Science.gov

Sample records for lacking wild-type p53

  1. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    SciTech Connect

    Lopez, Carlos A. Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-09-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G{sub 1} arrest, increase in sub-G{sub 1} fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios ({+-} SE) of 1.5 ({+-} 0.2) and 1.3 ({+-} 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53.

  2. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation.

    PubMed

    Wang, Yongxing; Suh, Young-Ah; Fuller, Maren Y; Jackson, James G; Xiong, Shunbin; Terzian, Tamara; Quintás-Cardama, Alfonso; Bankson, James A; El-Naggar, Adel K; Lozano, Guillermina

    2011-03-01

    The transcription factor p53 is a tumor suppressor. As such, the P53 gene is frequently altered in human cancers. However, over 80% of the P53 mutations found in human cancers are missense mutations that lead to expression of mutant proteins that not only lack p53 transcriptional activity but exhibit new functions as well. Recent studies show that restoration of p53 expression leads to tumor regression in mice carrying p53 deletions. However, the therapeutic efficacy of restoring p53 expression in tumors containing p53 missense mutations has not been evaluated. Here we demonstrate that restoring wild-type p53 expression halted tumor growth in mice inheriting a p53(R172H) missense mutation that is equivalent to a P53 missense mutation detected in approximately 6% of human cancers. However, it did not lead to tumor regression, as was observed in mice lacking p53. We further showed that the dominant-negative effect of the mutant p53 encoded by p53(R172H) dampened the activity of the restored wild-type p53. We therefore conclude that in a mutant p53 background, p53 restoration has the therapeutic potential to suppress tumor progression. Our findings support using p53 restoration as a strategy to treat human cancers with P53 missense mutations and provide direction for optimizing p53 restoration in cancer therapy.

  3. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation

    PubMed Central

    Wang, Yongxing; Suh, Young-Ah; Fuller, Maren Y.; Jackson, James G.; Xiong, Shunbin; Terzian, Tamara; Quintás-Cardama, Alfonso; Bankson, James A.; El-Naggar, Adel K.; Lozano, Guillermina

    2011-01-01

    The transcription factor p53 is a tumor suppressor. As such, the P53 gene is frequently altered in human cancers. However, over 80% of the P53 mutations found in human cancers are missense mutations that lead to expression of mutant proteins that not only lack p53 transcriptional activity but exhibit new functions as well. Recent studies show that restoration of p53 expression leads to tumor regression in mice carrying p53 deletions. However, the therapeutic efficacy of restoring p53 expression in tumors containing p53 missense mutations has not been evaluated. Here we demonstrate that restoring wild-type p53 expression halted tumor growth in mice inheriting a p53R172H missense mutation that is equivalent to a P53 missense mutation detected in approximately 6% of human cancers. However, it did not lead to tumor regression, as was observed in mice lacking p53. We further showed that the dominant-negative effect of the mutant p53 encoded by p53R172H dampened the activity of the restored wild-type p53. We therefore conclude that in a mutant p53 background, p53 restoration has the therapeutic potential to suppress tumor progression. Our findings support using p53 restoration as a strategy to treat human cancers with P53 missense mutations and provide direction for optimizing p53 restoration in cancer therapy. PMID:21285512

  4. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function.

    PubMed

    de Vries, Annemieke; Flores, Elsa R; Miranda, Barbara; Hsieh, Harn-Mei; van Oostrom, Conny Th M; Sage, Julien; Jacks, Tyler

    2002-03-05

    The p53 tumor suppressor gene is the most frequently mutated gene in human cancers, and germ-line p53 mutations cause a familial predisposition for cancer. Germ-line or sporadic p53 mutations are usually missense and typically affect the central DNA-binding domain of the protein. Because p53 functions as a tetrameric transcription factor, mutant p53 is thought to inhibit the function of wild-type p53 protein. Here, we studied the possible dominant-negative inhibition of wild-type p53 protein by two different, frequently occurring point mutations. The R270H and P275S mutations were targeted into the genome of mouse embryonic stem cells to allow the analysis of the effects of the mutant proteins expressed in normal cells at single-copy levels. In embryonic stem cells, the presence of a heterozygous point-mutated allele resulted in delayed transcriptional activation of several p53 downstream target genes on exposure to gamma irradiation. Doxorubicin-induced apoptosis was severely affected in the mutant embryonic stem cells compared with wild-type cells. Heterozygous mutant thymocytes had a severe defect in p53-dependent apoptotic pathways after treatment with gamma irradiation or doxorubicin, whereas p53-independent apoptotic pathways were intact. Together these data demonstrate that physiological expression of point-mutated p53 can strongly limit overall cellular p53 function, supporting the dominant-negative action of such mutants. Also, cells heterozygous for such mutations may be compromised in terms of tumor suppression and response to chemotherapeutic agents.

  5. ID4 regulates transcriptional activity of wild type and mutant p53 via K373 acetylation.

    PubMed

    Morton, Derrick J; Patel, Divya; Joshi, Jugal; Hunt, Aisha; Knowell, Ashley E; Chaudhary, Jaideep

    2017-01-10

    Given that mutated p53 (50% of all human cancers) is over-expressed in many cancers, restoration of mutant p53 to its wild type biological function has been sought after as cancer therapy. The conformational flexibility has allowed to restore the normal biological function of mutant p53 by short peptides and small molecule compounds. Recently, studies have focused on physiological mechanisms such as acetylation of lysine residues to rescue the wild type activity of mutant p53. Using p53 null prostate cancer cell line we show that ID4 dependent acetylation promotes mutant p53 DNA-binding capabilities to its wild type consensus sequence, thus regulating p53-dependent target genes leading to subsequent cell cycle arrest and apoptosis. Specifically, by using wild type, mutant (P223L, V274F, R175H, R273H), acetylation mimics (K320Q and K373Q) and non-acetylation mimics (K320R and K373R) of p53, we identify that ID4 promotes acetylation of K373 and to a lesser extent K320, in turn restoring p53-dependent biological activities. Together, our data provides a molecular understanding of ID4 dependent acetylation that suggests a strategy of enhancing p53 acetylation at sites K373 and K320 that may serve as a viable mechanism of physiological restoration of mutant p53 to its wild type biological function.

  6. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53.

    PubMed

    Martinez-Rivera, Michelle; Siddik, Zahid H

    2012-04-15

    Chemotherapy is the bedrock for the clinical management of cancer, and the tumor suppressor p53 has a central role in this therapeutic modality. This protein facilitates favorable antitumor drug response through a variety of key cellular functions, including cell cycle arrest, senescence, and apoptosis. These functions essentially cease once p53 becomes mutated, as occurs in ∼50% of cancers, and some p53 mutants even exhibit gain-of-function effects, which lead to greater drug resistance. However, it is becoming increasingly evident that resistance is also seen in cancers harboring wild-type p53. In this review, we discuss how wild-type p53 is inactivated to render cells resistant to antitumor drugs. This may occur through various mechanisms, including an increase in proteasomal degradation, defects in post-translational modification, and downstream defects in p53 target genes. We also consider evidence that the resistance seen in wild-type p53 cancers can be substantially greater than that seen in mutant p53 cancers, and this poses a far greater challenge for efforts to design strategies that increase drug response in resistant cancers already primed with wild-type p53. Because the mechanisms contributing to this wild-type p53 "gain-of-resistance" phenotype are largely unknown, a concerted research effort is needed to identify the underlying basis for the occurrence of this phenotype and, in parallel, to explore the possibility that the phenotype may be a product of wild-type p53 gain-of-function effects. Such studies are essential to lay the foundation for a rational therapeutic approach in the treatment of resistant wild-type p53 cancers.

  7. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53

    PubMed Central

    Martinez-Rivera, Michelle; Siddik, Zahid H.

    2012-01-01

    Chemotherapy is the bedrock for the clinical management of cancer, and the tumor suppressor p53 has a central role in this therapeutic modality. This protein facilitates favorable antitumor drug response through a variety of key cellular functions, including cell cycle arrest, senescence, and apoptosis. These functions essentially cease once p53 becomes mutated, as occurs in ~50% of cancers, and some p53 mutants even exhibit gain-of-function effects, which lead to greater drug resistance. However, it is becoming increasingly evident that resistance is also seen in cancers harboring wild-type p53. In this review, we discuss how wild-type p53 is inactivated to render cells resistant to antitumor drugs. This may occur through various mechanisms, including an increase in proteasomal degradation, defects in post-translational modification, and downstream defects in p53 target genes. We also consider evidence that the resistance seen in wild-type p53 cancers can be substantially greater than that seen in mutant p53 cancers, and this poses a far greater challenge for efforts to design strategies that increase drug response in resistant cancers already primed with wild-type p53. Because the mechanisms contributing to this wild-type p53 “gain-of-resistance” phenotype are largely unknown, a concerted research effort is needed to identify the underlying basis for the occurrence of this phenotype and, in parallel, to explore the possibility that the phenotype may be a product of wild-type p53 gain-of-function effects. Such studies are essential to lay the foundation for a rational therapeutic approach in the treatment of resistant wild-type p53 cancers. PMID:22227014

  8. Development of multi-epitope vaccines targeting wild-type sequence p53 peptides.

    PubMed

    DeLeo, Albert B; Whiteside, Theresa L

    2008-09-01

    Loss of p53 tumor-suppressor function is the most common abnormality in human cancer, which can result in enhanced presentation to immune cells of wild-type (wt)-sequence peptides from tumor p53 molecules, thus providing the rationale for wt p53 peptide-based cancer vaccines. We review evidence from preclinical murine tumor models and preclinical studies that led to the clinical introduction of wt p53 peptide-based vaccines for cancer immunotherapy. Overall, this review illustrates the complex process of wt p53 epitope selection and the issues and concerns involved in the application of p53-based vaccines for patients with cancer.

  9. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation.

    PubMed

    De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2016-12-30

    Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. Temperature sensitivity of human wild-type and mutant p53 proteins expressed in vivo.

    PubMed Central

    Ponchel, F.; Milner, J.

    1998-01-01

    p53 is activated in response to DNA damage and functions in the maintenance of genetic integrity. Loss of p53 function because of mutation of the p53 gene is associated with over half all human cancers. Certain human p53 mutants are conformationally flexible in vitro and are temperature sensitive, with partial or complete recovery of wild-type (wt) properties at 32 degrees C. We have now tested the functional capacities of selected p53 mutants in vivo, by transfection into established human cell lines. Unexpectedly, we found that wt p53 can be temperature sensitive for transactivation of a co-transfected target gene in vivo. Flexible mutants retained varying degrees of functional capacity in transfected cells, and the recipient cell line appeared to be a significant determinant of both wt and mutant p53 function; importantly, two p53 null cell lines commonly used to study p53 function (Saos-2 and Hep3B) differed markedly in this latter respect. We also show that the p53 mutant V272M, which exhibits sequence-specific DNA binding in vitro, is nonetheless defective for transactivation and is unable to induce apoptosis in vivo. The valine 272 residue may thus be crucial for properties (other than sequence-specific DNA binding) that are important for p53 function(s) in vivo. Images Figure 4 PMID:9635828

  11. Wild-type p53 controls cell motility and invasion by dual regulation of MET expression

    PubMed Central

    Hwang, Chang-Il; Matoso, Andres; Corney, David C.; Flesken-Nikitin, Andrea; Körner, Stefanie; Wang, Wei; Boccaccio, Carla; Thorgeirsson, Snorri S.; Comoglio, Paolo M.; Hermeking, Heiko; Nikitin, Alexander Yu.

    2011-01-01

    Recent observations suggest that p53 mutations are responsible not only for growth of primary tumors but also for their dissemination. However, mechanisms involved in p53-mediated control of cell motility and invasion remain poorly understood. By using the primary ovarian surface epithelium cell culture, we show that conditional inactivation of p53 or expression of its mutant forms results in overexpression of MET receptor tyrosine kinase, a crucial regulator of invasive growth. At the same time, cells acquire increased MET-dependent motility and invasion. Wild-type p53 negatively regulates MET expression by two mechanisms: (i) transactivation of MET-targeting miR-34, and (ii) inhibition of SP1 binding to MET promoter. Both mechanisms are not functional in p53 absence, but mutant p53 proteins retain partial MET promoter suppression. Accordingly, MET overexpression, cell motility, and invasion are particularly high in p53-null cells. These results identify MET as a critical effector of p53 and suggest that inhibition of MET may be an effective antimetastatic approach to treat cancers with p53 mutations. These results also show that the extent of advanced cancer traits, such as invasion, may be determined by alterations in individual components of p53/MET regulatory network. PMID:21831840

  12. SCH529074, a small molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53.

    PubMed

    Demma, Mark; Maxwell, Eugene; Ramos, Robert; Liang, Lianzhu; Li, Cheng; Hesk, David; Rossman, Randall; Mallams, Alan; Doll, Ronald; Liu, Ming; Seidel-Dugan, Cynthia; Bishop, W Robert; Dasmahapatra, Bimalendu

    2010-04-02

    Abrogation of p53 function occurs in almost all human cancers, with more than 50% of cancers harboring inactivating mutations in p53 itself. Mutation of p53 is indicative of highly aggressive cancers and poor prognosis. The vast majority of mutations in p53 occur in its core DNA binding domain (DBD) and result in inactivation of p53 by reducing its thermodynamic stability at physiological temperature. Here, we report a small molecule, SCH529074, that binds specifically to the p53 DBD in a saturable manner with an affinity of 1-2 microm. Binding restores wild type function to many oncogenic mutant forms of p53. This small molecule reactivates mutant p53 by acting as a chaperone, in a manner similar to that previously reported for the peptide CDB3. Binding of SCH529074 to the p53 DBD is specifically displaced by an oligonucleotide with a sequence derived from the p53-response element. In addition to reactivating mutant p53, SCH529074 binding inhibits ubiquitination of p53 by HDM2. We have also developed a novel variant of p53 by changing a single amino acid in the core domain of p53 (N268R), which abolishes binding of SCH529074. This amino acid change also inhibits HDM2-mediated ubiquitination of p53. Our novel findings indicate that through its interaction with p53 DBD, SCH529074 restores DNA binding activity to mutant p53 and inhibits HDM2-mediated ubiquitination.

  13. Targeting Mdmx to treat breast cancers with wild-type p53.

    PubMed

    Haupt, S; Buckley, D; Pang, J-M B; Panimaya, J; Paul, P J; Gamell, C; Takano, E A; Lee, Y Ying; Hiddingh, S; Rogers, T-M; Teunisse, A F A S; Herold, M J; Marine, J-C; Fox, S B; Jochemsen, A; Haupt, Y

    2015-07-16

    The function of the tumor suppressor p53 is universally compromised in cancers. It is the most frequently mutated gene in human cancers (reviewed). In cases where p53 is not mutated, alternative regulatory pathways inactivate its tumor suppressive functions. This is primarily achieved through elevation in the expression of the key inhibitors of p53: Mdm2 or Mdmx (also called Mdm4) (reviewed). In breast cancer (BrCa), the frequency of p53 mutations varies markedly between the different subtypes, with basal-like BrCas bearing a high frequency of p53 mutations, whereas luminal BrCas generally express wild-type (wt) p53. Here we show that Mdmx is unexpectedly highly expressed in normal breast epithelial cells and its expression is further elevated in most luminal BrCas, whereas p53 expression is generally low, consistent with wt p53 status. Inducible knockdown (KD) of Mdmx in luminal BrCa MCF-7 cells impedes the growth of these cells in culture, in a p53-dependent manner. Importantly, KD of Mdmx in orthotopic xenograft transplants resulted in growth inhibition associated with prolonged survival, both in a preventative model and also in a treatment model. Growth impediment in response to Mdmx KD was associated with cellular senescence. The growth inhibitory capacity of Mdmx KD was recapitulated in an additional luminal BrCa cell line MPE600, which expresses wt p53. Further, the growth inhibitory capacity of Mdmx KD was also demonstrated in the wt p53 basal-like cell line SKBR7 line. These results identify Mdmx growth dependency in wt p53 expressing BrCas, across a range of subtypes. Based on our findings, we propose that Mdmx targeting is an attractive strategy for treating BrCas harboring wt p53.

  14. Two cellular proteins that bind to wild-type but not mutant p53.

    PubMed Central

    Iwabuchi, K; Bartel, P L; Li, B; Marraccino, R; Fields, S

    1994-01-01

    p53 is a tumor-suppressor protein that can activate and repress transcription. Using the yeast two-hybrid system, we identified two previously uncharacterized human proteins, designated 53BP1 and 53BP2, that bind to p53. 53BP1 shows no significant homology to proteins in available databases, whereas 53BP2 contains two adjacent ankyrin repeats and a Src homology 3 domain. In vitro binding analyses indicate that both of these proteins bind to the central domain of p53 (residues 80-320) required for site-specific DNA binding. Consistent with this finding, p53 cannot bind simultaneously to 53BP1 or 53BP2 and to a DNA fragment containing a consensus p53 binding site. Unlike other cellular proteins whose binding to p53 has been characterized, both 53BP1 and 53BP2 bind to the wild-type but not to two mutant p53 proteins identified in human tumors, suggesting that binding is dependent on p53 conformation. The characteristics of these interactions argue that 53BP1 and 53BP2 are involved in some aspect of p53-mediated tumor suppression. Images PMID:8016121

  15. Wild-type p53 induces diverse effects in 32D cells expressing different oncogenes.

    PubMed Central

    Soddu, S; Blandino, G; Scardigli, R; Martinelli, R; Rizzo, M G; Crescenzi, M; Sacchi, A

    1996-01-01

    Expression of exogenous wild-type (wt) p53 in different leukemia cell lines can induce growth arrest, apoptotic cell death, or cell differentiation. The hematopoietic cell lines that have been used so far to study wt p53 functions have in common the characteristic of not expressing endogenous p53. However, the mechanisms involved in the transformation of these cells are different, and the cells are at different stages of tumor progression. It can be postulated that each type of neoplastic cell offers a particular environment in which p53 might generate different effects. To test this hypothesis, we introduced individual oncogenes into untransformed, interleukin-3 (IL-3)-dependent myeloid precursor 32D cells to have a single transforming agent at a time. The effects induced by wt p53 overexpression were subsequently evaluated in each oncogene-expressing 32D derivative. We found that in not fully transformed, v-ras-expressing 32D cells, as already shown for the parental 32D cells, overexpression of the wt p53 gene caused no phenotypic changes and no reduction of the proliferative rate as long as the cells were maintained in their normal culture conditions (presence of IL-3 and serum). An accelerated rate of apoptosis was observed after IL-3 withdrawal. In contrast, in transformed, IL-3-independent 32D cells, wt p53 overexpression induced different effects. The v-abl-transformed cells manifested a reduction in growth rate, while the v-src-transformed cells underwent monocytic differentiation. These results show that the phenotype effects of wt p53 action(s) can vary as a function of the cellular environment. PMID:8552075

  16. Wild-type p53 binds to MYC promoter G-quadruplex

    PubMed Central

    Petr, Marek; Helma, Robert; Polášková, Alena; Krejčí, Aneta; Dvořáková, Zuzana; Kejnovská, Iva; Navrátilová, Lucie; Adámik, Matej; Vorlíčková, Michaela; Brázdová, Marie

    2016-01-01

    G-quadruplexes are four-stranded nucleic acid structures that are implicated in the regulation of transcription, translation and replication. Genome regions enriched in putative G-quadruplex motifs include telomeres and gene promoters. Tumour suppressor p53 plays a critical role in regulatory pathways leading to cell cycle arrest, DNA repair and apoptosis. In addition to transcriptional regulation mediated via sequence-specific DNA binding, p53 can selectively bind various non-B DNA structures. In the present study, wild-type p53 (wtp53) binding to G-quadruplex formed by MYC promoter nuclease hypersensitive element (NHE) III1 region was investigated. Wtp53 binding to MYC G-quadruplex is comparable to interaction with specific p53 consensus sequence (p53CON). Apart from the full-length wtp53, its isolated C-terminal region (aa 320–393) as well, is capable of high-affinity MYC G-quadruplex binding, suggesting its critical role in this type of interaction. Moreover, wtp53 binds to MYC promoter region containing putative G-quadruplex motif in two wtp53-expressing cell lines. The results suggest that wtp53 binding to G-quadruplexes can take part in transcriptional regulation of its target genes. PMID:27634752

  17. Wild-type p53 binds to MYC promoter G-quadruplex.

    PubMed

    Petr, Marek; Helma, Robert; Polášková, Alena; Krejčí, Aneta; Dvořáková, Zuzana; Kejnovská, Iva; Navrátilová, Lucie; Adámik, Matej; Vorlíčková, Michaela; Brázdová, Marie

    2016-10-01

    G-quadruplexes are four-stranded nucleic acid structures that are implicated in the regulation of transcription, translation and replication. Genome regions enriched in putative G-quadruplex motifs include telomeres and gene promoters. Tumour suppressor p53 plays a critical role in regulatory pathways leading to cell cycle arrest, DNA repair and apoptosis. In addition to transcriptional regulation mediated via sequence-specific DNA binding, p53 can selectively bind various non-B DNA structures. In the present study, wild-type p53 (wtp53) binding to G-quadruplex formed by MYC promoter nuclease hypersensitive element (NHE) III1 region was investigated. Wtp53 binding to MYC G-quadruplex is comparable to interaction with specific p53 consensus sequence (p53CON). Apart from the full-length wtp53, its isolated C-terminal region (aa 320-393) as well, is capable of high-affinity MYC G-quadruplex binding, suggesting its critical role in this type of interaction. Moreover, wtp53 binds to MYC promoter region containing putative G-quadruplex motif in two wtp53-expressing cell lines. The results suggest that wtp53 binding to G-quadruplexes can take part in transcriptional regulation of its target genes.

  18. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  19. Adenovirus-mediated wild-type p53 transfer radiosensitizes H1299 cells to subclinical-dose carbon-ion irradiation through the restoration of p53 function.

    PubMed

    Liu, Bing; Zhang, Hong; Duan, Xin; Hao, Jifang; Xie, Yi; Zhou, Qingming; Wang, Yanling; Tian, Yuan; Wang, Tao

    2009-02-01

    To determine whether adenovirus-mediated wild-type p53 transfer after radiotherapy could radiosensitize non-small-cell lung cancer (NSCLC) cells to subclinical-dose carbon-ion beam (C-beam), H1299 cells were exposed to a C-beam or gamma-ray and then infected with 5 MOI of AdCMV-p53 or GFP (C-beam or gamma-ray with p53 or GFP). Cell cycle was detected by flow cytometric analysis. The apoptosis was examined by a fluorescent microscope with DAPI staining. DNA fragmentation was monitored by the TUNEL assay. P53 mRNA was detected by reverse-transcriptase polymerase chain reaction. The expression of p53, MDM(2), and p21 was monitored by Western blot. Survival fractions were determined by colony-forming assay. The percentages of G(1)-phase cells in C-beam with p53 increased by 8.2%-16.0%, 5.2%-7.0%, and 5.8%-18.9%, respectively, compared with C-beam only, gamma-ray with p53, or p53 only. The accumulation of G(2)-phase cells in C-beam with p53 increased by 5.7%-8.9% and 8.8%-14.8%, compared with those in gamma-ray with p53 or p53 only, respectively. The percentage of apoptosis for C-beam with p53 increased by 7.4%-19.1%, 5.8%-11.7%, and 5.2 %-19.2%, respectively, compared with C-beam only, gamma-ray with p53, or p53 only. The level of p53 mRNA in C-beam with p53 was significantly higher than that in p53 only. The expression level of p53 and p21 in C-beam with p53 was significantly higher than that in both C-beam with GFP and p53 only. The survival fractions for C-beam with p53 were significantly less than those for the other groups (p < 0.05). The data suggested that AdCMV-p53 transfer could more efficiently radiosensitize H1299 cells to subclinical-dose C-beam irradiation through the restoration of p53 function.

  20. Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53.

    PubMed

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D Ramesh; Marimuthu, Srinivasan; Alfonso, Lloyd F; Bhat, G Jayarama

    2016-05-01

    Aspirin's ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21(CIP1). Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin's anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin.

  1. Differential regulated microRNA by wild type and mutant p53 in induced pluripotent stem cells

    PubMed Central

    Grespi, Francesca; Landré, Vivien; Molchadsky, Alina; Di Daniele, Nicola; Marsella, Luigi Tonino; Melino, Gerry; Rotter, Varda

    2016-01-01

    The tumour suppressor p53 plays an important role in somatic cell reprogramming. While wild-type p53 reduces reprogramming efficiency, mutant p53 exerts a gain of function activity that leads to increased reprogramming efficiency. Furthermore, induced pluripotent stem cells expressing mutant p53 lose their pluripotency in vivo and form malignant tumours when injected in mice. It is therefore of great interest to identify targets of p53 (wild type and mutant) that are responsible for this phenotype during reprogramming, as these could be exploited for therapeutic use, that is, formation of induced pluripotent stem cells with high reprogramming efficiency, but no oncogenic potential. Here we studied the transcriptional changes of microRNA in a series of mouse embryonic fibroblasts that have undergone transition to induced pluripotent stem cells with wild type, knock out or mutant p53 status in order to identify microRNAs whose expression during reprogramming is dependent on p53. We identified a number of microRNAs, with known functions in differentiation and carcinogenesis, the expression of which was dependent on the p53 status of the cells. Furthermore, we detected several uncharacterised microRNAs that were regulated differentially in the different p53 backgrounds, suggesting a novel role of these microRNAs in reprogramming and pluripotency. PMID:28032868

  2. Wild-type p53-mediated down-modulation of interleukin 15 and interleukin 15 receptors in human rhabdomyosarcoma cells.

    PubMed Central

    De Giovanni, C.; Nanni, P.; Sacchi, A.; Soddu, S.; Manni, I.; D'Orazi, G.; Bulfone-Paus, S.; Pohl, T.; Landuzzi, L.; Nicoletti, G.; Frabetti, F.; Rossi, I.; Lollini, P. L.

    1998-01-01

    We recently reported that rhabdomyosarcoma cell lines express and secrete interleukin 15 (IL-15), a tightly regulated cytokine with IL-2-like activity. To test whether the p53-impaired function that is frequently found in this tumour type could play a role in the IL-15 production, wild-type p53 gene was transduced in the human rhabdomyosarcoma cell line RD (which harbours a mutated p53 gene), and its effect on proliferation and expression of IL-15 was studied. Arrest of proliferation was induced by wild-type p53; increased proportions of G1-arrested cells and of apoptotic cells were observed. A marked down-modulation of IL-15 expression, at both the mRNA and protein level, was found in p53-transduced cells. Because a direct effect of IL-15 on normal muscle cells has been reported, the presence of IL-15 membrane receptors was studied by cytofluorometric analysis. Rhabdomyosarcoma cells showed IL-15 membrane receptors, which are down-modulated by wild-type p53 transfected gene. In conclusion, wild-type p53 transduction in human rhabdomyosarcoma cells induces the down-modulation of both IL-15 production and IL-15 receptor expression. Images Figure 3 PMID:9862562

  3. Wild-type p53 is not a negative regulator of simian virus 40 DNA replication in infected monkey cells.

    PubMed Central

    von der Weth, A; Deppert, W

    1993-01-01

    To analyze the proposed growth-inhibitory function of wild-type p53, we compared simian virus 40 (SV40) DNA replication in primary rhesus monkey kidney (PRK) cells, which express wild-type p53, and in the established rhesus monkey kidney cell line LLC-MK2, which expresses a mutated p53 that does not complex with large T antigen. SV40 DNA replication proceeded identically in both cell types during the course of infection. Endogenously expressed wild-type p53 thus does not negatively modulate SV40 DNA replication in vivo. We suggest that inhibition of SV40 DNA replication by wild-type p53 in in vitro replication assays is due to grossly elevated ratios of p53 to large T antigen, thus depleting the replication-competent free large T antigen in the assay mixtures by complex formation. In contrast, the ratio of p53 to large T antigen in in vivo replication is low, leaving the majority of large T antigen in a free, replication-competent state. Images PMID:8380470

  4. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53.

    PubMed Central

    Forrester, K; Ambs, S; Lupold, S E; Kapust, R B; Spillare, E A; Weinberg, W C; Felley-Bosco, E; Wang, X W; Geller, D A; Tzeng, E; Billiar, T R; Harris, C C

    1996-01-01

    The tumor suppressor gene product p53 plays an important role in the cellular response to DNA damage from exogenous chemical and physical mutagens. Therefore, we hypothesized that p53 performs a similar role in response to putative endogenous mutagens, such as nitric oxide (NO). We report here that exposure of human cells to NO generated from an NO donor or from overexpression of inducible nitric oxide synthase (NOS2) results in p53 protein accumulation. In addition, expression of wild-type (WT) p53 in a variety of human tumor cell lines, as well as murine fibroblasts, results in down-regulation of NOS2 expression through inhibition of the NOS2 promoter. These data are consistent with the hypothesis of a negative feedback loop in which endogenous NO-induced DNA damage results in WT p53 accumulation and provides a novel mechanism by which p53 safeguards against DNA damage through p53-mediated transrepression of NOS2 gene expression, thus reducing the potential for NO-induced DNA damage. Images Fig. 1 Fig. 2 Fig. 3 PMID:8637893

  5. Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal.

    PubMed Central

    Gottlieb, E; Haffner, R; von Rüden, T; Wagner, E F; Oren, M

    1994-01-01

    Overexpression of wild-type p53 in p53-deficient leukemic cells induces apoptosis, which can be inhibited by hematopoietic survival factors. This suggests that p53 may contribute to survival factor dependence. To assess the role of wild-type p53 in mediating apoptosis following survival factor withdrawal, we interfered with endogenous p53 activity in interleukin-3 (IL-3)-dependent cells. Extended survival without IL-3 was conferred by recombinant retroviruses encoding either a full-length p53 mutant or a C-terminal p53 miniprotein, both of which can act as negative-dominant inhibitors of wild-type p53. On the other hand, excess wild-type p53 activity failed to elicit apoptosis as long as IL-3 was present. We propose that p53 is a positive, though not exclusive, mediator of survival factor dependence in hematopoietic cells. Images PMID:8137820

  6. Okadaic acid mediates p53 hyperphosphorylation and growth arrest in cells with wild-type p53 but increases aberrant mitoses in cells with non-functional p53.

    PubMed

    Milczarek, G J; Chen, W; Gupta, A; Martinez, J D; Bowden, G T

    1999-06-01

    The protein phosphatase inhibitor and tumor promoting agent okadaic acid (OA), has been shown previously to induce hyperphosphorylation of p53 protein, which in turn correlated with increased transactivation or apoptotic function. However, how the tumor promotion effects of OA relate to p53 tumor supressor function (or dysfunction) remain unclear. Rat embryonic fibroblasts harboring a temperature-sensitive mouse p53 transgene were treated with 50 nM doses of OA. At the wild-type permissive temperature this treatment resulted in: (i) the hyperphosphorylation of sites within tryptic peptides of the transactivation domain of p53; (ii) an increase in p53 affinity for a p21(waf1) promotor oligonucleotide; (iii) an increase in cellular steady state levels of p21(waf1) message; (iv) a G2/M cell cycle blockage in addition to the G1/S arrest previously associated with p53; and (v) no increased incidence of apoptosis. On the other hand, OA treatment at the mutated p53 permissive temperature resulted in a relatively high incidence of aberrant mitosis with no upregulation of p21(waf1) message. These results suggest that while wild-type p53 blocks the proliferative effects of OA through p21(waf1)-mediated growth arrest, cells with non-functional p53 cannot arrest and suffer relatively high levels of OA-mediated aberrant mitoses.

  7. Accumulation of wild-type p53 protein in astrocytomas is not mediated by MDM2 gene amplification

    SciTech Connect

    Rubio, M.P.; Louis, D.N. Harvard Medical School, Boston, MA )

    1993-05-01

    The authors have previously described ten cases of astrocytoma (three WHO grade II, four grade III and four grade IV) with seemingly contradictory results on immunohistochemical analysis of the p53 protein and molecular genetic analysis of the p53 gene. Fixed, embedded tissues from these cases were immunohistochemically positive with the PAb 1801 antibody, which supposedly implies the presence of mutant protein. These ten cases, however, did not have mutations in exons 5 through 8 of the p53 gene, the conserved regions in which almost all human mutations have been described. The authors suggested that these cases might either represent overexpression of wild-type p53 protein (since the PAb 1801 antibody reacts with both wild-type and mutant p53 protein) or mutations in less conserved regions of the gene. To investigate these possibilities further, they performed single strand conformational polymorphism analysis and DNA sequencing on p53 exons 4, 9 and 10 in the nine cases with available DNA, since rare mutations have been noted at these loci. None of the cases showed alterations, making it highly unlikely that these tumors harbor mutations in exons of the p53 gene. They also performed immunohistochemistry on frozen sections from seven available tumors, using the mutant-specific antibody PAb 240 in addition to PAb 1801. All tumors continued to show positive staining with PAb 1801, but only one tumor reacted with PAb 240. The results support the hypothesis that the accumulated p53 protein in most cases is wild-type. Because the product of the MDM2 oncogene can bind to wild-type p53 protein, and because MDM2 amplification has recently been demonstrated in human tumors, the authors evaluated MDM2 amplification in the nine astrocytomas with available DNA. Using slot blot analysis with a 96-base pair, PCR-generated probe to the first exon of the MDM2 gene, they were unable to show MDM2 gene amplification in these tumors or in other assayed astrocytomas.

  8. Inhibition of Wild-Type p53-Expressing AML by the Novel Small Molecule HDM2 Inhibitor CGM097.

    PubMed

    Weisberg, Ellen; Halilovic, Ensar; Cooke, Vesselina G; Nonami, Atsushi; Ren, Tao; Sanda, Takaomi; Simkin, Irene; Yuan, Jing; Antonakos, Brandon; Barys, Louise; Ito, Moriko; Stone, Richard; Galinsky, Ilene; Cowens, Kristen; Nelson, Erik; Sattler, Martin; Jeay, Sebastien; Wuerthner, Jens U; McDonough, Sean M; Wiesmann, Marion; Griffin, James D

    2015-10-01

    The tumor suppressor p53 is a key regulator of apoptosis and functions upstream in the apoptotic cascade by both indirectly and directly regulating Bcl-2 family proteins. In cells expressing wild-type (WT) p53, the HDM2 protein binds to p53 and blocks its activity. Inhibition of HDM2:p53 interaction activates p53 and causes apoptosis or cell-cycle arrest. Here, we investigated the ability of the novel HDM2 inhibitor CGM097 to potently and selectively kill WT p53-expressing AML cells. The antileukemic effects of CGM097 were studied using cell-based proliferation assays (human AML cell lines, primary AML patient cells, and normal bone marrow samples), apoptosis, and cell-cycle assays, ELISA, immunoblotting, and an AML patient-derived in vivo mouse model. CGM097 potently and selectively inhibited the proliferation of human AML cell lines and the majority of primary AML cells expressing WT p53, but not mutant p53, in a target-specific manner. Several patient samples that harbored mutant p53 were comparatively unresponsive to CGM097. Synergy was observed when CGM097 was combined with FLT3 inhibition against oncogenic FLT3-expressing cells cultured both in the absence as well as the presence of cytoprotective stromal-secreted cytokines, as well as when combined with MEK inhibition in cells with activated MAPK signaling. Finally, CGM097 was effective in reducing leukemia burden in vivo. These data suggest that CGM097 is a promising treatment for AML characterized as harboring WT p53 as a single agent, as well as in combination with other therapies targeting oncogene-activated pathways that drive AML.

  9. Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene.

    PubMed Central

    Werner, H; Karnieli, E; Rauscher, F J; LeRoith, D

    1996-01-01

    The insulin-like growth factor I receptor (IGF-I-R) plays a critical role in transformation events. It is highly overexpressed in most malignant tissues where it functions as an anti-apoptotic agent by enhancing cell survival. Tumor suppressor p53 is a nuclear transcription factor that blocks cell cycle progression and induces apoptosis. p53 is the most frequently mutated gene in human cancer. Cotransfection of Saos-2 (os-teosarcoma-derived cells) and RD (rhabdomyosarcoma-derived cells) cells with IGF-I-R promoter constructs driving luciferase reporter genes and with wild-type p53 expression vectors suppressed promoter activity in a dose-dependent manner. This effect of p53 is mediated at the level of transcription and it involves interaction with TBP, the TATA box-binding component of TFIID. On the other hand, three tumor-derived mutant forms of p53 (mut 143, mut 248, and mut 273) stimulated the activity of the IGF-I-R promoter and increased the levels of IGF-I-R/luciferase fusion mRNA. These results suggest that wild-type p53 has the potential to suppress the IGF-I-R promoter in the postmitotic, fully differentiated cell, thus resulting in low levels of receptor gene expression in adult tissues. Mutant versions of p53 protein, usually associated with malignant states, can derepress the IGF-I-R promoter, with ensuing mitogenic activation by locally produced or circulating IGFs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8710868

  10. Anticancer Effects of the Marine Sponge Lipastrotethya sp. Extract on Wild-Type and p53 Knockout HCT116 Cells

    PubMed Central

    Choi, Kiheon; Lim, Hyun Kyung; Oh, Sung Ryong; Chung, Woo-Hyun

    2017-01-01

    Interest in marine bioresources is increasing in the drug development sector. In particular, marine sponges produce a wide range of unique metabolites that enable them to survive in challenging environments, which makes them attractive sources of candidate pharmaceuticals. In previous study, we investigated over 40 marine specimens collected in Micronesia and provided by the Korean Institute of Ocean Science and Technology, for their antiproliferative effects on various cancer cell lines, and Lipastrotethya sp. extract (LSSE) was found to have a marked antiproliferative effect. In the present study, we investigated the mechanism responsible for its anticancer effect on wild-type p53 (WT) or p53 knockout (KO) HCT116 cells. LSSE inhibited cell viability and induced apoptotic cell death more so in HCT116 p53 KO cells than the WT. HCT116 WT cells treated with LSSE underwent apoptosis associated with the induction of p53 and its target genes. On the other hand, in HCT116 p53 KO cells, LSSE reduced mTOR and Bcl-2 and increased Beclin-1 and LC3-II protein levels, suggesting autophagy induction. These results indicate that the mechanisms responsible for the anticancer effect of LSSE depend on p53 status. PMID:28127380

  11. microRNA-34 family and treatment of cancers with mutant or wild-type p53 (Review).

    PubMed

    Wong, May Y W; Yu, Yan; Walsh, William R; Yang, Jia-Lin

    2011-05-01

    In the last decade, microRNAs (miRNAs; small noncoding RNA molecules) as post-transcriptional regulators have been a hotspot in research for their involvement in biological processes and tumour development. However, there have been few reviews focusing on a single miRNA family. The dysregulation of miRNAs appears to play a crucial role in cancer pathogenesis where they exert their effect as oncogenes or as tumour suppressors. This review summarises current studies on the dysregulation of the microRNA-34 (miR-34) family in different types of cancers and its role in the p53 network. The structure of the miR-34 family members includes p53-binding sites reflecting their function as tumour suppressors downstream of the p53 pathway. miR-34 dysregulation occurs in cancers, including several epithelial cancers, melanomas, neuroblastomas, leukemias and sarcomas, in the presence or absence of the p53 mutation. For these cancers, functional restoration of miR-34 is a useful novel therapy. As evidenced from preclinical and clinical studies, the miR-34 family plays an important role in the treatment of miR-34-dysregulated cancers with mutant or wild-type p53. This review will have a potential impact in the clinical treatment of p53-mutant and/or miR-34-dysregulated cancers using a miR-34 restoration approach.

  12. Effects of the kava chalcone flavokawain A differ in bladder cancer cells with wild-type versus mutant p53.

    PubMed

    Tang, Yaxiong; Simoneau, Anne R; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin

    2008-11-01

    Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G(1) arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2, which then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G(2)-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation, which then led to a G(2)-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G(2)-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G(2)-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer.

  13. Effects of the Kava Chalcone Flavokawain A Differ in Bladder Cancer Cells with Wild-type versus Mutant p53

    PubMed Central

    Tang, Yaxiong; Simoneau, Anne R.; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin

    2010-01-01

    Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G1 arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2 and then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G2-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation and then led to a G2-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G2-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G2-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer. PMID:19138991

  14. Role of wild-type p53 in apoptotic and non-apoptotic cell death induced by X-irradiation and heat treatment in p53-mutated mouse M10 cells.

    PubMed

    Ito, Atsushi; Nakano, Hisako; Shinohara, Kunio

    2010-01-01

    The sensitizing effects of wild-type p53 on X-ray-induced cell death and on heat-induced apoptosis in M10, a radiosensitive and Trp53 (mouse p53 gene)-mutated lymphoma cell line which dies through necrosis by X-irradiation, were investigated using three M10 derived transfectants with wild-type TP53 (human p53 gene). Cell death was determined by colony formation and/or dye exclusion test, and apoptosis was detected as the changes in nuclear morphology by Giemsa staining. Expression of wild-type p53 protein increased radiosensitivity of cell death as determined by both clonogenic and dye exclusion assays. This increase in radiosensitivity was attributable largely to apoptosis induction in addition to a small enhancement of necrosis. Interestingly neither pathway to cell death was accompanied by caspase-3 activation. On the other hand, heat-induced caspase-3 dependent apoptotic cell death without transfection was further increased by the transfection of wild-type p53. In conclusion, the introduction of wild-type p53 enhanced apoptotic cell death by X-rays or heat via different mechanisms that do or do not activate caspase-3, respectively. In addition, p53 also enhanced the X-ray-induced necrosis in M10 cells.

  15. Liposome-mediated transfection of wild-type P53 DNA into human prostate cancer cells is improved by low-frequency ultrasound combined with microbubbles

    PubMed Central

    BAI, WEN-KUN; ZHANG, WEI; HU, BING; YING, TAO

    2016-01-01

    Prostate cancer is a common type of cancer in elderly men. The aim of the present study was to evaluate the effects of ultrasound exposure in combination with SonoVue microbubbles on liposome-mediated transfection of wild-type P53 genes into human prostate cancer cells. PC-3 human prostate cancer cells were exposed to ultrasound; duty cycle was controlled at 20% (2 sec on, 8 sec off) for 5 min with and without SonoVue microbubble echo-contrast agent using a digital sonifier (frequency, 21 kHz; intensity, 46 mW/cm2). The cells were divided into eight groups, as follows: Group A (SonoVue + wild-type P53), group B (ultrasound + wild-type P53), group C (SonoVue + ultrasound + wild-type P53), group D (liposome + wild-type P53), group E (liposome + SonoVue + wild-type P53), group F (liposome + wild-type P53 + ultrasound), group G (liposome + wild-type P53 + ultrasound + SonoVue) and the control group (wild-type P53). Following treatment, a hemocytometer was used to measure cell lysis, reverse transcription-quantitative polymerase chain reaction and western blotting were performed to detect P53 gene transfection efficiency, Cell Counting Kit-8 was employed to reveal cell proliferation and Annexin V/propidium iodide staining was used to determine cell apoptosis. Cell lysis was minimal in each group. Wild-type P53 gene and protein expression were significantly increased in the PC-3 cells in group G compared with the control and all other groups (P<0.01). Cell proliferation was significantly suppressed in group G compared with the control group and all other groups (P<0.01). Cell apoptosis levels in group G were significantly improved compared with the control group and all other groups (P<0.01). Thus, the results of the present study indicate that the use of low-frequency and low-energy ultrasound in combination with SonoVue microbubbles may be a potent physical method for increasing liposome gene delivery efficiency. PMID:27313702

  16. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53.

    PubMed

    Kitagaki, J; Yang, Y; Saavedra, J E; Colburn, N H; Keefer, L K; Perantoni, A O

    2009-01-29

    Nitric oxide (NO) is a major effector molecule in cancer prevention. A number of studies have shown that NO prodrug JS-K (O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) induces apoptotic cell death in vitro and in vivo, indicating that it is a promising new therapeutic for cancer. However, the mechanism of its tumor-killing activity remains unclear. Ubiquitin plays an important role in the regulation of tumorigenesis and cell apoptosis. Our earlier report has shown that inactivation of the ubiquitin system through blocking E1 (ubiquitin-activating enzyme) activity preferentially induces apoptosis in p53-expressing transformed cells. As E1 has an active cysteine residue that could potentially interact with NO, we hypothesized that JS-K could inactivate E1 activity. E1 activity was evaluated by detecting ubiquitin-E1 conjugates through immunoblotting. JS-K strikingly inhibits the ubiquitin-E1 thioester formation in cells in a dose-dependent manner with an IC(50) of approximately 2 microM, whereas a JS-K analog that cannot release NO did not affect these levels in cells. Moreover, JS-K decreases total ubiquitylated proteins and increases p53 levels, which is mainly regulated by ubiquitin and proteasomal degradation. Furthermore, JS-K preferentially induces cell apoptosis in p53-expressing transformed cells. These findings indicate that JS-K inhibits E1 activity and kills transformed cells harboring wild-type p53.

  17. Wild-type p53-induced phosphatase 1 is a prognostic marker and therapeutic target in bladder transitional cell carcinoma

    PubMed Central

    Wang, Zhi-Peng; Chen, Shu-Yuan; Tian, Ye

    2017-01-01

    Wild-type p53-induced phosphatase (Wip1) is an established oncogene and is associated with development of multiple forms of human cancer. However, the expression and role of Wip1 in human bladder transitional cell carcinoma (TCC) remains to be elucidated. In the present study, immunohistochemistry demonstrated that Wip1 was overexpressed in bladder TCC tissues compared with corresponding normal bladder tissues in 106 bladder TCC cases (P<0.0001). Furthermore, high expression levels of Wip1 were significantly associated with increasing tumor size (P=0.002), pathological grade (P=0.025), clinical T stage (P=0.001) and lymph nodal metastasis (P=0.003). Kaplan-Meier survival analysis identified that patients with high Wip1 expression levels exhibited a lower overall survival time (P<0.0001), and Cox proportional hazards regression model analysis demonstrated that Wip1 expression was an independent prognostic factor in patients with bladder TCC (P=0.025). In addition, downregulation of Wip1 expression by transfection with small interfering RNA in bladder cancer cells inhibited cell proliferation, invasion and migration (P<0.05), along with the upregulation of p53 protein levels (P<0.05). These findings suggest that Wip1 may function as a potential prognostic marker and therapeutic target in bladder cancer. PMID:28356972

  18. Single cell monitoring of growth arrest and morphological changes induced by transfer of wild-type p53 alleles to glioblastoma cells.

    PubMed Central

    Van Meir, E G; Roemer, K; Diserens, A C; Kikuchi, T; Rempel, S A; Haas, M; Huang, H J; Friedmann, T; de Tribolet, N; Cavenee, W K

    1995-01-01

    Mutation of the p53 tumor suppressor gene is one of the earliest identified genetic lesions during malignant progression of human astrocytomas. To assess the functional significance of these mutations, wild-type (WT) p53 genes were introduced into glioblastoma cell lines having mutant, WT, or null endogenous p53 alleles. Populations of cells with mutant or null endogenous p53 alleles and exogenous WT p53 were spontaneously selected in culture for cells expressing only mutant p53 or no p53, which then displayed a growth and tumorigenic phenotype identical to the parental cells. To determine the phenotypic consequences of WT p53 expression before the occurrence of mutations, we developed a single cell assay to monitor WT p53-dependent transcription activity. Transfer and expression of exogenous WT p53 genes to cells with endogenous mutant or deleted, but not WT, p53 alleles caused growth arrest and morphological changes, including increased cell size and acquisition of multiple nuclei. This supports the hypothesis that genetic lesions of the p53 gene play an important role in the genesis of astrocytomas. Furthermore, the high sensitivity of the episomal single cell reporter strategy developed here has potential clinical applications in the rapid screening of patients for germ-line mutations of the p53 gene or any other gene with known targets for transcriptional transactivation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7862624

  19. The Role of Wild-Type p53 in Cisplatin-Induced Chk2 Phosphorylation and the Inhibition of Platinum Resistance with a Chk2 Inhibitor.

    PubMed

    Liang, Xiaobing; Guo, Yi; Figg, William Douglas; Fojo, Antonio Tito; Mueller, Michael D; Yu, Jing Jie

    2011-01-01

    The major obstacle in platinum chemotherapy is the repair of platinum-damaged DNA that results in increased resistance, reduced apoptosis, and finally treatment failure. Our research goal is to determine and block the mechanisms of platinum resistance. Our recent studies demonstrate that several kinases in the DNA-repair pathway are activated after cells are exposed to cisplatin. These include ATM, p53, and Chk2. The increased Chk2 phosphorylation is modulated by p53 in a wild-type p53 model. Overexpression of p53 by cDNA transfection in wt-p53 (but not p53 deficient) cells doubled the amount of Chk2 phosphorylation 48 hours after cisplatin treatment. p53 knockdown by specific siRNA greatly reduced Chk2 phosphorylation. We conclude that wild-type p53, in response to cisplatin stimulation, plays a role in the upstream regulation of Chk2 phosphorylation at Thr-68. Cells without normal p53 function survive via an alternative pathway in response to the exogenous influence of cisplatin. We strongly suggest that it is very important to include the p53 mutational status in any p53 involved studies due to the functional differentiation of wt p53 and p53 mutant. Inhibition of Chk2 pathway with a Chk2 inhibitor (C3742) increased cisplatin efficacy, especially those with defective p53. Our findings suggest that inhibition of platinum resistance can be achieved with a small-molecule inhibitor of Chk2, thus improving the therapeutic indices for platinum chemotherapy.

  20. Benzo[a]pyrene (BP) DNA adduct formation in DNA repair–deficient p53 haploinsufficient [Xpa(−/−)p53(+/−)] and wild-type mice fed BP and BP plus chlorophyllin for 28 days

    PubMed Central

    Poirier, Miriam C.

    2012-01-01

    We have evaluated DNA damage (DNA adduct formation) after feeding benzo[a]pyrene (BP) to wild-type (WT) and cancer-susceptible Xpa(−/−)p53(+/−) mice deficient in nucleotide excision repair and haploinsufficient for the tumor suppressor p53. DNA damage was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ES-MS/MS), which measures r7,t8,t9-trihydroxy-c-10-(N 2-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG), and a chemiluminescence immunoassay (CIA), using anti-r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)–DNA antiserum, which measures both BPdG and the other stable BP-DNA adducts. When mice were fed 100 ppm BP for 28 days, BP-induced DNA damage measured in esophagus, liver and lung was typically higher in Xpa(−/−)p53(+/−) mice, compared with WT mice. This result is consistent with the previously observed tumor susceptibility of Xpa(−/−)p53(+/−) mice. BPdG, the major DNA adduct associated with tumorigenicity, was the primary DNA adduct formed in esophagus (a target tissue in the mouse), whereas total BP-DNA adducts predominated in higher levels in the liver (a non-target tissue in the mouse). In an attempt to lower BP-induced DNA damage, we fed the WT and Xpa(−/−)p53(+/−) mice 0.3% chlorophyllin (CHL) in the BP-containing diet for 28 days. The addition of CHL resulted in an increase of BP–DNA adducts in esophagus, liver and lung of WT mice, a lowering of BPdG in esophagi of WT mice and livers of Xpa(−/−)p53(+/−) mice and an increase of BPdG in livers of WT mice. Therefore, the addition of CHL to a BP-containing diet showed a lack of consistent chemoprotective effect, indicating that oral CHL administration may not reduce PAH–DNA adduct levels consistently in human organs. PMID:22828138

  1. Benzo[a]pyrene (BP) DNA adduct formation in DNA repair-deficient p53 haploinsufficient [Xpa(-/-)p53(+/-)] and wild-type mice fed BP and BP plus chlorophyllin for 28 days.

    PubMed

    John, Kaarthik; Pratt, M Margaret; Beland, Frederick A; Churchwell, Mona I; McMullen, Gail; Olivero, Ofelia A; Pogribny, Igor P; Poirier, Miriam C

    2012-11-01

    We have evaluated DNA damage (DNA adduct formation) after feeding benzo[a]pyrene (BP) to wild-type (WT) and cancer-susceptible Xpa(-/-)p53(+/-) mice deficient in nucleotide excision repair and haploinsufficient for the tumor suppressor p53. DNA damage was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ES-MS/MS), which measures r7,t8,t9-trihydroxy-c-10-(N (2)-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG), and a chemiluminescence immunoassay (CIA), using anti-r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA antiserum, which measures both BPdG and the other stable BP-DNA adducts. When mice were fed 100 ppm BP for 28 days, BP-induced DNA damage measured in esophagus, liver and lung was typically higher in Xpa(-/-)p53(+/-) mice, compared with WT mice. This result is consistent with the previously observed tumor susceptibility of Xpa(-/-)p53(+/-) mice. BPdG, the major DNA adduct associated with tumorigenicity, was the primary DNA adduct formed in esophagus (a target tissue in the mouse), whereas total BP-DNA adducts predominated in higher levels in the liver (a non-target tissue in the mouse). In an attempt to lower BP-induced DNA damage, we fed the WT and Xpa(-/-)p53(+/-) mice 0.3% chlorophyllin (CHL) in the BP-containing diet for 28 days. The addition of CHL resulted in an increase of BP-DNA adducts in esophagus, liver and lung of WT mice, a lowering of BPdG in esophagi of WT mice and livers of Xpa(-/-)p53(+/-) mice and an increase of BPdG in livers of WT mice. Therefore, the addition of CHL to a BP-containing diet showed a lack of consistent chemoprotective effect, indicating that oral CHL administration may not reduce PAH-DNA adduct levels consistently in human organs.

  2. Differential regulation of p21 (waf1) protein half-life by DNA damage and Nutlin-3 in p53 wild-type tumors and its therapeutic implications.

    PubMed

    Chang, Li-Ju; Eastman, Alan

    2012-09-01

    DNA damage induces the canonical p53 pathway including elevation of p21 (waf1) resulting in arrest of cell cycle progression. This can protect cells from subsequent Chk1 inhibition. Some p53 wild-type cancer cells such as HCT116 and U2OS exhibit attenuated p21 (waf1) induction upon DNA damage due to translational inhibition, and are incapable of maintaining arrest upon Chk1 inhibition. The purpose of this study was to determine whether this attenuated p21 (waf1) induction also occurred with the non-DNA damaging agent Nutlin-3 which induces p53 by disrupting binding to its negative regulator MDM2. We find that Nutlin-3 circumvented the attenuated induction of p21 (waf1) protein by increasing its half-life which led to G 1 and G 2 arrest in both cell lines. Interestingly, the p21 (waf1) protein half-life remained short on Nutlin-3 in p53 wild-type MCF10A cells; these cells achieve high p21 (waf1) levels through transcriptional upregulation. Consequently, all three p53 wild-type cells but not p53 mutant MDA-MB-231 cancer cells were protected from subsequent incubation with a combination of DNA damage plus a checkpoint inhibitor.

  3. Toward the development of multi-epitope p53 cancer vaccines: an in vitro assessment of CD8(+) T cell responses to HLA class I-restricted wild-type sequence p53 peptides.

    PubMed

    Sakakura, Koichi; Chikamatsu, Kazuaki; Furuya, Nobuhiko; Appella, Ettore; Whiteside, Theresa L; Deleo, Albert B

    2007-10-01

    Wild-type sequence (wt) p53 peptides are attractive candidates for broadly applicable cancer vaccines. Six HLA-A2 or HLA-A24-restricted wt p53 peptides were evaluated for their ex vivo immunogenicity and their potential for use in cancer vaccines. Peripheral blood mononuclear cells (PBMC) obtained from HLA-A*0201(+) and/or HLA-A*2402(+) normal donors and subjects with squamous cell carcinoma of the head and neck (SCCHN) were analyzed for p53 peptide-specific reactivity in ELISPOT IFN-gamma assays. CD8(+) T cells in 7/10 normal donors (HD) and 11/23 subjects with SCCHN responded to at least one of the wt p53 peptides. CD8(+) T cell precursors responsive to wt p53 epitopes were detected in the circulation of most subjects with early disease, and an elevated blood Tc(1)/Tc(2) ratio distinguished wt p53 peptide responders from non-responders. The identification of multiple wt p53 peptides able to induce cytolytic T lymphocytes in most subjects with cancer promotes the development of multi-epitope p53 vaccines.

  4. Different Mutant/Wild-Type p53 Combinations Cause a Spectrum of Increased Invasive Potential in Nonmalignant Immortalized Human Mammary Epithelial Cells1

    PubMed Central

    Junk, Damian J; Vrba, Lukas; Watts, George S; Oshiro, Marc M; Martinez, Jesse D; Futscher, Bernard W

    2008-01-01

    Aberrations of p53 occur in most, if not all, human cancers. In breast cancer, p53 mutation is the most common genetic defect related to a single gene. Immortalized human mammary epithelial cells resemble the earliest forms of aberrant breast tissue growth but do not express many malignancy-associated phenotypes. We created a model of human mammary epithelial tumorigenesis by infecting hTERT-HME1 immortalized human mammary epithelial cells expressing wild-type p53 with four different mutant p53 constructs to determine the role of p53 mutation on the evolution of tumor phenotypes. We demonstrate that different mutant/wild-type p53 heterozygous models generate loss of function, dominant negative activity, and a spectrum of gain of function activities that induce varying degrees of invasive potential. We suggest that this model can be used to elucidate changes that occur in early stages of human mammary epithelial tumorigenesis. These changes may constitute novel biomarkers or reveal novel treatment modalities that could inhibit progression from primary to metastatic breast disease. PMID:18472962

  5. Induction of MDM2-P2 Transcripts Correlates with Stabilized Wild-Type p53 in Betel- and Tobacco-Related Human Oral Cancer

    PubMed Central

    Ralhan, Ranju; Sandhya, Agarwal; Meera, Mathur; Bohdan, Wasylyk; Nootan, Shukla K.

    2000-01-01

    MDM2, a critical element of cellular homeostasis mechanisms, is involved in complex interactions with important cell-cycle and stress-response regulators including p53. The mdm2-P2 promoter is a transcriptional target of p53. The aim of this study was to determine the association between mdm2-P2 transcripts and the status of the p53 gene in betel- and tobacco-related oral squamous cell carcinomas (SCCs) to understand the mechanism of deregulation of MDM2 and p53 expression and their prognostic implications in oral tumorigenesis. Elevated levels of MDM2 proteins were observed in 11 of 25 (44%) oral hyperplastic lesions, nine of 15 (60%) dysplastic lesions, and 71 of 100 (71%) SCCs. The intriguing feature of the study was the identification and different subcellular localization of three isoforms of MDM2 (ie, 90 kd, 76 kd, and 57 kd) in oral SCCs and their correlation with p53 overexpression in each tumor. The hallmark of the study was the detection of mdm2-P2 transcripts in 12 of 20 oral SCCs overexpressing both MDM2 and p53 proteins while harboring wild-type p53 alleles. Furthermore, mdm2 amplification was an infrequent event in betel- and tobacco-associated oral tumorigenesis. The differential compartmentalization of the three isoforms of MDM2 suggests that each has a distinct function, potentially in the regulation of p53 and other gene products implicated in oral tumorigenesis. In conclusion, we report herein the first evidence suggesting that enhanced translation of mdm2-P2 transcripts (S-mdm2) may represent an important mechanism of overexpression and consequent stabilization and functional inactivation of wild-type p53 serving as an adverse prognosticator in betel- and tobacco-related oral cancer. The clinical significance of the functional inactivation of wild-type p53 by MDM2 is underscored by the significantly shorter median disease-free survival time (16 months) observed in p53/MDM2-positive cases as compared to those which did not show co-expression of

  6. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons

    PubMed Central

    Alves da Costa, Cristine; Paitel, Erwan; Mattson, Mark P.; Amson, Robert; Telerman, Adam; Ancolio, Karine; Checler, Frédéric

    2002-01-01

    Presenilins 1 and 2 are two homologous proteins that, when mutated, account for most early onset Alzheimer's disease. Several lines of evidence suggest that, among various functions, presenilins could modulate cell apoptotic responses. Here we establish that the overexpression of presenilin 2 (PS2) and its mutated form Asn-141-Ile-PS2 alters the viability of human embryonic kidney (HEK)293 cells as established by combined trypan blue exclusion, sodium 3′-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate assay, and propidium iodide incorporation FACS analyses. The two parent proteins increase the acetyl-DEVD-al-sensitive caspase-3-like activity in both HEK293 cells and Telencephalon specific murine neurons, modulate Bax and bcl-2 expressions, and enhance cytochrome C translocation into the cytosol. We show that overexpression of both wild-type and mutated PS2 increases p53-like immunoreactivity and transcriptional activity. We also establish that wild-type- and mutated PS2-induced caspase activation is reduced by p53 antisense approach and by pifithrin-α, a chemical inhibitor of p53. Furthermore, mouse fibroblasts in which the PS2 gene has been knocked out exhibited strongly reduced p53-transcriptional activity. Finally, we establish that the overexpression of both wild-type and mutated PS2 is accompanied by a drastic reduction of endogenous presenilin 1 (PS1) expression. Interestingly, pifithrin-α diminished endogenous PS2 immunoreactivity, whereas the inhibitor increases PS1 expression. Altogether, our data demonstrate that wild-type and familial Alzheimer's disease-linked PS2 trigger apoptosis and down-regulate PS1 expression through p53-dependent mechanisms. PMID:11904448

  7. Che-1/AATF: A Critical Cofactor for Both Wild-Type- and Mutant-p53 Proteins

    PubMed Central

    Bruno, Tiziana; Iezzi, Simona; Fanciulli, Maurizio

    2016-01-01

    The p53 protein is a key player in a wide range of protein networks that allow the state of “good health” of the cell. Not surprisingly, mutations of the TP53 gene are one of the most common alterations associated to cancer cells. Mutated forms of p53 (mtp53) not only lose the ability to protect the integrity of the genetic heritage of the cell but also acquire pro-oncogenic functions, behaving like dangerous accelerators of transformation and tumor progression. In recent years, many studies focused on investigating possible strategies aiming to counteract this mutant p53 “gain of function” but the results have not always been satisfactory. Che-1/AATF is a nuclear protein that binds to RNA polymerase II and plays a role in multiple fundamental processes, including control of transcription, cell cycle regulation, DNA damage response, and apoptosis. Several studies showed Che-1/AATF as an important endogenous regulator of p53 expression and activity in a variety of biological processes. Notably, this same regulation was more recently observed also on mtp53. The depletion of Che-1/AATF strongly reduces the expression of mutant p53 in several tumors in vitro and in vivo, making the cells an easier target for chemotherapy treatments. In this mini review, we report an overview of Che-1/AATF functions and discuss a possible role of Che-1/AATF in cancer therapy, with particular regard to its action on p53/mtp53. PMID:26913241

  8. Wild Type p53 gene sensitizes rat C6 glioma cells to HSV-TK/ACV treatment in vitro and in vivo.

    PubMed

    Huang, Qiang; Xia, Zhibo; You, Yongping; Pu, Peiyu

    2010-12-01

    Suicide gene therapy using herpes simplex virus-thymidine kinase (HSV-TK)/ganciclovir (GCV), has been extensively tested for the treatment of glioma. Our previous study showed that exogenous wild type p53 (wt-p53) enhanced the anti-tumor effect of HSV-TK/GCV therapy. However, the use of GCV is hindered by its low penetration to the brain and its toxicity when used at higher dose. In the present study, we used another pro-drug, acyclovir (ACV), and examined the therapeutic efficacy of HSV-TK/ACV combining with wt-p53 in C6 glioma cells. We observed that wt-p53 combined with HSV-TK/ACV resulted in the super-additive anti-tumor effect in vitro. Exogenous wt-p53 significantly enhanced the sensitivity of TK positive C6 cells to ACV in vitro. Our in vivo experiment demonstrated that the effect of wt-p53 and HSV-TK/ACV combination therapy was better than that of HSV-TK/ACV alone. The survival time of tumor-bearing rats treated with wt-p53 in combination with HSV-TK/ACV was also significantly prolonged than those treated with HSV-TK/ACV alone. These results suggest that wt-p53 can enhance the therapeutic efficacy of HSV-TK/ACV both in vitro and in vivo. These findings are considerably valuable with the respect of using less toxic ACV as prodrug. This novel strategy could provide benefit to HSV-TK/prodrug gene therapy.

  9. The use of the NEDD8 inhibitor MLN4924 (Pevonedistat) in a cyclotherapy approach to protect wild-type p53 cells from MLN4924 induced toxicity.

    PubMed

    Malhab, Lara J Bou; Descamps, Simon; Delaval, Benedicte; Xirodimas, Dimitris P

    2016-11-30

    Targetting the ubiquitin pathway is an attractive strategy for cancer therapy. The inhibitor of the ubiquitin-like molecule NEDD8 pathway, MLN4924 (Pevonedistat) is in Phase II clinical trials. Protection of healthy cells from the induced toxicity of the treatment while preserving anticancer efficacy is a highly anticipated outcome in chemotherapy. Cyclotherapy was proposed as a promising approach to achieve this goal. We found that cytostatic activation of p53 protects cells against MLN4924-induced toxicity and importantly the effects are reversible. In contrast, cells with mutant or no p53 remain sensitive to NEDD8 inhibition. Using zebrafish embryos, we show that MLN4924-induced apoptosis is reduced upon pre-treatment with actinomycin D in vivo. Our studies show that the cellular effects of NEDD8 inhibition can be manipulated based on the p53 status and that NEDD8 inhibitors can be used in a p53-based cyclotherapy protocol to specifically target cancer cells devoid of wild type p53 function, while healthy cells will be protected from the induced toxicity.

  10. The use of the NEDD8 inhibitor MLN4924 (Pevonedistat) in a cyclotherapy approach to protect wild-type p53 cells from MLN4924 induced toxicity

    PubMed Central

    Malhab, Lara J. Bou; Descamps, Simon; Delaval, Benedicte; Xirodimas, Dimitris P.

    2016-01-01

    Targetting the ubiquitin pathway is an attractive strategy for cancer therapy. The inhibitor of the ubiquitin-like molecule NEDD8 pathway, MLN4924 (Pevonedistat) is in Phase II clinical trials. Protection of healthy cells from the induced toxicity of the treatment while preserving anticancer efficacy is a highly anticipated outcome in chemotherapy. Cyclotherapy was proposed as a promising approach to achieve this goal. We found that cytostatic activation of p53 protects cells against MLN4924-induced toxicity and importantly the effects are reversible. In contrast, cells with mutant or no p53 remain sensitive to NEDD8 inhibition. Using zebrafish embryos, we show that MLN4924-induced apoptosis is reduced upon pre-treatment with actinomycin D in vivo. Our studies show that the cellular effects of NEDD8 inhibition can be manipulated based on the p53 status and that NEDD8 inhibitors can be used in a p53-based cyclotherapy protocol to specifically target cancer cells devoid of wild type p53 function, while healthy cells will be protected from the induced toxicity. PMID:27901050

  11. Noscapine induced apoptosis via downregulation of survivin in human neuroblastoma cells having wild type or null p53.

    PubMed

    Li, Shiwang; He, Jing; Li, Shuai; Cao, Guoqing; Tang, Shaotao; Tong, Qiangsong; Joshi, Harish C

    2012-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. Noscapine, a nontoxic natural compound, can trigger apoptosis in many cancer types. We now show that p53 is dispensable for Noscapine-induced cell death in neuroblastoma cell lines, proapoptotic response to this promising chemopreventive agent is mediated by suppression of survivin protein expression. The Noscapine treatment increased levels of total and Ser(15)-phosphorylated p53 protein in SK-SY5Y cells, but the proapoptotic response to this agent was maintained even after knockdown of the p53 protein level. Exposure of SK-SY5Y and LA1-5S cells to Noscapine resulted in a marked decrease in protein and mRNA level of survivin as early as 12 hours after treatment. Ectopic expression of survivin conferred statistically significant protection against Noscapine-mediated cytoplasmic histone-associated apoptotic DNA fragmentation. Also, the Noscapine-induced apoptosis was modestly but statistically significantly augmented by RNA interference of survivin in both cell lines. Furthermore, Noscapine-induced apoptotic cell death was associated with activation of caspase-3 and cleavage of PARP. In conclusion, the present study provides novel insight into the molecular circuitry of Noscapine-induced apoptosis to indicate suppression of survivin expression as a critical mediator of this process.

  12. The In Vivo DNA Binding Properties of Wild-Type and Mutant p53 Proteins in Mammary Cell Lines During the Course of Cell Cycle.

    DTIC Science & Technology

    1996-08-01

    existing d0 0t e0s I ri h 1. o r a gth im fr g . rn e viewing in strtio , sarcin exstn g dth nrcgathering and maintaining the data needed and completing...34. Pu Pu Pu C (A/T) (T/A) G Py Py Py-3’ (21)(26). Wild-type but not mutant p53 can activate transcription from specific cellular regions containing...and then add proteinase K to a final concentration of 400ug/ml and digest overnight at 370C. Extract once with phenol and 3X with chloroform. DNasel

  13. Feasibility and effect of ultrasound microbubble-mediated wild-type p53 gene transfection of HeLa cells

    PubMed Central

    CHEN, WEN-JUAN; XIONG, ZHENG-AI; TANG, YAN; DONG, PEI-TING; LI, PAN; WANG, ZHI-GANG

    2012-01-01

    Gene therapy holds great promise for the treatment of diseases. The key problem of gene therapy is the choice of an effective vector. Ultrasound-mediated microbubble technique (UMMT) has already shown promising applications in numerous types of tumors apart from cervical carcinoma. In the present study, according to the results of an MTT assay, we initially chose an ultrasound intensity of 0.5 W/cm2, an ultrasound exposure time of 30 sec and a microbubble concentration of 10% as the optimum experimental condition for wtp53 plasmid transfection into HeLa cells. To further investigate the transfection efficiency of ultrasound combined with microbubbles, RT-PCR analysis was used to examine the mRNA level of p53. The transfection efficiency in the plasmid plus microbubbles and ultrasound group was significantly higher than that of the other groups. Following transfection of the wtp53 gene, flow cytometric analysis showed that the cell cycle of HeLa cells was arrested in the G1 phase. The results of the present study suggest that UMMT, a new gene delivery system, increases the transfection efficiency of the wtp53 gene. Moreover, the growth of HeLa cells was arrested by introducing wtp53. This study may afford a new trend for the gene therapy of cervical carcinoma. PMID:22970006

  14. High-Affinity Rb Binding, p53 Inhibition, Subcellular Localization, and Transformation by Wild-Type or Tumor-Derived Shortened Merkel Cell Polyomavirus Large T Antigens

    PubMed Central

    Borchert, Sophie; Czech-Sioli, Manja; Neumann, Friederike; Schmidt, Claudia; Wimmer, Peter; Dobner, Thomas

    2014-01-01

    ABSTRACT Interference with tumor suppressor pathways by polyomavirus-encoded tumor antigens (T-Ags) can result in transformation. Consequently, it is thought that T-Ags encoded by Merkel cell polyomavirus (MCPyV), a virus integrated in ∼90% of all Merkel cell carcinoma (MCC) cases, are major contributors to tumorigenesis. The MCPyV large T-Ag (LT-Ag) has preserved the key functional domains present in all family members but has also acquired unique regions that flank the LxCxE motif. As these regions may mediate unique functions, or may modulate those shared with T-Ags of other polyomaviruses, functional studies of MCPyV T-Ags are required. Here, we have performed a comparative study of full-length or MCC-derived truncated LT-Ags with regard to their biochemical characteristics, their ability to bind to retinoblastoma (Rb) and p53 proteins, and their transforming potential. We provide evidence that full-length MCPyV LT-Ag may not directly bind to p53 but nevertheless can significantly reduce p53-dependent transcription in reporter assays. Although early region expression constructs harboring either full-length or MCC-derived truncated LT-Ag genes can transform primary baby rat kidney cells, truncated LT-Ags do not bind to p53 or reduce p53-dependent transcription. Interestingly, shortened LT-Ags exhibit a very high binding affinity for Rb, as shown by coimmunoprecipitation and in vitro binding studies. Additionally, we show that truncated MCPyV LT-Ag proteins are expressed at higher levels than those for the wild-type protein and are able to partially relocalize Rb to the cytoplasm, indicating that truncated LT proteins may have gained additional features that distinguish them from the full-length protein. IMPORTANCE MCPyV is one of the 12 known polyomaviruses that naturally infect humans. Among these, it is of particular interest since it is the only human polyomavirus known to be involved in tumorigenesis. MCPyV is thought to be causally linked to MCC, a rare

  15. Lack of p53 Affects the Expression of Several Brain Mitochondrial Proteins: Insights from Proteomics into Important Pathways Regulated by p53

    PubMed Central

    Fiorini, Ada; Sultana, Rukhsana; Barone, Eugenio; Cenini, Giovanna; Perluigi, Marzia; Mancuso, Cesare; Cai, Jian; Klein, Jon B.; St. Clair, Daret; Butterfield, D. Allan

    2012-01-01

    The tumor suppressor protein p53 has been described “as the guardian of the genome” for its crucial role in regulating the transcription of numerous genes responsible for cells cycle arrest, senescence, or apoptosis in response to various stress signals. Although p53 promotes longevity by decreasing the risk of cancer through activation of apoptosis or cellular senescence, several findings suggest that an increase of its activity may have deleterious effects leading to selected aspects of the aging phenotype and neurodegenerative diseases. There is the link between p53 and oxidative stress, the latter a crucial factor that contributes to neurodegenerative processes like Alzheimer disease (AD). In the present study, using a proteomics approach, we analyzed the impact of lack of p53 on the expression of several brain mitochondrial proteins involved in different pathways, and how lack of p53 may present a target to restore neuronal impairments. Our investigation on isolated brain mitochondria from p53(−/−) mice also provides a better understanding of the p53-mitochondria relationship and its involvement in the development of many diseases. PMID:23209608

  16. Lack of dependence on p53 for DNA double strand break repair of episomal vectors in human lymphoblasts

    NASA Technical Reports Server (NTRS)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines. Copyright 1999 Academic Press.

  17. Synergistic anticancer effect of exogenous wild-type p53 gene combined with 5-FU in human colon cancer resistant to 5-FU in vivo

    PubMed Central

    Xie, Qi; Wu, Min-Yi; Zhang, Ding-Xuan; Yang, Yi-Ming; Wang, Bao-Shuai; Zhang, Jing; Xu, Jin; Zhong, Wei-De; Hu, Jia-Ni

    2016-01-01

    AIM To investigate the anticancer effect of a recombinant adenovirus-mediated p53 (rAd-p53) combined with 5-fluorouracil (5-FU) in human colon cancer resistant to 5-FU in vivo and the mechanism of rAd-p53 in reversal of 5-FU resistance. METHODS Nude mice bearing human colon cancer SW480/5-FU (5-FU resistant) were randomly assigned to four groups (n = 25 each): control group, 5-FU group, rAd-p53 group, and rAd-p53 + 5-FU group. At 24 h, 48 h, 72 h, 120 h and 168 h after treatment, 5 mice were randomly selected from each group and sacrificed using an overdose of anesthetics. The tumors were removed and the protein expressions of p53, protein kinase C (PKC), permeability-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) (Western blot) and apoptosis (TUNEL) were determined. RESULTS The area ratios of tumor cell apoptosis were larger in the rAd/p53 + 5-FU group than that in the control, 5-FU and rAd/p53 groups (P < 0.05), and were larger in the rAd/p53 group than that of the control group (P < 0.05) and the 5-FU group at more than 48 h (P < 0.05). The p53 expression was higher in the rAd/p53 and the rAd/p53 + 5-FU groups than that of the control and 5-FU groups (P < 0.05), and were higher in the rAd/p53 + 5-FU group than that of the rAd/p53 group (P < 0.05). Overexpression of PKC, P-gp and MRP1 was observed in the 5-FU and control groups. In the rAd/p53 + 5-FU group, the expression of P-gp and MRP1 was lower that of the control and 5-FU groups (P < 0.05), and the expression of PKC was lower than that of the control, 5-FU and rAd/p53 groups at more than 48 h (P < 0.05). In the rAd/p53 group, the expression of P-gp and MRP1 was lower that of the control and 5-FU groups at more than 48 h (P < 0.05), and the expression of PKC was lower than that of the control and 5-FU groups at more than 120 h (P < 0.05). CONCLUSION 5-FU combined with rAd-p53 has a synergistic anticancer effect in SW480/5-FU (5-FU resistance), which contributes to reversal of 5-FU

  18. Trisubstituted and tetrasubstituted pyrazolines as a novel class of cell-growth inhibitors in tumor cells with wild type p53.

    PubMed

    Abdel-Halim, Mohammad; Keeton, Adam B; Gurpinar, Evrim; Gary, Bernard D; Vogel, Simon M; Engel, Matthias; Piazza, Gary A; Boeckler, Frank M; Hartmann, Rolf W; Abadi, Ashraf H

    2013-12-01

    Derivatives with scaffolds of 1,3,5-tri-substituted pyrazoline and 1,3,4,5-tetra-substituted pyrazoline were synthesized and tested for their inhibitory effects versus the p53(+/+) HCT116 and p53(-/-) H1299 human tumor cell lines. Several compounds were active against the two cell lines displaying IC50 values in the low micromolar range with a clearly more pronounced effect on the p53(+/+) HCT116 cells. The compound class shows excellent developability due to the modular synthesis, allowing independent optimization of all three to four key substituents to improve the properties of the molecules.

  19. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells.

    PubMed

    Matsumoto, Masaru; Nakajima, Wataru; Seike, Masahiro; Gemma, Akihiko; Tanaka, Nobuyuki

    2016-04-29

    Cisplatin is a highly effective anticancer drug for treatment of various tumors including non-small-cell lung cancer (NSCLC), and is especially useful in cases nonresponsive to molecular-targeted drugs. Accumulating evidence has shown that cisplatin activates the p53-dependent apoptotic pathway, but it also induces apoptosis in p53-mutated cancer cells. Here we demonstrated that DNA-damage inducible proapoptotic BH3 (Bcl-2 homology region 3)-only Bcl-2 family members, Noxa, Puma, Bim and Bid, are not involved in cisplatin-induced apoptosis in human NSCLC cell lines. In contrast, the expression of proapoptotic multidomain Bcl-2-family members, Bak and Bax, was induced by cisplatin in p53-dependent and -independent manners, respectively. Moreover, in wild-type p53-expressing cells, cisplatin mainly used the Bak-dependent apoptotic pathway, but this apoptotic pathway shifted to the Bax-dependent pathway by loss-of-function of p53. Furthermore, both Bak- and Bax-induced apoptosis was enhanced by the antiapoptotic Bcl-2 family member, Bcl-XL knockdown, but not by Mcl-1 knockdown. From this result, we tested the effect of ABT-263 (Navitoclax), the specific inhibitor of Bcl-2 and Bcl-XL, but not Mcl-1, and found that ABT-263 synergistically enhanced cisplatin-induced apoptosis in NSCLC cells in the presence or absence of p53. These results indicate a novel regulatory system in cisplatin-induced NSCLC cell apoptosis, and a candidate efficient combination chemotherapy method against lung cancers.

  20. Regulation of Mutant p53 Protein Expression.

    PubMed

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be explained in mutant p53-expressing cells by the lack of an auto-regulatory loop with Mdm2 and other negative regulators, which are pivotal for wt p53 regulation. Further, additional protective mechanisms are acquired by mutant p53, largely mediated by the co-chaperones and their paralogs, the stress-induced heat shock proteins. Consequently, mutant p53 is accumulated in cancer cells in response to chronic stress and this accumulation is critical for its oncogenic gain of functions (GOF). Building on the extensive knowledge regarding wt p53, the regulation of mutant p53 is unraveling. In this review, we describe the current understanding on the major levels at which mutant p53 is regulated. These include the regulation of p53 protein levels by microRNA and by enzymes controlling p53 proteasomal degradation.

  1. The Human ARF Cell Cycle Regulatory Gene Promoter Is a CpG Island Which Can Be Silenced by DNA Methylation and Down-Regulated by Wild-Type p53

    PubMed Central

    Robertson, Keith D.; Jones, Peter A.

    1998-01-01

    The INK4a/ARF locus encodes two proteins involved in tumor suppression in a manner virtually unique in mammalian cells. Distinct first exons, driven from separate promoters, splice onto a common exon 2 and 3 but utilize different reading frames to produce two completely distinct proteins, both of which play roles in cell cycle control. INK4a, a critical element of the retinoblastoma gene pathway, binds to and inhibits the activities of CDK4 and CDK6, while ARF, a critical element of the p53 pathway, increases the level of functional p53 via interaction with MDM2. Here we clone and characterize the promoter of the human ARF gene and show that it is a CpG island characteristic of a housekeeping gene which contains numerous Sp1 sites. Both ARF and INK4a are coordinately expressed in cells except when their promoter regions become de novo methylated. In one of these situations, ARF transcription could be reactivated by treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine, and the reactivation kinetics of ARF and INK4a were found to differ slightly in a cell line in which both genes were silenced by methylation. The ARF promoter was also found to be highly responsive to E2F1 expression, in keeping with previous results at the RNA level. Lastly, transcription from the ARF promoter was down-regulated by wild-type p53 expression, and the magnitude of the effect correlated with the status of the endogenous p53 gene. This finding points to the existence of an autoregulatory feedback loop between p53, MDM2, and ARF, aimed at keeping p53 levels in check. PMID:9774662

  2. Lack of major genome instability in tumors of p53 null rats.

    PubMed

    Hermsen, Roel; Toonen, Pim; Kuijk, Ewart; Youssef, Sameh A; Kuiper, Raoul; van Heesch, Sebastiaan; de Bruin, Alain; Cuppen, Edwin; Simonis, Marieke

    2015-01-01

    Tumorigenesis is often associated with loss of tumor suppressor genes (such as TP53), genomic instability and telomere lengthening. Previously, we generated and characterized a rat p53 knockout model in which the homozygous rats predominantly develop hemangiosarcomas whereas the heterozygous rats mainly develop osteosarcomas. Using genome-wide analyses, we find that the tumors that arise in the heterozygous and homozygous Tp53C273X mutant animals are also different in their genomic instability profiles. While p53 was fully inactivated in both heterozygous and homozygous knockout rats, tumors from homozygous animals show very limited aneuploidy and low degrees of somatic copy number variation as compared to the tumors from heterozygous animals. In addition, complex structural rearrangements such as chromothripsis and breakage-fusion-bridge cycles were never found in tumors from homozygous animals, while these were readily detectable in tumors from heterozygous animals. Finally, we measured telomere length and telomere lengthening pathway activity and found that tumors of homozygous animals have longer telomeres but do not show clear telomerase or alternative lengthening of telomeres (ALT) activity differences as compared to the tumors from heterozygous animals. Taken together, our results demonstrate that host p53 status in this rat p53 knockout model has a large effect on both tumor type and genomic instability characteristics, where full loss of functional p53 is not the main driver of large-scale structural variations. Our results also suggest that chromothripsis primarily occurs under p53 heterozygous rather than p53 null conditions.

  3. Lack of Major Genome Instability in Tumors of p53 Null Rats

    PubMed Central

    Hermsen, Roel; Toonen, Pim; Kuijk, Ewart; Youssef, Sameh A.; Kuiper, Raoul; van Heesch, Sebastiaan; de Bruin, Alain; Cuppen, Edwin; Simonis, Marieke

    2015-01-01

    Tumorigenesis is often associated with loss of tumor suppressor genes (such as TP53), genomic instability and telomere lengthening. Previously, we generated and characterized a rat p53 knockout model in which the homozygous rats predominantly develop hemangiosarcomas whereas the heterozygous rats mainly develop osteosarcomas. Using genome-wide analyses, we find that the tumors that arise in the heterozygous and homozygous Tp53C273X mutant animals are also different in their genomic instability profiles. While p53 was fully inactivated in both heterozygous and homozygous knockout rats, tumors from homozygous animals show very limited aneuploidy and low degrees of somatic copy number variation as compared to the tumors from heterozygous animals. In addition, complex structural rearrangements such as chromothripsis and breakage-fusion-bridge cycles were never found in tumors from homozygous animals, while these were readily detectable in tumors from heterozygous animals. Finally, we measured telomere length and telomere lengthening pathway activity and found that tumors of homozygous animals have longer telomeres but do not show clear telomerase or alternative lengthening of telomeres (ALT) activity differences as compared to the tumors from heterozygous animals. Taken together, our results demonstrate that host p53 status in this rat p53 knockout model has a large effect on both tumor type and genomic instability characteristics, where full loss of functional p53 is not the main driver of large-scale structural variations. Our results also suggest that chromothripsis primarily occurs under p53 heterozygous rather than p53 null conditions. PMID:25811670

  4. The Enigma of p53.

    PubMed

    Lozano, Guillermina

    2016-12-08

    This perspective will focus on the physiological impact of wild-type and mutant p53 activities. In particular, the tissue-specific nature of activation of p53 targets and their subsequent effects on cell behavior will be discussed. Because mutations in p53 are common in human cancers, the regulation and physiological consequences of mutant p53 proteins will also be discussed.

  5. LZAP Inhibits p38 MAPK (p38) Phosphorylation and Activity by Facilitating p38 Association with the Wild-Type p53 Induced Phosphatase 1 (WIP1)

    PubMed Central

    An, Hanbing; Lu, Xinyuan; Liu, Dan; Yarbrough, Wendell G.

    2011-01-01

    LZAP (Cdk5rap3, C53) is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its protein-protein interactions. To gain further insight into LZAP activities, we searched for LZAP-associated proteins (LAPs). Here we show that the LZAP binds p38, alters p38 cellular localization, and inhibits basal and cytokine-stimulated p38 activity. Expression of LZAP inhibits p38 phosphorylation in a dose-dependent fashion while loss of LZAP enhances phosphorylation and activation with resultant phosphorylation of p38 downstream targets. Mechanistically, the ability of LZAP to alter p38 phosphorylation depended, at least partially, on the p38 phosphatase, Wip1. Expression of LZAP increased both LZAP and Wip1 binding to p38. Taken together, these data suggest that LZAP activity includes inhibition of p38 phosphorylation and activation. PMID:21283629

  6. LZAP inhibits p38 MAPK (p38) phosphorylation and activity by facilitating p38 association with the wild-type p53 induced phosphatase 1 (WIP1).

    PubMed

    An, Hanbing; Lu, Xinyuan; Liu, Dan; Yarbrough, Wendell G

    2011-01-24

    LZAP (Cdk5rap3, C53) is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its protein-protein interactions. To gain further insight into LZAP activities, we searched for LZAP-associated proteins (LAPs). Here we show that the LZAP binds p38, alters p38 cellular localization, and inhibits basal and cytokine-stimulated p38 activity. Expression of LZAP inhibits p38 phosphorylation in a dose-dependent fashion while loss of LZAP enhances phosphorylation and activation with resultant phosphorylation of p38 downstream targets. Mechanistically, the ability of LZAP to alter p38 phosphorylation depended, at least partially, on the p38 phosphatase, Wip1. Expression of LZAP increased both LZAP and Wip1 binding to p38. Taken together, these data suggest that LZAP activity includes inhibition of p38 phosphorylation and activation.

  7. Lack of association between p53 expression and betel nut chewing in oral cancers from Thailand.

    PubMed

    Thongsuksai, P; Boonyaphiphat, P

    2001-04-01

    To elucidate whether betel-associated oral squamous cell carcinoma is associated with p53 protein expression, tumor samples from 156 patients with detailed histories of exposures were investigated immunohistochemically using CM1 antibody. The expression of p53 (>10% positive cells) was found in 38.5% of the cases. The frequency of expression in betel chewers alone and betel chewer with tobacco use were 37.9% (11/29) and 25%(9/36), respectively, whereas that in betel chewers with smoking/drinking it was 47.2%(17/36) and in smokers or drinkers without chewing was 42.0% (21/50). However, the differences were not statistically significant. Multivariate analysis also revealed with the no independent association of betel chewing with p53 expression (odds ratio [OR] 1.81, 95% confidence interval 0.50-6.49), whereas alcohol drinking and smokeless tobacco use were significant (OR 7.58, 2.01-28.53 and 0.39, 0.16-0.98, respectively). These results suggested that betel chewing with or without smokeless tobacco use may not induce oral cancers via a p53-dependent pathway. However, since this is an immunohistochemical study, further molecular analysis is needed.

  8. Mutant huntingtin regulates EGF receptor fate in non-neuronal cells lacking wild-type protein.

    PubMed

    Melone, Mariarosa A B; Calarco, Anna; Petillo, Orsolina; Margarucci, Sabrina; Colucci-D'Amato, Luca; Galderisi, Umberto; Koverech, Guido; Peluso, Gianfranco

    2013-01-01

    Huntingtin (htt) is a scaffold protein localized at the subcellular level and is involved in coordinating the activity of several protein for signaling and intracellular transport. The emerging properties of htt in intracellular trafficking prompted us to study the role of mutant htt (polyQ-htt) in the intracellular fate of epidermal growth factor receptor (EGFR), whose activity seems to be strictly regulated by htt. In particular, to evaluate whether protein trafficking dysfunction occurs in non-neuronal cells in the absence of functional htt, we monitored the EGFR protein in fibroblasts from homozygotic HD patients and their healthy counterpart. We found that polyQ-htt controls EGFR degradation and recycling. Lack of wild-type htt caused alteration of the ubiquitination cycle, formation of EGFR-incorporating high-molecular weight protein aggregates and abnormal EGFR distribution in endosomes of the degradation and recycling pathways after EGF stimulation. PolyQ-htt-induced alteration of EGFR trafficking affected cell migration and proliferation, at least in part, through inhibition of ERK signaling. To our knowledge the data here reported represent the first signaling and phenotypic characterization of polyQ-htt involvement in the modulation of growth factor stimulation in non-neuronal cells.

  9. FGFR3b Extracellular Loop Mutation Lacks Tumorigenicity In Vivo but Collaborates with p53/pRB Deficiency to Induce High-grade Papillary Urothelial Carcinoma

    PubMed Central

    Zhou, Haiping; He, Feng; Mendelsohn, Cathy L.; Tang, Moon-shong; Huang, Chuanshu; Wu, Xue-Ru

    2016-01-01

    Missense mutations of fibroblast growth factor receptor 3 (FGFR3) occur in up to 80% of low-grade papillary urothelial carcinoma of the bladder (LGP-UCB) suggesting that these mutations are tumor drivers, although direct experimental evidence is lacking. Here we show that forced expression of FGFR3b-S249C, the most prevalent FGFR3 mutation in human LGP-UCB, in cultured urothelial cells resulted in slightly reduced surface translocation than wild-type FGFR3b, but nearly twice as much proliferation. When we expressed a mouse equivalent of this mutant (FGFR3b-S243C) in urothelia of adult transgenic mice in a tissue-specific and inducible manner, we observed significant activation of AKT and MAPK pathways. This was, however, not accompanied by urothelial proliferation or tumorigenesis over 12 months, due to compensatory tumor barriers in p16-pRB and p19-p53-p21 axes. Indeed, expressing FGFR3b-S249C in cultured human urothelial cells expressing SV40T, which functionally inactivates pRB/p53, markedly accelerated proliferation and cell-cycle progression. Furthermore, expressing FGFR3b-S243C in transgenic mouse urothelium expressing SV40T converted carcinoma-in-situ to high-grade papillary urothelial carcinoma. Together, our study provides new experimental evidence indicating that the FGFR3 mutations have very limited urothelial tumorigenicity and that these mutations must collaborate with other genetic events to drive urothelial tumorigenesis. PMID:27157475

  10. The p53-dependent radioadaptive response

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo

    We already reported that conditioning exposures at low doses, or at low dose-rates, lowered radiation-induced p53-dependent apoptosis in cultured cells in vitro and in the spleens of mice in vivo. In this study, the aim was to characterize the p53-dependent radioadaptive response at the molecular level. We used wild-type (wt) p53 and mutated (m) p53 containing cells derived from the human lung cancer H1299 cell line, which is p53-null. Cellular radiation sensitivities were determined with a colony-forming assay. The accumulation of p53, Hdm2, and iNOS was analyzed with Western blotting. The quantification of chromosomal aberrations was estimated by scoring dicentrics per cell. In wtp53 cells, it was demonstrated that the lack of p53 accumulation was coupled with the activation of Hdm2 after low dose irradiation (0.02 Gy). Although NO radicals were only minimally induced in wtp53 cells irradiated with a challenging irradiation (6 Gy) alone, NO radicals were seen to increase about 2-4 fold after challenging irradiation following a priming irradiation (0.02 Gy). Under similar irradiation conditions with a priming and challenging irradiation in wtp53 cells, induction of radioresistance and a depression of chromosomal aberrations were observed only in the absence of Pifithrin-α (a p53 inhibitor), RITA or Nutlin-3 (p53-Hdm2 interaction inhibitors), aminoguanidine (an iNOS inhibitor) and c-PTIO (an NO radical scavenger). On the other hand, in p53 dysfunctional cells, a radioadaptive response was not observed in the presence or absence of those inhibitors. Moreover, radioresistance developed when wtp53 cells were treated with ISDN (an NO generating agent) alone. These findings suggest that NO radicals are an initiator of the radioadaptive response acting through the activation of Hdm2 and the depression of p53 accumulations.

  11. p73 Protein Expression Correlates With Radiation-Induced Apoptosis in the Lack of p53 Response to Radiation Therapy for Cervical Cancer

    SciTech Connect

    Wakatsuki, Masaru; Ohno, Tatsuya Iwakawa, Mayumi; Ishikawa, Hitoshi; Noda, Shuhei; Ohta, Toshie; Kato, Shingo; Tsujii, Hirohiko; Imai, Takashi; Nakano, Takashi

    2008-03-15

    Purpose: p73 belongs to the p53 tumor suppressor family of genes and can inhibit cell growth in a p53-like manner by inducing apoptosis or cell cycle arrest. Here, we investigated whether p73 could compensate for impaired p53 function in apoptosis induced by radiation therapy (RT) for cervical cancer. Methods and Materials: Sixty-eight patients with squamous cell carcinoma of the cervix who received definitive RT combined with (n = 37) or without (n = 31) cisplatin were investigated. Biopsy specimens were excised from the cervical tumor before RT and after 9 Gy. Results: Mean apoptosis index (AI) was 0.93% before RT and 1.97% after 9 Gy with a significant increase (p < 0.001). For all patients, there was a significant correlation between p73 expression positivity after 9 Gy and AI ratio (AI after 9 Gy/AI before RT) (p = 0.021). Forty-one patients were regarded as the p53-responding group according to the expression of p53 after 9 Gy, whereas the remaining 27 patients were regarded as the p53-nonresponding group. A significant correlation between p73 expression after 9 Gy and AI ratio was observed in the p53-non-responding group (p < 0.001) but not in the p53-responding group (p = 0.940). Conclusion: Our results suggest that p73 plays an important role in compensating for the lack of p53 function in radiation-induced apoptosis of cervical cancer.

  12. Effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells: dependency on p53 status of tumor cells and types of (10)B-carriers.

    PubMed

    Masunaga, Shin-ichiro; Tatebe, Hitoshi; Nishimura, Yasumasa; Tano, Keizo; Sanada, Yu; Moriwaki, Takahiro; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Ono, Koji

    2016-01-01

    Purpose To evaluate the effect of oxygen pressure during incubation with a (10)B-carrier on (10)B uptake capacity of cultured p53 wild-type and mutated tumor cells. Materials and methods Cultured human head and neck squamous cell carcinoma cell line transfected with mutant TP53 (SAS/mp53), or with a neo vector as a control (SAS/neo) was incubated with L-para-boronophenylalanine-(10)B (BPA) or sodium mercaptoundecahydrododecaborate-(10)B (BSH) as a (10)B-carrier at the (10)B concentration of 60 ppm for 24 h under aerobic (20.7% of oxygen) or hypoxic (0.28% of oxygen) conditions. Immediately after incubation, cultured tumor cells received reactor thermal neutron beams, and a cell survival assay was performed. (10)B concentration of cultured SAS/neo or SAS/mp53 cells incubated under aerobic or hypoxic conditions was determined with a thermal neutron guide tube. Results Hypoxic incubation significantly decreased (10)B concentration of cultured cells with a clearer tendency observed following BPA than BSH treatment in both SAS/neo and SAS/mp53 cells. Following neutron beam irradiation, SAS/mp53 cells showed significantly higher relative biological effectiveness values than SAS/neo cells because of the significantly lower radiosensitivity of SAS/mp53 to γ-rays than SAS/neo cells. Conclusion Oxygen pressure during incubation with a (10)B-carrier had a critical impact on (10)B uptake of cultured tumor cells.

  13. 5-FU targets rpL3 to induce mitochondrial apoptosis via cystathionine-β-synthase in colon cancer cells lacking p53

    PubMed Central

    Pagliara, Valentina; Saide, Assunta; Mitidieri, Emma; Roberta d'Emmanuele di Villa, Bianca; Sorrentino, Raffaella; Russo, Giulia; Russo, Annapina

    2016-01-01

    Recent findings revealed in cancer cells novel stress response pathways, which in response to many chemotherapeutic drugs causing nucleolar stress, will function independently from tumor protein p53 (p53) and still lead to cell cycle arrest and/or apoptosis. Since it is known that most cancers lack functional p53, it is of great interest to explore these emerging molecular mechanisms. Here, we demonstrate that nucleolar stress induced by 5-fluorouracil (5-FU) in colon cancer cells devoid of p53 leads to the activation of ribosomal protein L3 (rpL3) as proapoptotic factor. rpL3, as ribosome-free form, is a negative regulator of cystathionine-β-synthase (CBS) expression at transcriptional level through a molecular mechanism involving Sp1. The rpL3-CBS association affects CBS stability and, in addition, can trigger CBS translocation into mitochondria. Consequently apoptosis will be induced through the mitochondrial apoptotic cell death pathway characterized by an increased ratio of Bax to Bcl-2, cytochrome c release and subsequent caspase activation. It is noteworthy that silencing of CBS is associated to a strong increase of 5-FU-mediated inhibition of cell migration and proliferation. These data reveal a novel mechanism to accomplish p53-independent apoptosis and suggest a potential therapeutic approach aimed at upregulating rpL3 for treating cancers lacking p53. PMID:27385096

  14. A dual role of p53 in the control of autophagy.

    PubMed

    Tasdemir, Ezgi; Chiara Maiuri, M; Morselli, Eugenia; Criollo, Alfredo; D'Amelio, Marcello; Djavaheri-Mergny, Mojgan; Cecconi, Francesco; Tavernarakis, Nektarios; Kroemer, Guido

    2008-08-01

    Genotoxic stress can induce autophagy in a p53-dependent fashion and p53 can transactivate autophagy-inducing genes. We have observed recently that inactivation of p53 by deletion, depletion or inhibition can trigger autophagy. Thus, human and mouse cells subjected to knockout, knockdown or pharmacological inhibition of p53 manifest signs of autophagy such as depletion of p62/SQSTM1, LC3 lipidation, redistribution of GFP-LC3 in cytoplasmic puncta, and accumulation of autophagosomes and autolysosomes, both in vitro and in vivo. Inhibition of p53 causes autophagy in enucleated cells, indicating that the cytoplasmic, non-nuclear pool of p53 can regulate autophagy. Accordingly, retransfection of p53(-/-) cells with wild-type p53 as well as a p53 mutant that is excluded from the nucleus (due to the deletion of the nuclear localization sequence) can inhibit autophagy, whereas retransfection with a nucleus-restricted p53 mutant (in which the nuclear localization sequence has been deleted) does not inhibit autophagy. Several distinct autophagy inducers (e.g., starvation, rapamycin, lithium, tunicamycin and thapsigargin) stimulate the rapid degradation of p53. In these conditions, inhibition of the p53-specific E3 ubiquitin ligase HDM2 can avoid p53 depletion and simultaneously prevent the activation of autophagy. Moreover, a p53 mutant that lacks the HDM2 ubiquitinylation site and hence is more stable than wild-type p53 is particularly efficient in suppressing autophagy. In conclusion, p53 plays a dual role in the control of autophagy. On the one hand, nuclear p53 can induce autophagy through transcriptional effects. On the other hand, cytoplasmic p53 may act as a master repressor of autophagy.

  15. Regulation of ES cell differentiation by functional and conformational modulation of p53.

    PubMed Central

    Sabapathy, K; Klemm, M; Jaenisch, R; Wagner, E F

    1997-01-01

    Embryonic stem (ES) cell lines were used to examine the role of p53 during in vitro differentiation. Undifferentiated ES cells express high levels of p53 exclusively in the wild-type conformation, immunoprecipitable by monoclonal antibody PAb246, and p53 was found to be functionally active as determined by its ability to bind DNA specifically and to activate transcription of target genes. Differentiation in vitro resulted in a decrease in the levels of p53 and in a shift in its conformational status to the mutant form, detectable by monoclonal antibody PAb240, with a concomitant loss of functional activity. The presence of functional p53 in the undifferentiated ES cells renders them hypersensitive to UV irradiation, whereas the differentiated cells were resistant to UV treatment. ES cells lacking p53 exhibit enhanced proliferation in both the undifferentiated and differentiated state, and apoptosis accompanying differentiation was found to be reduced. Furthermore, wild-type ES cells undergoing apoptosis expressed functional p53. Expression of the temperature-sensitive p53val135 mutant in wild-type ES cells resulted in a reduction of apoptosis accompanying differentiation when it adopted a mutant conformation at 39 degrees C. These data demonstrate that functional inactivation of p53 allows differentiating cells to escape from apoptosis, and suggest that the conformational switch could regulate the inactivation process. PMID:9321401

  16. Anoikis triggers Mdm2-dependent p53 degradation

    PubMed Central

    Ghosh, Abhijit; Chen, Tina Chunyuan; Kapila, Yvonne L.

    2010-01-01

    The extracellular matrix (ECM) plays a key role in cell–cell communication and signaling, and the signals it propagates are important for tissue remodeling and survival. However, signals from disease-altered ECM may lead to anoikis—apoptotic cell death triggered by loss of ECM contacts. Previously, we found that an altered fibronectin matrix triggers anoikis in human primary ligament cells via a pathway that requires p53 transcriptional downregulation. Here we show that this p53 reduction is suppressed by transfecting cells with Mdm2 antisense oligonucleotides or small interfering RNA. Similar results were found in cells treated to prevent p53 and Mdm2 interactions. When p53 was overexpressed in cells lacking Mdm2 and p53, p53 levels were unaffected by anoikis conditions. However, cells cotransfected with p53 and wild type Mdm2, but not a mutant Mdm2, exhibited decreased p53 levels in response to anoikis conditions. Thus, cells under anoikis conditions undergo p53 degradation that is mediated by Mdm2. PMID:20577896

  17. Adenovirus-mediated wild-type p53 gene transfer in combination with bronchial arterial infusion for treatment of advanced non-small-cell lung cancer, one year follow-up

    PubMed Central

    Guan, Yong-song; Liu, Yuan; Zou, Qing; He, Qing; La, Zi; Yang, Lin; Hu, Ying

    2009-01-01

    Objective: In the present study, we have examined the safety and efficacy of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) injection in patients with advanced non-small-cell lung cancer (NSCLC) in the combination with the therapy of bronchial arterial infusion (BAI). Methods: A total of 58 patients with advanced NSCLC were enrolled in a non-randomized, two-armed clinical trial. Of which, 19 received a combination treatment of BAI and rAd-p53 (the combo group), while the remaining 39 were treated with only BAI (the control group). Patients were followed up for 12 months, with safety and local response evaluated by the National Cancer Institute’s Common Toxicity Criteria and response evaluation criteria in solid tumor (RECIST), respectively. Time to progression (TTP) and survival rates were also analyzed by Kaplan-Meier method. Results: In the combo group, 19 patients received a total of 49 injections of rAd-p53 and 46 times of BAI, respectively, while 39 patients in the control group received a total of 113 times of BAI. The combination treatment was found to have less adverse events such as anorexia, nausea and emesis, pain, and leucopenia (P<0.05) but more arthralgia, fever, influenza-like symptom, and myalgia (P<0.05), compared with the control group. The overall response rates (complete response (CR)+partial response (PR)) were 47.3% and 38.4% for the combo group and the control group, respectively (P>0.05). Patients in the combo group had a longer TTP than those in the control group (a median 7.75 vs 5.5 months, P=0.018). However, the combination treatment did not lead to better survival, with survival rates at 3, 6, and 12 months in the combo group being 94.74%, 89.47%, and 52.63%, respectively, compared with 92.31%, 69.23%, and 38.83% in the control group (P=0.224). Conclusion: Our results show that the combination of rAd-p53 and BAI was well tolerated in patients with NSCLC and may have improved the quality of life and delayed

  18. Radiation response and cell cycle regulation of p53 rescued malignant keratinocytes

    SciTech Connect

    Niemantsverdriet, Maarten; Jongmans, Wim; Backendorf, Claude . E-mail: backendo@chem.leidenuniv.nl

    2005-10-15

    Mutations in the tumor suppressor gene p53 were found in more than 90% of all human squamous cell carcinomas (SCC). To study the function of p53 in a keratinocyte background, a tetracycline-controlled p53 transgene was introduced into a human SCC cell line (SCC15), lacking endogenous p53. Conditional expression of wild-type p53 protein upon withdrawal of tetracycline was accompanied with increased expression of p21{sup WAF1/Cip1} resulting in reduced cell proliferation. Flow-cytometric analysis revealed that these cells were transiently arrested in the G1/S phase of the cell cycle. However, when SCC15 cells expressing p53 were exposed to ionizing radiation (IR), a clear shift from a G1/S to a G2/M cell cycle arrest was observed. This effect was greatly depending on the presence of wild-type p53, as it was not observed to the same extent in SCC15 cells lacking p53. Unexpectedly, the p53- and IR-dependent G2/M cell cycle arrest in the keratinocyte background was not depending on increased expression or stabilization of 14-3-3{sigma}, a p53-regulated effector of G2/M progression in colorectal cancer cells. In keratinocytes, 14-3-3{sigma} (stratifin) is involved in terminal differentiation and its cell cycle function in this cell type might diverge from the one it fulfills in other cellular backgrounds.

  19. Interaction of p53 with the human Rad51 protein.

    PubMed Central

    Buchhop, S; Gibson, M K; Wang, X W; Wagner, P; Stürzbecher, H W; Harris, C C

    1997-01-01

    p53 is thought to function in the maintenance of genomic stability by modulating transcription and interacting with cellular proteins to influence the cell cycle, DNA repair and apoptosis. p53 mutations occur in >50% of human cancers, and cells which lack wild type p53 accumulate karyotypic abnormalities such as amplifications, deletions, inversions and translocations. We propose that p53 hinders these promiscuous recombinational events by interacting with cellular recombination and repair machinery. We recently reported that p53 can directly bind in vivo to human Rad51 (hRad51) protein and in vitro to its bacterial homologue RecA. We used GST-fusion and his-tagged protein systems to further investigate the physical interaction between p53 and hRad51, homologue of the yeast Rad51 protein that is involved in recombination and DNA double strand repair. The hRad51 binds to wild-type p53 and to a lesser extent, point mutants 135Y, 249S and 273H. This binding is not mediated by a DNA or RNA intermediate. Mapping studies using a panel of p53 deletion mutants indicate that hRad51 could bind to two regions of p53; one between amino acids 94 and 160 and a second between 264 and 315. Addition of anti-p53 antibody PAb421 (epitope 372-381 amino acids) inhibited the interaction with hRad51. In contrast, p53 interacts with the region between aa 125 and 220 of hRad51, which is highly conserved among Rad51 related proteins from bacteria to human. In Escherichia coli ecA protein, this region is required for homo-oligomerization, suggesting that p53 might disrupt the interaction between RecA and Rad51 subunits, thus inhibiting biochemical functions of Rad51 like proteins. These data are consistent with the hypothesis that p53 interaction with hRAD51 may influence DNA recombination and repair and that additional modifications of p53 by mutation and protein binding may affect this interaction. PMID:9380510

  20. Quadruple wild-type (WT) GIST: defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways.

    PubMed

    Pantaleo, Maria A; Nannini, Margherita; Corless, Christopher L; Heinrich, Michael C

    2015-01-01

    A subset of GISTs lack mutations in the KIT/PDGFRA or RAS pathways and yet retain an intact succinate dehydrogensase (SDH) complex. We propose that these KIT/PDGFRA/SDH/RAS-P WT GIST tumors be designated as quadruple wild-type (WT) GIST. Further molecular and clinicophatological characterization of quadruple WT GIST will help to determine their prognosis as well as assist in the optimization of medical management, including clinical test of novel therapies.

  1. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53

    PubMed Central

    Tao, Weikang; Levine, Arnold J.

    1999-01-01

    The Hdm2 oncoprotein inhibits p53 functions by two means: (i) it blocks p53’s transactivation activity and (ii) it targets p53 for degradation in a proteasome-dependent manner. Recent data indicate that Hdm2 shuttles between the nucleus and the cytoplasm and that the regulation of p53 levels by Hdm2 requires its nuclear export activity. Two different models are consistent with these observations. In the first, Hdm2 binds to p53 in the nucleus and shuttles p53 from the nucleus to the cytoplasm, and then it targets p53 to the cytoplasmic proteasome. Alternatively, Hdm2 and p53 could be exported separately from the nucleus and then associate in the cytoplasm, where Hdm2 promotes the degradation of p53. To distinguish between these two models, several Hdm2 mutants were employed. Hdm2NLS lacks the ability to enter the nucleus, whereas Hdm2NES is deficient in nuclear export. Hdm2NLS, Hdm2NES, or the combination of both mutants were unable to promote p53 degradation in the cotransfected 2KO cells (which were null for both the p53 and mdm2 genes), although wild-type Hdm2 efficiently reduced p53 levels under the same conditions. This observation is not a result of the differences in expression levels or stability between Hdm2 and these mutants. Moreover, coexpression of these mutants had no effect on wild-type Hdm-2-induced p53 destabilization. Thus, Hdm2 must shuttle p53 from the nucleus to the cytoplasm to target it for degradation in the cytoplasm. PMID:10077639

  2. A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain.

    PubMed

    Middelhoven, W J; van Eijk, J; van Renesse, R; Blijham, J M

    1978-01-01

    NAD-specific glutamate dehydrogenase (GDH-B) was induced in a wild-type strain derived of alpha-sigma 1278b by alpha-amino acids, the nitrogen of which according to known degradative pathways is transferred to 2-oxoglutarate. A recessive mutant (gdhB) devoid of GDH-B activity grew more slowly than the wild type if one of these amino acids was the sole source of nitrogen. Addition of ammonium chloride, glutamine, asparagine or serine to growth media with inducing alpha-amino acids as the main nitrogen source increased the growth rate of the gdhB mutant to the wild-type level and repressed GDH-B synthesis in the wild type. Arginine, urea and allantoin similarly increased the growth rate of the gdhB mutant and repressed GDH-B synthesis in the presence of glutamate, but not in the presence of aspartate, alanine or proline as the main nitrogen source. These observations are consistent with the view that GDH-B in vivo deaminates glutamate. Ammonium ions are required for the biosynthesis of glutamine, asparagine, arginine, histidine and purine and pyrimidine bases. Aspartate and alanine apparently are more potent inducers of GDH-B than glutamate. Anabolic NADP-specific glutamate dehydrogenase (GDH-A) can not fulfil the function of GDH-B in the gdhB mutant. This is concluded from the equal growth rates in glutamate, aspartate and proline media as observed with a gdhB mutant and with a gdhA, gdhB double mutant in which both glutamate dehydrogenases area lacking. The double mutant showed an anomalous growth behaviour, growth rates on several nitrogen sources being unexpectedly low.

  3. High thermostability and lack of cooperative DNA binding distinguish the p63 core domain from the homologous tumor suppressor p53.

    PubMed

    Klein, C; Georges, G; Künkele, K P; Huber, R; Engh, R A; Hansen, S

    2001-10-05

    The p53 protein is the major tumor suppressor in mammals. The discovery of the p53 homologs p63 and p73 defined a family of p53 members with distinct roles in tumor suppression, differentiation, and development. Here, we describe the biochemical characterization of the core DNA-binding domain of a human isoform of p63, p63-delta, and particularly novel features in comparison with p53. In contrast to p53, the free p63 core domain did not show specific binding to p53 DNA consensus sites. However, glutathione S-transferase-fused and thus dimerized p63 and p53 core domains had similar affinity and specificity for the p53 consensus sites p21, gadd45, cyclin G, and bax. Furthermore, the fold of p63 core was remarkably stable compared with p53 as judged by differential scanning calorimetry (T(m) = 61 degrees C versus 44 degrees C for p53) and equilibrium unfolding ([urea](50%) = 5.2 m versus 3.1 m for p53). A homology model of p63 core highlights differences at a segment near the H1 helix hypothetically involved in the formation of the dimerization interface in p53, which might reduce cooperativity of p63 core DNA binding compared with p53. The model also shows differences in the electrostatic and hydrophobic potentials of the domains relevant to folding stability.

  4. p53 oligomerization and DNA looping are linked with transcriptional activation.

    PubMed Central

    Stenger, J E; Tegtmeyer, P; Mayr, G A; Reed, M; Wang, Y; Wang, P; Hough, P V; Mastrangelo, I A

    1994-01-01

    We examined the role of p53 oligomerization in DNA binding and in transactivation. By conventional electron microscopy (EM) and scanning transmission EM, we find that wild-type tetramers contact 18-20 bp at single or tandem 19 bp consensus sequences and also stack in apparent register, tetramer on top of tetramer. Stacked tetramers link separated DNA binding sites with DNA loops. Interestingly, the p53(1-320) segment, which lacks the C-terminal tetramerization domain, binds DNA consensus sites as stacked oligomers. Although the truncated protein binds DNA with reduced efficiency, it nevertheless induces DNA looping by self-association. p53, therefore, has a C-terminal tetramerization domain that enhances DNA binding and a non-tetrameric oligomerization domain that stacks p53 at consensus sites and loops separated consensus sites via protein-protein interactions. Using model promoters, we demonstrate that wild-type and tetramerization-deficient p53s activate transcription well when tandem consensus sites are proximal to TATA sequences and poorly when tandem sites are distal. In the presence of proximal sites, however, stimulation by distal sites increases 25-fold. Tetramerization and stacking of tetramers, therefore, provide dual mechanisms to augment the number of p53 molecules available for activation through p53 response elements. DNA looping between separated response elements further increases the concentration of local p53 by translocating distally bound protein to the promoter. Images PMID:7813439

  5. Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activity.

    PubMed

    Notterman, D; Young, S; Wainger, B; Levine, A J

    1998-11-26

    The tumor suppressor p53 has been identified as a component of a mitotic spindle checkpoint. When exposed to a spindle-disrupting drug such as nocodazole, fibroblasts derived from mice having wild-type p53 are blocked with a 4N content of DNA. Conversely, fibroblasts from p53-deficient mice become polyploid. To learn if transcriptional activation of downstream genes by p53 plays a role in this putative checkpoint, three cell lines were exposed to nocodazole. In one line, p53 protein is not expressed, while the other two cell lines over-express p53. In one of these two lines, the N-terminal transactivation domain is wild-type and in the second, this region contains a mutation that eliminates the ability of the protein to act as a transcription factor. Incubation with nocodazole of cells containing wild-type p53 results in accumulation of both 2N and 4N populations of cells. Under the same conditions, cells containing a transactivation-deficient mutant of p53 accumulate a 4N population of cells, but not a 2N population of cells. Cells entirely deficient in p53 protein become hyperdiploid, and display 8N to 16N DNA content. In all three cell lines, nocodazole elicited an initial increase in mitotic cells, but within 24 h the mitotic index returned to baseline. Expression patterns of cyclins B and D indicated that following entry into mitosis, the cells returned to a G1 state but with 4N DNA content. Subsequent re-duplication of DNA beyond 4N is prevented in cells containing either wild-type or transcriptionally inactive p53 protein. In cells entirely lacking p53 protein, DNA is re-duplicated (without an intervening mitosis) and the cells become hyperdiploid. These experiments indicate that p53 does not participate in the transient mitotic arrest that follows spindle disruption, but is essential to prevent subsequent reduplication of DNA and the resulting hyperdiploid state. This function is intact in a mutant that is transcriptionally inactive.

  6. p53: its mutations and their impact on transcription.

    PubMed

    Vaughan, Catherine; Pearsall, Isabella; Yeudall, Andrew; Deb, Swati Palit; Deb, Sumitra

    2014-01-01

    p53 is a tumor suppressor protein whose key function is to maintain the integrity of the cell. Mutations in p53 have been found in up to 50 % of all human cancers and cause an increase in oncogenic phenotypes such as proliferation and tumorigenicity. Both wild-type and mutant p53 have been shown to transactivate their target genes, either through directly binding to DNA, or indirectly through protein-protein interactions. This review discusses possible mechanisms behind both wild-type and mutant p53-mediated transactivation and touches on the concept of addiction to mutant p53 of cancer cells and how that may be used for future therapies.

  7. Regulation of Drug Sensitivity by Functional Status of p53 in Human Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    We also determined the effect of compounds that alter p53 function on MRP1 expression. We found that chlorpromazine , promazine, and trans...flupenthixol caused a 2-3-fold increase in wild-type p53 conformation and CP-31398 increased wild-type p53 conformation 6-10- fold. Promazine and chlorpromazine ...the p53 wild-type conformation, we incubated the cells with phenothiazines and performed an ELISA. Figure 1 lb shows that promazine and chlorpromazine

  8. The p53 status can influence the role of Sam68 in tumorigenesis

    PubMed Central

    Li, Naomi; Ngo, Chau Tuan-Anh; Aleynikova, Olga; Beauchemin, Nicole; Richard, Stéphane

    2016-01-01

    The expression and activities of RNA binding proteins are frequently dysregulated in human cancer. Their roles, however, appears to be complex, with reports indicating both pro-tumorigenic and tumor suppressive functions. Here we show, using two classical mouse cancer models, that the role of KH-type RNA binding protein, Sam68, in tumor development can be influenced by the status of the p53 tumor suppressor. We demonstrate that in mice expressing wild type p53, Sam68-deficiency resulted in a higher incidence and malignancy of carcinogen-induced tumors, suggesting a tumor suppressive role for Sam68. In marked contrast, Sam68-haploinsufficiency significantly delayed the onset of tumors in mice lacking p53 and prolonged their survival, indicating that Sam68 accelerates the development of p53-deficient tumors. These findings provide considerable insight into a previously unknown relationship between Sam68 and the p53 tumor suppressor in tumorigenesis. PMID:27690217

  9. p53 Modulates Notch Signaling in MCF-7 Breast Cancer Cells by Associating with the Notch Transcriptional Complex via MAML1†

    PubMed Central

    Yun, Jieun; Espinoza, Ingrid; Pannuti, Antonio; Romero, Damian; Martinez, Luis; Caskey, Mary; Stanculescu, Adina; Bocchetta, Maurizio; Rizzo, Paola; Band, Vimla; Band, Hamid; Kim, Hwan Mook; Park, Song-Kyu; Kang, Keon Wook; Avantaggiati, Maria Laura; Gomez, Christian R.; Golde, Todd; Osborne, Barbara; Miele, Lucio

    2015-01-01

    p53 and Notch-1 play important roles in breast cancer biology. Notch-1 inhibits p53 activity in cervical and breast cancer cells. Conversely, p53 inhibits Notch activity in T-cells but stimulates it in human keratinocytes. Notch co-activator MAML1 binds p53 and functions as a p53 co-activator. We studied the regulation of Notch signaling by p53 in MCF-7 cells and normal human mammary epithelial cells (HMEC). Results show that overexpression of p53 or activation of endogenous p53 with Nutlin-3 inhibits Notch-dependent transcriptional activity and Notch target expression in a dose-dependent manner. This effect could be partially rescued by transfection of MAML1 but not p300. Standard and quantitative co-immunoprecipitation experiments readily detected a complex containing p53 and Notch-1 in MCF-7 cells. Formation of this complex was inhibited by dominant negative MAML1 (DN-MAML1) and stimulated by wild-type MAML1. Standard and quantitative far-Western experiments showed a complex including p53, Notch-1 and MAML1. Chromatin immunoprecipitation (ChIP) experiments showed that p53 can associate with Notch-dependent HEY1 promoter and this association is inhibited by DN-MAML1 and stimulated by wild-type MAML1. Our data support a model in which p53 associates with the Notch transcriptional complex (NTC) in a MAML1-dependent fashion, most likely through a p53-MAML1 interaction. In our cellular models, the effect of this association is to inhibit Notch-dependent transcription. Our data suggest that p53-null breast cancers may lack this Notch-modulatory mechanism, and that therapeutic strategies that activate wild-type p53 can indirectly cause inhibition of Notch transcriptional activity. PMID:26033683

  10. p53 Modulates Notch Signaling in MCF-7 Breast Cancer Cells by Associating With the Notch Transcriptional Complex Via MAML1.

    PubMed

    Yun, Jieun; Espinoza, Ingrid; Pannuti, Antonio; Romero, Damian; Martinez, Luis; Caskey, Mary; Stanculescu, Adina; Bocchetta, Maurizio; Rizzo, Paola; Band, Vimla; Band, Hamid; Kim, Hwan Mook; Park, Song-Kyu; Kang, Keon Wook; Avantaggiati, Maria Laura; Gomez, Christian R; Golde, Todd; Osborne, Barbara; Miele, Lucio

    2015-12-01

    p53 and Notch-1 play important roles in breast cancer biology. Notch-1 inhibits p53 activity in cervical and breast cancer cells. Conversely, p53 inhibits Notch activity in T-cells but stimulates it in human keratinocytes. Notch co-activator MAML1 binds p53 and functions as a p53 co-activator. We studied the regulation of Notch signaling by p53 in MCF-7 cells and normal human mammary epithelial cells (HMEC). Results show that overexpression of p53 or activation of endogenous p53 with Nutlin-3 inhibits Notch-dependent transcriptional activity and Notch target expression in a dose-dependent manner. This effect could be partially rescued by transfection of MAML1 but not p300. Standard and quantitative co-immunoprecipitation experiments readily detected a complex containing p53 and Notch-1 in MCF-7 cells. Formation of this complex was inhibited by dominant negative MAML1 (DN-MAML1) and stimulated by wild-type MAML1. Standard and quantitative far-Western experiments showed a complex including p53, Notch-1, and MAML1. Chromatin immunoprecipitation (ChIP) experiments showed that p53 can associate with Notch-dependent HEY1 promoter and this association is inhibited by DN-MAML1 and stimulated by wild-type MAML1. Our data support a model in which p53 associates with the Notch transcriptional complex (NTC) in a MAML1-dependent fashion, most likely through a p53-MAML1 interaction. In our cellular models, the effect of this association is to inhibit Notch-dependent transcription. Our data suggest that p53-null breast cancers may lack this Notch-modulatory mechanism, and that therapeutic strategies that activate wild-type p53 can indirectly cause inhibition of Notch transcriptional activity.

  11. Defective tobamovirus movement protein lacking wild-type phosphorylation sites can be complemented by substitutions found in revertants.

    PubMed

    Kawakami, Shigeki; Hori, Koichi; Hosokawa, Daijiro; Okada, Yoshimi; Watanabe, Yuichiro

    2003-01-01

    We reported previously that the movement protein (MP) of tomato mosaic tobamovirus is phosphorylated, and we proposed that MP phosphorylation is important for viral pathogenesis. Experimental data indicated that phosphorylation enhances the stability of MP in vivo and enables the protein to assume the correct intracellular location to perform its function. A mutant virus designated 37A238A was constructed; this virus lacked two serine residues within the MP, which prevented its phosphorylation. In the present study, we inoculated plants with the 37A238A mutant, and as expected, it was unable to produce local lesions on the leaves. However, after an extended period, we found that lesions did occur, which were due to revertant viruses. Several revertants were isolated, and the genetic changes in their MPs were examined together with any changes in their in vivo characteristics. We found that reversion to virulence was associated first with increased MP stability in infected cells and second with a shift in MP intracellular localization over time. In one case, the revertant MP was not phosphorylated in vivo, but it was functional.

  12. Lysine methylation represses p53 activity in teratocarcinoma cancer cells

    PubMed Central

    Zhu, Jiajun; Dou, Zhixun; Sammons, Morgan A.; Levine, Arnold J.; Berger, Shelley L.

    2016-01-01

    TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53’s transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma. PMID:27535933

  13. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line

    SciTech Connect

    Nakamura, Yohko; Ozaki, Toshinori; Niizuma, Hidetaka; Ohira, Miki; Kamijo, Takehiko; Nakagawara, Akira . E-mail: akiranak@chiba-cc.jp

    2007-03-23

    p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53{delta}C) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53{delta}C was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain.

  14. Targeting Oncogenic Mutant p53 for Cancer Therapy.

    PubMed

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels.

  15. Chemical Variations on the p53 Reactivation Theme.

    PubMed

    Ribeiro, Carlos J A; Rodrigues, Cecília M P; Moreira, Rui; Santos, Maria M M

    2016-05-13

    Among the tumor suppressor genes, p53 is one of the most studied. It is widely regarded as the "guardian of the genome", playing a major role in carcinogenesis. In fact, direct inactivation of the TP53 gene occurs in more than 50% of malignancies, and in tumors that retain wild-type p53 status, its function is usually inactivated by overexpression of negative regulators (e.g., MDM2 and MDMX). Hence, restoring p53 function in cancer cells represents a valuable anticancer approach. In this review, we will present an updated overview of the most relevant small molecules developed to restore p53 function in cancer cells through inhibition of the p53-MDMs interaction, or direct targeting of wild-type p53 or mutated p53. In addition, optimization approaches used for the development of small molecules that have entered clinical trials will be presented.

  16. Chemical Variations on the p53 Reactivation Theme

    PubMed Central

    Ribeiro, Carlos J. A.; Rodrigues, Cecília M. P.; Moreira, Rui; Santos, Maria M. M.

    2016-01-01

    Among the tumor suppressor genes, p53 is one of the most studied. It is widely regarded as the “guardian of the genome”, playing a major role in carcinogenesis. In fact, direct inactivation of the TP53 gene occurs in more than 50% of malignancies, and in tumors that retain wild-type p53 status, its function is usually inactivated by overexpression of negative regulators (e.g., MDM2 and MDMX). Hence, restoring p53 function in cancer cells represents a valuable anticancer approach. In this review, we will present an updated overview of the most relevant small molecules developed to restore p53 function in cancer cells through inhibition of the p53-MDMs interaction, or direct targeting of wild-type p53 or mutated p53. In addition, optimization approaches used for the development of small molecules that have entered clinical trials will be presented. PMID:27187415

  17. Gene expression in the lung of p53 mutant mice exposed to cigarette smoke.

    PubMed

    Izzotti, Alberto; Cartiglia, Cristina; Longobardi, Mariagrazia; Bagnasco, Maria; Merello, Andrea; You, Ming; Lubet, Ronald A; De Flora, Silvio

    2004-12-01

    We showed previously that p53 mutations play a role in cigarette smoke-related carcinogenesis not only in humans but also in A/J mice. In fact, (UL53-3 x A/J)F(1) mice, carrying a dominant-negative germ-line p53 mutation, responded to exposure to environmental cigarette smoke more efficiently than their wild-type (wt) littermate controls in terms of molecular alterations, cytogenetic damage, and lung tumor yield. To clarify the mechanisms involved, we analyzed by cDNA array the expression of 1,185 cancer-related genes in the lung of the same mice. Neither environmental cigarette smoke nor the p53 status affected the expression of the p53 gene, but the p53 mutation strikingly increased the basal levels of p53 nuclear protein in the lung. Environmental cigarette smoke increased p53 protein levels in wt mice only. The p53 mutation enhanced the expression of positive cell cycle regulators in sham-exposed mice, which suggests a physiologic protective role of p53. In environmental cigarette smoke-exposed mice, the p53 mutation resulted in a lack of induction of proapoptotic genes and in overexpression of genes involved in cell proliferation, signal transduction, angiogenesis, inflammation, and immune response. Mutant mice and wt mice reacted to environmental cigarette smoke in a similar manner regarding genes involved in metabolism of xenobiotics, multidrug resistance, and protein repair. Irrespective of the p53 status, environmental cigarette smoke poorly affected the expression of oncogenes, tumor suppressor genes, and DNA repair genes. Taken together, these findings may explain the increased susceptibility of p53 mutant mice to smoke-related alterations of intermediate biomarkers and lung carcinogenesis.

  18. Impact of p53 status on heavy-ion radiation-induced micronuclei in circulating erythrocytes

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Torous, D.; Lutze-Mann, L.; Winegar, R.

    2000-01-01

    Transgenic mice that differed in their p53 genetic status were exposed to an acute dose of highly charged and energetic (HZE) iron particle radiation. Micronuclei (MN) in two distinct populations of circulating peripheral blood erythrocytes, the immature reticulocytes (RETs) and the mature normochromatic erythrocytes (NCEs), were measured using a simple and efficient flow cytometric procedure. Our results show significant elevation in the frequency of micronucleated RETs (%MN-RETs) at 2 and 3 days post-radiation. At 3 days post-irradiation, the magnitude of the radiation-induced MN-RET was 2.3-fold higher in the irradiated p53 wild-type animals compared to the unirradiated controls, 2.5-fold higher in the p53 hemizygotes and 4.3-fold higher in the p53 nullizygotes. The persistence of this radiation-induced elevation of MN-RETs is dependent on the p53 genetic background of the animal. In the p53 wild-type and p53 hemizygotes, %MN-RETs returned to control levels by 9 days post-radiation. However, elevated levels of %MN-RETs in p53 nullizygous mice persisted beyond 56 days post-radiation. We also observed elevated MN-NCEs in the peripheral circulation after radiation, but the changes in radiation-induced levels of MN-NCEs appear dampened compared to those of the MN-RETs for all three strains of animals. These results suggest that the lack of p53 gene function may play a role in the iron particle radiation-induced genomic instability in stem cell populations in the hematopoietic system.

  19. A plasmid from a non-insect-transmissible line of a phytoplasma lacks two open reading frames that exist in the plasmid from the wild-type line.

    PubMed

    Nishigawa, Hisashi; Oshima, Kenro; Kakizawa, Shigeyuki; Jung, Hee-Young; Kuboyama, Tsutomu; Miyata, Shin-ichi; Ugaki, Masashi; Namba, Shigetou

    2002-10-02

    Two novel rolling circle replication (RCR) plasmids, pOYM (3932 nt) and pOYNIM (3062 nt), were isolated from a mildly pathogenic variant line (OY-M) and a mildly pathogenic plus non-insect-transmissible line (OY-NIM), respectively, of onion yellows (OY) phytoplasma, a plant and insect endocellular mollicute. OY-M was isolated from an original wild-type line (OY-W) after regular maintenance using alternate plant/insect infections, while OY-NIM was further isolated from OY-M after maintenance by plant grafting without insect vectors. The RCR-initiator proteins (Rep) of both plasmids, which have a characteristic structure with both plasmid- and virus-like domains, were highly homologous to that of a previously described OY-W plasmid, pOYW (3933 nt), and were expressed in OY-M- and OY-NIM-infected plants, indicating that this replicon is stably maintained in the phytoplasma. Interestingly, pOYNIM lacked two ORFs that exist in both pOYW and pOYM, which encode a single-stranded DNA binding protein (SSB) and an uncharacterized putative membrane protein, indicating that these two proteins are not necessary for the phytoplasma to live in plant cells. These are the first candidates as phytoplasma proteins possibly related to host specificity.

  20. Hitting cancers' weak spots: vulnerabilities imposed by p53 mutation.

    PubMed

    Gurpinar, Evrim; Vousden, Karen H

    2015-08-01

    The tumor suppressor protein p53 plays a critical role in limiting malignant development and progression. Almost all cancers show loss of p53 function, through either mutation in the p53 gene itself or defects in the mechanisms that activate p53. While reactivation of p53 can effectively limit tumor growth, this is a difficult therapeutic goal to achieve in the many cancers that do not retain wild type p53. An alternative approach focuses on identifying vulnerabilities imposed on cancers by virtue of the loss of or alterations in p53, to identify additional pathways that can be targeted to specifically kill or inhibit the growth of p53 mutated cells. These indirect ways of exploiting mutations in p53 - which occur in more than half of all human cancers - provide numerous exciting therapeutic possibilities.

  1. Δ40p53α suppresses tumor cell proliferation and induces cellular senescence in hepatocellular carcinoma cells

    PubMed Central

    Ota, Akinobu; Sawada, Yumi; Karnan, Sivasundaram; Wahiduzzaman, Md; Inoue, Tadahisa; Kobayashi, Yuji; Yamamoto, Takaya; Ishii, Norimitsu; Ohashi, Tomohiko; Nakade, Yukiomi; Sato, Ken; Itoh, Kiyoaki; Konishi, Hiroyuki; Hosokawa, Yoshitaka; Yoneda, Masashi

    2017-01-01

    ABSTRACT Splice variants of certain genes impact on genetic biodiversity in mammals. The tumor suppressor TP53 gene (encoding p53) plays an important role in the regulation of tumorigenesis in hepatocellular carcinoma (HCC). Δ40p53α is a naturally occurring p53 isoform that lacks the N-terminal transactivation domain, yet little is known about the role of Δ40p53α in the development of HCC. Here, we first report on the role of Δ40p53α in HCC cell lines. In the TP53+/Δ40 cell clones, clonogenic activity and cell survival dramatically decreased, whereas the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive cells and p21 (also known as WAF1, CIP1 and CDKN1A) expression significantly increased. These observations were clearly attenuated in the TP53+/Δ40 cell clones after Δ40p53α knockdown. In addition, exogenous Δ40p53 expression significantly suppressed cell growth in HCC cells with wild-type TP53, and in those that were mutant or null for TP53. Notably, Δ40p53α-induced tumor suppressor activity was markedly attenuated in cells expressing the hot-spot mutant Δ40p53α-R175H, which lacks the transcription factor activity of p53. Moreover, Δ40p53α expression was associated with increased full-length p53 protein expression. These findings enhance the understanding of the molecular pathogenesis of HCC and show that Δ40p53α acts as an important tumor suppressor in HCC cells. PMID:27980070

  2. Mutant p53: One, No One, and One Hundred Thousand.

    PubMed

    Walerych, Dawid; Lisek, Kamil; Del Sal, Giannino

    2015-01-01

    Encoded by the mutated variants of the TP53 tumor suppressor gene, mutant p53 proteins are getting an increased experimental support as active oncoproteins promoting tumor growth and metastasis. p53 missense mutant proteins are losing their wild-type tumor suppressor activity and acquire oncogenic potential, possessing diverse transforming abilities in cell and mouse models. Whether various mutant p53s differ in their oncogenic potential has been a matter of debate. Recent discoveries are starting to uncover the existence of mutant p53 downstream programs that are common to different mutant p53 variants. In this review, we discuss a number of studies on mutant p53, underlining the advantages and disadvantages of alternative experimental approaches that have been used to describe the numerous mutant p53 gain-of-function activities. Therapeutic possibilities are also discussed, taking into account targeting either individual or multiple mutant p53 proteins in human cancer.

  3. Differential salt-induced dissociation of the p53 protein complexes with circular and linear plasmid DNA substrates suggest involvement of a sliding mechanism.

    PubMed

    Šebest, Peter; Brázdová, Marie; Fojta, Miroslav; Pivoňková, Hana

    2015-01-30

    A study of the effects of salt conditions on the association and dissociation of wild type p53 with different ~3 kbp long plasmid DNA substrates (supercoiled, relaxed circular and linear, containing or lacking a specific p53 binding site, p53CON) using immunoprecipitation at magnetic beads is presented. Salt concentrations above 200 mM strongly affected association of the p53 protein to any plasmid DNA substrate. Strikingly different behavior was observed when dissociation of pre-formed p53-DNA complexes in increased salt concentrations was studied. While contribution from the p53CON to the stability of the p53-DNA complexes was detected between 100 and 170 mM KCl, p53 complexes with circular DNAs (but not linear) exhibited considerable resistance towards salt treatment for KCl concentrations as high as 2 M provided that the p53 basic C-terminal DNA binding site (CTDBS) was available for DNA binding. On the contrary, when the CTDBS was blocked by antibody used for immunoprecipitation, all p53-DNA complexes were completely dissociated from the p53 protein in KCl concentrations≥200 mM under the same conditions. These observations suggest: (a) different ways for association and dissociation of the p53-DNA complexes in the presence of the CTDBS; and (b) a critical role for a sliding mechanism, mediated by the C-terminal domain, in the dissociation process.

  4. Regulation of p53 tetramerization and nuclear export by ARC

    PubMed Central

    Foo, Roger S.-Y.; Nam, Young-Jae; Ostreicher, Marc Jason; Metzl, Mark D.; Whelan, Russell S.; Peng, Chang-Fu; Ashton, Anthony W.; Fu, Weimin; Mani, Kartik; Chin, Suet-Feung; Provenzano, Elena; Ellis, Ian; Figg, Nichola; Pinder, Sarah; Bennett, Martin R.; Caldas, Carlos; Kitsis, Richard N.

    2007-01-01

    Inactivation of the transcription factor p53 is central to carcinogenesis. Yet only approximately one-half of cancers have p53 loss-of-function mutations. Here, we demonstrate a mechanism for p53 inactivation by apoptosis repressor with caspase recruitment domain (ARC), a protein induced in multiple cancer cells. The direct binding in the nucleus of ARC to the p53 tetramerization domain inhibits p53 tetramerization. This exposes a nuclear export signal in p53, triggering Crm1-dependent relocation of p53 to the cytoplasm. Knockdown of endogenous ARC in breast cancer cells results in spontaneous tetramerization of endogenous p53, accumulation of p53 in the nucleus, and activation of endogenous p53 target genes. In primary human breast cancers with nuclear ARC, p53 is almost always WT. Conversely, nearly all breast cancers with mutant p53 lack nuclear ARC. We conclude that nuclear ARC is induced in cancer cells and negatively regulates p53. PMID:18087040

  5. Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers

    PubMed Central

    Muzumdar, Mandar Deepak; Dorans, Kimberly Judith; Chung, Katherine Minjee; Robbins, Rebecca; Tammela, Tuomas; Gocheva, Vasilena; Li, Carman Man-Chung; Jacks, Tyler

    2016-01-01

    Although it has become increasingly clear that cancers display extensive cellular heterogeneity, the spatial growth dynamics of genetically distinct clones within developing solid tumours remain poorly understood. Here we leverage mosaic analysis with double markers (MADM) to trace subclonal populations retaining or lacking p53 within oncogenic Kras-initiated lung and pancreatic tumours. In both models, p53 constrains progression to advanced adenocarcinomas. Comparison of lineage-related p53 knockout and wild-type clones reveals a minor role of p53 in suppressing cell expansion in lung adenomas. In contrast, p53 loss promotes both the initiation and expansion of low-grade pancreatic intraepithelial neoplasia (PanINs), likely through differential expression of the p53 regulator p19ARF. Strikingly, lineage-related cells are often dispersed in lung adenomas and PanINs, contrasting with more contiguous growth of advanced subclones. Together, these results support cancer type-specific suppressive roles of p53 in early tumour progression and offer insights into clonal growth patterns during tumour development. PMID:27585860

  6. Encapsulated Brucella ovis Lacking a Putative ATP-Binding Cassette Transporter (ΔabcBA) Protects against Wild Type Brucella ovis in Rams

    PubMed Central

    Silva, Ana Patrícia C.; Macêdo, Auricélio A.; Costa, Luciana F.; Rocha, Cláudia E.; Garcia, Luize N. N.; Farias, Jade R. D.; Gomes, Priscilla P. R.; Teixeira, Gustavo C.; Fonseca, Kessler W. J.; Maia, Andréa R. F.; Neves, Gabriela G.; Romão, Everton L.; Silva, Teane M. A.; Mol, Juliana P. S.; Oliveira, Renata M.; Araújo, Márcio S. S.; Nascimento, Ernane F.; Martins-Filho, Olindo A.; Brandão, Humberto M.; Paixão, Tatiane A.; Santos, Renato L.

    2015-01-01

    This study aimed to evaluate protection induced by the vaccine candidate B. ovis ΔabcBA against experimental challenge with wild type B. ovis in rams. Rams were subcutaneously immunized with B. ovis ΔabcBA encapsulated with sterile alginate or with the non encapsulated vaccine strain. Serum, urine, and semen samples were collected during two months after immunization. The rams were then challenged with wild type B. ovis (ATCC25840), and the results were compared to non immunized and experimentally challenged rams. Immunization, particularly with encapsulated B. ovis ΔabcBA, prevented infection, secretion of wild type B. ovis in the semen and urine, shedding of neutrophils in the semen, and the development of clinical changes, gross and microscopic lesions induced by the wild type B. ovis reference strain. Collectively, our data indicates that the B. ovis ΔabcBA strain is an exceptionally good vaccine strain for preventing brucellosis caused by B. ovis infection in rams. PMID:26317399

  7. Activation of p53 by Nutlin-3a, an antagonist of MDM2, induces apoptosis and cellular senescence in adult T-cell leukemia cells.

    PubMed

    Hasegawa, H; Yamada, Y; Iha, H; Tsukasaki, K; Nagai, K; Atogami, S; Sugahara, K; Tsuruda, K; Ishizaki, A; Kamihira, S

    2009-11-01

    It has been reported that the induction of cellular senescence through p53 activation is an effective strategy in tumor regression. Unfortunately, however, tumors including adult T-cell leukemia/lymphoma (ATL) have disadvantages such as p53 mutations and a lack of p16(INK4a) and/or p14(ARF). In this study we characterized Nutlin-3a-induced cell death in 16 leukemia/lymphoma cell lines. Eight cell lines, including six ATL-related cell lines, had wild-type p53 and Nutlin-3a-activated p53, and the cell lines underwent apoptosis or cell-cycle arrest, whereas eight cell lines with mutated p53 were resistant. Interestingly, senescence-associated-beta-galactosidase (SA-beta-gal) staining revealed that only ATL-related cell lines with wild-type p53 showed cellular senescence, although they lack both p16(INK4a) and p14(ARF). These results indicate that cellular senescence is an important event in p53-dependent cell death in ATL cells and is inducible without p16(INK4a) and p14(ARF). Furthermore, knockdown of Tp53-induced glycolysis and apoptosis regulator (TIGAR), a novel target gene of p53, by small interfering RNA(siRNA) indicated its important role in the induction of cellular senescence. As many patients with ATL carry wild-type p53, our study suggests that p53 activation by Nutlin-3a is a promising strategy in ATL. We also found synergism with a combination of Nutlin-3a and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), suggesting the application of Nutlin-3a-based therapy to be broader than expected.

  8. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    PubMed

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  9. Organization of the photosystem II centers and their associated antennae in the thylakoid membranes: a comparative ultrastructural, biochemical, and biophysical study of Chlamydomonas wild type and mutants lacking in photosystem II reaction centers

    PubMed Central

    1980-01-01

    We investigated the ultrastructure of thylakoid membranes that lacked either some or all of their Photosystem II centers in the F34SU3 and F34 mutants of Chlamydomonas reinhardtii. We obtained the following results: (a) There are no particles of the 160-A size class on the EF faces of the thylakoids in the absence of Photosystem II centers (as in F34); the F34SU3 contains 50% of the wild-type number of PSII centers and EF particles. (b) The density of the particles on the PF faces of the thylakoids is higher in the mutants than in the wild type. (c) The fluorescence analysis shows that the organization of the pigments is the same regardless of whether 50% of the PSII centers are temporarily inactivated (by preilluminating the wild type) or are actually missing from the thylakoid membrane (F34SU3). Our results, therefore, support a model in which: (a) each 160-A EF particle has only one PSII center surrounded by light-harvesting complexes and (b) part of the PSH antenna is associated with 80-A PF particles in both of the mutants and the wild type. PMID:7462323

  10. Mutant p53 in cancer: Accumulation, gain-of-function and therapy.

    PubMed

    Yue, Xuetian; Zhao, Yuhan; Xu, Yang; Zheng, Min; Feng, Zhaohui; Hu, Wenwei

    2017-04-05

    Tumor suppressor p53 plays a central role in tumor suppression. p53 is the most frequently mutated gene in human cancer, and over half of human cancers contain p53 mutations. Majority of p53 mutations in cancer are missense mutations, leading to the expression of full-length mutant p53 protein. While the critical role of wild type p53 in tumor suppression has been firmly established, mounting evidence has demonstrated that many tumor-associated mutant p53 proteins not only lose tumor suppressive function of wild type p53, but also gain new activities to promote tumorigenesis independently of wild type p53, termed gain-of-function. Mutant p53 protein often accumulates to very high levels in tumors, contributing to malignant progression. Recently, mutant p53 has become an attractive target for cancer therapy. Further understanding of the mechanisms underlying mutant p53 protein accumulation and gain-of-function will accelerate the development of targeted therapies for human cancer harboring mutant p53. In this review, we summarize the recent advances in the studies on mutant p53 protein accumulation and gain-of-function as well as targeted therapies for mutant p53 in human cancer.

  11. Clinical utility of recombinant adenoviral human p53 gene therapy: current perspectives

    PubMed Central

    Chen, Guang-xia; Zhang, Shu; He, Xiao-hua; Liu, Shi-yu; Ma, Chao; Zou, Xiao-Ping

    2014-01-01

    Gene therapy has promised to be a highly effective antitumor treatment by introducing a tumor suppressor gene or the abrogation of an oncogene. Among the potential therapeutic transgenes, the tumor suppressor gene p53 serves as an attractive target. Restoration of wild-type p53 function in tumors can be achieved by introduction of an intact complementary deoxyribonucleic acid copy of the p53 gene using a suitable viral vector, in most cases an adenoviral vector (Adp53). Preclinical in vitro and in vivo studies have shown that Adp53 triggers a dramatic tumor regression response in various cancers. These viruses are engineered to lack certain early proteins and are thus replication defective, including Gendicine, SCH-58500, and Advexin. Several types of tumor-specific p53-expressing conditionally replicating adenovirus vectors (known as replication-competent CRAdp53 vectors) have been developed, such as ONYX 015, AdDelta24-p53, SG600-p53, OBP-702, and H101. Various clinical trials have been conducted to investigate the safety and efficiency of these adenoviral vectors. In this review we will talk about the biological mechanisms, clinical utility, and therapeutic potentials of the replication-deficient Adp53-based and replication-competent CRAdp53-based gene therapy. PMID:25364261

  12. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines

    SciTech Connect

    Scheffner, M.; Muenger, K.; Byrne, J.C.; Howley, P.M. )

    1991-07-01

    Human cervical carcinoma cell lines that were either positive or negative for human papillomavirus (HPV) DNA sequences were analyzed for evidence of mutation of the p53 and retinoblastoma genes. Each of five HPV-positive cervical cancer cell lines expressed normal pRB and low levels of wild-type p53 proteins, which are presumed to be altered in function as a consequence of association with HPV E7 and E6 oncoproteins, respectively. In contrast, mutations were identified in the p53 and RB genes expressed in the C-33A and HT-3 cervical cancer cell lines, which lack HPV DNA sequences. Mutations in the p53 genes mapped to codon 273 and codon 245 in the C33-A and HT-3 cell lines, respectively, located in the highly conserved regions of p53, where mutations appear in a variety of human cancers. Mutations in RB occurred at splice junctions, resulting in in-frame deletions, affecting exons 13 and 20 in the HT-3 and C-33A cell lines, respectively. These mutations resulted in aberrant proteins that were not phosphorylated and were unable to complex with the adenovirus E1A oncoprotein. These results support the hypothesis that the inactivation of the normal functions of the tumor-suppressor proteins pRB and p53 are important steps in human cervical carcinogenesis, either by mutation or from complex formation with the HPV E6 and E7 oncoproteins.

  13. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells.

    PubMed Central

    Wazer, D E; Chu, Q; Liu, X L; Gao, Q; Safaii, H; Band, V

    1994-01-01

    The causative factors leading to breast cancer are largely unknown. Increased incidence of breast cancer following diagnostic or therapeutic radiation suggests that radiation may contribute to mammary oncogenesis. This report describes the in vitro neoplastic transformation of a normal human mammary epithelial cell strain, 76N, by fractionated gamma-irradiation at a clinically used dose (30 Gy). The transformed cells (76R-30) were immortal, had reduced growth factor requirements, and produced tumors in nude mice. Remarkably, the 76R-30 cells completely lacked the p53 tumor suppressor protein. Loss of p53 was due to deletion of the gene on one allele and a 26-bp deletion within the third intron on the second allele which resulted in abnormal splicing out of either the third or fourth exon from the mRNA. PCR with a mutation-specific primer showed that intron 3 mutation was present in irradiated cells before selection for immortal phenotype. 76R-30 cells did not exhibit G1 arrest in response to radiation, indicating a loss of p53-mediated function. Expression of the wild-type p53 gene in 76R-30 cells led to their growth inhibition. Thus, loss of p53 protein appears to have contributed to neoplastic transformation of these cells. This unique model should facilitate analyses of molecular mechanisms of radiation-induced breast cancer and allow identification of p53-regulated cellular genes in breast cells. Images PMID:7511207

  14. Mutant p53 protein localized in the cytoplasm inhibits autophagy.

    PubMed

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido

    2008-10-01

    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  15. P53 mutations and cancer: a tight linkage

    PubMed Central

    Pisconti, Salvatore; Della Vittoria Scarpati, Giuseppina

    2016-01-01

    P53 is often mutated in solid tumors, in fact, somatic changes involving the gene encoding for p53 (TP53) have been discovered in more than 50% of human malignancies and several data confirmed that p53 mutations represent an early event in cancerogenesis. Main p53 functions consist in cell cycle arrest, DNA repair, senescence and apoptosis induction in response to mutagenic stimuli, and, to exert those functions, p53 acts as transcriptional factor. Recent data have highlighted another very important role of p53, consisting in regulate cell metabolism and cell response to oxidative stress. Majority of tumor suppressor genes, such as adenomatous polyposis coli (APC), retinoblastoma-associated protein (RB) and Von-Hippel-Lindau (VHL) are inactivated by deletion or early truncation mutations in tumors, resulting in the decreased or loss of expression of their proteins. Differently, most p53 mutations in human cancer are missense mutations, which result in the production of full-length mutant p53 proteins. It has been reported that mutant p53 proteins and wild type p53 proteins often regulate same cellular biological processes with opposite effects. So, mutant p53 has been reported to supply the cancer cells of glucose and nutrients, and, to avoid reactive oxygen species (ROS) mediated damage during oxidative stress. These last features are able to render tumor cells resistant to ionizing radiations and chemotherapy. A future therapeutic approach in tumors bearing p53 mutations may be to deplete cancer cells of their energy reserves and antioxidants. PMID:28149884

  16. Recognition of Local DNA Structures by p53 Protein.

    PubMed

    Brázda, Václav; Coufal, Jan

    2017-02-10

    p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells.

  17. Recognition of Local DNA Structures by p53 Protein

    PubMed Central

    Brázda, Václav; Coufal, Jan

    2017-01-01

    p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells. PMID:28208646

  18. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer

    PubMed Central

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed. PMID:26618142

  19. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer.

    PubMed

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed.

  20. An Observed Effect of p53 Status on the Bystander Response to Radiation-Induced Cellular Photon Emission.

    PubMed

    Le, M; Mothersill, C E; Seymour, C B; Rainbow, A J; McNeill, F E

    2017-02-01

    In this study, we investigated the potential influence of p53 on ultraviolet (UV) signal generation and response of bystander cells to the UV signals generated by beta-irradiated cells. Five cell lines of various p53 status (HaCaT, mutated; SW48, wild-type; HT29, mutated; HCT116(+/+), wild-type; HCT116(-/-), null) were irradiated with beta particles from tritium. Signal generation (photon emission at 340 ± 5 nm) was quantified from irradiated cells using a photomultiplier tube. Bystander response (clonogenic survival) was assessed by placing reporter cell flasks directly superior to irradiated signal-emitting cells. All cell lines emitted significant quantities of UV after tritium exposure. The magnitudes of HaCaT and HT29 photon emission at 340 nm were similar to each other while they were significantly different from the stronger signals emitted from SW48, HCT116(+/+) and HCT116(-/-) cells. In regard to the bystander responses, HaCaT, HCT116(+/+) and SW48 cells demonstrated significant reductions in survival as a result of exposure to emission signals. HCT116(-/-) and HT29 cells did not exhibit any changes in survival and thus were considered to be lacking the mechanisms or functions required to elicit a response. The survival response was found not to correlate with the observed signal strength for all experimental permutations; this may be attributed to varying emission spectra from cell line to cell line or differences in response sensitivity. Overall, these results suggest that the UV-mediated bystander response is influenced by the p53 status of the cell line. Wild-type p53 cells (HCT116(+/+) and SW48) demonstrated significant responses to UV signals whereas the p53-null cell line (HCT116(-/-)) lacked any response. The two mutated p53 cell lines exhibited contrasting responses, which may be explained by unique modulation of functions by different point mutations. The reduced response (cell death) exhibited by p53-mutated cells compared to p53 wild-type

  1. Effects of chronic deoxynivalenol exposure on p53 heterozygous and p53 homozygous mice.

    PubMed

    Bondy, G S; Coady, L; Curran, I; Caldwell, D; Armstrong, C; Aziz, S A; Nunnikhoven, A; Gannon, A M; Liston, V; Shenton, J; Mehta, R

    2016-10-01

    Deoxynivalenol (DON) is a secondary metabolite associated with Fusarium species pathogenic to important food crops. A two-year feeding study reported that DON was non-carcinogenic in B6C3F1 mice. The present study was conducted to further characterize the chronic effects of DON by exposing cancer-prone transgenic p53 heterozygous (p53+/-) male mice and p53 homozygous (p53+/+) male mice to 0, 1, 5, or 10 mg DON/kg in diet for 26 weeks. Gross and microscopic organ-specific neoplastic and non-neoplastic changes and expression profiles of key hepatic and renal genes were assessed. Few toxicologic differences between p53+/+ and p53+/- mice were observed, and no tumours were observed due to DON. The results indicated that DON was non-carcinogenic and that reduced expression of the p53 gene did not play a key role in responses to DON toxicity. The lack of inflammatory and proliferative lesions in mice may be attributed to the anorectic effects of DON, which resulted in dose-dependent reductions in body weight in p53+/+ and p53+/- mice. Hepatic and renal gene expression analyses confirmed that chronic exposure to DON was noninflammatory. The effects of 26-week DON exposure on p53+/+ and p53+/-mice were consistent with those previously seen in B6C3F1 mice exposed to DON for two years.

  2. Emerging Non-Canonical Functions and Regulation by p53: p53 and Stemness

    PubMed Central

    Olivos, David J.; Mayo, Lindsey D.

    2016-01-01

    Since its discovery nearly 40 years ago, p53 has ascended to the forefront of investigated genes and proteins across diverse research disciplines and is recognized most exclusively for its role in cancer as a tumor suppressor. Levine and Oren (2009) reviewed the evolution of p53 detailing the significant discoveries of each decade since its first report in 1979. In this review, we will highlight the emerging non-canonical functions and regulation of p53 in stem cells. We will focus on general themes shared among p53’s functions in non-malignant stem cells and cancer stem-like cells (CSCs) and the influence of p53 on the microenvironment and CSC niche. We will also examine p53 gain of function (GOF) roles in stemness. Mutant p53 (mutp53) GOFs that lead to survival, drug resistance and colonization are reviewed in the context of the acquisition of advantageous transformation processes, such as differentiation and dedifferentiation, epithelial-to-mesenchymal transition (EMT) and stem cell senescence and quiescence. Finally, we will conclude with therapeutic strategies that restore wild-type p53 (wtp53) function in cancer and CSCs, including RING finger E3 ligases and CSC maintenance. The mechanisms by which wtp53 and mutp53 influence stemness in non-malignant stem cells and CSCs or tumor-initiating cells (TICs) are poorly understood thus far. Further elucidation of p53’s effects on stemness could lead to novel therapeutic strategies in cancer research. PMID:27898034

  3. The p53 isoform delta133p53ß regulates cancer cell apoptosis in a RhoB-dependent manner

    PubMed Central

    Arsic, Nikola; Ho-Pun-Cheung, Alexandre; Evelyne, Crapez; Assenat, Eric; Jarlier, Marta; Anguille, Christelle; Colard, Manon; Pezet, Mikaël

    2017-01-01

    The TP53 gene plays essential roles in cancer. Conventionally, wild type (WT) p53 is thought to prevent cancer development and metastasis formation, while mutant p53 has transforming abilities. However, clinical studies failed to establish p53 mutation status as an unequivocal predictive or prognostic factor of cancer progression. The recent discovery of p53 isoforms that can differentially regulate cell cycle arrest and apoptosis suggests that their expression, rather than p53 mutations, could be a more clinically relevant biomarker in patients with cancer. In this study, we show that the p53 isoform delta133p53ß is involved in regulating the apoptotic response in colorectal cancer cell lines. We first demonstrate delta133p53ß association with the small GTPase RhoB, a well-described anti-apoptotic protein. We then show that, by inhibiting RhoB activity, delta133p53ß protects cells from camptothecin-induced apoptosis. Moreover, we found that high delta133p53 mRNA expression levels are correlated with higher risk of recurrence in a series of patients with locally advanced rectal cancer (n = 36). Our findings describe how a WT TP53 isoform can act as an oncogene and add a new layer to the already complex p53 signaling network. PMID:28212429

  4. Role of nucleotide excision repair and p53 in zidovudine (AZT)-induced centrosomal deregulation.

    PubMed

    Momot, Dariya; Nostrand, Terri A; John, Kaarthik; Ward, Yvona; Steinberg, Seth M; Liewehr, David J; Poirier, Miriam C; Olivero, Ofelia A

    2014-12-01

    The nucleoside reverse transcriptase inhibitor zidovudine (AZT) induces genotoxic damage that includes centrosomal amplification (CA > 2 centrosomes/cell) and micronucleus (MN) formation. Here we explored these end points in mice deficient in DNA repair and tumor suppressor function to evaluate their effect on AZT-induced DNA damage. We used mesenchymal-derived fibroblasts cultured from C57BL/6J mice that were null and wild type (WT) for Xpa, and WT, haploinsufficient and null for p53 (6 different genotypes). Dose-responses for CA formation, in cells exposed to 0, 10, and 100 μM AZT for 24 hr, were observed in all genotypes except the Xpa((+/+)) p53((+/-)) cells, which had very low levels of CA, and the Xpa((-/-)) p53((-/-)) cells, which had very high levels of CA. For CA there was a significant three-way interaction between Xpa, p53, and AZT concentration, and Xpa((-/-)) cells had significantly higher levels of CA than Xpa((+/+)) cells, only for p53((+/-)) cells. In contrast, the MN and MN + chromosomes (MN + C) data showed a lack of AZT dose response. The Xpa((-/-)) cells, with p53((+/+)) or ((+/-)) genotypes, had levels of MN and MN + C higher than the corresponding Xpa((+/+)) cells. The data show that CA is a major event induced by exposure to AZT in these cells, and that there is a complicated relationship between AZT and CA formation with respect to gene dosage of Xpa and p53. The loss of both genes resulted in high levels of damage, and p53 haploinsufficicency strongly protected Xpa((+/+)) cells from AZT-induced CA damage.

  5. Hdm2 and Nitric Oxide Radicals Contribute to the P53-Dependent Radioadaptive Response

    SciTech Connect

    Takahashi, Akihisa; Matsumoto, Hideki; Ohnishi, Takeo

    2008-06-01

    Purpose: The aim of this work was to characterize the radioadaptive response at the molecular level. Methods and Materials: We used wild-type (wt) p53 and mutated (m) p53-containing cells derived from the human lung cancer H1299 cell line, which is p53-null. Cellular radiation sensitivities were determined with a colony-forming assay. The accumulations of p53, the human homolog of endogenous murine double minute 2 (Hdm2), and inducible nitric oxide synthase were analyzed with Western blotting. Quantification of chromosomal aberrations was estimated by scoring dicentrics per cell. Results: In wtp53 cells, it was demonstrated that the lack of p53 accumulation was coupled with the activation of Hdm2 after low-dose irradiation (0.02 Gy). Although NO radicals were only minimally induced in wtp53 cells irradiated with a challenging irradiation (6 Gy) alone, NO radicals were seen to increase about two- to fourfold after challenging irradiation subsequent to a priming irradiation (0.02 Gy). Under similar irradiation conditions with a priming and challenging irradiation in wtp53 cells, induction of radioresistance and a depression of chromosomal aberrations were observed only in the absence of 5, 5'-(2, 5-Furanidiyl)bis-2-thiophenemethanol (RITA) or Nutlin-3 (p53-Hdm2 interaction inhibitors), aminoguanidine (an inducible nitric oxide synthase inhibitor), and c-PTIO (an NO radical scavenger). On the other hand, in p53 dysfunctional cells, a radioadaptive response was not observed in the presence or absence of those inhibitors. Moreover radioresistance developed when wtp53 cells were treated with isosorbide dinitrate (an NO-generating agent) alone. Conclusions: These findings suggest that NO radicals are initiators of the radioadaptive response, acting through the activation of Hdm2 and the depression of p53 accumulations.

  6. Conundrum of the lack of defective RNAs (dRNAs) associated with tobamovirus Infections: dRNAs that can move are not replicated by the wild-type virus; dRNAs that are replicated by the wild-type virus do not move.

    PubMed

    Knapp, E; Dawson, W O; Lewandowski, D J

    2001-06-01

    Two classes of artificially constructed defective RNAs (dRNAs) of Tobacco mosaic virus (TMV) were examined in planta with helper viruses that expressed one (183 kDa) or both (126 and 183 kDa) of the replicase-associated proteins. The first class of artificially constructed dRNAs had the helicase and polymerase (POL) domains deleted; the second had an intact 126-kDa protein open reading frame (ORF). Despite extremely high levels of replication in protoplasts, the first class of dRNAs did not accumulate in plants. The dRNAs with an intact 126-kDa protein ORF were replicated at moderate levels in protoplasts and in planta when supported by a TMV mutant that expressed the 183-kDa protein but not the 126-kDa protein (183F). These dRNAs were not supported by helper viruses expressing both replicase-associated proteins. De novo dRNAs were generated in plants infected by 183F but not in plants infected with virus with the wild-type replicase. These novel dRNAs each contained a new stop codon near the location of the wild-type stop codon for the 126-kDa protein and had most of the POL domain deleted. The fact that only dRNAs that contained a complete 126-kDa protein ORF moved systemically suggests that expression of a functional 126-kDa protein or the presence of certain sequences and/or structures within this ORF is required for movement of dRNAs. At least two factors may contribute to the lack of naturally occurring dRNAs in association with wild-type TMV infections: an inability of TMV to support dRNAs that can move in plants and the inability of dRNAs that can be replicated by TMV to move in plants.

  7. p53-independent death and p53-induced protection against apoptosis in fibroblasts treated with chemotherapeutic drugs.

    PubMed Central

    Malcomson, R. D.; Oren, M.; Wyllie, A. H.; Harrison, D. J.

    1995-01-01

    Many recent studies have implicated p53 in the cellular response to injury and induction of cell death by apoptosis. In a rat embryonal fibroblast cell line transformed with c-Ha-ras and a mutant temperature-sensitive p53 (val135), cells were G1 arrested at the permissive temperature of 32 degrees C when overexpressed p53 was in wild-type conformation. In this state cells were resistant to apoptosis induced by etoposide (at up to 50 microM) or bleomycin (15 microU ml-1). Cells at 37 degrees C with overexpressed p53 in mutant conformation were freed from this growth arrest, continued proliferating and showed dose-dependent increases in apoptosis. This death is independent of wild-type p53 function. Control cells containing a non-temperature-sensitive mutant p53 (phe132) were sensitive to both etoposide and bleomycin after 24 h at 32 degrees C and 37 degrees C, indicating that the results are not simply due to temperature effects on pharmacokinetics or DNA damage. Our data show that induction of a stable p53-mediated growth arrest renders these cells much less likely to undergo apoptosis in response to certain anti-cancer drugs, and we conclude that the regulatory role of p53 in apoptosis is influenced by the particular cellular context in which this gene is expressed. PMID:7547247

  8. Mitofusin-2 is a novel direct target of p53

    SciTech Connect

    Wang, Weilin; Cheng, Xiaofei; Lu, Jianju; Wei, Jianfeng; Fu, Guanghou; Zhu, Feng; Jia, Changku; Zhou, Lin; Xie, Haiyang; Zheng, Shusen

    2010-10-01

    Research highlights: {yields} Mfn2 is a novel target gene of p53. {yields} Mfn2 mRNA and protein levels can be up-regulated in a p53-dependent manner. {yields} Mfn2 promoter activity can be elevated by the p53 protein. {yields} P53 protein binds the Mfn2 promoter directly both in vitro and in vivo. -- Abstract: The tumor suppressor p53 modulates transcription of a number of target genes involved in cell cycle arrest, apoptosis, DNA repair, and other important cellular responses. Mitofusin-2 (Mfn2) is a novel suppressor of cell proliferation that may also exert apoptotic effects via the mitochondrial apoptotic pathway. Through bioinformatics analysis, we identified a p53 binding site in the Mfn2 promoter. Consistent with this, we showed that the p53 protein binds the Mfn2 promoter directly both in vitro and in vivo. Additionally, we found that Mfn2 mRNA and protein levels are up-regulated in a p53-dependent manner. Furthermore, luciferase assays revealed that the activity of the wild-type Mfn2 promoter, but not a mutated version of the promoter, was up-regulated by p53. These results indicate that Mfn2 is a novel p53-inducible target gene, which provides insight into the regulation of Mfn2 and its associated activities in the inhibition of cell proliferation, promotion of apoptosis, and modulation of tumor suppression.

  9. HDACi inhibits liposarcoma via targeting of the MDM2-p53 signaling axis and PTEN, irrespective of p53 mutational status.

    PubMed

    Ou, Wen-Bin; Zhu, Jiaqing; Eilers, Grant; Li, Xuhui; Kuang, Ye; Liu, Li; Mariño-Enríquez, Adrián; Yan, Ziqin; Li, Hailong; Meng, Fanguo; Zhou, Haimeng; Sheng, Qing; Fletcher, Jonathan A

    2015-04-30

    The MDM2-p53 pathway plays a prominent role in well-differentiated liposarcoma (LPS) pathogenesis. Here, we explore the importance of MDM2 amplification and p53 mutation in LPS independently, to determine whether HDACi are therapeutically useful in LPS. We demonstrated that simultaneous knockdown of MDM2 and p53 in p53-mutant LPS lines resulted in increased apoptosis, anti-proliferative effects, and cell cycle arrest, as compared to either intervention alone. HDACi treatment resulted in the dephosphorylation and depletion of MDM2 and p53 without affecting CDK4 and JUN expression, irrespective of p53 mutational status in MDM2-amplified LPS. In control mesothelioma cell lines, HDACi treatment resulted in down-regulation of p53 in the p53 mutant cell line JMN1B, but resulted in no changes of MDM2 and p53 in two mesothelioma lines with normal MDM2 and wild-type p53. HDACi treatment substantially decreased LPS and mesothelioma proliferation and survival, and was associated with upregulation of PTEN and p21, and inactivation of AKT. Our findings indicate that wild-type p53 depletion by HDACi is MDM2 amplification-dependent. These findings underscore the importance of targeting both MDM2 and p53 in LPS and other cancers harboring p53 mutations. Moreover, the pro-apoptotic and anti-proliferative effect of HDACi warrants further evaluation as a therapeutic strategy in MDM2-amplified LPS.

  10. Focal adhesion kinase and p53 synergistically decrease neuroblastoma cell survival.

    PubMed

    Gillory, Lauren A; Stewart, Jerry E; Megison, Michael L; Waters, Alicia M; Beierle, Elizabeth A

    2015-06-15

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of neuroblastoma tumor development and progression. The p53 oncogene, although wild type in most neuroblastomas, lacks significant function as a tumor suppressor in these tumors. Recent reports have found that FAK and p53 interact in some tumor types. We have hypothesized FAK and p53 coordinately control each other's expression and also interact in neuroblastoma. In the present study, we showed that not only do FAK and p53 interact but each one controls the expression of the other. In addition, we also examined the effects of FAK inhibition combined with p53 activation in neuroblastoma and showed that these two, in combination, had a synergistic effect on neuroblastoma cell survival. The findings from this present study help to further our understanding of the regulation of neuroblastoma tumorigenesis and may provide novel therapeutic strategies and targets for neuroblastoma and other pediatric solid tumors.

  11. Lonidamine induces apoptosis in drug-resistant cells independently of the p53 gene.

    PubMed Central

    Del Bufalo, D; Biroccio, A; Soddu, S; Laudonio, N; D'Angelo, C; Sacchi, A; Zupi, G

    1996-01-01

    Lonidamine, a dichlorinated derivative of indazole-3-carboxylic acid, was shown to play a significant role in reversing or overcoming multidrug resistance. Here, we show that exposure to 50 microg/ml of lonidamine induces apoptosis in adriamycin and nitrosourea-resistant cells (MCF-7 ADR(r) human breast cancer cell line, and LB9 glioblastoma multiform cell line), as demonstrated by sub-G1 peaks in DNA content histograms, condensation of nuclear chromatin, and internucleosomal DNA fragmentation. Moreover, we find that apoptosis is preceded by accumulation of the cells in the G0/G1 phase of the cell cycle. Interestingly, lonidamine fails to activate the apoptotic program in the corresponding sensitive parental cell lines (ADR-sensitive MCF-7 WT, and nitrosourea-sensitive LI cells) even after long exposure times. The evaluation of bcl-2 protein expression suggests that this different effect of lonidamine treatment in drug-resistant and -sensitive cell lines might not simply be due to dissimilar expression levels of bcl-2 protein. To determine whether the lonidamine-induced apoptosis is mediated by p53 protein, we used cells lacking endogenous p53 and overexpressing either wild-type p53 or dominant-negative p53 mutant. We find that apoptosis by lonidamine is independent of the p53 gene. PMID:8787680

  12. Global Changes in Lipid Profiles of Mouse Cortex, Hippocampus, and Hypothalamus Upon p53 Knockout

    PubMed Central

    Lee, Sang Tak; Lee, Jong Cheol; Kim, Jong Whi; Cho, Soo Young; Seong, Je Kyung; Moon, Myeong Hee

    2016-01-01

    Comprehensive lipidomic profiling in three different brain tissues (cortex, hippocampus, and hypothalamus) of mouse with p53 deficiency was performed by nanoflow liquid chromatography-tandem mass spectrometry (nLC-MS/MS) and the profile was compared with that of the wild type. p53 gene is a well-known tumour suppressor that prevents genome mutations that can cause cancers. More than 300 lipids (among 455 identified species), including phospholipids (PLs), sphingolipids, ceramides (Cers), and triacylglycerols (TAGs) were quantitatively analysed by selective reaction monitoring (SRM) of nanoflow ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (nUPLC-ESI-MS/MS). Among the three different neural tissues, hypothalamus demonstrated the most evident lipid profile changes upon p53 knockout. Alterations of PLs containing acyl chains of docosahexaenoic acid and arachidonic acid (highly enriched polyunsaturated fatty acids in the nervous system) were examined in relation to cell apoptosis upon p53 knockout. Comparison between sphingomyelins (SMs) and Cers showed that the conversion of SM to Cer did not effectively progress in the hypothalamus, resulting in the accumulation of SMs, possibly due to the inhibition of apoptosis caused by the lack of p53. Furthermore, TAGs were considerably decreased only in the hypothalamus, indicative of lipolysis that led to substantial weight loss of adipose tissue and muscles. PMID:27819311

  13. Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway.

    PubMed Central

    Chowdary, D R; Dermody, J J; Jha, K K; Ozer, H L

    1994-01-01

    The wild-type p53 gene product plays an important role in the control of cell proliferation, differentiation, and survival. Altered function is frequently associated with changes in p53 stability. We have studied the role of the ubiquitination pathway in the degradation of p53, utilizing a temperature-sensitive mutant, ts20, derived from the mouse cell line BALB/c 3T3. We found that wild-type p53 accumulates markedly because of decreased breakdown when cells are shifted to the restrictive temperature. Introduction of sequences encoding the human ubiquitin-activating enzyme E1 corrects the temperature sensitivity defect in ts20 and prevents accumulation of p53. The data therefore strongly indicate that wild-type p53 is degraded intracellularly by the ubiquitin-mediated proteolytic pathway. Images PMID:8114731

  14. Tumor Suppressor WWOX and p53 Alterations and Drug Resistance in Glioblastomas

    PubMed Central

    Chiang, Ming-Fu; Chou, Pei-Yi; Wang, Wan-Jen; Sze, Chun-I; Chang, Nan-Shan

    2013-01-01

    Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs) and appears to contribute, in part, to resistance to temozolomide (TMZ) and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1) is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death. PMID:23459853

  15. The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation.

    PubMed

    Chen, Liang; Rashid, Farooq; Shah, Abdullah; Awan, Hassaan M; Wu, Mingming; Liu, An; Wang, Jun; Zhu, Tao; Luo, Zhaofeng; Shan, Ge

    2015-08-11

    p53, known as a tumor suppressor, is a DNA binding protein that regulates cell cycle, activates DNA repair proteins, and triggers apoptosis in multicellular animals. More than 50% of human cancers contain a mutation or deletion of the p53 gene, and p53R175 is one of the hot spots of p53 mutation. Nucleic acid aptamers are short single-stranded oligonucleotides that are able to bind various targets, and they are typically isolated from an experimental procedure called systematic evolution of ligand exponential enrichment (SELEX). Using a previously unidentified strategy of contrast screening with SELEX, we have isolated an RNA aptamer targeting p53R175H. This RNA aptamer (p53R175H-APT) has a significantly stronger affinity to p53R175H than to the wild-type p53 in both in vitro and in vivo assays. p53R175H-APT decreased the growth rate, weakened the migration capability, and triggered apoptosis in human lung cancer cells harboring p53R175H. Further analysis actually indicated that p53R175H-APT might partially rescue or correct the p53R175H to function more like the wild-type p53. In situ injections of p53R175H-APT to the tumor xenografts confirmed the effects of this RNA aptamer on p53R175H mutation in mice.

  16. The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation

    PubMed Central

    Chen, Liang; Rashid, Farooq; Shah, Abdullah; Awan, Hassaan M.; Wu, Mingming; Liu, An; Wang, Jun; Zhu, Tao; Luo, Zhaofeng; Shan, Ge

    2015-01-01

    p53, known as a tumor suppressor, is a DNA binding protein that regulates cell cycle, activates DNA repair proteins, and triggers apoptosis in multicellular animals. More than 50% of human cancers contain a mutation or deletion of the p53 gene, and p53R175 is one of the hot spots of p53 mutation. Nucleic acid aptamers are short single-stranded oligonucleotides that are able to bind various targets, and they are typically isolated from an experimental procedure called systematic evolution of ligand exponential enrichment (SELEX). Using a previously unidentified strategy of contrast screening with SELEX, we have isolated an RNA aptamer targeting p53R175H. This RNA aptamer (p53R175H-APT) has a significantly stronger affinity to p53R175H than to the wild-type p53 in both in vitro and in vivo assays. p53R175H-APT decreased the growth rate, weakened the migration capability, and triggered apoptosis in human lung cancer cells harboring p53R175H. Further analysis actually indicated that p53R175H-APT might partially rescue or correct the p53R175H to function more like the wild-type p53. In situ injections of p53R175H-APT to the tumor xenografts confirmed the effects of this RNA aptamer on p53R175H mutation in mice. PMID:26216949

  17. Heterozygous p53V172F mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53

    PubMed Central

    Xie, Xiaolei; Lozano, Guillermina; Siddik, Zahid H.

    2017-01-01

    Cisplatin is an important antitumor agent, but its clinical utility is often limited by multifactorial mechanism of resistance. Loss of tumor suppressor p53 function is a major mechanism, affected by either mutation in the DNA binding domain or dysregulation by overexpression of p53 inhibitors MDM2 and MDM4 that destabilize p53 by increasing its proteosomal degradation. In the present study, cisplatin-resistant 2780CP/Cl-16 ovarian tumor cells expressed a heterozygous, temperature-sensitive p53V172F mutation, which reduced p53 half-life by 2- to 3-fold compared to homozygous wild-type p53 in parental A2780 cells. Although reduced p53 stability in 2780CP/Cl-16 cells was associated with moderate cellular overexpression of MDM2 or MDM4 (<1.5-fold), their binding to p53 was substantially enhanced (5- to 8-fold). The analogous cisplatin-resistant 2780CP/Cl-24 cells, which express loss of p53 heterozygosity, retained the p53V172F mutation and high p53-MDM4 binding, but demonstrated lower p53-bound MDM2 that was associated with reduced p53 ubiquitination and enhanced p53 stability. The inference that p53 was unstable as a hetromeric p53wt/p53V172F complex was confirmed in 2780CP/Cl-24 cells transfected with wild-type (wt) p53 or multimer-inhibiting p53L344P mutant, and further supported by normalization of p53 stability in both resistant cell lines grown at the permissive temperature of 32.5°C. Surprisingly, in 2780CP/Cl-16 and 2780CP/Cl-24 models, cisplatin-induced transactivity of p53 was attenuated at 37°C, and this correlated with cisplatin resistance. However, downregulation of MDM2 or MDM4 by siRNA in either resistant cell line induced p53 and restored p21 transactivation at 37°C, as did cisplatin-induced DNA damage at 32.5°C that coincided with reduced p53-MDM4 binding and cisplatin resistance. These results demonstrate that cisplatin-mediated p53V172F mutation regulates p53 stability at the normothermic temperature, but it is the increased recruitment of MDM4

  18. Necdin, a p53-Target Gene, Is an Inhibitor of p53-Mediated Growth Arrest

    PubMed Central

    Lafontaine, Julie; Rodier, Francis; Ouellet, Véronique; Mes-Masson, Anne-Marie

    2012-01-01

    In vitro, cellular immortalization and transformation define a model for multistep carcinogenesis and current ongoing challenges include the identification of specific molecular events associated with steps along this oncogenic pathway. Here, using NIH3T3 cells, we identified transcriptionally related events associated with the expression of Polyomavirus Large-T antigen (PyLT), a potent viral oncogene. We propose that a subset of these alterations in gene expression may be related to the early events that contribute to carcinogenesis. The proposed tumor suppressor Necdin, known to be regulated by p53, was within a group of genes that was consistently upregulated in the presence of PyLT. While Necdin is induced following p53 activation with different genotoxic stresses, Necdin induction by PyLT did not involve p53 activation or the Rb-binding site of PyLT. Necdin depletion by shRNA conferred a proliferative advantage to NIH3T3 and PyLT-expressing NIH3T3 (NIHLT) cells. In contrast, our results demonstrate that although overexpression of Necdin induced a growth arrest in NIH3T3 and NIHLT cells, a growing population rapidly emerged from these arrested cells. This population no longer showed significant proliferation defects despite high Necdin expression. Moreover, we established that Necdin is a negative regulator of p53-mediated growth arrest induced by nutlin-3, suggesting that Necdin upregulation could contribute to the bypass of a p53-response in p53 wild type tumors. To support this, we characterized Necdin expression in low malignant potential ovarian cancer (LMP) where p53 mutations rarely occur. Elevated levels of Necdin expression were observed in LMP when compared to aggressive serous ovarian cancers. We propose that in some contexts, the constitutive expression of Necdin could contribute to cancer promotion by delaying appropriate p53 responses and potentially promote genomic instability. PMID:22355404

  19. Crosstalk between p53 and TGF-β Signalling

    PubMed Central

    Elston, Rebecca; Inman, Gareth J.

    2012-01-01

    Wild-type p53 and TGF-β are key tumour suppressors which regulate an array of cellular responses. TGF-β signals in part via the Smad signal transduction pathway. Wild-type p53 and Smads physically interact and coordinately induce transcription of a number of key tumour suppressive genes. Conversely mutant p53 generally subverts tumour suppressive TGF-β responses, diminishing transcriptional activation of key TGF-β target genes. Mutant p53 can also interact with Smads and this enables complex formation with the p53 family member p63 and blocks p63-mediated activation of metastasis suppressing genes to promote tumour progression. p53 and Smad function may also overlap during miRNA biogenesis as they can interact with the same components of the Drosha miRNA processing complex to promote maturation of specific subsets of miRNAs. This paper investigates the crosstalk between p53 and TGF-β signalling and the potential roles this plays in cancer biology. PMID:22545213

  20. p53-Dependent suppression of genome instability in germ cells.

    PubMed

    Otozai, Shinji; Ishikawa-Fujiwara, Tomoko; Oda, Shoji; Kamei, Yasuhiro; Ryo, Haruko; Sato, Ayuko; Nomura, Taisei; Mitani, Hiroshi; Tsujimura, Tohru; Inohara, Hidenori; Todo, Takeshi

    2014-02-01

    Radiation increases mutation frequencies at tandem repeat loci. Germline mutations in γ-ray-irradiated medaka fish (Oryzias latipes) were studied, focusing on the microsatellite loci. Mismatch-repair genes suppress microsatellite mutation by directly removing altered sequences at the nucleotide level, whereas the p53 gene suppresses genetic alterations by eliminating damaged cells. The contribution of these two defense mechanisms to radiation-induced microsatellite instability was addressed. The spontaneous mutation frequency was significantly higher in msh2(-/-) males than in wild-type fish, whereas there was no difference in the frequency of radiation-induced mutations between msh2(-/-) and wild-type fish. By contrast, irradiated p53(-/-) fish exhibited markedly increased mutation frequencies, whereas their spontaneous mutation frequency was the same as that of wild-type fish. In the spermatogonia of the testis, radiation induced a high level of apoptosis both in wild-type and msh2(-/-) fish, but negligible levels in p53(-/-) fish. The results demonstrate that the msh2 and p53 genes protect genome integrity against spontaneous and radiation-induced mutation by two different pathways: direct removal of mismatches and elimination of damaged cells.

  1. Nucleolar stress with and without p53

    PubMed Central

    James, Allison; Wang, Yubo; Raje, Himanshu; Rosby, Raphyel; DiMario, Patrick

    2014-01-01

    A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53? PMID:25482194

  2. Benzyl Isothiocyanate potentiates p53 signaling and antitumor effects against breast cancer through activation of p53-LKB1 and p73-LKB1 axes

    PubMed Central

    Xie, Bei; Nagalingam, Arumugam; Kuppusamy, Panjamurthy; Muniraj, Nethaji; Langford, Peter; Győrffy, Balázs; Saxena, Neeraj K.; Sharma, Dipali

    2017-01-01

    Functional reactivation of p53 pathway, although arduous, can potentially provide a broad-based strategy for cancer therapy owing to frequent p53 inactivation in human cancer. Using a phosphoprotein-screening array, we found that Benzyl Isothiocynate, (BITC) increases p53 phosphorylation in breast cancer cells and reveal an important role of ERK and PRAS40/MDM2 in BITC-mediated p53 activation. We show that BITC rescues and activates p53-signaling network and inhibits growth of p53-mutant cells. Mechanistically, BITC induces p73 expression in p53-mutant cells, disrupts the interaction of p73 and mutant-p53, thereby releasing p73 from sequestration and allowing it to be transcriptionally active. Furthermore, BITC-induced p53 and p73 axes converge on tumor-suppressor LKB1 which is transcriptionally upregulated by p53 and p73 in p53-wild-type and p53-mutant cells respectively; and in a feed-forward mechanism, LKB1 tethers with p53 and p73 to get recruited to p53-responsive promoters. Analyses of BITC-treated xenografts using LKB1-null cells corroborate in vitro mechanistic findings and establish LKB1 as the key node whereby BITC potentiates as well as rescues p53-pathway in p53-wild-type as well as p53-mutant cells. These data provide first in vitro and in vivo evidence of the integral role of previously unrecognized crosstalk between BITC, p53/LKB1 and p73/LKB1 axes in breast tumor growth-inhibition. PMID:28071670

  3. p53 promotes cellular survival in a context-dependent manner by directly inducing the expression of haeme-oxygenase-1.

    PubMed

    Nam, S Y; Sabapathy, K

    2011-11-03

    A variety of cellular insults activate the tumour suppressor p53, leading generally to cell-cycle arrest or apoptosis. However, it is not inconceivable that cellular protective mechanisms may be required to keep cells alive while cell-fate decisions are made. In this respect, p53 has been suggested to perform functions that allow cells to survive, by halting of the cell-cycle, and thus preventing immediate cell death. Nonetheless, the existence of direct pro-survival p53 target genes regulating cellular survival is lacking. We show here evidence for p53-dependent cellular survival in a context-dependent manner. Both mouse and human cells lacking p53 are hypersensitive to hydrogen peroxide (H(2)O(2))-induced cell death compared with their isogenic wild-type counterparts. By contrast, p53(-/-) cells are expectedly resistant to cell death upon exposure to DNA-damaging agents such as cisplatin (CDDP) and etoposide. Although p53 and its classical targets such as p21 and Mdm2 are activated by both H(2)O(2) and CDDP, we found that the expression of haeme-oxygenase-1 (HO-1)-an antioxidant and antiapoptotic protein-was directly induced only upon H(2)O(2) treatment in a p53-dependent manner. Consistently, p53, but not its homologue p73, activated HO-1 expression and was bound to the HO-1 promoter specifically only upon H(2)O(2) treatment. Moreover, silencing HO-1 expression enhanced cell death upon H(2)O(2) treatment only in p53-proficient cells. Finally, H(2)O(2)-mediated cell death was rescued significantly in p53-deficient cells by antioxidant treatment, as well as by bilirubin, a by-product of HO-1 metabolism. Taken together, these data demonstrate a direct role for p53 in promoting cellular survival in a context-specific manner through the activation of a direct transcriptional target, HO-1.

  4. Activation of p53-dependent responses in tumor cells treated with a PARC-interacting peptide

    SciTech Connect

    Vitali, Roberta; Cesi, Vincenzo; Tanno, Barbara; Ferrari-Amorotti, Giovanna; Dominici, Carlo; Calabretta, Bruno; Raschella, Giuseppe

    2008-04-04

    We tested the activity of a p53 carboxy-terminal peptide containing the PARC-interacting region in cancer cells with wild type cytoplasmic p53. Peptide delivery was achieved by fusing it to the TAT transduction domain (TAT-p53-C-ter peptide). In a two-hybrid assay, the tetramerization domain (TD) of p53 was necessary and sufficient to bind PARC. The TAT-p53-C-ter peptide disrupted the PARC-p53 complex. Peptide treatment caused p53 nuclear relocation, p53-dependent changes in gene expression and enhancement of etoposide-induced apoptosis. These studies suggest that PARC-interacting peptides are promising candidates for the enhancement of p53-dependent apoptosis in tumors with wt cytoplasmic p53.

  5. The p53 Protein is an Unusually Shaped Tetramer that Binds Directly to DNA

    NASA Astrophysics Data System (ADS)

    Friedman, Paula N.; Chen, Xinbin; Bargonetti, Jill; Prives, Carol

    1993-04-01

    We have analyzed the size and structure of native immunopurified human p53 protein. By using a combination of chemical crosslinking, gel filtration chromatography, and zonal velocity gradient centrifugation, we have determined that the predominant form of p53 in such preparations is a tetramer. The behavior of purified p53 in gels and sucrose gradients implies that the protein has an extended shape. Wild-type p53 has been shown to bind specifically to sites in cellular and viral DNA. We show in this study by Southwestern ligand blotting and by analysis of DNA-bound crosslinked p53 that p53 monomers, dimers, and tetramers can bind directly to DNA.

  6. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90.

    PubMed Central

    Blagosklonny, M V; Toretsky, J; Bohen, S; Neckers, L

    1996-01-01

    The p53 mutant, 143ala, was translated in vitro in either rabbit reticulocyte lysate (RRL) or wheat germ extract (WGE). In RRL, p53-143ala protein of both mutant and wild-type conformation, as detected immunologically with conformation-specific antibodies, was translated. The chaperone protein HSP90, present in RRL, was found to coprecipitate only with the mutated conformation of p53. Geldanamycin, shown previously to bind to HSP90 and destabilize its association with other proteins, decreased the amount of immunologically detectable mutated p53 and increased the amount of detectable wild-type protein, without affecting the total translation of p53. When translated in WGE, known to contain functionally deficient HSP90, p53-143ala produced p53 protein, which was not recognized by a mutated conformation-specific antibody. In contrast, the synthesis of conformationally detectable wild-type p53 in this system was not compromised. Reconstitution of HSP90 function in WGE permitted synthesis of conformationally detectable mutated p53, and this was abrogated by geldanamycin. Finally, when p53-143ala was stably tansfected into yeast engineered to be defective for HSP90 function, conformational recognition of mutated p53 was impaired. When stable transfectants of p53-143ala were prepared in yeast expressing wild-type HSP90, conformational recognition of mutated p53 was antagonized by macbecin I, a geldanamycin analog also known to bind HSP90. Taken together, these data demonstrate a role for HSP90 in the achievement and/or stabilization of the mutated conformation of p53-143ala. Furthermore, we show that the mutated conformation of p53 can be pharmacologically antagonized by drugs targeting HSP90. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8710879

  7. Podocyte p53 Limits the Severity of Experimental Alport Syndrome

    PubMed Central

    Fukuda, Ryosuke; Suico, Mary Ann; Kai, Yukari; Omachi, Kohei; Motomura, Keishi; Koga, Tomoaki; Komohara, Yoshihiro; Koyama, Kosuke; Yokota, Tsubasa; Taura, Manabu; Shuto, Tsuyoshi

    2016-01-01

    Alport syndrome (AS) is one of the most common types of inherited nephritis caused by mutation in one of the glomerular basement membrane components. AS is characterized by proteinuria at early stage of the disease and glomerular hyperplastic phenotype and renal fibrosis at late stage. Here, we show that global deficiency of tumor suppressor p53 significantly accelerated AS progression in X-linked AS mice and decreased the lifespan of these mice. p53 protein expression was detected in 21-week-old wild-type mice but not in age-matched AS mice. Expression of proinflammatory cytokines and profibrotic genes was higher in p53+/− AS mice than in p53+/+ AS mice. In vitro experiments revealed that p53 modulates podocyte migration and positively regulates the expression of podocyte-specific genes. We established podocyte-specific p53 (pod-p53)-deficient AS mice, and determined that pod-p53 deficiency enhanced the AS-induced renal dysfunction, foot process effacement, and alteration of gene-expression pattern in glomeruli. These results reveal a protective role of p53 in the progression of AS and in maintaining glomerular homeostasis by modulating the hyperplastic phenotype of podocytes in AS. PMID:25967122

  8. Astrocytes derived from p53-deficient mice provide a multistep in vitro model for development of malignant gliomas.

    PubMed Central

    Yahanda, A M; Bruner, J M; Donehower, L A; Morrison, R S

    1995-01-01

    Loss or mutation of p53 is thought to be an early event in the malignant transformation of many human astrocytic tumors. To better understand the role of p53 in their growth and transformation, we developed a model employing cultured neonatal astrocytes derived from mice deficient in one (p53 +/-) or both (p53 -/-) p53 alleles, comparing them with wild-type (p53 +/+) cells. Studies of in vitro and in vivo growth and transformation were performed, and flow cytometry and karyotyping were used to correlate changes in growth with genomic instability. Early-passage (EP) p53 -/- astrocytes achieved higher saturation densities and had more rapid growth than EP p53 +/- and +/+ cells. The EP p53 -/- cells were not transformed, as they were unable to grow in serum-free medium or in nude mice. With continued passaging, p53 -/- cells exhibited a multistep progression to a transformed phenotype. Late-passage p53 -/- cells achieved saturation densities 50 times higher than those of p53 +/+ cells and formed large, well-vascularized tumors in nude mice. p53 +/- astrocytes exhibited early loss of the remaining wild-type p53 allele and then evolved in a manner phenotypically similar to p53 -/- astrocytes. In marked contrast, astrocytes retaining both wild-type p53 alleles never exhibited a transformed phenotype and usually senesced after 7 to 10 passages. Dramatic alterations in ploidy and karyotype occurred and were restricted to cells deficient in wild-type p53 following repeated passaging. The results of these studies suggest that loss of wild-type p53 function promotes genomic instability, accelerated growth, and malignant transformation in astrocytes. PMID:7623819

  9. Phenotype of HIV-1 lacking a functional nuclear localization signal in matrix protein of gag and Vpr is comparable to wild-type HIV-1 in primary macrophages.

    PubMed

    Kootstra, N A; Schuitemaker, H

    1999-01-20

    Human immunodeficiency virus type 1 (HIV-1) is considered to infect nondividing cells because nuclear localization signals (NLS) in matrix (MA, p17(Gag)) and Vpr allow active nuclear transport of the preintegration complex. Previous studies demonstrated that HIV-1 reverse transcription is successful only in cells with proliferative potential, thus restricting HIV-1 replication to cycling cells. To sort out this apparent discrepancy we compared the phenotype of a chimeric HIV-1 variant lacking a functional Vpr and MA-NLS (R7. deltaVpr.deltaNLS), and previously described to lack replicative capacity in macrophages and growth-arrested cells, with a chimera lacking a functional Vpr (R7.deltaVpr). Both variants replicated efficiently in primary macrophages, with only minimal differences in the kinetics of reverse transcription, integration, or p24 production. In agreement with our previous observation, elongation of reverse transcription was restricted to the proliferating subpopulation of macrophages. Replication of R7.deltaVpr and R7.deltaVpr.deltaNLS could also be demonstrated in aphidicolin-treated macrophages, indicating efficient nuclear transport in G1/S phase-arrested cells. In conclusion, our results confirm the dependency of the process of HIV-1 reverse transcriptase on cell proliferation in primary macrophages and exclude an important role of MA-NLS and Vpr in macrophage infection.

  10. Targeting cancer stem cells with p53 modulators

    PubMed Central

    Hayashi, Ryo; Appella, Ettore; Kopelovich, Levy; DeLeo, Albert B.

    2016-01-01

    Cancer stem cells (CSC) typically over-express aldehyde dehydrogenase (ALDH). Thus, ALDHbright tumor cells represent targets for developing novel cancer prevention/treatment interventions. Loss of p53 function is a common genetic event during cancer development wherein small molecular weight compounds (SMWC) that restore p53 function and reverse tumor growth have been identified. Here, we focused on two widely studied p53 SMWC, CP-31398 and PRIMA-1, to target ALDHbright CSC in human breast, endometrial and pancreas carcinoma cell lines expressing mutant or wild type (WT) p53. CP-31398 and PRIMA-1 significantly reduced CSC content and sphere formation by these cell lines in vitro. In addition, these agents were more effective in vitro against CSC compared to cisplatin and gemcitabine, two often-used chemotherapeutic agents. We also tested a combinatorial treatment in methylcholantrene (MCA)-treated mice consisting of p53 SMWC and p53-based vaccines. Yet using survival end-point analysis, no increased efficacy in the presence of either p53 SMWC alone or with vaccine compared to vaccine alone was observed. These results may be due, in part, to the presence of immune cells, such as activated lymphocytes expressing WT p53 at levels comparable to some tumor cells, wherein further increase of p53 expression by p53 SMWC may alter survival of these immune cells and negatively impact an effective immune response. Continuous exposure of mice to MCA may have also interfered with the action of these p53 SMWC, including potential direct interaction with MCA. Nonetheless, the effect of p53 SMWC on CSC and cancer treatment remains of great interest. PMID:27074569

  11. In vivo expression of p53 and Bcl-2 and their role in programmed cell death in premalignant and malignant lung lesions.

    PubMed

    Koty, Patrick P; Zhang, Haifan; Franklin, Wilbur A; Yousem, Samuel A; Landreneau, Rodney; Levitt, Mark L

    2002-02-01

    Forty-four specimens of non-malignant and malignant human lung tissue, taken from patients with non-small cell lung cancer (NSCLC), were examined for the expression of wild-type p53, mutant p53, and bcl-2 and the occurrence of programmed cell death (apoptosis). Wild-type p53 expression peaked in peritumoral and metaplastic samples, whereas mutant p53, bcl-2 and apoptosis were first detected in metaplasia and increased with progression to carcinoma. Bcl-2 positive samples had lower levels of apoptosis than bcl-2 negative samples and was independent of wild-type or mutant p53 expression. These results suggest that the over-expression of wild-type p53 may be an early cellular response to an alteration in normal cellular homeostasis. The ensuing increase in apoptosis appears to be relatively independent of mutant or wild-type p53 expression, but does not occur in cells expressing bcl-2.

  12. A Nanoparticle Carrying the p53 Gene Targets Tumors Including Cancer Stem Cells, Sensitizes Glioblastoma to Chemotherapy and Improves Survival

    PubMed Central

    2015-01-01

    Temozolomide (TMZ)-resistance in glioblastoma multiforme (GBM) has been linked to upregulation of O6-methylguanine-DNA methyltransferase (MGMT). Wild-type (wt) p53 was previously shown to down-modulate MGMT. However, p53 therapy for GBM is limited by lack of efficient delivery across the blood brain barrier (BBB). We have developed a systemic nanodelivery platform (scL) for tumor-specific targeting (primary and metastatic), which is currently in multiple clinical trials. This self-assembling nanocomplex is formed by simple mixing of the components in a defined order and a specific ratio. Here, we demonstrate that scL crosses the BBB and efficiently targets GBM, as well as cancer stem cells (CSCs), which have been implicated in recurrence and treatment resistance in many human cancers. Moreover, systemic delivery of scL-p53 down-modulates MGMT and induces apoptosis in intracranial GBM xenografts. The combination of scL-p53 and TMZ increased the antitumor efficacy of TMZ with enhanced survival benefit in a mouse model of highly TMZ-resistant GBM. scL-p53 also sensitized both CSCs and bulk tumor cells to TMZ, increasing apoptosis. These results suggest that combining scL-p53 with standard TMZ treatment could be a more effective therapy for GBM. PMID:24811110

  13. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome

    PubMed Central

    Seidl, Verena; Gamauf, Christian; Druzhinina, Irina S; Seiboth, Bernhard; Hartl, Lukas; Kubicek, Christian P

    2008-01-01

    Background The hypercellulolytic mutant Hypocrea jecorina (anamorph Trichoderma reesei) RUT C30 is the H. jecorina strain most frequently used for cellulase fermentations and has also often been employed for basic research on cellulase regulation. This strain has been reported to contain a truncated carbon catabolite repressor gene cre1 and is consequently carbon catabolite derepressed. To date this and an additional frame-shift mutation in the glycoprotein-processing β-glucosidase II encoding gene are the only known genetic differences in strain RUT C30. Results In the present paper we show that H. jecorina RUT C30 lacks an 85 kb genomic fragment, and consequently misses additional 29 genes comprising transcription factors, enzymes of the primary metabolism and transport proteins. This loss is already present in the ancestor of RUT C30 – NG 14 – and seems to have occurred in a palindromic AT-rich repeat (PATRR) typically inducing chromosomal translocations, and is not linked to the cre1 locus. The mutation of the cre1 locus has specifically occurred in RUT C30. Some of the genes that are lacking in RUT C30 could be correlated with pronounced alterations in its phenotype, such as poor growth on α-linked oligo- and polyglucosides (loss of maltose permease), or disturbance of osmotic homeostasis. Conclusion Our data place a general caveat on the use of H. jecorina RUT C30 for further basic research. PMID:18620557

  14. Organ-dependent susceptibility of p53 knockout mice to 2-amino-3-methylimidazo[4,5-f]quinoline (IQ).

    PubMed

    Hirata, Akihiro; Tsukamoto, Tetsuya; Yamamoto, Masami; Takasu, Shinji; Sakai, Hiroki; Ban, Hisayo; Yanai, Tokuma; Masegi, Toshiaki; Donehower, Lawrence A; Tatematsu, Masae

    2007-08-01

    p53 knockout mice are now being frequently used to identify the carcinogenic potential of chemicals, thus it is important to precisely assess the susceptibility of the animals to various test chemicals. In the present study the susceptibility of p53 nullizygous((-/-)), heterozygous((+/-)), and wild-type((+/+)) mice to 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was investigated. Mice of all three genotypes were first fed a diet containing 100 or 300 p.p.m. IQ for 15 weeks in a short-term experiment. p53((+/-)) and ((+/+)) mice were then treated with IQ for 40 weeks and maintained without further treatment for an additional 12 weeks in the long-term experiment. In the forestomach, the incidence of squamous cell hyperplasia was significantly higher in p53((-/-)) than in ((+/-)) and ((+/+)) mice at 15 weeks and higher in ((+/-)) mice than ((+/+)) mice with long-term IQ treatment, indicating an elevated susceptibility of p53 knockout mice. In contrast, in the liver, various hepatocellular lesions developed mainly in female mice with long-term IQ exposure but no significant differences were evident between p53 knockout and wild-type mice, indicating a lack of elevated susceptibility in the knockout animals. Furthermore, polymerase chain reaction-single strand conformation polymorphism and sequencing analysis revealed relatively high (13/30) and low (1/15) incidences of p53 mutations (exons 5-8) in squamous cell hyperplasia and hepatocellular tumors, respectively. These results clearly indicate that the susceptibility of p53 knockout mice is organ-dependent, coinciding to some extent with the likelihood of p53 gene alteration in the induced tumors.

  15. Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling

    PubMed Central

    2013-01-01

    Background The p53 protein is the best studied target in human cancer. For decades, p53 has been believed to act mainly as a tumor suppressor and by transcriptional regulation. Only recently, the complex and diverse function of p53 has attracted more attention. Using several molecular approaches, we studied the impact of different p53 variants on extrinsic and intrinsic apoptosis signaling. Results We reproduced the previously published results within intrinsic apoptosis induction: while wild-type p53 promoted cell death, different p53 mutations reduced apoptosis sensitivity. The prediction of the impact of the p53 status on the extrinsic cell death induction was much more complex. The presence of p53 in tumor cell lines and primary xenograft tumor cells resulted in either augmented, unchanged or reduced cell death. The substitution of wild-type p53 by mutant p53 did not affect the extrinsic apoptosis inducing capacity. Conclusions In summary, we have identified a non-expected impact of p53 on extrinsic cell death induction. We suggest that the impact of the p53 status of tumor cells on extrinsic apoptosis signaling should be studied in detail especially in the context of therapeutic approaches that aim to restore p53 function to facilitate cell death via the extrinsic apoptosis pathway. PMID:23594441

  16. Susceptibility to Radiation Induced Apoptosis and Senescence in p53 Wild Type and p53 Mutant Breast Tumor Cells

    DTIC Science & Technology

    2006-07-01

    dihydroxyvitamin D3 (1,25(OH)2D3) and vitamin D3 analogs such as EB 1089 potentiate the response to ionizing radiation in breast tumor cells. The current...Appended Page Proofs ………………………………………………………… 5 Introduction 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and vitamin D3 analogs such as EB 1089...analogs and ionizing radiation are the following: 1. The vitamin D analog, EB 1089 ( and by extension, vitamin D3 ), converts an accelerated

  17. A Platform for Interrogating Cancer-Associated p53 Alleles

    PubMed Central

    D’Brot, Alejandro; Kurtz, Paula; Regan, Erin; Jakubowski, Brandon; Abrams, John M

    2016-01-01

    p53 is the most frequently mutated gene in human cancer. Compelling evidence argues that full transformation involves loss of growth suppression encoded by wild-type p53 together with poorly understood oncogenic activity encoded by missense mutations. Furthermore, distinguishing disease alleles from natural polymorphisms is an important clinical challenge. To interrogate the genetic activity of human p53 variants, we leveraged the Drosophila model as an in vivo platform. We engineered strains that replace the fly p53 gene with human alleles, producing a collection of stocks that are, in effect, ‘humanized’ for p53 variants. Like the fly counterpart, human p53 transcriptionally activated a biosensor and induced apoptosis after DNA damage. However, all humanized strains representing common alleles found in cancer patients failed to complement in these assays. Surprisingly, stimulus-dependent activation of hp53 occurred without stabilization, demonstrating that these two processes can be uncoupled. Like its fly counterpart, hp53 formed prominent nuclear foci in germline cells but cancer-associated p53 variants did not. Moreover, these same mutant alleles disrupted hp53 foci and inhibited biosensor activity, suggesting that these properties are functionally linked. Together these findings establish a functional platform for interrogating human p53 alleles and suggest that simple phenotypes could be used to stratify disease variants. PMID:26996664

  18. p53/E1b58kDa complex regulates adenovirus replication.

    PubMed

    Ridgway, P J; Hall, A R; Myers, C J; Braithwaite, A W

    1997-10-27

    We have explored a role for the adenovirus (Ad5) E1b58kDa/p53 protein complex in adenovirus replication. This was done by using virus mutants containing different defects in the E1b58kDa gene and cell lines that express either a wild-type p53 protein or a mutant p53 protein. We find that infection of wild-type p53-containing cells with wild-type Ad5 causes a shutoff of p53 and alpha-actin protein synthesis by distinct mechanisms, but neither occurs in mutant p53 cells. Our data also indicate that the shutoff is dependent on formation of the p53/E1b complex and may also involve another virus protein, E4ORF6. Following from these observations we asked whether failure to form the complex resulted in impaired adenovirus replication. Our experiments showed that neither wild-type Ad5 nor the E1b mutant dl338 could replicate in cells expressing a mutant p53 protein, but that wild-type adenovirus replicated well in wild-type p53-expressing cells. Collectively, our data suggest that the interaction between p53 and the E1b58kDa protein is necessary for efficient adenovirus replication. This is the first time such a direct link between the complex and virus replication has been demonstrated. These data raise serious questions about the usefulness of E1b-defective viruses in tumor therapy.

  19. p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer.

    PubMed

    Esrig, D; Spruck, C H; Nichols, P W; Chaiwun, B; Steven, K; Groshen, S; Chen, S C; Skinner, D G; Jones, P A; Cote, R J

    1993-11-01

    Seventy-three transitional cell carcinomas of the bladder were analyzed by immunohistochemistry for p53 nuclear accumulation, and the results were compared to mutations detected in the p53 gene by single strand conformational polymorphism analysis (SSCP) and DNA sequence analysis. Immunohistochemical studies were performed on formalin-fixed, paraffin-embedded tissue sections. A highly significant association between the presence of p53 mutations and p53 nuclear reactivity as detected by immunohistochemistry was found (P = 0.0001). Of 32 tumors that demonstrated p53 mutations by SSCP, 27 (84%) showed p53 nuclear reactivity. Of the five cases that did not demonstrate p53 nuclear reactivity, four had mutations in exon 5. However, of 41 tumors with no evidence of p53 mutation by molecular analysis, 12 (29%) showed p53 immunoreactivity. This indicates that immunohistochemical methods may be more sensitive than SSCP in detecting p53 mutations or that discordant cases represent tumors with accumulation of wild type p53 protein, without mutations at the p53 locus. Of the 15 tumors that were found to have mutations at exon 8, 13 demonstrated high-intensity homogeneous p53 nuclear reactivity by immunohistochemistry, and all mutations located at codon 280 demonstrated high-intensity homogeneous immunoreactivity. However, three of three tumors with exon 6 mutations demonstrated low-level p53 immunoreactivity, and four of six tumors with mutations in exon 5 showed no detectable p53 nuclear reactivity. This indicates that the heterogeneity of immunoreactivity observed when analyzing p53 nuclear accumulation may be related to the site of the p53 gene mutation. Information on tumor grade, stage, lymph node status, disease-free interval, and overall survival were available in 54 patients who had undergone cystectomy. A significant association was observed between p53 alterations (detected by immunohistochemistry and SSCP) and histological tumor grade (P = 0.003) and stage (P = 0

  20. p53-dependent ceramide response to genotoxic stress.

    PubMed Central

    Dbaibo, G S; Pushkareva, M Y; Rachid, R A; Alter, N; Smyth, M J; Obeid, L M; Hannun, Y A

    1998-01-01

    Both p53 and ceramide have been implicated in the regulation of growth suppression. p53 has been proposed as the "guardian of the genome" and ceramide has been suggested as a "tumor suppressor lipid. " Both molecules appear to regulate cell cycle arrest, senescence, and apoptosis. In this study, we investigated the relationship between p53 and ceramide. We found that treatment of Molt-4 cells with low concentrations of actinomycin D or gamma-irradiation, which activate p53-dependent apoptosis, induces apoptosis only in cells expressing normal levels of p53. In these cells, p53 activation was followed by a dose- and time-dependent increase in endogenous ceramide levels which was not seen in cells lacking functional p53 and treated similarly. Similar results were seen in irradiated L929 cells whereby the p53-deficient clone was significantly more resistant to irradiation and exhibited no ceramide response. However, in p53-independent systems, such as growth suppression induced by TNF-alpha or serum deprivation, ceramide accumulated irrespective of the upregulation of p53, indicating that p53 regulates ceramide accumulation in only a subset of growth-suppressive pathways. Finally, ceramide did not increase p53 levels when used at growth-suppressive concentrations. Also, when cells lacking functional p53, either due to mutation or the expression of the E6 protein of human papilloma virus, were treated with exogenous ceramide, there was equal growth suppression, cell cycle arrest, and apoptosis as compared with cells expressing normal p53. These results indicate that p53 is unlikely to function "downstream" of ceramide. Instead, they suggest that, in situations where p53 performs a critical regulatory role, such as the response to genotoxic stress, it functions "upstream" of ceramide. These studies begin to define a relationship between these two pathways of growth inhibition. PMID:9664074

  1. Quantifying levels of p53 mutation in mouse skin tumors.

    PubMed

    Verkler, Tracie L; Couch, Letha H; Howard, Paul C; Parsons, Barbara L

    2005-06-01

    Allele-specific competitive blocker PCR (ACB-PCR) amplification and quantification was developed for mouse p53 codon 270 CGT-->TGT base substitution and codon 244/245 AAC/CGC-->AAT/TGC tandem mutation. PCR products corresponding to p53 mutant and wild-type DNA sequences were generated. These DNAs were mixed in known proportions to construct samples with defined mutant fractions and the allele-specific detection of each mutation was systematically optimized. Each assay was used to analyze eight simulated solar light (SSL)-induced tumors. By analyzing mutant fraction (MF) standards in parallel with PCR products generated from tumor samples, p53 mutants could be quantified as subpopulations within the tumors. All eight tumors contained detectable levels of p53 codon 270 CGT-->TGT mutation. Three tumors had p53 MFs between 10(-4) and 10(-3). Five tumors had p53 MFs between 10(-3) and 10(-2). None of the eight mouse skin tumors had measurable levels of p53 codon 244/245 tandem mutation. Frequent detection of p53 codon 270 CGT-->TGT mutation provides additional evidence that a pyrimidine dinucleotide overlapping a methylated CpG site (Pyr(me)CG) is a susceptible target for SSL-induced mutagenesis. The absence of p53 codon 244/245 mutation in tumors may be explained by its mutant p53 phenotype and/or indicate that this site is not methylated. These initial results indicate that p53 codon 270 CGT-->TGT mutation may be a sensitive biomarker for SSL- or UV-induced mutagenesis. This mutational endpoint may be useful for evaluating the co-carcinogenicity of compounds administered in combination with UV or SSL.

  2. Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice

    PubMed Central

    Leushacke, Marc; Li, Ling; Wong, Julin S.; Chiam, Poh Cheang; Rahmat, Siti Aishah Binte; Mann, Michael B.; Mann, Karen M.; Barker, Nick; Lozano, Guillermina; Terzian, Tamara; Lane, David P.

    2015-01-01

    The tumour suppressor p53 is regulated primarily at the protein level. In normal tissues its levels are maintained at a very low level by the action of specific E3 ligases and the ubiquitin proteosome pathway. The mutant p53 protein contributes to transformation, metastasis and drug resistance. High levels of mutant p53 can be found in tumours and the accumulation of mutant p53 has previously been reported in pathologically normal cells in human skin. We show for the first time that similarly elevated levels of mutant p53 can be detected in apparently normal cells in a mutant p53 knock-in mouse model. In fact, in the small intestine, mutant p53 spontaneously accumulates in a manner dependent on gene dosage and cell type. Mutant p53 protein is regulated similarly to wild type p53, which can accumulate rapidly after induction by ionising radiation or Mdm2 inhibitors, however, the clearance of mutant p53 protein is much slower than wild type p53. The accumulation of the protein in the murine small intestine is limited to the cycling, crypt base columnar cells and proliferative zone and is lost as the cells differentiate and exit the cell cycle. Loss of Mdm2 results in even higher levels of p53 expression but p53 is still restricted to proliferating cells in the small intestine. Therefore, the small intestine of these p53 mutant mice is an experimental system in which we can dissect the molecular pathways leading to p53 accumulation, which has important implications for cancer prevention and therapy. PMID:26255629

  3. Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice.

    PubMed

    Goh, Amanda M; Xue, Yuezhen; Leushacke, Marc; Li, Ling; Wong, Julin S; Chiam, Poh Cheang; Rahmat, Siti Aishah Binte; Mann, Michael B; Mann, Karen M; Barker, Nick; Lozano, Guillermina; Terzian, Tamara; Lane, David P

    2015-07-20

    The tumour suppressor p53 is regulated primarily at the protein level. In normal tissues its levels are maintained at a very low level by the action of specific E3 ligases and the ubiquitin proteosome pathway. The mutant p53 protein contributes to transformation, metastasis and drug resistance. High levels of mutant p53 can be found in tumours and the accumulation of mutant p53 has previously been reported in pathologically normal cells in human skin. We show for the first time that similarly elevated levels of mutant p53 can be detected in apparently normal cells in a mutant p53 knock-in mouse model. In fact, in the small intestine, mutant p53 spontaneously accumulates in a manner dependent on gene dosage and cell type. Mutant p53 protein is regulated similarly to wild type p53, which can accumulate rapidly after induction by ionising radiation or Mdm2 inhibitors, however, the clearance of mutant p53 protein is much slower than wild type p53. The accumulation of the protein in the murine small intestine is limited to the cycling, crypt base columnar cells and proliferative zone and is lost as the cells differentiate and exit the cell cycle. Loss of Mdm2 results in even higher levels of p53 expression but p53 is still restricted to proliferating cells in the small intestine. Therefore, the small intestine of these p53 mutant mice is an experimental system in which we can dissect the molecular pathways leading to p53 accumulation, which has important implications for cancer prevention and therapy.

  4. Zn(II)-curc targets p53 in thyroid cancer cells

    PubMed Central

    GARUFI, ALESSIA; D'ORAZI, VALERIO; CRISPINI, ALESSANDRA; D'ORAZI, GABRIELLA

    2015-01-01

    TP53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers. PMID:26314369

  5. Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice.

    PubMed

    Al-Massadi, Omar; Porteiro, Begoña; Kuhlow, Doreen; Köhler, Markus; Gonzalez-Rellan, María J; Garcia-Lavandeira, Montserrat; Díaz-Rodríguez, Esther; Quiñones, Mar; Senra, Ana; Alvarez, Clara V; López, Miguel; Diéguez, Carlos; Schulz, Tim J; Nogueiras, Rubén

    2016-07-01

    p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage.

  6. The p53 core domain is a molten globule at low pH: functional implications of a partially unfolded structure.

    PubMed

    Bom, Ana Paula D Ano; Freitas, Monica S; Moreira, Flavia S; Ferraz, Danielly; Sanches, Daniel; Gomes, Andre M O; Valente, Ana Paula; Cordeiro, Yraima; Silva, Jerson L

    2010-01-22

    p53 is a transcription factor that maintains genome integrity, and its function is lost in 50% of human cancers. The majority of p53 mutations are clustered within the core domain. Here, we investigate the effects of low pH on the structure of the wild-type (wt) p53 core domain (p53C) and the R248Q mutant. At low pH, the tryptophan residue is partially exposed to the solvent, suggesting a fluctuating tertiary structure. On the other hand, the secondary structure increases, as determined by circular dichroism. Binding of the probe bis-ANS (bis-8-anilinonaphthalene-1-sulfonate) indicates that there is an increase in the exposure of hydrophobic pockets for both wt and mutant p53C at low pH. This behavior is accompanied by a lack of cooperativity under urea denaturation and decreased stability under pressure when p53C is in acidic pH. Together, these results indicate that p53C acquires a partially unfolded conformation (molten-globule state) at low pH (5.0). The hydrodynamic properties of this conformation are intermediate between the native and denatured conformation. (1)H-(15)N HSQC NMR spectroscopy confirms that the protein has a typical molten-globule structure at acidic pH when compared with pH 7.2. Human breast cells in culture (MCF-7) transfected with p53-GFP revealed localization of p53 in acidic vesicles, suggesting that the low pH conformation is present in the cell. Low pH stress also tends to favor high levels of p53 in the cells. Taken together, all of these data suggest that p53 may play physiological or pathological roles in acidic microenvironments.

  7. Ligand dependent restoration of human TLR3 signaling and death in p53 mutant cells

    PubMed Central

    Menendez, Daniel; Lowe, Julie M.; Snipe, Joyce; Resnick, Michael A.

    2016-01-01

    Diversity within the p53 transcriptional network can arise from a matrix of changes that include target response element sequences and p53 expression level variations. We previously found that wild type p53 (WT p53) can regulate expression of most innate immune-related Toll-like-receptor genes (TLRs) in human cells, thereby affecting immune responses. Since many tumor-associated p53 mutants exhibit change-of-spectrum transactivation from various p53 targets, we examined the ability of twenty-five p53 mutants to activate endogenous expression of the TLR gene family in p53 null human cancer cell lines following transfection with p53 mutant expression vectors. While many mutants retained the ability to drive TLR expression at WT levels, others exhibited null, limited, or change-of-spectrum transactivation of TLR genes. Using TLR3 signaling as a model, we show that some cancer-associated p53 mutants amplify cytokine, chemokine and apoptotic responses after stimulation by the cognate ligand poly(I:C). Furthermore, restoration of WT p53 activity for loss-of-function p53 mutants by the p53 reactivating drug RITA restored p53 regulation of TLR3 gene expression and enhanced DNA damage-induced apoptosis via TLR3 signaling. Overall, our findings have many implications for understanding the impact of WT and mutant p53 in immunological responses and cancer therapy. PMID:27533082

  8. Calcium and S100B Regulation of p53-Dependent Cell Growth Arrest and Apoptosis

    PubMed Central

    Scotto, Christian; Deloulme, Jean Christophe; Rousseau, Denis; Chambaz, Edmond; Baudier, Jacques

    1998-01-01

    In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5°C). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5°C, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5°C that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32°C). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis. PMID:9632811

  9. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors.

    PubMed

    Chiche, A; Moumen, M; Romagnoli, M; Petit, V; Lasla, H; Jézéquel, P; de la Grange, P; Jonkers, J; Deugnier, M-A; Glukhova, M A; Faraldo, M M

    2016-10-24

    Triple-negative breast cancer is a heterogeneous disease characterized by the expression of basal cell markers, no estrogen or progesterone receptor expression and a lack of HER2 overexpression. Triple-negative tumors often display activated Wnt/β-catenin signaling and most have impaired p53 function. We studied the interplay between p53 loss and Wnt/β-catenin signaling in stem cell function and tumorigenesis, by deleting p53 from the mammary epithelium of K5ΔNβcat mice displaying a constitutive activation of Wnt/β-catenin signaling in basal cells. K5ΔNβcat transgenic mice present amplification of the basal stem cell pool and develop triple-negative mammary carcinomas. The loss of p53 in K5ΔNβcat mice led to an early expansion of mammary stem/progenitor cells and accelerated the formation of triple-negative tumors. In particular, p53-deficient tumors expressed high levels of integrins and extracellular matrix components and were enriched in cancer stem cells. They also overexpressed the tyrosine kinase receptor Met, a feature characteristic of human triple-negative breast tumors. The inhibition of Met kinase activity impaired tumorsphere formation, demonstrating the requirement of Met signaling for cancer stem cell growth in this model. Human basal-like breast cancers with predicted mutated p53 status had higher levels of MET expression than tumors with wild-type p53. These results connect p53 loss and β-catenin activation to stem cell regulation and tumorigenesis in triple-negative cancer and highlight the role of Met signaling in maintaining cancer stem cell properties, revealing new cues for targeted therapies.Oncogene advance online publication, 24 October 2016; doi:10.1038/onc.2016.396.

  10. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Peng; Luo, Shiwen; Zhang, Minhong; Hu, Guohui; Liu, Hongbing; Zhang, Yiwei; Cao, Bo; Baddoo, Melody; Flemington, Erik K; Zeng, Shelya X; Lu, Hua

    2016-01-01

    Cancer develops and progresses often by inactivating p53. Here, we unveil nerve growth factor receptor (NGFR, p75NTR or CD271) as a novel p53 inactivator. p53 activates NGFR transcription, whereas NGFR inactivates p53 by promoting its MDM2-mediated ubiquitin-dependent proteolysis and by directly binding to its central DNA binding domain and preventing its DNA-binding activity. Inversely, NGFR ablation activates p53, consequently inducing apoptosis, attenuating survival, and reducing clonogenic capability of cancer cells, as well as sensitizing human cancer cells to chemotherapeutic agents that induce p53 and suppressing mouse xenograft tumor growth. NGFR is highly expressed in human glioblastomas, and its gene is often amplified in breast cancers with wild type p53. Altogether, our results demonstrate that cancers hijack NGFR as an oncogenic inhibitor of p53. DOI: http://dx.doi.org/10.7554/eLife.15099.001 PMID:27282385

  11. Characteristics and survival of patients with advanced cancer and p53 mutations.

    PubMed

    Said, Rabih; Ye, Yang; Hong, David S; Janku, Filip; Fu, Siqing; Naing, Aung; Wheler, Jennifer J; Kurzrock, Razelle; Thomas, Christoforos; Palmer, Gary A; Hess, Kenneth R; Aldape, Kenneth; Tsimberidou, Apostolia M

    2014-06-15

    P53 mutations are associated with invasive tumors in mouse models. We assessed the p53mutations and survival in patients with advanced cancer treated in the Phase I Program. Of 691 tested patients, 273 (39.5%) had p53 mutations. Patients with p53 mutations were older (p<.0001) and had higher numbers of liver metastases (p=.005). P53 mutations were associated with higher numbers of other aberrations; PTEN (p=.0005) and HER2 (p=.003)aberrations were more common in the p53 mutation group. No survival difference was observed between patients with p53 mutations and those with wild-type p53. In patients with wild-type p53 and other aberrations, patients treated with matched-therapy against the additional aberrations had longer survival compared to those treated with non-matched-therapy or those who received no therapy (median survival, 26.0 vs. 11.8 vs. 9.8 months, respectively; p= .0007). Results were confirmed in a multivariate analysis (p= .0002). In the p53 mutation group with additional aberrations, those who received matched-therapy against the additional aberrations had survival similar to those treated with non-matched-therapy or those who received no therapy (p=.15). In conclusion, our results demonstrated resistance to matched-targeted therapy to the other aberrations in patients with p53 mutations and emphasize the need to overcome this resistance.

  12. Genotoxic stress-induced expression of p53 and apoptosis in leukemic clam hemocytes with cytoplasmically sequestered p53.

    PubMed

    Böttger, Stefanie; Jerszyk, Emily; Low, Ben; Walker, Charles

    2008-02-01

    In nature, the soft shell clam, Mya arenaria, develops a fatal blood cancer in which a highly conserved homologue for wild-type human p53 protein is rendered nonfunctional by cytoplasmic sequestration. In untreated leukemic clam hemocytes, p53 is complexed throughout the cytoplasm with overexpressed variants for both clam homologues (full-length variant, 1,200-fold and truncated variant, 620-fold above normal clam hemocytes) of human mortalin, an Hsp70 family protein. In vitro treatment with etoposide only and in vivo treatment with either etoposide or mitoxantrone induces DNA damage, elevates expression (600-fold) and promotes nuclear translocation of p53, and results in apoptosis of leukemic clam hemocytes. Pretreatment with wheat germ agglutinin followed by etoposide treatment induces DNA damage and elevates p53 expression (893-fold) but does not overcome cytoplasmic sequestration of p53 or induce apoptosis. We show that leukemic clam hemocytes have an intact p53 pathway, and that maintenance of this tumor phenotype requires nuclear absence of p53, resulting from its localization in the cytoplasm of leukemic clam hemocytes. The effects of these topoisomerase II poisons may result as mortalin-based cytoplasmic tethering is overwhelmed by de novo expression of p53 protein after DNA damage induced by genotoxic stress. Soft shell clam leukemia provides excellent in vivo and in vitro models for developing genotoxic and nongenotoxic cancer therapies for reactivating p53 transcription in human and other animal cancers displaying mortalin-based cytoplasmic sequestration of the p53 tumor suppressor, such as colorectal cancers and primary and secondary glioblastomas, though not apparently leukemias or lymphomas.

  13. Gain of cellular adaptation due to prolonged p53 impairment leads to functional switchover from p53 to p73 during DNA damage in acute myeloid leukemia cells.

    PubMed

    Chakraborty, Juni; Banerjee, Shuvomoy; Ray, Pallab; Hossain, Dewan Md Sakib; Bhattacharyya, Sankar; Adhikary, Arghya; Chattopadhyay, Sreya; Das, Tanya; Sa, Gaurisankar

    2010-10-22

    Tumor suppressor p53 plays the central role in regulating apoptosis in response to genotoxic stress. From an evolutionary perspective, the activity of p53 has to be backed up by other protein(s) in case of any functional impairment of this protein, to trigger DNA damage-induced apoptosis in cancer cells. We adopted multiple experimental approaches to demonstrate that in p53-impaired cancer cells, DNA damage caused accumulation of p53 paralogue p73 via Chk-1 that strongly impacted Bax expression and p53-independent apoptosis. On the contrary, when p53 function was restored by ectopic expression, Chk-2 induced p53 accumulation that in turn overshadowed p73 activity, suggesting an antagonistic interaction between p53 family members. To understand such interaction better, p53-expressing cells were impaired differentially for p53 activity. In wild-type p53-expressing cancer cells that were silenced for p53 for several generations, p73 was activated, whereas no such trend was observed when p53 was transiently silenced. Prolonged p53 interference, even in functional p53 settings, therefore, leads to the "gain of cellular adaptation" in a way that alters the cellular microenvironment in favor of p73 activation by altering p73-regulatory proteins, e.g. Chk1 activation and dominant negative p73 down-regulation. These findings not only unveil a hitherto unexplained mechanism underlying the functional switchover from p53 to p73, but also validate p73 as a promising and potential target for cancer therapy in the absence of functional p53.

  14. Tetramerization-defects of p53 result in aberrant ubiquitylation and transcriptional activity.

    PubMed

    Lang, Valérie; Pallara, Chiara; Zabala, Amaia; Lobato-Gil, Sofia; Lopitz-Otsoa, Fernando; Farrás, Rosa; Hjerpe, Roland; Torres-Ramos, Monica; Zabaleta, Lorea; Blattner, Christine; Hay, Ronald T; Barrio, Rosa; Carracedo, Arkaitz; Fernandez-Recio, Juan; Rodríguez, Manuel S; Aillet, Fabienne

    2014-07-01

    The tumor suppressor p53 regulates the expression of genes involved in cell cycle progression, senescence and apoptosis. Here, we investigated the effect of single point mutations in the oligomerization domain (OD) on tetramerization, transcription, ubiquitylation and stability of p53. As predicted by docking and molecular dynamics simulations, p53 OD mutants show functional defects on transcription, Mdm2-dependent ubiquitylation and 26S proteasome-mediated degradation. However, mutants unable to form tetramers are well degraded by the 20S proteasome. Unexpectedly, despite the lower structural stability compared to WT p53, p53 OD mutants form heterotetramers with WT p53 when expressed transiently or stably in cells wild type or null for p53. In consequence, p53 OD mutants interfere with the capacity of WT p53 tetramers to be properly ubiquitylated and result in changes of p53-dependent protein expression patterns, including the pro-apoptotic proteins Bax and PUMA under basal and adriamycin-induced conditions. Importantly, the patient derived p53 OD mutant L330R (OD1) showed the more severe changes in p53-dependent gene expression. Thus, in addition to the well-known effects on p53 stability, ubiquitylation defects promote changes in p53-dependent gene expression with implications on some of its functions.

  15. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene

    SciTech Connect

    Felley-Bosco, E.; Weston, A.; Cawley, H.M.; Bennett, W.P.; Harris, C.C.

    1993-09-01

    A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Causasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53. 30 refs., 3 figs., 3 tabs.

  16. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene.

    PubMed Central

    Felley-Bosco, E; Weston, A; Cawley, H M; Bennett, W P; Harris, C C

    1993-01-01

    A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Caucasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53. Images Figure 2 Figure 3 PMID:8352280

  17. A Single Mutant, A276S of p53 Turns the Switch to Apoptosis

    PubMed Central

    Reaz, Shams; Mossalam, Mohanad; Okal, Abood; Lim, Carol. S.

    2013-01-01

    The tumor suppressor protein p53 induces apoptosis, cell cycle arrest, and DNA repair along with other functions in a transcription-dependent manner1. The selection of these functions depends on sequence-specific recognition of p53 to a target decameric sequence of gene promoters2. Amino acid residues in p53 that directly bind to DNA were analyzed, and the replacement of A276 in p53 with selected amino acids elucidated its importance in promoter transcription. For most apoptotic and cell cycle gene promoters, position 9 of the target decameric sequence is a cytosine while for DNA repair gene promoters, thymine is found instead. Therefore, selective binding to the cytosine at the 9th position may transcribe apoptotic gene promoters and thus can induce apoptosis and cell cycle arrest. Molecular modeling with PyMOL indicated that substitution of a hydrophilic residue, A276S, would prefer binding to cytosine at the 9th position of the target decameric sequence whereas substitution of a hydrophobic residue (A276F) would fail to do so. Correspondingly, A276S demonstrated higher transcription of PUMA, PERP, and p21WAF1/CIP1gene promoters containing a cytosine at the 9th position and lower transcription of GADD45 gene promoter containing a thymine at the 9th position compared to wild-type p53. Cell cycle analysis showed that A276S maintained similar G1/G0 phase arrest as wild-type p53. Additionally, A276S induced higher apoptosis than wild-type p53 as measured by DNA segmentation and 7-AAD assay. Since the status of endogenous p53 can influence the activity of the exogenous p53, we examined the activity of A276S in HeLa cells (wild-type endogenous p53) in addition to T47D cells (mutated and mislocalized endogenous p53). The same apoptotic trend in both cell lines suggested A276S can induce cell death regardless of endogenous p53 status. Cell proliferation assay depicted that A276S efficiently reduced the viability of T47D cells more than wild-type p53 over time. We

  18. FGF1 nuclear translocation is required for both its neurotrophic activity and its p53-dependent apoptosis protection.

    PubMed

    Rodriguez-Enfedaque, Aida; Bouleau, Sylvina; Laurent, Maryvonne; Courtois, Yves; Mignotte, Bernard; Vayssière, Jean-Luc; Renaud, Flore

    2009-11-01

    Fibroblast growth factor 1 (FGF1) is a differentiation and survival factor for neuronal cells both in vitro and in vivo. FGF1 activities can be mediated not only by paracrine and autocrine pathways involving FGF receptors but also by an intracrine pathway, which is an underestimated mode of action. Indeed, FGF1 lacks a secretion signal peptide and contains a nuclear localization sequence (NLS), which is consistent with its usual intracellular and nuclear localization. To progress in the comprehension of the FGF1 intracrine pathway in neuronal cells, we examined the role of the nuclear translocation of FGF1 for its neurotrophic activity as well as for its protective activity against p53-dependent apoptosis. Thus, we have transfected PC12 cells with different FGF1 expression vectors encoding wild type or mutant (Delta NLS) FGF1. This deletion inhibited both FGF1 nuclear translocation and FGF1 neurotrophic activity (including differentiation and serum-free cell survival). We also show that endogenous FGF1 protection of PC12 cells against p53-dependent cell death requires FGF1 nuclear translocation. Strikingly, wild type FGF1 is found interacting with p53, in contrast to the mutant FGF1 deleted of its NLS, suggesting the presence of direct and/or indirect interactions between FGF1 and p53 pathways. Thus, we present evidences that FGF1 may act by a nuclear pathway to induce neuronal differentiation and to protect the cells from apoptosis whether cell death is induced by serum depletion or p53 activation.

  19. p53 loss-of-heterozygosity is a necessary prerequisite for mutant p53 stabilization and gain-of-function in vivo.

    PubMed

    Alexandrova, Evguenia M; Mirza, Safia A; Xu, Sulan; Schulz-Heddergott, Ramona; Marchenko, Natalia D; Moll, Ute M

    2017-03-09

    Missense mutations in TP53 comprise >75% of all p53 alterations in cancer, resulting in highly stabilized mutant p53 proteins that not only lose their tumor-suppressor activity, but often acquire oncogenic gain-of-functions (GOFs). GOF manifests itself in accelerated tumor onset, increased metastasis, increased drug resistance and shortened survival in patients and mice. A known prerequisite for GOF is mutant p53 protein stabilization, which itself is linked to aberrant protein conformation. However, additional determinants for mutant p53 stabilization likely exist. Here we show that in initially heterozygous mouse tumors carrying the hotspot GOF allele R248Q (p53Q/+), another necessary prerequisite for mutant p53 stabilization and GOF in vivo is loss of the remaining wild-type p53 allele, termed loss-of-heterozygosity (LOH). Thus, in mouse tumors with high frequency of p53 LOH (osteosarcomas and fibrosarcomas), we find that mutant p53 protein is stabilized (16/17 cases, 94%) and tumor onset is significantly accelerated compared with p53+/- tumors (GOF). In contrast, in mouse tumors with low frequency of p53 LOH (MMTV-Neu breast carcinomas), mutant p53 protein is not stabilized (16/20 cases, 80%) and GOF is not observed. Of note, human genomic databases (TCGA, METABRIC etc.) show a high degree of p53 LOH in all examined tumor types that carry missense p53 mutations, including sarcomas and breast carcinomas (with and without HER2 amplification). These data - while cautioning that not all genetic mouse models faithfully represent the human situation - demonstrate for the first time that p53 LOH is a critical prerequisite for missense mutant p53 stabilization and GOF in vivo.

  20. Tumourigenesis associated with the p53 tumour suppressor gene.

    PubMed Central

    Chang, F.; Syrjänen, S.; Tervahauta, A.; Syrjänen, K.

    1993-01-01

    The p53 gene is contained within 16-20 kb of cellular DNA located on the short arm of human chromosome 17 at position 17p13.1. This gene encodes a 393-amino-acid nuclear phosphoprotein involved in the regulation of cell proliferation. Current evidence suggests that loss of normal p53 function is associated with cell transformation in vitro and development of neoplasms in vivo. More than 50% of human malignancies of epithelial, mesenchymal, haematopoietic, lymphoid, and central nervous system origin analysed thus far, were shown to contain an altered p53 gene. The oncoproteins derived from several tumour viruses, including the SV40 large T antigen, the adenovirus E1B protein and papillomavirus E6 protein, as well as specific cellular gene products, e.g. murine double minute-2 (MDM2), were found to bind to the wild-type p53 protein and presumably lead to inactivation of this gene product. Therefore, the inactivation of p53 tumour suppressor gene is currently regarded as an almost universal step in the development of human cancers. The current data on p53-associated tumourigenesis are briefly discussed in this minireview. PMID:8398688

  1. Cooperative action of germ-line mutations in decorin and p53 accelerates lymphoma tumorigenesis.

    PubMed

    Iozzo, R V; Chakrani, F; Perrotti, D; McQuillan, D J; Skorski, T; Calabretta, B; Eichstetter, I

    1999-03-16

    Ectopic expression of decorin in a wide variety of transformed cells results in growth arrest and the inability to generate tumors in nude mice. This process is caused by a decorin-mediated activation of the epidermal growth factor receptor, which leads to a sustained induction of endogenous p21(WAF1/CIP1) (the cyclin-dependent kinase inhibitor p21) and growth arrest. However, mice harboring a targeted disruption of the decorin gene do not develop spontaneous tumors. To test the role of decorin in tumorigenesis, we generated mice lacking both decorin and p53, an established tumor-suppressor gene. Mice lacking both genes showed a faster rate of tumor development and succumbed almost uniformly to thymic lymphomas within 6 months [mean survival age (T50) approximately 4 months]. Mice harboring one decorin allele and no p53 gene developed the same spectrum of tumors as the double knockout animals, but had a survival rate similar to the p53 null animals (T50 approximately 6 months). Ectopic expression of decorin in thymic lymphoma cells isolated from double mutant animals markedly suppressed their colony-forming ability. When these lymphoma cells were cocultured with fibroblasts derived from either wild-type or decorin null embryos, the cells grew faster in the absence of decorin. Moreover, exogenous decorin proteoglycan or its protein core significantly retarded their growth in vitro. These results indicate that the lack of decorin is permissive for lymphoma tumorigenesis in a mouse model predisposed to cancer and suggest that germ-line mutations in decorin and p53 may cooperate in the transformation of lymphocytes and ultimately lead to a more aggressive phenotype by shortening the tumor latency.

  2. p53 as a Regulator of Lipid Metabolism in Cancer

    PubMed Central

    Parrales, Alejandro; Iwakuma, Tomoo

    2016-01-01

    Enhanced proliferation and survival are common features of cancer cells. Cancer cells are metabolically reprogrammed which aids in their survival in nutrient-poor environments. Indeed, changes in metabolism of glucose and glutamine are essential for tumor progression. Thus, metabolic reprogramming is now well accepted as a hallmark of cancer. Recent findings suggest that reprogramming of lipid metabolism also occurs in cancer cells, since lipids are used for biosynthesis of membranes, post-translational modifications, second messengers for signal transduction, and as a source of energy during nutrient deprivation. The tumor suppressor p53 is a transcription factor that controls the expression of proteins involved in cell cycle arrest, DNA repair, apoptosis, and senescence. p53 also regulates cellular metabolism, which appears to play a key role in its tumor suppressive activities. In this review article, we summarize non-canonical functions of wild-type and mutant p53 on lipid metabolism and discuss their association with cancer progression. PMID:27973397

  3. p53 E3 ubiquitin protein ligase homolog regulates p53 in vivo in the adult mouse eye lens

    PubMed Central

    Jaramillo-Rangel, Gilberto; Ortega-Martínez, Marta; Sepúlveda-Saavedra, Julio; Saucedo-Cárdenas, Odila; Montes-de-Oca-Luna, Roberto

    2013-01-01

    Purpose p53 is a transcription factor that plays an important role in preventing cancer development. p53 participates in relevant aspects of cell biology, including apoptosis and cell cycle control and must be strictly regulated to maintain normal tissue homeostasis. p53 E3 ubiquitin protein ligase homolog (Mdm2) is an important negative regulator of p53. The purpose of this study was to determine if Mdm2 regulates p53 in vivo in the adult lens. Methods We analyzed mice expressing human p53 transgene (Tgp53) selectively in the lens in the presence or absence of Mdm2. Mice with the required genotypes were obtained by crossing transgenic, mdm2+/−, and p53−/− mice. Eye phenotype and lens histology and ultrastructure were analyzed in adult mice. Results In a wild-type genetic background (mdm2+/+), lens damage and microphthalmia were observed only in mice homozygous for Tgp53 (t/t). However, in an mdm2 null background, just one allele of Tgp53 (mdm2−/−/Tgp53t/0 mice) was sufficient to cause lens damage and microphthalmia. Furthermore, Mdm2 in only one allele was sufficient to rescue these deleterious effects, since the mdm2+/−/Tgp53t/0 mice had eye size and lens morphology similar to the control mice. Conclusions Mdm2 regulates p53 in the adult lens in vivo. This information may have relevance for analyzing normal and pathological conditions of the lens, and designing cancer therapies targeting Mdm2–p53 interaction. PMID:24339722

  4. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    SciTech Connect

    Yu, Zhendong; Wang, Hao; Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li; Li, Pengfei

    2009-09-04

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  5. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses.

    PubMed

    Jiang, Le; Hickman, Justin H; Wang, Shang-Jui; Gu, Wei

    2015-01-01

    The p53 tumor suppressor is a multifaceted polypeptide that impedes tumorigenesis by regulating a diverse array of cellular processes. Triggered by a wide variety of stress stimuli, p53 transcriptionally regulates genes involved in the canonical tumor suppression pathways of apoptosis, cell-cycle arrest, and senescence. We recently discovered a novel mechanism whereby p53 inhibits cystine uptake through repression of the SLC7A11 gene to mediate ferroptosis. Importantly, this p53-SLC7A11 axis is preserved in the p53(3KR) mutant, and contributes to its ability to suppress tumorigenesis in the absence of the classical tumor suppression mechanisms. Here, we report that wild type p53 can induce both apoptosis and ferroptosis upon reactive oxygen species (ROS)-induced stress. Furthermore, we demonstrate that p53's functional N-terminal domain is required for its capacity to regulate oxidative stress responses and ferroptosis. Notably, activated p53 dynamically modulates intracellular ROS, causing an initial reduction and a subsequent increase of ROS levels. Taken together, these data implicate ferroptosis as an additional component of the cell death program induced by wild type p53 in human cancer cells, and reveal a complex and dynamic role of p53 in oxidative stress responses.

  6. The absence of Ser389 phosphorylation in p53 affects the basal gene expression level of many p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts.

    PubMed

    Bruins, Wendy; Bruning, Oskar; Jonker, Martijs J; Zwart, Edwin; van der Hoeven, Tessa V; Pennings, Jeroen L A; Rauwerda, Han; de Vries, Annemieke; Breit, Timo M

    2008-03-01

    Phosphorylation is important in p53-mediated DNA damage responses. After UV irradiation, p53 is phosphorylated specifically at murine residue Ser389. Phosphorylation mutant p53.S389A cells and mice show reduced apoptosis and compromised tumor suppression after UV irradiation. We investigated the underlying cellular processes by time-series analysis of UV-induced gene expression responses in wild-type, p53.S389A, and p53(-/-) mouse embryonic fibroblasts. The absence of p53.S389 phosphorylation already causes small endogenous gene expression changes for 2,253, mostly p53-dependent, genes. These genes showed basal gene expression levels intermediate to the wild type and p53(-/-), possibly to readjust the p53 network. Overall, the p53.S389A mutation lifts p53-dependent gene repression to a level similar to that of p53(-/-) but has lesser effect on p53-dependently induced genes. In the wild type, the response of 6,058 genes to UV irradiation was strictly biphasic. The early stress response, from 0 to 3 h, results in the activation of processes to prevent the accumulation of DNA damage in cells, whereas the late response, from 12 to 24 h, relates more to reentering the cell cycle. Although the p53.S389A UV gene response was only subtly changed, many cellular processes were significantly affected. The early response was affected the most, and many cellular processes were phase-specifically lost, gained, or altered, e.g., induction of apoptosis, cell division, and DNA repair, respectively. Altogether, p53.S389 phosphorylation seems essential for many p53 target genes and p53-dependent processes.

  7. DDP-induced cytotoxicity is not influenced by p53 in nine human ovarian cancer cell lines with different p53 status.

    PubMed Central

    De Feudis, P.; Debernardis, D.; Beccaglia, P.; Valenti, M.; Graniela Siré, E.; Arzani, D.; Stanzione, S.; Parodi, S.; D'Incalci, M.; Russo, P.; Broggini, M.

    1997-01-01

    Nine human ovarian cancer cell lines that express wild-type (wt) or mutated (mut) p53 were used to evaluate the cytotoxicity induced by cisplatin (DDP). The concentrations inhibiting the growth by 50% (IC50) were calculated for each cell line, and no differences were found between cells expressing wt p53 and mut p53. Using, for each cell line, the DDP IC50, we found that these concentrations were able to induce an increase in p53 levels in all four wt-p53-expressing cell lines and in one out of five mut-p53-expressing cell lines. WAF1 and GADD45 mRNAs were also increased by DDP treatment, independently of the presence of a wt p53. Bax levels were only marginally affected by DDP, and this was observed in both wt-p53- and mut-p53-expressing cells. DDP-induced apoptosis was evident 72 h after treatment, and the percentage of cells undergoing apoptosis was slightly higher for wt-p53-expressing cells. However, at doses near the IC50, the percentage of apoptotic cells was less than 20% in all the cell lines investigated. We conclude that the presence of wt p53 is not a determinant for the cytotoxicity induced by DDP in human ovarian cancer cell lines. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:9275024

  8. ZASP Interacts with the Mechanosensing Protein Ankrd2 and p53 in the Signalling Network of Striated Muscle

    PubMed Central

    Martinelli, Valentina C.; Kyle, W. Buck; Kojic, Snezana; Vitulo, Nicola; Li, Zhaohui; Belgrano, Anna; Maiuri, Paolo; Banks, Lawrence; Vatta, Matteo; Valle, Giorgio; Faulkner, Georgine

    2014-01-01

    ZASP is a cytoskeletal PDZ-LIM protein predominantly expressed in striated muscle. It forms multiprotein complexes and plays a pivotal role in the structural integrity of sarcomeres. Mutations in the ZASP protein are associated with myofibrillar myopathy, left ventricular non-compaction and dilated cardiomyopathy. The ablation of its murine homologue Cypher results in neonatal lethality. ZASP has several alternatively spliced isoforms, in this paper we clarify the nomenclature of its human isoforms as well as their dynamics and expression pattern in striated muscle. Interaction is demonstrated between ZASP and two new binding partners both of which have roles in signalling, regulation of gene expression and muscle differentiation; the mechanosensing protein Ankrd2 and the tumour suppressor protein p53. These proteins and ZASP form a triple complex that appears to facilitate poly-SUMOylation of p53. We also show the importance of two of its functional domains, the ZM-motif and the PDZ domain. The PDZ domain can bind directly to both Ankrd2 and p53 indicating that there is no competition between it and p53 for the same binding site on Ankrd2. However there is competition for this binding site between p53 and a region of the ZASP protein lacking the PDZ domain, but containing the ZM-motif. ZASP is negative regulator of p53 in transactivation experiments with the p53-responsive promoters, MDM2 and BAX. Mutations in the ZASP ZM-motif induce modification in protein turnover. In fact, two mutants, A165V and A171T, were not able to bind Ankrd2 and bound only poorly to alpha-actinin2. This is important since the A165V mutation is responsible for zaspopathy, a well characterized autosomal dominant distal myopathy. Although the mechanism by which this mutant causes disease is still unknown, this is the first indication of how a ZASP disease associated mutant protein differs from that of the wild type ZASP protein. PMID:24647531

  9. Enhanced radiosensitization of p53 mutant cells by oleamide

    SciTech Connect

    Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil . E-mail: yslee@kcch.re.kr

    2006-04-01

    Purpose: Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. Methods and Materials: NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Results: Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Conclusions: Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.

  10. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    SciTech Connect

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira; Tan, Martha; Senear, Donald F.; Luecke, Hartmut

    2013-10-01

    X-ray crystallographic structures of four p53 core-domain variants were determined in order to gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53. To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol{sup −1} (15.1 kJ mol{sup −1}). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the

  11. p53: out of Africa.

    PubMed

    Lane, David

    2016-04-15

    Somatic mutations in the tumor suppressor gene p53 occur in more than half of all human cancers. Rare germline mutations result in the Li-Fraumeni cancer family syndrome. In this issue ofGenes&Development, Jennis and colleagues (pp. 918-930) use an elegant mouse model to examine the affect of a polymorphism, P47S (rs1800371), in the N terminus of p53 that is found in Africans as well as more than a million African Americans. Remarkably, the single nucleotide change causes the mice to be substantially tumor-prone compared with littermates, suggesting that this allele causes an increased risk of developing cancer. The defect in p53 function is traced to a restriction in downstream gene regulation that reduces cell death in response to stress.

  12. Construction and expression of a bispecific single-chain antibody that penetrates mutant p53 colon cancer cells and binds p53.

    PubMed

    Weisbart, Richard H; Wakelin, Rika; Chan, Grace; Miller, Carl W; Koeffler, Phillip H

    2004-10-01

    A bispecific, single-chain antibody Fv fragment (Bs-scFv) was constructed from a single-chain Fv fragment of mAb 3E10 that penetrates living cells and localizes in the nucleus, and a single-chain Fv fragment of a non-penetrating antibody, mAb PAb421 that binds the C-terminal of p53. PAb421 binding restores wild-type functions of some p53 mutants, including those of SW480 human colon cancer cells. The Bs-scFv penetrated SW480 cells and was cytotoxic, suggesting an ability to restore activity to mutant p53. COS-7 cells (monkey kidney cells with wild-type p53) served as a control since they are unresponsive to PAb421 due to the presence of SV40 large T antigen that inhibits binding of PAb421 to p53. Bs-scFv penetrated COS-7 cells but was not cytotoxic, thereby eliminating non-specific toxicity of Bs-scFv unrelated to binding p53. A single mutation in CDR1 of PAb421 VH eliminated binding of the Bs-scFv to p53 and abrogated cytotoxicity for SW480 cells without altering cellular penetration, further supporting the requirement of PAb421 binding to p53 for cytotoxicity. Our study demonstrates the use of an antibody that penetrates living cells in the design of a bispecific single chain antibody to target and restore the function of an intracellular protein.

  13. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  14. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways.

    PubMed Central

    Nelson, W G; Kastan, M B

    1994-01-01

    The tumor suppressor protein p53 serves as a critical regulator of a G1 cell cycle checkpoint and of apoptosis following exposure of cells to DNA-damaging agents. The mechanism by which DNA-damaging agents elevate p53 protein levels to trigger G1/S arrest or cell death remains to be elucidated. In fact, whether damage to the DNA template itself participates in transducing the signal leading to p53 induction has not yet been demonstrated. We exposed human cell lines containing wild-type p53 alleles to several different DNA-damaging agents and found that agents which rapidly induce DNA strand breaks, such as ionizing radiation, bleomycin, and DNA topoisomerase-targeted drugs, rapidly triggered p53 protein elevations. In addition, we determined that camptothecin-stimulated trapping of topoisomerase I-DNA complexes was not sufficient to elevate p53 protein levels; rather, replication-associated DNA strand breaks were required. Furthermore, treatment of cells with the antimetabolite N(phosphonoacetyl)-L-aspartate (PALA) did not cause rapid p53 protein increases but resulted in delayed increases in p53 protein levels temporally correlated with the appearance of DNA strand breaks. Finally, we concluded that DNA strand breaks were sufficient for initiating p53-dependent signal transduction after finding that introduction of nucleases into cells by electroporation stimulated rapid p53 protein elevations. While DNA strand breaks appeared to be capable of triggering p53 induction, DNA lesions other than strand breaks did not. Exposure of normal cells and excision repair-deficient xeroderma pigmentosum cells to low doses of UV light, under conditions in which thymine dimers appear but DNA replication-associated strand breaks were prevented, resulted in p53 induction attributable to DNA strand breaks associated with excision repair. Our data indicate that DNA strand breaks are sufficient and probably necessary for p53 induction in cells with wild-type p53 alleles exposed to DNA

  15. Differentiation-dependent p53 regulation of nucleotide excision repair in keratinocytes.

    PubMed Central

    Li, G.; Ho, V. C.; Mitchell, D. L.; Trotter, M. J.; Tron, V. A.

    1997-01-01

    The role of the tumor suppressor p53 in repair of ultraviolet light (UV)-induced DNA damage was evaluated using a host-cell reactivation (HCR) assay. HCR determines a cell's ability to repair UV-damaged DNA through reactivation of a transfected CAT reported plasmid. Most UV damage is removed through nucleotide excision repair (NER). Primary murine keratinocytes isolated from p53-deficient and wild-type p53 mice were used in the HCR assay. The NER was reduced in p53-/- keratinocytes as compared with p53+/+ keratinocytes. The reduced DNA repair in p53-/- mice was confirmed with a radioimmunoassay comparing cyclobutane dimers (CPDs) and (6-4) photoproducts in p53+/+ and p53-/- keratinocytes after the cells were exposed to UV irradiation. Our results demonstrate that wildtype p53 plays a significant role in regulating NER. Furthermore, as there is evidence that p53 protein levels decrease after keratinocytes become differentiated, we sought to determine whether p53 plays a role in NER in differentiated keratinocytes. Differentiation of the keratinocytes by increasing the Ca2+ concentration in the culture media resulted in a marked reduction in NER equally in both p53+/+ and p53-/- groups. This finding suggests that reduced DNA repair after differentiation is p53 independent. A similar reduction in HCR was confirmed in differentiated human keratinocytes. These data, taken together, indicate that p53 or p53-regulated proteins enhance NER in basal undifferentiated keratinocytes but not in differentiated cells. As nonmelanoma skin cancers originate from the basal keratinocytes, our findings suggest that loss of p53 may contribute to the pathogenesis of this common skin cancer. PMID:9095000

  16. Suppression of tumorigenicity of breast cancer cells by transfer of human chromosome 17 does not require transferred BRCA1 and p53 genes.

    PubMed

    Theile, M; Hartmann, S; Scherthan, H; Arnold, W; Deppert, W; Frege, R; Glaab, F; Haensch, W; Scherneck, S

    1995-02-02

    A number of candidate tumor suppressor genes located on the human chromosome 17 are thought to have a role to play in the development of breast cancer. In addition to the p53 gene on 17p13.1 and the BRCA1 gene mapped to 17q12-21, other chromosomal regions for tumor suppressor genes have been suggested to exist on 17p13.3 and both the central and the distal parts of 17q, although definitive functional proof of their involvement in breast cancer tumorigenesis is still lacking. In this report we show that microcell transfer of a human chromosome 17 into wild-type p53 breast cancer cells CAL51 results in loss of tumorigenicity and anchorage-independent growth, changes in cell morphology and a reduction of cell growth rates of the neo-selected microcell hybrids. In the hybrid cells, which express the p53 wild-type protein, only the p- and the distal parts of the q arm of donor chromosome 17 are transferred. Thus, our results provide functional evidence for the presence of one or more tumor suppressor gene(s) on chromosome 17, which are distinct from the p53 and the BRCA1 genes.

  17. A spatiotemporal characterization of the effect of p53 phosphorylation on its interaction with MDM2

    PubMed Central

    ElSawy, Karim M; Sim, Adelene; Lane, David P; Verma, Chandra S; Caves, Leo SD

    2015-01-01

    The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development. PMID:25584963

  18. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression.

    PubMed

    Lazo, Pedro A

    2017-05-01

    The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.

  19. Germ-line deletion of p53 reveals a multistage tumor progression in spi-1/PU.1 transgenic proerythroblasts.

    PubMed

    Scolan, E L; Wendling, F; Barnache, S; Denis, N; Tulliez, M; Vainchenker, W; Moreau-Gachelin, F

    2001-09-06

    Activation of the spi-1/PU.1 proto-oncogene and loss of p53 function are genetic alterations associated with the emergence of Friend malignant erythroleukemic cells. To address the role of p53 during erythroleukemogenesis, spi-1 transgenic mice (spi-1-Tg) which develop erythroleukemia were bred with p53-deficient mice. Three classes of spi-1 transgenic mice differing in their p53 functional status (p53(+/+), p53(+/-) and p53(-/-)) were generated. These mice developed a unique pattern of erythroleukemia. In wild-type p53 spi-1-Tg mice, none of the primary erythroleukemic spleen cells displayed autonomous growth in vitro and in vivo. In contrast, in p53(+/-) spi-1-Tg mice, erythroleukemic cells gave rise to growth factor-independent cell lines and generated tumors in vivo. Malignancy was associated with loss of the wild-type p53 allele. The p53(-/-) spi-1-Tg mice developed erythroleukemia with a total incidence and a reduced latency compared to the two other genotypes. Unexpectedly, 50% of p53(-/-) spi-1-Tg erythroleukemic spleens generated cell lines that were strictly dependent upon erythropoietin (Epo) for proliferation, whereas the remainder proliferated independently of cytokines. Moreover, only 70% of these spleen cells were tumorigenic. These findings indicate that p53 germ-line deletion did not confer malignancy to spi-1-transgenic proerythroblasts. Moreover Epo independence and tumorigenicity appear as separable phenotypic characteristics revealing that the spi-1-Tg proerythroblasts progress towards malignancy through multiple oncogenic events.

  20. An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer

    PubMed Central

    Moding, Everett J.; Min, Hooney D.; Castle, Katherine D.; Ali, Moiez; Woodlief, Loretta; Williams, Nerissa; Ma, Yan; Kim, Yongbaek; Lee, Chang-Lung

    2016-01-01

    The tumor suppressor p53 blocks tumor progression in multiple tumor types. Radiation-induced cancer following exposure to radiation therapy or space travel may also be regulated by p53 because p53 has been proposed to respond to DNA damage to suppress tumorigenesis. Here, we investigate the role of p53 in lung carcinogenesis and lymphomagenesis in LA-1 KrasG12D mice with wild-type p53 or an extra copy of p53 (super p53) exposed to fractionated total body irradiation with low linear energy transfer (low-LET) X-rays or high-LET iron ions and compared tumor formation in these mice with unirradiated controls. We found that an additional copy of p53 suppressed both Kras-driven lung tumor and lymphoma development in the absence of radiation. However, an additional copy of p53 did not affect lymphoma development following low- or high-LET radiation exposure and was unable to suppress radiation-induced expansion of thymocytes with mutated Kras. Moreover, radiation exposure increased lung tumor size in super p53 but not wild-type p53 mice. These results demonstrate that although p53 suppresses the development of spontaneous tumors expressing KrasG12D, in the context of exposure to ionizing radiation, an extra copy of p53 does not protect against radiation-induced lymphoma and may promote KrasG12D mutant lung cancer. PMID:27453951

  1. Identification and characterization of the intercellular adhesion molecule-2 gene as a novel p53 target

    PubMed Central

    Ogi, Kazuhiro; Nakagaki, Takafumi; Koyama, Ryota; Idogawa, Masashi; Hiratsuka, Hiroyoshi; Tokino, Takashi

    2016-01-01

    The p53 tumor suppressor inhibits cell growth through the activation of both cell cycle arrest and apoptosis, which maintain genome stability and prevent cancer development. Here, we report that intercellular adhesion molecule-2 (ICAM2) is transcriptionally activated by p53. Specifically, ICAM2 is induced by the p53 family and DNA damage in a p53-dependent manner. We identified a p53 binding sequence located within the ICAM2 gene that is responsive to wild-type p53, TAp73, and TAp63. In terms of function, we found that the ectopic expression of ICAM2 inhibited cancer cell migration and invasion. In addition, we demonstrated that silencing endogenous ICAM2 in cancer cells caused a marked increase in extracellular signal-regulated kinase (ERK) phosphorylation levels, suggesting that ICAM2 inhibits migration and invasion of cancer cells by suppressing ERK signaling. Moreover, ICAM2 is underexpressed in human cancer tissues containing mutant p53 as compared to those with wild-type p53. Notably, the decreased expression of ICAM2 is associated with poor survival in patients with various cancers. Our findings demonstrate that ICAM2 induction by p53 has a key role in inhibiting migration and invasion. PMID:27556181

  2. Characterization of a murine p53ser246 mutant equivalent to the human p53ser249 associated with hepatocellular carcinoma and aflatoxin exposure.

    PubMed

    Ghebranious, N; Knoll, B J; Wu, H; Lozano, G; Sell, S

    1995-06-01

    A mutation in the tumor suppressor p53 gene resulting in an Arg-->Ser substitution in position 249 is found frequently in human hepatocellular carcinomas associated with hepatitis B infection and with aflatoxin exposure. To determine the significance of this mutation in an in vivo experimental model using transgenic mice, we introduced a two-nucleotide change in the mouse p53 gene at amino-acid position 246, which is equivalent to position 249 in human p53, by the recombinant polymerase chain reaction mismatched primer method. This p53 mutation resulted in the same change, an Arg-->Ser substitution, as in the human p53 gene at position 249. We now report that the protein product of this mutant mouse p53ser246 had properties similar to those of the wild-type protein when tested by binding to (i) monoclonal antibodies PAb246 and PAb240, ii) simian virus 40 large T antigen, and (iii) heat-shock protein. However, it had mutant-type transforming properties when tested for colony formation with an osteosarcoma cell line. It was not active, as is wild-type p53, in transcription activation of the muscle creatine kinase promoter. These properties are the same as those found in the p53trp248 product of the p53 mutation associated with the Li-Fraumeni syndrome. Although less is known about the human p53ser249 product associated with hepatocellular carcinoma, the mutant murine p53ser246 protein shares the known properties of the human gene product.

  3. p53 in breast cancer subtypes and new insights into response to chemotherapy.

    PubMed

    Bertheau, Philippe; Lehmann-Che, Jacqueline; Varna, Mariana; Dumay, Anne; Poirot, Brigitte; Porcher, Raphaël; Turpin, Elisabeth; Plassa, Louis-François; de Roquancourt, Anne; Bourstyn, Edwige; de Cremoux, Patricia; Janin, Anne; Giacchetti, Sylvie; Espié, Marc; de Thé, Hugues

    2013-08-01

    Despite an obvious central role of p53 in the hallmarks of cancer, TP53 status is not yet used for the management of breast cancer. Recent findings may lead to reconsider the role of p53 in breast cancer. TP53 mutations are the most frequent genetic alterations in breast cancer, observed in 30% of breast carcinomas. Their distribution is highly linked to molecular tumor subtypes found in 26% of luminal tumors (17% of luminal A, 41% of luminal B), in 50% of HER2 amplified tumors, in 69% of molecular apocrine breast carcinomas and in 88% of basal-like carcinomas. The type of mutation is linked to the tumor subtype with higher frequency of base-pair substitutions in luminal tumors, whereas molecular apocrine and basal-like tumors present much higher frequency of complex mutations (deletions/insertions). The timing of TP53 mutation also depends on the tumor subtype, being the first important event in luminal tumors but occurring after PTEN loss in basal-like tumors. Regarding response to cytotoxic chemotherapy, the situation is far from the p53-dependent apoptosis paradigm with subsequent clinical response. We reported that TP53 mutated non inflammatory locally advanced breast carcinomas had a high rate of complete pathological response to dose-dense doxorubicin-cyclophosphamide chemotherapy, while TP53 wild-type (WT) tumors never achieved complete response. Using human breast cancer xenograft models, we suggested that this could be due to the induction of senescence in TP53 WT tumor cells. A recent work confirmed these findings in MMTV-Wnt1 mammary tumors, showing that growth arrest and senescent phenotype, not apoptosis, were induced in TP53 WT tumors following doxorubicin treatment, while lack of arrest in mutant tumors resulted in aberrant mitoses, cell death and a superior clinical response. Furthermore, in ER positive (ER(+)) breast tumors, it has been recently reported that ER represses the p53-mediated apoptotic response induced by DNA damage. Taken together

  4. The evolution of thymic lymphomas in p53 knockout mice

    PubMed Central

    Dudgeon, Crissy; Chan, Chang; Kang, Wenfeng; Sun, Yvonne; Emerson, Ryan; Robins, Harlan

    2014-01-01

    Germline deletion of the p53 gene in mice gives rise to spontaneous thymic (T-cell) lymphomas. In this study, the p53 knockout mouse was employed as a model to study the mutational evolution of tumorigenesis. The clonality of the T-cell repertoire from p53 knockout and wild-type thymic cells was analyzed at various ages employing TCRβ sequencing. These data demonstrate that p53 knockout thymic lymphomas arose in an oligoclonal fashion, with tumors evolving dominant clones over time. Exon sequencing of tumor DNA revealed that all of the independently derived oligoclonal mouse tumors had a deletion in the Pten gene prior to the formation of the TCRβ rearrangement, produced early in development. This was followed in each independent clone of the thymic lymphoma by the amplification or overexpression of cyclin Ds and Cdk6. Alterations in the expression of Ikaros were common and blocked further development of CD-4/CD-8 T cells. While the frequency of point mutations in the genome of these lymphomas was one per megabase, there were a tremendous number of copy number variations producing the tumors’ driver mutations. The initial inherited loss of p53 functions appeared to delineate an order of genetic alterations selected for during the evolution of these thymic lymphomas. PMID:25452272

  5. DIMP53-1: A novel small-molecule dual inhibitor of p53-MDM2/X interactions with multifunctional p53-dependent anticancer properties.

    PubMed

    Soares, Joana; Espadinha, Margarida; Raimundo, Liliana; Ramos, Helena; Gomes, Ana Sara; Gomes, Sara; Loureiro, Joana B; Inga, Alberto; Reis, Flávio; Gomes, Célia; Santos, Maria M M; Saraiva, Lucília

    2017-03-10

    The transcription factor p53 plays a crucial role in cancer development and dissemination, and thus p53-targeted therapies are amongst the most encouraging anticancer strategies. In human cancers with wild-type (wt) p53, its inactivation by interaction with murine double minute (MDM)2 and MDMX is a common event. Simultaneous inhibition of the p53 interaction with both MDMs is crucial to restore the tumor suppressor activity of p53. Here we describe the synthesis of the new tryptophanol-derived oxazoloisoindolinone DIMP53-1 and identify its activity as a dual inhibitor of the p53-MDM2/X interactions using a yeast-based assay. DIMP53-1 caused growth inhibition, mediated by p53 stabilization and upregulation of p53 transcriptional targets involved in cell cycle arrest and apoptosis, in wt p53-expressing tumor cells, including MDM2- or MDMX-overexpressing cells. Importantly, DIMP53-1 abolishes the p53-MDM2/X interactions by binding to p53, in human colon adenocarcinoma HCT116 cells. DIMP53-1 also inhibited the migration and invasion of HCT116 cells, and the migration and tube formation of HMVEC-D endothelial cells. Notably, in human tumor xenograft mice models, DIMP53-1 showed a p53-dependent antitumor activity through induction of apoptosis and inhibition of proliferation and angiogenesis. Finally, no genotoxicity or undesirable toxic effects were observed with DIMP53-1. In conclusion, DIMP53-1 is a novel p53 activator, which potentially binds to p53 inhibiting its interaction with MDM2 and MDMX. Although target-directed, DIMP53-1 has a multifunctional activity, targeting major hallmarks of cancer through its anti-proliferative, pro-apoptotic, anti-angiogenic, anti-invasive and anti-migratory properties. DIMP53-1 is a promising anticancer drug candidate and an encouraging starting point to develop improved derivatives for clinical application.

  6. Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine.

    PubMed

    Fiorini, Claudia; Cordani, Marco; Padroni, Chiara; Blandino, Giovanni; Di Agostino, Silvia; Donadelli, Massimo

    2015-01-01

    Pancreatic adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths worldwide; PDAC is characterized by poor prognosis, resistance to conventional chemotherapy and high mortality rate. TP53 tumor suppressor gene is frequently mutated in PDAC, resulting in the accumulation of mutated protein with potential gain-of-function (GOF) activities, such as genomic instability, hyperproliferation and chemoresistance. The purpose of this study was to assess the relevance of the p53 status on the PDAC cells response to the standard drug gemcitabine. We also examined the potential therapeutic effect of p53-reactivating molecules to restore the mutant p53 function in GEM treated PDAC cells. We showed that gemcitabine stabilized mutant p53 protein in the nuclei and induced chemoresistance, concurrent with the mutant p53-dependent expression of Cdk1 and CCNB1 genes, resulting in a hyperproliferation effect. Despite the adverse activation of mutant p53 by gemcitabine, simultaneous treatment of PDAC cells with gemcitabine and p53-reactivating molecules (CP-31398 and RITA) reduced growth rate and induced apoptosis. This synergistic effect was observed in both wild-type and mutant p53 cell lines and was absent in p53-null cells. The combination drug treatment induced p53 phosphorylation on Ser15, apoptosis and autophagosome formation. Furthermore, pharmacological inhibition of autophagy further increased apoptosis stimulated by gemcitabine/CP-31398 treatment. Together, our results show that gemcitabine aberrantly stimulates mutant p53 activity in PDAC cells identifying key processes with potential for therapeutic targeting. Our data also support an anti-tumoral strategy based on inhibition of autophagy combined with p53 activation and standard chemotherapy for both wild-type and mutant p53 expressing PDACs.

  7. R248Q mutation--Beyond p53-DNA binding.

    PubMed

    Ng, Jeremy W K; Lama, Dilraj; Lukman, Suryani; Lane, David P; Verma, Chandra S; Sim, Adelene Y L

    2015-12-01

    R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants.

  8. Targeting the p53 signaling pathway in cancer therapy - The promises, challenges, and perils

    PubMed Central

    Stegh, Alexander H.

    2012-01-01

    Introduction Research over the past three decades has identified p53 as a multifunctional transcription factor, which regulates the expression of >2,500 target genes. p53 impacts myriad, highly diverse cellular processes, including the maintenance of genomic stability and fidelity, metabolism, longevity, and represents one of the most important and extensively studied tumor suppressors. Activated by various stresses, foremost genotoxic damage, hypoxia, heat shock and oncogenic assault, p53 blocks cancer progression by provoking transient or permanent growth arrest, by enabling DNA repair or by advancing cellular death programs. This potent and versatile anti-cancer activity profile, together with genomic and mutational analyses documenting inactivation of p53 in more than 50% of human cancers, motivated drug development efforts to (re-) activate p53 in established tumors. Areas covered In this review the complexities of p53 signaling in cancer are summarized. Current strategies and challenges to restore p53’s tumor suppressive function in established tumors, i.e. adenoviral gene transfer and small molecules to activate p53, to inactivate p53 inhibitors and to restore wild type function of p53 mutant proteins are discussed. Expert opinion It is indubitable that p53 represents an attractive target for the development of anti-cancer therapies. Whether p53 is ‘druggable’, however, remains an area of active research and discussion, as p53 has pro-survival functions and chronic p53 activation accelerates aging, which may compromise the long-term homeostasis of an organism. Thus, the complex biology and dual functions of p53 in cancer prevention and age-related cellular responses pose significant challenges on the development of p53-targeting cancer therapies. PMID:22239435

  9. Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells.

    PubMed Central

    Deb, S; Jackson, C T; Subler, M A; Martin, D W

    1992-01-01

    Wild-type p53 has recently been shown to repress transcription from several cellular and viral promoters. Since p53 mutations are the most frequently reported genetic defects in human cancers, it becomes important to study the effects of mutations of p53 on promoter functions. We, therefore, have studied the effects of wild-type and mutant human p53 on the human proliferating-cell nuclear antigen (PCNA) promoter and on several viral promoters, including the herpes simplex virus type 1 UL9 promoter, the human cytomegalovirus major immediate-early promoter-enhancer, and the long terminal repeat promoters of Rous sarcoma virus and human T-cell lymphotropic virus type I. HeLa cells were cotransfected with a wild-type or mutant p53 expression vector and a plasmid containing a chloramphenicol acetyltransferase reporter gene under viral (or cellular) promoter control. As expected, expression of the wild-type p53 inhibited promoter function. Expression of a p53 with a mutation at any one of the four amino acid positions 175, 248, 273, or 281, however, correlated with a significant increase of the PCNA promoter activity (2- to 11-fold). The viral promoters were also activated, although to a somewhat lesser extent. We also showed that activation by a mutant p53 requires a minimal promoter containing a lone TATA box. A more significant increase (25-fold) in activation occurs when the promoter contains a binding site for the activating transcription factor or cyclic AMP response element-binding protein. Using Saos-2 cells that do not express p53, we showed that activation by a mutant p53 was a direct enhancement. The mutant forms of p53 used in this study are found in various cancer cells. The activation of PCNA by mutant p53s may indicate a way to increase cell proliferation by the mutant p53s. Thus, our data indicate a possible functional role for the mutants of p53 found in cancer cells in activating several important loci, including PCNA. Images PMID:1356162

  10. Cyclin B1/Cdk1 Phosphorylation of Mitochondrial p53 Induces Anti-Apoptotic Response

    PubMed Central

    Nantajit, Danupon; Fan, Ming; Duru, Nadire; Wen, Yunfei; Reed, John C.; Li, Jian Jian

    2010-01-01

    The pro-apoptotic function of p53 has been well defined in preventing genomic instability and cell transformation. However, the intriguing fact that p53 contributes to a pro-survival advantage of tumor cells under DNA damage conditions raises a critical question in radiation therapy for the 50% human cancers with intact p53 function. Herein, we reveal an anti-apoptotic role of mitochondrial p53 regulated by the cell cycle complex cyclin B1/Cdk1 in irradiated human colon cancer HCT116 cells with p53+/+ status. Steady-state levels of p53 and cyclin B1/Cdk1 were identified in the mitochondria of many human and mouse cells, and their mitochondrial influx was significantly enhanced by radiation. The mitochondrial kinase activity of cyclin B1/Cdk1 was found to specifically phosphorylate p53 at Ser-315 residue, leading to enhanced mitochondrial ATP production and reduced mitochondrial apoptosis. The improved mitochondrial function can be blocked by transfection of mutant p53 Ser-315-Ala, or by siRNA knockdown of cyclin B1 and Cdk1 genes. Enforced translocation of cyclin B1 and Cdk1 into mitochondria with a mitochondrial-targeting-peptide increased levels of Ser-315 phosphorylation on mitochondrial p53, improved ATP production and decreased apoptosis by sequestering p53 from binding to Bcl-2 and Bcl-xL. Furthermore, reconstitution of wild-type p53 in p53-deficient HCT116 p53−/− cells resulted in an increased mitochondrial ATP production and suppression of apoptosis. Such phenomena were absent in the p53-deficient HCT116 p53−/− cells reconstituted with the mutant p53. These results demonstrate a unique anti-apoptotic function of mitochondrial p53 regulated by cyclin B1/Cdk1-mediated Ser-315 phosphorylation in p53-wild-type tumor cells, which may provide insights for improving the efficacy of anti-cancer therapy, especially for tumors that retain p53. PMID:20808790

  11. p53 facilitates pRb cleavage in IL-3-deprived cells: novel pro-apoptotic activity of p53.

    PubMed Central

    Gottlieb, E; Oren, M

    1998-01-01

    In the interleukin-3 (IL-3)-dependent lymphoid cell line DA-1, functional p53 is required for efficient apoptosis in response to IL-3 withdrawal. Activation of p53 in these cells, by either DNA damage or p53 overexpression, results in a vital growth arrest in the presence of IL-3 and in accelerated apoptosis in its absence. Thus, IL-3 can control the choice between p53-dependent cell-cycle arrest and apoptosis. Here we report that the cross-talk between p53 and IL-3 involves joint control of pRb cleavage and degradation. Depletion of IL-3 results in caspase-mediated pRb cleavage, occurring preferentially within cells which express functional p53. Moreover, pRb can be cleaved efficiently by extracts prepared from DA-1 cells but not from their derivatives which lack p53 function. Inactivation of pRb through expression of the human papillomavirus (HPV) E7 oncogene overrides the effect of IL-3 in a p53-dependent manner. Our data suggest a novel role for p53 in the regulation of cell death and a novel mechanism for the cooperation between p53 and survival factor deprivation. Thus, p53 makes cells permissive to pRb cleavage, probably by controlling the potential activity of a pRb-cleaving caspase, whereas IL-3 withdrawal provides signals that turn on this potential activity and lead to the actual cleavage and subsequent degradation of pRb. Elimination of a presumptive anti-apoptotic effect of pRb may then facilitate conversion of p53-mediated growth arrest into apoptosis. PMID:9649429

  12. p53 Mutations in human adrenocortical neoplasms: Immunohistochemical and molecular studies

    SciTech Connect

    Reincke, M.; Allolio, B.; Travis, W.H.; Linehan, H.M.; Karl, M.; Mastorakos, G.; Chrousos, G.P.

    1994-03-01

    p53 is a recessive tumor suppressor gene located on chromosome 17p. Mutations in the p53 gene play an important role in the tumorigenesis of diverse types of human neoplasms including breast and colon cancers. More than 90% of all mutations discovered in such tumors have been detected in 4 hot spot areas that lie between exons 5 and 8. In contrast to wild-type p53, mutant p53 accumulates intracellularly and can be easily detected by immunohistochemistry. The authors therefore investigated the frequency of p53 mutations in human adrenocortical neoplasms using molecular biology and immunohistochemistry techniques. Five patients with adrenocortical adenomas (5 female; ages 39-72 yr), 11 patients with adrenocortical carcinomas (8 female, 3 male; ages 15-50 yr), and two adrenocortical tumor cell lines were studied. After DNA extraction from frozen tumor tissue or paraffin-embedded material, exons 5 through 8 were amplified using the polymerase chain reaction and directly sequenced by the dideoxy termination method. Immunohistochemistry was performed on paraffin-embedded tumor specimens obtained during adrenalectomy using a monoclonal antibody reacting with both wild-type and mutant p53. Prevalence of mutations was adenomas, 0/5, carcinomas, 3/11, and adrenocortical cell lines, 2/2. Single point mutations were detected in 3 cases (exons 5, 6, and 7, respectively), and rearrangements of exon 7/8 and 8 were found in 2 cases. Immunohistochemistry detected strong nuclear and/or cytoplasmic p53 immunoreactivity in all adrenocortical carcinomas with point mutations of the p53 gene but not in adenomas and carcinomas with the wild-type sequence or with deletion/rearrangement of the p53 gene. They conclude that p53 plays a role in the tumorigenesis of adrenocortical carcinomas but is of less importance to benign adenomas. 27 refs., 3 figs., 2 tabs.

  13. p53 represses Sp1 DNA binding and HIV-LTR directed transcription.

    PubMed

    Bargonetti, J; Chicas, A; White, D; Prives, C

    1997-11-01

    The HIV-LTR region contains binding sites for, and is regulated by, a number of transcription factors including Sp1 and NF-kB. The wild-type p53 tumor suppressor protein represses transcription from the HIV-LTR promoter while oncogenic mutant forms of p53 stimulate expression from the HIV-LTR. We have shown previously that wild-type p53 is a site specific DNA binding protein that binds to a region of the SV40 virus which contains GC-box DNA binding sites for the ubiquitously expressed transcription factor Sp1. In this study using DNase I footprinting, we have shown that purified p53 is able to protect the Sp1 binding sites and the adjacent NF-kB site of the HIV-LTR. Furthermore we have demonstrated that when p53 and Sp1 are mixed together both proteins change each other's interaction with DNA. Interestingly, we noted that oncogenic mutant p53 is also able to change the interaction of Sp1 with DNA. We confirmed p53 dependent repression of HIV-LTR driven transcription by comparing the expression from an HIV-LTR reporter construct in the presence and absence of p53. EMSA of an oligonucleotide sequence derived from the HIV-LTR sequence demonstrated a slight decrease in Sp1 DNA binding activity with nuclear extract derived from the cell line expressing a high level of wild-type p53. These data suggest that the influence of p53 on the transcription of promoters with Sp1 binding sites may be partially due to a change in the DNA binding ability of Sp1.

  14. Induction of p53-dependent activation of the human proliferating cell nuclear antigen gene in chromatin by ionizing radiation.

    PubMed

    Shan, Bin; Xu, Jin; Zhuo, Ying; Morris, Cindy A; Morris, Gilbert F

    2003-11-07

    A human fibroblast cell line with conditional p53 expression displayed a p53-dependent increase in both the protein and mRNA levels of proliferating cell nuclear antigen (PCNA) after exposure to ionizing radiation (IR). The combination of p53 induction and IR cooperated to activate a transiently expressed human PCNA promoter-reporter gene via a p53-responsive element. Chromatin immunoprecipitation assays with antibodies specific for p53 or p300/CREB-binding protein revealed specific p53-dependent enrichment of PCNA promoter sequences in immunoprecipitates of sheared chromatin prepared from irradiated cells. Maximal and specific association of acetylated histone H4 with the PCNA promoter also depended on p53 induction and exposure to IR. These data demonstrate p53 binding to a target site in the PCNA promoter, recruitment of p300/CREB-binding protein, and localized acetylation of histone H4 in an IR-dependent manner. These molecular events are likely to play a role in mediating activation of PCNA gene expression by p53 during the cellular response to DNA damage. The analyses indicate that the combination of p53 induction and IR activate the PCNA gene via mechanisms similar to that of p21/wild-type p53-activated factor but to a lesser extent. This differential regulation of PCNA and p21/wild-type p53-activated factor may establish the proper ratio of the two proteins to coordinate DNA repair with cell cycle arrest.

  15. Aciculatin Induces p53-Dependent Apoptosis via MDM2 Depletion in Human Cancer Cells In Vitro and In Vivo

    PubMed Central

    Lai, Chin-Yu; Tsai, An-Chi; Chen, Mei-Chuan; Chang, Li-Hsun; Sun, Hui-Lung; Chang, Ya-Ling; Chen, Chien-Chih

    2012-01-01

    Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (−/−) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity. PMID:22912688

  16. Novel MDM2 inhibitor SAR405838 (MI-773) induces p53-mediated apoptosis in neuroblastoma

    PubMed Central

    Lu, Jiaxiong; Guan, Shan; Zhao, Yanling; Yu, Yang; Wang, Yongfeng; Shi, Yonghua; Mao, Xinfang; Yang, Kristine L.; Sun, Wenjing; Xu, Xin; Yi, Joanna S.; Yang, Tianshu; Yang, Jianhua; Nuchtern, Jed G.

    2016-01-01

    Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common childhood extracranial malignant tumor. In NB, somatic mutations of the tumor suppressor, p53, are exceedingly rare. Unlike in adult tumors, the majority of p53 downstream functions are still intact in NB cells with wild-type p53. Thus, restoring p53 function by blocking its interaction with p53 suppressors such as MDM2 is a viable therapeutic strategy for NB treatment. Herein, we show that MDM2 inhibitor SAR405838 is a potent therapeutic drug for NB. SAR405838 caused significantly decreased cell viability of p53 wild-type NB cells and induced p53-mediated apoptosis, as well as augmenting the cytotoxic effects of doxorubicin (Dox). In an in vivo orthotopic NB mouse model, SAR405838 induced apoptosis in NB tumor cells. In summary, our data strongly suggest that MDM2-specific inhibitors like SAR405838 may serve not only as a stand-alone therapy, but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact MDM2-p53 axis. PMID:27764791

  17. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage.

    PubMed

    Gong, Lu; Gong, Hongjian; Pan, Xiao; Chang, Changqing; Ou, Zhao; Ye, Shengfan; Yin, Le; Yang, Lina; Tao, Ting; Zhang, Zhenhai; Liu, Cong; Lane, David P; Peng, Jinrong; Chen, Jun

    2015-03-01

    The inhibitory role of p53 in DNA double-strand break (DSB) repair seems contradictory to its tumor-suppressing property. The p53 isoform Δ113p53/Δ133p53 is a p53 target gene that antagonizes p53 apoptotic activity. However, information on its functions in DNA damage repair is lacking. Here we report that Δ113p53 expression is strongly induced by γ-irradiation, but not by UV-irradiation or heat shock treatment. Strikingly, Δ113p53 promotes DNA DSB repair pathways, including homologous recombination, non-homologous end joining and single-strand annealing. To study the biological significance of Δ113p53 in promoting DNA DSB repair, we generated a zebrafish Δ113p53(M/M) mutant via the transcription activator-like effector nuclease technique and found that the mutant is more sensitive to γ-irradiation. The human ortholog, Δ133p53, is also only induced by γ-irradiation and functions to promote DNA DSB repair. Δ133p53-knockdown cells were arrested at the G2 phase at the later stage in response to γ-irradiation due to a high level of unrepaired DNA DSBs, which finally led to cell senescence. Furthermore, Δ113p53/Δ133p53 promotes DNA DSB repair via upregulating the transcription of repair genes rad51, lig4 and rad52 by binding to a novel type of p53-responsive element in their promoters. Our results demonstrate that Δ113p53/Δ133p53 is an evolutionally conserved pro-survival factor for DNA damage stress by preventing apoptosis and promoting DNA DSB repair to inhibit cell senescence. Our data also suggest that the induction of Δ133p53 expression in normal cells or tissues provides an important tolerance marker for cancer patients to radiotherapy.

  18. Influenza A Viruses Control Expression of Proviral Human p53 Isoforms p53β and Δ133p53α

    PubMed Central

    Marcel, Virginie; Cartet, Gaëlle; Lane, David P.; Lina, Bruno; Rosa-Calatrava, Manuel

    2012-01-01

    Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53β and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53β and Δ133p53α acting as regulators of viral production in a p53-dependent manner. PMID:22647703

  19. Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status

    PubMed Central

    Mirjolet, J-F; Barberi-Heyob, M; Didelot, C; Peyrat, J-P; Abecassis, J; Millon, R; Merlin, J-L

    2000-01-01

    p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r= 0.880,P= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign PMID:11044365

  20. p53 downregulates the Fanconi anaemia DNA repair pathway

    PubMed Central

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-01-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104

  1. Oxidized DJ-1 Inhibits p53 by Sequestering p53 from Promoters in a DNA-Binding Affinity-Dependent Manner

    PubMed Central

    Kato, Izumi; Maita, Hiroshi; Takahashi-Niki, Kazuko; Saito, Yoshiro; Noguchi, Noriko; Iguchi-Ariga, Sanae M. M.

    2013-01-01

    DJ-1 is an oncogene and the causative gene for familial Parkinson's disease. Although the oxidative status of DJ-1 at cysteine 106 (C106) is thought to affect all of the activities of DJ-1 and excess oxidation leads to the onset of various diseases, the precise molecular mechanisms underlying the effects of oxidation of DJ-1 on protein-protein interactions of DJ-1 remain unclear. In this study, we found that DJ-1 bound to the DNA-binding region of p53 in a manner dependent on the oxidation of C106. Of the p53 target genes, the expression level and promoter activity of the DUSP1 gene, but not those of the p21 gene, were increased in H2O2-treated DJ-1−/− cells and were decreased in wild-type DJ-1- but not C106S DJ-1-transfected H1299 cells through sequestration of p53 from the DUSP1 promoter by DJ-1. DUSP1 downregulated by oxidized DJ-1 activated extracellular signal-regulated kinase (ERK) and decreased apoptosis. The DUSP1 and p21 promoters harbor nonconsensus and consensus p53 recognition sequences, respectively, which have low affinity and high affinity for p53. However, DJ-1 inhibited p21 promoter activity exhibited by p53 mutants harboring low DNA-binding affinity but not by wild-type p53. These results indicate that DJ-1 inhibits the expression of p53 target genes and depend on p53 DNA-binding affinity and oxidation of DJ-1 C106. PMID:23149933

  2. Oxidized DJ-1 inhibits p53 by sequestering p53 from promoters in a DNA-binding affinity-dependent manner.

    PubMed

    Kato, Izumi; Maita, Hiroshi; Takahashi-Niki, Kazuko; Saito, Yoshiro; Noguchi, Noriko; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2013-01-01

    DJ-1 is an oncogene and the causative gene for familial Parkinson's disease. Although the oxidative status of DJ-1 at cysteine 106 (C106) is thought to affect all of the activities of DJ-1 and excess oxidation leads to the onset of various diseases, the precise molecular mechanisms underlying the effects of oxidation of DJ-1 on protein-protein interactions of DJ-1 remain unclear. In this study, we found that DJ-1 bound to the DNA-binding region of p53 in a manner dependent on the oxidation of C106. Of the p53 target genes, the expression level and promoter activity of the DUSP1 gene, but not those of the p21 gene, were increased in H(2)O(2)-treated DJ-1(-/-) cells and were decreased in wild-type DJ-1- but not C106S DJ-1-transfected H1299 cells through sequestration of p53 from the DUSP1 promoter by DJ-1. DUSP1 downregulated by oxidized DJ-1 activated extracellular signal-regulated kinase (ERK) and decreased apoptosis. The DUSP1 and p21 promoters harbor nonconsensus and consensus p53 recognition sequences, respectively, which have low affinity and high affinity for p53. However, DJ-1 inhibited p21 promoter activity exhibited by p53 mutants harboring low DNA-binding affinity but not by wild-type p53. These results indicate that DJ-1 inhibits the expression of p53 target genes and depend on p53 DNA-binding affinity and oxidation of DJ-1 C106.

  3. EBNA3C regulates p53 through induction of Aurora kinase B.

    PubMed

    Jha, Hem C; Yang, Karren; El-Naccache, Darine W; Sun, Zhiguo; Robertson, Erle S

    2015-03-20

    In multicellular organisms p53 maintains genomic integrity through activation of DNA repair, and apoptosis. EBNA3C can down regulate p53 transcriptional activity. Aurora kinase (AK) B phosphorylates p53, which leads to degradation of p53. Aberrant expression of AK-B is a hallmark of numerous human cancers. Therefore changes in the activities of p53 due to AK-B and EBNA3C expression is important for understanding EBV-mediated cell transformation. Here we show that the activities of p53 and its homolog p73 are dysregulated in EBV infected primary cells which can contribute to increased cell transformation. Further, we showed that the ETS-1 binding site is crucial for EBNA3C-mediated up-regulation of AK-B transcription. Further, we determined the Ser 215 residue of p53 is critical for functional regulation by AK-B and EBNA3C and that the kinase domain of AK-B which includes amino acid residues 106, 111 and 205 was important for p53 regulation. AK-B with a mutation at residue 207 was functionally similar to wild type AK-B in terms of its kinase activities and knockdown of AK-B led to enhanced p73 expression independent of p53. This study explores an additional mechanism by which p53 is regulated by AK-B and EBNA3C contributing to EBV-induced B-cell transformation.

  4. Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis

    PubMed Central

    Chen, Zhenghu; Wang, Long; Yao, Dayong; Yang, Tianshu; Cao, Wen-Ming; Dou, Jun; Pang, Jonathan C.; Guan, Shan; Zhang, Huiyuan; Yu, Yang; Zhao, Yanling; Wang, Yongfeng; Xu, Xin; Shi, Yan; Patel, Roma; Zhang, Hong; Vasudevan, Sanjeev A.; Liu, Shangfeng; Yang, Jianhua; Nuchtern, Jed G.

    2016-01-01

    Neuroblastoma (NB) is the most common extracranial tumor in children. Unlike in most adult tumors, tumor suppressor protein 53 (p53) mutations occur with a relatively low frequency in NB and the downstream function of p53 is intact in NB cell lines. Wip1 is a negative regulator of p53 and hindrance of Wip1 activity by novel inhibitor GSK2830371 is a potential strategy to activate p53’s tumor suppressing function in NB. Yet, the in vivo efficacy and the possible mechanisms of GSK2830371 in NB have not yet been elucidated. Here we report that novel Wip1 inhibitor GSK2830371 induced Chk2/p53-mediated apoptosis in NB cells in a p53-dependent manner. In addition, GSK2830371 suppressed the colony-formation potential of p53 wild-type NB cell lines. Furthermore, GSK2830371 enhanced doxorubicin- (Dox) and etoposide- (VP-16) induced cytotoxicity in a subset of NB cell lines, including the chemoresistant LA-N-6 cell line. More importantly, GSK2830371 significantly inhibited tumor growth in an orthotopic xenograft NB mouse model by inducing Chk2/p53-mediated apoptosis in vivo. Taken together, this study suggests that GSK2830371 induces Chk2/p53-mediated apoptosis both in vitro and in vivo in a p53 dependent manner. PMID:27991505

  5. An N-terminal region of mot-2 binds to p53 in vitro.

    PubMed

    Kaul, S C; Reddel, R R; Mitsui, Y; Wadhwa, R

    2001-01-01

    The mouse mot-2 protein was earlier shown to bind to the tumor suppressor protein, p53. The mot-2 binding site of p53 was mapped to C-terminal amino acid residues 312-352, which includes the cytoplasmic sequestration domain. In the present study, we have found that both mot-1 and mot-2 bind to p53 in vitro. By using His-tagged deletion mutant proteins, the p53-binding domain of mot-2 was mapped to its N-terminal amino acid residues 253-282, which are identical in mot-1 and mot-2 proteins. Some peptides containing the p53-binding region of mot-2 were able to compete with the full-length protein for p53 binding. The data provided rationale for in vitro binding of mot-1 and mot-2 proteins to p53 and supported the conclusion that inability of mot-1 protein to bind p53 in vivo depends on secondary structure or its binding to other cellular factors. Most interestingly, the p53-binding region of mot-2 was common to its MKT-077, a cationic dye that exhibits antitumor activity, binding region. Therefore it is most likely that MKT-077-induced nuclear translocation and restoration of wild-type p53 function in transformed cells takes place by a competitional mechanism.

  6. p53 inhibits DNA replication in vitro in a DNA-binding-dependent manner.

    PubMed Central

    Miller, S D; Farmer, G; Prives, C

    1995-01-01

    The p53 tumor suppressor gene product is a sequence-specific DNA-binding protein that is necessary for the G1 arrest of many cell types. Consistent with its role as a cell cycle checkpoint factor, p53 has been shown to be capable of both transcriptional activation and repression. Here we show a new potential role for p53 as a DNA-binding-dependent regulator of DNA replication. Constructs containing multiple copies of the ribosomal gene cluster (RGC) p53 binding site cloned on the late side of the polyomavirus origin were used in in vitro replication assays. In the presence of p53, the replication of these constructs was strongly inhibited, while the replication of constructs containing a mutant version of the RGC site was not affected by p53. Several tumor-derived mutant p53 proteins were unable to inhibit replication of the construct with wild-type RGC sites. Additionally, the transactivator GAL4-VP16 was unable to inhibit replication of a construct containing GAL4 binding sites adjacent to the polyomavirus origin. We also show that the inhibition by p53 can occur from sites cloned as far as 600 bp from the origin. Preincubation experiments suggest that p53 inhibits replication at a step mediated by ATP, possibly by inhibiting the binding of polyomavirus T antigen to the core origin. The presence of an endogenous p53 binding site in the polyomavirus origin suggests potential mechanisms for the observed inhibition. PMID:8524220

  7. Structurally dependent redox property of ribonucleotide reductase subunit p53R2.

    PubMed

    Xue, Lijun; Zhou, Bingsen; Liu, Xiyong; Wang, Tieli; Shih, Jennifer; Qi, Christina; Heung, Yvonne; Yen, Yun

    2006-02-15

    p53R2 is a newly identified small subunit of ribonucleotide reductase (RR) and plays a key role in supplying precursors for DNA repair in a p53-dependent manner. Currently, we are studying the redox property, structure, and function of p53R2. In cell-free systems, p53R2 did not oxidize a reactive oxygen species (ROS) indicator carboxy-H2DCFDA, but another class I RR small subunit, hRRM2, did. Further studies showed that purified recombinant p53R2 protein has catalase activity, which breaks down H2O2. Overexpression of p53R2 reduced intracellular ROS and protected the mitochondrial membrane potential against oxidative stress, whereas overexpression of hRRM2 did not and resulted in a collapse of mitochondrial membrane potential. In a site-directed mutagenesis study, antioxidant activity was abrogated in p53R2 mutants Y331F, Y285F, Y49F, and Y241H, but not Y164F or Y164C. The fluorescence intensity in mutants oxidizing carboxy-H2DCFDA, in order from highest to lowest, was Y331F > Y285F > Y49F > Y241H > wild-type p53R2. This indicates that Y331, Y285, Y49, and Y241 in p53R2 are critical residues involved in scavenging ROS. Of interest, the ability to oxidize carboxy-H2DCFDA indicated by fluorescence intensity was negatively correlated with RR activity from wild-type p53R2, mutants Y331F, Y285F, and Y49F. Our findings suggest that p53R2 may play a key role in defending oxidative stress by scavenging ROS, and this antioxidant property is also important for its fundamental enzymatic activity.

  8. PPM1D phosphatase, a target of p53 and RBM38 RNA-binding protein, inhibits p53 mRNA translation via dephosphorylation of RBM38.

    PubMed

    Zhang, M; Xu, E; Zhang, J; Chen, X

    2015-11-26

    PPM1D phosphatase, also called wild-type p53-induced phosphatase 1, promotes tumor development by inactivating the p53 tumor suppressor pathway. RBM38 RNA-binding protein, also called RNPC1 and a target of p53, inhibits p53 messenger RNA (mRNA) translation, which can be reversed by GSK3 protein kinase via phosphorylation of RBM38 at serine 195. Here we showed that ectopic expression of RBM38 increases, whereas knockdown of RBM38 inhibits, PPM1D mRNA translation. Consistent with this, we found that RBM38 directly binds to PPM1D 3'-untranslated region (3'-UTR) and promotes expression of a heterologous reporter gene that carries PPM1D 3'-UTR in a dose-dependent manner. Interestingly, we showed that PPM1D directly interacts with and dephosphorylates RBM38 at serine 195. Furthermore, we showed that PPM1D modulates p53 mRNA translation and p53-dependent growth suppression through dephosphorylation of RBM38. These findings provide evidence that the crosstalk between PPM1D and RBM38, both of which are targets and modulators of p53, has a critical role in p53 expression and activity.

  9. PPM1D phosphatase, a target of p53 and RBM38 RNA-binding protein, inhibits p53 mRNA translation via dephosphorylation of RBM38

    PubMed Central

    Zhang, Min; Xu, Enshun; Zhang, Jin; Chen, Xinbin

    2015-01-01

    PPM1D phosphatase, also called wild-type p53-induced phosphatase 1 (Wip1), promotes tumor development by inactivating the p53 tumor suppressor pathway. RBM38 RNA-binding protein, also called RNPC1 and a target of p53, inhibits p53 mRNA translation, which can be reversed by GSK3 protein kinase via phosphorylation of RBM38 at serine 195. Here we showed that ectopic expression of RBM38 increases, whereas knockdown of RBM38 inhibits, PPM1D mRNA translation. Consistent with this, we found that RBM38 directly binds to PPM1D 3' untranslated region (3’UTR) and promotes expression of a heterologous reporter gene that carries PPM1D 3’UTR in a dose-dependent manner. Interestingly, we showed that PPM1D directly interacts with and dephosphorylates RBM38 at serine 195. Furthermore, we showed that PPM1D modulates p53 mRNA translation and p53-dependent growth suppression through dephosphorylation of RBM38. These findings provide evidence that the crosstalk between PPM1D and RBM38, both of which are targets and modulators of p53, plays a critical role in p53 expression and activity. PMID:25823026

  10. Mutant p53 proteins bind DNA in a DNA structure-selective mode

    PubMed Central

    Göhler, Thomas; Jäger, Stefan; Warnecke, Gabriele; Yasuda, Hideyo; Kim, Ella; Deppert, Wolfgang

    2005-01-01

    Despite the loss of sequence-specific DNA binding, mutant p53 (mutp53) proteins can induce or repress transcription of mutp53-specific target genes. To date, the molecular basis for transcriptional modulation by mutp53 is not understood, but increasing evidence points to the possibility that specific interactions of mutp53 with DNA play an important role. So far, the lack of a common denominator for mutp53 DNA binding, i.e. the existence of common sequence elements, has hampered further characterization of mutp53 DNA binding. Emanating from our previous discovery that DNA structure is an important determinant of wild-type p53 (wtp53) DNA binding, we analyzed the binding of various mutp53 proteins to oligonucleotides mimicking non-B DNA structures. Using various DNA-binding assays we show that mutp53 proteins bind selectively and with high affinity to non-B DNA. In contrast to sequence-specific and DNA structure-dependent binding of wtp53, mutp53 DNA binding to non-B DNA is solely dependent on the stereo-specific configuration of the DNA, and not on DNA sequence. We propose that DNA structure-selective binding of mutp53 proteins is the basis for the well-documented interaction of mutp53 with MAR elements and for transcriptional activities mediates by mutp53. PMID:15722483

  11. p53 Acetylation: Regulation and Consequences

    PubMed Central

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer. PMID:25545885

  12. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation

    PubMed Central

    Jin, Huan; Yin, Shutao; Song, Xinhua; Zhang, Enxiang; Fan, Lihong; Hu, Hongbo

    2016-01-01

    Patulin is a major mycotoxin found in fungal contaminated fruits and their derivative products. Previous studies showed that patulin was able to induce increase of reactive oxygen species (ROS) generation and oxidative stress was suggested to play a pivotal role in patulin-induced multiple toxic signaling. The objective of the present study was to investigate the functional role of p53 in patulin-induced oxidative stress. Our study demonstrated that higher levels of ROS generation and DNA damage were induced in wild-type p53 cell lines than that found in either knockdown or knockout p53 cell lines in response to patulin exposure, suggesting p53 activation contributed to patulin-induced ROS generation. Mechanistically, we revealed that the pro-oxidant role of p53 in response to patulin was attributed to its ability to suppress catalase activity through up-regulation of PIG3. Moreover, these in vitro findings were further validated in the p53 wild-type/knockout mouse model. To the best of our knowledge, this is the first report addressing the functional role of p53 in patulin-induced oxidative stress. The findings of the present study provided novel insights into understanding mechanisms behind oxidative stress in response to patulin exposure. PMID:27071452

  13. Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model.

    PubMed

    Walker, Charles; Böttger, Stefanie; Low, Ben

    2006-05-01

    In nature the soft shell clam Mya arenaria develops a fatal neoplasm that shares molecular similarity with an unrelated group of human cancers. In leukemic clam hemocytes, wild-type p53 and mortalin proteins co-localize in the cytoplasm. A similar phenotype, characterized by cytoplasmic sequestration of wild-type p53 protein, has been observed in several human cancers (undifferentiated neuroblastoma, retinoblastoma, colorectal and hepatocellular carcinomas, and glioblastoma). In some of these cancers p53 is tethered in the cytoplasm by mortalin when the latter protein is overexpressed. Using co-immunoprecipitation we have demonstrated that mortalin and p53 proteins are complexed in the cytoplasm of leukemic clam hemocytes (and not in normal hemocytes). In addition, treatment of leukemic clam hemocytes with MKT-077, a cationic inhibitor of mortalin, disrupts the interaction of mortalin and p53 proteins, resulting in translocation of some p53 to the nucleus. Based on these data, we introduce leukemic clam hemocytes as novel and easily accessible, in vivo and in vitro models for human cancers displaying a similar mortalin-based phenotype. Treatment of these models with novel chemotherapeutics may help reveal the molecular mechanism(s) involved in inactivating p53 by this form of cytoplasmic sequestration.

  14. Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity.

    PubMed

    Trimmer, P A; Smith, T S; Jung, A B; Bennett, J P

    1996-09-01

    We have examined MPTP toxicity to dopamine neurons of mice homozygous for a transgenic knockout of the p53 growth control gene (p53-/-). MPTP at a total dose of 96 mg/kg administered in four doses over two days produced a non-homogeneous loss of striatal dopamine transport sites and quantitatively reduced 3H-mazindol binding to similar degrees in p53-/- and wild type controls 2 and 3 weeks after starting MPTP. Nigral DA neurons stained immunohistochemically for tyrosine hydroxylase were counted using both manual and automated methods and found to be reduced 29-34% in wild type controls but were not reduced in p53-/-. Mean DA neuronal surface areas were reduced 63-68% by MPTP in controls and 35-50% in p53-/-. We conclude that p53 protein appears necessary for complete expression of MPTP neurotoxicity to dopamine neurons. Our findings suggest that the p53 gene and other growth control genes may regulate dopamine neuronal death in PD.

  15. Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice.

    PubMed

    Hasegawa, M; Zhang, Y; Niibe, H; Terry, N H; Meistrich, M L

    1998-03-01

    The effect of the p53 gene on the survival of mouse testicular cells was evaluated by analysis of degenerating and terminal transferase-mediated end labeling (TUNEL)-positive cells and the subsequent production of further differentiated progeny. In p53 null mice, in contrast to wild-type mice, radiation induced negligible levels of degenerating or TUNEL-positive differentiating spermatogonia within 24 h. This was correlated with higher production of differentiated progeny of the differentiating spermatogonia in p53 null mice. Contrary to the differentiating spermatogonia, the stem spermatogonia of p53 null mice produced fewer differentiated progeny after irradiation than did the stem cells of wild-type mice. We conclude that, because the degeneration and TUNEL positivity of the differentiating spermatogonia in mice of different genotypes were correlated with each other and were dependent on p53, this process is indeed apoptosis. In the differentiating spermatogonia, p53-dependent apoptosis accounted for the bulk of the loss of their progeny after irradiation. Furthermore, whereas the differentiating spermatogonia died by apoptosis that was dependent on p53, the stem spermatogonia, which are more radioresistant, did not.

  16. Potential of Advexin: a p53 gene-replacement therapy in Li-Fraumeni syndrome.

    PubMed

    Nemunaitis, Jackie M; Nemunaitis, John

    2008-12-01

    Li-Fraumeni syndrome is a rare autosomal dominant cancer predisposition syndrome. The majority of families fulfilling definition of Li-Fraumeni syndrome demonstrate inherited abnormalities involving the p53 gene. Cells with dysfunctional p53 are predisposed to the development of cancer phenotype. Advexin (Introgen Therapeutics Inc., TX, USA) is an adenoviral-based experimental therapeutic that provides delivery of wild-type p53 to cancer cells and demonstrates anticancer activity following adequate expression of p53. Theoretically, correction of p53 function in cancer developing in patients with Li-Fraumeni syndrome through treatment with Advexin will provide anti-tumor activity. One patient with Li-Fraumeni syndrome has been reported to have responded to Advexin. This review will summarize background knowledge of Li-Fraumeni syndrome, mechanisms of Advexin and clinical response of cancer to Advexin with a focus on Li-Fraumeni syndrome.

  17. p53 modulation of TFIIH-associated nucleotide excision repair activity.

    PubMed

    Wang, X W; Yeh, H; Schaeffer, L; Roy, R; Moncollin, V; Egly, J M; Wang, Z; Freidberg, E C; Evans, M K; Taffe, B G

    1995-06-01

    p53 has pleiotropic functions including control of genomic plasticity and integrity. Here we report that p53 can bind to several transcription factor IIH-associated factors, including transcription-repair factors, XPD (Rad3) and XPB, as well as CSB involved in strand-specific DNA repair, via its C-terminal domain. We also found that wild-type, but not Arg273His mutant p53 inhibits XPD (Rad3) and XPB DNA helicase activities. Moreover, repair of UV-induced dimers is slower in Li-Fraumeni syndrome cells (heterozygote p53 mutant) than in normal human cells. Our findings indicate that p53 may play a direct role in modulating nucleotide excision repair pathways.

  18. Role of p53–fibrinolytic system cross-talk in the regulation of quartz-induced lung injury

    SciTech Connect

    Bhandary, Yashodhar P.; Shetty, Shwetha K.; Marudamuthu, Amarnath S.; Fu, Jian; Pinson, Barbara M.; Levin, Jeffrey; Shetty, Sreerama

    2015-03-01

    Silica is the major component of airborne dust generated by wind, manufacturing and/or demolition. Chronic occupational inhalation of silica dust containing crystalline quartz is by far the predominant form of silicosis in humans. Silicosis is a progressive lung disease that typically arises after a very long latency and is a major occupational concern with no known effective treatment. The mechanism of silicosis is not clearly understood. However, silicosis is associated with increased cell death, expression of redox enzymes and pro-fibrotic cytokines and chemokines. Since alveolar epithelial cell (AEC) death and disruption of alveolar fibrinolysis is often associated with both acute and chronic lung injuries, we explored whether p53-mediated changes in the urokinase-type plasminogen activator (uPA) system contributes to silica-induced lung injury. We further sought to determine whether caveolin-1 scaffolding domain peptide (CSP), which inhibits p53 expression, mitigates lung injury associated with exposure to silica. Lung tissues and AECs isolated from wild-type (WT) mice exposed to silica exhibit increased apoptosis, p53 and PAI-1, and suppression of uPA expression. Treatment of WT mice with CSP inhibits PAI-1, restores uPA expression and prevents AEC apoptosis by suppressing p53, which is otherwise induced in mice exposed to silica. The process involves CSP-mediated inhibition of serine-15 phosphorylation of p53 by inhibition of protein phosphatase 2A-C (PP2A-C) interaction with silica-induced caveolin-1 in AECs. These observations suggest that changes in the p53–uPA fibrinolytic system cross-talk contribute to lung injury caused by inhalation of silica dust containing crystalline quartz and is protected by CSP by targeting this pathway. - Highlights: • Chronic exposure to quartz dusts is a major cause of lung injury and silicosis. • The survival of patients with silicosis is bleak due to lack of effective treatments. • This study defines a new role of

  19. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2.

    PubMed

    Contractor, Tanupriya; Harris, Chris R

    2012-01-15

    In cancer cells, the aberrant conversion of pyruvate into lactate instead of acetyl-CoA in the presence of oxygen is known as the Warburg effect. The consequences and mechanisms of this metabolic peculiarity are incompletely understood. Here we report that p53 status is a key determinant of the Warburg effect. Wild-type p53 expression decreased levels of pyruvate dehydrogenase kinase-2 (Pdk2) and the product of its activity, the inactive form of the pyruvate dehydrogenase complex (P-Pdc), both of which are key regulators of pyruvate metabolism. Decreased levels of Pdk2 and P-Pdc in turn promoted conversion of pyruvate into acetyl-CoA instead of lactate. Thus, wild-type p53 limited lactate production in cancer cells unless Pdk2 could be elevated. Together, our results established that wild-type p53 prevents manifestation of the Warburg effect by controlling Pdk2. These findings elucidate a new mechanism by which p53 suppresses tumorigenesis acting at the level of cancer cell metabolism.

  20. Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function.

    PubMed

    Wadhwa, R; Sugihara, T; Yoshida, A; Nomura, H; Reddel, R R; Simpson, R; Maruta, H; Kaul, S C

    2000-12-15

    MKT-077, a cationic rhodacyanine dye analogue has been under preclinical cancer therapeutical trials because of its selective toxicity to cancer cells. Its cellular targets and mechanism of action remain poorly understood. Here we report that MKT-077 binds to an hsp70 family member, mortalin (mot-2), and abrogates its interactions with the tumor suppressor protein, p53. In cancer cells, but not in normal cells, MKT-077 induced release of wild-type p53 from cytoplasmically sequestered p53-mot-2 complexes and rescued its transcriptional activation function. Thus, MKT-077 may be particularly useful for therapy of cancers with wild-type p53.

  1. Infectivity and expression of the early adenovirus proteins are important regulators of wild-type and DeltaE1B adenovirus replication in human cells.

    PubMed

    Steegenga, W T; Riteco, N; Bos, J L

    1999-09-09

    An adenovirus mutant lacking the expression of the large E1B protein (DeltaE1B) has been reported to replicate selectively in cells lacking the expression of functionally wild-type (wt) p53. Based on these results the DeltaE1B or ONYX-015 virus has been proposed to be an oncolytic virus which might be useful to treat p53-deficient tumors. Recently however, contradictory results have been published indicating that p53-dependent cell death is required for productive adenovirus infection. Since there is an urgent need for new methods to treat aggressive, mutant p53-expressing primary tumors and their metastases we carefully examined adenovirus replication in human cells to determine whether or not the DeltaE1B virus can be used for tumor therapy. The results we present here show that not all human tumor cell lines take up adenovirus efficiently. In addition, we observed inhibition of the expression of adenovirus early proteins in tumor cells. We present evidence that these two factors rather than the p53 status of the cell determine whether adenovirus infection results in lytic cell death. Furthermore, the results we obtained by infecting a panel of different tumor cell lines show that viral spread of the DeltaE1B is strongly inhibited in almost all p53-proficient and -deficient cell lines compared to the wt virus. We conclude that the efficiency of the DeltaE1B virus to replicate efficiently in tumor cells is determined by the ability to infect cells and to express the early adenovirus proteins rather than the status of p53.

  2. Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome.

    PubMed

    Neilsen, Paul M; Noll, Jacqueline E; Suetani, Rachel J; Schulz, Renee B; Al-Ejeh, Fares; Evdokiou, Andreas; Lane, David P; Callen, David F

    2011-12-01

    Mutations in the TP53 gene commonly result in the expression of a full-length protein that drives cancer cell invasion and metastasis. Herein, we have deciphered the global landscape of transcriptional regulation by mutant p53 through the application of a panel of isogenic H1299 derivatives with inducible expression of several common cancer-associated p53 mutants. We found that the ability of mutant p53 to alter the transcriptional profile of cancer cells is remarkably conserved across different p53 mutants. The mutant p53 transcriptional landscape was nested within a small subset of wild-type p53 responsive genes, suggesting that the oncogenic properties of mutant p53 are conferred by retaining its ability to regulate a defined set of p53 target genes. These mutant p53 target genes were shown to converge upon a p63 signalling axis. Both mutant p53 and wild-type p63 were co-recruited to the promoters of these target genes, thus providing a molecular basis for their selective regulation by mutant p53. We demonstrate that mutant p53 manipulates the gene expression pattern of cancer cells to facilitate invasion through the release of a pro-invasive secretome into the tumor microenvironment. Collectively, this study provides mechanistic insight into the complex nature of transcriptional regulation by mutant p53 and implicates a role for tumor-derived p53 mutations in the manipulation of the cancer cell secretome.

  3. Mechanisms of p53-Mediated Apoptosis

    DTIC Science & Technology

    2007-03-01

    See Figure 4 and Figure 5 in Appendix, Harms and Chen, 2007). Specifically the p53 target genes p21, Mdm2, FDXR, and DKK1 are induced to a greater...repression of c-Myc in a manner that partly depends on p53 • Knockdown of HDAC2 augments the induction of p53 target genes p21, Mdm2, FDXR, and DKK1 ...induction of p21, Mdm2, ferrodoxin reductase (FDXR), and dickkopf-1 ( DKK1 ) by p53. The enhancement of p53 trans-repression and trans-activation was

  4. Functional studies of a novel germline p53 splicing mutation identified in a patient with Li-Fraumeni-like syndrome.

    PubMed

    Piao, Jinhua; Sakurai, Naoto; Iwamoto, Shotaro; Nishioka, Junji; Nakatani, Kaname; Komada, Yoshihiro; Mizutani, Shuki; Takagi, Masatoshi

    2013-10-01

    Most p53 mutations identified in Li-Fraumeni syndrome (LFS) are missense mutations; splicing mutations have rarely been reported. A novel splicing p53 mutation was identified in a patient with Li-Fraumeni-like syndrome (LFL). Usually, p53 missense mutants identified in LFS and cancer cells function as dominant negative mutations interfering with wild-type p53 function. However, the mechanism by which p53 haploinsufficiency causes carcinogenesis is not well characterized. In this study, we describe a novel splicing mutation that results in the loss-of-function of p53. These findings suggest a linkage between the loss-of-function type p53 mutation and a LFL phenotype.

  5. Cisplatin modulates B-cell translocation gene 2 to attenuate cell proliferation of prostate carcinoma cells in both p53-dependent and p53-independent pathways.

    PubMed

    Chiang, Kun-Chun; Tsui, Ke-Hung; Chung, Li-Chuan; Yeh, Chun-Nan; Feng, Tsui-Hsia; Chen, Wen-Tsung; Chang, Phei-Lang; Chiang, Hou-Yu; Juang, Horng-Heng

    2014-07-01

    Cisplatin is a widely used anti-cancer drug. The B-cell translocation gene 2 (BTG2) is involved in the cell cycle transition regulation. We evaluated the cisplatin effects on prostate cancer cell proliferation and the expressions of BTG2, p53, androgen receptor (AR) and prostate specific antigen (PSA) in prostate carcinoma, p53 wild-type LNCaP or p53-null PC-3, cells. Cisplatin treatments attenuated cell prostate cancer cell growth through inducing Go/G1 cell cycle arrest in lower concentration and apoptosis at higher dosage. Cisplatin treatments enhanced p53 and BTG2 expression, repressed AR and PSA expression, and blocked the activation of androgen on the PSA secretion in LNCaP cells. BTG2 knockdown in LNCaP cells attenuated cisplatin-mediated growth inhibition. Cisplatin enhanced BTG2 gene expression dependent on the DNA fragment located within -173 to -82 upstream of BTG2 translation initiation site in prostate cancer cells. Mutation of the p53 response element from GGGCAGAGCCC to GGGCACC or mutation of the NFκB response element from GGAAAGTCC to GGAAAGGAA by site-directed mutagenesis abolished the stimulation of cisplatin on the BTG2 promoter activity in LNCaP or PC-3 cells, respectively. Our results indicated that cisplatin attenuates prostate cancer cell proliferation partly mediated by upregulation of BTG2 through the p53-dependent pathway or p53-independent NFκB pathway.

  6. Molecular dynamics of the full-length p53 monomer

    PubMed Central

    Chillemi, Giovanni; Davidovich, Pavel; D’Abramo, Marco; Mametnabiev, Tazhir; Garabadzhiu, Alexander Vasilievich; Desideri, Alessandro; Melino, Gerry

    2013-01-01

    The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants. PMID:23974096

  7. MIF Maintains the Tumorigenic Capacity of Brain Tumor-Initiating Cells by Directly Inhibiting p53.

    PubMed

    Fukaya, Raita; Ohta, Shigeki; Yaguchi, Tomonori; Matsuzaki, Yumi; Sugihara, Eiji; Okano, Hideyuki; Saya, Hideyuki; Kawakami, Yutaka; Kawase, Takeshi; Yoshida, Kazunari; Toda, Masahiro

    2016-05-01

    Tumor-initiating cells thought to drive brain cancer are embedded in a complex heterogeneous histology. In this study, we isolated primary cells from 21 human brain tumor specimens to establish cell lines with high tumorigenic potential and to identify the molecules enabling this capability. The morphology, sphere-forming ability upon expansion, and differentiation potential of all cell lines were indistinguishable in vitro However, testing for tumorigenicity revealed two distinct cell types, brain tumor-initiating cells (BTIC) and non-BTIC. We found that macrophage migration inhibitory factor (MIF) was highly expressed in BTIC compared with non-BTIC. MIF bound directly to both wild-type and mutant p53 but regulated p53-dependent cell growth by different mechanisms, depending on glioma cell line and p53 status. MIF physically interacted with wild-type p53 in the nucleus and inhibited its transcription-dependent functions. In contrast, MIF bound to mutant p53 in the cytoplasm and abrogated transcription-independent induction of apoptosis. Furthermore, MIF knockdown inhibited BTIC-induced tumor formation in a mouse xenograft model, leading to increased overall survival. Collectively, our findings suggest that MIF regulates BTIC function through direct, intracellular inhibition of p53, shedding light on the molecular mechanisms underlying the tumorigenicity of certain malignant brain cells. Cancer Res; 76(9); 2813-23. ©2016 AACR.

  8. Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function.

    PubMed

    Margalit, Ofer; Simon, Amos J; Yakubov, Eduard; Puca, Rosa; Yosepovich, Ady; Avivi, Camila; Jacob-Hirsch, Jasmine; Gelernter, Ilana; Harmelin, Alon; Barshack, Iris; Rechavi, Gideon; D'Orazi, Gabriella; Givol, David; Amariglio, Ninette

    2012-08-15

    Activated p53 is necessary for tumor suppression. Homeodomain-interacting protein kinase-2 (HIPK2) is a positive regulator of functional p53. HIPK2 modulates wild-type p53 activity toward proapoptotic transcription and tumor suppression by the phosphorylation of serine 46. Knock-down of HIPK2 interferes with tumor suppression and sensitivity to chemotherapy. Combined administration of adriamycin and zinc restores activity of misfolded p53 and enables the induction of its proapoptotic and tumor suppressor functions in vitro and in vivo. We therefore looked for a cancer model where HIPK2 expression is low. MMTV-neu transgenic mice overexpressing HER2/neu, develop mammary tumors at puberty with a long latency, showing very low expression of HIPK2. Here we show that whereas these tumors are resistant to adriamycin treatment, a combination of adriamycin and zinc suppresses tumor growth in vivo in these mice, an effect evidenced by the histological features of the mammary tumors. The combined treatment of adriamycin and zinc also restores wild-type p53 conformation and induces proapoptotic transcription activity. These findings may open up new possibilities for the treatment of human cancers via the combination of zinc with chemotherapeutic agents, for a selected group of patients expressing low levels of HIPK2, with an intact p53. In addition, HIPK2 may serve as a new biomarker for tumor aggressiveness.

  9. Regulation of autophagy by cytoplasmic p53.

    PubMed

    Tasdemir, Ezgi; Maiuri, M Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2008-06-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that deletion, depletion or inhibition of p53 can induce autophagy in human, mouse and nematode cells subjected to knockout, knockdown or pharmacological inhibition of p53. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53(-/-) cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53.

  10. p53 regulates the cardiac transcriptome

    PubMed Central

    Mak, Tak W.; Hauck, Ludger; Grothe, Daniela; Billia, Filio

    2017-01-01

    The tumor suppressor Trp53 (p53) inhibits cell growth after acute stress by regulating gene transcription. The mammalian genome contains hundreds of p53-binding sites. However, whether p53 participates in the regulation of cardiac tissue homeostasis under normal conditions is not known. To examine the physiologic role of p53 in adult cardiomyocytes in vivo, Cre-loxP–mediated conditional gene targeting in adult mice was used. Genome-wide transcriptome analyses of conditional heart-specific p53 knockout mice were performed. Genome-wide annotation and pathway analyses of >5,000 differentially expressed transcripts identified many p53-regulated gene clusters. Correlative analyses identified >20 gene sets containing more than 1,000 genes relevant to cardiac architecture and function. These transcriptomic changes orchestrate cardiac architecture, excitation-contraction coupling, mitochondrial biogenesis, and oxidative phosphorylation capacity. Interestingly, the gene expression signature in p53-deficient hearts confers resistance to acute biomechanical stress. The data presented here demonstrate a role for p53, a previously unrecognized master regulator of the cardiac transcriptome. The complex contributions of p53 define a biological paradigm for the p53 regulator network in the heart under physiological conditions. PMID:28193895

  11. Cadmium induces p53-dependent apoptosis in human prostate epithelial cells.

    PubMed

    Aimola, Pierpaolo; Carmignani, Marco; Volpe, Anna Rita; Di Benedetto, Altomare; Claudio, Luigi; Waalkes, Michael P; van Bokhoven, Adrie; Tokar, Erik J; Claudio, Pier Paolo

    2012-01-01

    Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.

  12. Suppression of inhibitor of differentiation 2, a target of mutant p53, is required for gain-of-function mutations.

    PubMed

    Yan, Wensheng; Liu, Gang; Scoumanne, Ariane; Chen, Xinbin

    2008-08-15

    Overexpression of mutant p53 is a common theme in human tumors, suggesting a tumor-promoting gain-of-function for mutant p53. To elucidate whether and how mutant p53 acquires its gain-of-function, mutant p53 is inducibly knocked down in the SW480 colon cancer cell line, which contains mutant p53(R273H/P309S), and the MIA PaCa-2 pancreatic cancer cell line, which contains mutant p53(R248W). We found that knockdown of mutant p53 markedly inhibits cell proliferation. In addition, knockdown of mutant p53 sensitizes tumor cells to growth suppression by various chemotherapeutic drugs. To determine whether a gene involved in cell growth and survival is regulated by mutant p53, gene expression profiling analysis was performed and showed that the expression level of Id2, a member of the inhibitor of differentiation (Id) family, was markedly increased upon knockdown of mutant p53. To confirm this, Northern blot analysis was performed and showed that the expression level of Id2 was regulated by various mutant p53s in multiple cell lines. In addition, we found that the Id2 promoter is responsive to mutant but not wild-type p53, and mutant p53 binds to the Id2 promoter. Consistent with these observations, expression of endogenous Id2 was found to be inhibited by exogenous mutant p53 in p53-null HCT116 cells. Finally, we showed that knockdown of Id2 can restore the proliferative potential of tumor cells inhibited by withdrawal of mutant p53. Together, these findings suggest that one mechanism by which mutant p53 acquires its gain-of-function is through the inhibition of Id2 expression.

  13. Comparison of effects of p53 null and gain-of-function mutations on salivary tumors in MMTV-Hras transgenic mice.

    PubMed

    Jiang, Dadi; Dumur, Catherine I; Massey, H Davis; Ramakrishnan, Viswanathan; Subler, Mark A; Windle, Jolene J

    2015-01-01

    p53 is an important tumor suppressor gene which is mutated in ~50% of all human cancers. Some of these mutants appear to have acquired novel functions beyond merely losing wild-type functions. To investigate these gain-of-function effects in vivo, we generated mice of three different genotypes: MMTV-Hras/p53(+/+), MMTV-Hras/p53(-/-), and MMTV-Hras/p53R172H/R172H. Salivary tumors from these mice were characterized with regard to age of tumor onset, tumor growth rates, cell cycle distribution, apoptotic levels, tumor histopathology, as well as response to doxorubicin treatment. Microarray analysis was also performed to profile gene expression. The MMTV-Hras/p53(-/-) and MMTV-Hras/p53R172H/R172H mice displayed similar properties with regard to age of tumor onset, tumor growth rates, tumor histopathology, and response to doxorubicin, while both groups were clearly distinct from the MMTV-Hras/p53(+/+) mice by these measurements. In addition, the gene expression profiles of the MMTV-Hras/p53(-/-) and MMTV-Hras/p53(R172H/R172H) tumors were tightly clustered, and clearly distinct from the profiles of the MMTV-Hras/p53(+/+) tumors. Only a small group of genes showing differential expression between the MMTV-Hras/p53(-/-) and MMTV-Hras/p53(R172H/R172H) tumors, that did not appear to be regulated by wild-type p53, were identified. Taken together, these results indicate that in this MMTV-Hras-driven salivary tumor model, the major effect of the p53 R172H mutant is due to the loss of wild-type p53 function, with little or no gain-of-function effect on tumorigenesis, which may be explained by the tissue- and tumor type-specific properties of this gain-of-function mutant of p53.

  14. Comparison of Effects of p53 Null and Gain-of-Function Mutations on Salivary Tumors in MMTV-Hras Transgenic Mice

    PubMed Central

    Jiang, Dadi; Dumur, Catherine I.; Massey, H. Davis; Ramakrishnan, Viswanathan; Subler, Mark A.; Windle, Jolene J.

    2015-01-01

    p53 is an important tumor suppressor gene which is mutated in ~50% of all human cancers. Some of these mutants appear to have acquired novel functions beyond merely losing wild-type functions. To investigate these gain-of-function effects in vivo, we generated mice of three different genotypes: MMTV-Hras/p53+/+, MMTV-Hras/p53-/-, and MMTV-Hras/p53R172H/R172H. Salivary tumors from these mice were characterized with regard to age of tumor onset, tumor growth rates, cell cycle distribution, apoptotic levels, tumor histopathology, as well as response to doxorubicin treatment. Microarray analysis was also performed to profile gene expression. The MMTV-Hras/p53-/- and MMTV-Hras/p53R172H/R172H mice displayed similar properties with regard to age of tumor onset, tumor growth rates, tumor histopathology, and response to doxorubicin, while both groups were clearly distinct from the MMTV-Hras/p53+/+ mice by these measurements. In addition, the gene expression profiles of the MMTV-Hras/p53-/- and MMTV-Hras/p53R172H/R172H tumors were tightly clustered, and clearly distinct from the profiles of the MMTV-Hras/p53+/+ tumors. Only a small group of genes showing differential expression between the MMTV-Hras/p53-/- and MMTV-Hras/p53R172H/R172H tumors, that did not appear to be regulated by wild-type p53, were identified. Taken together, these results indicate that in this MMTV-Hras-driven salivary tumor model, the major effect of the p53 R172H mutant is due to the loss of wild-type p53 function, with little or no gain-of-function effect on tumorigenesis, which may be explained by the tissue- and tumor type-specific properties of this gain-of-function mutant of p53. PMID:25695772

  15. Assessment of p53 protein expression in normal mucosa and benign and malignant lesions of the nasal cavity.

    PubMed

    Fang, S Y; Yan, J J; Ohyama, M

    1998-01-01

    p53 gene mutation is documented in head and neck cancer. No reports exist relating this mutation to normal mucosa or benign and malignant lesions of the nasal cavity. We investigate p53 overexpression using immunohistochemical techniques improved by an antigen retrieval method. p53 protein was analyzed in the following cases: normal, benign [papilloma and inverted papilloma (IP)] and malignant [squamous-cell carcinoma (SCC) arising in IP, SCC alone, adenocarcinoma and small-cell carcinoma]. Both the intensity and rate of positive p53 immunostaining were evaluated using a quantitative Auto-CAD program. Overexpression of p53 protein was not identified in normal mucosa, benign or premalignant lesions; however, approximately 60% is correlated to nasal cancer. p53 overexpression correlates with heavy smoking. Both the IP and SCC portions of SCC synchronous with IP showed similar p53 immunoreactivity. SCC arising in IP shows a lower p53 immunoreactivity than SCC alone. Thus, smoking along with a p53 mutation may be a mutagenic agent in nasal cancers. Alteration of the p53 protein may play an important role in the early stages of the malignant transformation of IP. A low p53 immunoreactivity indicates the presence of wild-type p53 protein. This may show a better response to radiation therapy yielding a better prognosis for SCC arising in IP compared to SCC alone. However, further clinical trials are required to investigate this possibly worthwhile prognostic marker.

  16. Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor

    PubMed Central

    Silva, Jerson L.; Rangel, Luciana P.; Costa, Danielly C. F.; Cordeiro, Yraima; De Moura Gallo, Claudia V.

    2013-01-01

    p53 is a key protein that participates in cell-cycle control, and its malfunction can lead to cancer. This tumour suppressor protein has three main domains; the N-terminal transactivation domain, the CTD (C-terminal domain) and the core domain (p53C) that constitutes the sequence-specific DBD (DNA-binding region). Most p53 mutations related to cancer development are found in the DBD. Aggregation of p53 into amyloid oligomers and fibrils has been shown. Moreover, amyloid aggregates of both the mutant and WT (wild-type) forms of p53 were detected in tumour tissues. We propose that if p53 aggregation occurred, it would be a crucial aspect of cancer development, as p53 would lose its WT functions in an aggregated state. Mutant p53 can also exert a dominant-negative regulatory effect on WT p53. Herein, we discuss the dominant-negative effect in light of p53 aggregation and the fact that amyloid-like mutant p53 can convert WT p53 into more aggregated species, leading into gain of function in addition to the loss of tumour suppressor function. In summary, the results obtained in the last decade indicate that cancer may have characteristics in common with amyloidogenic and prion diseases. PMID:24003888

  17. p53 mutation heterogeneity in cancer

    SciTech Connect

    Soussi, T. . E-mail: thierry.soussi@free.fr; Lozano, G.

    2005-06-10

    The p53 gene is inactivated in about 50% of human cancers and the p53 protein is an essential component of the cell response induced by genotoxic stresses such as those generated by radiotherapy or chemotherapy. It is therefore highly likely that these alterations are an important component in tumor resistance to therapy. The particular characteristics of these alterations, 80% of which are missense mutations leading to functionally heterogeneous proteins, make p53 a unique gene in the class of tumor suppressor genes. A considerable number of mutant p53 proteins probably have an oncogenic activity per se and therefore actively participate in cell transformation. The fact that the apoptotic and antiproliferative functions of p53 can be dissociated in certain mutants also suggests another level of complexity in the relationships between p53 inactivation and neoplasia.

  18. The expanding universe of p53 targets.

    PubMed

    Menendez, Daniel; Inga, Alberto; Resnick, Michael A

    2009-10-01

    The p53 tumour suppressor is modified through mutation or changes in expression in most cancers, leading to the altered regulation of hundreds of genes that are directly influenced by this sequence-specific transcription factor. Central to the p53 master regulatory network are the target response element (RE) sequences. The extent of p53 transactivation and transcriptional repression is influenced by many factors, including p53 levels, cofactors and the specific RE sequences, all of which contribute to the role that p53 has in the aetiology of cancer. This Review describes the identification and functionality of REs and highlights the inclusion of non-canonical REs that expand the universe of genes and regulation mechanisms in the p53 tumour suppressor network.

  19. Constant rate of p53 tetramerization in response to DNA damage controls the p53 response

    PubMed Central

    Gaglia, Giorgio; Lahav, Galit

    2014-01-01

    The dynamics of the tumor suppressor protein p53 have been previously investigated in single cells using fluorescently tagged p53. Such approach reports on the total abundance of p53 but does not provide a measure for functional p53. We used fluorescent protein-fragment complementation assay (PCA) to quantify in single cells the dynamics of p53 tetramers, the functional units of p53. We found that while total p53 increases proportionally to the input strength, p53 tetramers are formed in cells at a constant rate. This breaks the linear input–output relation and dampens the p53 response. Disruption of the p53-binding protein ARC led to a dose-dependent rate of tetramers formation, resulting in enhanced tetramerization and induction of p53 target genes. Our work suggests that constraining the p53 response in face of variable inputs may protect cells from committing to terminal outcomes and highlights the importance of quantifying the active form of signaling molecules in single cells. Quantification of the dynamics of p53 tetramers in single cells using a fluorescent protein-fragment complementation assay reveals that, while total p53 increases proportionally to the DNA damage strength, p53 tetramers are formed at a constant rate. PMID:25344068

  20. p53 causes butein-mediated apoptosis of chronic myeloid leukemia cells

    PubMed Central

    WOO, SANG-MI; CHOI, YOUN KYNUG; KIM, AH JEONG; CHO, SUNG-GOOK; KO, SEONG-GYU

    2016-01-01

    Progression of chronic myeloid leukemia, marked by the oncogenic Bcr-Abl mutation, is tightly associated with an alteration of the p53 pathway. It is known that butein extracted from various plants represses cancer growth. Although the anticancer effects of butein are widely accepted, the mechanisms by which butein induces apoptosis of chronic myeloid leukemia cells remains to be elucidated. The present study demonstrated that butein-induced apoptosis was mediated by p53. KBM5 chronic myeloid leukemia (CML) cells expressing wild-type p53 were more sensitive to butein compared with p53-null K562 CML cells in terms of apoptotic cell death. In addition, butein arrested KBM5 cells at S-phase and altered the expression levels of certain cyclins and the p53-downstream targets, MDM2 and p21. In addition, while butein reduced the protein expression of MDM2 in the KBM5 and K562 cells, it resulted in proteasome-independent MDM2 degradation in p53-expressing KBM5 cells, however, not in p53-null K562 cells. Therefore, the present study suggested that p53 causes the butein-mediated apoptosis of leukemic cells. PMID:26676515

  1. p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells

    SciTech Connect

    Janssen, Astrid; Schiffmann, Susanne; Birod, Kerstin; Maier, Thorsten J.; Wobst, Ivonne; Geisslinger, Gerd

    2008-01-25

    S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53{sup wt}) or being p(HCT-116 p53{sup -/-}), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53{sup -/-} xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53{sup wt} cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53{sup wt} cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75{sup NTR}, p53 and Bax.

  2. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth

    PubMed Central

    Aggarwal, M; Saxena, R; Sinclair, E; Fu, Y; Jacobs, A; Dyba, M; Wang, X; Cruz, I; Berry, D; Kallakury, B; Mueller, S C; Agostino, S D; Blandino, G; Avantaggiati, M L; Chung, F-L

    2016-01-01

    Mutations in the p53 tumor-suppressor gene are prevalent in human cancers. The majority of p53 mutations are missense, which can be classified into contact mutations (that directly disrupts the DNA-binding activity of p53) and structural mutations (that disrupts the conformation of p53). Both of the mutations can disable the normal wild-type (WT) p53 activities. Nevertheless, it has been amply documented that small molecules can rescue activity from mutant p53 by restoring WT tumor-suppressive functions. These compounds hold promise for cancer therapy and have now entered clinical trials. In this study, we show that cruciferous-vegetable-derived phenethyl isothiocyanate (PEITC) can reactivate p53 mutant under in vitro and in vivo conditions, revealing a new mechanism of action for a dietary-related compound. PEITC exhibits growth-inhibitory activity in cells expressing p53 mutants with preferential activity toward p53R175, one of the most frequent ‘hotspot' mutations within the p53 sequence. Mechanistic studies revealed that PEITC induces apoptosis in a p53R175 mutant-dependent manner by restoring p53 WT conformation and transactivation functions. Accordingly, in PEITC-treated cells the reactivated p53R175 mutant induces apoptosis by activating canonical WT p53 targets, inducing a delay in S and G2/M phase, and by phosphorylating ATM/CHK2. Interestingly, the growth-inhibitory effects of PEITC depend on the redox state of the cell. Further, PEITC treatments render the p53R175 mutant sensitive to degradation by the proteasome and autophagy in a concentration-dependent manner. PEITC-induced reactivation of p53R175 and its subsequent sensitivity to the degradation pathways likely contribute to its anticancer activities. We further show that dietary supplementation of PEITC is able to reactivate WT activity in vivo as well, inhibiting tumor growth in xenograft mouse model. These findings provide the first example of mutant p53 reactivation by a dietary compound and

  3. Regulation of autophagy by cytoplasmic p53

    PubMed Central

    Tasdemir, Ezgi; Maiuri, M. Chiara; Galluzzi, Lorenzo; Vitale, Ilio; Djavaheri-Mergny, Mojgan; D'Amelio, Marcello; Criollo, Alfredo; Morselli, Eugenia; Zhu, Changlian; Harper, Francis; Nannmark, Ulf; Samara, Chrysanthi; Pinton, Paolo; Vicencio, José Miguel; Carnuccio, Rosa; Moll, Ute M.; Madeo, Frank; Paterlini-Brechot, Patrizia; Rizzuto, Rosario; Szabadkai, Gyorgy; Pierron, Gérard; Blomgren, Klas; Tavernarakis, Nektarios; Codogno, Patrice; Cecconi, Francesco; Kroemer, Guido

    2009-01-01

    Multiple cellular stressors, including activation of the tumour suppressor p53, can stimulate autophagy. Here we show that knockout, knockdown or pharmacological inhibition of p53 can induce autophagy in human, mouse and nematode cells. Enhanced autophagy improved the survival of p53-deficient cancer cells under conditions of hypoxia and nutrient depletion, allowing them to maintain high ATP levels. Inhibition of p53 led to autophagy in enucleated cells, and cytoplasmic, not nuclear, p53 was able to repress the enhanced autophagy of p53-/- cells. Many different inducers of autophagy (for example, starvation, rapamycin and toxins affecting the endoplasmic reticulum) stimulated proteasome-mediated degradation of p53 through a pathway relying on the E3 ubiquitin ligase HDM2. Inhibition of p53 degradation prevented the activation of autophagy in several cell lines, in response to several distinct stimuli. These results provide evidence of a key signalling pathway that links autophagy to the cancer-associated dysregulation of p53. PMID:18454141

  4. p53 mutation is common in microsatellite stable, BRAF mutant colorectal cancers.

    PubMed

    Bond, Catherine E; Umapathy, Aarti; Ramsnes, Ingunn; Greco, Sonia A; Zhen Zhao, Zhen; Mallitt, Kylie-Ann; Buttenshaw, Ron L; Montgomery, Grant W; Leggett, Barbara A; Whitehall, Vicki L J

    2012-04-01

    The majority of "serrated pathway" colorectal cancers have mutation of the BRAF oncogene and display the CpG island methylator phenotype (CIMP). Half these cancers have microsatellite instability (MSI) and an excellent prognosis. In the absence of MSI (microsatellite stable, MSS), BRAF mutation has been associated with a particularly poor prognosis. "Traditional pathway" cancers are BRAF wild type. Mutation of p53 is common and this correlates with advanced stage. We therefore hypothesized that p53 mutation would be common in MSS/BRAF mutant colorectal cancer. One thousand and eighty-one colorectal cancers were screened for BRAF mutation to identify two BRAF mutant study groups (MSI: n = 77; MSS: n = 69) and a BRAF wild type control group (n = 101). These were screened for p53 mutation by high resolution melt analysis and classified for CIMP and MGMT methylation by quantitative methylation specific PCR. Molecular data were compared to patient age, gender, tumor location and stage. p53 was mutated significantly more frequently in MSS/BRAF mutant (28/69, 40.6%) compared to MSI/BRAF mutant cancers (13/77, 16.9%), but this mutation rate did not differ from MSS/BRAF wild type cancers (47/101, 46.5%)(p < 0.0001). CIMP was less common in MSS/BRAF mutant (26/47, 55.3%) compared to MSI/BRAF mutant cancers (41/54, 75.9%), but was more common than in MSS/BRAF wild type cancers (3/85, 3.5%) (p < 0.0001). MSS/BRAF mutant cancers were more commonly proximal (38/54, 70.3%), but were similar to MSS/BRAF wild type cancers in terms of patient age, gender distribution and stage at presentation. MSS/BRAF mutant cancers share molecular and clinical features of both the serrated and traditional pathways of colorectal tumorigenesis.

  5. The Effects of Dark Incubation on Cellular Metabolism of the Wild Type Cyanobacterium Synechocystis sp. PCC 6803 and a Mutant Lacking the Transcriptional Regulator cyAbrB2.

    PubMed

    Hanai, Masamitsu; Sato, Yusuke; Miyagi, Atsuko; Kawai-Yamada, Maki; Tanaka, Kyoko; Kaneko, Yasuko; Nishiyama, Yoshitaka; Hihara, Yukako

    2014-11-21

    The cyAbrB2 transcriptional regulator is essential for active sugar catabolism in Synechocystis sp. PCC 6803 grown under light conditions. In the light-grown cyabrB2-disrupted mutant, glycogen granules and sugar phosphates corresponding to early steps in the glycolytic pathway accumulated to higher levels than those in the wild-type (WT) strain, whereas the amounts of 3-phosphoglycerate, phosphoenolpyruvate and ribulose 1,5-bisphosphate were significantly lower. We further determined that accumulated glycogen granules in the mutant could be actively catabolized under dark conditions. Differences in metabolite levels between WT and the mutant became less substantial during dark incubation due to a general quantitative decrease in metabolite levels. Notable exceptions, however, were increases in 2-oxoglutarate, histidine, ornithine and citrulline in the WT but not in the mutant. The amounts of cyAbrBs were highly responsive to the availability of light both in transcript and protein levels. When grown under light-dark cycle conditions, diurnal oscillatory pattern of glycogen content of the mutant was lost after the second dark period. These observations indicate that cyAbrB2 is dispensable for activation of sugar catabolism under dark conditions but involved in the proper switching between day and night metabolisms.

  6. Fluorescence polarization assay and inhibitor design for MDM2/p53 interaction.

    PubMed

    Zhang, Rumin; Mayhood, Todd; Lipari, Philip; Wang, Yaolin; Durkin, James; Syto, Rosalinda; Gesell, Jennifer; McNemar, Charles; Windsor, William

    2004-08-01

    MDM2 is an important negative regulator of the tumor suppressor protein p53 which regulates the expression of many genes including MDM2. The delicate balance of this autoregulatory loop is crucial for the maintenance of the genome and control of the cell cycle and apoptosis. MDM2 hyperactivity, due to amplification/overexpression or mutational inactivation of the ARF locus, inhibits the function of wild-type p53 and can lead to the development of a wide variety of cancers. Thus, the development of anti-MDM2 therapies may restore normal p53 function in tumor cells and induce growth suppression and apoptosis. We report here a novel high-throughput fluorescence polarization binding assay and its application in rank ordering small-molecule inhibitors that block the binding of MDM2 to a p53-derived fluorescent peptide.

  7. Homozygous and Heterozygous p53 Knockout Rats Develop Metastasizing Sarcomas with High Frequency

    PubMed Central

    van Boxtel, Ruben; Kuiper, Raoul V.; Toonen, Pim W.; van Heesch, Sebastiaan; Hermsen, Roel; de Bruin, Alain; Cuppen, Edwin

    2011-01-01

    The TP53 tumor suppressor gene is mutated in the majority of human cancers. Inactivation of p53 in a variety of animal models results in early-onset tumorigenesis, reflecting the importance of p53 as a gatekeeper tumor suppressor. We generated a mutant Tp53 allele in the rat using a target-selected mutagenesis approach. Here, we report that homozygosity for this allele results in complete loss of p53 function. Homozygous mutant rats predominantly develop sarcomas with an onset of 4 months of age with a high occurrence of pulmonary metastases. Heterozygous rats develop sarcomas starting at 8 months of age. Molecular analysis revealed that these tumors exhibit a loss-of-heterozygosity of the wild-type Tp53 allele. These unique features make this rat highly complementary to other rodent p53 knockout models and a versatile tool for investigating tumorigenesis processes as well as genotoxic studies. PMID:21854749

  8. Oncogenic Intra-p53 Family Member Interactions in Human Cancers

    PubMed Central

    Ferraiuolo, Maria; Di Agostino, Silvia; Blandino, Giovanni; Strano, Sabrina

    2016-01-01

    The p53 gene family members p53, p73, and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologs but hold peculiar functional properties. p53, p73, and p63 are tumor suppressor genes that promote differentiation, senescence, and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic “gain of function” activities correlated with the induction of proliferation, invasion, chemoresistance, and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53) with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor, Ets-1, NF-kB and YAP) or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response and DNA double-strand breaks response), enhanced invasion, and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild-type p53 (wt-p53) protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73, and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers. PMID:27066457

  9. Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells

    PubMed Central

    Fingrut, Orit; Reischer, Dorit; Rotem, Ronit; Goldin, Natalia; Altboum, Irit; Zan-Bar, Israel; Flescher, Eliezer

    2005-01-01

    Mutations in p53, a tumor suppressor gene, occur in more than half of human cancers. Therefore, we tested the hypothesis that jasmonates (novel anticancer agents) can induce death in mutated p53-expressing cells. Two clones of B-lymphoma cells were studied, one expressing wild-type (wt) p53 and the other expressing mutated p53. Jasmonic acid and methyl jasmonate (0.25–3 mM) were each equally cytotoxic to both clones, whereas mutant p53-expressing cells were resistant to treatment with the radiomimetic agent neocarzinostatin and the chemotherapeutic agent bleomycin. Neocarzinostatin and bleomycin induced an elevation in the p53 levels in wt p53-expressing cells, whereas methyl jasmonate did not. Methyl jasmonate induced mostly apoptotic death in the wt p53-expressing cells, while no signs of early apoptosis were detected in mutant p53-expressing cells. In contrast, neocarzinostatin and bleomycin induced death only in wt p53-expressing cells, in an apoptotic mode. Methyl jasmonate induced a rapid depletion of ATP in both clones. In both clones, oligomycin (a mitochondrial ATP synthase inhibitor) did not increase ATP depletion induced by methyl jasmonate, whereas inhibition of glycolysis with 2-deoxyglucose did. High glucose levels protected both clones from methyl jasmonate-induced ATP depletion (and reduced methyl jasmonate-induced cytotoxicity), whereas high levels of pyruvate did not. These results suggest that methyl jasmonate induces ATP depletion mostly by compromising oxidative phosphorylation in the mitochondria. In conclusion, jasmonates can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing a nonapoptotic cell death. PMID:16170329

  10. Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats

    DOE PAGES

    Botcheva, Krassimira; McCorkle, Sean R.

    2014-11-21

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We reportmore » distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). In conclusion, our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.« less

  11. Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats

    SciTech Connect

    Botcheva, Krassimira; McCorkle, Sean R.

    2014-11-21

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We report distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). In conclusion, our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.

  12. Cell context dependent p53 genome-wide binding patterns and enrichment at repeats.

    PubMed

    Botcheva, Krassimira; McCorkle, Sean R

    2014-01-01

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We report distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). Our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways.

  13. Cell Context Dependent p53 Genome-Wide Binding Patterns and Enrichment at Repeats

    PubMed Central

    Botcheva, Krassimira; McCorkle, Sean R.

    2014-01-01

    The p53 ability to elicit stress specific and cell type specific responses is well recognized, but how that specificity is established remains to be defined. Whether upon activation p53 binds to its genomic targets in a cell type and stress type dependent manner is still an open question. Here we show that the p53 binding to the human genome is selective and cell context-dependent. We mapped the genomic binding sites for the endogenous wild type p53 protein in the human cancer cell line HCT116 and compared them to those we previously determined in the normal cell line IMR90. We report distinct p53 genome-wide binding landscapes in two different cell lines, analyzed under the same treatment and experimental conditions, using the same ChIP-seq approach. This is evidence for cell context dependent p53 genomic binding. The observed differences affect the p53 binding sites distribution with respect to major genomic and epigenomic elements (promoter regions, CpG islands and repeats). We correlated the high-confidence p53 ChIP-seq peaks positions with the annotated human repeats (UCSC Human Genome Browser) and observed both common and cell line specific trends. In HCT116, the p53 binding was specifically enriched at LINE repeats, compared to IMR90 cells. The p53 genome-wide binding patterns in HCT116 and IMR90 likely reflect the different epigenetic landscapes in these two cell lines, resulting from cancer-associated changes (accumulated in HCT116) superimposed on tissue specific differences (HCT116 has epithelial, while IMR90 has mesenchymal origin). Our data support the model for p53 binding to the human genome in a highly selective manner, mobilizing distinct sets of genes, contributing to distinct pathways. PMID:25415302

  14. p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells.

    PubMed

    Aneja, Ritu; Ghaleb, Amr M; Zhou, Jun; Yang, Vincent W; Joshi, Harish C

    2007-04-15

    We have previously discovered the naturally occurring antitussive alkaloid noscapine as a tubulin-binding agent that attenuates microtubule dynamics and arrests mammalian cells at mitosis via activation of the c-Jun NH(2)-terminal kinase pathway. It is well established that the p53 protein plays a crucial role in the control of tumor cell response to chemotherapeutic agents and DNA-damaging agents; however, the relationship between p53-driven genes and drug sensitivity remains controversial. In this study, we compared chemosensitivity, cell cycle distribution, and apoptosis on noscapine treatment in four cell lines derived from the colorectal carcinoma HCT116 cells: p53(+/+) (p53-wt), p53(-/-) (p53-null), p21(-/-) (p21-null), and BAX(-/-) (BAX-null). Using these isogenic variants, we investigated the roles of p53, BAX, and p21 in the cellular response to treatment with noscapine. Our results show that noscapine treatment increases the expression of p53 over time in cells with wild-type p53 status. This increase in p53 is associated with an increased apoptotic BAX/Bcl-2 ratio consistent with increased sensitivity of these cells to apoptotic stimuli. Conversely, loss of p53 and p21 alleles had a counter effect on both BAX and Bcl-2 expression and the p53-null and p21-null cells were significantly resistant to the antiproliferative and apoptotic effects of noscapine. All but the p53-null cells displayed p53 protein accumulation in a time-dependent manner on noscapine treatment. Interestingly, despite increased levels of p53, p21-null cells were resistant to apoptosis, suggesting a proapoptotic role of p21 and implying that p53 is a necessary but not sufficient condition for noscapine-mediated apoptosis.

  15. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation.

    PubMed

    Apostolidis, Pani A; Lindsey, Stephan; Miller, William M; Papoutsakis, Eleftherios T

    2012-06-15

    During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects.

  16. Mitochondrial death functions of p53

    PubMed Central

    Marchenko, N D; Moll, U M

    2014-01-01

    The p53 tumor suppressor network plays a fundamental surveillance role in both homeostatic and adaptive cell biology. p53 is one of the most important barriers against malignant derailment of normal cells, orchestrating growth arrest, senescence, or cell death by linking many different pathways in response to genotoxic and non-genotoxic insults. p53 is the key broadband sensor for numerous cellular stresses such as DNA damage, hypoxia, oxidative stress, oncogenic signaling, and nucleolar stress. The crucial tumor suppressive and tissue homeostasis activity of p53 is its ability to activate cell death via multiple different pathways. A well-characterized biochemical function of p53 in the regulation of apoptosis is its role as a potent transcriptional regulator. p53 activates a panel of proapoptotic genes from the mitochondrial apoptotic and death receptor programs while repressing antiapoptotic Bcl2 family genes. In addition, over the last 10 y a growing body of evidence has also defined direct extranuclear non-transcriptional p53 activities within mitochondria-mediated cell death pathways that are based on p53 protein accumulation in cytosolic and mitochondrial compartments and protein-protein interactions. To date, transcription-independent p53-mediated cell death regulation has been described for apoptosis, necrosis, and autophagy. Because mitochondrial dysregulation is central to the development of a number of pathologic processes such as cancer and neurodegenerative and age-related diseases, understanding the direct roles of p53 protein in mitochondria has high translational impact and could facilitate the development of novel drug targets to combat these diseases. In this review we will mainly focus on mechanisms of p53-mediated transcription-independent cell death pathways at mitochondria. PMID:27308326

  17. The chemopreventive effects of Protandim: modulation of p53 mitochondrial translocation and apoptosis during skin carcinogenesis.

    PubMed

    Robbins, Delira; Gu, Xin; Shi, Runhua; Liu, Jianfeng; Wang, Fei; Ponville, Jacqulyne; McCord, Joe M; Zhao, Yunfeng

    2010-07-30

    Protandim, a well defined dietary combination of 5 well-established medicinal plants, is known to induce endogenous antioxidant enzymes, such as manganese superoxide dismutase (MnSOD). Our previous studies have shown through the induction of various antioxidant enzymes, products of oxidative damage can be decreased. In addition, we have shown that tumor multiplicity and incidence can be decreased through the dietary administration of Protandim in the two-stage skin carcinogenesis mouse model. It has been demonstrated that cell proliferation is accommodated by cell death during DMBA/TPA treatment in the two-stage skin carcinogenesis model. Therefore, we investigated the effects of the Protandim diet on apoptosis; and proposed a novel mechanism of chemoprevention utilized by the Protandim dietary combination. Interestingly, Protandim suppressed DMBA/TPA induced cutaneous apoptosis. Recently, more attention has been focused on transcription-independent mechanisms of the tumor suppressor, p53, that mediate apoptosis. It is known that cytoplasmic p53 rapidly translocates to the mitochondria in response to pro-apoptotic stress. Our results showed that Protandim suppressed the mitochondrial translocation of p53 and mitochondrial outer membrane proteins such as Bax. We examined the levels of p53 and MnSOD expression/activity in murine skin JB6 promotion sensitive (P+) and promotion-resistant (P-) epidermal cells. Interestingly, p53 was induced only in P+ cells, not P- cells; whereas MnSOD is highly expressed in P- cells when compared to P+ cells. In addition, wild-type p53 was transfected into JB6 P- cells. We found that the introduction of wild-type p53 promoted transformation in JB6 P- cells. Our results suggest that suppression of p53 and induction of MnSOD may play an important role in the tumor suppressive activity of Protandim.

  18. The Chemopreventive Effects of Protandim: Modulation of p53 Mitochondrial Translocation and Apoptosis during Skin Carcinogenesis

    PubMed Central

    Robbins, Delira; Gu, Xin; Shi, Runhua; Liu, Jianfeng; Wang, Fei; Ponville, Jacqulyne; McCord, Joe M.; Zhao, Yunfeng

    2010-01-01

    Protandim, a well defined dietary combination of 5 well-established medicinal plants, is known to induce endogenous antioxidant enzymes, such as manganese superoxide dismutase (MnSOD). Our previous studies have shown through the induction of various antioxidant enzymes, products of oxidative damage can be decreased. In addition, we have shown that tumor multiplicity and incidence can be decreased through the dietary administration of Protandim in the two-stage skin carcinogenesis mouse model. It has been demonstrated that cell proliferation is accommodated by cell death during DMBA/TPA treatment in the two-stage skin carcinogenesis model. Therefore, we investigated the effects of the Protandim diet on apoptosis; and proposed a novel mechanism of chemoprevention utilized by the Protandim dietary combination. Interestingly, Protandim suppressed DMBA/TPA induced cutaneous apoptosis. Recently, more attention has been focused on transcription-independent mechanisms of the tumor suppressor, p53, that mediate apoptosis. It is known that cytoplasmic p53 rapidly translocates to the mitochondria in response to pro-apoptotic stress. Our results showed that Protandim suppressed the mitochondrial translocation of p53 and mitochondrial outer membrane proteins such as Bax. We examined the levels of p53 and MnSOD expression/activity in murine skin JB6 promotion sensitive (P+) and promotion-resistant (P-) epidermal cells. Interestingly, p53 was induced only in P+ cells, not P- cells; whereas MnSOD is highly expressed in P- cells when compared to P+ cells. In addition, wild-type p53 was transfected into JB6 P- cells. We found that the introduction of wild-type p53 promoted transformation in JB6 P- cells. Our results suggest that suppression of p53 and induction of MnSOD may play an important role in the tumor suppressive activity of Protandim. PMID:20689586

  19. Carcinogenic responses of transgenic heterozygous p53 knockout mice to inhaled 239PuO2 or metallic beryllium.

    PubMed

    Finch, G L; March, T H; Hahn, F F; Barr, E B; Belinsky, S A; Hoover, M D; Lechner, J F; Nikula, K J; Hobbs, C H

    1998-01-01

    The transgenic heterozygous p53+/- knockout mouse has been a model for assessing the tumorigenicity of selected carcinogens administered by noninhalation routes of exposure. The sensitivity of the model for predicting cancer by inhaled chemicals has not been examined. This study addresses this issue by acutely exposing p53+/- mice of both sexes by nose-only inhalation to either air (controls), or to 1 of 2 levels of 239PuO2 (500 or 100 Bq 239Pu) or beryllium (Be) metal (60 or 15 micrograms). Additional wild-type p53+/+ mice were exposed by inhalation to either 500 Bq of 239PuO2 or 60 micrograms of Be metal. These carcinogens were selected because they operate by differing mechanisms and because of their use in other pulmonary carcinogenesis studies in our laboratory. Four or 5 of the 15 mice per sex from each group were sacrificed 6 mo after exposure, and only 2 pulmonary neoplasms were observed. The remainder of the mice were held for life-span observation and euthanasia as they became moribund. Survival of the p53+/- knockout mice was reduced compared to the p53+/+ wild-type mice. No lung neoplasms were observed in p53+/- mice exposed to air alone. Eleven of the p53+/- mice inhaling 239PuO2 developed pulmonary neoplasms. Seven p53+/+ mice exposed to 239PuO2 also developed pulmonary neoplasms, but the latency period for pulmonary neoplasia was significantly shorter in the p53+/ mice. Four pulmonary neoplasms were observed in p53+/- mice exposed to the higher dose of Be, whereas none were observed in the wild-type mice or in the heterozygous mice exposed to the lower dose of Be. Thus, both p53+/- and p53+/+ mice were susceptible to 239Pu-induced carcinogenesis, whereas the p53+/- but not the p53+/+ mice were susceptible to Be-induced carcinogenesis. However, only 2 pulmonary neoplasms (1 in each of the 239PuO2 exposure groups) were observed in the 59 p53+/ mice that were sacrificed or euthanatized within 9 mo after exposure, indicating that the p53+/- knockout

  20. p53 responsive elements in human retrotransposons.

    PubMed

    Harris, C R; Dewan, A; Zupnick, A; Normart, R; Gabriel, A; Prives, C; Levine, A J; Hoh, J

    2009-11-05

    Long interspersed nuclear elements-1 (L1s) are highly repetitive DNA elements that are capable of altering the human genome through retrotransposition. To protect against L1 retroposition, the cell downregulates the expression of L1 proteins by various mechanisms, including high-density cytosine methylation of L1 promoters and DICER-dependent destruction of L1 mRNAs. In this report, a large number of p53 responsive elements, or p53 DNA binding sites, were detected in L1 elements within the human genome. At least some of these p53 responsive elements are functional and can act to increase the levels of L1 mRNA expression. The p53 protein can directly bind to a short 15-nucleotide sequence within the L1 promoter. This p53 responsive element within L1 is a recent addition to evolution, appearing approximately 20 million years ago. This suggests an interplay between L1 elements, which have a rich history of causing changes in the genome, and the p53 protein, the function of which is to protect against genomic changes. To understand these observations, a model is proposed in which the increased expression of L1 mRNAs by p53 actually increases, rather than decreases, the genomic stability through amplification of p53-dependent processes for genomic protection.

  1. Immunohistochemical detection of mutant p53 protein in small-cell lung cancer: relationship to treatment outcome.

    PubMed

    Gemba, K; Ueoka, H; Kiura, K; Tabata, M; Harada, M

    2000-07-01

    We investigated the expression of mutant p53 proteins in small-cell lung cancer (SCLC) immunohistochemically, by identification of stabilized mutant p53 proteins with a much longer half-life than the wild-type protein. Of 103 tumor specimens obtained by transbronchial tumor biopsy for histologic diagnosis, 52 (50%) showed positive staining for p53 protein with a p53 monoclonal antibody, DO-1. Positive staining for p53 protein was not correlated with age, sex, performance status, lifetime cigarette consumption, serum concentration of neuron-specific enolase and extent of disease. Complete response rates in patients with a mutant p53 protein-positive tumor were significantly lower than those in p53-negative patients (25% versus 59%; P=0.0005, by chi-square test). Similarly, survival periods in patients with a mutant p53 protein-positive tumor were significantly shorter than those in mutant p53-protein-negative patients (10.8 months versus 20.6 months; P=0.0001, by generalized Wilcoxon test). Multivariate analysis using Cox's proportional hazards model revealed that the presence of mutant p53 protein is an independent factor associated with differences in overall survival (hazards ratio=2.72; 95% confidence interval, 1.71-4.34; P=0.0001). These observations suggest that the expression of mutant p53 proteins in SCLC may be an important factor predicting poor prognosis.

  2. SUMOylation of p53 mediates interferon activities

    PubMed Central

    Marcos-Villar, Laura; Pérez-Girón, José V; Vilas, Jéssica M; Soto, Atenea; de la Cruz-Hererra, Carlos F; Lang, Valerie; Collado, Manuel; Vidal, Anxo; Rodríguez, Manuel S; Muñoz-Fontela, César; Rivas, Carmen

    2013-01-01

    There is growing evidence that many host proteins involved in innate and intrinsic immunity are regulated by SUMOylation, and that SUMO contributes to the regulatory process that governs the initiation of the type I interferon (IFN) response. The tumor suppressor p53 is a modulator of the IFN response that plays a role in virus-induced apoptosis and in IFN-induced senescence. Here we demonstrate that IFN treatment increases the levels of SUMOylated p53 and induces cellular senescence through a process that is partially dependent upon SUMOylation of p53. Similarly, we show that vesicular stomatitis virus (VSV) infection induces p53 SUMOylation, and that this modification favors the control of VSV replication. Thus, our study provides evidence that IFN signaling induces p53 SUMOylation, which results in the activation of a cellular senescence program and contributes to the antiviral functions of interferon. PMID:23966171

  3. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells

    PubMed Central

    Bridges, Kathleen A.; Chen, Xingxing; Liu, Huifeng; Rock, Crosby; Buchholz, Thomas A.; Shumway, Stuart D.; Skinner, Heath D.; Meyn, Raymond E.

    2016-01-01

    Radiotherapy is commonly used to treat a variety of solid tumors but improvements in the therapeutic ratio are sorely needed. The aim of this study was to assess the Chk1 kinase inhibitor, MK-8776, for its ability to radiosensitize human tumor cells. Cells derived from NSCLC and HNSCC cancers were tested for radiosensitization by MK-8776. The ability of MK-8776 to abrogate the radiation-induced G2 block was determined using flow cytometry. Effects on repair of radiation-induced DNA double strand breaks (DSBs) were determined on the basis of rad51, γ-H2AX and 53BP1 foci. Clonogenic survival analyses indicated that MK-8776 radiosensitized p53-defective tumor cells but not lines with wild-type p53. Abrogation of the G2 block was evident in both p53-defective cells and p53 wild-type lines indicating no correlation with radiosensitization. However, only p53-defective cells entered mitosis harboring unrepaired DSBs. MK-8776 appeared to inhibit repair of radiation-induced DSBs at early times after irradiation. A comparison of MK-8776 to the wee1 inhibitor, MK-1775, suggested both similarities and differences in their activities. In conclusion, MK-8776 radiosensitizes tumor cells by mechanisms that include abrogation of the G2 block and inhibition of DSB repair. Our findings support the clinical evaluation of MK-8776 in combination with radiation. PMID:27690219

  4. p53 controls neuronal death in the CA3 region of the newborn mouse hippocampus.

    PubMed

    Murase, Sachiko; Poser, Steve W; Joseph, Joby; McKay, Ronald D

    2011-08-01

    It is important to determine the mechanisms controlling the number of neurons in the nervous system. Previously, we reported that neuronal activity plays a central role in controlling neuron number in the neonatal hippocampus of rodents. Neuronal survival requires sustained activation of the serine-threonine kinase Akt, which is initiated by neurotrophins and continued for several hours by neuronal activity and integrin signaling. Here, we focus on the CA3 region to show that neuronal apoptosis requires p53. As in wild-type animals, neuronal death occurs in the first postnatal week and ends by postnatal day (P)10 in p53(-/-) mice. During this period, the CA3 region of p53(-/-) mice contains significantly lower numbers of apoptotic cells, and at the end of the death period, it contains more neurons than the wild type. At P10, the p53(-/-) CA3 region contains a novel subpopulation of neurons with small soma size. These neurons show normal levels of tropomyosin receptor kinase receptor activation, but lower levels of activated Akt than the neurons with somata of normal size. These results suggest that p53 is the key downstream regulator of the novel survival-signaling pathway that regulates the number of CA3 neurons in the first 10 days of postnatal life.

  5. BACH1 Promotes Temozolomide Resistance in Glioblastoma through Antagonizing the Function of p53

    PubMed Central

    Nie, Er; Jin, Xin; Wu, Weining; Yu, Tianfu; Zhou, Xu; Zhi, Tongle; Shi, Zhumei; Zhang, Junxia; Liu, Ning; You, Yongping

    2016-01-01

    The acquisition of drug resistance is a persistent clinical problem limiting the successful treatment of glioblastoma (GBM). However, the molecular mechanisms by which initially chemoresponsive tumors develop therapeutic resistance remain poorly understood. In this study, we report that BACH1, a heme-binding protein that participates in transcriptional repression or activation, was significantly upregulated in glioblastoma tissues. Overexpression of BACH1 in GBM cells conferred resistance to temozolomide, whereas its inhibition markedly sensitized resistant cells to temozolomide in vitro and in vivo. Further investigation revealed that BACH1 activation significantly enhanced the expression of MGMT, and depletion of p53 disrupted the effects of BACH1 on MGMT and temozolomide resistance. P53 sequesters SP1 to prevent its binding to the MGMT promoter region and thus inhibits MGMT expression. Moreover, BACH1 overexpression impaired the association between p53 and SP1 via competitive binding p53, and antagonized the impact of p53 on MGMT expression. Finally, we found that BACH1 low expression correlated with better prognosis in GBM patients undergoing temozolomide therapy, especially in patients with wild-type TP53. Collectively, our findings identify a potential mechanism by which wild-type TP53 GBM cells develop resistance to temozolomide and suggest that targeting this pathway may be beneficial for overcoming resistance. PMID:28000777

  6. Biological and genetic properties of the p53 null preneoplastic mammary epithelium

    NASA Technical Reports Server (NTRS)

    Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.

    2002-01-01

    The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.

  7. Pleckstrin homology domain-containing protein PHLDB3 supports cancer growth via a negative feedback loop involving p53

    PubMed Central

    Chao, Tengfei; Zhou, Xiang; Cao, Bo; Liao, Peng; Liu, Hongbing; Chen, Yun; Park, Hee-Won; Zeng, Shelya X.; Lu, Hua

    2016-01-01

    The tumour suppressor p53 transactivates the expression of its target genes to exert its functions. Here, we identify a pleckstrin homology domain-containing protein (PHLDB3)-encoding gene as a p53 target. PHLDB3 overexpression increases proliferation and restrains apoptosis of wild-type p53-harboring cancer cells by reducing p53 protein levels. PHLDB3 binds to MDM2 (mouse double minute 2 homolog) and facilitates MDM2-mediated ubiquitination and degradation of p53. Knockdown of PHLDB3 more efficiently inhibits the growth of mouse xenograft tumours derived from human colon cancer HCT116 cells that contain wild type p53 compared with p53-deficient HCT116 cells, and also sensitizes tumour cells to doxorubicin and 5-Fluorouracil. Analysis of cancer genomic databases reveals that PHLDB3 is amplified and/or highly expressed in numerous human cancers. Altogether, these results demonstrate that PHLDB3 promotes tumour growth by inactivating p53 in a negative feedback fashion and suggest PHLDB3 as a potential therapeutic target in various human cancers. PMID:28008906

  8. Experimental test of specific predictions of a model for the oscillatory response of p53 to DNA damage.

    NASA Astrophysics Data System (ADS)

    Stolovitzky, Gustavo; Wagner, John; Rice, J. Jeremy; Ma, Lan; Hu, Wenwei; Feng, Zhaohui; Levine, Arnold

    2007-03-01

    We have proposed a model for radiation-induced oscillations of the p53-mdm2 system that makes specific predictions about the range of both p53 and mdm2 transcription rates that support oscillation. Our model predicts that in cells with a polymorphism in the mdm2 gene (SNP309) that enhances mdm2 transcription levels, oscillations disappear. The kinetics of the p53 and Mdm2 levels measured in cells with different genotype at the SNP309 locus show that oscillations of p53 and Mdm2 are observed in the cells wild type for mdm2 SNP309 but not in cells homozygous for mdm2 SNP309. By using H1299 cell line expressing wild-type p53 under a tetracycline-regulated promoter we found that only when p53 levels are in a certain range, oscillation can be observed after stress. This study provides evidence that proper range of the p53 and Mdm2 levels are required for the coordinated p53-Mdm2 oscillation upon stress.

  9. Dial 9-1-1 for p53: Mechanisms of p53 Activation by Cellular Stress

    PubMed Central

    Ljungman, Mats

    2000-01-01

    Abstract The tumor suppressor protein, p53, is part of the cell's emergency team that is called upon following cellular insult. How do cells sense DNA damage and other cellular stresses and what signal transduction pathways are used to alert p53? How is the resulting nuclear accumulation of p53 accomplished and what determines the outcome of p53 induction? Many posttranslational modifications of p53, such as phosphorylation, dephosphorylation, acetylation and ribosylation, have been shown to occur following cellular stress. Some of these modifications may activate the p53 protein, interfere with MDM2 binding and/or dictate cellular localization of p53. This review will focus on recent findings about how the p53 response may be activated following cellular stress. PMID:10935507

  10. The Contrived Mutant p53 Oncogene – Beyond Loss of Functions

    PubMed Central

    Sabapathy, Kanaga

    2015-01-01

    Mutations in p53 are almost synonymous with cancer – be it susceptibility to the disease or response to treatment – and therefore, are a critical determinant of overall survival. As most of these mutations occur in the DNA-binding domain of p53, many of the clinical correlations with mutant p53 have been initially relegated to the loss of its transcription-dependent activities as a tumor suppressor. However, significant efforts over the last two decades have led to the vast knowledge on the potential functions of the mutated p53 protein, which have been attributed to the physical presence of the mutant protein rather than the loss of its wild-type (WT) functions. Beyond the inhibitory effects of mutant p53 on the remaining WT protein that leads to the dominant-negative effect in the heterozygous state, mutant p53’s presence has also been significantly attributed to novel gain-of-functions that lead to addiction of cancer cells to its presence for survival, as well as for their ability to invade and metastasize, elevating it to a contrived oncogene that drives the cancer cells forward. This review will summarize the functional consequences of the presence of mutant p53 protein on cellular and organismal physiology. PMID:26697411

  11. Combining intracellular antibodies to restore function of mutated p53 in cancer.

    PubMed

    Chan, Grace; Jordaan, Gwen; Nishimura, Robert N; Weisbart, Richard H

    2016-01-01

    TP53 is a tumor suppressor gene that is mutated in 50% of cancers, and its function is tightly regulated by the E3 ligase, Mdm2. Both p53 and Mdm2 are localized in the cell nucleus, a site that is impervious to therapeutic regulation by most antibodies. We identified a cell-penetrating lupus monoclonal anti-DNA antibody, mAb 3E10, that targets the nucleus, and we engineered mAb 3E10 to function as an intranuclear transport system to deliver therapeutic antibodies into the nucleus as bispecific single chain Fv (scFv) fragments. Bispecific scFvs composed of 3E10 include PAb421 (3E10-PAb421) that binds p53 and restores the function of mutated p53, and 3G5 (3E10-3G5) that binds Mdm2 and prevents destruction of p53 by Mdm2. We documented the therapeutic efficacy of these bispecific scFvs separately in previous studies. In this study, we show that combination therapy with 3E10-PAb421 and 3E10-3G5 augments growth inhibition of cells with p53 mutations compared to the effect of either antibody alone. By contrast, no enhanced response was observed in cells with wild-type p53 or in cells homozygous null for p53.

  12. Alpha-particle-induced p53 protein expression in a rat lung epithelial cell strain.

    PubMed

    Hickman, A W; Jaramillo, R J; Lechner, J F; Johnson, N F

    1994-11-15

    Other investigators have shown that both sparsely ionizing and UV radiation cause cell cycle arrest that is associated with increased expression of wild-type p53 protein. The effect of exposure to alpha-particles from 238Pu on the induction of the p53 protein has now been examined in cultured lung epithelial cells derived from male F344 rats. The number of cells having increased levels of p53 protein was determined by flow cytometry after the cells had been stained with a monoclonal antibody to p53. alpha-Particle irradiation caused a dose-dependent increase in p53 protein levels detectable at doses as low as 0.6 cGy, with no evidence of a threshold. An increase in p53 protein also occurred in X-irradiated cells. However, no increase was seen in cells exposed to less than 10 cGy of X-rays, indicating the existence of a relatively higher DNA damage threshold for sparsely ionizing radiation. In addition, more cells exposed to low doses of alpha radiation had increased p53 protein levels than would be predicted based on the number of nuclei expected to be traversed by an alpha-particle, suggesting that alpha-particles cause genetic damage by mechanisms in addition to direct interactions with DNA.

  13. Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition

    PubMed Central

    Iwanicki, Marcin P.; Chen, Hsing-Yu; Iavarone, Claudia; Zervantonakis, Ioannis K.; Muranen, Taru; Novak, Marián; Ince, Tan A.; Brugge, Joan S.

    2016-01-01

    High-grade serous ovarian carcinoma (HGS-OvCa) harbors p53 mutations and can originate from the epithelial cell compartment of the fallopian tube fimbriae. From this site, neoplastic cells detach, survive in the peritoneal cavity, and form cellular clusters that intercalate into the mesothelium to form ovarian and peritoneal masses. To examine the contribution of mutant p53 to phenotypic alterations associated with HGS-OvCA, we developed live-cell microscopy assays that recapitulate these early events in cultured fallopian tube nonciliated epithelial (FNE) cells. Expression of stabilizing mutant variants of p53, but not depletion of endogenous wild-type p53, in FNE cells promoted survival and cell-cell aggregation under conditions of cell detachment, leading to the formation of cell clusters with mesothelium-intercalation capacity. Mutant p53R175H-induced phenotypes were dependent on fibronectin production, α5β1 fibronectin receptor engagement, and TWIST1 expression. These results indicate that FNE cells expressing stabilizing p53 mutants acquire anchorage independence and subsequent mesothelial intercalation capacity through a mechanism involving mesenchymal transition and matrix production. These findings provide important new insights into activities of mutant p53 in the cells of origin of HGS-OvCa. PMID:27482544

  14. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner.

    PubMed Central

    Chesnokov, I; Chu, W M; Botchan, M R; Schmid, C W

    1996-01-01

    Wild-type p53 represses Alu template activity in vitro and in vivo. However, upstream activating sequence elements from both the 7SL RNA gene and an Alu source gene relieve p53-mediated repression. p53 also represses the template activity of the U6 RNA gene both in vitro and in vivo but has no effect on in vitro transcription of genes encoding 5S RNA, 7SL RNA, adenovirus VAI RNA, and tRNA. The N-terminal activation domain of p53, which binds TATA-binding protein (TBP), is sufficient for repressing Alu transcription in vitro, and mutation of positions 22 and 23 in this region impairs p53-mediated repression of an Alu template both in vitro and in vivo. p53's N-terminal domain binds TFIIIB, presumably through its known interaction with TBP, and mutation of positions 22 and 23 interferes with TFIIIB binding. These results extend p53's transcriptional role to RNA polymerase III-directed templates and identify an additional level of Alu transcriptional regulation. PMID:8943363

  15. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma

    PubMed Central

    Carr-Wilkinson, Jane; O' Toole, Kieran; Wood, Katrina M.; Challen, Christine C.; Baker, Angela G.; Board, Julian R.; Evans, Laura; Cole, Michael; Cheung, Nai-Kong V.; Boos, Joachim; Köhler, Gabriele; Leuschner, Ivo; Pearson, Andrew D.J.; Lunec, John; Tweddle, Deborah A.

    2010-01-01

    Purpose: Most neuroblastomas initially respond to therapy but many relapse with chemoresistant disease. p53 mutations are rare in diagnostic neuroblastomas, but we have previously reported inactivation of the p53/MDM2/p14ARF pathway in 9/17 (53%) neuroblastoma cell lines established at relapse. Hypothesis: Inactivation of the p53/MDM2/p14ARF pathway develops during treatment and contributes to neuroblastoma relapse. Methods: Eighty-four neuroblastomas were studied from 41 patients with relapsed neuroblastoma including 38 paired neuroblastomas at different stages of therapy. p53 mutations were detected by automated sequencing, p14ARF methylation and deletion by methylation-specific PCR and duplex PCR respectively, and MDM2 amplification by fluorescent in-situ hybridisation. Results: Abnormalities in the p53 pathway were identified in 20/41(49%) cases. Downstream defects due to inactivating missense p53 mutations were identified in 6/41 (15%) cases, 5 following chemotherapy and/or at relapse and 1 at diagnosis, post chemotherapy and relapse. The presence of a p53 mutation was independently prognostic for overall survival (hazard ratio 3.4, 95% confidence interval 1.2, 9.9; p = 0.02). Upstream defects were present in 35% cases: MDM2 amplification in 3 cases, all at diagnosis & relapse and p14ARF inactivation in 12/41 (29%) cases: 3 had p14ARF methylation, 2 after chemotherapy, and 9 had homozygous deletions, 8 at diagnosis and relapse. Conclusions: These results show that a high proportion of neuroblastomas which relapse have an abnormality in the p53 pathway. The majority have upstream defects suggesting that agents which reactivate wild-type p53 would be beneficial, in contrast to those with downstream defects where p53 independent therapies are indicated. PMID:20145180

  16. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    PubMed Central

    Hermkens, Dorien; Wlodarski, Marcin W.; Da Costa, Lydie; MacInnes, Alyson W.

    2015-01-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  17. Prospective virtual screening for novel p53-MDM2 inhibitors using ultrafast shape recognition

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Ballester, Pedro J.; Kerezsi, Cassidy R.

    2014-02-01

    The p53 protein, known as the guardian of genome, is mutated or deleted in approximately 50 % of human tumors. In the rest of the cancers, p53 is expressed in its wild-type form, but its function is inhibited by direct binding with the murine double minute 2 (MDM2) protein. Therefore, inhibition of the p53-MDM2 interaction, leading to the activation of tumor suppressor p53 protein presents a fundamentally novel therapeutic strategy against several types of cancers. The present study utilized ultrafast shape recognition (USR), a virtual screening technique based on ligand-receptor 3D shape complementarity, to screen DrugBank database for novel p53-MDM2 inhibitors. Specifically, using 3D shape of one of the most potent crystal ligands of MDM2, MI-63, as the query molecule, six compounds were identified as potential p53-MDM2 inhibitors. These six USR hits were then subjected to molecular modeling investigations through flexible receptor docking followed by comparative binding energy analysis. These studies suggested a potential role of the USR-selected molecules as p53-MDM2 inhibitors. This was further supported by experimental tests showing that the treatment of human colon tumor cells with the top USR hit, telmisartan, led to a dose-dependent cell growth inhibition in a p53-dependent manner. It is noteworthy that telmisartan has a long history of safe human use as an approved anti-hypertension drug and thus may present an immediate clinical potential as a cancer therapeutic. Furthermore, it could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against variety of cancers. Importantly, the present study demonstrates that the adopted USR-based virtual screening protocol is a useful tool for hit identification in the domain of small molecule p53-MDM2 inhibitors.

  18. p53, Oxidative Stress, and Aging

    PubMed Central

    Liu, Dongping

    2011-01-01

    Abstract Mammalian aging is associated with elevated levels of oxidative damage of DNA, proteins, and lipids as a result of unbalanced prooxidant and antioxidant activities. Accumulating evidence indicates that oxidative stress is a major physiological inducer of aging. p53, the guardian of the genome that is important for cellular responses to oxidative stresses, might be a key coordinator of oxidative stress and aging. In response to low levels of oxidative stresses, p53 exhibits antioxidant activities to eliminate oxidative stress and ensure cell survival; in response to high levels of oxidative stresses, p53 exhibits prooxidative activities that further increase the levels of stresses, leading to cell death. p53 accomplishes these context-dependent roles by regulating the expression of a panel of genes involved in cellular responses to oxidative stresses and by modulating other pathways important for oxidative stress responses. The mechanism that switches p53 function from antioxidant to prooxidant remains unclear, but could account for the findings that increased p53 activities have been linked to both accelerated aging and increased life span in mice. Therefore, a balance of p53 antioxidant and prooxidant activities in response to oxidative stresses could be important for longevity by suppressing the accumulation of oxidative stresses and DNA damage. Antioxid. Redox Signal. 15, 1669–1678. PMID:21050134

  19. p53 in the game of transposons.

    PubMed

    Wylie, Annika; Jones, Amanda E; Abrams, John M

    2016-11-01

    Throughout the animal kingdom, p53 genes function to restrain mobile elements and recent observations indicate that transposons become derepressed in human cancers. Together, these emerging lines of evidence suggest that cancers driven by p53 mutations could represent "transpospoathies," i.e. disease states linked to eruptions of mobile elements. The transposopathy hypothesis predicts that p53 acts through conserved mechanisms to contain transposon movement, and in this way, prevents tumor formation. How transposon eruptions provoke neoplasias is not well understood but, from a broader perspective, this hypothesis also provides an attractive framework to explore unrestrained mobile elements as inciters of late-onset idiopathic disease. Also see the video abstract here.

  20. The hot-spot p53R172H mutant promotes formation of giant spermatogonia triggered by DNA damage.

    PubMed

    Xue, Y; Raharja, A; Sim, W; Wong, E S M; Rahmat, S A B; Lane, D P

    2017-04-06

    Overexpression of mutant p53 is a common finding in most cancers but testicular tumours accumulate wild-type p53 (wtp53). In contrast to the accepted concept that p53 homozygous mutant mice do not accumulate mutant p53 in normal cells, our study on a mutant p53 mouse model of Li-Fraumeni syndrome harbouring the hot-spot p53R172H mutation described an elevated level of mutant p53 in non-cancerous mouse tissues. Here we use detailed immunohistochemical analysis to document the expression of p53R172H in mouse testis. In developing and adult testes, p53R172H was expressed in gonocytes, type A, Int, B spermatogonia as well as in pre-Sertoli cells and Leydig cells but was undetectable in spermatocytes and spermatids. A similar staining pattern was demonstrated for wtp53. However, the intensity of wtp53 staining was generally weaker than that of p53R172H, which indicates that the expression of p53R172H can be a surrogate marker of p53 gene transcription. Comparing the responses of wtp53 and p53R172H to irradiation, we found persistent DNA double-strand breaks in p53R172H testes and the formation of giant spermatogonia (GSG) following persistent DNA damage in p53R172H and p53-null mice. Strikingly, we found that p53R172H promotes spontaneous formation of GSG in non-stressed p53R172H ageing mice. Two types of GSG: Viable and Degenerative GSG were defined. We elucidate the factors involved in the formation of GSG: the loss of p53 function is a requirement for the formation of GSG whereas DNA damage acts as a promoting trigger. The formation of GSG does not translate to higher efficacy of testicular tumorigenesis arising from mutant p53 cells, which might be due to the presence of delayed-onset of p53-independent apoptosis.

  1. miR-300 promotes proliferation and EMT-mediated colorectal cancer migration and invasion by targeting p53.

    PubMed

    Wang, Lin; Yu, Peiwu

    2016-12-01

    p53 mutations in tumors can induce the loss of wild-type tumor-suppressing p53 function, which results in the increase in proliferation, migration and invasion ability in cancer cells. Studies have shown that the expression of p53 is regulated by several microRNAs (miRNAs). In the present study, we found that miR-300 and p53 were significantly increased in colorectal cancer (CRC) tissues when compared with levels noted in adjacent colorectal tissues. Both miR-300 and p53 were significantly correlated with lymphatic metastasis and TNM stage. Both miR-300 and p53 promoted CRC cell (SW480 and HT29) proliferation, migration, and invasion, respectively, in vitro. In addition, we found that miR-300 is a direct positive regulator of p53 through binding to the binding site in the 3'UTR of the p53 gene in human CRC cells. Moreover, both miR-300 and p53 induced CRC cell epithelial‑mesenchymal transition (EMT) respectively. Taken together, we demonstrated that miR-300 promoted proliferation and EMT-mediated CRC migration and invasion by targeting p53. These findings provide a new theoretical basis and potential therapeutic targets, and thus lays the foundation for exploring the pathogenesis of CRC.

  2. Amifostine alleviates radiation-induced lethal small bowel damage via promotion of 14-3-3σ-mediated nuclear p53 accumulation.

    PubMed

    Huang, Eng-Yen; Wang, Feng-Sheng; Chen, Yu-Min; Chen, Yi-Fan; Wang, Chung-Chi; Lin, I-Hui; Huang, Yu-Jie; Yang, Kuender D

    2014-10-30

    Amifostine (AM) is a radioprotector that scavenges free radicals and is used in patients undergoing radiotherapy. p53 has long been implicated in cell cycle arrest for cellular repair after radiation exposure. We therefore investigated the protective p53-dependent mechanism of AM on small bowel damage after lethal whole-abdominal irradiation (WAI). AM increased both the survival rate of rats and crypt survival following lethal 18 Gy WAI. The p53 inhibitor PFT-α compromised AM-mediated effects when administered prior to AM administration. AM significantly increased clonogenic survival in IEC-6 cells expressing wild type p53 but not in p53 knockdown cells. AM significantly increased p53 nuclear accumulation and p53 tetramer expression before irradiation through the inhibition of p53 degradation. AM inhibited p53 interactions with MDM2 but enhanced p53 interactions with 14-3-3σ. Knockdown of 14-3-3σ also compromised the effect of AM on clonogenic survival and p53 nuclear accumulation in IEC-6 cells. For the first time, our data reveal that AM alleviates lethal small bowel damage through the induction of 14-3-3σ and subsequent accumulation of p53. Enhancement of the p53/14-3-3σ interaction results in p53 tetramerization in the nucleus that rescues lethal small bowel damage.

  3. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene.

    PubMed Central

    Lavigueur, A; Maltby, V; Mock, D; Rossant, J; Pawson, T; Bernstein, A

    1989-01-01

    We have investigated the role of the p53 gene in oncogenesis in vivo by generating transgenic mice carrying murine p53 genomic fragments isolated from a mouse Friend erythroleukemia cell line or BALB/c mouse liver DNA. Elevated levels of p53 mRNA were detected in several tissues of two transgenic lines tested. Increased levels of p53 protein were also detected in most of the tissues analyzed by Western blotting (immunoblotting). Because both transgenes encoded p53 proteins that were antigenically distinct from wild-type p53, it was possible to demonstrate that overexpression of the p53 protein was mostly, if not entirely, due to the expression of the transgenes. Neoplasms developed in 20% of the transgenic mice, with a high incidence of lung adenocarcinomas, osteosarcomas, and lymphomas. Tissues such as ovaries that expressed the transgene at high levels were not at higher risk of malignant transformation than tissues expressing p53 protein at much lower levels. The long latent period and low penetrance suggest that overexpression of p53 alone is not sufficient to induce malignancies and that additional events are required. These observations provide direct evidence that mutant alleles of the p53 oncogene have oncogenic potential in vivo and that different cell types show intrinsic differences in susceptibility to malignant transformation by p53. Since recent data suggest that p53 may be a recessive oncogene, it is possible that the elevated tumor incidence results from functional inactivation of endogenous p53 by overexpression of the mutant transgene. The high incidence of lung and bone tumors suggests that p53 transgenic mice may provide a useful model to investigate the molecular events that underlie these malignancies in humans. Images PMID:2476668

  4. CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo.

    PubMed

    He, Xing-Xing; Zhang, Yu-Nan; Yan, Jun-Wei; Yan, Jing-Jun; Wu, Qian; Song, Yu-Hu

    2016-01-01

    The tumor suppressor p53 is one of the most frequently mutated genes in hepatocellular carcinoma (HCC). Previous studies demonstrated that CP-31398 restored the native conformation of mutant p53 and trans-activated p53 downstream genes in tumor cells. However, the research on the application of CP-31398 to liver cancer has not been reported. Here, we investigated the effects of CP-31398 on the phenotype of HCC cells carrying p53 mutation. The effects of CP-31398 on the characteristic of p53-mutated HCC cells were evaluated through analyzing cell cycle, cell apoptosis, cell proliferation, and the expression of p53 downstream genes. In tumor xenografts developed by PLC/PRF/5 cells, the inhibition of tumor growth by CP-31398 was analyzed through gross morphology, growth curve, and the expression of p53-related genes. Firstly, we demonstrated that CP-31398 inhibited the growth of p53-mutated liver cancer cells in a dose-dependent and p53-dependent manner. Then, further study showed that CP-31398 re-activated wild-type p53 function in p53-mutated HCC cells, which resulted in inhibitive response of cell proliferation and an induction of cell-cycle arrest and apoptosis. Finally, in vivo data confirmed that CP-31398 blocked the growth of xenografts tumors through transactivation of p53-responsive downstream molecules. Our results demonstrated that CP-31398 induced desired phenotypic change of p53-mutated HCC cells in vitro and in vivo, which revealed that CP-31398 would be developed as a therapeutic candidate for HCC carrying p53 mutation.

  5. Identification, validation, and targeting of the mutant p53-PARP-MCM chromatin axis in triple negative breast cancer.

    PubMed

    Qiu, Wei-Gang; Polotskaia, Alla; Xiao, Gu; Di, Lia; Zhao, Yuhan; Hu, Wenwei; Philip, John; Hendrickson, Ronald C; Bargonetti, Jill

    2017-01-01

    Over 80% of triple negative breast cancers express mutant p53. Mutant p53 often gains oncogenic function suggesting that triple negative breast cancers may be driven by p53 protein type. To determine the chromatin targets of this gain-of-function mutant p53 we used inducible knockdown of endogenous gain-of-function mtp53 in MDA-MB-468 cells in conjunction with stable isotope labeling with amino acids in cell culture and subcellular fractionation. We sequenced over 70,000 total peptides for each corresponding reciprocal data set and were able to identify 3010 unique cytoplasmic fraction proteins and 3403 unique chromatin fraction proteins. The present proteomics experiment corroborated our previous experiment-based results that poly ADP-ribose polymerase has a positive association with mutant p53 on the chromatin. Here, for the first time we report that the heterohexomeric minichromosome maintenance complex that participates in DNA replication initiation ranked as a high mutant p53-chromatin associated pathway. Enrichment analysis identified the minichromosome maintenance members 2-7. To validate this mutant p53- poly ADP-ribose polymerase-minichromosome maintenance functional axis, we experimentally depleted R273H mutant p53 and found a large reduction of the amount of minichromosome maintenance complex proteins on the chromatin. Furthermore a mutant p53-minichromosome maintenance 2 direct interaction was detected. Overexpressed mutant p53, but not wild type p53, showed a protein-protein interaction with minichromosome maintenance 2 and minichromosome maintenance 4. To target the mutant p53- poly ADP-ribose polymerase-minichromosome maintenance axis we treated cells with the poly ADP-ribose polymerase inhibitor talazoparib and the alkylating agent temozolomide and detected synergistic activation of apoptosis only in the presence of mutant p53. Furthermore when minichromosome maintenance 2-7 activity was inhibited the synergistic activation of apoptosis was blocked

  6. Smoking, p53 mutation, and lung cancer.

    PubMed

    Gibbons, Don L; Byers, Lauren A; Kurie, Jonathan M

    2014-01-01

    This issue marks the 50th anniversary of the release of the U.S. Surgeon General's Report on Smoking and Health. Perhaps no other singular event has done more to highlight the effects of smoking on the development of cancer. Tobacco exposure is the leading cause of cancers involving the oral cavity, conductive airways, and the lung. Owing to the many carcinogens in tobacco smoke, smoking-related malignancies have a high genome-wide burden of mutations, including in the gene encoding for p53. The p53 protein is the most frequently mutated tumor suppressor in cancer, responsible for a range of critical cellular functions that are compromised by the presence of a mutation. Herein, we review the epidemiologic connection between tobacco exposure and cancer, the molecular basis of p53 mutation in lung cancer, and the normal molecular and cellular roles of p53 that are abrogated during lung tumor development and progression as defined by in vitro and in vivo studies. We also consider the therapeutic potential of targeting mutant p53 in a clinical setting based upon the cellular role of mutant p53 and data from genetic murine models.

  7. p53 regulates thymic Notch1 activation.

    PubMed

    Laws, Amy M; Osborne, Barbara A

    2004-03-01

    Notch is crucial for multiple stages of T cell development, including the CD4+CD8+ double positive (DP)/CD8+ single positive (SP) transition, but regulation of Notchactivation is not well understood. p53 regulates Presenilin1 (PS1) expression, and PS1 cleaves Notch, releasing its intracellular domain (NIC), leading to the expression of downstream targets, e.g. the HES1 gene. We hypothesize that p53 regulates Notch activity during T cell development. We found that Notch1 expression and activation were negatively regulated by p53in several thymoma lines. Additionally, NIC was elevated in Trp53(-/-) thymocytes as compared to Trp53(+/+) thymocytes. To determine if elevated Notch1 activation in Trp53(-/-) thymocytes had an effect on T cell development, CD4 and CD8 expression were analyzed. The CD4+ SP/CD8+ SP T cell ratio was decreased in Trp53(-/-) splenocytes and thymocytes. This alteration in T cell development correlated with the increased Notch1 activation observed in the absence of p53. These data indicate that p53 negatively regulates Notch1 activation during T cell development. Skewing of T cell development toward CD8+SP T cells in Trp53(-/-) mice is reminiscent of the phenotype of NIC-overexpressing mice. Thus, we suggest that p53 plays a role in T cell development, in part by regulating Notch1 activation.

  8. Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity.

    PubMed

    Xu, J; Wang, J; Hu, Y; Qian, J; Xu, B; Chen, H; Zou, W; Fang, J-Y

    2014-03-06

    Mutation of p53 is the most common genetic change in human cancer, causing complex effects including not only loss of wild-type function but also gain of novel oncogenic functions (GOF). It is increasingly likely that p53-hotspot mutations may confer different types and magnitudes of GOF, but the evidences are mainly supported by cellular and transgenic animal models. Here we combine large-scale cancer genomic data to characterize the prognostic significance of different p53 mutations in human cancers. Unexpectedly, only mutations on the Arg248 and Arg282 positions displayed significant association with shorter patient survival, but such association was not evident for other hotspot GOF mutations. Gene set enrichment analysis on these mutations revealed higher activity of drug-metabolizing enzymes, including the CYP3A4 cytochrome P450. Ectopic expression of p53 mutant R282W in H1299 and SaOS2 cells significantly upregulated CYP3A4 mRNA and protein levels, and cancer cell lines bearing mortality-associated p53 mutations display higher CYP3A4 expression and resistance to several CYP3A4-metabolized chemotherapeutic drugs. Our results suggest that p53 mutations have unequal GOF activities in human cancers, and future evaluation of p53 as a cancer biomarker should consider which mutation is present in the tumor, rather than having comparison between wild-type and mutant genotypes.

  9. p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)

    SciTech Connect

    Isoe, Yasuko; Okuyama, Teruhiro; Taniguchi, Yoshihito; Kubo, Takeo; Takeuchi, Hideaki

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Progenitor migration is accompanied by an increase in their numbers in the adult brain. Black-Right-Pointing-Pointer p53 Mutation suppressed an increase in the number of the migrated progenitors. Black-Right-Pointing-Pointer The decreased progenitor number is not due to enhanced cell death. Black-Right-Pointing-Pointer p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zones in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.

  10. Rational Tuning of the Electrocatalytic Nanobiointerface for a "Turn-Off" Biofuel-Cell-Based Self-Powered Biosensor for p53 Protein.

    PubMed

    Han, Yajing; Chabu, Johnny Muya; Hu, Shengqiang; Deng, Liu; Liu, You-Nian; Guo, Shaojun

    2015-09-07

    Herein, a novel tunable electrocatalytic nanobiointerface for the construction of a high-sensitivity and high-selectivity biofuel-cell (BFC)-based self-powered biosensor for the detection of transcription factor protein p53 is reported, in which bilirubin oxidase (BOD)/DNA supramolecular modified graphene/platinum nanoparticles hybrid nanosheet (GPNHN) works as a new enhanced material of biocathode to control the attachment of target, and thus tune the electron-transfer process of oxygen reduction for transducing signaling magnification. It is found that in the presence of p53, the strong interaction between the wild-type p53 and its consensus DNA sequence on the electrode surface can block the electron transfer from the BOD to the electrode, thus providing a good opportunity for reducing the electrocatalytic activity of oxygen reduction in the biocathode. This in combination with the glucose oxidation at the carbon nanotube/Meldola's blue/glucose dehydrogenase bioanode can result in a current/or power decrease of BFC in the presence of wild-type p53. The specially designed BFC-based self-powered p53 sensor shows a wide linear range from 1 pM to 1 μM with a detection limit of 1 pM for analyzing wild-type p53. Most importantly, our BFC-based self-powered sensors can detect the concentrations of wild-type p53 in normal and cancer cell lysates without any extensive sample pretreatment/separation or specialized instruments. The present BFC-based self-powered sensor can provide a simple, economical, sensitive, and rapid way for analyzing p53 protein in normal and cancer cells at clinical level, which shows great potential for creating the treatment modalities that capitalize on the concentration variation of the wild-type p53.

  11. Wt p53 impairs response to chemotherapy: make lemonade to spare normal cells

    PubMed Central

    Blagosklonny, Mikhail V.

    2012-01-01

    As published recently in Cancer Cell, p53 impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. I discuss that, while treating tumors lacking wt p53, this phenomenon can be exploited to protect normal cells from chemotherapy because all normal cells have wt p53. Also, several therapeutic paradigms can be reassessed, including the role of cellular senescence in cancer therapy. PMID:22802145

  12. Insulin-like Growth Factor 1 Signaling Axis Meets p53 Genome Protection Pathways

    PubMed Central

    Werner, Haim; Sarfstein, Rive; LeRoith, Derek; Bruchim, Ilan

    2016-01-01

    Clinical, epidemiological, and experimental evidence indicate that the insulin-like growth factors (IGFs) are important mediators in the biochemical chain of events that lead from a phenotypically normal to a neoplastic cell. The IGF1 receptor (IGF1R), which mediates the biological actions of IGF1 and IGF2, exhibits potent pro-survival and antiapoptotic activities. The IGF1R is highly expressed in most types of cancer and is regarded as a promising therapeutic target in oncology. p53 is a transcription factor with tumor suppressor activity that is usually activated in response to DNA damage and other forms of cellular stress. On the basis of its protective activities, p53 is commonly regarded as the guardian of the genome. We provide evidence that the IGF signaling axis and p53 genome protection pathways are tightly interconnected. Wild-type, but not mutant, p53 suppresses IGF1R gene transcription, leading to abrogation of the IGF signaling network, with ensuing cell cycle arrest. Gain-of-function, or loss-of-function, mutations of p53 in tumor cells may disrupt its inhibitory activity, thus generating oncogenic molecules capable of transactivating the IGF1R gene. The interplay between the IGF1 and p53 pathways is also of major relevance in terms of metabolic regulation, including glucose transport and glycolysis. A better understanding of the complex physical and functional interactions between these important signaling pathways will have major basic and translational relevance. PMID:27446805

  13. Free Radicals Generated by Ionizing Radiation Signal Nuclear Translocation of p53

    NASA Technical Reports Server (NTRS)

    Martinez, J. D.; Pennington, M. E.; Craven, M. T.; Warters, R. L.

    1997-01-01

    The p53 tumor suppressor is a transcription factor that regulates several pathways, which function collectively to maintain the integrity of the genome. Nuclear localization is critical for wild-type function. However, the signals that regulate subcellular localization of p53 have not been identified. Here, we examine the effect of ionizing radiation on the subcellular localization of p53 in two cell lines in which p63 is normally sequestered in the cytoplasm and found that ionizing radiation caused a biphasic translocation response. p53 entered the nucleus 1-2 hours postirradiation (early response), subsequently emerged from the nucleus, and then again entered the nucleus 12-24 hours after the cells had been irradiated (delayed response). These changes in subcellular localization could be completely blocked by the free radical scavenger, WR1065. By comparison, two DNA-damaging agents that do not generate free radicals, mitomycin C and doxorubicin, caused translocation only after 12-24 h of exposure to the drugs, and this effect could not be inhibited by WR1065. Hence, although all three DNA-damaging agents induced relocalization of p53 to the nucleus, only the translocation caused by radiation was sensitive to free radical scavenging. We suggest that the free radicals generated by ionizing radiation can signal p53 translocation to the nucleus.

  14. Mutant p53 and mTOR/PKM2 regulation in cancer cells.

    PubMed

    Dando, Ilaria; Cordani, Marco; Donadelli, Massimo

    2016-09-01

    Mutations of TP53 gene are the most common feature in aggressive malignant cells. In addition to the loss of the tumor suppressive role of wild-type p53, hotspot mutant p53 isoforms display oncogenic proprieties notoriously referred as gain of functions (GOFs) which result in chemoresistance to therapies, genomic instability, aberrant deregulation of cell cycle progression, invasiveness and enhanced metastatic potential, and finally, in patient poor survival rate. The identification of novel functional oncogenic pathways regulated by mutant p53 represent and intriguing topic for emerging therapies against a broad spectrum of cancer types bearing mutant TP53 gene. Mammalian target of rapamycin (mTOR), as well as pyruvate kinase isoform M2 (PKM2) are master regulators of cancer growth, metabolism, and cell proliferation. Herein, we report that GOF mutant R175H and R273H p53 proteins trigger PKM2 phosphorylation on Tyr 105 through the involvement of mTOR signaling. Our data, together with the newly discovered connection between mutant p53 and mTOR stimulation, raise important implications for the potential therapeutic use of synthetic drugs inhibiting mTOR/PKM2 axis in cancer cells bearing mutant TP53 gene. We further hypothesize that mTOR/PKM2 pathway stimulation serves to sustain the oncogenic activity of mutant p53 through both the enhancement of chemoresistance and of aerobic glycolysis of cancer cells. © 2016 IUBMB Life, 68(9):722-726, 2016.

  15. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.

    PubMed Central

    Wang, X W; Forrester, K; Yeh, H; Feitelson, M A; Gu, J R; Harris, C C

    1994-01-01

    Chronic active hepatitis caused by infection with hepatitis B virus, a DNA virus, is a major risk factor for human hepatocellular carcinoma. Since the oncogenicity of several DNA viruses is dependent on the interaction of their viral oncoproteins with cellular tumor-suppressor gene products, we investigated the interaction between hepatitis B virus X protein (HBX) and human wild-type p53 protein. HBX complexes with the wild-type p53 protein and inhibits its sequence-specific DNA binding in vitro. HBX expression also inhibits p53-mediated transcriptional activation in vivo and the in vitro association of p53 and ERCC3, a general transcription factor involved in nucleotide excision repair. Therefore, HBX may affect a wide range of p53 functions and contribute to the molecular pathogenesis of human hepatocellular carcinoma. Images PMID:8134379

  16. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.

    PubMed

    Floriddia, Elisa M; Rathore, Khizr I; Tedeschi, Andrea; Quadrato, Giorgia; Wuttke, Anja; Lueckmann, Jan-Matthis; Kigerl, Kristina A; Popovich, Phillip G; Di Giovanni, Simone

    2012-10-03

    Following spinal trauma, the limited physiological axonal sprouting that contributes to partial recovery of function is dependent upon the intrinsic properties of neurons as well as the inhibitory glial environment. The transcription factor p53 is involved in DNA repair, cell cycle, cell survival, and axonal outgrowth, suggesting p53 as key modifier of axonal and glial responses influencing functional recovery following spinal injury. Indeed, in a spinal cord dorsal hemisection injury model, we observed a significant impairment in locomotor recovery in p53(-/-) versus wild-type mice. p53(-/-) spinal cords showed an increased number of activated microglia/macrophages and a larger scar at the lesion site. Loss- and gain-of-function experiments suggested p53 as a direct regulator of microglia/macrophages proliferation. At the axonal level, p53(-/-) mice showed a more pronounced dieback of the corticospinal tract (CST) and a decreased sprouting capacity of both CST and spinal serotoninergic fibers. In vivo expression of p53 in the sensorimotor cortex rescued and enhanced the sprouting potential of the CST in p53(-/-) mice, while, similarly, p53 expression in p53(-/-) cultured cortical neurons rescued a defect in neurite outgrowth, suggesting a direct role for p53 in regulating the intrinsic sprouting ability of CNS neurons. In conclusion, we show that p53 plays an important regulatory role at both extrinsic and intrinsic levels affecting the recovery of motor function following spinal cord injury. Therefore, we propose p53 as a novel potential multilevel therapeutic target for spinal cord injury.

  17. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.

    PubMed

    Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K

    2005-01-20

    Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.

  18. Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death domain (FADD) proteins to induce apoptosis in colorectal cancer

    PubMed Central

    Ray, Pallab; Guha, Deblina; Chakraborty, Juni; Banerjee, Shuvomoy; Adhikary, Arghya; Chakraborty, Samik; Das, Tanya; Sa, Gaurisankar

    2016-01-01

    Tumor suppressor p53 preserves the genomic integrity by restricting anomaly at the gene level. The hotspots for mutation in half of all colon cancers reside in p53. Hence, in a p53-mutated cellular milieu targeting cancer cells may be achievable by targeting the paralogue(s) of p53. Here we have shown the effectiveness of crocetin, a dietary component, in inducing apoptosis of colon cancer cells with varying p53 status. In wild-type p53-expressing cancer cells, p53 in one hand transactivates BAX and in parallel up-regulates p53-induced death domain protein (PIDD) that in turn cleaves and activates BID through caspase-2. Both BAX and t-BID converge at mitochondria to alter the transmembrane potential thereby leading to caspase-9 and caspase-3-mediated apoptosis. In contrast, in functional p53-impaired cells, this phytochemical exploits p53-paralogue p73, which up-regulates FAS to cleave BID through FAS-FADD-caspase-8-pathway. These findings not only underline the phenomenon of functional switch-over from p53 to p73 in p53-impaired condition, but also validate p73 as a promising and potential target for cancer therapy in absence of functional p53. PMID:27622714

  19. Mechanistic Validation of a Clinical Lead Stapled Peptide that Reactivates p53 by Dual HDM2 and HDMX Targeting

    PubMed Central

    Wachter, Franziska; Morgan, Ann M.; Godes, Marina; Mourtada, Rida; Bird, Gregory H.; Walensky, Loren D.

    2016-01-01

    Hydrocarbon-stapled peptides that display key residues of the p53 transactivation domain have emerged as bona fide clinical candidates for reactivating the tumor suppression function of p53 in cancer by dual targeting of the negative regulators HDM2 and HDMX. A recent study questioned the mechanistic specificity of such stapled peptides based on interrogating their capacity to disrupt p53/HDM2 and p53/HDMX complexes in living cells using a new recombinase enhanced bimolecular luciferase complementation platform (ReBiL). Here, we directly evaluate the cellular uptake, intracellular targeting selectivity, and p53-dependent cytotoxicity of the clinical prototype ATSP-7041. We find that under standard serum-containing tissue culture conditions, ATSP-7041 achieves intracellular access without membrane disruption, dose-dependently dissociates both p53/HDM2 and p53/HDMX complexes but not an unrelated protein complex in long-term ReBiL experiments, and is selectively cytotoxic to cancer cells bearing wild-type p53 by inducing a surge in p53 protein level. These studies underscore the importance of a thorough step-wise approach, including consideration of the time-dependence of cellular uptake and intracellular distribution, in evaluating and advancing stapled peptides for clinical translation. PMID:27721413

  20. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200.

    PubMed

    Morselli, Eugenia; Shen, Shensi; Ruckenstuhl, Christoph; Bauer, Maria Anna; Mariño, Guillermo; Galluzzi, Lorenzo; Criollo, Alfredo; Michaud, Mickael; Maiuri, Maria Chiara; Chano, Tokuhiro; Madeo, Frank; Kroemer, Guido

    2011-08-15

    The tumor suppressor protein p53 tonically suppresses autophagy when it is present in the cytoplasm. This effect is phylogenetically conserved from mammals to nematodes, and human p53 can inhibit autophagy in yeast, as we show here. Bioinformatic investigations of the p53 interactome in relationship to the autophagy-relevant protein network underscored the possible relevance of a direct molecular interaction between p53 and the mammalian ortholog of the essential yeast autophagy protein Atg17, namely RB1-inducible coiled-coil protein 1 (RB1CC1), also called FAK family kinase-interacting protein of 200 KDa (FIP200). Mutational analyses revealed that a single point mutation in p53 (K382R) abolished its capacity to inhibit autophagy upon transfection into p53-deficient human colon cancer or yeast cells. In conditions in which wild-type p53 co-immunoprecipitated with RB1CC1/FIP200, p53 (K382R) failed to do so, underscoring the importance of the physical interaction between these proteins for the control of autophagy. In conclusion, p53 regulates autophagy through a direct molecular interaction with RB1CC1/FIP200, a protein that is essential for the very apical step of autophagy initiation.

  1. The physical interaction of p53 and plakoglobin is necessary for their synergistic inhibition of migration and invasion

    PubMed Central

    Mehrabani, Vahedah; Churchill, Lucas; Pasdar, Manijeh

    2016-01-01

    Plakoglobin (PG) is a paralog of β-catenin with similar adhesive, but contrasting signalling functions. Although β-catenin has well-known oncogenic function, PG generally acts as a tumor/metastasis suppressor by mechanisms that are just beginning to be deciphered. Previously, we showed that PG interacted with wild type (WT) and a number of mutant p53s, and that its tumor/metastasis suppressor activity may be mediated, at least partially, by this interaction. Here, carcinoma cell lines deficient in both p53 and PG (H1299), or expressing mutant p53 in the absence of PG (SCC9), were transfected with expression constructs encoding WT and different fragments and deletions of p53 and PG, individually or in pairs. Transfectants were characterized for their in vitro growth, migratory and invasive properties and for mapping the interacting domain of p53 and PG. We showed that when coexpressed, p53-WT and PG-WT cooperated to decrease growth, and acted synergistically to significantly reduce cell migration and invasion. The DNA-binding domain of p53 and C-terminal domain of PG mediated p53/PG interaction, and furthermore, the C-terminus of PG played a central role in the inhibition of invasion in association with p53. PMID:27058623

  2. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression

    PubMed Central

    Hampp, Stephanie; Kiessling, Tina; Buechle, Kerstin; Mansilla, Sabrina F.; Thomale, Jürgen; Rall, Melanie; Ahn, Jinwoo; Pospiech, Helmut; Gottifredi, Vanesa; Wiesmüller, Lisa

    2016-01-01

    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker–induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress. PMID:27407148

  3. Mechanistic validation of a clinical lead stapled peptide that reactivates p53 by dual HDM2 and HDMX targeting.

    PubMed

    Wachter, F; Morgan, A M; Godes, M; Mourtada, R; Bird, G H; Walensky, L D

    2016-10-10

    Hydrocarbon-stapled peptides that display key residues of the p53 transactivation domain have emerged as bona fide clinical candidates for reactivating the tumor suppression function of p53 in cancer by dual targeting of the negative regulators HDM2 and HDMX. A recent study questioned the mechanistic specificity of such stapled peptides based on interrogating their capacity to disrupt p53/HDM2 and p53/HDMX complexes in living cells using a new recombinase enhanced bimolecular luciferase complementation platform (ReBiL). Here, we directly evaluate the cellular uptake, intracellular targeting selectivity and p53-dependent cytotoxicity of the clinical prototype ATSP-7041. We find that under standard serum-containing tissue culture conditions, ATSP-7041 achieves intracellular access without membrane disruption, dose-dependently dissociates both p53/HDM2 and p53/HDMX complexes but not an unrelated protein complex in long-term ReBiL experiments, and is selectively cytotoxic to cancer cells bearing wild-type p53 by inducing a surge in p53 protein level. These studies underscore the importance of a thorough stepwise approach, including consideration of the time-dependence of cellular uptake and intracellular distribution, in evaluating and advancing stapled peptides for clinical translation.Oncogene advance online publication, 10 October 2016; doi:10.1038/onc.2016.361.

  4. p53 controls colorectal cancer cell invasion by inhibiting the NF-κB-mediated activation of Fascin

    PubMed Central

    Tang, Haimei; Wang, Chan; Zhou, Jichun; Han, Weidong; Wang, Xian; Fang, Yong; Xu, Yinghua; Li, Da; Chen, Rui; Ma, Junhong; Jing, Zhao; Gu, Xidong; Pan, Hongming; He, Chao

    2015-01-01

    p53 mutation is known to contribute to cancer progression. Fascin is an actin-bundling protein and has been recently identified to promote cancer cell migration and invasion through its role in formation of cellular protrusions such as filopodia and invadopodia. However, the relationship between p53 and Fascin is not understood. Here, we have found a new link between them. In colorectal adenocarcinomas, p53 mutation correlated with high NF-κB, Fascin and low E-cadherin expression. Moreover, this expression profile was shown to contribute to poor overall survival in patients with colorectal cancer. Wild-type p53 could inhibit NF-κB activity that repressed the expression of Fascin and cancer cell invasiveness. In contrast, in p53-deficient primary cultured cells, NF-κB activity was enhanced and then activation of NF-κB increased the expression of Fascin. In further analysis, we showed that NF-κB was a key determinant for p53 deletion-stimulated Fascin expression. Inhibition of NF-κB /p65 expression by pharmacological compound or p65 siRNA suppressed Fascin activity in p53-deficient cells. Moreover, restoration of p53 expression decreased the activation of Fascin through suppression of the NF-κB pathway. Taken together, these data suggest that a negative-feedback loop exists, whereby p53 can suppress colorectal cancer cell invasion by inhibiting the NF-κB-mediated activation of Fascin. PMID:26362504

  5. DJ-1 restores p53 transcription activity inhibited by Topors/p53BP3.

    PubMed

    Shinbo, Yumi; Taira, Takahiro; Niki, Takeshi; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2005-03-01

    DJ-1 is a multi-functional protein that plays roles in transcriptional regulation and anti-oxidative stress, and loss of its function is thought to result in onset of Parkinson's disease. Here, we report that DJ-1 bound to Topors/p53BP3, a ring finger protein binding to both topoisomerase I and p53, in vitro and in vivo and that both proteins were colocalized in cells. DJ-1 and p53 were then found to be sumoylated by Topors in cells. It was also found that DJ-1 bound to p53 in vitro and in vivo and that colocalization with and its binding to p53 were stimulated by UV irradiation of cells. Transcription activity of p53 was found to be abrogated by Topors concomitant with sumoylation of p53 in a dose-dependent manner, and DJ-1 restored its repressed activity by releasing the sumoylated form of p53. These findings suggest that DJ-1 positively regulates p53 through Topors-mediated sumoylation.

  6. p53 Suppresses Tetraploid Development in Mice

    PubMed Central

    Horii, Takuro; Yamamoto, Masamichi; Morita, Sumiyo; Kimura, Mika; Nagao, Yasumitsu; Hatada, Izuho

    2015-01-01

    Mammalian tetraploid embryos die in early development because of defects in the epiblast. Experiments with diploid/tetraploid chimeric mice, obtained via the aggregation of embryonic stem cells, clarified that while tetraploid cells are excluded from epiblast derivatives, diploid embryos with tetraploid extraembryonic tissues can develop to term. Today, this method, known as tetraploid complementation, is usually used for rescuing extraembryonic defects or for obtaining completely embryonic stem (ES) cell-derived pups. However, it is still unknown why defects occur in the epiblast during mammalian development. Here, we demonstrated that downregulation of p53, a tumour suppressor protein, rescued tetraploid development in the mammalian epiblast. Tetraploidy in differentiating epiblast cells triggered p53-dependent cell-cycle arrest and apoptosis, suggesting the activation of a tetraploidy checkpoint during early development. Finally, we found that p53 downregulation rescued tetraploid embryos later in gestation. PMID:25752699

  7. p53 and rapamycin are additive

    PubMed Central

    Campisi, Judith; Huang, Jing; Jones, Diane; Dodds, Sherry G.; Williams, Charnae; Hubbard, Gene; Livi, Carolina B.; Gao, Xiaoli; Weintraub, Susan; Curiel, Tyler; Sharp, Z. Dave; Hasty, Paul

    2015-01-01

    Mechanistic target of rapamycin (mTOR) is a kinase found in a complex (mTORC1) that enables macromolecular synthesis and cell growth and is implicated in cancer etiology. The rapamycin-FK506 binding protein 12 (FKBP12) complex allosterically inhibits mTORC1. In response to stress, p53 inhibits mTORC1 through a separate pathway involving cell signaling and amino acid sensing. Thus, these different mechanisms could be additive. Here we show that p53 improved the ability of rapamycin to: 1) extend mouse life span, 2) suppress ionizing radiation (IR)-induced senescence-associated secretory phenotype (SASP) and 3) increase the levels of amino acids and citric acid in mouse embryonic stem (ES) cells. This additive effect could have implications for cancer treatment since rapamycin and p53 are anti-oncogenic. PMID:26158292

  8. p53 suppresses tetraploid development in mice.

    PubMed

    Horii, Takuro; Yamamoto, Masamichi; Morita, Sumiyo; Kimura, Mika; Nagao, Yasumitsu; Hatada, Izuho

    2015-03-10

    Mammalian tetraploid embryos die in early development because of defects in the epiblast. Experiments with diploid/tetraploid chimeric mice, obtained via the aggregation of embryonic stem cells, clarified that while tetraploid cells are excluded from epiblast derivatives, diploid embryos with tetraploid extraembryonic tissues can develop to term. Today, this method, known as tetraploid complementation, is usually used for rescuing extraembryonic defects or for obtaining completely embryonic stem (ES) cell-derived pups. However, it is still unknown why defects occur in the epiblast during mammalian development. Here, we demonstrated that downregulation of p53, a tumour suppressor protein, rescued tetraploid development in the mammalian epiblast. Tetraploidy in differentiating epiblast cells triggered p53-dependent cell-cycle arrest and apoptosis, suggesting the activation of a tetraploidy checkpoint during early development. Finally, we found that p53 downregulation rescued tetraploid embryos later in gestation.

  9. Dipeptide analysis of p53 mutations and evolution of p53 family proteins.

    PubMed

    Huang, Qiang; Yu, Long; Levine, Arnold J; Nussinov, Ruth; Ma, Buyong

    2014-01-01

    p53 gain-of-function mutations are similar to driver mutations in cancer genes, with both promoting tumorigenesis. Most previous studies focused on residues lost by mutations, providing information related to a dominantly-negative effect. However, to understand gain-of-function mutations, it is also important to investigate what are the distributions of residues gained by mutations. We compile available p53/p63/p73 protein sequences and construct a non-redundant dataset. We analyze the amino acid and dipeptide composition of p53/p63/p73 proteins across evolution and compare them with the gain/loss of amino acids and dipeptides in human p53 following cancer-related somatic mutations. We find that the ratios of amino acids gained via somatic mutations during evolution to those lost through p53 cancer mutations correlate with the ratios found in single nucleotide polymorphisms in the human proteome. The dipeptide mutational gain/loss ratios are inversely correlated with those observed over p53 evolution but tend to follow the increasing p63/p73-like dipeptide propensities. We successfully simulated the p53 cancer mutation spectrum using the dipeptide composition across the p53 family accounting for the likelihood of mutations in p53 codons. The results revealed that the p53 mutation spectrum is dominated not only by p53 evolution but also by reversal of evolution to a certain degree. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai.

  10. Distinctive patterns of p53 protein expression and microsatellite instability in human colorectal cancer.

    PubMed

    Nyiraneza, Christine; Jouret-Mourin, Anne; Kartheuser, Alex; Camby, Philippe; Plomteux, Olivier; Detry, Roger; Dahan, Karin; Sempoux, Christine

    2011-12-01

    Although evidence suggests an inverse relationship between microsatellite instability and p53 alterations in colorectal cancer, no study has thoroughly examined the use of p53 immunohistochemistry in phenotyping colorectal cancers. We investigated the value of p53 immunohistochemistry in microsatellite instability-positive colorectal cancers prescreening and attempted to clarify the relationship between DNA mismatch repair system and p53 pathway. In a series of 104 consecutive colorectal cancers, we performed p53 immunohistochemistry, TP53 mutational analysis, DNA mismatch repair system efficiency evaluation (DNA mismatch repair system immunohistochemistry, microsatellite instability status, MLH1/MSH2 germ line, and BRAF, murine double minute 2, and p21 immunohistochemistry. Microsatellite instability high was observed in 25 of 104 colorectal cancers, with DNA mismatch repair system protein loss (24/25) and germ line (8/25) or BRAF mutations (8/25). p53 immunohistochemistry revealed 3 distinct patterns of expression: complete negative immunostaining associated with truncating TP53 mutations (P < .0001), diffuse overexpression associated with missense TP53 mutations (P < .0001), and restricted overexpression characterized by a limited number of homogenously scattered strongly positive tumor cells in 36.5% of colorectal cancers. This latest pattern was associated with wild-type TP53 and microsatellite instability high colorectal cancers (P < .0001) including all Lynch tumors (8/8), but its presence among 22% of DNA mismatch repair system-competent colorectal cancers decreased its positive predictive value (55.2% [95% confidence interval, 45%-65%]). It was also correlated with murine double minute 2 overexpression (P < .0001) and inversely with p21 loss (P = .0002), independently of microsatellite instability status. In conclusion, a restricted pattern of p53 overexpression is preferentially associated with microsatellite instability high phenotype and could

  11. P53 levels determine outcome during beta-catenin tumor initiation and metastasis in the mammary gland and male germ cells.

    PubMed

    Ridgeway, A G; McMenamin, J; Leder, P

    2006-06-15

    beta-Catenin, an oncogene, and P53, a tumor suppressor, are common targets of mutation in human cancers. It has been observed that P53 is often inactivated in tumors involving beta-catenin activation. In an attempt to model this situation in vivo, we crossed the previously characterized MMTV-DeltaN-beta-catenin mouse with the P53 knockout mouse. Female multiparous mice that carry the MMTV-DeltaN-beta-catenin transgene and that are heterozygous for P53 (Tg(DeltaN-betaCat)/+, P53+/-) display an increased tumor burden (2.05 vs 1.31 tumors/animal), with a generally more advanced pathology, and increased metastatic rate (39 vs 0%) relative to transgenic female mice that are wild type for P53 (Tg(DeltaN-betaCat)/+, P53+/+). These differences were not due to complete loss of P53 as only one of 21 tumors demonstrated loss of heterozygosity at the P53 locus. Furthermore, no mutations were present in tumors retaining a single wild-type allele. Tg(DeltaN-betaCat)/+, P53-/- male mice developed testicular teratomas and survived an average of 65 days, whereas non-Tg(DeltaN-betaCat), P53-/- males survived an average of 84 days. Sixty-two percent of Tg(DeltaN-betaCat), P53-/- mice developed testicular teratomas, whereas only 10% of the non-Tg(DeltaN-betaCat), P53-/- mice developed these tumors. These results indicate that the level of P53 and the tissue of origin are important factors in determining outcome of cancer caused by oncogene activation.

  12. “Super p53” Mice Display Retinal Astroglial Changes

    PubMed Central

    Salazar, Juan J.; Gallego-Pinazo, Roberto; de Hoz, Rosa; Pinazo-Durán, Maria D.; Rojas, Blanca; Ramírez, Ana I.; Serrano, Manuel; Ramírez, José M.

    2013-01-01

    Tumour-suppressor genes, such as the p53 gene, produce proteins that inhibit cell division under adverse conditions, as in the case of DNA damage, radiation, hypoxia, or oxidative stress (OS). The p53 gene can arrest proliferation and trigger death by apoptosis subsequent to several factors. In astrocytes, p53 promotes cell-cycle arrest and is involved in oxidative stress-mediated astrocyte cell death. Increasingly, astrocytic p53 is proving fundamental in orchestrating neurodegenerative disease pathogenesis. In terms of ocular disease, p53 may play a role in hypoxia due to ischaemia and may be involved in the retinal response to oxidative stress (OS). We studied the influence of the p53 gene in the structural and quantitative characteristics of astrocytes in the retina. Adult mice of the C57BL/6 strain (12 months old) were distributed into two groups: 1) mice with two extra copies of p53 (“super p53”; n = 6) and 2) wild-type p53 age-matched control, as the control group (WT; n = 6). Retinas from each group were immunohistochemically processed to locate the glial fibrillary acidic protein (GFAP). GFAP+ astrocytes were manually counted and the mean area occupied for one astrocyte was quantified. Retinal-astrocyte distribution followed established patterns; however, morphological changes were seen through the retinas in relation to p53 availability. The mean GFAP+ area occupied by one astrocyte in “super p53” eyes was significantly higher (p<0.05; Student’s t-test) than in the WT. In addition, astroglial density was significantly higher in the “super p53” retinas than in the WT ones, both in the whole-retina (p<0,01 Student’s t-test) and in the intermediate and peripheral concentric areas of the retina (p<0.05 Student’s t-test). This fact might improve the resistance of the retinal cells against OS and its downstream signalling pathways. PMID:23762373

  13. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells

    PubMed Central

    Huayin, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-01-01

    Background The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. Material/Methods A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. Results Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. Conclusions KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms. PMID:28002389

  14. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells.

    PubMed

    Huaying, Sheng; Dong, Yao; Chihong, Zhu; Xiaoqian, Qian; Danying, Wan; Jianguo, Feng

    2016-12-21

    BACKGROUND The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. MATERIAL AND METHODS A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. RESULTS Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. CONCLUSIONS KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms.

  15. Rap2b, a novel p53 target, regulates p53-mediated pro-survival function

    PubMed Central

    Zhang, Xinyue; He, Yunlong; Lee, Kyoung-Hwa; Dubois, Wendy; Li, Ziqing; Wu, Xiaolin; Kovalchuk, Alexander; Zhang, Weimin; Huang, Jing

    2013-01-01

    The tumor suppressor p53 is a critical regulator of apoptosis and cell cycle arrest/pro-survival. Upon DNA damage, p53 evokes both cell cycle arrest/pro-survival and apoptosis transcriptional programs. The ultimate cellular outcome depends on the balance of these two programs. However, the p53 downstream targets that mediate this cell fate decision remain to be identified. Using an integrative genomic approach, we identify Rap2b as a conserved p53-activated gene that counters p53-mediated apoptosis after DNA damage. Upon DNA damage, p53 directly binds to the promoter of Rap2b and activates its transcription. The reduction of Rap2b levels by small interference RNA sensitizes cells to DNA damage-induced apoptosis in a p53-dependent manner. Consistent with its pro-survival function, analysis of cancer genomic data reveals that Rap2b is overexpressed in many types of tumors. Anchorage-independent growth assays show that Rap2b has only weak transformation activity, suggesting that it is not an oncogene by itself. Together, our results identify Rap2b as a new player in the pro-survival program conducted by p53 and raise the possibility that targeting Rap2b could sensitize tumor cells to apoptosis in response to DNA damage. PMID:23535297

  16. Mechanisms of p53-Mediated Apoptosis

    DTIC Science & Technology

    2005-03-01

    exclusion assay and under control of the IGFBP3 promoter and 1 pig of empty pcDNA3 or pcDNA3 vector expressing p53 and various mutants. (A) The BD found that...C. C. Harris, and P. p73-deficient mice have neurological, pheromonal and inflammatory defects Hainaut. 2002. The IARC TP53 database: new online

  17. Autoantibody recognition mechanisms of p53 epitopes

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2016-06-01

    There is an urgent need for economical blood based, noninvasive molecular biomarkers to assist in the detection and diagnosis of cancers in a cost-effective manner at an early stage, when curative interventions are still possible. Serum autoantibodies are attractive biomarkers for early cancer detection, but their development has been hindered by the punctuated genetic nature of the ten million known cancer mutations. A landmark study of 50,000 patients (Pedersen et al., 2013) showed that a few p53 15-mer epitopes are much more sensitive colon cancer biomarkers than p53, which in turn is a more sensitive cancer biomarker than any other protein. The function of p53 as a nearly universal "tumor suppressor" is well established, because of its strong immunogenicity in terms of not only antibody recruitment, but also stimulation of autoantibodies. Here we examine dimensionally compressed bioinformatic fractal scaling analysis for identifying the few sensitive epitopes from the p53 amino acid sequence, and show how it could be used for early cancer detection (ECD). We trim 15-mers to 7-mers, and identify specific 7-mers from other species that could be more sensitive to aggressive human cancers, such as liver cancer. Our results could provide a roadmap for ECD.

  18. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis.

    PubMed

    Follis, Ariele Viacava; Chipuk, Jerry E; Fisher, John C; Yun, Mi-Kyung; Grace, Christy R; Nourse, Amanda; Baran, Katherine; Ou, Li; Min, Lie; White, Stephen W; Green, Douglas R; Kriwacki, Richard W

    2013-03-01

    Following DNA damage, nuclear p53 induces the expression of PUMA, a BH3-only protein that binds and inhibits the antiapoptotic BCL-2 repertoire, including BCL-xL. PUMA, unique among BH3-only proteins, disrupts the interaction between cytosolic p53 and BCL-xL, allowing p53 to promote apoptosis via direct activation of the BCL-2 effector molecules BAX and BAK. Structural investigations using NMR spectroscopy and X-ray crystallography revealed that PUMA binding induced partial unfolding of two α-helices within BCL-xL. Wild-type PUMA or a PUMA mutant incapable of causing binding-induced unfolding of BCL-xL equivalently inhibited the antiapoptotic BCL-2 repertoire to sensitize for death receptor-activated apoptosis, but only wild-type PUMA promoted p53-dependent, DNA damage-induced apoptosis. Our data suggest that PUMA-induced partial unfolding of BCL-xL disrupts interactions between cytosolic p53 and BCL-xL, releasing the bound p53 to initiate apoptosis. We propose that regulated unfolding of BCL-xL provides a mechanism to promote PUMA-dependent signaling within the apoptotic pathways.

  19. Detection of genotoxic and non-genotoxic carcinogens in Xpc{sup −/−}p53{sup +/−} mice

    SciTech Connect

    Melis, Joost P.M.; Speksnijder, Ewoud N.; Kuiper, Raoul V.; Salvatori, Daniela C.F.; Schaap, Mirjam M.; Maas, Saskia; Robinson, Joke; Verhoef, Aart; Benthem, Jan van; Luijten, Mirjam; Steeg, Harry van

    2013-01-15

    An accurate assessment of the carcinogenic potential of chemicals and pharmaceutical drugs is essential to protect humans and the environment. Therefore, substances are extensively tested before they are marketed to the public. Currently, the rodent two-year bioassay is still routinely used to assess the carcinogenic potential of substances. However, over time it has become clear that this assay yields false positive results and also has several economic and ethical drawbacks including the use of large numbers of animals, the long duration, and the high cost. The need for a suitable alternative assay is therefore high. Previously, we have proposed the Xpa*p53 mouse model as a very suitable alternative to the two-year bioassay. We now show that the Xpc*p53 mouse model preserves all the beneficial traits of the Xpa*p53 model for sub-chronic carcinogen identification and can identify both genotoxic and non-genotoxic carcinogens. Moreover, Xpc*p53 mice appear to be more responsive than Xpa*p53 mice towards several genotoxic and non-genotoxic carcinogens. Furthermore, Xpc*p53 mice are far less sensitive than Xpa*p53 mice for the toxic activity of DNA damaging agents and as such clearly respond in a similar way as wild type mice do. These advantageous traits of the Xpc*p53 model make it a better alternative for in vivo carcinogen testing than Xpa*p53. This pilot study suggests that Xpc*p53 mice are suited for routine sub-chronic testing of both genotoxic and non-genotoxic carcinogens and as such represent a suitable alternative to possibly replace the murine life time cancer bioassay. Highlights: ► The Xpc*p53 mouse model is able to identify genotoxic and non-genotoxic carcinogens. ► Time, animals and cost can be significantly reduced compared to the 2-year bioassay. ► Xpc*p53 mice are more advantageous for carcinogen identification than Xpa*p53 mice. ► Xpc*p53 mice exhibit a wild type response upon exposure to genotoxicants.

  20. INGN 201: Ad-p53, Ad5CMV-p53, Adenoviral p53, INGN 101, p53 gene therapy--Introgen, RPR/INGN 201.

    PubMed

    2003-01-01

    Introgen's adenoviral p53 gene therapy [INGN 201, ADVEXIN] is in clinical development for the treatment of various cancers. The p53 tumour suppressor gene is deleted or mutated in many tumour cells and is one of the most frequently mutated genes in human tumours. INGN 201 has been shown to kill cancer cells directly. In August 2002, Introgen announced plans to file an application for INGN 201 with the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of head and neck cancer; the European filing will be submitted simultaneously with the previously scheduled (planned for 2004) submission of a Biologics License Application (BLA) for ADVEXIN to the US FDA. On 20 February 2003, INGN 201 received orphan drug designation from the US FDA for head and neck cancer. INGN 201 is available for licensing although Introgen favours retaining partial or full rights to the therapy in the US. Introgen Therapeutics and its collaborative partner for the p53 programme, Aventis Gencell, have been developing p53 gene therapy products. The agreement was originally signed by Rhône-Poulenc Rorer's Gencell division, which became Aventis Gencell after Rhône-Poulenc Rorer merged with Hoechst Marion Roussel to form Aventis Pharma. According to the original agreement, Introgen was responsible for phase I and preclinical development in North America, while Aventis Gencell was responsible for clinical trials conducted in Europe and for clinical trials in North America beyond phase I. In April 2001, Aventis Gencell and Introgen restructured their existing collaboration agreement for p53 gene therapy products. Aventis Gencell indicated that p53 research had suffered from internal competition for resources and was pulling back from its development agreement with Introgen for p53 gene therapy products. Introgen will assume responsibility for worldwide development of all p53 programmes and will obtain exclusive worldwide commercial rights to p53-based gene therapy

  1. CTLA-4 blockade enhances the therapeutic effect of an attenuated poxvirus vaccine targeting p53 in an established murine tumor model.

    PubMed

    Espenschied, Jonathan; Lamont, Jeffrey; Longmate, Jeff; Pendas, Solange; Wang, Zhongde; Diamond, Don J; Ellenhorn, Joshua D I

    2003-03-15

    p53 is overexpressed by half of all cancers, and is an attractive target for a vaccine approach to immunotherapy. p53 overexpression is frequently the result of point mutations, which leaves the majority of the protein in its wild-type form. Therefore, the majority of p53 sequence is wild type, making it a self-protein for which tolerance plays a role in limiting immune responses. To overcome tolerance to p53, we have expressed wild-type murine p53 in the nonpathogenic attenuated poxvirus, modified vaccinia virus Ankara (recombinant modified vaccinia virus Ankara expressing wild-type murine p53 (rMVAp53)). Mice immunized with rMVAp53 vaccine developed vigorous p53-specific CTL responses. rMVAp53 vaccine was evaluated for its ability to inhibit the outgrowth of the syngeneic murine sarcoma Meth A, which overexpresses mutant p53. Mice were inoculated with a lethal dose (5 x 10(5) cells injected s.c.) of Meth A tumor cells and vaccinated by i.p. injection 3 days later with 5 x 10(7) PFU of rMVAp53. The majority of mice remained tumor free and resistant to rechallenge with Meth A tumor cells. We wished to determine whether rMVAp53 immunization could effect the rejection of an established, palpable Meth A tumor. In subsequent experiments, mice were injected with 10(6) Meth A tumor cells, and treated 6 days later with anti-CTLA-4 Ab (9H10) and rMVAp53. The majority of treated mice had complete tumor regression along with lasting tumor immunity. In vivo Ab depletion confirmed that the antitumor effect was primarily CD8 and to a lesser extent CD4 dependent. These experiments demonstrate the potential of a novel cell-free vaccine targeting p53 in malignancy.

  2. MDM2 expression during mouse embryogenesis and the requirement of p53.

    PubMed

    Léveillard, T; Gorry, P; Niederreither, K; Wasylyk, B

    1998-06-01

    We compared mouse embryonic expression of the MDM2 proto-oncogene, p21WAF1/CIP1 and their transcriptional regulator, p53. MDM2 expression is ubiquitous from 7.5 to 11.5 days post coitum (dpc) and more restricted from 12.5 dpc, with the highest levels in the testes and neural tube. From 14.5 to 18.5 dpc, the nasal respiratory epithelium expresses high levels of MDM2 RNA and protein and p21WAF1/CIP1 RNA, in both wild type and p53 null embryos. MDM2 expression during development is tissue-specific and, like p21WAF1/CIP1, is independent of p53. MDM2 may have a developmental role after 6.5 dpc, when MDM2 null mice die (Jones, S.N., Roe, A.E., Donehower, L.A., Bradley, A., 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206-208; Montes de Oca Luna, R., Wagner, D.S., Lozano, G., 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203-206).

  3. Oncogenomic Approaches in Exploring Gain of Function of Mutant p53

    PubMed Central

    Donzelli, Sara; Biagioni, Francesca; Fausti, Francesca; Strano, Sabrina; Fontemaggi, Giulia; Blandino, Giovanni

    2008-01-01

    Cancer is caused by the spatial and temporal accumulation of alterations in the genome of a given cell. This leads to the deregulation of key signalling pathways that play a pivotal role in the control of cell proliferation and cell fate. The p53 tumor suppressor gene is the most frequent target in genetic alterations in human cancers. The primary selective advantage of such mutations is the elimination of cellular wild type p53 activity. In addition, many evidences in vitro and in vivo have demonstrated that at least certain mutant forms of p53 may possess a gain of function, whereby they contribute positively to cancer progression. The fine mapping and deciphering of specific cancer phenotypes is taking advantage of molecular-profiling studies based on genome-wide approaches. Currently, high-throughput methods such as array-based comparative genomic hybridization (CGH array), single nucleotide polymorphism array (SNP array), expression arrays and ChIP-on-chip arrays are available to study mutant p53-associated alterations in human cancers. Here we will mainly focus on the integration of the results raised through oncogenomic platforms that aim to shed light on the molecular mechanisms underlying mutant p53 gain of function activities and to provide useful information on the molecular stratification of tumor patients. PMID:19440517

  4. Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity

    PubMed Central

    Léveillé, Nicolas; Elkon, Ran; Davalos, Veronica; Manoharan, Vijayalaxmi; Hollingworth, Dave; Vrielink, Joachim Oude; le Sage, Carlos; Melo, Carlos A.; Horlings, Hugo M.; Wesseling, Jelle; Ule, Jernej; Esteller, Manel; Ramos, Andres; Agami, Reuven

    2011-01-01

    MicroRNAs (miRNAs) interact with 3′-untranslated regions of messenger RNAs to restrict expression of most protein-coding genes during normal development and cancer. RNA-binding proteins (RBPs) can control the biogenesis, stability and activity of miRNAs. Here we identify RBM38 in a genetic screen for RBPs whose expression controls miRNA access to target mRNAs. RBM38 is induced by p53 and its ability to modulate miRNA-mediated repression is required for proper p53 function. In contrast, RBM38 shows lower propensity to block the action of the p53-controlled miR-34a on SIRT1. Target selectivity is determined by the interaction of RBM38 with uridine-rich regions near miRNA target sequences. Furthermore, in large cohorts of human breast cancer, reduced RBM38 expression by promoter hypermethylation correlates with wild-type p53 status. Thus, our results indicate a novel layer of p53 gene regulation, which is required for its tumour suppressive function. PMID:22027593

  5. Phosphorylation of p53 by LRRK2 induces microglial tumor necrosis factor α-mediated neurotoxicity.

    PubMed

    Ho, Dong Hwan; Seol, Wongi; Eun, Jin Hwan; Son, Il-Hong

    2017-01-22

    Leucine-rich repeat kinase (LRRK2), a major causal gene of Parkinson's disease (PD), functions as a kinase. The most prevalent mutation of LRRK2 is G2019S. It exhibits increased kinase activity compared to the wildtype LRRK2. Previous studies have shown that LRRK2 can phosphorylate p53 at T304 and T377 of threonine-X-arginine (TXR) motif in neurons. Reduction of LRRK2 expression or inhibition of LRRK2 kinase activity has been shown to be able to alleviate LPS-induced neuroinflammation in microglia cells. In this study, we found that LRRK2 could also phosphorylate p53 in microglia model BV2 cells. Transfection of BV2 with phosphomimetic p53 T304/377D significantly increased the secretion of pro-inflammatory cytokine TNFα compared to BV2 transfected with p53 wild type after LPS treatment. In addition, conditioned media from these transfected cells increased the death of dopaminergic neuronal SN4741 cells. Moreover, such neurotoxic effect was rescued by co-treatment with the conditioned media and etanercept, a TNFα blocking antibody. Furthermore, TNFα secretion was significantly increased in primary microglia derived from G2019S transgenic mice treated with LPS compared to that in cells derived from their littermates. These results suggest that LRRK2 kinase activity in microglia can contribute to neuroinflammation in PD via phosphorylating p53 at T304 and T377 site.

  6. A microRNA component of the p53 tumour suppressor network

    PubMed Central

    He, Lin; He, Xingyue; Lim, Lee P.; de Stanchina, Elisa; Xuan, Zhenyu; Liang, Yu; Xue, Wen; Zender, Lars; Magnus, Jill; Ridzon, Dana; Jackson, Aimee L.; Linsley, Peter S.; Chen, Caifu; Lowe, Scott W.; Cleary, Michele A.; Hannon, Gregory J.

    2015-01-01

    A global decrease in microRNA (miRNA) levels is often observed in human cancers1,2, indicating that small RNAs may have an intrinsic function in tumour suppression. To identify miRNA components of tumour suppressor pathways, we compared miRNA expression profiles of wild-type and p53-deficient cells. Here we describe a family of miRNAs, miR-34a–c, whose expression reflected p53 status. Genes encoding miRNAs in the miR-34 family are direct transcriptional targets of p53, whose induction by DNA damage and oncogenic stress depends on p53 both in vitro and in vivo. Ectopic expression of miR-34 induces cell cycle arrest in both primary and tumour-derived cell lines, which is consistent with the observed ability of miR-34 to downregulate a programme of genes promoting cell cycle progression. The p53 network suppresses tumour formation through the coordinated activation of multiple transcriptional targets, and miR-34 may act in concert with other effectors to inhibit inappropriate cell proliferation. PMID:17554337

  7. FHL2 mediates p53-induced transcriptional activation through a direct association with HIPK2

    SciTech Connect

    Lee, Sang-Wang . E-mail: umsj@sejong.ac.kr

    2006-01-27

    To understand the molecular mechanism underlying HIPK2 regulation of the transcriptional activation by p53, we sought to identify the protein that interacts with HIPK2. From our yeast two-hybrid screen, we found that four and a half LIM domains 2 (FHL2) could bind to the C-terminal half of HIPK2. Further assays in yeast mapped the minimal interaction domain to amino acids 812-907 in HIPK2. The interaction was confirmed using a GST pull-down assay in vitro, and an immunoprecipitation (IP) assay and fluorescence microscopy in vivo. FHL2 alone spread throughout both the cytoplasm and nucleus but was redistributed to dot-like structures in the nucleus when HIPK2 was coexpressed in HEK293 cells. When tethered to the Gal4-responsive promoter through the Gal4 DBD fusion, FHL2 showed autonomous transcriptional activity that was enhanced by wild-type HIPK2, but not by the kinase-defective mutant. In addition, FHL2 increased the p53-dependent transcriptional activation and had an additive effect on the activation when coexpressed with HIPK2, which was again not observed with the kinase-defective mutant of HIPK2. Finally, we found a ternary complex of p53, HIPK2, and FHL2 using IP, and their recruitment to the p53-responsive p21Waf1 promoter in chromatin IP assays. Overall, our findings indicate that FHL2 can also regulate p53 via a direct association with HIPK2.

  8. Targeting the MDM2/MDM4 interaction interface as a promising approach for p53 reactivation therapy.

    PubMed

    Pellegrino, Marsha; Mancini, Francesca; Lucà, Rossella; Coletti, Alice; Giacchè, Nicola; Manni, Isabella; Arisi, Ivan; Florenzano, Fulvio; Teveroni, Emanuela; Buttarelli, Marianna; Fici, Laura; Brandi, Rossella; Bruno, Tiziana; Fanciulli, Maurizio; D'Onofrio, Mara; Piaggio, Giulia; Pellicciari, Roberto; Pontecorvi, Alfredo; Marine, Jean Christophe; Macchiarulo, Antonio; Moretti, Fabiola

    2015-11-01

    Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM2 and MDM4 simultaneously based on recent studies indicating that formation of MDM2/MDM4 heterodimer complexes are required for efficient inactivation of p53 function. Using computational and mutagenesis analyses of the heterodimer binding interface, we identified a peptide that mimics the MDM4 C-terminus, competes with endogenous MDM4 for MDM2 binding, and activates p53 function. This peptide induces p53-dependent apoptosis in vitro and reduces tumor growth in vivo. Interestingly, interfering with the MDM2/MDM4 heterodimer specifically activates a p53-dependent oxidative stress response. Consistently, distinct subcellular pools of MDM2/MDM4 complexes were differentially sensitive to the peptide; nuclear MDM2/MDM4 complexes were particularly highly susceptible to the peptide-displacement activity. Taken together, these data identify the MDM2/MDM4 interaction interface as a valuable molecular target for therapeutic reactivation of p53 oncosuppressive function.

  9. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    PubMed Central

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  10. Pu-erh tea inhibits tumor cell growth by down-regulating mutant p53.

    PubMed

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms' metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects.

  11. A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain

    PubMed Central

    Gaiddon, C.; Lokshin, M.; Ahn, J.; Zhang, T.; Prives, C.

    2001-01-01

    The p53 protein is related by sequence homology and function to the products of two other genes, p63 and p73, that each encode several isoforms. We and others have discovered previously that certain tumor-derived mutants of p53 can associate and inhibit transcriptional activation by the α and β isoforms of p73. In this study we have extended these observations to show that in transfected cells a number of mutant p53 proteins could bind and down-regulate several isoforms not only of p73 (p73α, -β, -γ, and -δ) but also of p63 (p63α and -γ; ΔNp63α and -γ). Moreover, a correlation existed between the efficiency of p53 binding and the inhibition of p63 or p73 function. We also found that wild-type p63 and p73 interact efficiently with each other when coexpressed in mammalian cells. The interaction between p53 mutants and p63 or p73 was confirmed in a physiological setting by examining tumor cell lines that endogenously express these proteins. We also demonstrated that purified p53 and p73 proteins interact directly and that the p53 core domain, but not the tetramerization domain, mediates this interaction. Using a monoclonal antibody (PAb240) that recognizes an epitope within the core domain of a subset of p53 mutants, we found a correlation between the ability of p53 proteins to be immunoprecipitated by this antibody and their ability to interact with p73 or p63 in vitro and in transfected cells. Based on these results and those of others, we propose that interactions between the members of the p53 family are likely to be widespread and may account in some cases for the ability of tumor-derived p53 mutants to promote tumorigenesis. PMID:11238924

  12. Roles of HAUSP-mediated p53 regulation in central nervous system development.

    PubMed

    Kon, N; Zhong, J; Kobayashi, Y; Li, M; Szabolcs, M; Ludwig, T; Canoll, P D; Gu, W

    2011-08-01

    The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.

  13. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal

    PubMed Central

    Zhao, Zhen; Zuber, Johannes; Diaz-Flores, Ernesto; Lintault, Laura; Kogan, Scott C.; Shannon, Kevin; Lowe, Scott W.

    2010-01-01

    The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here, we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML), an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models, Cre-lox technology, and in vivo RNAi to disable p53 and simultaneously activate endogenous KrasG12D—a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic KrasG12D to induce aggressive AML, while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells, such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently, myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells, resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation, and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity. PMID:20595231

  14. Immunological and Clinical Effects of Vaccines Targeting p53-Overexpressing Malignancies

    PubMed Central

    Vermeij, R.; Leffers, N.; van der Burg, S. H.; Melief, C. J.; Daemen, T.; Nijman, H. W.

    2011-01-01

    Approximately 50% of human malignancies carry p53 mutations, which makes it a potential antigenic target for cancer immunotherapy. Adoptive transfer with p53-specific cytotoxic T-lymphocytes (CTL) and CD4+ T-helper cells eradicates p53-overexpressing tumors in mice. Furthermore, p53 antibodies and p53-specific CTLs can be detected in cancer patients, indicating that p53 is immunogenic. Based on these results, clinical trials were initiated. In this paper, we review immunological and clinical responses observed in cancer patients vaccinated with p53 targeting vaccines. In most trials, p53-specific vaccine-induced immunological responses were observed. Unfortunately, no clinical responses with significant reduction of tumor-burden have occurred. We will elaborate on possible explanations for this lack of clinical effectiveness. In the second part of this paper, we summarize several immunopotentiating combination strategies suitable for clinical use. In our opinion, future p53-vaccine studies should focus on addition of these immunopotentiating regimens to achieve clinically effective therapeutic vaccination strategies for cancer patients. PMID:21541192

  15. Apoptosis and morphological alterations after UVA irradiation in red blood cells of p53 deficient Japanese medaka (Oryzias latipes).

    PubMed

    Sayed, Alla El-Din Hamid; Watanabe-Asaka, Tomomi; Oda, Shoji; Mitani, Hiroshi

    2016-08-01

    Morphological alterations in red blood cells were described as hematological bioindicators of UVA exposure to investigate the sensitivity to UVA in wild type Japanese medaka (Oryzias latipes) and a p53 deficient mutant. The fewer abnormal red blood cells were observed in the p53 mutant fish under the control conditions. After exposure to different doses of UVA radiation (15min, 30min and 60min/day for 3days), cellular and nuclear alterations in red blood cells were analyzed in the UVA exposed fish compared with non-exposed controls and those alterations included acanthocytes, cell membrane lysis, swollen cells, teardrop-like cell, hemolyzed cells and sickle cells. Those alterations were increased after the UVA exposure both in wild type and the p53 deficient fish. Moreover, apoptosis analyzed by acridine orange assay showed increased number of apoptosis in red blood cells at the higher UVA exposure dose. No micronuclei but nuclear abnormalities as eccentric nucleus, nuclear budding, deformed nucleus, and bilobed nucleus were observed in each group. These results suggested that UVA exposure induced both p53 dependent and independent apoptosis and morphological alterations in red blood cells but less sensitive to UVA than Wild type in medaka fish.

  16. Poor prognosis in non-villous splenic marginal zone cell lymphoma is associated with p53 mutations.

    PubMed

    Baldini, L; Guffanti, A; Cro, L; Fracchiolla, N S; Colombi, M; Motta, M; Maiolo, A T; Neri, A

    1997-11-01

    We have recently reported a series of 15 non-villous splenic marginal zone lymphoma patients, six of whom showed p53 mutations (40%). This molecular alteration did not correlate with any particular clinico-pathologic feature at diagnosis. After a median follow-up of 56 months, four cases evolved into aggressive fatal non-Hodgkin's lymphoma (NHL) and two had refractory progressive disease; interestingly, p53 mutations were demonstrated in five of these patients at diagnosis. As the patients with wild-type p53 presented responsive or indolent disease, this genetic alteration may be an early marker of aggressive transformation or refractoriness. p53 evaluation at diagnosis could be advisable in this particular subset of NHL.

  17. p53-dependent NDRG1 expression induces inhibition of intestinal epithelial cell proliferation but not apoptosis after polyamine depletion.

    PubMed

    Zhang, Ai-Hong; Rao, Jaladanki N; Zou, Tongtong; Liu, Lan; Marasa, Bernard S; Xiao, Lan; Chen, Jie; Turner, Douglas J; Wang, Jian-Ying

    2007-07-01

    Normal intestinal mucosal growth requires polyamines that regulate expression of various genes involved in cell proliferation, growth arrest, and apoptosis. Our previous studies have shown that polyamine depletion stabilizes p53, resulting in inhibition of intestinal epithelial cell (IEC) proliferation, but the exact downstream targets of induced p53 are still unclear. The NDRG1 (N-myc downregulated gene-1) gene encodes a growth-related protein, and its transcription can be induced in response to stress. The current study tests the hypothesis that induced p53 inhibits IEC proliferation by upregulating NDRG1 expression following polyamine depletion. Depletion of cellular polyamines by inhibiting ornithine decarboxylase (ODC) with alpha-difluoromethylornithine not only induced p53 but also increased NDRG1 transcription as indicated by induction of the NDRG1 promoter activity and increased levels of NDRG1 mRNA and protein, all of which were prevented by using specific p53 siRNA and in cells with a targeted deletion of p53. In contrast, increased levels of cellular polyamines by ectopic expression of the ODC gene decreased p53 and repressed expression of NDRG1. Consistently, polyamine depletion-induced activation of the NDRG1-promoter was decreased when p53-binding sites within the NDRG1 proximal promoter region were deleted. Ectopic expression of the wild-type NDRG1 gene inhibited DNA synthesis and decreased final cell numbers regardless of the presence or absence of endogenous p53, whereas silencing NDRG1 promoted cell growth. However, overexpression of NDRG1 failed to directly induce cell death and to alter susceptibility to apoptosis induced by tumor necrosis factor-alpha/cycloheximide. These results indicate that NDRG1 is one of the direct mediators of induced p53 following polyamine depletion and that p53-dependent NDRG1 expression plays a critical role in the negative control of IEC proliferation.

  18. Absence of a p53 allele delays nitrogen mustard-induced early apoptosis and inflammation of murine skin.

    PubMed

    Inturi, Swetha; Tewari-Singh, Neera; Jain, Anil K; Roy, Srirupa; White, Carl W; Agarwal, Rajesh

    2013-09-15

    Bifunctional alkylating agent sulfur mustard (SM) and its analog nitrogen mustard (NM) cause DNA damage leading to cell death, and potentially activating inflammation. Transcription factor p53 plays a critical role in DNA damage by regulating cell cycle progression and apoptosis. Earlier studies by our laboratory demonstrated phosphorylation of p53 at Ser15 and an increase in total p53 in epidermal cells both in vitro and in vivo following NM exposure. To elucidate the role of p53 in NM-induced skin toxicity, we employed SKH-1 hairless mice harboring wild type (WT) or heterozygous p53 (p53+/-). Exposure to NM (3.2mg) caused a more profound increase in epidermal thickness and apoptotic cell death in WT relative to p53+/- mice at 24h. However, by 72h after exposure, there was a comparable increase in NM-induced epidermal cell death in both WT and p53+/- mice. Myeloperoxidase activity data showed that neutrophil infiltration was strongly enhanced in NM-exposed WT mice at 24h persisting through 72h of exposure. Conversely, robust NM-induced neutrophil infiltration (comparable to WT mice) was seen only at 72h after exposure in p53+/- mice. Similarly, NM-exposure strongly induced macrophage and mast cell infiltration in WT, but not p53+/- mice. Together, these data indicate that early apoptosis and inflammation induced by NM in mouse skin are p53-dependent. Thus, targeting this pathway could be a novel strategy for developing countermeasures against vesicants-induced skin injury.

  19. The Ews/Fli-1 fusion gene changes the status of p53 in neuroblastoma tumor cell lines.

    PubMed

    Rorie, Checo J; Weissman, Bernard E

    2004-10-15

    One hallmark of Ewing's sarcoma/peripheral neuroectodermal tumors is the presence of the Ews/Fli-1 chimeric oncogene. Interestingly, infection of neuroblastoma tumor cell lines with Ews/Fli-1 switches the differentiation program of neuroblastomas to Ewing's sarcoma/peripheral neuroectodermal tumors. Here we examined the status of cytoplasmically sequestered wt-p53 in neuroblastomas after stable expression of Ews/Fli-1. Immunofluorescence revealed that in the neuroblastoma-Ews/Fli-1 infectant cell lines, p53 went from a punctate-pattern of cytoplasmic sequestration to increased nuclear localization. Western blot analysis revealed that PARC was down-regulated in one neuroblastoma cell line but not expressed in the second. Therefore, decreased PARC expression could not fully account for relieving p53 sequestration in the neuroblastoma tumor cells. Neuroblastoma-Ews/Fli-1 infectant cell lines showed marked increases in p53 protein expression without transcriptional up-regulation. Interestingly, p53 was primarily phosphorylated, without activation of its downstream target p21(WAF1). Western blot analysis revealed that whereas MDM2 gene expression does not change, p14(ARF), a negative protein regulator of MDM2, increases. These observations suggest that the downstream p53 pathway may be inactivated as a result of abnormal p53. We also found that p53 has an extended half-life in the neuroblastoma-Ews/Fli-1 infectants despite the retention of a wild-type sequence in neuroblastoma-Ews/Fli-1 infectant cell lines. We then tested the p53 response pathway and observed that the neuroblastoma parent cells responded to genotoxic stress, whereas the neuroblastoma-Ews/Fli-1 infectants did not. These results suggest that Ews/Fli-1 can directly abrogate the p53 pathway to promote tumorigenesis. These studies also provide additional insight into the relationship among the p53 pathway proteins.

  20. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner.

    PubMed Central

    Ko, L J; Shieh, S Y; Chen, X; Jayaraman, L; Tamai, K; Taya, Y; Prives, C; Pan, Z Q

    1997-01-01

    The tumor suppressor protein p53 acts as a transcriptional activator that can mediate cellular responses to DNA damage by inducing apoptosis and cell cycle arrest. p53 is a nuclear phosphoprotein, and phosphorylation has been proposed to be a means by which the activity of p53 is regulated. The cyclin-dependent kinase (CDK)-activating kinase (CAK) was originally identified as a cellular kinase required for the activation of a CDK-cyclin complex, and CAK is comprised of three subunits: CDK7, cyclin H, and p36MAT1. CAK is part of the transcription factor IIH multiprotein complex, which is required for RNA polymerase II transcription and nucleotide excision repair. Because of the similarities between p53 and CAK in their involvement in the cell cycle, transcription, and repair, we investigated whether p53 could act as a substrate for phosphorylation by CAK. While CDK7-cyclin H is sufficient for phosphorylation of CDK2, we show that p36MAT1 is required for efficient phosphorylation of p53 by CDK7-cyclin H, suggesting that p36MAT1 can act as a substrate specificity-determining factor for CDK7-cyclin H. We have mapped a major site of phosphorylation by CAK to Ser-33 of p53 and have demonstrated as well that p53 is phosphorylated at this site in vivo. Both wild-type and tumor-derived mutant p53 proteins are efficiently phosphorylated by CAK. Furthermore, we show that p36 and p53 can interact both in vitro and in vivo. These studies reveal a potential mechanism for coupling the regulation of p53 with DNA repair and the basal transcriptional machinery. PMID:9372954

  1. The Δ133p53 Isoform Reduces Wtp53-induced Stimulation of DNA Pol γ Activity in the Presence and Absence of D4T

    PubMed Central

    Liu, Kai; Zang, Yunjin; Guo, Xianghua; Wei, Feili; Yin, Jiming; Pang, Lijun; Chen, Dexi

    2017-01-01

    The mitochondrial toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is due to the inhibition of mitochondrial DNA (mtDNA) polymerase γ (pol γ). Previous studies have shown that wild type p53 (wtp53) can interact with pol γ and mtDNA to enhance mitochondrial DNA base excision repair (mtBER) activity and increase the accuracy of DNA synthesis. The N-terminal transactivation domain and central specific DNA-binding domain of p53 play critical roles in the stimulation of BER. In this study, we identified the possible roles of wtp53, Δ40p53 and Δ133p53 in regulating mtDNA pol γ activity in cells with d4T treatment. The results show that Δ40p53 and Δ133p53 can exist in mitochondrial fragments and form polymers with themselves or wtp53. Unlike wtP53, Δ133p53 alone cannot increase DNA pol γ activity. More importantly, we found that Δ133p53 played a negative role in p53 stimulation of DNA pol γ activity when studied in d4T-treated and d4T-untreated mitochondrial extracts. Gel shift data also indicate that Δ40p53 and Δ133p53 cannot interact with APE. Wtp53 and Δ40p53 can act antagonize the effect of d4T inhibition of DNA pol γ activity. However, when wtp53 interacted with Δ133p53, DNA pol γ activity was significantly decreased. Conclusion: Δ133p53 negatively regulates p53’s stimulation of pol γ in the presence and absence of d4T.

  2. WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma.

    PubMed

    Del Mare, Sara; Husanie, Hussam; Iancu, Ortal; Abu-Odeh, Mohammad; Evangelou, Konstantinos; Lovat, Francesca; Volinia, Stefano; Gordon, Jonathan; Amir, Gail; Stein, Janet; Stein, Gary S; Croce, Carlo M; Gorgoulis, Vassilis; Lian, Jane B; Aqeilan, Rami I

    2016-10-15

    Osteosarcoma is a highly metastatic form of bone cancer in adolescents and young adults that is resistant to existing treatments. Development of an effective therapy has been hindered by very limited understanding of the mechanisms of osteosarcomagenesis. Here, we used genetically engineered mice to investigate the effects of deleting the tumor suppressor Wwox selectively in either osteoblast progenitors or mature osteoblasts. Mice with conditional deletion of Wwox in preosteoblasts (Wwox(Δosx1)) displayed a severe inhibition of osteogenesis accompanied by p53 upregulation, effects that were not observed in mice lacking Wwox in mature osteoblasts. Deletion of p53 in Wwox(Δosx1) mice rescued the osteogenic defect. In addition, the Wwox;p53(Δosx1) double knockout mice developed poorly differentiated osteosarcomas that resemble human osteosarcoma in histology, location, metastatic behavior, and gene expression. Strikingly, the development of osteosarcomas in these mice was greatly accelerated compared with mice lacking p53 only. In contrast, combined WWOX and p53 inactivation in mature osteoblasts did not accelerate osteosarcomagenesis compared with p53 inactivation alone. These findings provide evidence that a WWOX-p53 network regulates normal bone formation and that disruption of this network in osteoprogenitors results in accelerated osteosarcoma. The Wwox;p53(Δosx1) double knockout establishes a new osteosarcoma model with significant advancement over existing models. Cancer Res; 76(20); 6107-17. ©2016 AACR.

  3. P53 tumor suppressor gene and protein expression is altered in cell lines derived from spontaneous and alpha-radiation-induced canine lung tumors

    SciTech Connect

    Tierney, L.A.; Johnson, N.F.; Lechner, J.F.

    1994-11-01

    Mutations in the p53 tumor suppressor gene are the most frequently occurring gene alterations in malignant human cancers, including lung cancer. In lung cancer, common point mutations within conserved exons of the p53 gene result in a stabilized form of mutant protein which is detectable in most cases by immunohistochemistry. In addition to point mutations, allelic loss, rearrangements, and deletions of the p53 gene have also been detected in both human and rodent tumors. It has been suggested that for at least some epithelial neoplasms, the loss of expression of wild-type p53 protein may be more important for malignant transformation than the acquisition of activating mutations. Mechanisms responsible for the loss of expression of wild-type protein include gene deletion or rearrangement, nonsense or stop mutations, mutations within introns or upstream regulatory regions of the gene, and accelerated rates of degradation of the protein by DNA viral oncoproteins.

  4. Wide-line NMR and DSC studies on intrinsically disordered p53 transactivation domain and its helically pre-structured segment

    PubMed Central

    Tompa, Peter; Han, Kyou-Hoon; Bokor, Mónika; Kamasa, Pawel; Tantos, Ágnes; Fritz, Beáta; Kim, Do-Hyoung; Lee, Chewook; Verebélyi, Tamás; Tompa, Kálmán

    2016-01-01

    Wide-line 1H NMR intensity and differential scanning calorimetry measurements were carried out on the intrinsically disordered 73-residue full transactivation domain (TAD) of the p53 tumor suppressor protein and two peptides: one a wild type p53 TAD peptide with a helix pre-structuring property, and a mutant peptide with a disabled helix-forming propensity. Measurements were carried out in order to characterize their water and ion binding characteristics. By quantifying the number of hydrate water molecules, we provide a microscopic description for the interactions of water with a wild-type p53 TAD and two p53 TAD peptides. The results provide direct evidence that intrinsically disordered proteins (IDPs) and a less structured peptide not only have a higher hydration capacity than globular proteins, but are also able to bind a larger amount of charged solute ions. [BMB Reports 2016; 49(9): 497-501] PMID:27418282

  5. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression

    DOE PAGES

    Wang, Shaomeng; Sun, Wei; Zhao, Yujun; ...

    2014-08-21

    Blocking the MDM2-p53 protein-protein interaction has long been considered to offer a broad cancer therapeutic strategy, despite the potential risks of selecting tumors harboring p53 mutations that escape MDM2 control. In this study, we report a novel small molecule inhibitor of the MDM2-p53 interaction, SAR405838 (MI-77301) that has been advanced into Phase I clinical trials. SAR405838 binds to MDM2 with Ki = 0.88 nM and has high specificity over other proteins. A co-crystal structure of the SAR405838:MDM2 complex shows that in addition to mimicking three key p53 amino acid residues, the inhibitor captures additional interactions not observed in the p53-MDM2more » complex and induces refolding of the short, unstructured MDM2 N-terminal region to achieve its high affinity. SAR405838 effectively activates wild-type p53 in vitro and in xenograft tumor tissue of leukemia and solid tumors, leading to p53-dependent cell cycle arrest and/or apoptosis. At well-tolerated dose schedules, SAR405838 achieves either durable tumor regression or complete tumor growth inhibition in mouse xenograft models of SJSA-1 osteosarcoma, RS4;11 acute leukemia, LNCaP prostate cancer and HCT-116 colon cancer. Remarkably, a single oral dose of SAR405838 is sufficient to achieve complete tumor regression in the SJSA-1 model. Mechanistically, robust transcriptional up-regulation of PUMA induced by SAR405838 results in strong apoptosis in tumor tissue, leading to complete tumor regression. Lastly, our findings provide a preclinical basis upon which to evaluate SAR405838 as a therapeutic agent in patients whose tumors retain wild-type p53.« less

  6. Bim directly antagonizes Bcl-xl in doxorubicin-induced prostate cancer cell apoptosis independently of p53.

    PubMed

    Yang, Min-Chi; Lin, Ru-Wei; Huang, Shih-Bo; Huang, Shin-Yuan; Chen, Wen-Jie; Wang, Shiaw; Hong, Yi-Ren; Wang, Chihuei

    2016-01-01

    Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.

  7. P53 Modulates The Activity Of The GLI1 Oncogene Through Interactions With The Shared Coactivator TAF9

    PubMed Central

    Yoon, Joon Won; Lamm, Marilyn; Iannaccone, Stephen; Higashiyama, Nicole; Leong, King Fu; Iannaccone, Philip; Walterhouse, David

    2015-01-01

    The GLI1 oncogene and p53 tumor suppressor gene function in an inhibitory loop that controls stem cell and tumor cell numbers. Since GLI1 and p53 both interact with the coactivator TATA Binding Protein Associated Factor 9 (TAF9), we hypothesized that competition between these transcription factors for TAF9 in cancer cells may contribute to the inhibitory loop and directly affect GLI1 function and cellular phenotype. We showed that TAF9 interacts with the oncogenic GLI family members GLI1 and GLI2 but not GLI3 in cell-free pull-down assays and with GLI1 in rhabdomyosarcoma and osteosarcoma cell lines. Removal of the TAF9-binding acidic alpha helical transactivation domain of GLI1 produced a significant reduction in the ability of GLI1 to transform cells. We then introduced a point mutation into GLI1 (L1052I) that eliminates TAF9 binding and a point mutation into GLI3 (I1510L) that establishes binding. Wild-type and mutant GLI proteins that bind TAF9 showed enhanced transactivating and cell transforming activity compared with those that did not. Therefore, GLI-TAF9 binding appears important for oncogenic activity. We then determined whether wild-type p53 down-regulates GLI function by sequestering TAF9. We showed that p53 binds TAF9 with greater affinity than does GLI1 and that co-expression of p53 with GLI1 or GLI2 down-regulated GLI-induced transactivation, which could be abrogated using mutant forms of GLI1 or p53. This suggests that p53 sequesters TAF9 from GLI1, which may contribute to inhibition of GLI1 activity by p53 and potentially impact therapeutic success of agents targeting GLI-TAF9 interactions in cancer. PMID:26282181

  8. SAR405838: An optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression

    SciTech Connect

    Wang, Shaomeng; Sun, Wei; Zhao, Yujun; McEachern, Donna; Meaux, Isabelle; Barriere, Cedric; Stuckey, Jeanne A.; Meagher, Jennifer L.; Bai, Longchuan; Liu, Liu; Hoffman-Luca, Cassandra Gianna; Lu, Jianfeng; Shangary, Sanjeev; Yu, Shanghai; Bernard, Denzil; Aguilar, Angelo; Dos-Santos, Odette; Besret, Laurent; Guerif, Stephane; Pannier, Pascal; Gorge-Bernat, Dimitri; Debussche, Laurent

    2014-08-21

    Blocking the MDM2-p53 protein-protein interaction has long been considered to offer a broad cancer therapeutic strategy, despite the potential risks of selecting tumors harboring p53 mutations that escape MDM2 control. In this study, we report a novel small molecule inhibitor of the MDM2-p53 interaction, SAR405838 (MI-77301) that has been advanced into Phase I clinical trials. SAR405838 binds to MDM2 with Ki = 0.88 nM and has high specificity over other proteins. A co-crystal structure of the SAR405838:MDM2 complex shows that in addition to mimicking three key p53 amino acid residues, the inhibitor captures additional interactions not observed in the p53-MDM2 complex and induces refolding of the short, unstructured MDM2 N-terminal region to achieve its high affinity. SAR405838 effectively activates wild-type p53 in vitro and in xenograft tumor tissue of leukemia and solid tumors, leading to p53-dependent cell cycle arrest and/or apoptosis. At well-tolerated dose schedules, SAR405838 achieves either durable tumor regression or complete tumor growth inhibition in mouse xenograft models of SJSA-1 osteosarcoma, RS4;11 acute leukemia, LNCaP prostate cancer and HCT-116 colon cancer. Remarkably, a single oral dose of SAR405838 is sufficient to achieve complete tumor regression in the SJSA-1 model. Mechanistically, robust transcriptional up-regulation of PUMA induced by SAR405838 results in strong apoptosis in tumor tissue, leading to complete tumor regression. Lastly, our findings provide a preclinical basis upon which to evaluate SAR405838 as a therapeutic agent in patients whose tumors retain wild-type p53.

  9. Activities of wildtype and mutant p53 in suppression of homologous recombination as measured by a retroviral vector system.

    PubMed

    Lu, Xiongbin; Lozano, Guillermina; Donehower, Lawrence A

    2003-01-28

    DNA repair of double strand breaks, interstrand DNA cross-links, and other types of DNA damage utilizes the processes of homologous recombination and non-homologous end joining to repair the damage. Aberrant homologous recombination is likely to be responsible for a significant fraction of chromosomal deletions, duplications, and translocations that are observed in cancer cells. To facilitate measurement of homologous recombination frequencies in normal cells, mutant cells, and cancer cells, we have developed a high titer retroviral vector containing tandem repeats of mutant versions of a GFP-Zeocin resistance fusion gene and an intact neomycin resistance marker. Recombination between the tandem repeats regenerates a functional GFP-Zeo(R) marker that can be easily scored. This retroviral vector was used to assess homologous recombination frequencies in human cancer cells and rodent fibroblasts with differing dosages of wild type or mutant p53. Absence of wild type p53 stimulated spontaneous and ionizing radiation-induced homologous recombination, confirming previous studies. Moreover, p53(+/-) mouse fibroblasts show elevated levels of homologous recombination compared to their p53(+/+) counterparts following retroviral vector infection, indicating that p53 is haploinsufficient for suppression of homologous recombination. Transfection of vector-containing p53 null Saos-2 cells with various human cancer-associated p53 mutants revealed that these altered p53 proteins retain some recombination suppression function despite being totally inactive for transcriptional transactivation. The retroviral vector utilized in these studies may be useful in performing recombination assays on a wide array of cell types, including those not readily transfected by normal vectors.

  10. FUSE Binding Protein 1 Facilitates Persistent Hepatitis C Virus Replication in Hepatoma Cells by Regulating Tumor Suppressor p53

    PubMed Central

    Dixit, Updesh; Pandey, Ashutosh K.; Liu, Zhihe; Kumar, Sushil; Neiditch, Matthew B.; Klein, Kenneth M.

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) is a leading cause of chronic hepatitis C (CHC), liver cirrhosis, and hepatocellular carcinoma (HCC). Immunohistochemistry of archived HCC tumors showed abundant FBP1 expression in HCC tumors with the CHC background. Oncomine data analysis of normal versus HCC tumors with the CHC background indicated a 4-fold increase in FBP1 expression with a concomitant 2.5-fold decrease in the expression of p53. We found that FBP1 promotes HCV replication by inhibiting p53 and regulating BCCIP and TCTP, which are positive and negative regulators of p53, respectively. The severe inhibition of HCV replication in FBP1-knockdown Huh7.5 cells was restored to a normal level by downregulation of either p53 or BCCIP. Although p53 in Huh7.5 cells is transcriptionally inactive as a result of Y220C mutation, we found that the activation and DNA binding ability of Y220C p53 were strongly suppressed by FBP1 but significantly activated upon knockdown of FBP1. Transient expression of FBP1 in FBP1 knockdown cells fully restored the control phenotype in which the DNA binding ability of p53 was strongly suppressed. Using electrophoretic mobility shift assay (EMSA) and isothermal titration calorimetry (ITC), we found no significant difference in in vitro target DNA binding affinity of recombinant wild-type p53 and its Y220C mutant p53. However, in the presence of recombinant FBP1, the DNA binding ability of p53 is strongly inhibited. We confirmed that FBP1 downregulates BCCIP, p21, and p53 and upregulates TCTP under radiation-induced stress. Since FBP1 is overexpressed in most HCC tumors with an HCV background, it may have a role in promoting persistent virus infection and tumorigenesis. IMPORTANCE It is our novel finding that FUSE binding protein 1 (FBP1) strongly inhibits the function of tumor suppressor p53 and is an essential host cell factor required for HCV replication. Oncomine data analysis of a large number of samples has revealed that overexpression of

  11. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation.

    PubMed

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Lee, Su-Jae; Lee, Chang-Woo; Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul; Hwang, Sang-Gu

    2014-07-11

    We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.

  12. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53.

    PubMed

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-06-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival.

  13. Dynamics of p53: A Master Decider of Cell Fate

    PubMed Central

    Luo, Qingyin; Beaver, Jill M.; Liu, Yuan; Zhang, Zunzhen

    2017-01-01

    Cellular stress-induced temporal alterations—i.e., dynamics—are typically exemplified by the dynamics of p53 that serve as a master to determine cell fate. p53 dynamics were initially identified as the variations of p53 protein levels. However, a growing number of studies have shown that p53 dynamics are also manifested in variations in the activity, spatial location, and posttranslational modifications of p53 proteins, as well as the interplay among all p53 dynamical features. These are essential in determining a specific outcome of cell fate. In this review, we discuss the importance of the multifaceted features of p53 dynamics and their roles in the cell fate decision process, as well as their potential applications in p53-based cancer therapy. The review provides new insights into p53 signaling pathways and their potentials in the development of new strategies in p53-based cancer therapy. PMID:28208785

  14. Ferroptosis: A missing puzzle piece in the p53 blueprint?

    PubMed

    Wang, Shang-Jui; Ou, Yang; Jiang, Le; Gu, Wei

    2016-05-01

    Recent evidence indicates that canonical functions of p53 (i.e., apoptosis and growth arrest) are dispensable for p53-mediated tumor suppression. We have uncovered a novel function of p53 that contributes to tumor suppression through regulation of cystine metabolism, reactive oxygen species responses, and ferroptosis. The p53-mediated ferroptotic response via SLC7A11 denotes an extra layer of defense against tumorigenesis in conjunction with other p53 functions.

  15. Overcoming immunosuppression to enhance a p53MVA vaccine.

    PubMed

    Hardwick, Nicola; Chung, Vincent; Cristea, Mihaela; Ellenhorn, Joshua DI; Diamond, Don J

    2014-11-01

    A Phase I trial of a p53-targeting modified vaccinia Ankara (p53MVA) vaccine in patients afflicted with refractory gastrointestinal cancers demonstrated enhanced T-cell recognition of p53 following vaccination. However, this effect was transient suggesting that p53MVA requires combination with immunomodulatory agents to deliver clinical benefit. Here, we outline our rationale for combining p53MVA with immunomodulatory chemotherapy in a forthcoming trial.

  16. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300

    PubMed Central

    Dornan, David; Hupp, Ted R.

    2001-01-01

    The N-terminal BOX-I domain of p53 containing a docking site for the negative regulator MDM2 and the positive effector p300, harbours two recently identified phosphorylation sites at Thr18 or Ser20 whose affect on p300 is undefined. Biochemical assays demonstrate that although MDM2 binding is inhibited by these phosphorylations, p300 binding is strikingly stabilized by Thr18 or Ser20 phosphorylation. Introducing EGFP-BOX-I domain peptides with an aspartate substitution at Thr18 or Ser20 induced a significant inhibition of endogenous p53-dependent transcription in cycling cells, in irradiated cells, as well as in cells transiently co-transfected with p300 and p53. In contrast an EGFP-wild-type BOX-I domain peptide stimulated p53 activity via inhibition of MDM2 protein binding. These results suggest that phosphorylation of p53 at Thr18 or Ser20 can activate p53 by stabilizing the p300–p53 complex and also identify a class of small molecular weight ligands capable of selective discrimination between MDM2- and p300-dependent activities. PMID:11258706

  17. Alterations of the p53 gene in Epstein-Barr virus-associated immunodeficiency-related lymphomas.

    PubMed Central

    Edwards, R H; Raab-Traub, N

    1994-01-01

    Mutations of the p53 tumor suppressor gene are among the most common genetic alterations found in many different human malignancies, including those of the colon, lung, and breast. Alterations in wild-type p53 lead to loss of the suppressor function and thus contribute to tumorigenesis. The potential role of p53 mutations in a sampling of B-cell lymphomas, the majority of which were associated with Epstein-Barr virus (EBV), was investigated. Twenty-six biopsy specimens from immunocompromised patients, including allograft recipients and patients with AIDS, Wiscott-Aldrich syndrome, and human T-cell leukemia virus type 1 infection, in comparison with three Burkitt lymphomas and four Burkitt lymphoma cell lines were analyzed. Mutation in p53 was detected in all four Burkitt lymphoma cell lines as well as the three Burkitt lymphoma biopsy specimens. In patients with AIDS, 5 of 10 lymphomas were EBV positive, and 1 had a mutation in p53. Mutation in p53 was not detected in 14 EBV-positive lymphomas which arose in transplant recipients. These data indicate that with the exception of Burkitt lymphomas, p53 mutations are not involved in the majority EBV-positive B-cell lymphomas which develop in immunocompromised patients. Images PMID:8107196

  18. Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency.

    PubMed Central

    Zhang, Q; Gutsch, D; Kenney, S

    1994-01-01

    The p53 tumor suppressor protein, which is commonly mutated in human cancers, has been shown to interact directly with virally encoded from papillomavirus, adenovirus, and simian virus 40. The disruption of p53 function may be required for efficient replication of certain viruses and may also play a role in the development of virally induced malignancies. Infection with Epstein-Barr virus (EBV) has been associated with the development of B-cell lymphomas and nasopharyngeal carcinoma. Here we show that the EBV immediate-early protein, BZLF1 (Z), which is responsible for initiating the switch from latent to lytic infection, can interact directly in vitro and in vivo with the tumor suppressor protein, p53. This interaction requires the coiled-coil dimerization domain of the Z protein and the carboxy-terminal portion of p53. Overexpression of wild-type p53 inhibits the ability of Z to disrupt viral latency. Likewise, Z inhibits p53-dependent transactivation in lymphoid cells. The direct interaction between Z and p53 may play a role in regulating the switch from latent to lytic viral infection. Images PMID:8114724

  19. p53 Gene Repair with Zinc Finger Nucleases Optimised by Yeast 1-Hybrid and Validated by Solexa Sequencing

    PubMed Central

    Herrmann, Frank; Garriga-Canut, Mireia; Baumstark, Rebecca; Fajardo-Sanchez, Emmanuel; Cotterell, James; Minoche, André; Himmelbauer, Heinz; Isalan, Mark

    2011-01-01

    The tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt) p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs). We adapted a commercially-available yeast one-hybrid (Y1H) selection kit to allow rapid building and optimization of 4-finger constructs from randomized PCR libraries. We thus generated novel functional zinc finger nucleases against two DNA sites in the human p53 gene, near cancer mutation ‘hotspots’. The ZFNs were first validated using in vitro cleavage assays and in vivo episomal gene repair assays in HEK293T cells. Subsequently, the ZFNs were used to restore wt-p53 status in the SF268 human cancer cell line, via ZFN-induced homologous recombination. The frequency of gene repair and mutation by non-homologous end-joining was then ascertained in several cancer cell lines, using a deep sequencing strategy. Our Y1H system facilitates the generation and optimisation of novel, sequence-specific four- to six-finger peptides, and the p53-specific ZFN described here can be used to mutate or repair p53 in genomic loci. PMID:21695267

  20. A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation

    PubMed Central

    2011-01-01

    Introduction Estrogen receptor positive breast cancers often have high levels of Mdm2. We investigated if estrogen signaling in such breast cancers occurred through an Mdm2 mediated pathway with subsequent inactivation of p53. Methods We examined the effect of long-term 17β-estradiol (E2) treatment (five days) on the p53-Mdm2 pathway in estrogen receptor alpha (ERα) positive breast cancer cell lines that contain wild-type p53 (MCF-7 and ZR75-1). We assessed the influence of estrogen by examining cell proliferation changes, activation of transcription of p53 target genes, p53-chromatin interactions and cell cycle profile changes. To determine the effects of Mdm2 and p53 knockdown on the estrogen-mediated proliferation signals we generated MCF-7 cell lines with inducible shRNA for mdm2 or p53 and monitored their influence on estrogen-mediated outcomes. To further address the p53-independent effect of Mdm2 in ERα positive breast cancer we generated cell lines with inducible shRNA to mdm2 using the mutant p53 expressing cell line T-47D. Results Estrogen increased the Mdm2 protein level in MCF-7 cells without decreasing the p53 protein level. After estrogen treatment of MCF-7 cells, down-regulation of basal transcription of p53 target genes puma and p21 was observed. Estrogen treatment also down-regulated etoposide activated transcription of puma, but not p21. Mdm2 knockdown in MCF-7 cells increased p21 mRNA and protein, decreased cell growth in 3D matrigel and also decreased estrogen-induced cell proliferation in 2D culture. In contrast, knockdown of p53 had no effect on estrogen-induced cell proliferation. In T-47D cells with mutant p53, the knockdown of Mdm2 decreased estrogen-mediated cell proliferation but did not increase p21 protein. Conclusions Estrogen-induced breast cancer cell proliferation required a p53-independent role of Mdm2. The combined influence of genetic and environmental factors on the tumor promoting effects of estrogen implicated Mdm2 as a

  1. Human T-cell leukemia virus I tax protein sensitizes p53-mutant cells to DNA damage.

    PubMed

    Mihaylova, Valia T; Green, Allison M; Khurgel, Moshe; Semmes, Oliver J; Kupfer, Gary M

    2008-06-15

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by