Code of Alzheimer's and Parkinson's Amyloid Proteins Allowed the Creation of a Universal Ganglioside-Binding Peptide

    PubMed Central

    Yahi, Nouara; Fantini, Jacques

    2014-01-01

    A broad range of microbial and amyloid proteins interact with cell surface glycolipids which behave as infectivity and/or toxicity cofactors in human pathologies. Here we have deciphered the biochemical code that determines the glycolipid-binding specificity of two major amyloid proteins, Alzheimer's β-amyloid peptide (Aβ) and Parkinson's disease associated protein α-synuclein. We showed that both proteins interact with selected glycolipids through a common loop-shaped motif exhibiting little sequence homology. This 12-residue domain corresponded to fragments 34-45 of α-synuclein and 5-16 of Aβ. By modulating the amino acid sequence of α-synuclein at only two positions in which we introduced a pair of histidine residues found in Aβ, we created a chimeric α-synuclein/Aβ peptide with extended ganglioside-binding properties. This chimeric peptide retained the property of α-synuclein to recognize GM3, and acquired the capacity to recognize GM1 (an Aβ-inherited characteristic). Free histidine (but not tryptophan or asparagine) and Zn2+ (but not Na+) prevented this interaction, confirming the key role of His-13 and His-14 in ganglioside binding. Molecular dynamics studies suggested that the chimeric peptide recognized cholesterol-constrained conformers of GM1, including typical chalice-shaped dimers, that are representative of the condensed cholesterol-ganglioside complexes found in lipid raft domains of the plasma membrane of neural cells. Correspondingly, the peptide had a particular affinity for raft-like membranes containing both GM1 and cholesterol. The chimeric peptide also interacted with several other gangliosides, including major brain gangliosides (GM4, GD1a, GD1b, and GT1b) but not with neutral glycolipids such as GlcCer, LacCer or asialo-GM1. It could inhibit the binding of Aβ1-42 onto neural SH-SY5Y cells and did not induce toxicity in these cells. In conclusion, deciphering the glycolipid code of amyloid proteins allowed us to create a universal

  19. Deciphering the glycolipid code of Alzheimer's and Parkinson's amyloid proteins allowed the creation of a universal ganglioside-binding peptide.

    PubMed

    Yahi, Nouara; Fantini, Jacques

    2014-01-01

    A broad range of microbial and amyloid proteins interact with cell surface glycolipids which behave as infectivity and/or toxicity cofactors in human pathologies. Here we have deciphered the biochemical code that determines the glycolipid-binding specificity of two major amyloid proteins, Alzheimer's β-amyloid peptide (Aβ) and Parkinson's disease associated protein α-synuclein. We showed that both proteins interact with selected glycolipids through a common loop-shaped motif exhibiting little sequence homology. This 12-residue domain corresponded to fragments 34-45 of α-synuclein and 5-16 of Aβ. By modulating the amino acid sequence of α-synuclein at only two positions in which we introduced a pair of histidine residues found in Aβ, we created a chimeric α-synuclein/Aβ peptide with extended ganglioside-binding properties. This chimeric peptide retained the property of α-synuclein to recognize GM3, and acquired the capacity to recognize GM1 (an Aβ-inherited characteristic). Free histidine (but not tryptophan or asparagine) and Zn2+ (but not Na+) prevented this interaction, confirming the key role of His-13 and His-14 in ganglioside binding. Molecular dynamics studies suggested that the chimeric peptide recognized cholesterol-constrained conformers of GM1, including typical chalice-shaped dimers, that are representative of the condensed cholesterol-ganglioside complexes found in lipid raft domains of the plasma membrane of neural cells. Correspondingly, the peptide had a particular affinity for raft-like membranes containing both GM1 and cholesterol. The chimeric peptide also interacted with several other gangliosides, including major brain gangliosides (GM4, GD1a, GD1b, and GT1b) but not with neutral glycolipids such as GlcCer, LacCer or asialo-GM1. It could inhibit the binding of Aβ1-42 onto neural SH-SY5Y cells and did not induce toxicity in these cells. In conclusion, deciphering the glycolipid code of amyloid proteins allowed us to create a universal

  20. Anti-ganglioside antibodies in patients with systemic lupus erythematosus and neurological manifestations.

    PubMed

    Labrador-Horrillo, M; Martinez-Valle, F; Gallardo, E; Rojas-Garcia, R; Ordi-Ros, J; Vilardell, M

    2012-05-01

    Anti-ganglioside antibodies (AGA) have been associated with several peripheral neuropathies, such as Miller-Fisher syndrome, Guillain-Barré syndrome and multifocal motor neuropathy. They have also been studied in patients with systemic lupus erythematosus (SLE), focusing on neuropsychiatric manifestations and peripheral neuropathy, but the results are contradictory. To study the presence of AGA in a large cohort of patients with SLE and neuropsychiatric manifestations. Serum from 65 consecutive patients with SLE and neuropsychiatric manifestations, collected from 1985 to 2009, was tested for the presence of AGA antibodies (GM1, GM2, GM3, asialo-GM1 GD1a, GD1b, GD3, GT1b, GQ1b) using a standard enzyme-linked immunosorbent assay ELISA test (INCAT 1999) and thin layer chromatography (TLC). Positive results for asialo-GM1 (IgM) were found in 10 patients, 6 were positive for asialo-GM1 (IgM and IgG), and 4 were positive for other AGA such as GM1, GM2, GM3, GD1b, GT1b, GD3, (mainly IgM). Clinical and statistical studies showed no correlation between AGA and neuropsychiatric manifestations of SLE. Although some patients showed reactivity to AGA, these antibodies are not a useful marker of neuropsychiatric manifestations in SLE patients.

  1. Syngeneic anti-idiotypic monoclonal antibodies to an anti-NeuGc-containing ganglioside monoclonal antibody.

    PubMed

    Vázquez, A M; Pérez, A; Hernández, A M; Macías, A; Alfonso, M; Bombino, G; Pérez, R

    1998-12-01

    An IgM monoclonal antibody (MAb), named P3, has the characteristic to react specifically with a broad battery of N-glycolyl containing-gangliosides and with antigens expressed on breast tumors. When this MAb was administered alone in syngeneic mice, an specific IgG anti-idiotypic antibody (Ab2) response was induced, this Ab2 response was increased when P3 MAb was injected coupled to a carrier protein and in the presence of Freund's adjuvant. Spleen cells from these mice were used in somatic-cell hybridization experiments, using the murine myeloma cell line P3-X63-Ag8.653 as fusion partner. Five Ab2 MAbs specific to P3 MAb were selected. These IgG1 Ab2 MAbs were able to block the binding of P3 MAb to GM3(NeuGc) ganglioside and to a human breast carcinoma cell line. Cross-blocking experiments demonstrated that these Ab2 MAbs are recognizing the same or very close sites on the Abl MAb. The five Ab2 MAbs were injected into syngeneic mice and four of them produced strong anti-anti-idiotypic antibody (Ab3) response. While these Ab2 MAbs were unable to generate Ab3 antibodies with the same antigenic specificity than P3 MAb, three of them induced antibodies bearing P3 MAb idiotopes (Ag-Id+ Ab3). These results demonstrated that these Ab2 MAbs are not "internal image" antibodies, but they could define "regulatory idiotopes."

  2. Circulating gangliosides of breast-cancer patients.

    PubMed

    Wiesner, D A; Sweeley, C C

    1995-01-27

    Gangliosides were isolated from the sera of recently diagnosed breast-cancer patients and from individuals who were apparently free of disease. Quantificative and qualitative analyses were carried out by 2-dimensional high-performance thin-layer chromatography and gas chromatography. The locations of isolated gangliosides on thin-layer chromatograms were determined by visualization with resorcinol, and each spot was quantified by digital image densitometry. The ganglioside profiles of cancer patients were compared to those of the control group, revealing a significant increase in total lipid-bound sialic acid and a specific increase in polysialogangliosides in the patients with breast cancer. Furthermore, an increase was noted in the ratio of gangliosides of the b-series biosynthetic pathway over those of the a-series in the cancer sera, as compared to the controls. Gas chromatographic analysis of the peracetylated methanolysis mixtures derived from the total ganglioside fraction of cancer patients supported the HPTLC data, with an increase in total sialic acid, galactose, and sphingosine residues. No unusual gangliosides were found in the mixture from breast-cancer patients.

  3. Monitoring Diabetic Nephropathy by Circulating Gangliosides.

    PubMed

    Ene, Corina Daniela; Penescu, Mircea; Anghel, Amalia; Neagu, Monica; Budu, Vlad; Nicolae, Ilinca

    2016-01-01

    Gangliosides are multifunctional molecules, abundantly expressed in renal cell membrane but also in sera of patients with renal disease. The aim of this study was to quantify the serum levels of sialic acid-ganglioside in patients diagnosed with diabetes for an eventual biomarker stratification of patients with renal complications. We included 35 diabetic patients without metabolic complications, 35 patients with diabetic nephropathy, 35 non-diabetic individuals. We found that sialic acid ganglioside serum level was significantly increased in patients with diabetic nephropathy compared to the level obtained in patients with uncomplicated diabetes and to non-diabetic controls. A statistically significant positive correlation was obtained between serum levels of sialic acid gangliosides, HbA1c, and serum creatinine in patients with diabetes without complications. Moreover positive correlation was found between sialic acid ganglioside and blood glucose, HbA1c, urea, creatinine, microalbuminuria in patients with diabetic nephropathy. We can conclude that serum sialic acid-gangliosides are statistically increased in diabetic nephropathy positively correlated with microalbuminuria.

  4. Fibrillar organization of fibronectin is expressed coordinately with cell surface gangliosides in a variant murine fibroblast

    PubMed Central

    1986-01-01

    NCTC 2071A cells, a line of transformed murine fibroblasts, grow in serum-free medium, are deficient in gangliosides, synthesize fibronectin, but do not retain and organize it on the cell surface. When the cells are exposed to exogenous gangliosides, fibrillar strands of fibronectin become attached to the cell surface. A morphologically distinct variant of NCTC 2071A cells was observed to both retain cell surface fibronectin and organize it into a fibrillar network when the cells were stained with anti-fibronectin antibodies and a fluorescent second antibody. A revertant cell type appeared to resemble the parental NCTC 2071A cells in terms of morphology and fibronectin organization. All three cell types were subjected to mild NaIO4 oxidation and reduction with KB3H4 of very high specific radioactivity in order to label the sialic acid residues of surface gangliosides. The variant had much more surface gangliosides than the parental, particularly more complex gangliosides corresponding to GM1 and GD1a. The surface gangliosides of the revertant were intermediate between the parental and the variant. By using sialidase, which hydrolyzes GD1a to GM1, and 125I-labeled cholera toxin, which binds specifically to GM1, the identity and levels of these gangliosides were confirmed in the three cell types. When variant cells were exposed to sialidase for 2 d, there appeared to be little change in fibronectin organization. Concomitant treatment of the cells with the B subunit of cholera toxin, which bound to all the surface GM1 including that generated by the sialidase, however, eliminated the fibrillar network of fibronectin. In addition, exposure of the variant cells to a 70,000-mol-wt fragment of fibronectin, which lacks the cell attachment domain but contains a matrix assembly domain, inhibited the formation of fibers. Finally, all three cell types were assayed for their ability to attach to and spread on fibronectin-coated surfaces; no significant differences were found

  5. Influence of gangliosides on the IL-2- and IL-4-dependent cell proliferation.

    PubMed

    Molotkovskaya, Irina M; Kholodenko, Roman V; Molotkovsky, Julian G

    2002-08-01

    Ganglioside-induced apoptosis in the cells of IL-2-dependent cytotoxic murine cell line CTLL-2 was shown to be caspase dependent: GM1-, GM2-, and GD3-induced suppression of cell proliferation was cancelled by a general caspase inhibitor Z-VAD-FMK. Ganglioside-induced apoptosis pathways are different for different individual glycolipids; the differences exist both at the initiation and effector stages of the caspase cascade. Only for GM1-induced process, molecular mechanisms of signal transduction coincide with the ones for CD95 and TNFalpha: the participation of both the main initiation caspases 8, 1, and 4, and caspases 3 and 9 as well, has been shown. Caspase 3 participates in the pathway induced by GM3, GD1a, GD1b, and GT1b, but not by GM2. As morphological features show, tumor-associated ganglioside GM2 is also a stimulus of programmed cell death (PCD) for CTLL-2 cell line: addition of GM2 into cell culture has resulted in appearance of annexin V-positive cells and in accumulation of DNA breaks (shown by the TUNEL direct dyeing of the open ends). But a caspase 3 inhibitor Z-DEVD-FMK did not restore the cell proliferation suppressed by GM2, and addition of a fluorescent substrate of caspase 3 Ac-DEVD-AFC did not result in the fluorescence development. So caspase 3 does not participate in downstream pathways of GM2-induced cell apoptosis, and a PCD-effector system other than the apoptosome-mediated one is involved here.

  6. Gangliosides During Tumor Progression in Patients With Prostate Cancer

    DTIC Science & Technology

    2002-07-01

    Objectives of the project are: (1) to identify the gangliosides of Prostate cancer (CaP) cells that are immunogenic so that they can be used as...targets to develop immunotherapy for prostate cancer; (2) to determine the total and specific Cap- gangliosides released into the blood and (3) to assess...the nature of immunosuppression induced by CaP gangliosides . The major findings of the first year are as follows: Ganglioside GM1 is the major cell

  7. STUDIES ON GANGLIOSIDES FROM HUMAN AND CALF BRAIN.

    DTIC Science & Technology

    Attempts to characterize the individual gangliosides by component molar ratios have indicated a requirement for reliable glucose and galactose assays...milligram amounts of ganglioside . When this GLC assay was used to characterize a preparation which appeared to be an unreported ganglioside , the data...of the most recent literature that no single TLC solvent system was adequate to distinguish the numerous ganglioside species which were reported

  8. Control of cell motility by interaction of gangliosides, tetraspanins, and epidermal growth factor receptor in A431 versus KB epidermoid tumor cells.

    PubMed

    Park, Seung-Yeol; Yoon, Seon-Joo; Freire-de-Lima, Leonardo; Kim, Jung-Hoe; Hakomori, Sen-itiroh

    2009-08-17

    Growth of epidermoid carcinoma cell lines, A431 and KB, has been known to be controlled by the interaction of epidermal growth factor (EGF) and its receptor (EGFR) with tyrosine kinase. Ganglioside GM3 was previously found to interact with EGFR and to inhibit EGFR tyrosine kinase. However, motility of these cells, controlled by EGFR and ganglioside, was not studied. The present study is focused on the control mechanism of the motility of these cells through interaction of ganglioside, tetraspanin (TSP), and EGFR. Key results are as follows: (i) The level of EGFR expressed in A431 cells is approximately 6 times higher than that expressed in KB cells, and motility of A431 cells is also much higher than that of KB cells, yet growth of A431 cells is either not affected or is inhibited by EGF. In contrast, growth of KB cells is enhanced by EGF. (ii) Levels of TSPs (CD9, CD82, and CD81) expressed in A431 cells are much higher than those expressed in KB cells, and TSPs expressed in A431 cells are reduced by treatment of cells with EtDO-P4, which inhibits the synthesis of glycosphingolipids (GSLs) and gangliosides. (iii) These TSPs are co-immunoprecipitated with EGFR in both A431 and KB cells, indicating that TSPs are closely associated with EGFR. (iv) High motility of A431 cells is greatly reduced, while low motility of KB cells is not affected, by treatment of cells with EtDO-P4. These results, taken together, suggest that there is a close correlation between high motility of A431 cells and high expression of EGFR and TSPs, and between ganglioside GM3/GM2 and TSP. A similar correlation was suggested between the low motility of KB cells and low levels of EGFR and TSP. The correlation between high motility and high level of EGFR with the ganglioside-TSP complex in A431 cells is unique. This is in contrast to our previous studies that indicate that motility of many types of tumor cells is inhibited by a high level of CD9 or CD82, together with growth factor receptors and

  9. Gangliosides, or sialic acid, antagonize ethanol intoxication

    SciTech Connect

    Klemm, W.R.; Boyles, R.; Matthew, J.; Cherian, L.

    1988-01-01

    Because ethanol elicits a dose-dependent hydrolysis of brain sialogangliosides, the authors tested the possibility that injected gangliosides might antagonize intoxicating doses of ethanol. Clear anti-intoxication effects were seen at 24 hr post-injection of mixed mouse-brain gangliosides at 125-130 mg/kg, but not at lower or higher doses. Sleep time was reduced on the order of 50%, and roto-rod agility was significantly enhanced. Sialic acid (SA) similarly antagonized ethanol; however, the precursor of SA, N-acetyl-D-mannosamine, as well as ceramide and asialoganglioside did not.

  10. Accumulation of unusual gangliosides G(Q3) and G(P3) in breast cancer cells expressing the G(D3) synthase.

    PubMed

    Steenackers, Agata; Vanbeselaere, Jorick; Cazet, Aurélie; Bobowski, Marie; Rombouts, Yoann; Colomb, Florent; Le Bourhis, Xuefen; Guérardel, Yann; Delannoy, Philippe

    2012-08-10

    Glycosphingolipids from the ganglio-series are usually classified in four series according to the presence of 0 to 3 sialic acid residues linked to lactosylceramide. The transfer of sialic acid is catalyzed in the Golgi apparatus by specific sialyltransferases that show high specificity toward glycolipid substrates. ST8Sia I (EC 2.4.99.8, SAT-II, SIAT 8a) is the key enzyme controlling the biosynthesis of b- and c-series gangliosides. ST8Sia I is expressed at early developmental stages whereas in adult human tissues, ST8Sia I transcripts are essentially detected in brain. ST8Sia I together with b- and c-series gangliosides are also over-expressed in neuroectoderm-derived malignant tumors such as melanoma, glioblastoma, neuroblastoma and in estrogen receptor (ER) negative breast cancer, where they play a role in cell proliferation, migration, adhesion and angiogenesis. We have stably expressed ST8Sia I in MCF-7 breast cancer cells and analyzed the glycosphingolipid composition of wild type (WT) and GD3S+ clones. As shown by mass spectrometry, MCF-7 expressed a complex pattern of neutral and sialylated glycosphingolipids from globo- and ganglio-series. WT MCF-7 cells exhibited classical monosialylated gangliosides including G(M3), G(M2), and G(M1a). In parallel, the expression of ST8Sia I in MCF-7 GD3S+ clones resulted in a dramatic change in ganglioside composition, with the expression of b- and c-series gangliosides as well as unusual tetra- and pentasialylated lactosylceramide derivatives G(Q3) (II(3)Neu5Ac(4)-Gg(2)Cer) and G(P3) (II(3)Neu5Ac(5)-Gg(2)Cer). This indicates that ST8Sia I is able to act as an oligosialyltransferase in a cellular context.

  11. Draft Genome Sequence of Bacillus pumilus Strain GM3FR, an Endophyte Isolated from Aerial Plant Tissues of Festuca rubra L.

    PubMed Central

    Hollensteiner, Jacqueline; Daniel, Rolf; Liesegang, Heiko; Vidal, Stefan

    2017-01-01

    ABSTRACT Here, we report the draft genome sequence of Bacillus pumilus GM3FR, an endophytic bacterium isolated from aerial plant tissues of Festuca rubra L. The draft genome consists of 3.5 Mb and harbors 3,551 predicted protein-encoding genes. The genome provides insights into the biocontrol potential of B. pumilus GM3FR. PMID:28360161

  12. Synergistic inhibition of cell migration by tetraspanin CD82 and gangliosides occurs via the EGFR or cMet-activated Pl3K/Akt signalling pathway.

    PubMed

    Li, Ying; Huang, Xiaohua; Zhang, Jianing; Li, Yuzhong; Ma, Keli

    2013-11-01

    The metastasis suppressor CD82/KAI-1, which is a member of the tetraspanin superfamily, has been proposed to exert its activity together with glycosphingolipids. However, the mechanism of CD82 inhibition has not been fully elucidated. The present study aimed to investigate the synergistic inhibition of cell migration by the tetraspanin CD82 and gangliosides and to correlate this inhibition with activation of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (HGFR/cMet) in Hepa1-6 cell lines, whose motility and migration is stimulated by epidermal growth factor (EGF) and hepatocyte growth factor (HGF) in vitro. We found that Hepa1-6 cells transfected with the CD82 gene exhibited decreased migration in response to EGF and HGF. EGF-stimulated phosphorylation of EGFR at Tyr1173 was inhibited in these cells, which contributed to the attenuation of EGFR. Ectopic expression of CD82 in Hepa1-6 cells inhibited HGF-stimulated tyrosine phosphorylation of cMet at Tyr1313 and Tyr1365 without affecting the expression of cMet. These inhibitory effects were enhanced when CD82 was introduced with Ganglioside GM3 alone or GM2/GM3. Reduction of CD82 expression by RNA interference together with depletion of glycosphingolipids with P4 significantly enhanced cell motility and increased the expression of EGFR and its phosphorylation at Tyr1173 in response to EGF. Increased cell motility and HGF-dependent activation of cMet at Tyr1313 and Tyr1365 resulted from decreased CD82 levels and increased GM3. Furthermore, CD82 expression selectively attenuated EGFR and cMet signalling via phosphatidylinositol 3-kinase/Akt but had no affect on the activity of the MAPK signalling pathway. These results suggest that the synergistic effects of CD82 and GM3 or GM2/GM3 on EGFR expression and phosphorylation and cMet activation are responsible for CD82 inhibition of EGF- and HGF-dependent cell motility and migration of Hepa1-6 cells. Copyright © 2013 Elsevier Ltd. All rights

  13. Inhibitory effect of ganglioside GD1b on K+ current in hippocampal neurons and its involvement in apoptosis suppression.

    PubMed

    Chen, Xuesong; Chi, Shaopeng; Liu, Mingna; Yang, Wei; Wei, Taotao; Qi, Zhi; Yang, Fuyu

    2005-12-01

    Gangliosides are endogenous membrane components enriched in neuronal cells. They have been shown to play regulatory roles in many cellular processes. Here, we show for the first time that ganglioside GD1b plays an antiapoptotic role in cultured hippocampal neurons. GD1b inhibited the voltage-dependent outward delayed rectifier current (I(K)) but not the transient outward A-type current in a dose-dependent manner, with an IC50 value of 15.2 microM. This effect appears to be somehow specific, because GD1b, but not GM1, GM2, GM3, GD1a, GD3, or GT1b, was effective in inhibiting I(K). Intracellular application of staurosporine (STS; 0.1 microM) resulted in rapid activation of I(K), which was partially reversed upon addition of the K+ channel blocker tetraethylammonium (TEA; 5 mM) and GD1b (10 microM). Furthermore, GD1b (10 microM) attenuated STS-induced neuronal apoptosis by nearly the same amount as 5 mM TEA. In addition, GD1b suppressed the apoptosis-associated caspase 3 activation that was activated by STS. Collectively, these findings suggest that GD1b plays an antiapoptotic role in cultured hippocampal neurons through its inhibitory effect on the I(K) and caspase activity.

  14. Anti-ganglioside antibodies in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy in Chinese patients.

    PubMed

    Fan, Chenghe; Jin, Haiqiang; Hao, Hongjun; Gao, Feng; Sun, Yongan; Lu, Yuanyuan; Liu, Yuanyuan; Lv, Pu; Cui, Wei; Teng, Yuming; Huang, Yining

    2017-04-01

    In this study we investigated the relationships between anti-ganglioside antibodies and Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP). Samples from 48 Chinese patients diagnosed with GBS and 18 patients diagnosed with CIDP were retrospectively reviewed. In the GBS patients, 62.5% were classified as having acute inflammatory demyelinating polyneuropathy (AIDP), 27.1% were found to have acute motor axonal neuropathy (AMAN), and 10.4% were unclassified. Serum IgG anti-ganglioside antibodies were detected in 46.2% of the AMAN patients and in 6.7% of the AIDP patients (P < 0.05); 5.6% of the 18 CIDP patients were IgG antibody positive, and 27.8% were IgM antibody positive. Facial palsy and sensory impairment were significantly associated with IgM antibodies. These results suggest that IgG anti-GM1 antibodies are associated with AMAN, but not with AIDP, and that IgM antibodies against GM1, GM2, and GM3 are associated with facial nerve palsy. Muscle Nerve 55: 470-475, 2017. © 2016 Wiley Periodicals, Inc.

  15. The Pathogenic Role of Ganglioside Metabolism in Alzheimer's Disease-Cholinergic Neuron-Specific Gangliosides and Neurogenesis.

    PubMed

    Ariga, Toshio

    2017-01-01

    Alzheimer's disease (AD) is the most common type of dementia with clinical symptoms that include deficits in memory, judgment, thinking, and behavior. Gangliosides are present on the outer surface of plasma membranes and are especially abundant in the nervous tissues of vertebrates. Ganglioside metabolism, especially the cholinergic neuron-specific gangliosides, GQ1bα and GT1aα, is altered in mouse model of AD and patients with AD. Thus, alterations in ganglioside metabolism may participate in several events related to the pathogenesis of AD. Increased expressions of GT1aα may reflect cholinergic neurogenesis. Most changes in ganglioside metabolism occur in the specific brain areas and their lipid rafts. Targeting ganglioside metabolism in lipid rafts may represent an underexploited opportunity to design novel therapeutic strategies for AD.

  16. Brain gangliosides in the presenile dementia of Pick.

    PubMed Central

    Kamp, P E; den Hartog Jager, W A; Maathuis, J; de Groot, P A; de Jong, J M; Bolhuis, P A

    1986-01-01

    Histochemical analysis of frontal and temporal lobes from four patients with Pick presenile dementia indicated intracellular and extracellular deposits of gangliosides. Thin layer chromatography of gangliosides disclosed the presence of an unknown ganglioside, a decrease of N-acetylgalactosamine-GDla and an increase of GTla and/or GD2 in white matter of Pick brain. Chromatography of gray matter and quantitation of the sialic acid content yielded results similar to controls. It is suggested that degradation and removal of gangliosides is incomplete in Pick disease. Images PMID:3746324

  17. The role of gangliosides in neurodevelopment.

    PubMed

    Palmano, Kate; Rowan, Angela; Guillermo, Rozey; Guan, Jian; McJarrow, Paul

    2015-05-22

    Gangliosides are important components of neuronal cell membranes and it is widely accepted that they play a critical role in neuronal and brain development. They are functionally involved in neurotransmission and are thought to support the formation and stabilization of functional synapses and neural circuits required as the structural basis of memory and learning. Available evidence, as reviewed herein, suggests that dietary gangliosides may impact positively on cognitive functions, particularly in the early postnatal period when the brain is still growing. Further, new evidence suggests that the mechanism of action may be through an effect on the neuroplasticity of the brain, mediated through enhanced synaptic plasticity in the hippocampus and nigro-striatal dopaminergic pathway.

  18. The Role of Gangliosides in Neurodevelopment

    PubMed Central

    Palmano, Kate; Rowan, Angela; Guillermo, Rozey; Guan, Jian; Mc Jarrow, Paul

    2015-01-01

    Gangliosides are important components of neuronal cell membranes and it is widely accepted that they play a critical role in neuronal and brain development. They are functionally involved in neurotransmission and are thought to support the formation and stabilization of functional synapses and neural circuits required as the structural basis of memory and learning. Available evidence, as reviewed herein, suggests that dietary gangliosides may impact positively on cognitive functions, particularly in the early postnatal period when the brain is still growing. Further, new evidence suggests that the mechanism of action may be through an effect on the neuroplasticity of the brain, mediated through enhanced synaptic plasticity in the hippocampus and nigro-striatal dopaminergic pathway. PMID:26007338

  19. Fluorescent gangliosides as probes for the retention and organization of fibronectin by ganglioside-deficient mouse cells

    PubMed Central

    1985-01-01

    Ganglioside-deficient transformed mouse fibroblasts (NCTC 2071A cells), which grow in serum-free medium, synthesize fibronectin but do not retain it on the cell surface. When fluorescent derivatives of gangliosides, containing either rhodamine or Lucifer yellow CH attached to the sialic acid residues, were added to the culture medium, the cells incorporated the derivatives and their surfaces became highly fluorescent. When the cells were stained with anti-fibronectin antibodies and a fluorescent second antibody, fibrillar strands of fibronectin were observed to be attached to the cell surface, with partial coincidence of the patterns of direct ganglioside fluorescence and indirect fibronectin immunofluorescence at the cell surface. When the cells were exposed to bacterial neuraminidase during the time of ganglioside insertion, similar patterns of fluorescence were observed. Because the fluorescent gangliosides are resistant to the enzyme, these results suggest that neuraminidase-sensitive endogenous glycoconjugates were not involved in the ganglioside-mediated retention and organization of endogenous fibronectin. After cells were exposed to exogenous chicken fibronectin, most of the fibronectin was attached to the substratum and only a few fibrils were attached to the cells. When exogenous gangliosides were included in the incubation, there was a striking increase in cell-associated exogenous fibronectin, which was highly organized into a fibrillar network. Conversely, cells incubated for 18 h with exogenous unmodified gangliosides exhibited a highly organized network of endogenously derived fibronectin. Upon further incubation of the cells for 2 h with fluorescent gangliosides, there was considerable co-distribution of the fluorescent gangliosides with the fibronectin network as revealed by immunofluorescence. Our results support the concept that gangliosides can mediate the attachment of fibronectin to the cell surface and its organization into a fibrillar

  20. Gangliosides in the Nervous System: Biosynthesis and Degradation

    NASA Astrophysics Data System (ADS)

    Yu, Robert K.; Ariga, Toshio; Yanagisawa, Makoto; Zeng, Guichao

    Gangliosides, abundant in the nervous system, are known to play crucial modulatory roles in cellular recognition, interaction, adhesion, and signal transduction, particularly during early developmental stages. The expression of gangliosides in the nervous system is developmentally regulated and is closely related to the differentiation state of the cell. Ganglioside biosynthesis occurs in intracellular organelles, from which gangliosides are transported to the plasma membrane. During brain development, the ganglioside composition of the nervous system undergoes remarkable changes and is strictly regulated by the activities of glycosyltransferases, which can occur at different levels of control, including glycosyltransferase gene transcription and posttranslational modification. Genes for glycosyltransferase involved in ganglioside biosynthesis have been cloned and classified into families of glycosyltransferases based on their amino acid sequence similarities. The donor and acceptor substrate specificities are determined by enzymatic analysis of the glycosyltransferase gene products. Cell-type specific regulation of these genes has also been studied. Gangliosides are degraded by lysosomal exoglycosidases. The action of these enzymes occurs frequently in cooperation with activator proteins. Several human diseases are caused by defects of degradative enzymes, resulting in massive accumulation of certain glycolipids, including gangliosides in the lysosomal compartment and other organelles in the brain and visceral organs. Some of the representative lysosomal storage diseases (LSDs) caused by the accumulation of lipids in late endosomes and lysosomes will be discussed.

  1. A new approach to the modification of cell membrane glycosphingolipids: Ganglioside composition of JTC-12 P3 cells altered by feeding with galactose as a sole carbohydrate source in protein- and lipid-free synthetic medium

    SciTech Connect

    Kawaguchi, Tatsuya Kumamoto Univ. Medical School ); Takaoka, Toshiko; Yoshida, Eiko ); Iwamori, Masao; Nagai, Yoshitaka Niigata Univ. ); Takatsuki, Kiyoshi )

    1988-12-01

    A significant difference in the glycosphingolipid composition of JTC-12 P3 cells established from monkey kidney tissue was observed when cells cultured in a protein- and lipid-free synthetic medium containing glucose (DM-160) as a sole carbohydrate source were transferred and cultured in the same medium containing galactose and pyruvic acid (DM-170) in place of glucose. In particular, the amounts of gangliosides GM3, GM2, and GD3 in the cells cultured in DM-170 were 5.3-, 17.8-, and more than 8-fold those in the cells cultured in DM-160, respectively, indicating that anabolism of gangliosides is greatly enhanced in cells cultured in the presence of galactose and pyruvic acid, as compared with cells cultured in the presence of glucose. In fact, after cultivation of cells in the medium with N-acetyl-D-({sup 14}C)mannosamine for 96 h, the radioactivity incorporated into the gangliosides of the cells in DM-170 was 10-fold that of the cells in DM-160. Among the gangliosides of the cells in DM-170, highly sialylated molecules such as GD3, GD1a, GD1b, and GT1b were preferentially labeled, indicating that the sialytransferases responsible for the synthesis of gangliosides are significantly more activated in cells cultured in DM-170 than in DM-160. These observations reveal that the glycosphingolipid composition of the plasma membrane can be modified epigenetically under well-defined conditions and provide important clues for clarifying the roles of glycosphingolipids associated with particular cell functions.

  2. Assessment of the Molecular Expression and Structure of Gangliosides in Brain Metastasis of Lung Adenocarcinoma by an Advanced Approach Based on Fully Automated Chip-Nanoelectrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zamfir, Alina D.; Serb, Alina; Vukeli, Željka; Flangea, Corina; Schiopu, Catalin; Fabris, Dragana; Kalanj-Bognar, Svjetlana; Capitan, Florina; Sisu, Eugen

    2011-12-01

    Gangliosides (GGs), sialic acid-containing glycosphingolipids, are known to be involved in the invasive/metastatic behavior of brain tumor cells. Development of modern methods for determination of the variations in GG expression and structure during neoplastic cell transformation is a priority in the field of biomedical analysis. In this context, we report here on the first optimization and application of chip-based nanoelectrospray (NanoMate robot) mass spectrometry (MS) for the investigation of gangliosides in a secondary brain tumor. In our work a native GG mixture extracted and purified from brain metastasis of lung adenocarcinoma was screened by NanoMate robot coupled to a quadrupole time-of-flight MS. A native GG mixture from an age-matched healthy brain tissue, sampled and analyzed under identical conditions, served as a control. Comparative MS analysis demonstrated an evident dissimilarity in GG expression in the two tissue types. Brain metastasis is characterized by many species having a reduced N-acetylneuraminic acid (Neu5Ac) content, however, modified by fucosylation or O-acetylation such as Fuc-GM4, Fuc-GM3, di- O-Ac-GM1, O-Ac-GM3. In contrast, healthy brain tissue is dominated by longer structures exhibiting from mono- to hexasialylated sugar chains. Also, significant differences in ceramide composition were discovered. By tandem MS using collision-induced dissociation at low energies, brain metastasis-associated GD3 (d18:1/18:0) species as well as an uncommon Fuc-GM1 (d18:1/18:0) detected in the normal brain tissue could be structurally characterized. The novel protocol was able to provide a reliable compositional and structural characterization with high analysis pace and at a sensitivity situated in the fmol range.

  3. Role of the GM1 ganglioside oligosaccharide portion in the TrkA-dependent neurite sprouting in neuroblastoma cells.

    PubMed

    Chiricozzi, Elena; Pomè, Diego Yuri; Maggioni, Margherita; Di Biase, Erika; Parravicini, Chiara; Palazzolo, Luca; Loberto, Nicoletta; Eberini, Ivano; Sonnino, Sandro

    2017-08-10

    GM1 ganglioside (II(3) NeuAc-Gg4 Cer) is known to promote neurite formation in neuroblastoma cells by activating TrkA-MAPK pathway. The molecular mechanism by which GM1 is involved in the neurodifferentiation process is still unknown, however, in vitro and in vivo evidences have suggested that the oligosaccharide portion of this ganglioside could be involved. Here, we report that, similarly to the entire GM1 molecule, its oligosaccharide II(3) NeuAc-Gg4, rather than its ceramide (Cer) portion is responsible for the neurodifferentiation process by augmenting neurite elongation and increasing the neurofilament protein expression in murine neuroblastoma cells, Neuro2a. Conversely, asialo-GM1, GM2 and GM3 oligosaccharides are not effective in neurite elongation on Neuro2a cells, whereas the effect exerted by the Fuc-GM1 oligosaccharide (IV(2) αFucII(3) Neu5Ac-Gg4 ) is similar to that exerted by GM1 oligosaccharide. The neurotrophic properties of GM1 oligosaccharide are exerted by activating the TrkA receptor and the following phosphorylation cascade. By photolabeling experiments performed with a nitrophenylazide containing GM1 oligosaccharide, labeled with tritium, we showed a direct interaction between the GM1 oligosaccharide and the extracellular domain of TrkA receptor. Moreover, molecular docking analyses confirmed that GM1 oligosaccharide binds the TrkA-NGF complex leading to a binding free energy of approx. -11.5 kcal/mol, acting as a bridge able to increase and stabilize the TrkA-NGF molecular interactions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Biosynthesis and transport of gangliosides in peripheral nerve

    SciTech Connect

    Yates, A.J.; Tipnis, U.R.; Hofteig, J.H.; Warner, J.K.

    1984-01-01

    Radiolabelled glucosamine was injected into L-7 dorsal root ganglion (DRG) of rabbits. At several different times after injection DRG, lumbosacral trunks (LST) and sciatic nerves (SN) were removed and gangliosides extracted. Two and 3 weeks after injection the amounts of radioactivity in the ganglioside fractions of LST and SN were significantly higher than at days 1 and 2. The TCA soluble radioactivity decreased dramatically over the same time period. Colchicine prevented the appearance of radiolabelled lipid in LST and SN. From these experiments the authors conclude that some ganglioside is synthesized in the neuronal cell bodies of DRG and transported in the axons of the sciatic nerve. In another experiment the sciatic nerve was transected and ends separated to prevent regeneration. There was no difference in the amount of radiolabelled ganglioside that was isolated from DRG or LST of transected nerves compared with control nerves. The behavior of several potential acid soluble contaminants was studied in several steps used to isolate gangliosides. Of those studied only CMP-NeuAc could cause significant contamination of the final ganglioside preparation.

  5. Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: three binary systems of ganglioside/DPPC, ganglioside/DMPE, and ganglioside/cholesterol.

    PubMed

    Hoda, Kazuki; Ikeda, Yuriko; Kawasaki, Hideya; Yamada, Koji; Higuchi, Ryuichi; Shibata, Osamu

    2006-09-01

    The surface pressure (pi)-area (A), the surface potential (DeltaV)-A, and the dipole moment (mu( perpendicular))-A isotherms were obtained for monolayers made from a ganglioside originated from echinoderms [Diadema setosum ganglioside (DSG-1)], dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylethanolamine (DMPE), cholesterol (Ch), and their combinations. Monolayers spread on several different substrates were investigated at the air/water interface by the Wilhelmy method, ionizing electrode method, fluorescence microscopy (FM) and atomic force microscopy (AFM). Surface potentials (DeltaV) of pure components were analyzed using the three-layer model proposed by Demchak and Fort [R.J. Demchak, T. Fort, J. Colloid Interface Sci. 46 (1974) 191-202]. The new finding was that DSG-1 was stable and showed a liquid-expanded film and that its monolayer behavior of DeltaV was sensitive for the change of the NaCl concentration in the subphase. Moreover, the miscibility of DSG-1 and three major lipids in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the DSG-1 molar fraction (X(DSG-1)), using the additivity rule. From the A-X(DSG-1) and DeltaV(m)-X(DSG-1) plots, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible system. The miscibility was also investigated from the two-dimensional phase diagrams. Furthermore, a regular surface mixture, for which the Joos equation was used for the analysis of the collapse pressure of two-component monolayers, allowed calculation of the interaction parameter (xi) and the interaction energy (-Deltavarepsilon) between them. The observations using fluorescence microscopy and AFM image also provide us the miscibility in the monolayer state.

  6. Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins.

    PubMed

    Tsukamoto, Kentaro; Kohda, Tomoko; Mukamoto, Masafumi; Takeuchi, Kumiko; Ihara, Hideshi; Saito, Masaki; Kozaki, Shunji

    2005-10-21

    Clostridium botulinum neurotoxins (BoNTs) act on nerve endings to block acetylcholine release. Their potency is due to their enzymatic activity and selective high affinity binding to neurons. Although there are many pieces of data available on the receptor for BoNT, little attempt has been made to characterize the receptors for BoNT/C and BoNT/D. For this purpose, we prepared the recombinant carboxyl-terminal domain of the heavy chain (H(C)) and then examined its binding capability to rat brain synaptosomes treated with enzymes and heating. Synaptosomes treated with proteinase K or heating retained binding capability to both H(C)/C and H(C)/D, suggesting that a proteinaceous substance does not constitute the receptor component. We next performed a thin layer chromatography overlay assay of H(C) with a lipid extract of synaptosomes. Under physiological or higher ionic strengths, H(C)/C bound to gangliosides GD1b and GT1b. These data are in accord with results showing that neuraminidase and endoglycoceramidase treatment decreased H(C)/C binding to synaptosomes. On the other hand, H(C)/D interacted with phosphatidylethanolamine but not with any ganglioside. Using cerebellar granule cells obtained from GM3 synthase knock-out mice, we found that BoNT/C did not elicit a toxic effect but that BoNT/D still inhibited glutamate release to the same extent as in granule cells from wild type mice. These observations suggested that BoNT/C recognized GD1b and GT1b as functional receptors, whereas BoNT/D induced toxicity in a ganglioside-independent manner, possibly through binding to phosphatidylethanolamine. Our results provide novel insights into the receptor for clostridial neurotoxin.

  7. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis.

    PubMed

    Sandhoff, Konrad; Harzer, Klaus

    2013-06-19

    Gangliosides are the main glycolipids of neuronal plasma membranes. Their surface patterns are generated by coordinated processes, involving biosynthetic pathways of the secretory compartments, catabolic steps of the endolysosomal system, and intracellular trafficking. Inherited defects in ganglioside biosynthesis causing fatal neurodegenerative diseases have been described so far almost exclusively in mouse models, whereas inherited defects in ganglioside catabolism causing various clinical forms of GM1- and GM2-gangliosidoses have long been known. For digestion, gangliosides are endocytosed and reach intra-endosomal vesicles. At the level of late endosomes, they are depleted of membrane-stabilizing lipids like cholesterol and enriched with bis(monoacylglycero)phosphate (BMP). Lysosomal catabolism is catalyzed at acidic pH values by cationic sphingolipid activator proteins (SAPs), presenting lipids to their respective hydrolases, electrostatically attracted to the negatively charged surface of the luminal BMP-rich vesicles. Various inherited defects of ganglioside hydrolases, e.g., of β-galactosidase and β-hexosaminidases, and of GM2-activator protein, cause infantile (with tetraparesis, dementia, blindness) and different protracted clinical forms of GM1- and GM2-gangliosidoses. Mutations yielding proteins with small residual catabolic activities in the lysosome give rise to juvenile and adult clinical forms with a wide range of clinical symptomatology. Apart from patients' differences in their genetic background, clinical heterogeneity may be caused by rather diverse substrate specificities and functions of lysosomal hydrolases, multifunctional properties of SAPs, and the strong regulation of ganglioside catabolism by membrane lipids. Currently, there is no treatment available for neuronal ganglioside storage diseases. Therapeutic approaches in mouse models and patients with juvenile forms of gangliosidoses are discussed.

  8. Gangliosides Block Aggregatibacter Actinomycetemcomitans Leukotoxin (LtxA)-Mediated Hemolysis

    PubMed Central

    Forman, Michael S.; Nishikubo, Jason B.; Han, Rebecca K.; Le, Amy; Balashova, Nataliya V.; Kachlany, Scott C.

    2010-01-01

    Aggregatibacter actinomycetemcomitans is an oral pathogen and etiologic agent of localized aggressive periodontitis. The bacterium is also a cardiovascular pathogen causing infective endocarditis. A. actinomycetemcomitans produces leukotoxin (LtxA), an important virulence factor that targets white blood cells (WBCs) and plays a role in immune evasion during disease. The functional receptor for LtxA on WBCs is leukocyte function antigen-1 (LFA-1), a β-2 integrin that is modified with N-linked carbohydrates. Interaction between toxin and receptor leads to cell death. We recently discovered that LtxA can also lyse red blood cells (RBCs) and hemolysis may be important for pathogenesis of A. actinomycetemcomitans. In this study, we further investigated how LtxA might recognize and lyse RBCs. We found that, in contrast to a related toxin, E. coli α-hemolysin, LtxA does not recognize glycophorin on RBCs. However, gangliosides were able to completely block LtxA-mediated hemolysis. Furthermore, LtxA did not show a preference for any individual ganglioside. LtxA also bound to ganglioside-rich C6 rat glioma cells, but did not kill them. Interaction between LtxA and C6 cells could be blocked by gangliosides with no apparent specificity. Gangliosides were only partially effective at preventing LtxA-mediated cytotoxicity of WBCs, and the effect was only observed when a high ratio of ganglioside:LtxA was used over a short incubation period. Based on the results presented here, we suggest that because of the similarity between N-linked sugars on LFA-1 and the structures of gangliosides, LtxA may have acquired the ability to lyse RBCs. PMID:22069577

  9. P3 mAb: An Immunogenic Anti-NeuGcGM3 Antibody with Unusual Immunoregulatory Properties

    PubMed Central

    Martínez, Darel; Rodríguez, Nely; Griñán, Tania; Rondón, Teresa; Vázquez, Ana María; Pérez, Rolando; Hernández, Ana María

    2012-01-01

    P3 is a murine IgM mAb that recognize N-glycosylated gangliosides, sulfatides, and antigens expressed in melanoma, breast, and lung human tumors. This antibody has the ability to trigger an IgG antibody response in the syngeneic BALB/c model, even when it is administered in the absence of adjuvant or carrier protein. The mechanism by which the P3 mAb, a self-immunoglobulin, induce this immune response in the absence of co-stimulatory or classical danger signals is still unknown. In the present paper we show that the high immunogenicity of P3 mAb depends not only on CD4 but also on CD8+ T cells, since the depletion of CD8+ or CD4+ T cells led to the loss of P3 mAb immunogenicity in the syngeneic model. Furthermore, the immunization with P3 mAb enhanced the recovery of the CD8+ T cell population in mice treated with an anti-CD8a antibody. Additionally, the immunization with P3 mAb restored the capacity of immunosuppressed mice to reject allogeneic tumors, a mechanism mediated by the action of CD8+ T cells. Finally, in mice with cyclophosphamide induced lymphopenia, the administration of P3 mAb accelerated the recovery of both CD4+ and CD8+ T cells. These results show new possibilities for B and CD8+ T cells interactions during the immune response elicited by a self-protein. Furthermore they point to P3 mAb as a potential interesting candidate for the treatment of immunosuppressed patients. PMID:22566972

  10. P3 mAb: An Immunogenic Anti-NeuGcGM3 Antibody with Unusual Immunoregulatory Properties.

    PubMed

    Martínez, Darel; Rodríguez, Nely; Griñán, Tania; Rondón, Teresa; Vázquez, Ana María; Pérez, Rolando; Hernández, Ana María

    2012-01-01

    P3 is a murine IgM mAb that recognize N-glycosylated gangliosides, sulfatides, and antigens expressed in melanoma, breast, and lung human tumors. This antibody has the ability to trigger an IgG antibody response in the syngeneic BALB/c model, even when it is administered in the absence of adjuvant or carrier protein. The mechanism by which the P3 mAb, a self-immunoglobulin, induce this immune response in the absence of co-stimulatory or classical danger signals is still unknown. In the present paper we show that the high immunogenicity of P3 mAb depends not only on CD4 but also on CD8(+) T cells, since the depletion of CD8(+) or CD4(+) T cells led to the loss of P3 mAb immunogenicity in the syngeneic model. Furthermore, the immunization with P3 mAb enhanced the recovery of the CD8(+) T cell population in mice treated with an anti-CD8a antibody. Additionally, the immunization with P3 mAb restored the capacity of immunosuppressed mice to reject allogeneic tumors, a mechanism mediated by the action of CD8(+) T cells. Finally, in mice with cyclophosphamide induced lymphopenia, the administration of P3 mAb accelerated the recovery of both CD4(+) and CD8(+) T cells. These results show new possibilities for B and CD8(+) T cells interactions during the immune response elicited by a self-protein. Furthermore they point to P3 mAb as a potential interesting candidate for the treatment of immunosuppressed patients.

  11. Multi-system disorders of glycosphingolipid and ganglioside metabolism

    PubMed Central

    Xu, You-Hai; Barnes, Sonya; Sun, Ying; Grabowski, Gregory A.

    2010-01-01

    Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review. PMID:20211931

  12. Degradation of membrane-bound ganglioside GM1. Stimulation by bis(monoacylglycero)phosphate and the activator proteins SAP-B and GM2-AP.

    PubMed

    Wilkening, G; Linke, T; Uhlhorn-Dierks, G; Sandhoff, K

    2000-11-17

    According to our hypothesis (Fürst, W., and Sandhoff, K. (1992) Biochim. Biophys. Acta 1126, 1-16) glycosphingolipids of the plasma membrane are digested after endocytosis as components of intraendosomal and intralysosomal vesicles and membrane structures. The lysosomal degradation of glycosphingolipids with short oligosaccharide chains by acid exohydrolases requires small, non-enzymatic cofactors, called sphingolipid activator proteins (SAPs). A total of five activator proteins have been identified as follows: namely the saposins SAP-A, -B, -C, and -D, which are derived from the single chain SAP-precursor protein (prosaposin), and the GM2 activator protein. A deficiency of prosaposin results in the storage of ceramide and sphingolipids with short oligosaccharide head groups. The loss of the GM2 activator protein blocks the degradation of the ganglioside GM2. The enzymatic hydrolysis of the ganglioside GM1 is catalyzed by beta-galactosidase, a water-soluble acid exohydrolase. The lack of ganglioside GM1 accumulation in patients suffering from either prosaposin or GM2 activator protein deficiency has led to the hypothesis that SAPs are not needed for the hydrolysis of the ganglioside GM1 in vivo. In this study we demonstrate that an activator protein is required for the enzymatic degradation of membrane-bound ganglioside GM1 and that both SAP-B and the GM2 activator protein significantly enhance the degradation of the ganglioside GM1 by acid beta-galactosidase in a liposomal, detergent-free assay system. These findings offer a possible explanation for the observation that no storage of the ganglioside GM1 has been observed in patients with either isolated prosaposin or isolated GM2 activator deficiency. We also demonstrate that anionic phospholipids such as bis(monoacylglycero)phosphate and phosphatidylinositol, which specifically occur in inner membranes of endosomes and in lysosomes, are essential for the activator-stimulated hydrolysis of the ganglioside GM1

  13. Pathogenic role of ganglioside metabolism in neurodegenerative diseases.

    PubMed

    Ariga, Toshio

    2014-10-01

    Ganglioside metabolism is altered in several neurodegenerative diseases, and this may participate in several events related to the pathogenesis of these diseases. Most changes occur in specific areas of the brain and their distinct membrane microdomains or lipid rafts. Antiganglioside antibodies may be involved in dysfunction of the blood-brain barrier and disease progression in these diseases. In lipid rafts, interactions of glycosphingolipids, including ganglioside, with proteins may be responsible for the misfolding events that cause the fibril and/or aggregate processing of disease-specific proteins, such as α-synuclein, in Parkinson's disease, huntingtin protein in Huntington's disease, and copper-zinc superoxide dismutase in amyotrophic lateral sclerosis. Targeting ganglioside metabolism may represent an underexploited opportunity to design novel therapeutic strategies for neurodegeneration in these diseases. © 2014 Wiley Periodicals, Inc.

  14. GM1 and GM2 gangliosides: recent developments.

    PubMed

    Bisel, Blaine; Pavone, Francesco S; Calamai, Martino

    2014-03-01

    GM1 and GM2 gangliosides are important components of the cell membrane and play an integral role in cell signaling and metabolism. In this conceptual overview, we discuss recent developments in our understanding of the basic biological functions of GM1 and GM2 and their involvement in several diseases. In addition to a well-established spectrum of disorders known as gangliosidoses, such as Tay-Sachs disease, more and more evidence points at an involvement of GM1 in Alzheimer's and Parkinson's diseases. New emerging methodologies spanning from single-molecule imaging in vivo to simulations in silico have complemented standard studies based on ganglioside extraction.

  15. The role of gangliosides in brain development and the potential benefits of perinatal supplementation.

    PubMed

    Ryan, Jennifer M; Rice, Gregory E; Mitchell, Murray D

    2013-11-01

    The maternal diet provides critical nutrients that can influence fetal and infant brain development and function. This review highlights the potential benefits of maternal dietary ganglioside supplementation on fetal and infant brain development. English-language systematic reviews, preclinical studies, and clinical studies were obtained through searches on PubMed. Reports were selected if they included benefits and harms of maternal ganglioside supplementation during pregnancy or ganglioside-supplemented formula after pregnancy. The potential benefits of ganglioside supplementation were explored by investigating the following: (1) their role in neural development, (2) their therapeutic use in neural injury and disease, (3) their presence in human breast milk, and (4) their use as a dietary supplement during or after pregnancy. Preclinical studies indicate that ganglioside supplementation at high doses (1% of total dietary intake) can significantly increase cognitive development and body weight when given prenatally. However, lower ganglioside supplementation doses have no beneficial cognitive effects, even when given throughout pregnancy and lactation. In human clinical trials, infants given formula supplemented with gangliosides showed increased cognitive development and an increase in ganglioside content. Ganglioside supplementation may promote brain development and function in offspring when administered at the optimum dosage. We propose that prenatal maternal dietary supplementation with gangliosides throughout pregnancy may promote greater long-term effects on brain development and function. Before this concept can be encouraged in preconception clinics, future research and clinical trials are needed to confirm the ability of dietary gangliosides to improve cognitive development, but available results already encourage this area of research.

  16. Antibodies to gangliosides and ganglioside complexes in Guillain-Barré syndrome and Fisher syndrome: mini-review.

    PubMed

    Kaida, Kenichi; Kusunoki, Susumu

    2010-06-01

    Antiganglioside antibodies play a pathogenic role in the pathophysiology of Guillain-Barré syndrome (GBS) and Fisher syndrome (FS). Antiganglioside antibody-mediated nerve injury is likely to result from nerve damage through complement activation or dysfunction of molecules such as voltage-gated sodium and calcium channels. Clustered epitopes of complexes of two gangliosides in the cell membrane can be targeted by serum antibodies in GBS and FS and may regulate the accessibility and avidity of antiganglioside antibodies. The glycolipid environment or the specific distribution of target gangliosides in the peripheral nervous system may also influence the pathogenic effect of antiganglioside antibodies in GBS and FS. Structural and functional analyses of glycoepitopes of ganglioside complexes in membranes will provide new vistas on antibody-antigen interaction in GBS and shed light on microdomain function mediated by carbohydrate-carbohydrate interactions, which may lead to novel treatments for GBS and FS. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Targeted Delivery of Immunotoxin by Antibody to Ganglioside GD3: A Novel Drug Delivery Route for Tumor Cells

    PubMed Central

    Torres Demichelis, Vanina; Vilcaes, Aldo A.; Iglesias-Bartolomé, Ramiro; Ruggiero, Fernando M.; Daniotti, Jose L.

    2013-01-01

    Gangliosides are sialic acid-containing glycolipids expressed on plasma membranes from nearly all vertebrate cells. The expression of ganglioside GD3, which plays essential roles in normal brain development, decreases in adults but is up regulated in neuroectodermal and epithelial derived cancers. R24 antibody, directed against ganglioside GD3, is a validated tumor target which is specifically endocytosed and accumulated in endosomes. Here, we exploit the internalization feature of the R24 antibody for the selective delivery of saporin, a ribosome-inactivating protein, to GD3-expressing cells [human (SK-Mel-28) and mouse (B16) melanoma cells and Chinese hamster ovary (CHO)-K1 cells]. This immunotoxin showed a specific cytotoxicity on tumor cells grew on 2D monolayers, which was further evident by the lack of any effect on GD3-negative cells. To estimate the potential antitumor activity of R24-saporin complex, we also evaluated the effect of the immunotoxin on the clonogenic growth of SK-Mel-28 and CHO-K1GD3+ cells cultured in attachment-free conditions. A drastic growth inhibition (>80–90%) of the cell colonies was reached after 3 days of immunotoxin treatment. By the contrary, colonies continue to growth at the same concentration of the immuntoxin, but in the absence of R24 antibody, or in the absence of both immunotoxin and R24, undoubtedly indicating the specificity of the effect observed. Thus, the ganglioside GD3 emerge as a novel and attractive class of cell surface molecule for targeted delivery of cytotoxic agents and, therefore, provides a rationale for future therapeutic intervention in cancer. PMID:23383146

  18. Targeted delivery of immunotoxin by antibody to ganglioside GD3: a novel drug delivery route for tumor cells.

    PubMed

    Torres Demichelis, Vanina; Vilcaes, Aldo A; Iglesias-Bartolomé, Ramiro; Ruggiero, Fernando M; Daniotti, Jose L

    2013-01-01

    Gangliosides are sialic acid-containing glycolipids expressed on plasma membranes from nearly all vertebrate cells. The expression of ganglioside GD3, which plays essential roles in normal brain development, decreases in adults but is up regulated in neuroectodermal and epithelial derived cancers. R24 antibody, directed against ganglioside GD3, is a validated tumor target which is specifically endocytosed and accumulated in endosomes. Here, we exploit the internalization feature of the R24 antibody for the selective delivery of saporin, a ribosome-inactivating protein, to GD3-expressing cells [human (SK-Mel-28) and mouse (B16) melanoma cells and Chinese hamster ovary (CHO)-K1 cells]. This immunotoxin showed a specific cytotoxicity on tumor cells grew on 2D monolayers, which was further evident by the lack of any effect on GD3-negative cells. To estimate the potential antitumor activity of R24-saporin complex, we also evaluated the effect of the immunotoxin on the clonogenic growth of SK-Mel-28 and CHO-K1(GD3+) cells cultured in attachment-free conditions. A drastic growth inhibition (>80-90%) of the cell colonies was reached after 3 days of immunotoxin treatment. By the contrary, colonies continue to growth at the same concentration of the immuntoxin, but in the absence of R24 antibody, or in the absence of both immunotoxin and R24, undoubtedly indicating the specificity of the effect observed. Thus, the ganglioside GD3 emerge as a novel and attractive class of cell surface molecule for targeted delivery of cytotoxic agents and, therefore, provides a rationale for future therapeutic intervention in cancer.

  19. Identification of a Unique Ganglioside Binding Loop within Botulinum Neurotoxins C and D-SA

    PubMed Central

    Karalewitz, Andrew P-A.; Kroken, Abby R.; Fu, Zhuji; Baldwin, Michael R.; Kim, Jung-Ja P.; Barbieri, Joseph T.

    2010-01-01

    The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross anti-sera neutralization. BoNTs utilize gangliosides as components of the host receptors for binding and entry into neurons. Members of BoNT/C and BoNT/D serotypes include mosaic toxins that are organized in D/C and C/D toxins. One D/C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with BoNT serotype /C or /D, which stimulated this study. Here the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA are presented. Biochemical and cell binding studies show that BoNT/C and BoNT/D-SA possess unique mechanisms for ganglioside binding. These studies provide new information on how the BoNTs can enter host cells as well as a basis for understanding the immunological diversity of these neurotoxins. PMID:20731382

  20. Identification of a Unique Ganglioside Binding Loop within Botulinum Neurotoxins C and D-SA

    SciTech Connect

    Karalewitz, Andrew P.-A.; Kroken, Abby R.; Fu, Zhuji; Baldwin, Michael R.; Kim, Jung-Ja P.; Barbieri, Joseph T.

    2010-09-22

    The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross antiserum neutralization. BoNTs utilize gangliosides as components of the host receptors for binding and entry into neurons. Members of BoNT/C and BoNT/D serotypes include mosaic toxins that are organized in D/C and C/D toxins. One D/C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with BoNT serotype C or D, which stimulated this study. Here the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA are presented. Biochemical and cell binding studies show that BoNT/C and BoNT/D-SA possess unique mechanisms for ganglioside binding. These studies provide new information about how the BoNTs can enter host cells as well as a basis for understanding the immunological diversity of these neurotoxins.

  1. Ganglioside inserted into PEGylated liposome attenuates anti-PEG immunity.

    PubMed

    Mima, Yu; Abu Lila, Amr S; Shimizu, Taro; Ukawa, Masami; Ando, Hidenori; Kurata, Yasuko; Ishida, Tatsuhiro

    2017-03-28

    Despite the clinical introduction of a vast number of polyethylene glycol (PEG)-conjugated therapeutics, conjugated PEG is also known for an unfortunate inclination toward immunogenicity. Immunogenicity of PEG, manifested by the robust production of anti-PEG IgM, is known to compromise the therapeutic efficacy and/or reduce the tolerance of PEGylated therapeutics. In the present study, we inserted ganglioside into the membrane of PEGylated liposome (PL) to prepare ganglioside-modified PEGylated liposomes (G-PL), and investigated its efficacy in attenuating the anti-PEG IgM response against PL. A single intravenous injection of G-PL significantly attenuated the anti-PEG IgM production, compared with that of naïve PL. In addition, pretreatment with G-PL substantially alleviated the anti-PEG IgM response elicited by a subsequent dose of PL, presumably via inducing B cell tolerance, and as a consequence, this modification abrogated/attenuated the incidence of the rapid clearance of subsequently administrated PL. These results indicate that incorporating gangliosides in PEGylated liposome membrane not only prevents the immunogenicity of PEG but also induces the tolerance of B cells to subsequent doses of the immunogenic PL. Consequently, liposomal membrane modification with ganglioside might represent a promising approach to attenuating the immunogenicity of PEGylated liposomes while preserving their therapeutic efficacy, particularly upon repeated administration.

  2. Exogenous gangliosides may affect methylation mechanisms in neuronal cell cultures

    SciTech Connect

    Ferret, B.; Hubsch, A.; Dreyfus, H.; Massarelli, R. )

    1991-02-01

    Primary neurons in culture from chick embryo cerebral hemispheres were treated with a mixture of gangliosides added to the growth medium (final concentration: 10(-5)M and 10(-8)M) from the 3rd to the 6th day in vitro. Under these conditions methylation processes measured with (3H) and (35S) methionine and (3H)ethanolamine as precursors showed an increased methylation of (3H)ethanolamine containing phospholipids, a correspondent increased conversion of these compounds to (3H)choline containing phospholipids, and a general increased methylation of trichloroacetic acid precipitable macromolecules containing labeled methionine. A small increase in protein synthesis was observed after incubation of neurons with (3H)- and (35S)methionine. This was confirmed after electrophoretic separation of a protein extract with increased 3H- and 35S-labeling in protein bands with moecular weights between 50 and 60 KDaltons. A protein band of about 55 KDaltons appeared to be preferentially labelled when (3H) methionine was the precursor. The treatment with gangliosides increased the incorporation of (methyl-3H) label after incubation of neurons with (3H) methionine, into total DNA and decreased that of total RNA. The treatment of neurons in culture with exogenous gangliosides hence affects differently methylation processes, a finding which may confirm the involvement of gangliosides on the intracellular mediation of neuronal information mechanisms.

  3. Anti-Ganglioside Antibodies in Amyotrophic Lateral Sclerosis Revisited

    PubMed Central

    Kollewe, Katja; Wurster, Ulrich; Sinzenich, Thomas; Körner, Sonja; Dengler, Reinhard; Mohammadi, Bahram; Petri, Susanne

    2015-01-01

    Background Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder with typical onset in the 5th- 6th decade of life. The hypothesis of an autoimmune origin of ALS receives less attention today, but immunological phenomena still seem to be involved and mechanisms such as protective autoimmunity may be important. Detection of antibodies against a variety of gangliosides has been repeatedly described in ALS-patients by several authors, but widely differing frequencies and titres have been reported. Therefore, we investigated the presence of six common antibodies with a commercially available test panel for GA1, GM1, GM2, GD1a, GD1b and GQ1b in a large group of clinically well-characterized ALS patients and compared them to a collective of 200 healthy blood donors. Methods IgG and IgM antibodies to the six gangliosides asialoGM1 (GA1), GM1, GM2, GD1a, GD1b, GQ1b were determined by GanglioCombi ELISA in sera of 84 ALS patients. Results were expressed as a %-ratio of a highly positive control and categorized as negative (<30%), borderline (30–50%), moderately (50–100%) and strongly positive (>100%). The values obtained from 200 Swiss blood donors served as a reference group. Results In twenty-two (26.2%) ALS-patients elevated anti-ganglioside antibodies could be detected: Taking all subspecific antibodies together, IgG antibodies were found in 9/84 (10.7%) and IgM in 15/84 (17.9%) patients. There was no correlation between age, gender, site of onset or survival and anti-ganglioside-positive/-negative titres in ALS-patients. No statistically significant difference in the frequency of anti-ganglioside antibodies compared to the group of healthy blood donors was found. Conclusion Even with this more comprehensive approach, anti-ganglioside antibody frequencies and patterns in our ALS cohort closely resembled the values measured in healthy controls. In accordance with other studies, we did not observe any association of a distinct ALS phenotype

  4. Anti-ganglioside antibodies in amyotrophic lateral sclerosis revisited.

    PubMed

    Kollewe, Katja; Wurster, Ulrich; Sinzenich, Thomas; Körner, Sonja; Dengler, Reinhard; Mohammadi, Bahram; Petri, Susanne

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder with typical onset in the 5th- 6th decade of life. The hypothesis of an autoimmune origin of ALS receives less attention today, but immunological phenomena still seem to be involved and mechanisms such as protective autoimmunity may be important. Detection of antibodies against a variety of gangliosides has been repeatedly described in ALS-patients by several authors, but widely differing frequencies and titres have been reported. Therefore, we investigated the presence of six common antibodies with a commercially available test panel for GA1, GM1, GM2, GD1a, GD1b and GQ1b in a large group of clinically well-characterized ALS patients and compared them to a collective of 200 healthy blood donors. IgG and IgM antibodies to the six gangliosides asialoGM1 (GA1), GM1, GM2, GD1a, GD1b, GQ1b were determined by GanglioCombi ELISA in sera of 84 ALS patients. Results were expressed as a %-ratio of a highly positive control and categorized as negative (<30%), borderline (30-50%), moderately (50-100%) and strongly positive (>100%). The values obtained from 200 Swiss blood donors served as a reference group. In twenty-two (26.2%) ALS-patients elevated anti-ganglioside antibodies could be detected: Taking all subspecific antibodies together, IgG antibodies were found in 9/84 (10.7%) and IgM in 15/84 (17.9%) patients. There was no correlation between age, gender, site of onset or survival and anti-ganglioside-positive/-negative titres in ALS-patients. No statistically significant difference in the frequency of anti-ganglioside antibodies compared to the group of healthy blood donors was found. Even with this more comprehensive approach, anti-ganglioside antibody frequencies and patterns in our ALS cohort closely resembled the values measured in healthy controls. In accordance with other studies, we did not observe any association of a distinct ALS phenotype with elevated anti-ganglioside antibodies

  5. MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix.

    PubMed

    Chan, Kenneth; Lanthier, Patricia; Liu, Xin; Sandhu, Jagdeep K; Stanimirovic, Danica; Li, Jianjun

    2009-04-20

    Mass spectrometry imaging has emerged as a powerful tool for the direct detection of biomolecules, mainly phospholipids, proteins and peptides, in tissue samples. To date, there is very little information available on the direct analysis of gangliosides in brain tissue. One major hurdle for imaging gangliosides in tissue using mass spectrometry is that sialic acid residues can be dissociated in ionization process. In this report, we investigated an ionic liquid matrix for mass spectrometry imaging of gangliosides. This ionic liquid matrix offered excellent sensitivity for detection gangliosides without significant loss of sialic acid residues. Thus, it can be used to study the abundance and anatomical localization of gangliosides in mouse brain using mass spectrometry imaging technique. Mass spectrometry image analyses of the mouse brain tissue sections demonstrated that the N-fatty acyl chains of gangliosides were differentially distributed in mouse hippocampal regions, whereby the gangliosides with N-C(18) acyl chain were enriched in CA1 region, while gangliosides with N-C(20) acyl chain were enriched in dentate gyrus. In addition, this observation is true for mono-, di- and tri-sialylated gangliosides. Although the linkage information was not determined, the mass spectrometry imaging technique was capable of spatial tissue mapping of ceramide structures in gangliosides.

  6. Unique gangliosides synthesized in vitro by sialyltransferases from marine bacteria and their characterization: ganglioside synthesis by bacterial sialyltransferases

    PubMed Central

    Kamimiya, Hisashi; Suzuki, Yusuke; Kasama, Takeshi; Kajiwara, Hitomi; Yamamoto, Takeshi; Mine, Toshiki; Watarai, Shinobu; Ogura, Kiyoshi; Nakamura, Kazuo; Tsuge, Junichi; Kushi, Yasunori

    2013-01-01

    On the basis of the results outlined in our previous report, bacterial sialyltransferases (ST) from marine sources were further characterized using glycosphingolipids (GSL), especially ganglio-series GSLs, based on the enzymatic characteristics and kinetic parameters obtained by Line weaver-Burk plots. Among them, GA1 and GA2 were found to be good substrates for these unique STs. Thus, new gangliosides synthesized by α2-3 and α2-6STs were structurally characterized by several analytical procedures. The ganglioside generated by the catalytic activity of α2-3ST was identified as GM1b. On the other hand, when enzyme reactions by α2-6STs were performed using substrates GA2 and GA1, very unique gangliosides were generated. The structures were identified as NeuAcα2-6GalNAcβ1-4Galβ1-4Glcβ-Cer and NeuAcα2-6Galβ1-3GalNAcβ1-4Galβ1-4Glcβ-Cer, respectively. The synthesized ganglioside NeuAcα2-6GalNAcβ1-4Galβ1-4Glcβ-Cer showed binding activity to the influenza A virus {A/Panama/2007/99 (H3N2)} at a similar level to purified sialyl(α2-3)paragloboside (S2-3PG) and sialyl(α2-6)paragloboside (S2-6PG) from mammalian sources. The evidence suggests that these STs have unique features, including substrate specificities restricted not only to lacto-series but also to ganglio-series GSLs, as well as catalytic potentials for ganglioside synthesis. This evidence demonstrates that effective in vitro ganglioside synthesis could be a valuable tool for selectively synthesizing sialic acid (Sia) modifications, thereby preparing large-scale gangliosides and permitting the exploration of unknown functions. PMID:23220479

  7. Unique gangliosides synthesized in vitro by sialyltransferases from marine bacteria and their characterization: ganglioside synthesis by bacterial sialyltransferases.

    PubMed

    Kamimiya, Hisashi; Suzuki, Yusuke; Kasama, Takeshi; Kajiwara, Hitomi; Yamamoto, Takeshi; Mine, Toshiki; Watarai, Shinobu; Ogura, Kiyoshi; Nakamura, Kazuo; Tsuge, Junichi; Kushi, Yasunori

    2013-03-01

    On the basis of the results outlined in our previous report, bacterial sialyltransferases (ST) from marine sources were further characterized using glycosphingolipids (GSL), especially ganglio-series GSLs, based on the enzymatic characteristics and kinetic parameters obtained by Line weaver-Burk plots. Among them, GA1 and GA2 were found to be good substrates for these unique STs. Thus, new gangliosides synthesized by α2-3 and α2-6STs were structurally characterized by several analytical procedures. The ganglioside generated by the catalytic activity of α2-3ST was identified as GM1b. On the other hand, when enzyme reactions by α2-6STs were performed using substrates GA2 and GA1, very unique gangliosides were generated. The structures were identified as NeuAcα2-6GalNAcβ1-4Galβ1-4Glcβ-Cer and NeuAcα2-6Galβ1-3GalNAcβ1-4Galβ1-4Glcβ-Cer, respectively. The synthesized ganglioside NeuAcα2-6GalNAcβ1-4Galβ1-4Glcβ-Cer showed binding activity to the influenza A virus {A/Panama/2007/99 (H3N2)} at a similar level to purified sialyl(α2-3)paragloboside (S2-3PG) and sialyl(α2-6)paragloboside (S2-6PG) from mammalian sources. The evidence suggests that these STs have unique features, including substrate specificities restricted not only to lacto-series but also to ganglio-series GSLs, as well as catalytic potentials for ganglioside synthesis. This evidence demonstrates that effective in vitro ganglioside synthesis could be a valuable tool for selectively synthesizing sialic acid (Sia) modifications, thereby preparing large-scale gangliosides and permitting the exploration of unknown functions.

  8. Synthesis of a novel ether-bridged GM3-lactone analogue as a target for an antibody-based cancer therapy.

    PubMed

    Tietze, L F; Keim, H; Janssen, C O; Tappertzhofen, C; Olschimke, J

    2000-08-04

    We describe herein the synthesis of a new analogue of the GM3-lactone containing a cyclic ether moiety. The ether moiety was chosen as a replacement for the regular lactone group since it shows high resemblance with the lactone and is completely stable under biological conditions. The cyclic ether moiety was formed by reduction of the corresponding lactone to give the lactol followed by formation of the S,O-hemiacetal and hydrogenation. In addition, we have prepared haptens with a hexanoic acid moiety, which can be used for the preparation of poly- and monoclonal antibodies after binding to BSA or KLH. This is the first example of an analogue of the GM3-lactone which is stable under hydrolytic conditions in vitro and probably also in vivo. Reaction of lactone 18 with a Red/Al derivative led to the lactol 19 which was transformed into the S,O-hemiacetal 20 using 2,2'-bis(pyridinium) disulfide in quantitative yield. Hydrogenation with Raney Nickel gave 21 from which after removal of the protecting group at C-1a the trichloroacetimidate 25 was prepared. Reaction with azidosphingosine to give 26 followed by reduction of the azido group with NHEt3+[(PhS)3Sn], acylation with stearic acid using EDC and removal of the protecting groups led to the desired ether analogue of GM3 lactone 4. In addition the trichloroacetimidate 25 was glycosidated with 6-hydroxyhexanoic acid methyl ester, which was deprotected to give 29. The compound will be used for the preparation of poly- and monoclonal antibodies after coupling with BSA and KLH.

  9. Nervous system ganglioside composition of normothermic and hibernating dormice (Glis glis).

    PubMed

    Sonnino, S; Ghidoni, R; Malesci, A; Tettamanti, G; Marx, J; Hilbig, R; Rahmann, H

    1984-01-01

    The ganglioside pattern of seven different regions, olfactory bulb, forebrain cortex, midbrain (corpora quadrigemina), cerebellum, brain stem, pons and spinal cord, of nervous system of normothermic and hibernating dormice (Glis glis) were investigated by two dimensional thin layer chromatography and densitometric quantification. Up to thirty different ganglioside spots were resolved, fifteen of which belonging to alkali labile species. Alkali labile gangliosides were present in all the regions obtained from normothermic animals, and their content, expressed as percentage of total ganglioside-bound sialic acid, ranged from a minimum of 10.2% in olfactory bulb, to a maximum of 30.1% in spinal cord. The most abundant alkali labile gangliosides were O-Ac-GT1b, O-Ac-GQ1b and an unidentified one, we coded I3. Alkali labile gangliosides were practically undetectable in hibernating dormice. They could be recognized only in brain stem, 3.3% and olfactory bulb, 0.6%.

  10. Reduced GM1 ganglioside in CFTR-deficient human airway cells results in decreased β1-integrin signaling and delayed wound repair

    PubMed Central

    Itokazu, Yutaka; Pagano, Richard E.; Schroeder, Andreas S.; O'Grady, Scott M.; Limper, Andrew H.

    2014-01-01

    Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function reduces chloride secretion and increases sodium uptake, but it is not clear why CFTR mutation also results in progressive lung inflammation and infection. We previously demonstrated that CFTR-silenced airway cells migrate more slowly during wound repair than CFTR-expressing controls. In addition, CFTR-deficient cells and mouse models have been reported to have altered sphingolipid levels. Here, we investigated the hypothesis that reduced migration in CFTR-deficient airway epithelial cells results from altered sphingolipid composition. We used cell lines derived from a human airway epithelial cell line (Calu-3) stably transfected with CFTR short hairpin RNA (CFTR-silenced) or nontargeting short hairpin RNA (controls). Cell migration was measured by electric cell substrate impedance sensing (ECIS). Lipid analyses, addition of exogenous glycosphingolipids, and immunoblotting were performed. We found that levels of the glycosphingolipid, GM1 ganglioside, were ∼60% lower in CFTR-silenced cells than in controls. CFTR-silenced cells exhibited reduced levels of activated β1-integrin, phosphorylated tyrosine 576 of focal adhesion kinase (pFAK), and phosphorylation of Crk-associated substrate (pCAS). Addition of GM1 (but not GM3) ganglioside to CFTR-silenced cells restored activated β1-integrin, pFAK, and pCAS to near control levels and partially restored (∼40%) cell migration. Our results suggest that decreased GM1 in CFTR-silenced cells depresses β1-integrin signaling, which contributes to the delayed wound repair observed in these cells. These findings have implications for the pathology of cystic fibrosis, where altered sphingolipid levels in airway epithelial cells could result in a diminished capacity for wound repair after injury. PMID:24500283

  11. Rapid and sensitive MRM-based mass spectrometry approach for systematically exploring ganglioside-protein interactions.

    PubMed

    Tian, Ruijun; Jin, Jing; Taylor, Lorne; Larsen, Brett; Quaggin, Susan E; Pawson, Tony

    2013-04-01

    Gangliosides are ubiquitous components of cell membranes. Their interactions with bacterial toxins and membrane-associated proteins (e.g. receptor tyrosine kinases) have important roles in the regulation of multiple cellular functions. Currently, an effective approach for measuring ganglioside-protein interactions especially in a large-scale fashion is largely missing. To this end, we report a facile MS-based approach to explore gangliosides extracted from cells and measure their interactions with protein of interest globally. We optimized a two-step protocol for extracting total gangliosides from cells within 2 h. Easy-to-use magnetic beads conjugated with a protein of interest were used to capture interacting gangliosides. To measure ganglioside-protein interaction on a global scale, we applied a high-sensitive LC-MS system, containing hydrophilic interaction LC separation and multiple reaction monitoring-based MS for ganglioside detection. Sensitivity for ganglioside GM1 is below 100 pg, and the whole analysis can be done in 20 min with isocratic elution. To measure ganglioside interactions with soluble vascular endothelial growth factor receptor 1 (sFlt1), we extracted and readily detected 36 species of gangliosides from perivascular retinal pigment epithelium cells across eight different classes. Twenty-three ganglioside species have significant interactions with sFlt1 as compared with IgG control based on p value cutoff <0.05. These results show that the described method provides a rapid and high-sensitive approach for systematically measuring ganglioside-protein interactions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Differential Distribution of Major Brain Gangliosides in the Adult Mouse Central Nervous System

    PubMed Central

    Vajn, Katarina; Viljetić, Barbara; Degmečić, Ivan Večeslav; Schnaar, Ronald L.; Heffer, Marija

    2013-01-01

    Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies. PMID:24098718

  13. Anti-ganglioside antibodies are removed from circulation in mice by neuronal endocytosis

    PubMed Central

    Cunningham, Madeleine E.; McGonigal, Rhona; Meehan, Gavin R.; Barrie, Jennifer A.; Yao, Denggao; Halstead, Susan K.

    2016-01-01

    See van Doorn and Jacobs (doi:10.1093/brain/aww078) for a scientific commentary on this article.   In axonal forms of Guillain-Barré syndrome, anti-ganglioside antibodies bind gangliosides on nerve surfaces, thereby causing injury through complement activation and immune cell recruitment. Why some nerve regions are more vulnerable than others is unknown. One reason may be that neuronal membranes with high endocytic activity, including nerve terminals involved in neurotransmitter recycling, are able to endocytose anti-ganglioside antibodies from the cell surface so rapidly that antibody-mediated injury is attenuated. Herein we investigated whether endocytic clearance of anti-ganglioside antibodies by nerve terminals might also be of sufficient magnitude to deplete circulating antibody levels. Remarkably, systemically delivered anti-ganglioside antibody in mice was so avidly cleared from the circulation by endocytosis at ganglioside-expressing plasma membranes that it was rapidly rendered undetectable in serum. A major component of the clearance occurred at motor nerve terminals of neuromuscular junctions, from where anti-ganglioside antibody was retrogradely transported to the motor neuron cell body in the spinal cord, recycled to the plasma membrane, and secreted into the surrounding spinal cord. Uptake at the neuromuscular junction represents a major unexpected pathway by which pathogenic anti-ganglioside antibodies, and potentially other ganglioside binding proteins, are cleared from the systemic circulation and also covertly delivered to the central nervous system. PMID:27017187

  14. Protective effects of exogenous gangliosides on ROS-induced changes in human spermatozoa.

    PubMed

    Gavella, Mirjana; Lipovac, Vaskresenija

    2013-05-01

    This article summarizes the available evidence on the efficacy of gangliosides to reduce the degree of reactive oxygen species (ROS)-mediated damage. The antioxidative efficacy of exogenous gangliosides in protecting different cells encouraged us to examine their ability to protect human spermatozoa. Gangliosides are sialic acid-containing glycosphingolipids with strong amphiphilic character due to the bulky headgroup made of several sugar rings with sialic acid residues and the double-tailed hydrophobic lipid moiety. The amphiphilicity of gangliosides allows them to exist as micelles in aqueous media when they are present at a concentration above their critical micellar concentration. The protective effect of ganglioside micelles on spermatozoa is believed to stem from their ability to scavenge free radicals and prevent their damaging effects. In our study, we particularly focused our attention on the protective effect of ganglioside micelles on DNA in human spermatozoa exposed to cryopreservation. The results indicate that ganglioside micelles can modulate the hydrophobic properties of the sperm membrane to increase tolerance to DNA fragmentation, thus protecting the DNA from cryopreservation-induced damage. Further actions of ganglioside micelles, which were documented by biochemical and biophysical studies, included (i) the modulation of superoxide anion generation by increasing the diffusion barrier for membrane events responsible for signal translocation to the interior of the cell; (ii) the inhibition of iron-catalysed hydroxyl radical formation due to the iron chelation potential of gangliosides; and (iii) inhibition of hydrogen peroxide diffusion across the sperm membrane.

  15. Protective effects of exogenous gangliosides on ROS-induced changes in human spermatozoa

    PubMed Central

    Gavella, Mirjana; Lipovac, Vaskresenija

    2013-01-01

    This article summarizes the available evidence on the efficacy of gangliosides to reduce the degree of reactive oxygen species (ROS)-mediated damage. The antioxidative efficacy of exogenous gangliosides in protecting different cells encouraged us to examine their ability to protect human spermatozoa. Gangliosides are sialic acid-containing glycosphingolipids with strong amphiphilic character due to the bulky headgroup made of several sugar rings with sialic acid residues and the double-tailed hydrophobic lipid moiety. The amphiphilicity of gangliosides allows them to exist as micelles in aqueous media when they are present at a concentration above their critical micellar concentration. The protective effect of ganglioside micelles on spermatozoa is believed to stem from their ability to scavenge free radicals and prevent their damaging effects. In our study, we particularly focused our attention on the protective effect of ganglioside micelles on DNA in human spermatozoa exposed to cryopreservation. The results indicate that ganglioside micelles can modulate the hydrophobic properties of the sperm membrane to increase tolerance to DNA fragmentation, thus protecting the DNA from cryopreservation-induced damage. Further actions of ganglioside micelles, which were documented by biochemical and biophysical studies, included (i) the modulation of superoxide anion generation by increasing the diffusion barrier for membrane events responsible for signal translocation to the interior of the cell; (ii) the inhibition of iron-catalysed hydroxyl radical formation due to the iron chelation potential of gangliosides; and (iii) inhibition of hydrogen peroxide diffusion across the sperm membrane. PMID:23503425

  16. Anti-ganglioside antibodies are removed from circulation in mice by neuronal endocytosis.

    PubMed

    Cunningham, Madeleine E; McGonigal, Rhona; Meehan, Gavin R; Barrie, Jennifer A; Yao, Denggao; Halstead, Susan K; Willison, Hugh J

    2016-06-01

    SEE VAN DOORN AND JACOBS DOI101093/BRAIN/AWW078 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : In axonal forms of Guillain-Barré syndrome, anti-ganglioside antibodies bind gangliosides on nerve surfaces, thereby causing injury through complement activation and immune cell recruitment. Why some nerve regions are more vulnerable than others is unknown. One reason may be that neuronal membranes with high endocytic activity, including nerve terminals involved in neurotransmitter recycling, are able to endocytose anti-ganglioside antibodies from the cell surface so rapidly that antibody-mediated injury is attenuated. Herein we investigated whether endocytic clearance of anti-ganglioside antibodies by nerve terminals might also be of sufficient magnitude to deplete circulating antibody levels. Remarkably, systemically delivered anti-ganglioside antibody in mice was so avidly cleared from the circulation by endocytosis at ganglioside-expressing plasma membranes that it was rapidly rendered undetectable in serum. A major component of the clearance occurred at motor nerve terminals of neuromuscular junctions, from where anti-ganglioside antibody was retrogradely transported to the motor neuron cell body in the spinal cord, recycled to the plasma membrane, and secreted into the surrounding spinal cord. Uptake at the neuromuscular junction represents a major unexpected pathway by which pathogenic anti-ganglioside antibodies, and potentially other ganglioside binding proteins, are cleared from the systemic circulation and also covertly delivered to the central nervous system. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  17. Brain gangliosides in hibernating dormice (Glis glis) and cold-exposed laboratory mice.

    PubMed

    Mühleisen, M; Hilbig, R; Rahmann, H

    1984-01-01

    The concentration of proteins, sialo-glycoproteins and gangliosides and the ganglioside composition of 8 brain regions from normothermic and hibernating fat dormice (Glis glis) and from laboratory mice being acclimated to 6, 22 and 28 degrees C were investigated. During hibernation the concentration of sialo-glycoproteins and gangliosides decreased significantly in brain of dormice; the protein content remained uninfluenced. Cold-exposure of laboratory mice yielded generally a slightly decreased sialo-glycoprotein concentration in brain; the data on ganglioside concentration in the CNS were not uniform. The ganglioside composition of brain of laboratory mice being kept at different environmental temperatures did not show any alterations. The brain gangliosides of hibernating dormice in contrast to their normothermic counterparts are more polar (higher amount of GTlb and GQlb.). Most striking is the complete absence of a distinct ganglioside fraction (O-acetylated-GTlb) during hibernation. Brain gangliosides of normothermic dormice were found to be more sensitive against neuraminidase treatment than those of hibernating animals. The results are discussed with regard to modulatory functions of neuronal gangliosides for the process of synaptic transmission during seasonal adaptation.

  18. Zika virus and neurologic autoimmunity: the putative role of gangliosides.

    PubMed

    Anaya, Juan-Manuel; Ramirez-Santana, Carolina; Salgado-Castaneda, Ignacio; Chang, Christopher; Ansari, Aftab; Gershwin, M Eric

    2016-03-21

    An increasing number of severe neurological complications associated with Zika virus (ZIKV), chiefly Guillain-Barré syndrome (GBS) and primary microcephaly, have led the World Health Organization to declare a global health emergency. Molecular mimicry between glycolipids and surface molecules of infectious agents explain most of the cases of GBS preceded by infection, while a direct toxicity of ZIKV on neural cells has been raised as the main mechanism by which ZIKV induces microcephaly. Gangliosides are crucial in brain development, and their expression correlates with neurogenesis, synaptogenesis, synaptic transmission, and cell proliferation. Targeting the autoimmune response to gangliosides may represent an underexploited opportunity to examine the increased incidence of neurological complications related to ZIKV infection.

  19. Gangliosides During Tumor Progression in Patients With Prostate Cancer

    DTIC Science & Technology

    2004-07-01

    LSCFM, Thiruverkadu S. Saravanan, Ph.D. and Meena Verma, M.B., B.S., for other technical support. 15 References 1. P. M . Gullino , Prostaglandins and...121-135. 3. G. Alessandri, P. Cornaglia-Ferraris, P. M . Gullino , Angiogenic and angiostatic microenvironment in tumors-role of gangliosides. Acta...Wiegandt (Ed), Glycolipids, Elsevier, Amsterdam, 1985, pp. 199-260. 11. M . L . Freimer, K. McIntosh, R. A. Adams, C. R. Alving, D. B. Drachman

  20. Analysis of humoral immune responses to LM1 ganglioside in guinea pigs.

    PubMed

    Gu, Yajuan; Chen, Zi-Wei; Siegel, Allan; Koshy, Ranie; Ramirez, Cristhian; Raabe, Timothy D; Devries, George H; Ilyas, Amjad A

    2012-05-15

    Guillain-Barré syndrome (GBS) is an autoimmune-mediated disease triggered by a preceding infection. A substantial body of evidence implicates antibodies to various gangliosides in subtypes of GBS. A significant proportion of patients with acute demyelinating subset of GBS have IgG antibodies against peripheral nervous system myelin specific neolactogangliosides such as LM1 and Hex-LM1. Although anti-neolactoganglioside antibodies in GBS were described more than two decades ago, their pathogenic role in neuropathy remains unknown due to the lack of suitable experimental models. In this study, we immunized ten guinea pigs with purified LM1 ganglioside mixed with keyhole limpet hemocyanin (KLH) and emulsified in complete Freund's adjuvant (CFA). Control guinea pigs were injected with KLH emulsified in CFA only. The animals were bled every four week intervals. The animals were boosted 3 times every four weeks. Experiments were terminated four months after initial immunization. Nine of 10 guinea pigs immunized with LM1 exhibited antibody responses to LM1. Anti-LM1 IgG titers in nine guinea pigs ranged from 1:400 to 1:12,800 at 16-weeks after initial immunization. Anti-LM1 antibodies were predominantly of IgG2 subclass. One guinea pig with the highest levels of IgG antibodies exhibited mild signs of neuropathy. There was no evidence of demyelination or inflammation in the sciatic nerves of LM1-immunized guinea pigs. Anti-LM1 antibodies bound to rat sciatic nerve myelin and to isolated rat Schwann cells. In summary, our findings suggest that relatively high levels of anti-LM1 IgG antibodies can be induced in guinea pigs and that LM1 is localized in peripheral nerve myelin and in Schwann cells. Further studies are needed to determine the pathogenic potential of anti-neolactoganglioside antibodies in neuropathy.

  1. Alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 can support immune responses toward tumors overexpressing ganglioside D3 in mice.

    PubMed

    Eby, Jonathan M; Barse, Levi; Henning, Steven W; Rabelink, Martijn J W E; Klarquist, Jared; Gilbert, Emily R; Hammer, Adam M; Fernandez, Manuel F; Yung, Nathan; Khan, Safia; Miller, Hannah G; Kessler, Edward R; Garrett-Mayer, Elizabeth; Dilling, Daniel F; Hoeben, Rob C; Le Poole, I Caroline

    2017-01-01

    An immunotherapeutic strategy is discussed supporting anti-tumor activity toward malignancies overexpressing ganglioside D3. GD3 can be targeted by NKT cells when derived moieties are presented in the context of CD1d. NKT cells can support anti-tumor responses by secreting inflammatory cytokines and through cytotoxicity toward CD1d(+)GD3(+) tumors. To overexpress GD3, we generated expression vector DNA and an adenoviral vector encoding the enzyme responsible for generating GD3 from its ubiquitous precursor GM3. We show that DNA encoding α-N-acetyl-neuraminide α-2,8-sialyltransferase 1 (SIAT8) introduced by gene gun vaccination in vivo leads to overexpression of GD3 and delays tumor growth. Delayed tumor growth is dependent on CD1d expression by host immune cells, as shown in experiments engaging CD1d knockout mice. A trend toward greater NKT cell populations among tumor-infiltrating lymphocytes is associated with SIAT8 vaccination. A single adenoviral vaccination introduces anti-tumor activity similarly to repeated vaccination with naked DNA. Here, greater NKT tumor infiltrates were accompanied by marked overexpression of IL-17 in the tumor, later switching to IL-4. Our results suggest that a single intramuscular adenoviral vaccination introduces overexpression of GD3 by antigen-presenting cells at the injection site, recruiting NKT cells that provide an inflammatory anti-tumor environment. We propose adenoviral SIAT8 (AdV-SIAT8) can slow the growth of GD3 expressing tumors in patients.

  2. GM1 Ganglioside Treatment Facilitates Behavioral Recovery from Bilateral Brain Damage

    NASA Astrophysics Data System (ADS)

    Sabel, Bernhard A.; Slavin, Mary D.; Stein, Donald G.

    1984-07-01

    Adult rats with bilateral lesions of the caudate nucleus were treated with GM1 ganglioside. Although animals injected with a control solution were severely impaired in their ability to learn a complex spatial task, those treated with ganglioside were able to learn spatial reversals.

  3. Gangliosides stimulate bradykinin B2 receptors to promote calmodulin kinase II-mediated neuronal differentiation.

    PubMed

    Kanatsu, Yoshinori; Chen, Nai Hong; Mitoma, Junya; Nakagawa, Tetsuto; Hirabayashi, Yoshio; Higashi, Hideyoshi

    2012-07-01

    Gangliosides mediate neuronal differentiation and maturation and are indispensable for the maintenance of brain function and survival. As part of our ongoing efforts to understand signaling pathways related to ganglioside function, we recently demonstrated that neuronal cells react to exogenous gangliosides GT1b and GD1b. Both of these gangliosides are enriched in the synapse-forming area of the brain and induce Ca(2+) release from intracellular stores, activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and activation of cdc42 to promote reorganization of cytoskeletal actin and dendritic differentiation. Here, we show that bradykinin B2 receptors transduce these reactions as a mediator for ganglioside glycan signals. The B2 antagonist Hoe140 inhibited ganglioside-induced CaMKII activation, actin reorganization and early development of axon- and dendrite-like processes of primary cultured hippocampal neurons. Furthermore, we confirmed by yeast reporter assay that major b-series gangliosides, GT1b, GD1b and GD3, stimulated B2 bradykinin receptors. We hypothesize that this B2 receptor-mediated ganglioside signal transduction pathway is one mechanism that modulates neuronal differentiation and maturation.

  4. Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells.

    PubMed

    Wondimu, Assefa; Liu, Yihui; Su, Yan; Bobb, Daniel; Ma, Jennifer S Y; Chakrabarti, Lina; Radoja, Saša; Ladisch, Stephan

    2014-10-01

    Although it is now widely appreciated that antitumor immunity is critical to impede tumor growth and progression, there remain significant gaps in knowledge about the mechanisms used by tumors to escape immune control. In tumor cells, we hypothesized that one mechanism of immune escape used by tumors involves the synthesis and extracellular shedding of gangliosides, a class of biologically active cell surface glycosphingolipids with known immunosuppressive properties. In this study, we report that tumor cells engineered to be ganglioside deficient exhibit impaired tumorigenicity, supporting a link between ganglioside-dependent immune escape and tumor outgrowth. Notably, we documented a dramatic reduction in the numbers and function of tumor-infiltrating myeloid-derived suppressor cells (MDSC) in ganglioside-deficient tumors, in contrast with the large MDSC infiltrates seen in ganglioside-rich littermate control tumors. Transient ganglioside reconstitution of the tumor cell inoculum was sufficient to increase MDSC infiltration, supporting a direct connection between ganglioside production by tumor cells and the recruitment of immunosuppressive MDSC into the tumor microenvironment. Our results reveal a novel mechanism of immune escape that supports tumor growth, with broad implications given that many human tumors produce and shed high levels of gangliosides. ©2014 American Association for Cancer Research.

  5. Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells

    PubMed Central

    Wondimu, Assefa; Liu, Yihui; Yan, Su; Bobb, Daniel; Ma, Jennifer S.Y.; Chakrabarti, Lina; Radoja, Saša; Ladisch, Stephan

    2014-01-01

    While it is now widely appreciated that anti-tumor immunity is critical to impede tumor growth and progression, there remain significant gaps in knowledge about the mechanisms used by tumors to escape immune control. In tumor cells, we hypothesized that one mechanism of immune escape used by tumors involves the synthesis and extracellular shedding of gangliosides, a class of biologically active cell surface glycosphingolipids with known immunosuppressive properties. In this study, we report that tumor cells engineered to be ganglioside-deficient exhibit impaired tumorigenicity, supporting a link between ganglioside-dependent immune escape and tumor outgrowth. Notably, we documented a dramatic reduction in the numbers and function of tumor-infiltrating myeloid-derived suppressor cells (MDSC) in ganglioside-deficient tumors, in contrast to the large MDSC infiltrates seen in ganglioside-rich littermate control tumors. Transient ganglioside reconstitution of the tumor cell inoculum was sufficient to increase MDSC infiltration, supporting a direct connection between ganglioside production by tumor cells and the recruitment of immunosuppressive MDSC into the tumor microenvironment. Our results reveal a novel mechanism of immune escape that supports tumor growth, with broad implications given that many human tumors produce and shed high levels of gangliosides. PMID:25115301

  6. Neuronal Expression of GalNAc Transferase Is Sufficient to Prevent the Age-Related Neurodegenerative Phenotype of Complex Ganglioside-Deficient Mice

    PubMed Central

    Yao, Denggao; McGonigal, Rhona; Barrie, Jennifer A.; Cappell, Joanna; Cunningham, Madeleine E.; Meehan, Gavin R.; Fewou, Simon N.; Edgar, Julia M.; Rowan, Edward; Ohmi, Yuhsuke; Furukawa, Keiko; Furukawa, Koichi; Brophy, Peter J.

    2014-01-01

    Gangliosides are widely expressed sialylated glycosphingolipids with multifunctional properties in different cell types and organs. In the nervous system, they are highly enriched in both glial and neuronal membranes. Mice lacking complex gangliosides attributable to targeted ablation of the B4galnt1 gene that encodes β-1,4-N-acetylegalactosaminyltransferase 1 (GalNAc–transferase; GalNAcT−/−) develop normally before exhibiting an age-dependent neurodegenerative phenotype characterized by marked behavioral abnormalities, central and peripheral axonal degeneration, reduced myelin volume, and loss of axo-glial junction integrity. The cell biological substrates underlying this neurodegeneration and the relative contribution of either glial or neuronal gangliosides to the process are unknown. To address this, we generated neuron-specific and glial-specific GalNAcT rescue mice crossed on the global GalNAcT−/− background [GalNAcT−/−-Tg(neuronal) and GalNAcT−/−-Tg(glial)] and analyzed their behavioral, morphological, and electrophysiological phenotype. Complex gangliosides, as assessed by thin-layer chromatography, mass spectrometry, GalNAcT enzyme activity, and anti-ganglioside antibody (AgAb) immunohistology, were restored in both neuronal and glial GalNAcT rescue mice. Behaviorally, GalNAcT−/−-Tg(neuronal) retained a normal “wild-type” (WT) phenotype throughout life, whereas GalNAcT−/−-Tg(glial) resembled GalNAcT−/− mice, exhibiting progressive tremor, weakness, and ataxia with aging. Quantitative electron microscopy demonstrated that GalNAcT−/− and GalNAcT−/−-Tg(glial) nerves had significantly increased rates of axon degeneration and reduced myelin volume, whereas GalNAcT−/−-Tg(neuronal) and WT appeared normal. The increased invasion of the paranode with juxtaparanodal Kv1.1, characteristically seen in GalNAcT−/− and attributed to a breakdown of the axo-glial junction, was normalized in GalNAcT−/−-Tg(neuronal) but

  7. Neuronal expression of GalNAc transferase is sufficient to prevent the age-related neurodegenerative phenotype of complex ganglioside-deficient mice.

    PubMed

    Yao, Denggao; McGonigal, Rhona; Barrie, Jennifer A; Cappell, Joanna; Cunningham, Madeleine E; Meehan, Gavin R; Fewou, Simon N; Edgar, Julia M; Rowan, Edward; Ohmi, Yuhsuke; Furukawa, Keiko; Furukawa, Koichi; Brophy, Peter J; Willison, Hugh J

    2014-01-15

    Gangliosides are widely expressed sialylated glycosphingolipids with multifunctional properties in different cell types and organs. In the nervous system, they are highly enriched in both glial and neuronal membranes. Mice lacking complex gangliosides attributable to targeted ablation of the B4galnt1 gene that encodes β-1,4-N-acetylegalactosaminyltransferase 1 (GalNAc-transferase; GalNAcT(-/-)) develop normally before exhibiting an age-dependent neurodegenerative phenotype characterized by marked behavioral abnormalities, central and peripheral axonal degeneration, reduced myelin volume, and loss of axo-glial junction integrity. The cell biological substrates underlying this neurodegeneration and the relative contribution of either glial or neuronal gangliosides to the process are unknown. To address this, we generated neuron-specific and glial-specific GalNAcT rescue mice crossed on the global GalNAcT(-/-) background [GalNAcT(-/-)-Tg(neuronal) and GalNAcT(-/-)-Tg(glial)] and analyzed their behavioral, morphological, and electrophysiological phenotype. Complex gangliosides, as assessed by thin-layer chromatography, mass spectrometry, GalNAcT enzyme activity, and anti-ganglioside antibody (AgAb) immunohistology, were restored in both neuronal and glial GalNAcT rescue mice. Behaviorally, GalNAcT(-/-)-Tg(neuronal) retained a normal "wild-type" (WT) phenotype throughout life, whereas GalNAcT(-/-)-Tg(glial) resembled GalNAcT(-/-) mice, exhibiting progressive tremor, weakness, and ataxia with aging. Quantitative electron microscopy demonstrated that GalNAcT(-/-) and GalNAcT(-/-)-Tg(glial) nerves had significantly increased rates of axon degeneration and reduced myelin volume, whereas GalNAcT(-/-)-Tg(neuronal) and WT appeared normal. The increased invasion of the paranode with juxtaparanodal Kv1.1, characteristically seen in GalNAcT(-/-) and attributed to a breakdown of the axo-glial junction, was normalized in GalNAcT(-/-)-Tg(neuronal) but remained present in Gal

  8. Functional roles of gangliosides in neurodevelopment--An overview of recent advances

    PubMed Central

    Yu, Robert K.; Tsai, Yi-Tzang; Ariga, Toshio

    2013-01-01

    Summary Gangliosides are sialic acid-containing glycosphingolipids (GSLs) that are most abundant in the nervous system. They are localized primarily in the outer leaflets of plasma membranes and participated in cell-cell recognition, adhesion, and signal transduction and are integral components of cell surface microdomains or lipid rafts along with proteins, sphingomyelin and cholesterol. Ganglioside-rich lipid rafts play an important role in signaling events affecting neural development and the pathogenesis of certain diseases. Disruption of ganglioside synthase genes in mice induces developmental defects and neural degeneration. Targeting ganglioside metabolism may represent a novel therapeutic strategy for intervention in certain diseases. In this review, we focus on recent advances on metabolic and functional studies of gangliosides in normal brain development and in certain neurological disorders. PMID:22410735

  9. Prevalence, specificity and functionality of anti-ganglioside antibodies in neuropathy associated with IgM monoclonal gammopathy.

    PubMed

    Stork, Abraham C J; Jacobs, Bart C; Tio-Gillen, Anne P; Eurelings, Marijke; Jansen, Marc D; van den Berg, Leonard H; Notermans, Nicolette C; van der Pol, W-Ludo

    2014-03-15

    IgM antibodies against gangliosides and their complexes were studied in sera from 54 patients with polyneuropathy and IgM monoclonal gammopathy (IgM-PNP) without anti-MAG antibodies. Anti-ganglioside antibodies were found in 19 (35%) patients. Five (9%) patients had antibodies against ganglioside complexes. IgM antibodies against gangliosides activated complement in vitro. Light chain usage was restricted to kappa or lambda in most, but not all patients. In conclusion, anti-ganglioside antibodies in IgM-PNP are common, display pathogenic properties and do not always arise from a monoclonal B cell proliferation.

  10. Imaging Mass Spectrometry Technology and Application on Ganglioside Study; Visualization of Age-Dependent Accumulation of C20-Ganglioside Molecular Species in the Mouse Hippocampus

    PubMed Central

    Sugiura, Yuki; Shimma, Shuichi; Konishi, Yoshiyuki; Yamada, Maki K.; Setou, Mitsutoshi

    2008-01-01

    Gangliosides are particularly abundant in the central nervous system (CNS) and thought to play important roles in memory formation, neuritogenesis, synaptic transmission, and other neural functions. Although several molecular species of gangliosides have been characterized and their individual functions elucidated, their differential distribution in the CNS are not well understood. In particular, whether the different molecular species show different distribution patterns in the brain remains unclear. We report the distinct and characteristic distributions of ganglioside molecular species, as revealed by imaging mass spectrometry (IMS). This technique can discriminate the molecular species, raised from both oligosaccharide and ceramide structure by determining the difference of the mass-to-charge ratio, and structural analysis by tandem mass spectrometry. Gangliosides in the CNS are characterized by the structure of the long-chain base (LCB) in the ceramide moiety. The LCB of the main ganglioside species has either 18 or 20 carbons (i.e., C18- or C20-sphingosine); we found that these 2 types of gangliosides are differentially distributed in the mouse brain. While the C18-species was widely distributed throughout the frontal brain, the C20-species selectively localized along the entorhinal-hippocampus projections, especially in the molecular layer (ML) of the dentate gyrus (DG). We revealed development- and aging-related accumulation of the C-20 species in the ML-DG. Thus it is possible to consider that this brain-region specific regulation of LCB chain length is particularly important for the distinct function in cells of CNS. PMID:18800170

  11. Neuroblast migration and P2Y(1) receptor mediated calcium signalling depend on 9-O-acetyl GD3 ganglioside.

    PubMed

    Santiago, Marcelo F; Scemes, Eliana

    2012-09-11

    Previous studies indicated that a ganglioside 9acGD3 (9-O-acetyl GD3) antibody [the J-Ab (Jones antibody)] reduces GCP (granule cell progenitor) migration in vitro and in vivo. We here investigated, using cerebellar explants of post-natal day (P) 6 mice, the mechanism by which 9acGD3 reduces GCP migration. We found that immunoblockade of the ganglioside with the J-Ab or the lack of GD3 synthase reduced GCP in vitro migration and the frequency of Ca(2+) oscillations. Immunocytochemistry and pharmacological assays indicated that GCPs expressed P2Y(1)Rs (P2Y(1) receptors) and that deletion or blockade of these receptors decreased the migration rate of GCPs and the frequency of Ca(2+) oscillations. The reduction in P2Y(1)-mediated calcium signals seen in Jones-treated and GD3 synthase-null GCPs were paralleled by P2Y(1)R internalization. We conclude that 9acGD3 controls GCP migration by influencing P2Y(1)R cellular distribution and function.

  12. Direct evidence that ganglioside is an integral component of the thyrotropin receptor

    SciTech Connect

    Kielczynski, W.; Harrison, L.C.; Leedman, P.J. )

    1991-03-01

    Gangliosides were extracted from purified human and porcine thyrotropin (TSH) receptors (TSH-R) and were detected by probing with an {sup 125}I-labeled sialic acid-specific lectin, Limax flavus agglutinin. Gangliosides copurified with human and porcine TSH-R migrated between monosialoganglioside GM1 and disialoganglioside GD1a. Ceramide glycanase digestion of the purified human TSH-R-associated glycolipid confirmed its ganglioside nature. It was resistant to Vibrio cholerae sialidase, which digest all gangliosides except GM1, but was sensitive to Arthrobacter ureafaciens sialidase, which digests all gangliosides including GM1. These findings indicate that the human TSH-R contains ganglioside that belongs to the galactosyl({beta}1{r arrow} 3)-N-acetylgalactosaminyl({beta}1{r arrow} 4)-(N-acetylneuraminyl({alpha}2{r arrow} 3))galactosyl({beta}1 {r arrow} 4)glucosyl({beta}1 {r arrow} 1)ceramide (GM1) family. Its intimate association with receptor protein implies a key role for ganglioside in the structure and function of the TSH-R.

  13. Effect of Dietary Complex Lipids on the Biosynthesis of Piglet Brain Gangliosides.

    PubMed

    Reis, Marlon M; Bermingham, Emma N; Reis, Mariza G; Deb-Choudhury, Santanu; MacGibbon, Alastair; Fong, Bertram; McJarrow, Paul; Bibiloni, Rodrigo; Bassett, Shalome A; Roy, Nicole C

    2016-02-17

    Gangliosides, found in mammalian milk, are known for their roles in brain development of the newborn. However, the mechanism involved in the impact of dietary gangliosides on brain metabolism is not fully understood. The impact of diets containing complex lipids rich in milk-derived ganglioside GD3 on the biosynthesis of gangliosides (assessed from the incorporation of deuterium) in the frontal lobe of a piglet model is reported. Higher levels of incorporation of deuterium was observed in the GM1 and GD1a containing stearic acid in samples from piglets fed milk containing 18.2 μg/mL of GD3 compared to that in those fed milk containing 25 μg/mL of GD3. This could suggest that the gangliosides from the diet may be used as a precursor for de novo biosynthesis of brain gangliosides or lead to the reduction of de novo biosynthesis of these gangliosides. This effect was more pronounced in the left compared to that in the right brain hemisphere.

  14. Changes in Liver Ganglioside Metabolism in Obstructive Cholestasis - the Role of Oxidative Stress.

    PubMed

    Šmíd, V; Petr, T; Váňová, K; Jašprová, J; Šuk, J; Vítek, L; Šmíd, F; Muchová, L

    2016-01-01

    Bile acids have been implicated in cholestatic liver damage, primarily due to their detergent effect on membranes and induction of oxidative stress. Gangliosides can counteract these harmful effects by increasing the rigidity of the cytoplasmic membrane. Induction of haem oxygenase (HMOX) has been shown to protect the liver from increased oxidative stress. The aim of this study was to determine the changes in the synthesis and distribution of liver gangliosides following bile duct ligation (BDL), and to assess the effects of HMOX both on cholestatic liver injury and ganglioside metabolism. Compared to controls, BDL resulted in a significant increase in total as well as complex gangliosides and mRNA expression of corresponding glycosyltransferases ST3GalV, ST8SiaI and B3GalTIV. A marked shift of GM1 ganglioside from the intracellular compartment to the cytoplasmic membrane was observed following BDL. Induction of oxidative stress by HMOX inhibition resulted in a further increase of these changes, while HMOX induction prevented this effect. Compared to BDL alone, HMOX inhibition in combination with BDL significantly increased the amount of bile infarcts, while HMOX activation decreased ductular proliferation. We have demonstrated that cholestasis is accompanied by significant changes in the distribution and synthesis of liver gangliosides. HMOX induction results in attenuation of the cholestatic pattern of liver gangliosides, while HMOX inhibition leads to the opposite effect.

  15. Exogenous gangliosides increase the release of brain-derived neurotrophic factor.

    PubMed

    Lim, Seung T; Esfahani, Kamilla; Avdoshina, Valeriya; Mocchetti, Italo

    2011-06-01

    Gangliosides are lipophilic compounds found in cell plasma membranes throughout the brain that play a role in neuronal plasticity and regeneration. Indeed, absence or abnormal accumulation of gangliosides has been shown to lead to neurological disorders. Experimental data have shown that exogenous gangliosides exhibit properties similar to the neurotrophins, a family of neurotrophic factors that are important in the survival and maintenance of neurons and prevention of neurological diseases. Brain-derived neurotrophic factor (BDNF) is the most abundant of the neurotrophins. This work was done to reveal the neurotrophic mechanism of exogenous gangliosides. In particular, we examined whether gangliosides promote the release of BDNF. Rat hippocampal neurons or human neuroblastoma cells were transduced with a recombinant adenovirus expressing BDNF-flag to facilitate detection of BDNF. Release of BDNF was then determined by Western blot analysis and a two-site immunoassay of culture medium. The depolarizing agent KCl was used as a comparison. In hippocampal neurons, both GM1 ganglioside and KCl evoked within minutes the release of mature BDNF. In human cells, GM1 and other gangliosides released both mature BDNF and pro-BDNF. The effect of gangliosides was structure-dependent. In fact, GT1b preferentially released mature BDNF whereas GM1 released both mature and pro-BDNF. Ceramide and sphingosine did not modify the release of BDNF. This work provides additional experimental evidence that exogenous gangliosides can be used to enhance the neurotrophic factor environment and promote neuronal survival in neurological diseases. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Complex gangliosides are apically sorted in polarized MDCK cells and internalized by clathrin-independent endocytosis.

    PubMed

    Crespo, Pilar M; von Muhlinen, Natalia; Iglesias-Bartolomé, Ramiro; Daniotti, Jose L

    2008-12-01

    Gangliosides are glycosphingolipids mainly present at the outer leaflet of the plasma membrane of eukaryotic cells, where they participate in recognition and signalling activities. The synthesis of gangliosides is carried out in the lumen of the Golgi apparatus by a complex system of glycosyltransferases. After synthesis, gangliosides leave the Golgi apparatus via the lumenal surface of transport vesicles destined to the plasma membrane. In this study, we analysed the synthesis and membrane distribution of GD3 and GM1 gangliosides endogenously synthesized by Madin-Darby canine kidney (MDCK) cell lines genetically modified to express appropriate ganglioside glycosyltransferases. Using biochemical techniques and confocal laser scanning microscopy analysis, we demonstrated that GD3 and GM1, after being synthesized at the Golgi apparatus, were transported and accumulated mainly at the plasma membrane of nonpolarized MDCK cell lines. More interestingly, both complex gangliosides were found to be enriched mainly at the apical domain when these cell lines were induced to polarize. In addition, we demonstrated that, after arrival at the plasma membrane, GD3 and GM1 gangliosides were endocytosed using a clathrin-independent pathway. Then, internalized GD3, in association with a specific monoclonal antibody, was accumulated in endosomal compartments and transported back to the plasma membrane. In contrast, endocytosed GM1, in association with cholera toxin, was transported to endosomal compartments en route to the Golgi apparatus. In conclusion, our results demonstrate that complex gangliosides are apically sorted in polarized MDCK cells, and that GD3 and GM1 gangliosides are internalized by clathrin-independent endocytosis to follow different intracellular destinations.

  17. Aberrant ganglioside composition in glioblastoma multiforme and peritumoral tissue: A mass spectrometry characterization.

    PubMed

    Fabris, Dragana; Rožman, Marko; Sajko, Tomislav; Vukelić, Željka

    2017-06-01

    Tumor cells are characterized by aberrant glycosylation of the cell surface glycoconjugates. Gangliosides are sialylated glycosphingolipids highly abundant in neural tissue and considered as tumor markers and therapeutic targets. In this study, a detailed characterization of native ganglioside mixtures from glioblastoma multiforme, corresponding peritumoral tissue and healthy human brain was performed using mass spectrometry and high performance thin layer chromatography in order to elucidate their roles as tumor-associated antigens. Distinctive changes in ganglioside expression were determined in glioblastoma compared to healthy brain tissue showing 5 times lower total ganglioside content and higher abundance of simple gangliosides. Glioblastoma gangliosides were characterized by highly diverse ceramide composition with fatty acyl chains varying from 16 to 24 carbon atoms, while in normal and peritumoral tissue mostly C18 chains were found. The most abundant ganglioside in glioblastoma was GD3 (d18:1/18:0), followed by GD3 (d18:1/24:0) that was exclusively detected in glioblastoma tissue. Peritumoral tissue expressed higher abundance of GD3- and nLM1/GM1-species while lower GT1-species vs. normal brain. O-Ac-GD1, known as neurostatin, was detected in normal and peritumoral tissue, but not in glioblastoma. O-Ac-GD3 species were found exclusively in glioblastoma; MS structural characterization of the isomeric form possessing the O-acetylation at the inner sialic acid residue confirmed our previous finding that this isomer is glioma-associated. This, to our knowledge, the most detailed characterization of ganglioside composition in glioblastoma and peritumoral tissue, especially addressing the ceramide variability and O-acetylation of tumor-associated gangliosides, could contribute to recognition of new molecular targets for glioblastoma treatment and sub-classification. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Mol

  18. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy

    PubMed Central

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included. PMID:28154831

  19. Targeting O-Acetyl-GD2 Ganglioside for Cancer Immunotherapy.

    PubMed

    Fleurence, Julien; Fougeray, Sophie; Bahri, Meriem; Cochonneau, Denis; Clémenceau, Béatrice; Paris, François; Heczey, Andras; Birklé, Stéphane

    2017-01-01

    Target selection is a key feature in cancer immunotherapy, a promising field in cancer research. In this respect, gangliosides, a broad family of structurally related glycolipids, were suggested as potential targets for cancer immunotherapy based on their higher abundance in tumors when compared with the matched normal tissues. GD2 is the first ganglioside proven to be an effective target antigen for cancer immunotherapy with the regulatory approval of dinutuximab, a chimeric anti-GD2 therapeutic antibody. Although the therapeutic efficacy of anti-GD2 monoclonal antibodies is well documented, neuropathic pain may limit its application. O-Acetyl-GD2, the O-acetylated-derivative of GD2, has recently received attention as novel antigen to target GD2-positive cancers. The present paper examines the role of O-acetyl-GD2 in tumor biology as well as the available preclinical data of anti-O-acetyl-GD2 monoclonal antibodies. A discussion on the relevance of O-acetyl-GD2 in chimeric antigen receptor T cell therapy development is also included.

  20. Recovery from Experimental Parkinsonism in Primates with GM1 Ganglioside Treatment

    NASA Astrophysics Data System (ADS)

    Schneider, J. S.; Pope, Anne; Simpson, Kimberly; Taggart, James; Smith, M. G.; Distefano, L.

    1992-05-01

    A parkinsonian syndrome can be produced in nonhuman primates by administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Parkinsonian-like symptoms induced acutely by MPTP were ameliorated after treatment with GM1 ganglioside, a substance shown to have neurotrophic effects on the damaged dopamine system in rodents. Treatment with GM1 ganglioside also increased striatal dopamine and metabolite levels and enhanced the dopaminergic innervation of the striatum as demonstrated by tyrosine hydroxylase immunohistochemistry. These results suggest that GM1 ganglioside may hold promise as a therapeutic agent for the treatment of Parkinson's disease.

  1. Isolation and structure of hematoside-type ganglioside from the starfish Linckia laevigata.

    PubMed

    Inagaki, Masanori; Saito, Takeshi; Miyamoto, Tomofumi; Higuchi, Ryuichi

    2009-02-01

    A hematoside-type ganglioside, LLG-1 (1), has been obtained from the polar lipid fraction of the chloroform/methanol extract of the starfish Linckia laevigata. The structure of the ganglioside has been determined on the basis of chemical and spectroscopic evidence as 1-O-[N-glycolyl-alpha-D-neuraminosyl-(2-->3)-beta-D-galactopyranosyl-(1-->4)-beta-D-glucopyranosyl]-ceramide. The ceramide moiety was composed of heterogeneous 2-hydroxy fatty acid and phytosphingosine units. This is the first report on the isolation and structure elucidation of naked hematoside-type ganglioside from echinoderms.

  2. Simulation of the distribution of chemical species on Mars using a state-of-the-art general circulation model, GM3.

    NASA Astrophysics Data System (ADS)

    Moudden, Y.; McConnell, J. C.; Akingunola, A.

    2005-08-01

    Many questions remain unanswered regarding the composition of the atmosphere of Mars. To date 1D numerical models have been used extensively to investigate to observed composition. These models require the assignation of eddy diffusion, the strength of vertical diffusion is usually set by the modellers depending on the performance of the model. 3D modelling of chemical species allows the species to be transported in a realistic fashion using the resolved wind components from the model. We use a multiscale state-of-the-art general circulation model (GM3) for the atmosphere of Mars with a domain that extends from the ground to 180-200 km and includes the major processes that define the global state of the atmosphere. A comprehensive chemistry package is included. This package includes photodissociation of different species such as water and CO2. The combination of a self-sufficient 3D dynamical model and a comprehensive chemical reactions set is expected to yield valuable information about the distribution of minor species and the observed composition. The chemical package is working and further work for the water distribution on the chemical package is underway. The presentation will compare O and CO in the thermosphere with obsesrvations from Viking and Mariner 9. And also present preliminary results for lower atmospheric ozone.

  3. Enzymic glycosphingolipid synthesis on polymer supports. III. Synthesis of GM3, its analog [NeuNAcalpha(2-3)Galbeta(1-4)Glcbeta(1-3)Cer] and their lyso-derivatives.

    PubMed

    Zehavi, U; Tuchinsky, A

    1998-07-01

    Two water-soluble polymers, carrying 0.24 meq g(-1) of lactosyl-beta(1-1)-sphingosine (7) and 0.13 meq g(-1) of lactosyl-beta(1-3)-sphingosine (8) were prepared. The polymers served as acceptors in the alpha-(2-3)-sialyltransferase reaction (up to 55.3 and 38.5% transfer yields, respectively). Subsequent photolysis, released compounds 11 (lyso-GM3) and 12 (lyso-GM3 analog), respectively; acylation and chromatography afforded (5-acetamido-3,5-dideoxy-D-glycero-alpha-galacto-2-nonulopyranosyloni c acid)-(2-3)-beta-D-galactopyranosyl-(1-4)-beta-D-glucopyranosyl-(1-1)-(2 S, 3R, 4E)-2-octadecanoylamino-4-octadecene-1,3-diol (13, GM3) and (5-acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylo nic acid)-(2-3)-beta-D-galactopyranosyl-(1-4)-beta-D-glucopyranosyl-(1-3)-(2 S, 3R, 4E)-2-octadecanoylamino-4-octadecene-1,3-diol (14, GM3 analogue), respectively, thus presenting a route to glycosphingolipids possessing the unusual glycosyl-beta(1-3)-spingosine linkage.

  4. The biologic role of ganglioside in neuronal differentiation--effects of GM1 ganglioside on human neuroblastoma SH-SY5Y cells.

    PubMed Central

    Lee, M. C.; Lee, W. S.; Park, C. S.; Juhng, S. W.

    1994-01-01

    Human neuroblastoma SH-SY5Y cell is a cloned cell line which has many attractive features for the study of neuronal proliferation and neurite outgrowth, because it has receptors for insulin, IGF-I and PDGF. Gangliosides are sialic acid containing glycosphingolipids which form an integral part of the plasma membrane of many mammalian cells. They inhibit cell growth mediated by tyrosine kinase receptors and ligand-stimulated tyrosine kinase activity, and autophosphorylation of EGF(epidermal growth factor) and PDGF receptors. The experiment was designed to study the effects of GM1 ganglioside on growth of human neuroblastoma SH-SY5Y cells stimulated with trophic factor in vitro. The cells were plated in Eagle's minimum essential medium without serum. The number and morphologic change of SH-SY5Y cells were evaluated in the serum free medium added GM1 ganglioside with insulin or PDGF. SH-SY5Y cells were maintained for six days in serum-free medium, and then cultured for over two weeks in serum-free medium containing either insulin or PDGF. The effect of insulin on cell proliferation developed earlier and was more potent than that of PDGF. These proliferative effects were inhibited by GM1 ganglioside, and the cells showed prominent neurites outgrowth. These findings suggest that GM1 ganglioside inhibits the cell proliferation mediated by tyrosine kinase receptors and directly induces neuritogenesis as one of the neurotrophic factors. PMID:7986393

  5. O-acetylated sialic acids in gangliosides from pig spleen lymphocytes.

    PubMed

    Hueso, P; Cabezas, J A; Reglero, A

    1988-01-01

    The sialic acid content of gangliosides from pig spleen lymphocytes was studied by thin-layer chromatography. N-glycolylneuraminic acid and N-acetylneuraminic acid were detected for the first time in this material as the major sialic acids. In addition, two other sialic acids, tentatively designated O-acetylated sialic acids, according to their RF values on cellulose plates, were also found. We have detected several gangliosides showing a retarded migration pattern in two dimensional thin-layer chromatography with an intermediate ammonia treatment. One of these gangliosides could be an O-acetylated derivative of the disialoganglioside GD3, since after de-O-acetyation it co-migrates with GD3. Another ganglioside co-migrated with GM2 before the alkaline treatment; however, after the treatment it was also retarded and co-migrates with GD3.

  6. Synthesis of ganglioside epitopes for oligosaccharide specific immunoadsorption therapy of Guillian-Barré syndrome.

    PubMed

    Andersen, Søren M; Ling, Chang-Chun; Zhang, Ping; Townson, Kate; Willison, Hugh J; Bundle, David R

    2004-04-21

    Guillain-Barré syndrome is a postinfectious, autoimmune neuropathy resulting in neuromuscular paralysis. Auto-antibodies, often induced by bacterial infection, bind to human gangliosides possessing monosialoside and diasialoside epitopes and impair the function of nerve junctions, where these ganglioside structures are highly enriched. Truncated gangliosides representive of GD3, GQ1b and GM2 epitopes have been synthesized as methyl glycosides and as a glycosides of an eleven carbon tether. The synthetic oligosaccharide ligands are structural mimics of these highly complex ganglioside epitopes and via their ability to neutralize or remove auto-antibodies have the potential for therapy, either as soluble blocking ligands administered systemically, or as immuno-affinity ligands for use as extracorporeal immunoadsorbents.

  7. Effects of gangliosides on the activity of the plasma membrane Ca2+-ATPase.

    PubMed

    Jiang, Lei; Bechtel, Misty D; Bean, Jennifer L; Winefield, Robert; Williams, Todd D; Zaidi, Asma; Michaelis, Elias K; Michaelis, Mary L

    2014-05-01

    Control of intracellular calcium concentrations ([Ca(2+)]i) is essential for neuronal function, and the plasma membrane Ca(2+)-ATPase (PMCA) is crucial for the maintenance of low [Ca(2+)]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca(2+) homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by d-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca(2+) transporter. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effects of Gangliosides on the Activity of the Plasma Membrane Ca2+-ATPase

    PubMed Central

    Jiang, Lei; Bechtel, Misty D.; Bean, Jennifer L.; Winefield, Robert; Williams, Todd D.; Zaidi, Asma; Michaelis, Elias K.; Michaelis, Mary L.

    2014-01-01

    Control of intracellular calcium concentrations ([Ca2+]i) is essential for neuronal function, and the plasma membrane Ca2+-ATPase (PMCA) is crucial for the maintenance of low [Ca2+]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca2+ homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by D-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca2+ transporter. PMID:24434060

  9. A first total synthesis of a hybrid-type ganglioside associated with amyotrophic lateral sclerosis-like disorder.

    PubMed

    Nakashima, Shinya; Ando, Hiromune; Imamura, Akihiro; Yuki, Nobuhiro; Ishida, Hideharu; Kiso, Makoto

    2011-01-10

    The hybrid ganglioside X1, which was identified in the bovine brain, was synthesized for the first time. Ganglioside X1 is believed to be involved in the development of amyotrophic lateral sclerosis-like disorders in patients with neurological disorders after treatment with bovine brain gangliosides. A convergent approach using two branched glycan units, the GM2-core trisaccharide and the lacto-ganglio tetrasaccharide, efficiently provided the highly branched heptasaccharide part of ganglioside X1, which was conjugated with the ceramide part to produce the protected ganglioside X1. Global deprotection delivered homogenous ganglioside X1, with which serum from the patient was reacted. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. BAFF aids generation of IgG anti-ganglioside antibodies in response to Campylobacter jejuni lipo-oligosaccharide.

    PubMed

    Matsumoto, Yukie; Kobata, Tetsuji; Odaka, Masaaki; Furukawa, Koichi; Hirata, Koichi; Yuki, Nobuhiro

    2010-01-25

    Ganglioside mimicry of Campylobacter jejuni lipo-oligosaccharide (LOS) can induce the production of IgG anti-ganglioside antibodies, but the generation mechanism has yet to be clarified. B-cell activating factor belonging to the TNF family (BAFF) helped murine B cells produce anti-ganglioside antibodies against C. jejuni LOS. In splenocyte culture, however, anti-ganglioside antibodies were produced in the presence of a soluble transmembrane activator and calcium-modulating and cyclophilin ligand interactor immunoadhesin (TACI-Ig), a receptor for BAFF. TACI-Ig adenoviral vectors failed to decrease production of anti-ganglioside antibodies in mice sensitized with C. jejuni LOS and did not alter IgG subclasses, evidence that BAFF aids but is not essential for the generation of IgG anti-ganglioside antibodies in response to C. jejuni LOS. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Efficiently synthesizing lacto-ganglio-series gangliosides by using a glucosyl ceramide cassette approach: the total synthesis of ganglioside X2.

    PubMed

    Nakashima, Shinya; Ando, Hiromune; Saito, Risa; Tamai, Hideki; Ishida, Hideharu; Kiso, Makoto

    2012-05-01

    The first total synthesis of the hybrid ganglioside X2, which consisted of a highly branched octasaccharide and ceramide moieties, was accomplished by using a glucosyl ceramide cassette approach. With a disaccharyl donor, the heptasaccharide could not be constructed by glycosylation of the C4 hydroxy group of galactose at the reducing end of the pentasaccharide. In contrast, through an alternative approach with two branched glycan units, a GM2-core trisaccharide, and a lacto-ganglio tetrasaccharide, the heptasaccharyl donor could be prepared and subsequently joined with a glucosyl ceramide cassette to afford the protected ganglioside, X2. Finally, global deprotection completed the synthesis, thus affording the pure ganglioside X2. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Immunohistochemical detection of hepatic GM1 and GM2 gangliosides in streptozotocin-induced diabetic rats.

    PubMed

    Abregú, Adela V.; Genta, Susana B.; Sánchez Riera, Alicia N.; Sánchez, Sara S.

    2002-11-01

    This study was undertaken to investigate the consequences of diabetes on the expression of GM1 and GM2 gangliosides in rat liver. Experimental diabetes was induced by treatment with Streptozotocin (STZ) in adult male Sprague-Dawley rats. Two-dimensional thin-layer chromatography of total ganglioside preparations of liver tissues from STZ-induced diabetic rats showed an increased amount of GM1, while GM2 could not be detected. In order to identify ganglioside expression and corroborate possible changes after short-term diabetes (3 weeks), frozen sections of the liver were stained with two monoclonal antibodies, GMB16 (GM1 specific) and GMB28 (GM2 specific). Although both antibodies were capable of immunostaining the diabetic hepatocytes at the cell surface, strong reactivity was observed for GMB16 while GMB28 developed only a weak labeling. The hepatic ganglioside expression of insulin-stabilized diabetic rats was restored, resembling the profile of normal rats. The important alterations in the expression of GM1 and GM2 gangliosides in short-term diabetes were accompanied by certain microscopic changes in the liver, so that these gangliosides may be useful markers in the detection of early liver diabetic complications.

  13. Impaired Levels of Gangliosides in the Corpus Callosum of Huntington Disease Animal Models

    PubMed Central

    Di Pardo, Alba; Amico, Enrico; Maglione, Vittorio

    2016-01-01

    Huntington Disease (HD) is a genetic neurodegenerative disorder characterized by broad types of cellular and molecular dysfunctions that may affect both neuronal and non-neuronal cell populations. Among all the molecular mechanisms underlying the complex pathogenesis of the disease, alteration of sphingolipids has been identified as one of the most important determinants in the last years. In the present study, besides the purpose of further confirming the evidence of perturbed metabolism of gangliosides GM1, GD1a, and GT1b the most abundant cerebral glycosphingolipids, in the striatal and cortical tissues of HD transgenic mice, we aimed to test the hypothesis that abnormal levels of these lipids may be found also in the corpus callosum white matter, a ganglioside-enriched brain region described being dysfunctional early in the disease. Semi-quantitative analysis of GM1, GD1a, and GT1b content indicated that ganglioside metabolism is a common feature in two different HD animal models (YAC128 and R6/2 mice) and importantly, demonstrated that levels of these gangliosides were significantly reduced in the corpus callosum white matter of both models starting from the early stages of the disease. Besides corroborating the evidence of aberrant ganglioside metabolism in HD, here, we found out for the first time, that ganglioside dysfunction is an early event in HD models and it may potentially represent a critical molecular change influencing the pathogenesis of the disease. PMID:27766070

  14. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways

    PubMed Central

    Meng, Hongtao; Wang, Lan; He, Junhong; Wang, Zhufeng

    2016-01-01

    Lead (Pb) is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS) from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions. PMID:27023584

  15. Occurrence and tissue distribution of c-series gangliosides in the common squid Todarodes pacificus.

    PubMed

    Saito, Megumi; Kitamura, Hisayo; Sugiyama, Kiyoshi

    2002-03-01

    We have recently demonstrated that the common squid Todarodes pacificus express acidic lipids that were reactive with a monoclonal antibody A2B5. In the present study, two A2B5-reactive acidic lipids were isolated from squid hepatopancreatic tissue and characterized for their structures by methods including glycolipid overlay analysis, product analysis after sialidase treatment, and electrospray ionization-mass spectrometry (ESI-MS). Accordingly, the two acidic lipid were identified as GT3 and GQ1c, respectively. Another A2B5-reactive acidic lipid in the tissue was tentatively assigned to GT2 based upon its reactivity to A2B5 and chromatographic mobility on thin-layer chromatography. The composition and concentration of c-series gangliosides significantly differed among squid tissues (i.e. hepatopancreas, cerebral ganglion, eye lens, and mantle tissue). Interestingly, the percentages of c-series gangliosides within total gangliosides of hepatopancreas and cerebral ganglion were even higher than that of cod fish brain, which is known to be highly enriched with this ganglioside species. These findings strongly support the hypothesis that c-series gangliosides in squid tissues are not derived from ganglioside-containing food intake, but biosynthesized in a tissue-specific manner.

  16. Immunolocalization of GQ1b and related gangliosides in human extraocular neuromuscular junctions and muscle spindles.

    PubMed

    Liu, Jing-Xia; Willison, Hugh J; Pedrosa-Domellöf, Fatima

    2009-07-01

    To examine the distribution of anti-GQ1b, -GT1a, and -GD1b antibody binding in human extraocular muscles (EOMs), axial and limb muscles, and muscle spindles and thereby test the hypothesis that their distinctive ganglioside composition provides the molecular basis for selective involvement of EOMs and muscle spindles in Miller Fisher syndrome. Muscle samples from adult human EOMs, vastus lateralis, biceps brachii, lumbrical, psoas, and deep muscles of the neck were processed for immunohistochemistry, with monoclonal antibodies against ganglioside GQ1b, GT1a, and GD1b. Neuromuscular junctions (NMJs) were detected by alpha-bungarotoxin binding and by acetyl cholinesterase reaction. Most motor endplates of human EOMs richly bound anti-GQ1b, -GT1a, and -GD1b ganglioside antibodies. Anti-GQ1b, -GT1a, and -GD1b ganglioside antibody bindings to NMJs in human limb and axial muscle were scarce, but the nerve terminals inside muscle spindles and in direct contact with intrafusal fibers were labeled with anti- GQ1b, -GT1a, and -GD1b ganglioside antibodies. The abundant and synaptic-specific binding of anti-GQ1b, -GT1a, and -GD1b ganglioside antibodies and the rich capillary supply in the human EOMs may partly explain the selective paralysis of these muscles in Miller Fisher syndrome.

  17. Variability in brain ganglioside content and composition of endothermic mammals, heterothermic hibernators and ectothermic fishes.

    PubMed

    Kappel, T; Hilbig, R; Rahmann, H

    1993-06-01

    Content and composition of brain gangliosides were compared among endothermic mammals, heterothermic hibernators and ectothermic fishes from habitats with extreme ambient temperatures (tropic vs. antarctic waters). In general the content of brain gangliosides in fishes is significantly lower and exhibits a greater variability than in mammals. The composition of brain gangliosides was investigated using both one- and two-dimensional High Performance Thin Layer Chromatography (HPTLC). Both techniques showed a remarkable increase in the number of individual ganglioside fractions and an additional increase of higher polar fractions in fishes as compared with mammals. The 2D-HPTLC revealed a significant decrease in the relative proportion of alkali-labile gangliosides in the course of evolution from fish to mammals. Moreover this decrease in alkali-lability is correlated with the state of thermal adaptation (antarctic fishes, 53-66%; tropical cichlid fish, 35%). These results provide additional evidence for the notion that the extremely high polarity of brain gangliosides, especially of cold-blooded vertebrates, reflects a very efficient mechanism on the molecular level to keep the neuronal membrane functional under low temperature conditions.

  18. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways.

    PubMed

    Meng, Hongtao; Wang, Lan; He, Junhong; Wang, Zhufeng

    2016-03-25

    Lead (Pb) is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS) from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions.

  19. Are anti-ganglioside antibodies associated with proventricular dilatation disease in birds?

    PubMed

    Leal de Araujo, Jeann; Tizard, Ian; Guo, Jianhua; Heatley, J Jill; Rodrigues Hoffmann, Aline; Rech, Raquel R

    2017-01-01

    The identification of Parrot bornaviruses (PaBV) in psittacine birds with proventricular dilatation disease (PDD) has not been sufficient to explain the pathogenesis of this fatal disease, since not all infected birds develop clinical signs. Although the most accepted theory indicates that PaBV directly triggers an inflammatory response in this disease, another hypothesis suggests the disease is triggered by autoantibodies targeting neuronal gangliosides, and PDD might therefore resemble Guillain-Barré Syndrome (GBS) in its pathogenesis. Experimental inoculation of pure gangliosides and brain-derived ganglioside extracts were used in two different immunization studies. The first study was performed on 17 healthy chickens (Gallus gallus domesticus): 11 chickens were inoculated with a brain ganglioside extract in Freund's complete adjuvant (FCA) and six chickens inoculated with phosphate-buffered saline. A second study was performed five healthy quaker parrots (Myiopsitta monachus) that were divided into three groups: Two quaker parrots received purified gangliosides in FCA, two received a crude brain extract in FCA, and one control quaker parrot received FCA alone. One chicken developed difficult in walking. Histologically, only a mild perivascular and perineural lymphocytic infiltrate in the proventriculus. Two quaker parrots (one from each treatment group) had mild lymphoplasmacytic encephalitis and myelitis. However, none of the quaker parrots developed myenteric ganglioneuritis, suggesting that autoantibodies against gangliosides in birds are not associated with a condition resembling PDD.

  20. Are anti-ganglioside antibodies associated with proventricular dilatation disease in birds?

    PubMed Central

    Tizard, Ian; Guo, Jianhua; Heatley, J Jill; Rodrigues Hoffmann, Aline

    2017-01-01

    The identification of Parrot bornaviruses (PaBV) in psittacine birds with proventricular dilatation disease (PDD) has not been sufficient to explain the pathogenesis of this fatal disease, since not all infected birds develop clinical signs. Although the most accepted theory indicates that PaBV directly triggers an inflammatory response in this disease, another hypothesis suggests the disease is triggered by autoantibodies targeting neuronal gangliosides, and PDD might therefore resemble Guillain-Barré Syndrome (GBS) in its pathogenesis. Experimental inoculation of pure gangliosides and brain-derived ganglioside extracts were used in two different immunization studies. The first study was performed on 17 healthy chickens (Gallus gallus domesticus): 11 chickens were inoculated with a brain ganglioside extract in Freund’s complete adjuvant (FCA) and six chickens inoculated with phosphate-buffered saline. A second study was performed five healthy quaker parrots (Myiopsitta monachus) that were divided into three groups: Two quaker parrots received purified gangliosides in FCA, two received a crude brain extract in FCA, and one control quaker parrot received FCA alone. One chicken developed difficult in walking. Histologically, only a mild perivascular and perineural lymphocytic infiltrate in the proventriculus. Two quaker parrots (one from each treatment group) had mild lymphoplasmacytic encephalitis and myelitis. However, none of the quaker parrots developed myenteric ganglioneuritis, suggesting that autoantibodies against gangliosides in birds are not associated with a condition resembling PDD. PMID:28413724

  1. A comparative study on ceramide composition of cetacean brain gangliosides.

    PubMed

    Terabayashi, T; Ogawa, T; Kawanishi, Y

    1992-11-01

    1. Ceramide composition and N-glycolylneuraminic acid content of gangliosides from gray and white matters and myelin of cerebrum and cerebellum were analyzed in eight species belonging to the suborder Odontoceti and two species to Mystacoceti. 2. The most characteristic feature was high contents of C20:0 (10-40%) and C24 species (5-40%). 3. Content of hydroxy fatty acid of C24 species was higher in cerebellum (5-20%) than cerebrum (0-3%). 4. Major component of long-chain base was dC18:1 (70-90%). 5. N-glycolylneuraminic acid was found in sperm whale, Dall's porpoise and killer whale (0.1-1.7%).

  2. Configuration and interactions of the polar head group in gangliosides

    PubMed Central

    Maggio, Bruno; Cumar, Federico A.; Caputto, Ranwel

    1980-01-01

    1. The interactions of gangliosides with Ca2+ and some polar-head-group requirements for establishment of particular interactions with phosphatidylcholine were studied in monolayers at the air/145mm-NaCl interface. 2. Ganglioside–Ca2+ interactions, as revealed by surface-potential measurements, depended on the position occupied by sialosyl residues in the oligosaccharide chain. The interactions with Ca2+ of the single sialosyl residue of monosialogangliosides occurred above 0.1mm-CaCl2, whereas the interaction of the cation with additional sialosyl groups in di- or tri-sialogangliosides depended on the carbohydrate residue to which the sialosyl moiety was attached. The sialosyl residue bound in sialosyl–sialosyl linkage interacted very little with Ca2+. The sialosyl residue attached to the terminal galactose of the neutral tetrasaccharide chain interacted with Ca2+ above 1μm-CaCl2. 3. Experiments with mixed monolayers containing dihexadecyl phosphate and hexadecyltrimethylammonium indicated that for the occurrence of interactions of polysialogangliosides with phosphatidylcholine characterized by reductions in molecular packing and surface potential both charged groups of the phospholipid and sialosyl residues with particular dipolar properties in the ganglioside are participating. 4. Possible configurations that can explain the behaviour in monolayers were inspected with space-filling molecular models. The position of the carboxylate group of sialosyl residues with respect to the interface and to the sialosyl molecular plane can explain the different orientation of the dipole-moment vector of this residue, which depends on the position to which it is linked in the oligosaccharide chain. Favoured interactions of polysialogangliosides with phosphatidylcholine may result from a configuration allowing a partial matching of two oppositely oriented electrical vectors contributed by the zwitterionic phosphocholine group and particular sialosyl groups. ImagesPLATE 1

  3. Alpha-fucosidase-ganglioside interactions. Action of alpha-L-fucosidase from the hepatopancreas of Octopus vulgaris on a fucose-containing ganglioside (Fuc-GM1).

    PubMed Central

    Masserini, M; Giuliani, A; Venerando, B; Fiorilli, A; D'Aniello, A; Tettamanti, G

    1985-01-01

    alpha-L-Fucosidase, prepared in highly purified form (Mr 70 000-74 000) from Octopus hepatopancreas, was able to hydrolyse a fucose-containing ganglioside, namely Fuc-GM1 (II3NeuAc,IV2Fuc-GgOse4-Cer). The enzyme showed an irregular kinetic behaviour (v/[S] and v/[E] relationships following sigmoidal curves) when working on micellar Fuc-GM1 (Mr of the micelle 500 000), but obeyed regular hyperbolic kinetics when acting on low-Mr substances. It was observed that, on incubation with micellar Fuc-GM1 under the conditions used for the enzyme assay, Octopus alpha-L-fucosidase produced a ganglioside-enzyme complex that was catalytically inactive. This complex had an Mr exceeding 500 000 and a ganglioside/protein ratio of 4:1 (w/w), which is consistent with a stoichiometric combination of one ganglioside micelle with two enzyme molecules. Inactivation of alpha-L-fucosidase by formation of the corresponding complexes was also obtained with micellar gangliosides GM1 (II3NeuAc-GgOse4-Cer), GD1a (II3NeuAc,IV3NeuAc-GgOse4-Cer) and GT1b [II3(NeuAc)2,IV3-NeuAc-GgOse4-Cer], which are not substrates for the enzyme, indicating that the ganglioside micelles per se act as enzyme inhibitors. However, alpha-L-fucosidase easily forms a Fuc-GM1-alpha-L-fucosidase complex, displaying regular Michaelis-Menten kinetics. Therefore the anomalous behaviour exhibited by alpha-L-fucosidase on micellar Fuc-GM1 is likely due to formation of the complex, which separates the fucosyl linkage from the active site of the complexed enzyme, but makes it available to the enzyme in the free form. Images Fig. 2. Fig. 9. PMID:4052012

  4. Alpha-fucosidase-ganglioside interactions. Action of alpha-L-fucosidase from the hepatopancreas of Octopus vulgaris on a fucose-containing ganglioside (Fuc-GM1).

    PubMed

    Masserini, M; Giuliani, A; Venerando, B; Fiorilli, A; D'Aniello, A; Tettamanti, G

    1985-08-01

    alpha-L-Fucosidase, prepared in highly purified form (Mr 70 000-74 000) from Octopus hepatopancreas, was able to hydrolyse a fucose-containing ganglioside, namely Fuc-GM1 (II3NeuAc,IV2Fuc-GgOse4-Cer). The enzyme showed an irregular kinetic behaviour (v/[S] and v/[E] relationships following sigmoidal curves) when working on micellar Fuc-GM1 (Mr of the micelle 500 000), but obeyed regular hyperbolic kinetics when acting on low-Mr substances. It was observed that, on incubation with micellar Fuc-GM1 under the conditions used for the enzyme assay, Octopus alpha-L-fucosidase produced a ganglioside-enzyme complex that was catalytically inactive. This complex had an Mr exceeding 500 000 and a ganglioside/protein ratio of 4:1 (w/w), which is consistent with a stoichiometric combination of one ganglioside micelle with two enzyme molecules. Inactivation of alpha-L-fucosidase by formation of the corresponding complexes was also obtained with micellar gangliosides GM1 (II3NeuAc-GgOse4-Cer), GD1a (II3NeuAc,IV3NeuAc-GgOse4-Cer) and GT1b [II3(NeuAc)2,IV3-NeuAc-GgOse4-Cer], which are not substrates for the enzyme, indicating that the ganglioside micelles per se act as enzyme inhibitors. However, alpha-L-fucosidase easily forms a Fuc-GM1-alpha-L-fucosidase complex, displaying regular Michaelis-Menten kinetics. Therefore the anomalous behaviour exhibited by alpha-L-fucosidase on micellar Fuc-GM1 is likely due to formation of the complex, which separates the fucosyl linkage from the active site of the complexed enzyme, but makes it available to the enzyme in the free form.

  5. Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain

    PubMed Central

    Zhang, Yangyang; Wang, Jun; Liu, Jian’an; Han, Juanjuan; Xiong, Shaoxiang; Yong, Weidong; Zhao, Zhenwen

    2016-01-01

    Gangliosides are a family of complex lipids that are abundant in the brain. There is no doubt the investigations about the distribution of gangliosides in brian and the relationship between gangliosides and Alzheimer’s disease is profound. However, these investigations are full of challenges due to the structural complexity of gangliosides. In this work, the method for efficient extraction and enrichment of gangliosides from brain was established. Moreover, the distribution of gangliosides in brain was obtained by matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). It was found that 3-aminoquinoline (3-AQ) as matrix was well-suited for MALDI MS analysis of gangliosides in negative ion mode. In addition, the pretreatment by ethanol (EtOH) cleaning brain section and the addition of ammonium formate greatly improved the MS signal of gangliosides in the brain section when MALDI MSI analysis was employed. The distribution of ganliosides in cerebral cortex, hippocampus and cerebellum was respectively acquired by electrospray ionization (ESI) MS and MALDI MSI, and the data were compared for reliability evaluation of MALDI MSI. Further, applying MALDI MSI technology, the distribution of gangliosides in amyloid precursor protein transgenic mouse brain was obtained, which may provide a new insight for bioresearch of Alzheimer’s disease (AD). PMID:27142336

  6. The total synthesis of a ganglioside Hp-s1 analogue possessing neuritogenic activity by chemoselective activation glycosylation.

    PubMed

    Tsai, Yow-Fu; Shih, Cheng-Hua; Su, Yu-Ting; Yao, Chun-Hsu; Lian, Jang-Feng; Liao, Chun-Chen; Hsia, Ching-Wu; Shui, Hao-Ai; Rani, Rashmi

    2012-02-07

    The total synthesis of ganglioside 2, an analogue of the ganglioside Hp-s1 (1) which displays neuritogenic activity toward the rat pheochromocytoma cell line PC-12 cell in the presence of nerve growth factor (NGF) with an effect (34.0%) greater than that of the mammalian ganglioside GM 1 (25.4%), was accomplished by applying a chemoselective-activation glycosylation strategy. Moreover, we also demonstrate that the synthesized ganglioside 2 exhibited neuritogenic activity toward the human neuroblastoma cell line SH-SY5Y without the presence of NGF.

  7. Ganglioside 9-O-acetyl GD3 expression is upregulated in the regenerating peripheral nerve.

    PubMed

    Ribeiro-Resende, V T; Oliveira-Silva, A; Ouverney-Brandão, S; Santiago, M F; Hedin-Pereira, C; Mendez-Otero, R

    2007-06-15

    Evidence accumulates suggesting that 9-O-acetylated gangliosides, recognized by a specific monoclonal antibody (Jones monoclonal antibody), are involved in neuronal migration and axonal growth. These molecules are expressed in rodent embryos during the period of axon extension of peripheral nerves and are absent in adulthood. We therefore aimed at verifying if these molecules are re-expressed in adult rats during peripheral nerve regeneration. In this work we studied the time course of ganglioside 9-O-acetyl GD3 expression during regeneration of the crushed sciatic nerve and correlated this expression with the time course of axonal regeneration as visualized by immunohistochemistry for neurofilament 200 in the nerve. We have found that the ganglioside 9-O-acetyl GD3 is re-expressed during the period of regeneration and this expression correlates spatio-temporally with the arrival of axons to the lesion site. Confocal analysis of double and triple labeling experiments allowed the localization of this ganglioside to Schwann cells encircling growing axons in the sciatic nerve. Explant cultures of peripheral nerves also revealed ganglioside expressing reactive Schwann cells migrating from the normal and previously crushed nerve. Ganglioside 9-O-acetyl GD3 is also upregulated in DRG neurons and motoneurons of the ventral horn of spinal cord showing that the reexpression of this molecule is not restricted to Schwann cells. These results suggest that ganglioside 9-O-acetyl GD3 may be involved in the regrowth of sciatic nerve axons after crush being upregulated in both neurons and glia.

  8. Distribution of mono-, di- and trisialo gangliosides in the brain of Actinopterygian fishes.

    PubMed

    Viljetić, Barbara; Labak, Irena; Majić, Senka; Stambuk, Anamaria; Heffer, Marija

    2012-09-01

    Mono-, di- and trisialo gangliosides are major glycosphingolipids in the brain of higher vertebrates involved in lipid raft assembly. In contrast, the fish brain is abundant in polisialo-gangliosides, whose function is implicated in the modulation of repulsive and attractive intercellular interactions during embryonic development and a temperature adaptation process. The histological distribution of gangliosides is usually studied in rodent and mammalian brains, but to date it has not been described in the case of fish brain. Gangliosides were extracted from adult brains of trout, carp and zebrafish and separated by TLC. High-affinity anti-ganglioside (GM1, GD1a, GD1b, GT1b) IgG antibodies were used for immunohistochemistry. In trout and carp brains GM1 and GT1b are expressed in the same neuronal cell bodies from the telencephalon to the spinal cord. In zebrafish brain GM1 was not detected, whereas GT1b is a general neuropil staining. GD1a is specific for unmyelinated parallel fibers in carp and zebrafish brains as well as parallel fibers in the molecular layer of all cerebellar divisions. In trout brain GD1b is found in parallel fibers of the cerebellum, but not in the tectum mesencephali. GD1b is expressed in zebrafish neuronal cell bodies. Each studied species has a different expression of complex gangliosides. GT1b is widely present, whereas GD1a and GD1b appear in a specific group of unmyelinated fibers and could be used as their specific marker. This is the first report on mono-, di- and trisialo ganglioside (GM1, GD1a, GD1b and GT1b) distribution in the brain of adult Actinopterygian fishes. This article is part of a Special Issue entitled Glycoproteomics. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Ganglioside Profiling of the Human Retina: Comparison with Other Ocular Structures, Brain and Plasma Reveals Tissue Specificities

    PubMed Central

    Sibille, Estelle; Berdeaux, Olivier; Martine, Lucy; Bron, Alain M.; Creuzot-Garcher, Catherine P.; He, Zhiguo; Thuret, Gilles; Bretillon, Lionel; Masson, Elodie A. Y.

    2016-01-01

    Gangliosides make a wide family of glycosphingolipids, highly heterogeneous in both the ceramide moiety and the oligosaccharide chain. While ubiquitously expressed in mammalian tissues, they are particularly abundant in the brain and the peripheral nervous system. Gangliosides are known to play a crucial role in the development, maintenance and functional integrity of the nervous system. However, the expression and roles of gangliosides in the retina, although often considered as a window on the brain, has been far less studied. We performed an in-depth analysis of gangliosides of the human retina, especially using powerful LC/MS methods. We compared the pattern of ganglioside classes and ceramide molecular species of this tissue with other ocular structures and with brain and plasma in elderly human individuals. About a hundred of ganglioside molecular species among 15 distinct classes were detected illustrating the huge structural diversity of these compounds. The retina exhibited a very diverse ganglioside profile and shared several common features with the brain (prominence of tetraosylgangliosides, abundance of d20:1 long chain base and 18:0 fatty acid…). However, the retina stood out with the specific expression of GD3, GT3 and AcGT3, which further presented a peculiar molecular species distribution. The unique ganglioside pattern we observed in the human retina suggests that these ganglioside species play a specific role in the structure and function of this tissue. This lipidomic study, by highlighting retina specific ganglioside species, opens up novel research directions for a better understanding of the biological role of gangliosides in the retina. PMID:27997589

  10. Ganglioside Profiling of the Human Retina: Comparison with Other Ocular Structures, Brain and Plasma Reveals Tissue Specificities.

    PubMed

    Sibille, Estelle; Berdeaux, Olivier; Martine, Lucy; Bron, Alain M; Creuzot-Garcher, Catherine P; He, Zhiguo; Thuret, Gilles; Bretillon, Lionel; Masson, Elodie A Y

    2016-01-01

    Gangliosides make a wide family of glycosphingolipids, highly heterogeneous in both the ceramide moiety and the oligosaccharide chain. While ubiquitously expressed in mammalian tissues, they are particularly abundant in the brain and the peripheral nervous system. Gangliosides are known to play a crucial role in the development, maintenance and functional integrity of the nervous system. However, the expression and roles of gangliosides in the retina, although often considered as a window on the brain, has been far less studied. We performed an in-depth analysis of gangliosides of the human retina, especially using powerful LC/MS methods. We compared the pattern of ganglioside classes and ceramide molecular species of this tissue with other ocular structures and with brain and plasma in elderly human individuals. About a hundred of ganglioside molecular species among 15 distinct classes were detected illustrating the huge structural diversity of these compounds. The retina exhibited a very diverse ganglioside profile and shared several common features with the brain (prominence of tetraosylgangliosides, abundance of d20:1 long chain base and 18:0 fatty acid…). However, the retina stood out with the specific expression of GD3, GT3 and AcGT3, which further presented a peculiar molecular species distribution. The unique ganglioside pattern we observed in the human retina suggests that these ganglioside species play a specific role in the structure and function of this tissue. This lipidomic study, by highlighting retina specific ganglioside species, opens up novel research directions for a better understanding of the biological role of gangliosides in the retina.

  11. Synaptotagmin II and gangliosides bind independently with botulinum neurotoxin B but each restrains the other.

    PubMed

    Atassi, M Zouhair; Taruishi, Midori; Naqvi, Masooma; Steward, Lance E; Aoki, K Roger

    2014-06-01

    Botulinum neurotoxin type B (BoNT/B) initiates its toxicity by binding to synaptotagmin II (SytII) and gangliosides GD1a and GT1b on the neural membrane. We synthesized two 27-residue peptides that carry the BoNT/B binding sites on mouse SytII (mSytII 37-63) or human SytII (hSytII 34-60). BoNT/B bound to these peptides, but showed substantially higher binding to mSytII peptide than to hSytII peptide. The mSytII peptide inhibited almost completely BoNT/B binding to synaptosomes (snps) and displayed a high affinity. BoNT/B bound strongly to mSytII peptide and binding was inhibited by the peptide. Binding of BoNT/B to snps was also inhibited (~80 %) by a larger excess of gangliosides GD1a or GT1b. The mSytII peptide inhibited very strongly (at least 80 %) the toxin binding to snps, while the two gangliosides were much less efficient inhibitors requiring much larger excess to achieve similar inhibition levels. Furthermore, gangliosides GD1a or GT1b inhibited BoNT/B binding to mSytII peptide at a much larger excess than the inhibition by mSytII peptide. Conversely, BoNT/B bound well to each ganglioside and binding could be inhibited by the correlate ganglioside and much less efficiently by the mSytII peptide. There was no apparent collaboration between mSytII peptide and either ganglioside. mSytII peptide displayed some protective activity in vivo in mice against a lethal BoNT/B dose. We concluded that SytII peptide and gangliosides bind independently but, with their binding sites on BoNT/B being spatially close, each can influence BoNT/B binding to the other due to regional conformational perturbations or steric interference or both. Ganglioside involvement in BoNT/B binding might help in toxin translocation and endocytosis.

  12. Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice.

    PubMed

    Ohmi, Yuhsuke; Tajima, Orie; Ohkawa, Yuki; Yamauchi, Yoshio; Sugiura, Yasuo; Furukawa, Keiko; Furukawa, Koichi

    2011-03-01

    Gangliosides are considered to be involved in the maintenance and repair of nervous tissues. Recently, novel roles of gangliosides in the regulation of complement system were reported by us. In this study, we compared complement activation, inflammatory reaction and disruption of glycolipid-enriched microdomain (GEM)/rafts among various mutant mice of ganglioside synthases, i.e. GM2/GD2 synthase knockout (KO), GD3 synthase KO, double KO (DKO) of these two enzymes and wild type. Up-regulation of complement-related genes, deposits of C1q, proliferation of astrocytes and infiltration of microglia also showed similar gradual severity depending on the defects in ganglioside compositions. In the expression of inflammatory cytokines such as IL-1β and tumor necrosis factor α, only DKO showed definite up-regulation. Immunoblotting of fractions from sucrose density gradient ultracentrifugation revealed that lipid raft markers such as caveolin-1 and flotillin-1 tended to disperse from the raft fractions with intensities of DKO > GM2/GD2 synthase KO > GD3 synthase KO > wild type. Decay-accelerating factor and neural cell adhesion molecule tended to disappear from the raft fraction. Phospholipids and cholesterol also tended to decrease in GEM/rafts in GM2/GD2 synthase KO and DKO, although total amounts were almost equivalent. These results indicate that destruction of GEM/rafts is caused by ganglioside deficiency with gradual intensity depending on the degree of defects of their compositions. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  13. Raft-based interactions of gangliosides with a GPI-anchored receptor.

    PubMed

    Komura, Naoko; Suzuki, Kenichi G N; Ando, Hiromune; Konishi, Miku; Koikeda, Machi; Imamura, Akihiro; Chadda, Rahul; Fujiwara, Takahiro K; Tsuboi, Hisae; Sheng, Ren; Cho, Wonhwa; Furukawa, Koichi; Furukawa, Keiko; Yamauchi, Yoshio; Ishida, Hideharu; Kusumi, Akihiro; Kiso, Makoto

    2016-06-01

    Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.

  14. Oligosaccharide-specific receptors for gangliosides in the central nervous system

    SciTech Connect

    Tiemeyer, M.J.

    1989-01-01

    Synthetic ganglioside-derivatized proteins were prepared, radiolabeled, and used as ligands to search for specific receptors on rat brain membranes. Chemical derivatization schemes were designed to covalently link gangliosides (specifically, G{sub T1b}) to bovine serum albumin (BSA) via their ceramide portions leaving the glycolipid oligosaccharides intact and limiting the ability of the ganglioside moiety to interact with brain membranes non-specifically by insertion or hydrophobic adsorption. Following characterization and tyrosine-radioiodination, {sup 125}I-(G{sub T1b}){sub 4} BSA (BSA derivatized with 4 G{sub T1b} moieties/protein molecule), revealed a high affinity and saturable binding site on rat brain membranes. Pretreatment of brain membranes with low concentrations of trypsin blocked binding, consistent with the presence of a proteinaceous ganglioside-receptor. The most potent lipid inhibitors of {sup 125}I-(G{sub T1b}){sub 4}BSA binding were the gangliosides G{sub T1b}, G{sub D1b}, and G{sub Q1b} which share common structural features in their oligosaccharide portions; maximal inhibitory potency required a full length gangliotetraose oligosaccharide core and {alpha}2-8 linked sialic acid.

  15. Localization and imaging of gangliosides in mouse brain tissue sections by laserspray ionization inlet[S

    PubMed Central

    Richards, Alicia L.; Lietz, Christopher B.; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2012-01-01

    A new ionization method for the analysis of fragile gangliosides without undesired fragmentation or salt adduction is presented. In laserspray ionization inlet (LSII), the matrix/analyte sample is ablated at atmospheric pressure, and ionization takes place in the ion transfer capillary of the mass spectrometer inlet by a process that is independent of a laser wavelength or voltage. The softness of LSII allows the identification of gangliosides up to GQ1 with negligible sialic acid loss. This is of importance to the field of MS imaging, as undesired fragmentation has made it difficult to accurately map the spatial distribution of fragile ganglioside lipids in tissue. Proof-of-principle structural characterization of endogenous gangliosides using MSn fragmentation of multiply charged negative ions on a LTQ Velos and subsequent imaging of the GD1 ganglioside is demonstrated. This is the first report of multiply charged negative ions using inlet ionization. We find that GD1 is detected at higher levels in the mouse cortex and hippocampus compared with the thalamus. In LSII with the laser aligned in transmission geometry relative to the inlet, images were obtained in approximately 60 min using an inexpensive nitrogen laser. PMID:22262808

  16. Bovine lactoferrin decreases cholera-toxin-induced intestinal fluid accumulation in mice by ganglioside interaction.

    PubMed

    Rivera, Fulton P; Medina, Anicia M; Bezada, Sandra; Valencia, Roberto; Bernal, María; Meza, Rina; Maves, Ryan C; Ochoa, Theresa J

    2013-01-01

    Secretory diarrhea caused by cholera toxin (CT) is initiated by binding of CT's B subunit (CTB) to GM1-ganglioside on the surface of intestinal cells. Lactoferrin, a breast milk glycoprotein, has shown protective effect against several enteropathogens. The aims of this study were to determine the effect of bovine-lactoferrin (bLF) on CT-induced intestinal fluid accumulation in mice, and the interaction between bLF and CT/CTB with the GM1-ganglioside receptor. Fluid accumulation induced by CT was evaluated in the mouse ileal loop model using 56 BALB/c mice, with and without bLF added before, after or at the same time of CT administration. The effect of bLF in the interaction of CT and CTB with GM1-ganglioside was evaluated by a GM1-enzyme-linked immunosorbent assay. bLF decreased CT-induced fluid accumulation in the ileal loop of mice. The greatest effect was when bLF was added before CT (median, 0.066 vs. 0.166 g/cm, with and without bLF respectively, p<0.01). We conclude that bLF decreases binding of CT and CTB to GM1-ganglioside, suggesting that bLF suppresses CT-induced fluid accumulation by blocking the binding of CTB to GM1-ganglioside. bLF may be effective as adjunctive therapy for treatment of cholera diarrhea.

  17. Renal cell carcinoma–derived gangliosides suppress nuclear factor-κB activation in T cells

    PubMed Central

    Uzzo, Robert G.; Rayman, Patricia; Kolenko, Vladimir; Clark, Peter E.; Cathcart, Martha K.; Bloom, Tracy; Novick, Andrew C.; Bukowski, Ronald M.; Hamilton, Thomas; Finke, James H.

    1999-01-01

    Activation of the transcription factor nuclear factor-κB (NFκB) is impaired in T cells from patients with renal cell carcinomas (RCCs). In circulating T cells from a subset of patients with RCCs, the suppression of NFκB binding activity is downstream from the stimulus-induced degradation of the cytoplasmic factor IκBα. Tumor-derived soluble products from cultured RCC explants inhibit NFκB activity in T cells from healthy volunteers, despite a normal level of stimulus-induced IκBα degradation in these cells. The inhibitory agent has several features characteristic of a ganglioside, including sensitivity to neuraminidase but not protease treatment; hydrophobicity; and molecular weight less than 3 kDa. Indeed, we detected gangliosides in supernatants from RCC explants and not from adjacent normal kidney tissue. Gangliosides prepared from RCC supernatants, as well as the purified bovine gangliosides Gm1 and Gd1a, suppressed NFκB binding activity in T cells and reduced expression of the cytokines IL-2 and IFN-γ. Taken together, our findings suggest that tumor-derived gangliosides may blunt antitumor immune responses in patients with RCCs. PMID:10491412

  18. Bovine Lactoferrin Decreases Cholera-Toxin-Induced Intestinal Fluid Accumulation in Mice by Ganglioside Interaction

    PubMed Central

    Rivera, Fulton P.; Medina, Anicia M.; Bezada, Sandra; Valencia, Roberto; Bernal, María; Meza, Rina; Maves, Ryan C.; Ochoa, Theresa J.

    2013-01-01

    Secretory diarrhea caused by cholera toxin (CT) is initiated by binding of CT’s B subunit (CTB) to GM1-ganglioside on the surface of intestinal cells. Lactoferrin, a breast milk glycoprotein, has shown protective effect against several enteropathogens. The aims of this study were to determine the effect of bovine-lactoferrin (bLF) on CT-induced intestinal fluid accumulation in mice, and the interaction between bLF and CT/CTB with the GM1-ganglioside receptor. Fluid accumulation induced by CT was evaluated in the mouse ileal loop model using 56 BALB/c mice, with and without bLF added before, after or at the same time of CT administration. The effect of bLF in the interaction of CT and CTB with GM1-ganglioside was evaluated by a GM1-enzyme-linked immunosorbent assay. bLF decreased CT-induced fluid accumulation in the ileal loop of mice. The greatest effect was when bLF was added before CT (median, 0.066 vs. 0.166 g/cm, with and without bLF respectively, p<0.01). We conclude that bLF decreases binding of CT and CTB to GM1-ganglioside, suggesting that bLF suppresses CT-induced fluid accumulation by blocking the binding of CTB to GM1-ganglioside. bLF may be effective as adjunctive therapy for treatment of cholera diarrhea. PMID:23580005

  19. Detection of Sendai virus receptor, the ganglioside GDla, in target tissue (mouse lung)

    SciTech Connect

    Markwell, M.A.K.; Sato, E.

    1986-05-01

    Previously the authors had shown that the gangliosides GDla, GTlb, and GQlb derived from brain function as receptors for the paramyxovirus Sendai virus by their ability to induce infection when incubated with receptor-deficient cells. Analyses of MDBK, HeLa, and MDCK cells in culture demonstrated that these putative receptors were present in host cells in the quantities required for infection. The primary site of infection for Sendai virus in the whole animal is the respiratory tract, culminating in the lung. Therefore, the ganglioside content of this target organ was analyzed to determine the endogenous receptor population available to Sendai virus. The total ganglioside fraction of lung was resolved into individual species by HPTLC. Gangliosides of the gangliotetraose series were identified by the specific binding of /sup 125/I-labeled tetanus and cholera toxins before and after exposure with sialidase. In this manner one of the major resorcinol-positive bands was identified as GDla. Evidence of the more complex ganglioside receptors for Sendai virus was also seen.

  20. Influence of tunicamycin, sialidase, and cholera toxin on gangliosides and T-lymphocyte responses to interleukin 2

    SciTech Connect

    Semmes, O.J.; Bailey, J.M.; Merritt, W.D.

    1986-05-01

    The authors have shown that gangliosides inhibit interleukin 2 (IL 2)-dependent proliferation of murine T cells. Tunicamycin (TM), sialidase, and cholera toxin-..beta.. subunit (..beta..-CT) are known modulators of cell surface glycoconjugates. To test the possible role of endogenous gangliosides in T cell responses to IL-2, the effect of these agents on ganglioside expression and cell proliferation was studied. Gangliosides were labelled for 24 hrs with /sup 3/H-glucosamine/galactose in the presence of IL-2 and purified sialidase, TM or ..beta..-CT. Gangliosides were isolated and the species separated by TLC. Alternatively, proliferation was assayed by /sup 3/H-thymidine uptake after 48 hrs culture. TM treatment at a concentration (10 ..mu..g/ml) that completely inhibited proliferation resulted in a 86% reduction of incorporation of saccharide precursors into gangliosides compared to a 50% reduction into proteins. Sialidase treatment (0.1 IU/ml) resulted in a 70% inhibition of proliferation and 30% reduction of radiolabel into gangliosides, of which 3 species were specifically reduced. ..beta..-CT, which binds to GM/sub 1/ and to a lesser extent GD/sub 1a/, caused a 50% reduction in proliferation response at 35 units/ml. The results support the hypothesis that gangliosides are involved in IL-2-dependent proliferation.

  1. Isolation and characterization of a novel phytosphingosine-containing GM2 ganglioside from mullet roe (Mugil cephalus).

    PubMed

    Li, Y T; Hirabayashi, Y; DeGasperi, R; Yu, R K; Ariga, T; Koerner, T A; Li, S C

    1984-07-25

    The major ganglioside from the roe of striped mullet (Mugil cephalus) has been isolated and purified. Compositional analysis of this ganglioside revealed that it contained an equimolar ratio of the following residues: N-acetylneuraminic acid, N-acetylgalactosamine, galactose, glucose, and the long-chain base. Further structural studies by sequential enzymatic hydrolysis, permethylation analysis, and proton NMR spectroscopy indicated that the structure of the oligosaccharide moiety was identical to that of GM2 ganglioside from human brain: GalNAc beta 1----4Gal beta 1----4(3----2 alpha NeuAc)-Glc----ceramide. This ganglioside, however, differed from brain GM2 in its ceramide portion. The most striking differences are the presence of large amounts of C18 and C20 phytosphingosine (over 80% of the total long-chain bases) and the preponderance of monounsaturated alpha-hydroxy fatty acids (over 80%). Such a phytosphingosine-containing GM2 ganglioside has never been reported.

  2. Effect of simulated gastrointestinal digestion on sialic acid and gangliosides present in human milk and infant formulas.

    PubMed

    Lacomba, Ramón; Salcedo, Jaime; Alegría, Amparo; Barberá, Reyes; Hueso, Pablo; Matencio, Esther; Lagarda, M Jesús

    2011-05-25

    The effects of simulated gastrointestinal digestion upon sialic acid and gangliosides in infant and follow-on formulas and human milk, as well as their bioaccessibility, have been evaluated. The gastric stage is the step that causes a greater decrease in sialic acid and ganglioside contents. The intestinal stage only decreases the total and individual contents of gangliosides. After gastrointestinal digestion, neither sialic acid nor gangliosides were found in the nonbioaccessible fraction. The highest bioaccessibility (100 × content in soluble fraction after gastrointestinal digestion/total content) of sialic acid is found in human milk (87%), followed by infant formula (77%) and follow-on formula (16%). In the case of gangliosides, the highest bioaccessibility is present in the follow-on formula (51%), followed by human milk (29%) and infant formula (5%).

  3. Apprehending ganglioside diversity: a comprehensive methodological approach[S

    PubMed Central

    Masson, Elodie A. Y.; Sibille, Estelle; Martine, Lucy; Chaux-Picquet, Fanny; Bretillon, Lionel; Berdeaux, Olivier

    2015-01-01

    Gangliosides (GGs) make a wide family of glycosphingolipids ubiquitously expressed in mammalian tissues and particularly abundant in the brain and nervous system. They exhibit a huge diversity due to structural variations in both their oligosaccharidic chain and ceramide moiety, which represent a real analytical challenge. Since their discovery in the 1940s, methods have persistently improved until the emergence of LC/MS, which offers a high level of specificity and sensitivity and is suitable with high-throughput profiling studies. We describe here a comprehensive approach relying on various techniques and aiming at fully characterizing GGs in biological samples. First, total GG content was determined by a biochemical assay. Second, GG class composition was assessed by high-performance thin-layer chromatography followed by colorimetric revelation. Then, ceramide types of GG classes were identified, and their relative quantification was performed thanks to the development of a powerful and reliable LC/MS method. Finally, ceramides were structurally characterized, and minor and less common GG classes were identified using high-resolution MS. These methods were applied to the rat retina to provide an exhaustive description of its GG composition, giving the base for a better understanding of the precise roles of GGs in this tissue. PMID:26142958

  4. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines.

    PubMed

    Filho, Edismauro Garcia Freitas; da Silva, Elaine Zayas Marcelino; Zanotto, Camila Ziliotto; Oliver, Constance; Jamur, Maria Célia

    2016-01-01

    Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.

  5. Specific synthesis of neurostatin and gangliosides O-acetylated in the outer sialic acids using a sialate transferase.

    PubMed

    Romero-Ramírez, Lorenzo; García-Álvarez, Isabel; Campos-Olivas, Ramón; Gilbert, Michel; Goneau, Marie-France; Fernández-Mayoralas, Alfonso; Nieto-Sampedro, Manuel

    2012-01-01

    Gangliosides are sialic acid containing glycosphingolipids, commonly found on the outer leaflet of the plasma membrane. O-acetylation of sialic acid hydroxyl groups is one of the most common modifications in gangliosides. Studies on the biological activity of O-acetylated gangliosides have been limited by their scarcity in nature. This comparatively small change in ganglioside structure causes major changes in their physiological properties. When the ganglioside GD1b was O-acetylated in the outer sialic acid, it became the potent inhibitor of astroblast and astrocytoma proliferation called Neurostatin. Although various chemical and enzymatic methods to O-acetylate commercial gangliosides have been described, O-acetylation was nonspecific and produced many side-products that reduced the yield. An enzyme with O-acetyltransferase activity (SOAT) has been previously cloned from the bacteria Campylobacter jejuni. This enzyme catalyzed the acetylation of oligosaccharide-bound sialic acid, with high specificity for terminal alpha-2,8-linked residues. Using this enzyme and commercial gangliosides as starting material, we have specifically O-acetylated the gangliosides' outer sialic acids, to produce the corresponding gangliosides specifically O-acetylated in the sialic acid bound in alpha-2,3 and alpha-2,8 residues. We demonstrate here that O-acetylation occurred specifically in the C-9 position of the sialic acid. In summary, we present a new method of specific O-acetylation of ganglioside sialic acids that permits the large scale preparation of these modified glycosphingolipids, facilitating both, the study of their mechanism of antitumoral action and their use as therapeutic drugs for treating glioblastoma multiform (GBM) patients.

  6. Motor nerve damage is associated with anti-ganglioside antibodies in diabetes.

    PubMed

    Matà, Sabrina; Betti, Elisabetta; Masotti, Giulio; Pinto, Francesco; Lolli, Francesco

    2004-09-01

    Few reports exist on the association between the humoral immune response to glycolipids and neuropathic findings in diabetes. To address this issue, we assayed serum anti-GM1, GD1b, GD1a, and sulfatides IgG and IgM in a group of 85 non-selected diabetic patients, and correlated these antibodies to clinical and electrophysiological findings. Diabetic patients had higher mean titers of anti-GM1 (IgM), GD1b, GD1a, and sulfatide (IgG) antibodies when compared to healthy controls. Patients with a positive titer of anti-ganglioside antibodies had significant alterations of motor conduction parameters. The statistical significance increased when considering those patients with both anti-ganglioside reactivity and a high value for glycosylated hemoglobin. Production of antibodies to ganglioside may follow the exposure of hidden motor nerve epitopes in damaged motor nerves and contribute to the neuropathy.

  7. Selection of ganglioside GM1-binding peptides by using a phage library.

    PubMed

    Matsubara, T; Ishikawa, D; Taki, T; Okahata, Y; Sato, T

    1999-08-06

    Ganglioside Gal beta1 --> 3GalNAc beta1 --> 4(NeuAc alpha2 --> 3) Gal beta1 --> 4Glc beta1 -->1'Cer (GM1)-binding peptides were obtained from a phage-displayed pentadecapeptide library by an affinity selection. The selection processes were in situ-monitored by a quartz-crystal microbalance method, on which a ganglioside GM1 monolayer was transferred. After five rounds of biopanning, the DNA sequencing of 18 selected phages showed that only three individual clones were selected. The peptide sequences of the random region were found to be DFRRLPGAFWQLRQP, GWWYKGRARPVSAVA and VWRLLAPPFSNRLLP. Binding constants of these phage clones to the GM1 monolayer were 10(10) M(-1). Three synthetic pentadecapeptides inhibited the binding of cholera toxin B subunit to the GM1 monolayer with an IC50 of 24, 13 and 1.0 microM, respectively. These peptides will be useful for searching functional roles of ganglioside GMI.

  8. Measuring the diffusion coefficient of ganglioside on cell membrane by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Shiqing; You, Minghai; Chen, Jianling; Zhou, Jie; Xie, Shusen; Yang, Hongqin

    2017-06-01

    The fluidity of proteins and lipids on cell membrane plays an important role in cell’s physiological functions. Fluorescence correlation spectroscopy (FCS) is an effective technique to detect the rapid dynamic behaviors of proteins and/or lipids in living cells. In this study, we used the rhodamine6G solution to optimize the FCS system. And, cholera toxin B subunit (CT-B) was used to label ganglioside on living Hela cell membranes. The diffusion time and coefficients of ganglioside can be obtained through fitting the autocorrelation curve based on the model of two-dimensional cell membrane. The results showed that the diffusion coefficients of ganglioside distributed within a wide range. It revealed the lateral diffusion of lipids on cell membrane was inhomogeneous, which was due to different microstructures of cytoplasmic membrane. The study provides a helpful method for further studying the dynamic characteristics of proteins and lipids molecules on living cell membrane.

  9. Biosynthesis of the major brain gangliosides GD1a and GT1b.

    PubMed

    Sturgill, Elizabeth R; Aoki, Kazuhiro; Lopez, Pablo H H; Colacurcio, Daniel; Vajn, Katarina; Lorenzini, Ileana; Majić, Senka; Yang, Won Ho; Heffer, Marija; Tiemeyer, Michael; Marth, Jamey D; Schnaar, Ronald L

    2012-10-01

    Gangliosides-sialylated glycosphingolipids-are the major glycoconjugates of nerve cells. The same four structures-GM1, GD1a, GD1b and GT1b-comprise the great majority of gangliosides in mammalian brains. They share a common tetrasaccharide core (Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1'Cer) with one or two sialic acids on the internal galactose and zero (GM1 and GD1b) or one (GD1a and GT1b) α2-3-linked sialic acid on the terminal galactose. Whereas the genes responsible for the sialylation of the internal galactose are known, those responsible for terminal sialylation have not been established in vivo. We report that St3gal2 and St3gal3 are responsible for nearly all the terminal sialylation of brain gangliosides in the mouse. When brain ganglioside expression was analyzed in adult St3gal1-, St3gal2-, St3gal3- and St3gal4-null mice, only St3gal2-null mice differed significantly from wild type, expressing half the normal amount of GD1a and GT1b. St3gal1/2-double-null mice were no different than St3gal2-single-null mice; however, St3gal2/3-double-null mice were >95% depleted in gangliosides GD1a and GT1b. Total ganglioside expression (lipid-bound sialic acid) in the brains of St3gal2/3-double-null mice was equivalent to that in wild-type mice, whereas total protein sialylation was reduced by half. St3gal2/3-double-null mice were small, weak and short lived. They were half the weight of wild-type mice at weaning and displayed early hindlimb dysreflexia. We conclude that the St3gal2 and St3gal3 gene products (ST3Gal-II and ST3Gal-III sialyltransferases) are largely responsible for ganglioside terminal α2-3 sialylation in the brain, synthesizing the major brain gangliosides GD1a and GT1b.

  10. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells

    PubMed Central

    2014-01-01

    Background Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Methods Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. Results Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2

  11. Design and synthesis of a novel ganglioside ligand for influenza A viruses.

    PubMed

    Nohara, Tomohiro; Imamura, Akihiro; Yamaguchi, Maho; Hidari, Kazuya I P J; Suzuki, Takashi; Komori, Tatsuya; Ando, Hiromune; Ishida, Hideharu; Kiso, Makoto

    2012-08-10

    A novel ganglioside bearing Neua2-3Gal and Neua2-6Gal structures as distal sequences was designed as a ligand for influenza A viruses. The efficient synthesis of the designed ganglioside was accomplished by employing the cassette coupling approach as a key reaction, which was executed between the non-reducing end of the oligosaccharide and the cyclic glucosylceramide moiety. Examination of its binding activity to influenza A viruses revealed that the new ligand is recognized by Neua2-3 and 2-6 type viruses.

  12. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells.

    PubMed

    Doronin, Igor I; Vishnyakova, Polina A; Kholodenko, Irina V; Ponomarev, Eugene D; Ryazantsev, Dmitry Y; Molotkovskaya, Irina M; Kholodenko, Roman V

    2014-04-28

    Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2 expression correlated with

  13. Lacking "Lack": A Reply to Joldersma

    ERIC Educational Resources Information Center

    Marshall, James D.

    2007-01-01

    First I would like to thank Clarence Joldersma for his review of our "Poststructuralism, Philosophy, Pedagogy" (Marshall, 2004-PPP). In particular, I would thank him for his opening sentence: "[t]his book is a response to a lack." It is the notion of a lack, noted again later in his review, which I wish to take up mainly in this response. Rather…

  14. Dissecting the Role of Anti-ganglioside Antibodies in Guillain-Barré Syndrome: an Animal Model Approach.

    PubMed

    Asthana, Pallavi; Vong, Joaquim Si Long; Kumar, Gajendra; Chang, Raymond Chuen-Chung; Zhang, Gang; Sheikh, Kazim A; Ma, Chi Him Eddie

    2016-09-01

    Guillain-Barré syndrome (GBS) is an autoimmune polyneuropathy disease affecting the peripheral nervous system (PNS). Most of the GBS patients experienced neurological symptoms such as paresthesia, weakness, pain, and areflexia. There are also combinations of non-neurological symptoms which include upper respiratory tract infection and diarrhea. One of the major causes of GBS is due largely to the autoantibodies against gangliosides located on the peripheral nerves. Gangliosides are sialic acid-bearing glycosphingolipids consisting of a ceramide lipid anchor with one or more sialic acids attached to a neutral sugar backbone. Molecular mimicry between the outer components of oligosaccharide of gangliosides on nerve membrane and lipo-oligosaccharide of microbes is thought to trigger the autoimmunity. Intra-peritoneal implantation of monoclonal ganglioside antibodies secreting hybridoma into animals induced peripheral neuropathy. Recent studies demonstrated that injection of synthesized anti-ganglioside antibodies raised by hybridoma cells into mice initiates immune response against peripheral nerves, and eventually failure in peripheral nerve regeneration. Accumulating evidences indicate that the conjugation of anti-ganglioside monoclonal antibodies to activating FcγRIII present on the circulating macrophages inhibits axonal regeneration. The activation of RhoA signaling pathways is also involved in neurite outgrowth inhibition. However, the link between these two molecular events remains unresolved and requires further investigation. Development of anti-ganglioside antagonists can serve as targeted therapy for the treatment of GBS and will open a new approach of drug development with maximum efficacy and specificity.

  15. Phosphatidylinositol 4-phosphate 5-kinase α is induced in ganglioside-stimulated brain astrocytes and contributes to inflammatory responses

    PubMed Central

    Kim, Bokyung; Yoon, Sarah; Kim, Yeon Joo; Liu, Tian; Woo, Joo Hong; Chwae, Yong-Joon; Joe, Eun-hye; Jou, Ilo

    2010-01-01

    In brain tissue, astrocytes play defensive roles in central nervous system integrity by mediating immune responses against pathological conditions. Type I phosphatidylinositol 4-phosphate 5-kinase α (PIP5Kα) that is responsible for production of phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) regulates many important cell functions at the cell surface. Here, we have examined whether PIP5Kα is associated with astrocyte inflammatory responses. Gangliosides are releasable from damaged cell membranes of neurons and capable of inducing inflammatory responses. We found that treatment of primary cultured astrocytes with gangliosides significantly enhanced PIP5Kα mRNA and protein expression levels. PI(4,5)P2 imaging using a fluorescent tubby (R332H) expression as a PI(4,5)P2-specific probe showed that ganglioside treatment increased PI(4,5)P2 level. Interestingly, microRNA-based PIP5Kα knockdown strongly reduced ganglioside-induced transcription of proinflammatory cytokines IL-1β and TNFα. PIP5Kα knockdown also suppressed ganglioside-induced phosphorylation and nuclear translocation of NF-κB and the degradation of IκB-α, indicating that PIP5Kα knockdown interfered with the ganglioside-activated NF-κB signaling. Together, these results suggest that PIP5Kα is a novel inflammatory mediator that undergoes upregulation and contributes to immune responses by facilitating NF-κB activation in ganglioside-stimulated astrocytes. PMID:20720456

  16. Anti-Ganglioside Antibodies Induce Nodal and Axonal Injury via Fcγ Receptor-Mediated Inflammation.

    PubMed

    He, Lan; Zhang, Gang; Liu, Weiqiang; Gao, Tong; Sheikh, Kazim A

    2015-04-29

    Guillain-Barré syndrome (GBS) is a postinfectious autoimmune neuropathy and anti-ganglioside antibodies (Abs) are strongly associated with this disorder. Several studies have implied that specific anti-ganglioside Abs induce neuropathy in patients with axonal forms of GBS. To study the mechanisms of anti-ganglioside Abs-induced neuropathy, we established a new passive transfer mouse model by L5 spinal nerve transection (L5SNT; modified Chung's model) and systemic administration of anti-ganglioside Abs. L5SNT causes degeneration of a small proportion of fibers that constitute sciatic nerve and its branches, but importantly breaks the blood-nerve barrier, which allows access to circulating Abs and inflammatory cells. Our studies indicate that, in this mouse model, anti-ganglioside Abs induce sequential nodal and axonal injury of intact myelinated nerve fibers, recapitulating pathologic features of human disease. Notably, our results showed that immune complex formation and the activating Fc gamma receptors (FcγRs) were involved in the anti-ganglioside Abs-mediated nodal and axonal injury in this model. These studies provide new evidence that the activating FcγRs-mediated inflammation plays a critical role in anti-ganglioside Abs-induced neuropathy (injury to intact nerve fibers) in GBS. Copyright © 2015 the authors 0270-6474/15/356770-16$15.00/0.

  17. Increased serum levels of anti-ganglioside M1 auto-antibodies in autistic children: relation to the disease severity

    PubMed Central

    2011-01-01

    Background Autoimmunity to the central nervous system (CNS) may play a pathogenic role in a subgroup of patients with autism. This study aimed to investigate the frequency of serum anti-ganglioside M1 auto-antibodies, as indicators of the presence of autoimmunity to CNS, in a group of autistic children. We are the first to measure the relationship between these antibodies and the degree of the severity of autism. Methods Serum anti-ganglioside M1 antibodies were measured, by ELISA, in 54 autistic children, aged between 4 and 12 years, in comparison to 54 healthy-matched children. Autistic severity was assessed by using the Childhood Autism Rating Scale (CARS). Results Autistic children had significantly higher serum levels of anti-ganglioside M1 antibodies than healthy children (P < 0.001). The seropositivity of anti-ganglioside M1 antibodies was found in 74% (40/54) of autistic children. Serum levels of anti-ganglioside M1 antibodies were significantly higher in autistic children with severe autism (63%) than those with mild to moderate autism (37%), P = 0.001. Moreover, serum anti-ganglioside M1 antibodies had significant positive correlations with CARS (P < 0.001). Conclusions Serum levels of anti-ganglioside M1 antibodies were increased in many autistic children. Also, their levels had significant positive correlations with the degree of the severity of autism. Thus, autism may be, in part, one of the pediatric autoimmune neuropsychiatric disorders. Further wide-scale studies are warranted to shed light on the possible etiopathogenic role of anti-ganglioside M1 auto-antibodies in autism. The role of immunotherapy in autistic patients who have increased serum levels of anti-ganglioside M1 antibodies should also be studied. PMID:21513576

  18. Membrane restructuring following in situ sialidase digestion of gangliosides: Complex model bilayers by synchrotron radiation reflectivity.

    PubMed

    Rondelli, Valeria; Brocca, Paola; Fragneto, Giovanna; Daillant, Jean; Tringali, Cristina; Cantu', Laura; Del Favero, Elena

    2017-05-01

    Synchrotron radiation reflectometry was used to access the transverse structure of model membranes under the action of the human sialidase NEU2, down to the Ångström length scale. Model membranes were designed to mimic the lipid composition of so-called Glycosphingolipids Enriched Microdomains (GEMs), which are membrane platforms specifically enriched in cholesterol and sphingolipids, and where also typical signalling molecules are hosted. Gangliosides, glycosphingolipids containing one or more sialic acid residues, are asymmetrically embedded in GEMs, in the outer membrane leaflet where gangliosides are claimed to interact directly with growth-factor receptors, modulating their activation and then the downstream intracellular signalling pathways. Thus, membrane dynamics and signalling could be strongly influenced by the activity of enzymes regulating the membrane ganglioside composition, including sialidases. Our results, concerning the structure of single membranes undergoing in-situ enzymatic digestion, show that the outcome of the sialidase action is not limited to the emergence of lower-sialylated ganglioside species. In fact, membrane reshaping occurs, involving a novel arrangement of the headgroups on its surface. Thus, sialidase activity reveals to be a potential tool to control dynamically the structural properties of the membrane external leaflet of living cells, influencing both the morphology of the close environment and the extent of interaction among active molecules belonging to signalling platforms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ganglioside mediate the interaction between Nogo receptor 1 and LINGO-1.

    PubMed

    Saha, Nayanendu; Kolev, Momchil V; Semavina, Mariya; Himanen, Juha; Nikolov, Dimitar B

    2011-09-16

    Upon spinal cord injury, the myelin inhibitors, including the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp), bind to and signal via a single neuronal receptor/co-receptor complex comprising of Nogo receptor 1(NgR1)/LINGO-1 and p75 or TROY, impeding regeneration of injured axons. We employed a cell-free system to study the binding of NgR1 to its co-receptors and the myelin inhibitor Nogo-A, and show that gangliosides mediate the interaction of NgR1 with LINGO-1. Solid phase binding assays demonstrate that the sialic acid moieties of gangliosides and the stalk of NgR1 are the principal determinants of these molecular interactions. Moreover, the tripartite complex comprising of NgR1, LINGO-1 and ganglioside exhibits stronger binding to Nogo-A (Nogo-54) in the presence of p75, suggesting the gangliosides modulate the myelin inhibitor-receptor signaling.

  20. GM1 ganglioside is involved in epigenetic activation loci of neuronal cells

    PubMed Central

    Tsai, Yi-Tzang; Itokazu, Yutaka; Yu, Robert K.

    2015-01-01

    Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells. PMID:26498762

  1. Expression of GD2 and GD3 gangliosides in human embryonic neural stem cells.

    PubMed

    Yanagisawa, Makoto; Yoshimura, Saori; Yu, Robert K

    2011-04-07

    NSCs (neural stem cells) are undifferentiated neural cells endowed with a high potential for proliferation and a capacity for self-renewal with retention of multipotency to differentiate into neurons and glial cells. It has been recently reported that GD3, a b-series ganglioside, is a marker molecule for identifying and isolating mouse NSCs. However, the expression of gangliosides in human NSCs is largely unknown. In the present study, we analysed the expression of gangliosides, GD2 and GD3, in human NSCs that were isolated from human brains at gestational week 17 in the form of neurospheres, which are floating clonal aggregates formed by NSCs in vitro. Employing immunocytochemistry, we found that human NSCs were strongly reactive to anti-GD2 antibody and relatively weakly reactive to anti-GD3 antibody. Treatment of these cells with an organic solvent such as 100% methanol, which selectively removes glycolipids from plasma membrane, abolished the immunoreactivity with those antibodies, indicating that the reactivity was due to GD2 and GD3, but not to GD2-/GD3-like glycoproteins or proteoglycans. The immunoreactivity of human NSCs to antibody against SSEA-1 (stage-specific embryonic antigen-1), a well-known carbohydrate antigen of NSCs, was not decreased by the treatment with 100% methanol, indicating that SSEA-1 is mainly carried by glycoproteins and/or proteoglycans in human NSCs. Our study suggests that GD2 and GD3 can be marker gangliosides for identifying human NSCs.

  2. Structural Basis of GD2 Ganglioside and Mimetic Peptide Recognition by 14G2a Antibody.

    PubMed

    Horwacik, Irena; Golik, Przemyslaw; Grudnik, Przemyslaw; Kolinski, Michal; Zdzalik, Michal; Rokita, Hanna; Dubin, Grzegorz

    2015-10-01

    Monoclonal antibodies targeting GD2 ganglioside (GD2) have recently been approved for the treatment of high risk neuroblastoma and are extensively evaluated in clinics in other indications. This study illustrates how a therapeutic antibody distinguishes between different types of gangliosides present on normal and cancer cells and informs how synthetic peptides can imitate ganglioside in its binding to the antibody. Using high resolution crystal structures we demonstrate that the ganglioside recognition by a model antibody (14G2a) is based primarily on an extended network of direct and water molecule mediated hydrogen bonds. Comparison of the GD2-Fab structure with that of a ligand free antibody reveals an induced fit mechanism of ligand binding. These conclusions are validated by directed mutagenesis and allowed structure guided generation of antibody variant with improved affinity toward GD2. Contrary to the carbohydrate, both evaluated mimetic peptides utilize a "key and lock" interaction mechanism complementing the surface of the antibody binding groove exactly as found in the empty structure. The interaction of both peptides with the Fab relies considerably on hydrophobic contacts however, the detailed connections differ significantly between the peptides. As such, the evaluated peptide carbohydrate mimicry is defined primarily in a functional and not in structural manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. First total synthesis of ganglioside DSG-A possessing neuritogenic activity.

    PubMed

    Wu, Yu-Fa; Tsai, Yow-Fu; Guo, Jhe-Ruei; Yu, Cheng-Ping; Yu, Hui-Ming; Liao, Chun-Chen

    2014-12-14

    The first total synthesis of ganglioside DSG-A (1) is achieved via chemoselective glycosylation and a [1 + 1 + 2] synthetic strategy. We have also developed an efficient method that can be handled on large scale (50 g) for the synthesis of the phytosphingosine.

  4. b-Series gangliosides crucially regulate leptin secretion in adipose tissues.

    PubMed

    Ji, Shuting; Ohkawa, Yuki; Tokizane, Kyohei; Ohmi, Yuhsuke; Banno, Ryoichi; Furukawa, Keiko; Kiyama, Hiroshi; Furukawa, Koichi

    2015-04-03

    Gangliosides are widely involved in the regulation of cells and organs. However, little is known about their roles in leptin secretion from adipose tissues. Genetic deletion of b-series gangliosides resulted in the marked reduction of serum leptin. Expression analysis of leptin revealed that leptin accumulated in the adipose tissues of GD3 synthase-knockout (GD3S KO) mice. Analysis of primary cultured stromal vascular fractions (SVF) derived from GD3S KO mice revealed that leptin secretion was reduced, although leptin amounts in cells were increased compared with those of wild type. Interestingly, addition of b-series gangliosides to the culture medium of differentiated SVF resulted in the restoration of leptin secretion. Results of methyl-β-cyclodextrin treatment of differentiated 3T3-L1 cells as well as immunocytostaining of leptin and caveolin-1 suggested that b-series gangliosides regulate the leptin secretion from adipose tissues in lipid rafts. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Fluorescently-tagged anti-ganglioside antibody selectively identifies peripheral nerve in living animals.

    PubMed

    Massaad, Cynthia A; Zhang, Gang; Pillai, Laila; Azhdarinia, Ali; Liu, Weiqiang; Sheikh, Kazim A

    2015-10-30

    Selective in vivo delivery of cargo to peripheral nervous system (PNS) has broad clinical and preclinical applications. An important applicability of this approach is systemic delivery of fluorescently conjugated ligands that selectively label PNS, which could allow visualization of peripheral nerves during any surgery. We examine the use of an anti-ganglioside monoclonal antibody (mAb) as selective neuronal delivery vector for surgical imaging of peripheral nerves. Systemic delivery of an anti-ganglioside mAb was used for selective intraneuronal/axonal delivery of fluorescent agents to visualize nerves by surgical imaging in living mice. In this study, we show that intact motor, sensory, and autonomic nerve fibers/paths are distinctly labeled following a single nanomolar systemic injection of fluorescently labeled anti-ganglioside mAb. Tissue biodistribution studies with radiolabeled mAb were used to validate neuronal uptake of fluorescently labeled mAb. Implications of this proof of concept study are that fluorescent conjugates of anti-ganglioside mAbs are valuable delivery vectors to visualize nerves during surgery to avoid nerve injury and monitor nerve degeneration and regeneration after injury. These findings support that antibodies, and their derivatives/fragments, can be used as selective neuronal delivery vector for transport of various cargos to PNS in preclinical and clinical settings.

  6. Structural Basis of GD2 Ganglioside and Mimetic Peptide Recognition by 14G2a Antibody*

    PubMed Central

    Horwacik, Irena; Golik, Przemyslaw; Grudnik, Przemyslaw; Kolinski, Michal; Zdzalik, Michal; Rokita, Hanna; Dubin, Grzegorz

    2015-01-01

    Monoclonal antibodies targeting GD2 ganglioside (GD2) have recently been approved for the treatment of high risk neuroblastoma and are extensively evaluated in clinics in other indications. This study illustrates how a therapeutic antibody distinguishes between different types of gangliosides present on normal and cancer cells and informs how synthetic peptides can imitate ganglioside in its binding to the antibody. Using high resolution crystal structures we demonstrate that the ganglioside recognition by a model antibody (14G2a) is based primarily on an extended network of direct and water molecule mediated hydrogen bonds. Comparison of the GD2-Fab structure with that of a ligand free antibody reveals an induced fit mechanism of ligand binding. These conclusions are validated by directed mutagenesis and allowed structure guided generation of antibody variant with improved affinity toward GD2. Contrary to the carbohydrate, both evaluated mimetic peptides utilize a “key and lock” interaction mechanism complementing the surface of the antibody binding groove exactly as found in the empty structure. The interaction of both peptides with the Fab relies considerably on hydrophobic contacts however, the detailed connections differ significantly between the peptides. As such, the evaluated peptide carbohydrate mimicry is defined primarily in a functional and not in structural manner. PMID:26179345

  7. Ganglioside GT1b protects human spermatozoa from hydrogen peroxide-induced DNA and membrane damage.

    PubMed

    Gavella, Mirjana; Garaj-Vrhovac, Verica; Lipovac, Vaskresenija; Antica, Mariastefania; Gajski, Goran; Car, Nikica

    2010-06-01

    We have reported previously that various gangliosides, the sialic acid containing glycosphingolipids, provide protection against sperm injury caused by reactive oxygen species (ROS). In this study, we investigated the effect of treatment of human spermatozoa with ganglioside GT1b on hydrogen peroxide (H(2)O(2))-induced DNA fragmentation and plasma membrane damage. Single-cell gel electrophoresis (Comet assay) used in the assessment of sperm DNA integrity showed that in vitro supplemented GT1b (100 microm) significantly reduced DNA damage induced by H(2)O(2) (200 microm) (p < 0.05). Measurements of Annexin V binding in combination with the propidium iodide vital dye labelling demonstrated that the spermatozoa pre-treated with GT1b exhibited a significant increase (p < 0.05) in the percentage of live cells with intact membrane and decreased phosphatidylserine translocation after exposure to H(2)O(2). Flow cytometry using the intracellular ROS-sensitive fluorescence dichlorodihydrofluorescein diacetate dye employed to investigate the transport of the extracellularly supplied H(2)O(2) into the cell interior revealed that ganglioside GT1b completely inhibited the passage of H(2)O(2) through the sperm membrane. These results suggest that ganglioside GT1b may protect human spermatozoa from H(2)O(2)-induced damage by rendering sperm membrane more hydrophobic, thus inhibiting the diffusion of H(2)O(2) across the membrane.

  8. Neuritogenic activity of gangliosides from echinoderms and their structure-activity relationship.

    PubMed

    Kaneko, Masafumi; Yamada, Koji; Miyamoto, Tomofumi; Inagaki, Masanori; Higuchi, Ryuichi

    2007-03-01

    The effects of the gangliosides isolated from echinoderms on the neuritogenesis of a rat pheochromocytoma cell line (PC-12 cells) in the presence of nerve growth factor were investigated. The results show that they displayed neuritogenic activity. Based on the observed results, a structure-activity relationship has been established.

  9. Beyond gangliosides: Multiple forms of glycan mimicry exhibited by Campylobacter jejuni in its lipooligosaccharide (LOS)

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is well known for synthesizing ganglioside mimics within the glycan component of its lipooligosaccharide (LOS), which have been implicated in triggering Guillain-Barré syndrome (GBS). We now confirm that this pathogen is capable of synthesizing a much broader spectrum of host g...

  10. Biosynthesis of the major brain gangliosides GD1a and GT1b

    PubMed Central

    Sturgill, Elizabeth R; Aoki, Kazuhiro; Lopez, Pablo HH; Colacurcio, Daniel; Vajn, Katarina; Lorenzini, Ileana; Majić, Senka; Yang, Won Ho; Heffer, Marija; Tiemeyer, Michael; Marth, Jamey D; Schnaar, Ronald L

    2012-01-01

    Gangliosides—sialylated glycosphingolipids—are the major glycoconjugates of nerve cells. The same four structures—GM1, GD1a, GD1b and GT1b—comprise the great majority of gangliosides in mammalian brains. They share a common tetrasaccharide core (Galβ1–3GalNAcβ1-4Galβ1-4Glcβ1-1′Cer) with one or two sialic acids on the internal galactose and zero (GM1 and GD1b) or one (GD1a and GT1b) α2–3-linked sialic acid on the terminal galactose. Whereas the genes responsible for the sialylation of the internal galactose are known, those responsible for terminal sialylation have not been established in vivo. We report that St3gal2 and St3gal3 are responsible for nearly all the terminal sialylation of brain gangliosides in the mouse. When brain ganglioside expression was analyzed in adult St3gal1-, St3gal2-, St3gal3- and St3gal4-null mice, only St3gal2-null mice differed significantly from wild type, expressing half the normal amount of GD1a and GT1b. St3gal1/2-double-null mice were no different than St3gal2-single-null mice; however, St3gal2/3-double-null mice were >95% depleted in gangliosides GD1a and GT1b. Total ganglioside expression (lipid-bound sialic acid) in the brains of St3gal2/3-double-null mice was equivalent to that in wild-type mice, whereas total protein sialylation was reduced by half. St3gal2/3-double-null mice were small, weak and short lived. They were half the weight of wild-type mice at weaning and displayed early hindlimb dysreflexia. We conclude that the St3gal2 and St3gal3 gene products (ST3Gal-II and ST3Gal-III sialyltransferases) are largely responsible for ganglioside terminal α2-3 sialylation in the brain, synthesizing the major brain gangliosides GD1a and GT1b. PMID:22735313

  11. Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation

    PubMed Central

    Matarrese, Paola; Garofalo, Tina; Manganelli, Valeria; Gambardella, Lucrezia; Marconi, Matteo; Grasso, Maria; Tinari, Antonella; Misasi, Roberta; Malorni, Walter; Sorice, Maurizio

    2014-01-01

    Sphingolipids are structural lipid components of cell membranes, including membrane of organelles, such as mitochondria or endoplasmic reticulum, playing a role in signal transduction as well as in the transport and intermixing of cell membranes. Sphingolipid microdomains, also called lipid rafts, participate in several metabolic and catabolic cell processes, including apoptosis. However, the defined role of lipid rafts in the autophagic flux is still unknown. In the present study we analyzed the role of gangliosides, a class of sphingolipids, in autolysosome morphogenesis in human and murine primary fibroblasts by means of biochemical and analytical cytology methods. Upon induction of autophagy, by using amino acid deprivation as well as tunicamycin, we found that GD3 ganglioside, considered as a paradigmatic raft constituent, actively contributed to the biogenesis and maturation of autophagic vacuoles. In particular, fluorescence resonance energy transfer (FRET) and coimmunoprecipitation analyses revealed that this ganglioside interacts with phosphatidylinositol 3-phosphate and can be detected in immature autophagosomes in association with LC3-II as well as in autolysosomes associated with LAMP1. Hence, it appears as a structural component of autophagic flux. Accordingly, we found that autophagy was significantly impaired by knocking down ST8SIA1/GD3 synthase (ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferase 1) or by altering sphingolipid metabolism with fumonisin B1. Interestingly, exogenous administration of GD3 ganglioside was capable of reactivating the autophagic process inhibited by fumonisin B1. Altogether, these results suggest that gangliosides, via their molecular interaction with autophagy-associated molecules, could be recruited to autophagosome and contribute to morphogenic remodeling, e.g., to changes of membrane curvature and fluidity, finally leading to mature autolysosome formation. PMID:24589479

  12. Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation.

    PubMed

    Matarrese, Paola; Garofalo, Tina; Manganelli, Valeria; Gambardella, Lucrezia; Marconi, Matteo; Grasso, Maria; Tinari, Antonella; Misasi, Roberta; Malorni, Walter; Sorice, Maurizio

    2014-05-01

    Sphingolipids are structural lipid components of cell membranes, including membrane of organelles, such as mitochondria or endoplasmic reticulum, playing a role in signal transduction as well as in the transport and intermixing of cell membranes. Sphingolipid microdomains, also called lipid rafts, participate in several metabolic and catabolic cell processes, including apoptosis. However, the defined role of lipid rafts in the autophagic flux is still unknown. In the present study we analyzed the role of gangliosides, a class of sphingolipids, in autolysosome morphogenesis in human and murine primary fibroblasts by means of biochemical and analytical cytology methods. Upon induction of autophagy, by using amino acid deprivation as well as tunicamycin, we found that GD3 ganglioside, considered as a paradigmatic raft constituent, actively contributed to the biogenesis and maturation of autophagic vacuoles. In particular, fluorescence resonance energy transfer (FRET) and coimmunoprecipitation analyses revealed that this ganglioside interacts with phosphatidylinositol 3-phosphate and can be detected in immature autophagosomes in association with LC3-II as well as in autolysosomes associated with LAMP1. Hence, it appears as a structural component of autophagic flux. Accordingly, we found that autophagy was significantly impaired by knocking down ST8SIA1/GD3 synthase (ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferase 1) or by altering sphingolipid metabolism with fumonisin B1. Interestingly, exogenous administration of GD3 ganglioside was capable of reactivating the autophagic process inhibited by fumonisin B1. Altogether, these results suggest that gangliosides, via their molecular interaction with autophagy-associated molecules, could be recruited to autophagosome and contribute to morphogenic remodeling, e.g., to changes of membrane curvature and fluidity, finally leading to mature autolysosome formation.

  13. Roles of gangliosides in mouse embryogenesis and embryonic stem cell differentiation

    PubMed Central

    Kwak, Dong Hoon; Seo, Byoung Boo; Chang, Kyu Tae

    2011-01-01

    Gangliosides have been suggested to play important roles in various functions such as adhesion, cell differentiation, growth control, and signaling. Mouse follicular development, ovulation, and luteinization during the estrous cycle are regulated by several hormones and cell-cell interactions. In addition, spermatogenesis in seminiferous tubules of adult testes is also regulated by several hormones, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and cell-cell interactions. The regulation of these processes by hormones and cell-cell interactions provides evidence for the importance of surface membrane components, including gangliosides. During preimplantation embryo development, a mammalian embryo undergoes a series of cleavage divisions whereby a zygote is converted into a blastocyst that is sufficiently competent to be implanted in the maternal uterus and continue its development. Mouse embryonic stem (mES) cells are pluripotent cells derived from mouse embryo, specifically, from the inner cell mass of blastocysts. Differentiated neuronal cells are derived from mES cells through the formation of embryonic bodies (EBs). EBs recapitulate many aspects of lineage-specific differentiation and temporal and spatial gene expression patterns during early embryogenesis. Previous studies on ganglioside expression during mouse embryonic development (including during in vitro fertilization, ovulation, spermatogenesis, and embryogenesis) reported that gangliosides were expressed in both undifferentiated and differentiated (or differentiating) mES cells. In this review, we summarize some of the advances in our understanding of the functional roles of gangliosides during the stages of mouse embryonic development, including ovulation, spermatogenesis, and embryogenesis, focusing on undifferentiated and differentiated mES cells (neuronal cells). PMID:21654188

  14. Ganglioside-Dependent Neural Stem Cell Proliferation in Alzheimer's Disease Model Mice.

    PubMed

    Koon, Noah A; Itokazu, Yutaka; Yu, Robert K

    2015-01-01

    The aggregation and formation of amyloid plaques by amyloid β-peptides (Aβs) is believed to be one of the pathological hallmarks of Alzheimer's disease (AD). Intriguingly, Aβs have also been shown to possess proliferative effects on neural stem cells (NSCs). Many essential cellular processes in NSCs, such as fate determination and proliferation, are heavily influenced by cell surface glycoconjugates, including gangliosides. It has recently been shown that Aβ1-42 alters several key glycosyltransferases and glycosidases. To further define the effects of Aβs and to clarify the potential mechanisms of action of those peptides on NSCs, NSCs were cultured from embryonic brains of the double-transgenic mouse model of AD [B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J] coexpressing mutants of amyloid precursor protein (APPswe) and presenilin1 (PSEN1dE9). We found that Aβs not only promoted cell proliferation but also altered expression of several key glycogenes for glycoconjugate metabolism, such as sialyltransferases II and III (ST-II & -III) in AD NSCs. In addition, we found upregulation of epidermal growth factor receptor and Notch1 intracellular domain. Moreover, the increased expression of ST-II and -III coincided with the elevated levels of c-series gangliosides (A2B5+ antigens) in AD NSCs. Further, we revealed that epidermal growth factor signaling and gangliosides are necessary components on Aβ-stimulated NSC proliferation. Our present study has thus provided a novel mechanism for the upregulation of c-series ganglioside expression and increases in several NSC markers to account for the proliferative effect of Aβs on NSCs in AD mouse brain. These observations support the potential beneficial effects of Aβs and gangliosides in promoting neurogenesis in AD brain. © The Author(s) 2015.

  15. Early Supplementation of Phospholipids and Gangliosides Affects Brain and Cognitive Development in Neonatal Piglets123

    PubMed Central

    Liu, Hongnan; Radlowski, Emily C; Conrad, Matthew S; Li, Yao; Dilger, Ryan N; Johnson, Rodney W

    2014-01-01

    Background: Because human breast milk is a rich source of phospholipids and gangliosides and breastfed infants have improved learning compared with formula-fed infants, the importance of dietary phospholipids and gangliosides for brain development is of interest. Objective: We sought to determine the effects of phospholipids and gangliosides on brain and cognitive development. Methods: Male and female piglets from multiple litters were artificially reared and fed formula containing 0% (control), 0.8%, or 2.5% Lacprodan PL-20 (PL-20; Arla Foods Ingredients), a phospholipid/ganglioside supplement, from postnatal day (PD) 2 to PD28. Beginning on PD14, performance in a spatial T-maze task was assessed. At PD28, brain MRI data were acquired and piglets were killed to obtain hippocampal tissue for metabolic profiling. Results: Diet affected maze performance, with piglets that were fed 0.8% and 2.5% PL-20 making fewer errors than control piglets (80% vs. 75% correct on average; P < 0.05) and taking less time to make a choice (3 vs. 5 s/trial; P < 0.01). Mean brain weight was 5% higher for piglets fed 0.8% and 2.5% PL-20 (P < 0.05) than control piglets, and voxel-based morphometry revealed multiple brain areas with greater volumes and more gray and white matter in piglets fed 0.8% and 2.5% PL-20 than in control piglets. Metabolic profiling of hippocampal tissue revealed that multiple phosphatidylcholine-related metabolites were altered by diet. Conclusion: In summary, dietary phospholipids and gangliosides improved spatial learning and affected brain growth and composition in neonatal piglets. PMID:25411030

  16. Purification and structural characterization of de-N-acetylated form of GD3 ganglioside present in human melanoma tumors.

    PubMed

    Popa, Iuliana; Pons, Alexandre; Mariller, Christophe; Tai, Tadashi; Zanetta, Jean-Pierre; Thomas, Luc; Portoukalian, Jacques

    2007-04-01

    The presence of gangliosides containing de-N-acetylated sialic acids in human tissues has been so far shown by using mouse monoclonal antibodies specific for the de-N-acetylated forms, but the isolation and chemical characterization of such compounds have not yet been performed. Since indirect evidence suggested that de-N-acetylGD3 ganglioside could be present in human melanoma tumors, we analyzed the gangliosides purified from a 500-g pool of those tumors. The de-N-acetylGD3 that was found to migrate just below GD2 in thin-layer chromatography was isolated from the disialogangliosides by high-pressure liquid chromatography using the specific antibody SGR37 to monitor the elution. The amount of antigen was found to be 320 ng per gram of fresh tumor or 0.1% of total gangliosides. Gas chromatography-mass spectrometry analysis of the antibody-positive ganglioside showed that sialic acids were formed of one molecule of N-acetylneuraminic acid and one molecule of neuraminic acid. Radioactive re-N-acetylation of the antigen yielded a GD3-like ganglioside with the radioactive label on the external sialic acid. The constitutive fatty acids were found to differ markedly from those of GD3 and 9-O-acetylGD3 isolated from the same pool of tumors. The major fatty acids were C16:0 and C18:0 in de-N-acetylGD3, whereas GD3 and its 9-O-acetylated derivative contained a large amount of C24:1. These data show that de-N-acetylGD3 ganglioside is indeed present in human melanoma tumors, and the fatty acid content suggests the existence of a de-N-acetylase mostly active on the molecular species of gangliosides with short-chain fatty acids.

  17. Ganglioside-binding specificities of E. coli enterotoxin LT-IIc: Importance of long-chain fatty acyl ceramide

    PubMed Central

    Berenson, Charles S; Nawar, Hesham F; Kruzel, Ragina L; Mandell, Lorrie M; Connell, Terry D

    2013-01-01

    Bacterial heat-labile (LT) enterotoxins signal through tightly regulated interactions with host cell gangliosides. LT-IIa and LT-IIb of Escherichia coli bind preferentially to gangliosides with a NeuAcα2-3Galβ1-3GalNAc terminus, with key distinctions in specificity. LT-IIc, a newly discovered E. coli LT, is comprised of an A polypeptide with high homology, and a B polypeptide with moderate homology, to LT-IIa and LT-IIb. LT-IIc is less cytotoxic than LT-IIa and LT-IIb. We theorized that LT-IIc–host cell interaction is regulated by specific structural attributes of immune cell ganglioside receptors and designed experiments to test this hypothesis. Overlay immunoblotting to a diverse array of neural and macrophage gangliosides indicated that LT-IIc bound to a restrictive range of gangliosides, each possessing a NeuAcα2-3Galβ1-3GalNAc with a requisite terminal sialic acid. LT-IIc did not bind to GM1a with short-chain fatty acyl ceramides. Affinity overlay immunoblots, constructed to a diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIc bound to GM1a comprised of long-chain fatty acyl ceramides. Findings were confirmed with LT-IIc also binding to GM1a of RAW264.7 cells, comprised of a long-chain fatty acyl ceramide. Thus, LT-IIc-ganglioside binding differs distinctly from that of LT-IIa and LT-IIb. LT-IIc binding is not just dependent on carbohydrate composition, but also upon the orientation of the oligosaccharide portion of GM1a by the ceramide moiety. These studies are the first demonstration of LT-ganglioside dependence upon ceramide composition and underscore the contribution of long-chain fatty acyl ceramides to host cell interactions. PMID:22917572

  18. Ganglioside-binding specificities of E. coli enterotoxin LT-IIc: Importance of long-chain fatty acyl ceramide.

    PubMed

    Berenson, Charles S; Nawar, Hesham F; Kruzel, Ragina L; Mandell, Lorrie M; Connell, Terry D

    2013-01-01

    Bacterial heat-labile (LT) enterotoxins signal through tightly regulated interactions with host cell gangliosides. LT-IIa and LT-IIb of Escherichia coli bind preferentially to gangliosides with a NeuAcα2-3Galβ1-3GalNAc terminus, with key distinctions in specificity. LT-IIc, a newly discovered E. coli LT, is comprised of an A polypeptide with high homology, and a B polypeptide with moderate homology, to LT-IIa and LT-IIb. LT-IIc is less cytotoxic than LT-IIa and LT-IIb. We theorized that LT-IIc-host cell interaction is regulated by specific structural attributes of immune cell ganglioside receptors and designed experiments to test this hypothesis. Overlay immunoblotting to a diverse array of neural and macrophage gangliosides indicated that LT-IIc bound to a restrictive range of gangliosides, each possessing a NeuAcα2-3Galβ1-3GalNAc with a requisite terminal sialic acid. LT-IIc did not bind to GM1a with short-chain fatty acyl ceramides. Affinity overlay immunoblots, constructed to a diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIc bound to GM1a comprised of long-chain fatty acyl ceramides. Findings were confirmed with LT-IIc also binding to GM1a of RAW264.7 cells, comprised of a long-chain fatty acyl ceramide. Thus, LT-IIc-ganglioside binding differs distinctly from that of LT-IIa and LT-IIb. LT-IIc binding is not just dependent on carbohydrate composition, but also upon the orientation of the oligosaccharide portion of GM1a by the ceramide moiety. These studies are the first demonstration of LT-ganglioside dependence upon ceramide composition and underscore the contribution of long-chain fatty acyl ceramides to host cell interactions.

  19. Specific suppression of major histocompatibility complex class I and class II genes in astrocytes by brain-enriched gangliosides

    PubMed Central

    1993-01-01

    The effect of brain-enriched gangliosides on constitutive and cytokine- inducible expression of major histocompatibility complex (MHC) class I and II genes in cultured astrocytes was studied. Before treatment with gangliosides, astrocytes expressed constitutive MHC class I but not class II molecules, however, the expression of both MHC class I and II cell surface molecules on astrocytes was induced to high levels by interferon gamma (IFN-gamma). Constitutive and IFN-gamma-inducible expression of MHC class I and II molecules was suppressed by treatment of astrocytes with exogenous bovine brain gangliosides in a dose- dependent manner. Constitutive and induced MHC class I and II mRNA levels were also suppressed by gangliosides, indicating control through transcriptional mechanisms. This was consistent with the ability of gangliosides to suppress the binding activity of transcription factors, especially NF-kappa B-like binding activity, important for the expression of both MHC class I and II genes. These studies may be important for understanding mechanisms of central nervous system (CNS)- specific regulation of major histocompatibility molecules in neuroectodermal cells and the role of gangliosides in regulating MHC- restricted antiviral and autoimmune responses within the CNS. PMID:8376939

  20. Effects of Ganglioside on Working Memory and the Default Mode Network in Individuals with Subjective Cognitive Impairment: A Randomized Controlled Trial.

    PubMed

    Jeon, Yujin; Kim, Binna; Kim, Jieun E; Kim, Bori R; Ban, Soonhyun; Jeong, Jee Hyang; Kwon, Oran; Rhie, Sandy Jeong; Ahn, Chang-Won; Kim, Jong-Hoon; Jung, Sung Ug; Park, Soo-Hyun; Lyoo, In Kyoon; Yoon, Sujung

    2016-01-01

    This randomized, double-blind, placebo-controlled trial examined whether the administration of ganglioside, an active ingredient of deer bone extract, can improve working memory performance by increasing gray matter volume and functional connectivity in the default mode network (DMN) in individuals with subjective cognitive impairment. Seventy-five individuals with subjective cognitive impairment were chosen to receive either ganglioside (330[Formula: see text][Formula: see text]g/day or 660[Formula: see text][Formula: see text]g/day) or a placebo for 8 weeks. Changes in working memory performance with treatment of either ganglioside or placebo were assessed as cognitive outcome measures. Using voxel-based morphometry and functional connectivity analyses, changes in gray matter volume and functional connectivity in the DMN were also assessed as brain outcome measures. Improvement in working memory performance was greater in the ganglioside group than in the placebo group. The ganglioside group, relative to the placebo group, showed greater increases in gray matter volume and functional connectivity in the DMN. A significant relationship between increased functional connectivity of the precuneus and improved working memory performance was observed in the ganglioside group. The current findings suggest that ganglioside has cognitive-enhancing effects in individuals with subjective cognitive impairment. Ganglioside-induced increases in gray matter volume and functional connectivity in the DMN may partly be responsible for the potential nootropic effects of ganglioside. The clinical trial was registered with ClinicalTrials.gov (identifier: NCT02379481).

  1. Brain gangliosides of a transgenic mouse model of Alzheimer's disease with deficiency in GD3-synthase: expression of elevated levels of a cholinergic-specific ganglioside, GT1aα

    PubMed Central

    Ariga, Toshio; Itokazu, Yutaka; McDonald, Michael P.; Hirabayashi, Yoshio; Ando, Susumu; Yu, Robert K.

    2013-01-01

    In order to examine the potential involvement of gangliosides in AD (Alzheimer's disease), we compared the ganglioside compositions of the brains of a double-transgenic (Tg) mouse model [APP (amyloid precursor protein)/PSEN1 (presenilin)] of AD and a triple mutant mouse model with an additional deletion of the GD3S (GD3-synthase) gene (APP/PSEN1/GD3S−/−). These animals were chosen since it was previously reported that APP/PSEN1/GD3S−/− triple-mutant mice performed as well as WT (wild-type) control and GD3S−/− mice on a number of reference memory tasks. Cholinergic neuron-specific gangliosides, such as GT1aα and GQ1bα, were elevated in the brains of double-Tg mice (APP/PSEN1), as compared with those of WT mice. Remarkably, in the triple mutant mouse brains (APP/PSEN1/GD3S−/−), the concentration of GT1aα was elevated and as expected there was no expression of GQ1bα. On the other hand, the level of c-series gangliosides, including GT3, was significantly reduced in the double-Tg mouse brain as compared with the WT. Thus, the disruption of the gene of a specific ganglioside-synthase, GD3S, altered the expression of cholinergic neuron-specific gangliosides. Our data thus suggest the intriguing possibility that the elevated cholinergic-specific ganglioside, GT1aα, in the triple mutant mouse brains (APP/PSEN1/GD3S−/−) may contribute to the memory retention in these mice. PMID:23565921

  2. Brain gangliosides of a transgenic mouse model of Alzheimer's disease with deficiency in GD3-synthase: expression of elevated levels of a cholinergic-specific ganglioside, GT1aα.

    PubMed

    Ariga, Toshio; Itokazu, Yutaka; McDonald, Michael P; Hirabayashi, Yoshio; Ando, Susumu; Yu, Robert K

    2013-05-30

    In order to examine the potential involvement of gangliosides in AD (Alzheimer's disease), we compared the ganglioside compositions of the brains of a double-transgenic (Tg) mouse model [APP (amyloid precursor protein)/PSEN1 (presenilin)] of AD and a triple mutant mouse model with an additional deletion of the GD3S (GD3-synthase) gene (APP/PSEN1/GD3S(-/-)). These animals were chosen since it was previously reported that APP/PSEN1/GD3S(-/-) triple-mutant mice performed as well as WT (wild-type) control and GD3S(-/-) mice on a number of reference memory tasks. Cholinergic neuron-specific gangliosides, such as GT1aα and GQ1bα, were elevated in the brains of double-Tg mice (APP/PSEN1), as compared with those of WT mice. Remarkably, in the triple mutant mouse brains (APP/PSEN1/GD3S(-/-)), the concentration of GT1aα was elevated and as expected there was no expression of GQ1bα. On the other hand, the level of c-series gangliosides, including GT3, was significantly reduced in the double-Tg mouse brain as compared with the WT. Thus, the disruption of the gene of a specific ganglioside-synthase, GD3S, altered the expression of cholinergic neuron-specific gangliosides. Our data thus suggest the intriguing possibility that the elevated cholinergic-specific ganglioside, GT1aα, in the triple mutant mouse brains (APP/PSEN1/GD3S(-/-)) may contribute to the memory retention in these mice.

  3. Dysfunction of nodes of Ranvier: a mechanism for anti-ganglioside antibody-mediated neuropathies

    PubMed Central

    Susuki, Keiichiro; Yuki, Nobuhiro; Schafer, Dorothy P.; Hirata, Koichi; Zhang, Gang; Funakoshi, Kei; Rasband, Matthew N.

    2011-01-01

    Autoantibodies against gangliosides GM1 or GD1a are associated with acute motor axonal neuropathy (AMAN) and acute motor-sensory axonal neuropathy (AMSAN), whereas antibodies to GD1b ganglioside are detected in acute sensory ataxic neuropathy (ASAN). These neuropathies have been proposed to be closely related and comprise a continuous spectrum, although the underlying mechanisms, especially for sensory nerve involvement, are still unclear. Antibodies to GM1 and GD1a have been proposed to disrupt the nodes of Ranvier in motor nerves via complement pathway. We hypothesized that the disruption of nodes of Ranvier is a common mechanism whereby various anti-ganglioside antibodies found in these neuropathies lead to nervous system dysfunction. Here, we show that the IgG monoclonal anti-GD1a/GT1b antibody injected into rat sciatic nerves caused deposition of IgG and complement products on the nodal axolemma and disrupted clusters of nodal and paranodal molecules predominantly in motor nerves, and induced early reversible motor nerve conduction block. Injection of IgG monoclonal anti-GD1b antibody induced nodal disruption predominantly in sensory nerves. In an ASAN rabbit model associated with IgG anti-GD1b antibodies, complement-mediated nodal disruption was observed predominantly in sensory nerves. In an AMAN rabbit model associated with IgG anti-GM1 antibodies, complement attack of nodes was found primarily in motor nerves, but occasionally in sensory nerves as well. Periaxonal macrophages and axonal degeneration were observed in dorsal roots from ASAN rabbits and AMAN rabbits. Thus, nodal disruption may be a common mechanism in immune-mediated neuropathies associated with autoantibodies to gangliosides GM1, GD1a, or GD1b, providing an explanation for the continuous spectrum of AMAN, AMSAN, and ASAN. PMID:22178332

  4. Erythropoietin enhances nerve repair in anti-ganglioside antibody-mediated models of immune neuropathy.

    PubMed

    Zhang, Gang; Lehmann, Helmar C; Bogdanova, Nataliia; Gao, Tong; Zhang, Jiangyang; Sheikh, Kazim A

    2011-01-01

    Guillain-Barré syndrome (GBS) is a monophasic immune neuropathic disorder in which a significant proportion of patients have incomplete recovery. The patients with incomplete recovery almost always have some degree of failure of axon regeneration and target reinnervation. Anti-ganglioside antibodies (Abs) are the most commonly recognized autoimmune markers in all forms of GBS and specific Abs are associated with the slow/poor recovery. We recently demonstrated that specific anti-ganglioside Abs inhibit axonal regeneration and nerve repair in preclinical models by activation of small GTPase RhoA and its downstream effectors. The objective of this study was to determine whether erythropoietin (EPO), a pleiotropic cytokine with neuroprotective and neurotrophic properties, enhances nerve regeneration in preclinical cell culture and animal models of autoimmune neuropathy/nerve repair generated with monoclonal and patient derived Abs. Primary neuronal cultures and a standardized sciatic crush nerve model were used to assess the efficacy of EPO in reversing inhibitory effects of anti-ganglioside Abs on nerve repair. We found that EPO completely reversed the inhibitory effects of anti-ganglioside Abs on axon regeneration in cell culture models and significantly improved nerve regeneration/repair in an animal model. Moreover, EPO-induced proregenerative effects in nerve cells are through EPO receptors and Janus kinase 2/Signal transducer and activator of transcription 5 pathway and not via early direct modulation of small GTPase RhoA. These preclinical studies indicate that EPO is a viable candidate drug to develop further for neuroprotection and enhancing nerve repair in patients with GBS.

  5. Effect of glycerol on the molecular properties of cerebrosides, sulphatides and gangliosides in monolayers.

    PubMed Central

    Bianco, I D; Fidelio, G D; Maggio, B

    1988-01-01

    The presence of glycerol, free from surface-active impurities, modifies the molecular area, surface potential/molecule and thermodynamic parameters of compression of monolayers of galactosylceramide, sulphatide and gangliosides GM1, GD1a and GT1b. This may be due to changes of the composition and structural properties of the glycosphingolipid solvation shell with an influence on the intermolecular organization. PMID:3401219

  6. Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry

    PubMed Central

    Vázquez, Ana M. H.; Rodrèguez-Zhurbenko, Nely; López, Ana M. V.

    2012-01-01

    Surgery, chemotherapy, and radiation therapy are standard modalities for cancer treatment, but the effectiveness of these treatments has reached a plateau. Thus, other strategies are being explored to combine with the current treatment paradigms in order to reach better clinical results. One of these approaches is the active immunotherapy based on the induction of anti-tumor responses by anti-idiotypic vaccination. This approach arose from Jerne’s idiotypic network theory, which postulates that B lymphocytes forms a functional network, with a role in the establishment of the immune repertoires, in the regulation of natural antibody production and even in the establishment of natural tolerance. Due to the large potential diversity of the immunoglobulin variable regions, the idiotypes repertoire can mimic the universe of self and foreign epitopes, even those of non-protein nature, like gangliosides. Gangliosides are sialic acid-containing glycolipids that have been considered attractive targets for cancer immunotherapy, based on the qualitative and quantitative changes they suffer during malignant transformation and due to their importance for tumor biology. Although any idiotype could be able to mimic any antigen, only those related to antigens involved in functions relevant for organism homeostasis, and that in consequence has been fixed by evolution, would be able not only to mimic, but also to activate the idiotypic cascades related with the nominal antigen. The present review updates the results, failures and hopes, obtained with ganglioside mimicking anti-idiotypic antibodies and presents evidences of the existence of a natural response against gangliosides, suggesting that these glycolipids could be idiotypically relevant antigens. PMID:23181219

  7. Detection of GD3 ganglioside in primary melanomas depends on histopathologic procedures used for tumor preservation.

    PubMed

    Debarbieux, Sébastien; Popa, Iuliana; Thomas, Luc; Kanitakis, Jean; Pirot, Fabrice; Portoukalian, Jacques; Haftek, Marek

    2009-01-01

    Gangliosides, cell surface glycosphingolipids, are implicated in diverse biologic functions potentially important for tumor growth. Because expression of the GD3 ganglioside may have an impact on the melanoma malignancy, and therefore on the patient prognosis, we evaluated the feasibility of a retrospective immunohistochemical study of GD3 in paraffin embedded biopsies of primary melanomas. Immunoperoxidase staining of frozen and deparaffinized sections of melanoma lesions with two anti-GD3 antibodies was compared using Dako biotin-streptavidin detection kit. Residual ganglioside content was evaluated in the tissues submitted to routine histopathologic procedures using HPLC. A strong and reproducible staining was obtained with both antibodies on frozen sections of all 17 melanoma samples. However, only KM641 antibody could detect GD3 on deparaffinized sections. Biochemical quantification revealed that the Bouin fixative resulted in degradation of GD3. Additionally, most of GD3 was eluted from the tissue samples during dehydration and re-hydration steps. A subgroup of tumors particularly rich in GD3 could be detected on deparaffinized sections after standard formaldehyde fixation. Clinical evolution of such melanomas can now be compared to the group with low GD3 expression. However, any Bouin-fixed, paraffin-embedded biopsies should be excluded from such a retrospective study.

  8. Uptake and fate of ganglioside GD3 in human intestinal Caco-2 cells.

    PubMed

    Schnabl, Kareena L; Larcelet, Marjorie; Thomson, Alan B R; Clandinin, Michael T

    2009-07-01

    Ganglioside GD3 is a glycosphingolipid found in colostrum, developing tissues, and tumors and is known to regulate cell growth, differentiation, apoptosis, and inflammation. Feeding a GD3-enriched diet to rats increases GD3 in intestinal lipid rafts and blood. The mechanism, efficiency, and fate of ganglioside absorption by human enterocytes have not been investigated. A model to study GD3 uptake by human intestinal cells was developed to test the hypothesis that enterocyte GD3 uptake is time and concentration dependent, with uptake efficiency and fate influenced by route of delivery. Caco-2 cells were exposed to GD3 on the apical or basolateral membrane (BLM) side for 6, 24, and 48 h. GD3 uptake, retention, transfer, and metabolism was determined. GD3 uptake across the apical and BLM was time and concentration dependent and reached a plateau. GD3 uptake across the BLM was more efficient than apical delivery. Apical GD3 was metabolized with some cell retention and transfer, whereas basolateral GD3 was mostly metabolized. This study demonstrates efficient GD3 uptake by enterocytes and suggests that the route of delivery influences ganglioside uptake and fate.

  9. Involvement of 9-O-Acetyl GD3 ganglioside in Mycobacterium leprae infection of Schwann cells.

    PubMed

    Ribeiro-Resende, Victor Túlio; Ribeiro-Guimarães, Michelle Lopes; Lemes, Robertha Mariana Rodrigues; Nascimento, Isis Cristina; Alves, Lucinéia; Mendez-Otero, Rosalia; Pessolani, Maria Cristina Vidal; Lara, Flávio Alves

    2010-10-29

    Mycobacterium leprae (ML), the etiologic agent of leprosy, mainly affects the skin and peripheral nerves, leading to demyelization and loss of axonal conductance. Schwann cells (SCs) are the main cell population infected by ML in the nerves, and infection triggers changes in the SC phenotype from a myelinated to a nonmyelinated state. In the present study, we show that expression of 9-O-acetyl GD3, a ganglioside involved in cellular anti-apoptotic signaling and nerve regeneration, increases in SCs following infection with ML. Observation by confocal microscopy together with coimmunoprecipitation suggested that this ganglioside participates in ML attachment and internalization by SC. Immunoblockage of 9-O-acetyl GD3 in vitro significantly reduced adhesion of ML to SC surfaces. Finally, we show that activation of the MAPK (ERK 1/2) pathway and SC proliferation, two known effects of ML on SCs that result in demyelization, are significantly reduced when the 9-O-acetyl GD3 ganglioside is immunoblocked. Taken together, these data suggest the involvement of 9-O-acetyl GD3 in ML infection on SCs.

  10. A Novel Approach for Ganglioside Structural Analysis Based on Electrospray Multiple-Stage Mass Spectrometry

    PubMed Central

    Zamfir, Alina D.; Vukelić, Željka; Schneider, Andrea; Sisu, Eugen; Dinca, Nicolae; Ingendoh, Arnd

    2007-01-01

    A powerful method for detailed structural analysis based on electrospray ionization high-capacity ion-trap multiple-stage mass spectrometry (MS) is for the first time introduced in glycolipidomics. The method was optimized for accurate structural elucidation of human brain gangliosides and specifically applied to normal adult human hippocampus-associated structures. The multiple-stage MS experiments reported here allowed for a complete structural characterization of the oligosaccharide moiety of a GM1 ganglioside species. This was achieved by elucidating the sequence and identification of the GM1a structural isomer from the sialic acid attachment site at the neutral oligosaccharide chain. Moreover, the determination of the d18:1/18:0 sphingoid base/fatty acid composition of the ceramide moiety could be confirmed by this method. The novel protocol developed here proves high potential for rapid, reliable, and reproducible investigation of complex lipid-linked carbohydrates such as polysialylated gangliosides or species carrying some other groups that easily cleave off. PMID:17916791

  11. Expression of ganglioside 9-O acetyl GD3 in undifferentiated embryonic stem cells.

    PubMed

    Azevedo-Pereira, Ricardo Luiz; Morrot, Alexandre; Machado, Gabriele Santos; Paredes, Bruno Diaz; Rodrigues, Deivid de Carvalho; de Carvalho, Antonio Carlos Campos; Mendez-Otero, Rosalia

    2015-01-01

    Embryonic stem cells (ES cells) express a transient and heterogeneous pattern of molecules, which suggests a notable mechanism to control self-renewal avoid the differentiation into germ layers. We show that 9-O-acetyl GD3 (9OacGD3), a highly expressed b-series ganglioside in neural stem (NS) cells, is expressed in undifferentiated mouse ES cells in a heterogeneous fashion. After sorting, undifferentiated 9OacGD3(+) ES cell population had higher levels of nestin and Sox2 mRNA than the 9OacGD3(-) cells. Even with elevated expression of these neural transcription factors, 9OacGD3(+) cells did not give rise to more neural progenitors than 9OacGD3(-) cells. Expression of 9OacGD3 was recovered from 9OacGD3(-) cell population, demonstrating that expression of this ganglioside in mouse embryonic stem cells is transient, and does not reflect cell fate. Our findings show that the ganglioside 9OacGD3 is expressed heterogeneously and transiently in ES cells, and this expression corresponds to higher levels of Sox2 and Nestin transcripts. © 2014 International Federation for Cell Biology.

  12. Imbalance in Fatty-Acid-Chain Length of Gangliosides Triggers Alzheimer Amyloid Deposition in the Precuneus

    PubMed Central

    Oikawa, Naoto; Matsubara, Teruhiko; Fukuda, Ryoto; Yasumori, Hanaki; Hatsuta, Hiroyuki; Murayama, Shigeo; Sato, Toshinori; Suzuki, Akemi; Yanagisawa, Katsuhiko

    2015-01-01

    Amyloid deposition, a crucial event of Alzheimer’s disease (AD), emerges in distinct brain regions. A key question is what triggers the assembly of the monomeric amyloid ß-protein (Aß) into fibrils in the regions. On the basis of our previous findings that gangliosides facilitate the initiation of Aß assembly at presynaptic neuritic terminals, we investigated how lipids, including gangliosides, cholesterol and sphingomyelin, extracted from synaptic plasma membranes (SPMs) isolated from autopsy brains were involved in the Aß assembly. We focused on two regions of the cerebral cortex; precuneus and calcarine cortex, one of the most vulnerable and one of the most resistant regions to amyloid deposition, respectively. Here, we show that lipids extracted from SPMs isolated from the amyloid-bearing precuneus, but neither the amyloid-free precuneus nor the calcarine cortex, markedly accelerate the Aß assembly in vitro. Through liquid chromatography-mass spectrometry of the lipids, we identified an increase in the ratio of the level of GD1b-ganglioside containing C20:0 fatty acid to that containing C18:0 as a cause of the enhanced Aß assembly in the precuneus. Our results suggest that the local glycolipid environment play a critical role in the initiation of Alzheimer amyloid deposition. PMID:25798597

  13. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis.

    PubMed

    Lemieux, M Joanne; Mark, Brian L; Cherney, Maia M; Withers, Stephen G; Mahuran, Don J; James, Michael N G

    2006-06-16

    Lysosomal beta-hexosaminidase A (Hex A) is essential for the degradation of GM2 gangliosides in the central and peripheral nervous system. Accumulation of GM2 leads to severely debilitating neurodegeneration associated with Tay-Sachs disease (TSD), Sandoff disease (SD) and AB variant. Here, we present the X-ray crystallographic structure of Hex A to 2.8 A resolution and the structure of Hex A in complex with NAG-thiazoline, (NGT) to 3.25 A resolution. NGT, a mechanism-based inhibitor, has been shown to act as a chemical chaperone that, to some extent, prevents misfolding of a Hex A mutant associated with adult onset Tay Sachs disease and, as a result, increases the residual activity of Hex A to a level above the critical threshold for disease. The crystal structure of Hex A reveals an alphabeta heterodimer, with each subunit having a functional active site. Only the alpha-subunit active site can hydrolyze GM2 gangliosides due to a flexible loop structure that is removed post-translationally from beta, and to the presence of alphaAsn423 and alphaArg424. The loop structure is involved in binding the GM2 activator protein, while alphaArg424 is critical for binding the carboxylate group of the N-acetyl-neuraminic acid residue of GM2. The beta-subunit lacks these key residues and has betaAsp452 and betaLeu453 in their place; the beta-subunit therefore cleaves only neutral substrates efficiently. Mutations in the alpha-subunit, associated with TSD, and those in the beta-subunit, associated with SD are discussed. The effect of NGT binding in the active site of a mutant Hex A and its effect on protein function is discussed.

  15. Crystallographic Structure of Human β-Hexosaminidase A: Interpretation of Tay-Sachs Mutations and Loss of GM2 Ganglioside Hydrolysis

    PubMed Central

    Lemieux, M. Joanne; Mark, Brian L.; Cherney, Maia M.; Withers, Stephen G.; Mahuran, Don J.; James, Michael N. G.

    2010-01-01

    Lysosomal β-hexosaminidase A (Hex A) is essential for the degradation of GM2 gangliosides in the central and peripheral nervous system. Accumulation of GM2 leads to severely debilitating neurodegeneration associated with Tay-Sachs disease (TSD), Sandoff disease (SD) and AB variant. Here, we present the X-ray crystallographic structure of Hex A to 2.8 Å resolution and the structure of Hex A in complex with NAG-thiazoline, (NGT) to 3.25 Å resolution. NGT, a mechanism-based inhibitor, has been shown to act as a chemical chaperone that, to some extent, prevents misfolding of a Hex A mutant associated with adult onset Tay Sachs disease and, as a result, increases the residual activity of Hex A to a level above the critical threshold for disease. The crystal structure of Hex A reveals an αβ heterodimer, with each subunit having a functional active site. Only the α-subunit active site can hydrolyze GM2 gangliosides due to a flexible loop structure that is removed post-translationally from β, and to the presence of αAsn423 and αArg424. The loop structure is involved in binding the GM2 activator protein, while αArg424 is critical for binding the carboxylate group of the N-acetyl-neuraminic acid residue of GM2. The β-subunit lacks these key residues and has βAsp452 and βLeu453 in their place; the β-subunit therefore cleaves only neutral substrates efficiently. Mutations in the α-subunit, associated with TSD, and those in the β-subunit, associated with SD are discussed. The effect of NGT binding in the active site of a mutant Hex A and its effect on protein function is discussed. PMID:16698036

  16. Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation

    PubMed Central

    Fantini, Jacques; Yahi, Nouara; Garmy, Nicolas

    2013-01-01

    Age-related alterations of membrane lipids in brain cell membranes together with high blood cholesterol are considered as major risk factors for Alzheimer's disease. Yet the molecular mechanisms by which these factors increase Alzheimer's risk are mostly unknown. In lipid raft domains of the plasma membrane, neurotoxic Alzheimer's beta-amyloid (Abeta) peptides interact with both cholesterol and ganglioside GM1. Recent data also suggested that cholesterol could stimulate the binding of Abeta to GM1 through conformational modulation of the ganglioside headgroup. Here we used a combination of physicochemical and molecular modeling approaches to decipher the mechanisms of cholesterol-assisted binding of Abeta to GM1. With the aim of decoupling the effect of cholesterol on GM1 from direct Abeta-cholesterol interactions, we designed a minimal peptide (Abeta5-16) containing the GM1-binding domain but lacking the amino acid residues involved in cholesterol recognition. Using the Langmuir technique, we showed that cholesterol (but not phosphatidylcholine or sphingomyelin) significantly accelerates the interaction of Abeta5-16 with GM1. Molecular dynamics simulations suggested that Abeta5-16 interacts with a cholesterol-stabilized dimer of GM1. The main structural effect of cholesterol is to establish a hydrogen-bond between its own OH group and the glycosidic-bond linking ceramide to the glycone part of GM1, thereby inducing a tilt in the glycolipid headgroup. This fine conformational tuning stabilizes the active conformation of the GM1 dimer whose headgroups, oriented in two opposite directions, form a chalice-shaped receptacle for Abeta. These data give new mechanistic insights into the stimulatory effect of cholesterol on Abeta/GM1 interactions. They also support the emerging concept that cholesterol is a universal modulator of protein-glycolipid interactions in the broader context of membrane recognition processes. PMID:23772214

  17. Cholesterol accelerates the binding of Alzheimer's β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation.

    PubMed

    Fantini, Jacques; Yahi, Nouara; Garmy, Nicolas

    2013-01-01

    Age-related alterations of membrane lipids in brain cell membranes together with high blood cholesterol are considered as major risk factors for Alzheimer's disease. Yet the molecular mechanisms by which these factors increase Alzheimer's risk are mostly unknown. In lipid raft domains of the plasma membrane, neurotoxic Alzheimer's beta-amyloid (Abeta) peptides interact with both cholesterol and ganglioside GM1. Recent data also suggested that cholesterol could stimulate the binding of Abeta to GM1 through conformational modulation of the ganglioside headgroup. Here we used a combination of physicochemical and molecular modeling approaches to decipher the mechanisms of cholesterol-assisted binding of Abeta to GM1. With the aim of decoupling the effect of cholesterol on GM1 from direct Abeta-cholesterol interactions, we designed a minimal peptide (Abeta5-16) containing the GM1-binding domain but lacking the amino acid residues involved in cholesterol recognition. Using the Langmuir technique, we showed that cholesterol (but not phosphatidylcholine or sphingomyelin) significantly accelerates the interaction of Abeta5-16 with GM1. Molecular dynamics simulations suggested that Abeta5-16 interacts with a cholesterol-stabilized dimer of GM1. The main structural effect of cholesterol is to establish a hydrogen-bond between its own OH group and the glycosidic-bond linking ceramide to the glycone part of GM1, thereby inducing a tilt in the glycolipid headgroup. This fine conformational tuning stabilizes the active conformation of the GM1 dimer whose headgroups, oriented in two opposite directions, form a chalice-shaped receptacle for Abeta. These data give new mechanistic insights into the stimulatory effect of cholesterol on Abeta/GM1 interactions. They also support the emerging concept that cholesterol is a universal modulator of protein-glycolipid interactions in the broader context of membrane recognition processes.

  18. Axonal Guillain-Barré syndrome: relation to anti-ganglioside antibodies and Campylobacter jejuni infection in Japan.

    PubMed

    Ogawara, K; Kuwabara, S; Mori, M; Hattori, T; Koga, M; Yuki, N

    2000-10-01

    To clarify the relations of the axonal form of Guillain-Barré syndrome (GBS) to anti-ganglioside antibodies and Campylobacter jejuni infection, 86 consecutive Japanese GBS patients were studied. Electrodiagnostic criteria showed acute inflammatory demyelinating polyneuropathy in 36% of the patients and acute motor axonal neuropathy (AMAN) in 38%. Frequent anti-ganglioside antibodies were of the IgG class and against GM1 (40%), GD1a (30%), GalNAc-GD1a (17%), and GD1b (21%). Identified infections were C. jejuni (23%), cytomegalovirus (10%), Mycoplasma pneumoniae (6%), and Epstein-Barr virus (3%). There was a strong association between AMAN and IgG antibodies against GM1, GD1a, GalNAc-GD1a, or GD1b. Almost all the patients with at least one of these antibodies had the AMAN pattern or rapid resolution of conduction slowing/block possibly because of early-reversible changes on the axolemma. C. jejuni infection was frequently associated with AMAN or anti-ganglioside antibodies, but more than half of the patients with AMAN or anti-ganglioside antibodies were C. jejuni-negative. These findings suggest that the three phenomena "axonal dysfunctions (AMAN or early-reversible conduction failure)," "IgG antibodies against GM1, GD1a, GalNAc-GD1a, or GD1b," and "C. jejuni infection" are closely associated but that microorganisms other than C. jejuni frequently trigger an anti-ganglioside response and elicit axonal GBS.

  19. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration.

    PubMed

    Vyas, Alka A; Patel, Himatkumar V; Fromholt, Susan E; Heffer-Lauc, Marija; Vyas, Kavita A; Dang, Jiyoung; Schachner, Melitta; Schnaar, Ronald L

    2002-06-11

    Myelin-associated glycoprotein (MAG) binds to the nerve cell surface and inhibits nerve regeneration. The nerve cell surface ligand(s) for MAG are not established, although sialic acid-bearing glycans have been implicated. We identify the nerve cell surface gangliosides GD1a and GT1b as specific functional ligands for MAG-mediated inhibition of neurite outgrowth from primary rat cerebellar granule neurons. MAG-mediated neurite outgrowth inhibition is attenuated by (i) neuraminidase treatment of the neurons; (ii) blocking neuronal ganglioside biosynthesis; (iii) genetically modifying the terminal structures of nerve cell surface gangliosides; and (iv) adding highly specific IgG-class antiganglioside mAbs. Furthermore, neurite outgrowth inhibition is mimicked by highly multivalent clustering of GD1a or GT1b by using precomplexed antiganglioside Abs. These data implicate the nerve cell surface gangliosides GD1a and GT1b as functional MAG ligands and suggest that the first step in MAG inhibition is multivalent ganglioside clustering.

  20. Ganglioside metabolism in a transgenic mouse model of Alzheimer's disease: expression of Chol-1α antigens in the brain.

    PubMed

    Ariga, Toshio; Yanagisawa, Makoto; Wakade, Chandramohan; Ando, Susumu; Buccafusco, Jerry J; McDonald, Michael P; Yu, Robert K

    2010-10-04

    The accumulation of Aβ (amyloid β-protein) is one of the major pathological hallmarks in AD (Alzheimer's disease). Gangliosides, sialic acid-containing glycosphingolipids enriched in the nervous system and frequently used as biomarkers associated with the biochemical pathology of neurological disorders, have been suggested to be involved in the initial aggregation of Aβ. In the present study, we have examined ganglioside metabolism in the brain of a double-Tg (transgenic) mouse model of AD that co-expresses mouse/human chimaeric APP (amyloid precursor protein) with the Swedish mutation and human presenilin-1 with a deletion of exon 9. Although accumulation of Aβ was confirmed in the double-Tg mouse brains and sera, no statistically significant change was detected in the concentration and composition of major ganglio-N-tetraosyl-series gangliosides in the double-Tg brain. Most interestingly, Chol-1α antigens (cholinergic neuron-specific gangliosides), such as GT1aα and GQ1bα, which are minor species in the brain, were found to be increased in the double-Tg mouse brain. We interpret that the occurrence of these gangliosides may represent evidence for generation of cholinergic neurons in the AD brain, as a result of compensatory neurogenesis activated by the presence of Aβ.

  1. Involvement of gangliosides in the process of Cbp/PAG phosphorylation by Lyn in developing cerebellar growth cones.

    PubMed

    Sekino-Suzuki, Naoko; Yuyama, Kohei; Miki, Toshiaki; Kaneda, Mizuho; Suzuki, Hidenori; Yamamoto, Naomasa; Yamamoto, Tadashi; Oneyama, Chitose; Okada, Masato; Kasahara, Kohji

    2013-02-01

    The association of gangliosides with specific proteins in the central nervous system was examined by coimmunoprecipitation with an anti-ganglioside antibody. The monoclonal antibody to the ganglioside GD3 (R24) immunoprecipitated the Csk (C-terminal src kinase)-binding protein (Cbp). Sucrose density gradient analysis showed that Cbp of rat cerebellum was detected in detergent-resistant membrane (DRM) raft fractions. R24 treatment of the rat primary cerebellar cultures induced Lyn activation and tyrosine phosphorylation of Cbp. Treatment with anti-ganglioside GD1b antibody also induced tyrosine phosphorylation. Furthermore, over-expressions of Lyn and Cbp in Chinese hamster ovary (CHO) cells resulted in tyrosine 314 phosphorylation of Cbp, which indicates that Cbp is a substrate for Lyn. Immunoblotting analysis showed that the active form of Lyn and the Tyr314-phosphorylated form of Cbp were highly accumulated in the DRM raft fraction prepared from the developing cerebellum compared with the DRM raft fraction of the adult one. In addition, Lyn and the Tyr314-phosphorylated Cbp were highly concentrated in the growth cone fraction prepared from the developing cerebellum. Immunoelectron microscopy showed that Cbp and GAP-43, a growth cone marker, are localized in the same vesicles of the growth cone fraction. These results suggest that Cbp functionally associates with gangliosides on growth cone rafts in developing cerebella. © 2012 International Society for Neurochemistry.

  2. Radiometric assay for ganglioside sialidase applied to the determination of the enzyme subcellular location in culture human fibroblasts

    SciTech Connect

    Chigorno, V.; Cardace, G.; Pitto, M.; Sonnino, S.; Ghidoni, R.; Tettamanti, G.

    1986-03-01

    A radiometric method for the assay of ganglioside sialidase in cultured human fibroblasts was set up. As substrate, highly radioactive (1.28 Ci/mmol) ganglioside GD/sub 1a/ isotopically tritium-labeled at carbon C-3 of the long chain base was employed; the liberated, and TLC separated (/sup 3/H)GM/sub 1/ was determined by computer-assisted radiochromatoscanning. Under experimental conditions that provided a low and quite acceptable (4-5%) coefficient of variation, the detection limit of the method was 0.1 nmol of liberated GM/sub 1/, using as low as 10 ..mu..g of fibroblast homogenate as protein. The detection limit could be lowered to 0.02-0.03 nmol, adopting conditions that, however, carried a higher analytical error (coefficient of variation over 10%). The content of ganglioside sialidase in human fibroblasts cultured in 75-cm/sup 2/ plastic flasks was 5.8 -/+ 2.5 (SD) nmol liberated GM/sub 1/ h/sup -1/ mg protein/sup -1/. Subfractionation studies performed on fibroblast homogenate showed that the ganglioside sialidase was mainly associated with the light membrane subfraction that was rich in plasma and intracellular membranes. This subfraction displayed almost no sialidase activity on the artificial substrate 4-methylumbelliferyl-D-N-acetylneuraminic acid. A small but measurable ganglioside sialidase activity was also present in the lysosome-enriched subfraction, which contained a very high sialidase activity on the above artificial substrate.

  3. Constituents of ophiuroidea. 1. Isolation and structure of three ganglioside molecular species from the brittle star Ophiocoma scolopendrina.

    PubMed

    Inagaki, M; Shibai, M; Isobe, R; Higuchi, R

    2001-12-01

    Three ganglioside molecular species, OSG-0 (1), OSG-1 (2), and OSG-2 (3) have been obtained from the polar lipid fraction of the chloroform/methanol extract of the brittle star Ophiocoma scolopendrina. The structures of these gangliosides have been determined on the basis of chemical and spectroscopic evidence as 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (1), 1-O-[8-O-sulfo-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyll-ceramide (2) and 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->8)-(N-acetyl- and N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moieties were composed of heterogeneous unsubstituted fatty acid, 2-hydroxy fatty acid and phytosphingosine units. Compounds 2 and 3 represent new ganglioside molecular species.

  4. Ganglioside GD3 monoclonal antibody-induced paxillin tyrosine phosphorylation and filamentous actin assembly in cerebellar growth cones.

    PubMed

    Yuyama, Kohei; Sekino-Suzuki, Naoko; Yamamoto, Naomasa; Kasahara, Kohji

    2011-03-01

    We have demonstrated that antibody to ganglioside GD3 (R24) immunoprecipitates src-family tyrosine kinase Lyn from primary cerebellar granule cells and R24 treatment of the intact cells induces Lyn activation and rapid tyrosine phosphorylation of several substrates, suggesting the functional association of ganglioside GD3 with Lyn. In this study, R24 treatment of primary cerebellar granule cells enhances phosphorylation of paxillin at tyrosine residue 118 and induces filamentous actin assembly and neurite outgrowth. R24 treatment of cerebellar growth cone membrane fraction induces prominent tyrosine phosphorylation of 68 kDa protein which comigrates with phosphopaxillin at tyrosine residue 118. Tyrosine phosphorylation of paxillin is known to regulate actin cytoskeleton-dependent changes in cell morphology. Signal transduction by ganglioside GD3 is involved in growth cone morphology via tyrosine phosphorylation of paxillin. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  5. Effect of denervation on a cholinergic-specific ganglioside antigen (Chol-1) present in Torpedo electromotor presynaptic plasma membranes.

    PubMed

    Ferretti, P; Borroni, E

    1984-04-01

    The presence of Chol-1, an antigen identified in the plasma membrane of cholinergic electromotor nerve terminals of Torpedo marmorata, was investigated in Torpedo electric organ after 3, 6, and 9 weeks' denervation. Denervation was monitored by the cessation of stimulus-evoked discharge potentials, by the reduction in nerve terminals seen morphologically, and by the decrease in ACh and ChAT contents. The content of ganglioside-bound sialic acid did not show any appreciable change with time. Some modification of ganglioside pattern on TLC was observed after 9 weeks' denervation. The presence of Chol-1 after denervation was assayed by its activity in inhibiting the selective complement-induced lysis of the cholinergic subpopulation of guinea pig cortical synaptosome which is mediated by the anti-Chol-1 antiserum. Denervation did not affect Chol-1 immunoreactivity although it did alter the distribution of the immunoreactivity among gangliosides. The possible significance of the results is discussed.

  6. [Gangliosides in vitro effects on lymphocytes from patients with chronic Chagas disease stimulated with mitogens or heart or brain antigens].

    PubMed

    Cabral, Humberto R A; Novak, Ivón T C

    2003-01-01

    In human Chagas'disease previous work has shown the occurrence of a T-lymphocyte CD4-positive population (a high producer of PAS-positive glycoproteins) with evidence suggesting a role in the formation of damages to the myocardium and neural structures in chagasic heart disease (ChHD). Other workers have taken such facts into consideration and have employed gangliosides (biological substances with neurotrophic and immunomodulatory properties) in chagasics with chronic cardiomyopathy and disautonomic signs, obtaining an Improvement in functional signs and a decrease in the number of PAS+ lymphocytes. In the present work we have studied the effect of mixed gangliosides (Cronassial on cell cultures of total leukocytes, or on mononuclear cells prepared through Ficoll-Hypaque. Blood was obtained from 14 patients with ChHD. Experiments were undertaken to assess the effect of policlonal mitogens Phytohaemagglutinin (Phy) and Concanavalin A (Con A) on blastic transformation, estimated by cell size and cytologic study. In addition, the production of PAS+ substances by the lymphocytes and blast were assessed. Gangliosides were added at final concentrations of 100 mg/ml or 200 mg/ ml. Cell viability was assessed by means of the Trypan blue test. With respect to blastic transformation, results showed a significant decrease in the cultures that received gangliosides 24 hours before mltogen administration, as compared with controls (p<0.001) (both for Phy and Con A). On the other hand, the production of lymphocytic PAS+ substances decreased in the cultures of chagasics in which gangliosides were added. Some of these results confirmed previous findings on the matter. The facts suggest that gangliosides can modulate some lymphocytic activities in chagasics.

  7. Anti-ganglioside complex IgM antibodies in multifocal motor neuropathy and chronic immune-mediated neuropathies.

    PubMed

    Nobile-Orazio, Eduardo; Giannotta, Claudia; Briani, Chiara

    2010-02-26

    Anti-ganglioside complexes (GSCs) IgG antibodies have been reported in patients with Guillain-Barré (GBS) or Fisher syndrome but little is known on their presence in multifocal motor neuropathy (MMN) or other chronic immune-mediated neuropathies. We examined 24 patients with MMN, 34 with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), 23 with neuropathy associated with IgM monoclonal gammopathy (PN+IgM), 13 with GBS, 34 with motor neuron disease (MND), 24 with other neuropathies and 20 normal subjects. Patients' sera were tested by ELISA for IgM reactivity to GM1, GM2, GD1a, GD1b and GT1b and with GSCs made by any combination of two of these gangliosides. In all GM1 positive patients with MMN (11), PN+IgM (1), CIDP (1) and POEMS (1), binding to GM1 was abolished or consistently reduced when tested in GSCs also containing GD1a or other gangliosides. This only occurred in one of the three GM1 positive MND patients. In a patient with PN-IgM and anti-GM2 and GD1a IgM, both reactivities were reduced when tested in GSCs also containing GM1. New reactivities were found in a patient with CIDP and anti-GD1b IgM who presented an additional reactivity to GT1b/GM1 and GT1b/GM2 GSCs, and in one with PN-IgM who had reactivity to GM2/GD1b but not to individual gangliosides. Testing for IgM antibodies to GSCs rarely permitted to identify new reactivities in chronic immune neuropathies. IgM binding to gangliosides was however often modified in GSCs suggesting that these reactivities may be affected by contiguous gangliosides possibly influencing their pathogenicity. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Inhibition of ganglioside GD1a synthesis suppresses the differentiation of human mesenchymal stem cells into osteoblasts.

    PubMed

    Yang, Hyo Jung; Jung, Kyu Yong; Kwak, Dong Hoon; Lee, So-Hyun; Ryu, Jae-Sung; Kim, Ji-Su; Chang, Kyu-Tae; Lee, Jeong Woong; Choo, Young-Kug

    2011-04-01

    In this study, we investigated the regulatory role of ganglioside GD1a in the differentiation of osteoblasts from human mesenchymal stem cells (hMSCs) by using lentivirus-containing short hairpin (sh)RNA to knockdown ST3 β-galactoside α-2, 3-sialyltransferase 2 (ST3Gal II) mRNA expression. After hMSCs were infected for 72 h with the lentivirus constructed with ST3Gal II shRNAs, the puromycin-resistant cells were selected and subcultured to produce hMSCs with ST3Gal II mRNA knockdown. The hMSCs established from human dental papilla abundantly expressed CD44 and CD105, but not CD45 and CD117. Osteoblasts that differentiated from normal hMSCs showed a significant increase in alkaline phosphatase (ALP) activity and ganglioside GD1a expression level compared with those in hMSCs. Lentiviral infection of hMSCs successfully induced a marked inhibition of ST3Gal II mRNA expression and caused a significant decrease in ALP activity and ganglioside GD1a expression. During osteoblastic differentiation, the increased ALP activity remarkably reduced by suppression of ganglioside GD1a expression by ST3Gal II shRNA. Ganglioside GD1a and ALP were mainly expressed in the cell body of hMSCs and osteoblasts with colocalization. The phosphorylation of extracellular signal-regulated kinases (ERK) 1/2 mitogen-activated protein (MAP) kinase and epidermal growth factor receptor (EGFR) was significantly reduced in the osteoblasts that had differentiated from the hMSCs with ST3Gal II mRNA knockdown. These results suggest that ganglioside GD1a plays an important role in the regulation of osteoblastic differentiation of hMSCs through the activation of ERK 1/2 MAP kinase and EGFR. © 2011 The Authors. Journal compilation © 2011 Japanese Society of Developmental Biologists.

  9. Interfacial stabilization of the antitumoral drug Paclitaxel in monolayers of GM1 and GD1a gangliosides.

    PubMed

    Heredia, Valeria; Maggio, Bruno; Beltramo, Dante M; Dupuy, Fernando G

    2015-10-01

    Molecular interactions between the anti-cancer agent Paclitaxel (Ptx), and two gangliosides with different sialic acid content, GM1 and GD1a, were investigated using the Langmuir film balance technique. Ptx showed interfacial activity reducing the air/water surface tension by 18 mN·m(-1). However, the drug was able to insert into preformed ganglioside monolayers at much higher surface pressures, indicating a preferential interaction of Ptx with GM1 and GD1a. Compression isotherms of binary mixtures of Ptx and GM1 or GD1a also indicated non-ideal mixed monolayers in which the drug became stabilized at the interface in the presence of gangliosides. Ptx reached much higher surface pressure values in the mixed monolayers than those sustained in pure Ptx, although partial desorption of the drug from the interface into the subphase was also observed at high Ptx contents. The mean molecular area of the mixtures showed condensation, mainly in the case of GD1a, whereas Ptx induced a decrease in the compressibility of monolayers when mixed with either GM1 or GD1a. Additionally, Brewster angle microscopy analysis indicated that higher amounts of Ptx are present at the mixed ganglioside/Ptx interface when compared to pure drug monolayers. Finally, GD1a micelles increased in size in the presence of Ptx, whereas GM1 micelles kept their diameter, according to dynamic light scattering measurements, which could be explained by the different properties of ganglioside monolayers. The results obtained on ganglioside-Ptx interactions allowed interpreting the different Ptx loading capacity of GM1 and GD1a, enabling them to act as potential drug carriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Experimental allergic neuritis-like disease in rabbits after injection with influenza vaccines mixed with gangliosides and adjuvants.

    PubMed Central

    Ziegler, D W; Gardner, J J; Warfield, D T; Walls, H H

    1983-01-01

    An experimental allergic neuritis-like disease was induced in rabbits 3 to 8 weeks after injection with large doses of influenza vaccines mixed with gangliosides, cholesterol, and Freund complete adjuvant. The inclusion of gangliosides was essential to induce the experimental allergic neuritis-like disease. In trials with six different lots of vaccine, both swine influenza and non-swine influenza vaccines produced by four different manufacturers induced experimental allergic neuritis-like disease in 26 of 43 inoculated rabbits. Images PMID:6642653

  11. First case of anti-ganglioside GM1-positive Guillain-Barré syndrome due to hepatitis E virus infection.

    PubMed

    Maurissen, I; Jeurissen, A; Strauven, T; Sprengers, D; De Schepper, B

    2012-06-01

    A 51-year-old previously healthy woman presented with Guillain-Barré syndrome (GBS) and elevated liver enzymes. Further diagnostic investigations showed the presence of an acute hepatitis E infection associated with anti-ganglioside GM1 antibodies. After treatment with intravenous immunoglobulins, the patient made a rapid recovery. Here, we report the first case of GBS due to acute hepatitis E virus (HEV) infection associated with the presence of anti-ganglioside GM1 antibodies. We also review available literature on the association between acute HEV infection and GBS.

  12. Condensing and fluidizing effects of ganglioside GM1 on phospholipid films.

    PubMed

    Frey, Shelli L; Chi, Eva Y; Arratia, Cristóbal; Majewski, Jaroslaw; Kjaer, Kristian; Lee, Ka Yee C

    2008-04-15

    Mixed monolayers of the ganglioside G(M1) and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by G(M1) on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for G(M1) concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of G(M1) (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher G(M1) concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that G(M1) and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/G(M1) binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of G(M1) to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the G(M1) molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the G(M1) molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the G(M1) molecule.

  13. Condensing and Fluidizing Effects of Ganglioside GM1 on Phospholipid Films

    PubMed Central

    Frey, Shelli L.; Chi, Eva Y.; Arratia, Cristóbal; Majewski, Jaroslaw; Kjaer, Kristian; Lee, Ka Yee C.

    2008-01-01

    Mixed monolayers of the ganglioside GM1 and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by GM1 on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for GM1 concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of GM1 (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher GM1 concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that GM1 and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/GM1 binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of GM1 to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the GM1 molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the GM1 molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the GM1 molecule. PMID:18192361

  14. Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3.

    PubMed

    Shibuya, Hidenobu; Hamamura, Kazunori; Hotta, Hiroshi; Matsumoto, Yasuyuki; Nishida, Yoshihiro; Hattori, Hisashi; Furukawa, Keiko; Ueda, Minoru; Furukawa, Koichi

    2012-09-01

    The expression and implications of gangliosides in human osteosarcomas have not been systematically analyzed. In this study, we showed that gangliosides GD3 and GD2 are highly expressed in the majority of human osteosarcoma cell lines derived from oral cavity regions. Introduction of GD3 synthase cDNA into a GD3/GD2-negative (GD3/GD2-) human osteosarcoma subline resulted in the establishment of GD3/GD2+ transfectant cells. They showed increased cell migration and invasion activities in wound healing and Boyden chamber invasion assays, respectively, compared to the control cells. When treated with serum, GD3/GD2+ cells showed stronger tyrosine phosphorylation of p130Cas, focal adhesion kinase, and paxillin than GD3/GD2- cells. In particular, paxillin underwent much stronger phosphorylation, suggesting its role in cell motility. Furthermore, we tried to dissect the roles of GD3 and GD2 in the malignant properties of the transfectant cells by establishing single ganglioside-expressing cells, that is, either GD3 or GD2. Although GD3/GD2+ cells showed the most malignant properties, GD2+ cells showed almost equivalent levels to GD3/GD2+ cells in invasion and migration activities, and in the intensities of tyrosine phosphorylation of paxillin. Among Src family kinases, Lyn was expressed predominantly, and was involved in the invasion and motility of GD3- and/or GD2-expressing transfectants. Furthermore, it was elucidated by gene silencing that Lyn was located in a different pathway from that of FAK to eventually lead paxillin activation. These results suggested that GD2/GD3 are responsible for the enhancement of the malignant features of osteosarcomas, and might be candidate targets in molecular-targeted therapy. © 2012 Japanese Cancer Association.

  15. Myelin-associated glycoprotein (MAG) protects neurons from acute toxicity using a ganglioside-dependent mechanism.

    PubMed

    Mehta, Niraj R; Nguyen, Thien; Bullen, John W; Griffin, John W; Schnaar, Ronald L

    2010-03-17

    Myelin-associated glycoprotein (MAG), a protein expressed on the innermost wrap of myelin, contributes to long-term axon stability as evidenced by progressive axon degeneration in Mag-null mice. Recently, MAG was also found to protect axons from acute toxic insults. In the current study, rat dorsal root ganglion neurons were cultured on control substrata and substrata adsorbed with myelin proteins. Neurons on myelin-adsorbed surfaces were resistant to acute degeneration of neurites induced by vincristine, a cancer chemotherapeutic agent with neuropathic side effects. Myelin-mediated protection was reversed by anti-MAG antibody and was absent when cells were cultured on extracts from Mag-null mouse myelin, confirming the protective role of MAG. Gangliosides (sialylated glycosphingolipids) are one functional class of axonal receptors for MAG. In the current studies, a direct role for gangliosides in mediating the acute protective effects of MAG was established. Treatment of neurons with sialidase, an enzyme that cleaves the terminal sialic acids required for MAG binding, reversed MAG's protective effect, as did treatment with (1R,2R)-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, an inhibitor of glycosphingolipid biosynthesis. In contrast, treatment with phosphatidylinositol-specific phospholipase C, an enzyme that cleaves Nogo receptors (NgR, another class of MAG receptor), or with a peptide inhibitor of an NgR-associated signaling molecule p75(NTR), failed to diminish MAG-mediated protection. Inhibiting the Rho-associated protein kinase ROCK reversed protection. We conclude that MAG protects neurites from acute toxic insult via a ganglioside-mediated signaling pathway that involves activation of RhoA. Understanding MAG-mediated protection may provide opportunities to reduce axonal damage and loss.

  16. Specific tritium labeling of gangliosides at the 3-position of sphingosines

    SciTech Connect

    Ghidoni, R.; Sonnino, S.; Masserini, M.; Orlando, P.; Tettamanti, G.

    1981-11-01

    GM1 and GD1a gangliosides, treated with 2,3-dichloro-5,6-dicyano benzoquinone (DDQ) in the presence of Triton X-100 and in a toluene medium were specifically oxidized at the 3-position of sphingosine. The maximum reaction yield (65%) was obtained after 40 hours at 37 degrees C with the following molar ratio of reactants: ganglioside-Triton X-100-DDQ 1:70:125. The formation of the 3-keto derivatives of GM1 and GD1a was demonstrated by: a) the appearance of a sharp peak at 1700 cm-1 and of a broad band at 1250 cm-1 (typical of allylic ketones and of carbonyl groups, respectively) in the infra-red spectrum; b) the appearance of an absorption maximum at 230 nm, identical to that featured by 3-keto-cerebrosides, in the ultraviolet spectrum; c) the degradation of long chain bases during the process of release from gangliosides and derivatization for analysis by gas-liquid chromatography (expected for long chain bases carrying a keto group in the 3-position); and d) the quantitative transformation of 3-keto-GM1 and 3-keto-GD1a to GM1 and GD1a, respectively, upon NaBH4 reduction. Reduction of 3-keto-GM1 and 3-keto-GD1a with (/sup 3/H)-NaBH4 produced /sup 3/H-labeled GM1 and GD1a. (/sup 3/H)GM1 and (/sup 3/H)GD1a maintained the same carbohydrate and fatty acid composition of the original GM1 and GD1a, and did not contain any saturated long chain bases. Direct proof that the label was at C-3 of long chain bases was given by reoxidation with DDQ, which completely removed the label, and by ozonolysis, after which label was retained on the oligosaccharide-containing fragment. More than 99% of incorporated radioactivity was carried by the long chain bases. The radiochemical purity of labeled gangliosides was greater than 95% and the specific radioactivity was 1.25 and 1.28 Ci/m mol for (/sup 3/H)GM1 and (/sup 3/H)GD1a, respectively.

  17. The ganglioside GQ1b regulates BDNF expression via the NMDA receptor signaling pathway.

    PubMed

    Shin, Min Kyoo; Jung, Woo Ram; Kim, Hong Gi; Roh, Seung Eon; Kwak, Choong Hwan; Kim, Cheorl Ho; Kim, Sang Jeong; Kim, Kil Lyong

    2014-02-01

    Gangliosides are sialic acid-containing glycosphingolipids which play a role in neuronal functions. Among the gangliosides, tetrasialoganglioside GQ1b shows neurotrophic factor-like actions, such as increasing neurite outgrowth, cell proliferation, and long-term potentiation. In addition, we recently reported that GQ1b improves spatial learning and memory performance in naïve rats. However, it is still unknown how GQ1b exerts its diverse neuronal functions. Thus, we hypothesized that GQ1b might influence synaptic activity by regulating brain-derived neurotrophic factor (BDNF) expression, which is an important protein for synaptic plasticity and cognition. Interestingly, GQ1b treatment increased BDNF expression in GQ1b-null SH-SY5Y cell lines and rat primary cortical neurons. Additionally, we confirmed whether the observed effects were due to GQ1b or due to a ganglioside with fewer sialic acid molecules (GT1b and GD1b) created by the sialidases present on the plasma membranes, by directly applying GT1b and GD1b or GQ1b co-treated with a sialidase inhibitor. Treatment with GT1b or GD1b had no effect on BDNF expression, whereas co-treatment with a sialidase inhibitor and GQ1b significantly increased BDNF levels. Moreover, GQ1b restored the decreased BDNF expression induced by the ganglioside synthesis inhibitor, D-PDMP, in rat primary cortical neurons. GQ1b treatment significantly increased BDNF levels, whereas pretreatment with the N-methyl-d-aspartate (NMDA) receptor antagonist D-AP5 blocked the effects of GQ1b on BDNF expression, suggesting that GQ1b regulates BDNF expression via the NMDA receptor signaling. Finally, we performed an intracerebroventricular GQ1b injection, which resulted in increased prefrontal and hippocampal BDNF expression in vivo. These findings demonstrate, for the first time, that tetrasialoganglioside GQ1b regulates BDNF expression in vitro and in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6.

    PubMed

    Miyata, Maiko; Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko; Sugiura, Kazumitsu; Furukawa, Koichi; Furukawa, Keiko

    2014-03-07

    Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.

  19. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts.

    PubMed

    Nikolaeva, Svetlana; Bayunova, Lubov; Sokolova, Tatyana; Vlasova, Yulia; Bachteeva, Vera; Avrova, Natalia; Parnova, Rimma

    2015-03-01

    Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-β-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells.

  20. GBM Derived Gangliosides Induce T Cell Apoptosis through Activation of the Caspase Cascade Involving Both the Extrinsic and the Intrinsic Pathway

    PubMed Central

    Rayman, Patricia; Chahlavi, Ali; Ko, Jennifer; Bhattacharjee, Ashish; Li, Yu-Teh; Li, Yuntao; Das, Tanya; Sa, Gaurisankar; Raychaudhuri, Baisakhi; Vogelbaum, Michael A.; Tannenbaum, Charles; Finke, James H.; Biswas, Kaushik

    2015-01-01

    Previously we demonstrated that human glioblastoma cell lines induce apoptosis in peripheral blood T cells through partial involvement of secreted gangliosides. Here we show that GBM-derived gangliosides induce apoptosis through involvement of the TNF receptor and activation of the caspase cascade. Culturing T lymphocytes with GBM cell line derived gangliosides (10-20μg/ml) demonstrated increased ROS production as early as 18 hrs as indicated by increased uptake of the dye H2DCFDA while western blotting demonstrated mitochondrial damage as evident by cleavage of Bid to t-Bid and by the release of cytochrome-c into the cytosol. Within 48-72 hrs apoptosis was evident by nuclear blebbing, trypan blue positivity and annexinV/7AAD staining. GBM-ganglioside induced activation of the effector caspase-3 along with both initiator caspases (-9 and -8) in T cells while both the caspase-8 and -9 inhibitors were equally effective in blocking apoptosis (60% protection) confirming the role of caspases in the apoptotic process. Ganglioside-induced T cell apoptosis did not involve production of TNF-α since anti-human TNFα antibody was unable to protect T cells from nuclear blebbing and subsequent cell death. However, confocal microscopy demonstrated co-localization of GM2 ganglioside with the TNF receptor and co-immunoprecipitation experiments showed recruitment of death domains FADD and TRADD with the TNF receptor post ganglioside treatment, suggesting direct interaction of gangliosides with the TNF receptor. Further confirmation of the interaction between GM2 and TNFR1 was obtained from confocal microscopy data with wild type and TNFR1 KO (TALEN mediated) Jurkat cells, which clearly demonstrated co-localization of GM2 and TNFR1 in the wild type cells but not in the TNFR1 KO clones. Thus, GBM-ganglioside can mediate T cell apoptosis by interacting with the TNF receptor followed by activation of both the extrinsic and the intrinsic pathway of caspases. PMID:26226135

  1. Assessment of ganglioside age-related and topographic specificity in human brain by Orbitrap mass spectrometry.

    PubMed

    Sarbu, Mirela; Dehelean, Liana; Munteanu, Cristian V A; Vukelić, Željka; Zamfir, Alina D

    2017-03-15

    The gangliosides (GGs) of the central nervous system (CNS) exhibit age and topographic specificity and these patterns may correlate with the functions and pathologies of the brain regions. Here, chloroform extraction, nanoelectrospray (nanoESI) negative ionization, together with Orbitrap high resolution mass spectrometry (MS) determined the topographic and age-related GG specificity in normal adult human brain. Mapping of GG mixtures extracted from 20 to 82 year old frontal and occipital lobes revealed besides a decrease in the GG number with age, a variability of sialylation degree within the brain regions. From the 111 species identified, 105 were distinguished in the FL20, 74 in OL20, 46 in FL82 and 56 in OL82. The results emphasize that within the juvenile brain, GG species exhibit a higher expression in the FL than in OL, while in the aged brain the number of GG species is higher in the OL. By applying MS/MS analysis, the generated fragment ions confirmed the incidence of GT1c (d18:1/18:0) and GT1c (d18:1/20:0) in the investigated samples. The present findings are of major value for further clinical studies carried out using Orbitrap MS in order to correlate gangliosides with CNS disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Elevation of GM2 ganglioside during ethanol-induced apoptotic neurodegeneration in the developing mouse brain.

    PubMed

    Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko

    2012-05-01

    GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration.

  3. Deficiency of ganglioside GM1 correlates with Parkinson's disease in mice and humans.

    PubMed

    Wu, Gusheng; Lu, Zi-Hua; Kulkarni, Neil; Ledeen, Robert W

    2012-10-01

    Several studies have successfully employed GM1 ganglioside to treat animal models of Parkinson's disease (PD), suggesting involvement of this ganglioside in PD etiology. We recently demonstrated that genetically engineered mice (B4galnt1(-/-) ) devoid of GM1 acquire characteristic symptoms of this disorder, including motor impairment, depletion of striatal dopamine, selective loss of tyrosine hydroxylase-expressing neurons, and aggregation of α-synuclein. The present study demonstrates similar symptoms in heterozygous mice (HTs) that express only partial GM1 deficiency. Symptoms were alleviated by administration of L-dopa or LIGA-20, a membrane-permeable analog of GM1 that penetrates the blood-brain barrier and accesses intracellular compartments. Immunohistochemical analysis of paraffin sections from PD patients revealed significant GM1 deficiency in nigral dopaminergic neurons compared with age-matched controls. This was comparable to the GM1 deficiency of HT mice and suggests that GM1 deficiency may be a contributing factor to idiopathic PD. We propose that HT mice with partial GM1 deficiency constitute an especially useful model for PD, reflecting the actual pathophysiology of this disorder. The results point to membrane-permeable analogs of GM1 as holding promise as a form of GM1 replacement therapy.

  4. Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons

    SciTech Connect

    Vaccarino, F.; Guidotti, A.; Costa, E.

    1987-12-01

    In primary cultures of cerebellar granule cells, protein kinase C (PKC) translocation and activation can be triggered by the stimulation of excitatory amino acid neurotransmitter receptors. Glutamate evokes a dose-related translocation of 4-..beta..-(/sup 3/H)phorbol 12,13-dibutyrate /(/sup 3/H)-P(BtO)/sub 2// binding sites from the cytosol to the neuronal membrane and stimulates the incorporation of /sup 32/P into a number of membrane proteins, particularly protein bands in the range of 80, 50, and 40 kDa. The glutamate-evoked PKC translocation is Mg/sup 2 +/ sensitive, is prevented by 2-amino-5-phosphonovalerate and phencyclidine, is not inhibited by nitrendipine (a voltage-dependent Ca/sup 2 +/-channel-blocker) but is abolished by the removal of Ca/sup 2 +/ from the incubation medium, suggesting that glutamate-mediated Ca/sup 2 +/ influx is operative in the redistribution of PKC. Exposure of granule cells to the gangliosides trisialosylgangliotetraglycosylceramide (GT1b) of monosialosylgangliotetraglycosylceramide (GM1) inhibits the translocation and activation of PKC evoked by glutamate. These glycosphingolipids fail to interfere with glutamate binding to its high-affinity recognition site of with the (/sup 3/H)P(BtO)/sub 2/ binding, nor do they affect the Ca/sup 2 +/ influx. These gangliosides may prevent PKC translocation by interfering with the PKC binding to the neuronal membrane phosphatidylserine.

  5. Inter-laboratory validation of an ELISA for the determination of serum anti-ganglioside antibodies.

    PubMed

    Willison, H J; Veitch, J; Swan, A V; Baumann, N; Comi, G; Gregson, N A; Illa, I; Zielasek, J; Hughes, R A

    1999-01-01

    Anti-ganglioside antibodies are frequently sought in the sera of patients with autoimmune peripheral neuropathy, using an enzyme-linked immunosorbent assay (ELISA) as the principal method for antibody detection. Wide variations in assay performance between laboratories have been reported. In this study, we established a standardized ELISA method between laboratories within the European Inflammatory Neuropathy Cause and Treatment (INCAT) group and determined the inter-laboratory variance in assay performance using both the standardized INCAT method and in-house local methods. As expected, the inter-laboratory variances were greater using local methods than using the standardized method, producing titre estimates which could be 24.8 or 7.6 times larger or smaller, respectively, than the true means for these laboratories. Using the standardized method, the within laboratory measurement error accounted for 41% of the inter-laboratory variation, providing a theoretical upper limit to which technical improvements within laboratories could reduce inter-laboratory variation. These data describe the intrinsic weaknesses within the widely used ganglioside antibody ELISA methods and reinforce the importance of inter-laboratory cooperation within this area. Standardized serological reagents used in this study are available from INCAT members. Copyright 1999 Lippincott Williams & Wilkins

  6. Modulation of the neurotensin solution structure in the presence of ganglioside GM1 bicelle.

    PubMed

    Khatun, Ummul Liha; Goswami, Sudipto Kishore; Mukhopadhyay, Chaitali

    2012-07-01

    Neurotensin (NT) is an endogenous tridecapeptide neurotransmitter that shows multiple biological function in central and peripheral nervous systems. Gangliosides are glycosphingolipids, most abundant in the plasma membrane of nerve cells. Here we investigate the change of neurotensin solution structure induced by isotropic CHAPS-PC bicelles with and without ganglioside GM1 using solution state NMR spectroscopy. In aqueous solution the peptide is predominately unstructured. In the presence of bicelle overall structure of the peptide is stabilized. In CHAPS-PC bicelle neurotensin adopts 3(10) helical structure. In the presence of GM1 containing bicelle, the peptide adopts predominately 3(10) helical structures with small amount of α-helical structure. These results are consistent with the CD spectroscopic results. Neurotensin interacts better with GM1 containing bicelle than that of the CHAPS-PC bicelle. Docking studies between the Neurotensin Receptor3 (NTS3) and different NT conformations also indicated better binding of the NT conformation obtained in presence of GM1-containing bicelles.

  7. Microtiter Assay for Detecting Campylobacter spp. and Helicobacter pylori with Surface Gangliosides Which Bind Cholera Toxin

    PubMed Central

    Sack, David A.; Lastovica, Albert J.; Chang, Sunny H.; Pazzaglia, Gary

    1998-01-01

    Campylobacter jejuni with Gm1 ganglioside in the core of its lipopolysaccharide has been associated with Guillain-Barré syndrome. Since this epitope may be of considerable pathophysiologic importance and since this ganglioside binds cholera toxin, a rapid screening assay to detect bacteria that bind cholera toxin as an indication of Gm1 on their surfaces was developed. In the assay, bacterial lawns were grown on agar plates, harvested with phosphate-buffered saline, boiled, and incubated with a standard concentration of cholera B subunit. Preparations from strains with Gm1 were observed to inhibit the binding of cholera B subunit to Gm1 in a microtiter enzyme-linked immunosorbent assay. By using this assay with two groups of strains, 37 positive strains were detected among the 197 tested. Species with positive isolates included C. jejuni, Campylobacter coli, and Helicobacter pylori. The assay is capable of testing large numbers of isolates and should prove useful in future clinical and epidemiological studies of bacteria with this epitope. PMID:9650959

  8. Improved thin-layer chromatographic separation of gangliosides by automated multiple development.

    PubMed

    Müthing, J

    1994-07-01

    Automated multiple development chromatography has been utilized to enhance separation of gangliosides on silica-gel precoated high-performance TLC plates. Three-fold chromatography of a complex mixture of neolacto-series monosialogangliosides in the solvent chloroform-methanol-water (120:85:14, v/v, 2 mM CaCl2) resulted in a ca. three-fold increase in separation distance of e.g. alpha 2-3 and alpha 2-6 sialylated ganglioside isomers compared to conventional single chromatography in the standard solvent chloroform-methanol-water (120:85:20, v/v, 2 mM CaCl2). An extremely heterogenous murine disialoganglioside mixture was developed three times in chloroform-methanol-water (120:85:16, v/v, 2 mM CaCl2) leading to a more than two-fold increase in separation distance. Chloroform-methanol-water (120:85:22, v/v, 2 mM CaCl2) was the solvent of choice for multiple chromatography of ganglio-series polysialogangliosides from embryonic chicken brain.

  9. VAN method lacks validity

    NASA Astrophysics Data System (ADS)

    Jackson, David D.; Kagan, Yan Y.

    Varotsos and colleagues (the VAN group) claim to have successfully predicted many earthquakes in Greece. Several authors have refuted these claims, as reported in the May 27,1996, special issue of Geophysical Research Letters and a recent book, A Critical Review of VAN [Lighthill 1996]. Nevertheless, the myth persists. Here we summarize why the VAN group's claims lack validity.The VAN group observes electrical potential differences that they call “seismic electric signals” (SES) weeks before and hundreds of kilometers away from some earthquakes, claiming that SES are somehow premonitory. This would require that increases in stress or decreases in strength cause the electrical variations, or that some regional process first causes the electrical signals and then helps trigger the earthquakes. Here we adopt their notation SES to refer to the electrical variations, without accepting any link to the quakes.

  10. Auditory brainstem responses of CBA/J mice with neonatal conductive hearing losses and treatment with GM1 ganglioside.

    PubMed

    Money, M K; Pippin, G W; Weaver, K E; Kirsch, J P; Webster, D B

    1995-07-01

    Exogenous administration of GM1 ganglioside to CBA/J mice with a neonatal conductive hearing loss ameliorates the atrophy of spiral ganglion neurons, ventral cochlear nucleus neurons, and ventral cochlear nucleus volume. The present investigation demonstrates the extent of a conductive loss caused by atresia and tests the hypothesis that GM1 ganglioside treatment will ameliorate the conductive hearing loss. Auditory brainstem responses were recorded from four groups of seven mice each: two groups received daily subcutaneous injections of saline (one group had normal hearing; the other had a conductive hearing loss); the other two groups received daily subcutaneous injections of GM1 ganglioside (one group had normal hearing; the other had a conductive hearing loss). In mice with a conductive loss, decreases in hearing sensitivity were greatest at high frequencies. The decreases were determined by comparing mean ABR thresholds of the conductive loss mice with those of normal hearing mice. The conductive hearing loss induced in the mice in this study was similar to that seen in humans with congenital aural atresias. GM1 ganglioside treatment had no significant effect on ABR wave I thresholds or latencies in either group.

  11. The metabolism of Tay-Sachs ganglioside: catabolic studies with lysosomal enzymes from normal and Tay-Sachs brain tissue

    PubMed Central

    Tallman, John F.; Johnson, William G.; Brady, Roscoe O.

    1972-01-01

    The catabolism of Tay-Sachs ganglioside, N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galactosylglucosylceramide, has been studied in lysosomal preparations from normal human brain and brain obtained at biopsy from Tay-Sachs patients. Utilizing Tay-Sachs ganglioside labeled with 14C in the N-acetylgalactosaminyl portion or 3H in the N-acetylneuraminosyl portion, the catabolism of Tay-Sachs ganglioside may be initiated by either the removal of the molecule of N-acetylgalactosamine or N-acetylneuraminic acid. The activity of the N-acetylgalactosamine-cleaving enzyme (hexosaminidase) is drastically diminished in such preparations from Tay-Sachs brain whereas the activity of the N-acetylneuraminic acid-cleaving enzyme (neuraminidase) is at a normal level. Total hexosaminidase activity as measured with an artificial fluorogenic substrate is increased in tissues obtained from patients with the B variant form of Tay-Sachs disease and it is virtually absent in the O-variant patients. The addition of purified neuraminidase and various purified hexosaminidases exerted only a minimal synergistic effect on the hydrolysis of Tay-Sachs ganglioside in the lysosomal preparations from the control or patient with the O variant of Tay-Sachs disease. Images PMID:4639018

  12. [IR/UV spectroscopic analysis of gangliosides and their microstructures of polymeric aggregates observed by AFM technique].

    PubMed

    Wang, Hai-long; Sun, Run-guang; Zhang, Jing; Hao, Chang-chun

    2009-04-01

    Gangliosides, a kind of acid glycosphingolipid containing sialic acid, plays a very important physiological role in biomembrane as one of the important components of neurocyte membrane. They were extracted from bovine brain by the Folch method and purified by silica gel and DEAE-Sephadex A-25 column chromatograph. Their molecular functional groups and microstructures of polymeric aggregates were studied by infrared spectrum (IR), ultraviolet spectrum (UV) and atomic force microscope (AFM). The experimental results indicate that: 55.2 mg of Gls from 100 g of wet bovine brain had a certain purity, 62.84%. And their UV absorption spectra appeared at 195 nm, near to the results reported by other peoples. Compared with the IR spectra of sialic acid, the experimental results showed that the structures of the products had the units of sialic acid. In order to investigate the aggregate structures of ganglioside. AFM technique was applied in water, and the results showed that gangliosides can form spherical or ellipsoidal structures in water. It was determined that the size of polymeric aggregates of gangliosides varies between 55 and 380 nm, the average size is (148.9+/-66.7) nm; the height is between 1.0 and 5.0 nm, and the average height is (3.25+/-1.01) nm. The experimental results provide a theoretical and experimental basis for investigating biological activity and the exploitation and utilization of neural drugs.

  13. Effects of Detergents on the Redistribution of Gangliosides and GPI-anchored Proteins in Brain Tissue Sections

    PubMed Central

    Heffer-Lauc, Marija; Viljetiæ, Barbara; Vajn, Katarina; Schnaar, Ronald L.; Lauc, Gordan

    2008-01-01

    SUMMARY Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins contain lipid tails that tether them to the outer side of the cell membrane. This mode of association with the cell membrane enables them to take part in the organization of lipid rafts, but it also permits gangliosides and GPI-anchored proteins to be actively released from one cell and inserted into the membrane of another cell. Recently, we reported that under conditions of lipid raft isolation, Triton X-100 causes significant redistribution of both gangliosides and GPI-anchored proteins. Aiming to find a less disruptive detergent, we evaluated the effects of CHAPS, Saponin, deoxycholic acid, Trappsol, Tween 20, Triton X-100, Brij 96V, Brij 98, and SDS on brain tissue sections. At room temperature, all detergents (1% concentration) extracted significant amounts of both gangliosides and Thy-1. At 4C, the extraction was weaker, but Triton X-100, CHAPS, and deoxycholic acid caused significant redistribution of GD1a and Thy-1 from gray matter into the white matter. Both redistribution and extraction were significantly augmented when sections were incubated with detergents in the presence of primary antibodies. Of the nine tested detergents, none is the ideal choice. However, Brij 96V appears to be able to sufficiently reveal myelin epitopes while causing the least amount of artifacts. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. PMID:17409378

  14. GD3, an overexpressed tumor-derived ganglioside, mediates the apoptosis of activated but not resting T cells.

    PubMed

    Sa, Gaurisankar; Das, Tanya; Moon, Christina; Hilston, Cynthia M; Rayman, Patricia A; Rini, Brian I; Tannenbaum, Charles S; Finke, James H

    2009-04-01

    We previously elucidated an important role for gangliosides in renal cell carcinoma-mediated T lymphocyte apoptosis, although the mechanism by which they mediated lymphocyte death remained unclear. Here, we show that when added in purified form, GD3 is internalized by activated T cells, initiating a series of proapoptotic events, including the induction of reactive oxygen species (ROS), an enhancement of p53 and Bax accumulation, an increase in mitochondrial permeability, cytochrome c release, and the activation of caspase-9. GD3-induced apoptosis of activated T cells was dose dependent and inhibitable by pretreating the lymphocytes with N-acetylcysteine, cyclosporin A, or bongkrekic acid, emphasizing the essential role of ROS and mitochondrial permeability to the process. Ganglioside-induced T-cell killing was associated with the caspase-dependent degradation of nuclear factor-kappaB-inducible, antiapoptotic proteins, including RelA; this suggests that their loss is initiated only after the cascade is activated and that their disappearance amplifies but not triggers GD3 susceptibility. Resting T cells did not internalize appreciable levels of GD3 and did not undergo any of the proapoptotic changes that characterize activated T lymphocytes exposed to the ganglioside. RelA overexpression endows Jurkat cells with resistance to GD3-mediated apoptosis, verifying the role of the intact transcription factor in mediating protection from the ganglioside.

  15. GM2-ganglioside metabolism in hexosaminidase A deficiency states: determination in situ using labeled GM2 added to fibroblast cultures

    SciTech Connect

    Raghavan, S.S.; Krusell, A.; Krusell, J.; Lyerla, T.A.; Kolodny, E.H.

    1985-11-01

    To clarify the relationship between hexosaminidase A (HEX A) activity and GM2-ganglioside hydrolysis in atypical clinical situations of HEX A deficiency, we have developed a simple method to assess GM2-ganglioside metabolism in cultured fibroblasts utilizing GM2 labeled with tritium in the sphingosine portion of the molecule. The radioactive lipid is added to the media of cultured skin fibroblasts, and after 10 days the cells are thoroughly washed, then harvested, and their lipid composition analyzed by HPLC. The degree of hydrolysis of the ingested GM2 is determined by comparing the amount of radioactive counts recovered in undegraded substrate with total cellular radioactivity. A deficiency in GM2-ganglioside hydrolysis was demonstrated in seven HEX A-deficient adults with neurological signs and in two healthy-appearing adolescents with older affected siblings. In each case, an analysis of endogenous monosialoganglioside composition revealed an increase in GM2-ganglioside, confirming the presence of a block in the metabolism of GM2. No defect in GM2-catabolism was found in four other healthy individuals with HEX A deficiency. This method of assay is especially helpful in the evaluation of atypical cases of HEX A deficiency for the definitive diagnosis of GM2-gangliosidosis.

  16. Alterations in cholesterol and ganglioside GM1 content of lipid rafts in platelets from patients with Alzheimer disease.

    PubMed

    Liu, Li; Zhang, Ke; Tan, Liang; Chen, Yu-Hua; Cao, Yun-Peng

    2015-01-01

    The aim of this study was to investigate the changes in the protein, cholesterol, and ganglioside GM1 content of lipid rafts in platelets from patients with Alzheimer disease (AD), and identify potential blood biomarkers of the disease. A total of 31 Chinese patients with AD and 31 aged-matched control subjects were selected. Lipid rafts were isolated from platelets using Optiprep gradient centrifugation. The protein content of lipid rafts was evaluated using Micro BCA assay, the cholesterol content using molecular probes, ganglioside GM1 content using colorimetry and dot-blotting analysis. The results showed that the cholesterol and ganglioside GM1 content of lipid rafts from platelets was significantly higher in patients with AD than aged-matched control subjects, whereas the protein content of lipid rafts did not show any differences between the 2 groups. These results indicate that the increases in the cholesterol and ganglioside GM1 content of lipid rafts from the platelets of patients with AD might serve as a biochemical adjunct to the clinical diagnosis of AD.

  17. GM2-ganglioside metabolism in hexosaminidase A deficiency states: determination in situ using labeled GM2 added to fibroblast cultures.

    PubMed Central

    Raghavan, S S; Krusell, A; Krusell, J; Lyerla, T A; Kolodny, E H

    1985-01-01

    To clarify the relationship between hexosaminidase A (HEX A) activity and GM2-ganglioside hydrolysis in atypical clinical situations of HEX A deficiency, we have developed a simple method to assess GM2-ganglioside metabolism in cultured fibroblasts utilizing GM2 labeled with tritium in the sphingosine portion of the molecule. The radioactive lipid is added to the media of cultured skin fibroblasts, and after 10 days the cells are thoroughly washed, then harvested, and their lipid composition analyzed by HPLC. The degree of hydrolysis of the ingested GM2 is determined by comparing the amount of radioactive counts recovered in undegraded substrate with total cellular radioactivity. A deficiency in GM2-ganglioside hydrolysis was demonstrated in seven HEX A-deficient adults with neurological signs and in two healthy-appearing adolescents with older affected siblings. In each case, an analysis of endogenous monosialoganglioside composition revealed an increase in GM2-ganglioside, confirming the presence of a block in the metabolism of GM2. No defect in GM2-catabolism was found in four other healthy individuals with HEX A deficiency. This method of assay is especially helpful in the evaluation of atypical cases of HEX A deficiency for the definitive diagnosis of GM2-gangliosidosis. Images Fig. 1 PMID:2934978

  18. Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons.

    PubMed

    Kappagantula, Sunil; Andrews, Melissa R; Cheah, Menghon; Abad-Rodriguez, José; Dotti, Carlos G; Fawcett, James W

    2014-02-12

    PNS axons have a high intrinsic regenerative ability, whereas most CNS axons show little regenerative response. We show that activation of Neu3 sialidase, also known as Neuraminidase-3, causing conversion of GD1a and GT1b to GM1 ganglioside, is an essential step in regeneration occurring in PNS (sensory) but not CNS (retinal) axons in adult rat. In PNS axons, axotomy activates Neu3 sialidase, increasing the ratio of GM1/GD1a and GM1/GT1b gangliosides immediately after injury in vitro and in vivo. No change in the GM1/GD1a ratio after axotomy was observed in retinal axons (in vitro and in vivo), despite the presence of Neu3 sialidase. Externally applied sialidase converted GD1a ganglioside to GM1 and rescued axon regeneration in CNS axons and in PNS axons after Neu3 sialidase blockade. Neu3 sialidase activation in DRGs is initiated by an influx of extracellular calcium, activating P38MAPK and then Neu3 sialidase. Ganglioside conversion by Neu3 sialidase further activates the ERK pathway. In CNS axons, P38MAPK and Neu3 sialidase were not activated by axotomy.

  19. Effects of detergents on the redistribution of gangliosides and GPI-anchored proteins in brain tissue sections.

    PubMed

    Heffer-Lauc, Marija; Viljetić, Barbara; Vajn, Katarina; Schnaar, Ronald L; Lauc, Gordan

    2007-08-01

    Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins contain lipid tails that tether them to the outer side of the cell membrane. This mode of association with the cell membrane enables them to take part in the organization of lipid rafts, but it also permits gangliosides and GPI-anchored proteins to be actively released from one cell and inserted into the membrane of another cell. Recently, we reported that under conditions of lipid raft isolation, Triton X-100 causes significant redistribution of both gangliosides and GPI-anchored proteins. Aiming to find a less disruptive detergent, we evaluated the effects of CHAPS, Saponin, deoxycholic acid, Trappsol, Tween 20, Triton X-100, Brij 96V, Brij 98, and SDS on brain tissue sections. At room temperature, all detergents (1% concentration) extracted significant amounts of both gangliosides and Thy-1. At 4C, the extraction was weaker, but Triton X-100, CHAPS, and deoxycholic acid caused significant redistribution of GD1a and Thy-1 from gray matter into the white matter. Both redistribution and extraction were significantly augmented when sections were incubated with detergents in the presence of primary antibodies. Of the nine tested detergents, none is the ideal choice. However, Brij 96V appears to be able to sufficiently reveal myelin epitopes while causing the least amount of artifacts. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.

  20. Biologically active glycosides from asteroidea, 43. Isolation and structure of a new neuritogenic-active ganglioside molecular species from the starfish Linckia laevigata.

    PubMed

    Inagaki, Masanori; Miyamoto, Tomofumi; Isobe, Ryuichi; Higuchi, Ryuichi

    2005-12-01

    A ganglioside molecular species, LLG-5 (1), has been obtained from the water soluble lipid fraction of the CHCl3/MeOH extract of the starfish Linckia laevigata. On the basis of chemical and spectroscopic findings, the structure of 1 has been elucidated. Negative ion FAB-MS provided important information both on the structure of the sugar moiety and on the molecular mass of the ganglioside. 1 is a new ganglioside molecular species possessing a 2-->11 linked linear-type trisialosyl moiety. Moreover, 1 exhibited neuritogenic activity in rat pheochromocytoma PC-12 cells in the presence of nerve growth factor.

  1. Gangliosides and Nogo receptors independently mediate myelin-associated glycoprotein inhibition of neurite outgrowth in different nerve cells.

    PubMed

    Mehta, Niraj R; Lopez, Pablo H H; Vyas, Alka A; Schnaar, Ronald L

    2007-09-21

    In the injured nervous system, myelin-associated glycoprotein (MAG) on residual myelin binds to receptors on axons, inhibits axon outgrowth, and limits functional recovery. Conflicting reports identify gangliosides (GD1a and GT1b) and glycosylphosphatidylinositol-anchored Nogo receptors (NgRs) as exclusive axonal receptors for MAG. We used enzymes and pharmacological agents to distinguis