Science.gov

Sample records for lactam bridge-cyclized alpha-melanocyte

  1. Structure-activity relationships of cyclic lactam analogues of alpha-melanocyte-stimulating hormone (alpha-MSH) targeting the human melanocortin-3 receptor.

    PubMed

    Mayorov, Alexander V; Cai, Minying; Palmer, Erin S; Dedek, Matthew M; Cain, James P; Van Scoy, April R; Tan, Bahar; Vagner, Josef; Trivedi, Dev; Hruby, Victor J

    2008-01-24

    A variety of dicarboxylic acid linkers introduced between the alpha-amino group of Pro(6) and the -amino group of Lys(10) of the cyclic lactam alpha-melanocyte-stimulating hormone (alpha-MSH)-derived Pro(6)-D-Phe(7)/D-Nal(2')(7)-Arg(8)-Trp(9)-Lys(10)-NH2 pentapeptide template lead to nanomolar range and selective hMC3R agonists and antagonists. Replacement of the Pro(6) residue and the dicarboxylic acid linker with 2,3-pyrazine-dicarboxylic acid furnished a highly selective nanomolar range hMC3R partial agonist (analogue 12, c[CO-2,3-pyrazine-CO-D-Phe-Arg-Trp-Lys]-NH2, EC50 = 27 nM, 70% max cAMP) and an hMC3R antagonist (analogue 13, c[CO-2,3-pyrazine-CO-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 23 nM). Modeling experiments suggest that 2,3-pyrazinedicarboxylic acid stabilizes a beta-turn-like structure with the D-Phe/D-Nal(2') residues, which explains the high potency of the corresponding peptides. Placement of a Nle residue in position 6 produced a hMC3R/hMC5R antagonist (analogue 15, c[CO-(CH 2)2-CO-Nle-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 12 and 17 nM, respectively), similarly to the previously described cyclic gamma-melanocyte-stimulating hormone (gamma-MSH)-derived hMC3R/hMC5R antagonists. These newly developed melanotropins will serve as critical biochemical tools for elucidating the full spectrum of functions performed by the physiologically important melanocortin-3 receptor.

  2. Development of a (99m)Tc-labeled lactam bridge-cyclized alpha-MSH derivative peptide as a possible single photon imaging agent for melanoma tumors.

    PubMed

    Shamshirian, Danial; Erfani, Mostafa; Beiki, Davood; Fallahi, Babak; Shafiei, Mohammad

    2015-10-01

    Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target which has been used for melanoma imaging and therapy. In this work, a new lactam bridge α-MSH analog was labeled with (99m)Tc via HYNIC and EDDA/tricine as coligands including gamma aminobutyric acid (GABA) as a three carbon chain spacer between HYNIC and the N-terminus of the cyclic peptide. Also, stability in human serum, receptor bound internalization, in vivo tumor uptake, and tissue biodistribution were thoroughly investigated. HYNIC-GABA-Nle-CycMSHhept was synthesized using a standard Fmoc strategy. Labeling was performed at 95 °C and analysis involved instant thin layer chromatography and high performance liquid chromatography methods. The receptor bound internalization rate was studied in MC1 receptor expressing B16/F10 cells. Biodistribution of radiopeptide was studied in nude mice bearing B16/F10 tumor. Labeling yield of >98 % (n = 3) was obtained corresponding to a specific activity of 81 MBq/nmol. Peptide conjugate showed efficient stability in the presence of human serum. The radioligand showed specific internalization into B16/F10 cells (12.45 ± 1.1 % at 4 h). In biodistribution studies, a receptor-specific uptake was observed in MC1 receptor-positive organs so that after 2 h the uptake in mouse tumor was 5.10 ± 0.08 % ID/g, while low accumulation in the kidney uptake was observed (4.58 ± 0.68 % ID/g at 2 h after injection). The obtained results show that the presented new designed labeled peptide conjugate may be a suitable candidate for diagnosis of malignant tumors.

  3. Targeted Melanoma Imaging and Therapy with Radiolabeled Alpha-Melanocyte Stimulating Hormone Peptide Analogues

    PubMed Central

    Quinn, Thomas; Zhang, Xiuli; Miao, Yubin

    2010-01-01

    Radiolabeled alpha-melanocyte stimulating hormone (α-MSH) analogues have been used to define the expression, affinity and function of the melanocortin-1 receptor (MC1-R). The MC1-R is one of a family of five G-protein linker receptors, which is primarily involved in regulation of skin pigmentation. Over-expression of the MC1-R on melanoma tumor cells has made it an attractive target for the development of α-MSH peptide based imaging and therapeutic agents. Initially, the native α-MSH peptide was radiolabeled directly, but it suffered from low specific activity and poor stability. The addition of non-natural amino acids yielded α-MSH analogues with greater MC-1R affinity and stability. Furthermore, peptide cyclization via disulfide and lactam bond formation as well as site-specific metal coordination resulted in additional gains in receptor affinity and peptide stability in vitro and in vivo. Radiochemical stability of the α-MSH analogues was improved through the conjugation of metal chelators to the peptide’s N-terminus or lysine residues for radionuclide coordination. In vitro cell binding studies demonstrated that the radiolabeled α-MSH analogues had low to subnanomolar affinities for the MC1-R. Biodistribution and imaging studies in the B16 mouse melanoma modeled showed rapid tumor uptake of the radiolabeled peptides, with the cyclic peptides demonstrating prolonged tumor retention. Cyclic α-MSH analogues labeled with beta and alpha emitting radionuclides demonstrated melanoma therapeutic efficacy in the B16 melanoma mouse model. Strong pre-clinical imaging and therapy data highlight the clinical potential use of radiolabeled α-MSH peptides for melanoma imaging and treatment of disseminated disease. PMID:20467398

  4. Mapping of alpha-melanocyte-stimulating hormone-like immunoreactivity in the cat brainstem.

    PubMed

    Coveñas, R; de León, M; Narváez, J A; Aguirre, J A; Tramu, G

    2000-04-01

    The distribution of alpha-melanocyte-stimulating hormone-like immunoreactive structures was studied in the brainstem of the cat using an indirect immunoperoxidase technique. Immunoreactivity was observed in several brainstem nuclei of the cat in which no immunoreactivity had been previously reported. Immunoreactive fibres were observed in the following; the inferior central nucleus; the pontine gray nuclei; the Kölliker-Fuse nucleus; the motor trigeminal nucleus, the anteroventral cochlear nucleus; the abducens nucleus; the retrofacial nucleus; the superior, lateral, inferior, and medial vestibular nuclei; the lateral nucleus of the superior olive; the external cuneate nucleus; the nucleus of the trapezoid body; the postpyramidal nucleus of the raphe; the medial accessory inferior olive; the dorsal accessory nucleus of the inferior olive; the nucleus ambiguus; the principal nucleus of the inferior olive; the preolivary nucleus; the nucleus ruber; the substantia nigra; and in the area postrema. Our results point to a more widespread distribution of alpha-melanocyte-stimulating hormone-like immunoreactive structures in the cat brainstem than that reported in previous studies carried out in the same region of the cat, rat and humans.

  5. alpha-Melanocyte-stimulating hormone and oxytocin: a peptide signalling cascade in the hypothalamus.

    PubMed

    Sabatier, N

    2006-09-01

    alpha-Melanocyte-stimulating hormone (alpha-MSH) and oxytocin share remarkable similarities of effects on behaviour in rats; in particular, they both inhibit feeding behaviour and stimulate sexual behaviour. Recently, we showed that alpha-MSH interacts with the magnocellular oxytocin system in the supraoptic nucleus; alpha-MSH induces the release of oxytocin from the dendrites of magnocellular neurones but it inhibits the secretion of oxytocin from their nerve terminals in the posterior pituitary. This effect of alpha-MSH on supraoptic nucleus oxytocin neurones is remarkable for two reasons. First, it illustrates the capacity of magnocellular neurones to differentially regulate peptide release from dendrites and axons and, second, it emphasises the putative role of magnocellular neurones as a major source of central oxytocin release, and as a likely substrate of some oxytocin-mediated behaviours. The ability of peptides to differentially control secretion from different compartments of their targets indicates one way by which peptide signals might have a particularly significant effect on neuronal circuitry. This suggests a possible explanation for the striking way in which some peptides can influence specific, complex behaviours.

  6. Uveal melanocytes do not respond to or express receptors for alpha-melanocyte-stimulating hormone.

    PubMed

    Li, Li; Hu, Dan-Ning; Zhao, Huiquan; McCormick, Steven A; Nordlund, James J; Boissy, Raymond E

    2006-10-01

    Whereas cutaneous pigmentation increases after exposure to ultraviolet (UV) irradiation, ocular pigmentation does not. This study was designed to examine the evidence that alpha-melanocyte-stimulating hormone (alpha-MSH), which is thought to be the mediator of UV response in the skin, has any role to play in uveal melanocytes. Human uveal melanocytes derived from the choroid and the iris were cultivated by using eyes harvested from adult cadaveric donors and were assessed by Northern blot analysis for growth and melanogenic response to alpha-MSH and expression of the receptor for alpha-MSH (MC1-R). In addition, expression of alpha-MSH was evaluated in ocular tissue by immunocytochemistry. Uveal melanocytes, unlike cutaneous melanocytes in vitro, exhibited no stimulation of proliferation in response to alpha-MSH at dosages ranging from 0.1 to 100 muM. In addition, tyrosine hydroxylase, DOPA oxidase, and protein levels for tyrosinase, TRP-1, and TRP-2 were not influenced by alpha-MSH. Associated with the lack of alpha-MSH response in cultured uveal melanocytes was the absence of expression of the receptor for alpha-MSH (MC1-R), as assessed by Northern blot analysis. Also in contrast to the skin, pigmented ocular tissue lacked expression of the alpha-MSH ligand, as assessed by immunocytochemistry. In conclusion, ocular pigmentation does not appear to be regulated by melanocyte stimulating hormone.

  7. GABAergic agents prevent alpha-melanocyte stimulating hormone induced anxiety and anorexia in rats.

    PubMed

    Rao, T Lakshmi; Kokare, Dadasaheb M; Sarkar, Sumit; Khisti, Rahul T; Chopde, Chandrabhan T; Subhedar, Nishikant

    2003-12-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) is a hypothalamic peptide believed to play a tonic inhibitory role in feeding and energy homeostasis. Systemic administration of alpha-MSH is known to produce anorexia and anxiety. Since synaptic contacts between gamma-aminobutyric acid (GABA)ergic terminals and alpha-MSH neurons in the hypothalamus have been reported, the present work was undertaken to refine our knowledge on the role of GABAergic systems in anxiety and anorexia induced by intracerebroventricular (icv) administration of alpha-MSH in rats. The anxiety was assessed by elevated plus maze, and spontaneous food consumption was monitored during dark cycle. Prior administration of diazepam and muscimol that promote the function of GABA(A) receptors reversed the anxiogenic response and decreased food intake elicited by alpha-MSH. In contrast, bicuculline, the GABA(A) receptor antagonist, not only enhanced the effects of alpha-MSH but also prevented the influence of GABAergic drugs on alpha-MSH-induced anorexia and anxiety. These findings suggest that alpha-MSH-induced anxiety and anorexia are due to its negative influence on GABAergic system.

  8. Oral Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to fight experimental colitis.

    PubMed

    Wei, Pijin; Yang, Yan; Liu, Zhaobing; Huang, Junli; Gong, Yahui; Sun, Hanxiao

    2016-07-01

    The oral delivery of peptides is a highly attractive treatment approach. However, the harsh environment of the gastrointestinal tract limits its application. Here, we utilize Bifidobacterium as a delivery system to orally deliver a potent anti-inflammatory but short duration peptide alpha-melanocyte-stimulating hormone (α-MSH) against experimental colitis. The aim of our study was to facilitate the efficient oral delivery of α-MSH. We designed a vector of pBDMSH and used it to construct a Bifidobacterium longum expressing α-MSH. We then determined the bioactivity of recombinant Bifidobacterium in lipopolysaccharide-induced inflammatory models of HT-29 cells. Finally, we used Bifidobacterium expressing α-MSH against dextran sulfate sodium (DSS)-induced ulcerative colitis mice. Results based on the myeloperoxidase activity, the levels of inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-10 and the histological injury of colon tissue reveal recombinant Bifidobacterium was efficient in attenuating DSS-induced ulcerative colitis, suggesting an alternative way to use Bifidobacterium as a delivery system to deliver α-MSH for DSS-induced ulcerative colitis therapy.

  9. Corticotropin-releasing hormone mediates alpha-melanocyte-stimulating hormone-induced anorexigenic action in goldfish.

    PubMed

    Matsuda, Kouhei; Kojima, Kenji; Shimakura, Sei-Ichi; Wada, Kohei; Maruyama, Keisuke; Uchiyama, Minoru; Kikuyama, Sakae; Shioda, Seiji

    2008-11-01

    alpha-Melanocyte-stimulating hormone (alpha-MSH) and corticotropin-releasing hormone (CRH) both suppress food intake, and the alpha-MSH- or CRH-signaling pathway has possible potency to mediate anorexigenic actions induced by most other neuropeptides in goldfish. Therefore, using specific receptor antagonists, we examined whether the anorexigenic actions of alpha-MSH and CRH mutually interact. The inhibitory effect of ICV injection of the alpha-MSH agonist, melanotan II (MT II), on food intake was abolished by treatment with a CRH 1/2 receptor antagonist, alpha-helical CRH((9-41)), whereas the anorexigenic action of ICV-injected CRH was not affected by treatment with a melanocortin 4 receptor antagonist, HS024. This led us to investigate whether alpha-MSH-containing neurons in the goldfish brain have direct inputs to CRH-containing neurons, using confocal laser scanning microscopy. alpha-MSH- and CRH-like immunoreactivities were distributed throughout the brain, especially in the diencephalon. alpha-MSH-containing nerve fibers or endings lay in close apposition to CRH-containing neurons in a region of the hypothalamus, the nucleus posterioris periventricularis (NPPv). These results indicate that, in goldfish, alpha-MSH-induced anorexigenic action is mediated by the CRH-signaling pathway, and that CRH plays a crucial role in the regulation of feeding behavior as an integrated anorexigenic neuropeptide in this species.

  10. Novel alpha-melanocyte stimulating hormone peptide analogues with high candidacidal activity.

    PubMed

    Grieco, Paolo; Rossi, Claudia; Colombo, Gualtiero; Gatti, Stefano; Novellino, Ettore; Lipton, James M; Catania, Anna

    2003-02-27

    alpha-Melanocyte stimulating hormone (alpha-MSH) is an endogenous linear tridecapeptide with potent antiinflammatory effects. We recently demonstrated that alpha-MSH and its C-terminal sequence Lys-Pro-Val (alpha-MSH (11-13)) have antimicrobial effects against two major and representative pathogens: Staphylococcus aureus and Candida albicans. In an attempt to improve the candidacidal activity of alpha-MSH and to better understand the peptide structure-antifungal activity relations, we designed and synthesized novel peptide analogues. Because previous data suggested that antimicrobial effects of alpha-MSH were receptor-mediated, we chose to focus on the sequence alpha-MSH (6-13), which contains the invariant core sequence His-Phe-Arg-Trp (6-9) that is important for binding to the known melanocortin receptors and also contains the sequence Lys-Pro-Val (11-13) that is known to be important for antimicrobial activity. In this structure-activity study, we discovered several compounds that have greater candidacidal activity than alpha-MSH. The peptide [d-Nal-7,Phe-12]-alpha-MSH (6-13) was the most potent of the analogues tested. The present results are very encouraging because they show the great potential of these peptides as a truly novel class of candidacidal compounds.

  11. Treatment with alpha-melanocyte stimulating hormone preserves calcium regulatory proteins in rat heart allografts.

    PubMed

    Colombo, Gualtiero; Sordi, Andrea; Lonati, Caterina; Carlin, Andrea; Turcatti, Flavia; Leonardi, Patrizia; Gatti, Stefano; Catania, Anna

    2008-08-01

    Prevention of graft dysfunction is a major objective in transplantation medicine. Previous research on experimental heart transplantation indicated that treatment with the immunomodulatory peptide alpha-melanocyte stimulating hormone (alpha-MSH) improves histopathology, prolongs allograft survival, and reduces expression of the main tissue injury mediators. Because calcium-handling is critical in heart graft function, we determined the effects of transplantation injury and influences of alpha-MSH treatment on representative calcium regulatory proteins in rat heart allografts. Hearts from Brown Norway rats were transplanted heterotopically into MHC incompatible Lewis rats. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), protein kinase C epsilon (PKC epsilon), sarcoplasmic/endoplasmic reticulum calcium-ATPase 2 (SERCA2a), arrestin-beta1 (Arrb1), cholinergic receptor M2 (Chrm2), and inositol 1,4,5-triphosphate receptor 1 (InsP(3)R1) were examined in: (1) non-transplanted donor hearts; (2) allografts from saline-treated rats; and (3) allografts from rats treated with the synthetic alpha-MSH analog Nle4-DPhe7-alpha-MSH (NDP-alpha-MSH) (100 microg i.p. every 12h). Transplantation injury was associated with severe reduction in calcium regulatory protein transcription and expression level. NDP-alpha-MSH administration partly reversed inhibition of protein transcription and almost completely prevented protein loss. Finally, because certain effects of cyclic 3'-5'-adenosine monophosphate (cAMP) signaling on calcium handling in cardiac myocytes depend on activation of exchange protein directly activated by cAMP 1 (Epac1), we determined Epac1 mRNA and protein expression in heart allografts. Transplantation injury markedly reduced Epac1. NDP-alpha-MSH treatment significantly preserved both Epac1 protein and mRNA in the allografts. Administration of alpha-MSH or related melanocortins could reduce transplantation-induced dysfunction through protection of heart calcium

  12. Improved cutaneous wound healing after intraperitoneal injection of alpha-melanocyte-stimulating hormone.

    PubMed

    de Souza, Kênia Soares; Cantaruti, Thiago Anselmo; Azevedo, Geraldo Magela; Galdino, Daniel Antero de Almeida; Rodrigues, Claudiney Melquíades; Costa, Raquel Alves; Vaz, Nelson Monteiro; Carvalho, Cláudia Rocha

    2015-03-01

    Skin wound healing is a complex process involving many types of cells and molecules and often results in scar tissue formation in adult mammals. However, scarless healing occurs in foetal skin and minimal scars may occur after cutaneous healing in the adult with reduced inflammation. Alpha-melanocyte-stimulating hormone (α-MSH) is widely distributed within the central nervous system and in other body regions, such as the skin, and has strong anti-inflammatory activity. The aim in the present experiments was to learn whether intraperitoneal (i.p) injection of α-MSH just before skin wounds antagonize inflammation and improves skin wound healing in adult mice. C57BL/6 young adult mice received an i.p. injection of 1 mg/kg of α-MSH and, 30 min later, two circular through-and-through holes (6.5 mm diameter) were made in their dorsal skin under anaesthesia. Control mice were wounded after vehicle injection. The wound healing process was analysed macroscopically and microscopically at 3, 7, 40 and 60 days. Skin samples were fixed in formalin, embedded in paraffin, sectioned at 5 μm, stained with H&E or toluidine blue for cell analysis or Gomori's trichrome for extracellular matrix (ECM) analysis. Other samples were fixed in DMSO+methanol, embedded in paraplast and incubated with anti-CD45, antismooth muscle actin, anticollagen-I and anticollagen-III for immunofluorescence analysis. Alpha-MSH significantly reduced the number of leucocytes, mast cells and fibroblasts at 3 and 7 days after injury. On days 40 and 60, α-MSH reduced scar area and improved the organization of the collagen fibres indicating that it may direct the healing into a more-regenerative/less-scarring pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Peripheral effect of alpha-melanocyte-stimulating hormone on fatty acid oxidation in skeletal muscle.

    PubMed

    An, Juan Ji; Rhee, Yumie; Kim, Se Hwa; Kim, Dol Mi; Han, Dong-He; Hwang, Jung Hee; Jin, Young-Jun; Cha, Bong Soo; Baik, Ja-Hyun; Lee, Won Tae; Lim, Sung-Kil

    2007-02-02

    To study the peripheral effects of melanocortin on fuel homeostasis in skeletal muscle, we assessed palmitate oxidation and AMP kinase activity in alpha-melanocyte-stimulating hormone (alpha-MSH)-treated muscle cells. After alpha-MSH treatment, carnitine palmitoyltransferase-1 and fatty acid oxidation (FAO) increased in a dose-dependent manner. A strong melanocortin agonist, NDP-MSH, also stimulated FAO in primary culture muscle cells and C2C12 cells. However, [Glu6]alpha-MSH-ND, which has ample MC4R and MC3R agonistic activity, stimulated FAO only at high concentrations (10(-5) M). JKC-363, a selective MC4R antagonist, did not suppress alpha-MSH-induced FAO. Meanwhile, SHU9119, which has both antagonistic activity on MC3R and MC4R and agonistic activity on both MC1R and MC5R, increased the effect of alpha-MSH on FAO in both C2C12 and primary muscle cells. Small interference RNA against MC5R suppressed the alpha-MSH-induced FAO effectively. cAMP analogues mimicked the effect of alpha-MSH on FAO, and the effects of both alpha-MSH and cAMP analogue-mediated FAO were antagonized by a protein kinase A inhibitor (H89) and a cAMP antagonist ((Rp)-cAMP). Acetyl-CoA carboxylase activity was suppressed by alpha-MSH and cAMP analogues by phosphorylation through AMP-activated protein kinase activation in C2C12 cells. Taken together, these results suggest that alpha-MSH increases FAO in skeletal muscle, in which MC5R may play a major role. Furthermore, these results suggest that alpha-MSH-induced FAO involves cAMP-protein kinase A-mediated AMP-activated protein kinase activation.

  14. Combination of Alpha-Melanocyte Stimulating Hormone with Conventional Antibiotics against Methicillin Resistant Staphylococcus aureus

    PubMed Central

    Singh, Madhuri; Gadepalli, Ravisekhar; Dhawan, Benu; Mukhopadhyay, Kasturi

    2013-01-01

    Our previous studies revealed that alpha-melanocyte stimulating hormone (α-MSH) is strongly active against Staphylococcus aureus (S. aureus) including methicillin resistant S. aureus (MRSA). Killing due to α-MSH occurred by perturbation of the bacterial membrane. In the present study, we investigated the in vitro synergistic potential of α-MSH with five selected conventional antibiotics viz., oxacillin (OX), ciprofloxacin (CF), tetracycline (TC), gentamicin (GM) and rifampicin (RF) against a clinical MRSA strain which carried a type III staphylococcal cassette chromosome mec (SCCmec) element and belonged to the sequence type (ST) 239. The strain was found to be highly resistant to OX (minimum inhibitory concentration (MIC) = 1024 µg/ml) as well as to other selected antimicrobial agents including α-MSH. The possibility of the existence of intracellular target sites of α-MSH was evaluated by examining the DNA, RNA and protein synthesis pathways. We observed a synergistic potential of α-MSH with GM, CF and TC. Remarkably, the supplementation of α-MSH with GM, CF and TC resulted in ≥64-, 8- and 4-fold reductions in their minimum bactericidal concentrations (MBCs), respectively. Apart from membrane perturbation, in this study we found that α-MSH inhibited ∼53% and ∼47% DNA and protein synthesis, respectively, but not RNA synthesis. Thus, the mechanistic analogy between α-MSH and CF or GM or TC appears to be the reason for the observed synergy between them. In contrast, α-MSH did not act synergistically with RF which may be due to its inability to inhibit RNA synthesis (<10%). Nevertheless, the combination of α-MSH with RF and OX showed an enhanced killing by ∼45% and ∼70%, respectively, perhaps due to the membrane disrupting properties of α-MSH. The synergistic activity of α-MSH with antibiotics is encouraging, and promises to restore the lost potency of discarded antibiotics. PMID:24040081

  15. alpha-Melanocyte stimulating hormone and oxytocin induced penile erections, and intracavernous pressure increases in the rat.

    PubMed

    Mizusawa, Hiroya; Hedlund, Petter; Andersson, Karl-Erik

    2002-02-01

    alpha-Melanocyte stimulating hormone (alpha-MSH; Fluka Chemie AG, Geneva, Switzerland) and oxytocin induce erection in rats after intracerebroventricular administration. We studied possible interactions of alpha-melanocyte stimulating hormone with mechanisms pertaining to oxytocin or nitric oxide. We used 78 anesthetized male Sprague-Dawley rats. Catheters were implanted in the lateral cerebral ventricle or into the subarachnoid space at L6 to S1. Intracavernous pressure was documented and arterial blood pressure was directly measured. Intracerebroventricular alpha-MSH (3 microg.) produced a mean of 2.6 +/- 0.6 erectile responses (p <0.05) with a mean duration of 3.4 +/- 1.1 minutes (p <0.05). Mean peak intracavernous pressure was 114 +/- 8 cm. water. An intracerebroventricular dose of 100 microg. N-nitro-L-arginine-methyl ester HCl (Sigma Chemical Co., St. Louis, Missouri) given in intracerebroventricular fashion abolished alpha-MSH induced erectile responses, whereas intracerebroventricular administration of 500 ng. of the oxytocin receptor antagonist l-deamino, 2-D-Tyr(Oet), 4-Thr, 8-Orn-OT (Ferring AB, Malmö, Sweden) had no effect. Intracerebroventricular oxytocin (30 ng.) induced a mean of 3.2 +/- 0.9 erectile responses (p <0.05) with a mean peak intracavernous pressure of 81 +/- 8 cm. water and a mean duration of 3.3 +/- 1.1 minutes. Intrathecal alpha-MSH (3 microg.) did not produce any erectile responses, whereas a mean of 5.7 +/- 0.9 responses (p <0.001) with a mean peak intracavernous pressure of 142 +/- 8 cm. water and mean duration of 5.0 +/- 1.3 minutes was obtained with 30 ng. oxytocin intrathecally. Responses induced by intrathecal oxytocin were abolished by 100 microg. N-nitro-L-arginine-methyl ester HCl intrathecally. We confirmed by monitoring intracavernous pressure and blood pressure that supraspinal erectile responses induced by alpha-melanocyte stimulating hormone involve effects mediated by nitric oxide but are independent of oxytocinergic

  16. Melanoma Therapy with Rhenium-Cyclized Alpha Melanocyte Stimulating Hormone Peptide Analogs

    SciTech Connect

    Thomas P Quinn

    2005-11-22

    Malignant melanoma is the 6th most commonly diagnosed cancer with increasing incidence in the United States. It is estimated that 54,200 cases of malignant melanoma will be newly diagnosed and 7,600 cases of death will occur in the United States in the year 2003 (1). At the present time, more than 1.3% of Americans will develop malignant melanoma during their lifetime (2). The average survival for patients with metastatic melanoma is about 6-9 months (3). Moreover, metastatic melanoma deposits are resistant to conventional chemotherapy and external beam radiation therapy (3). Systematic chemotherapy is the primary therapeutic approach to treat patients with metastatic melanoma. Dacarbazine is the only single chemotherapy agent approved by FDA for metastatic melanoma treatment (5). However, the response rate to Dacarbazine is only approximately 20% (6). Therefore, there is a great need to develop novel treatment approaches for metastatic melanoma. The global goal of this research program is the rational design, characterization and validation of melanoma imaging and therapeutic radiopharmaceuticals. Significant progress has been made in the design and characterization of metal-cyclized radiolabeled alpha-melanocyte stimulating hormone peptides. Therapy studies with {sup 188}Re-CCMSH demonstrated the therapeutic efficacy of the receptor-targeted treatment in murine and human melanoma bearing mice (previous progress report). Dosimetry calculations, based on biodistribution data, indicated that a significant dose was delivered to the tumor. However, {sup 188}Re is a very energetic beta-particle emitter. The longer-range beta-particles theoretically would be better for larger tumors. In the treatment of melanoma, the larger primary tumor is usually surgically removed leaving metastatic disease as the focus of targeted radiotherapy. Isotopes with lower beta-energies and/or shorter particle lengths should be better suited for targeting metastases. The {sup 177}Lu

  17. Alpha-Melanocyte-Stimulating Hormone Attenuates Behavioral Effects of Corticotropin-Releasing Factor in Isolated Guinea Pig Pups

    PubMed Central

    Miller, Emily; Deak, Terrence; Hennessy, Michael B.

    2016-01-01

    During a 3-hr period of social isolation in a novel environment, guinea pig pups exhibit an initial active phase of behavioral responsiveness, characterized primarily by vocalizing, which is then followed by a stage of passive responsiveness in which pups display a distinctive crouch, eye-closing, and extensive piloerection. Prior treatment of pups with alpha-melanocyte-stimulating hormone (α-MSH) reduces each of the passive behaviors. The onset of passive responding during separation can be accelerated with peripheral injection of corticotropin-releasing factor (CRF). To examine whether CRF produces its effects through a mechanism similar to that of prolonged separation, we examined the effect of administering α-MSH to pups injected with CRF. As expected, CRF markedly enhanced passive responding during a 60-min period of separation. α-MSH delivered by either intracerebroventricular infusion or intraperitoneal injection significantly reduced each of the passive behavioral responses without significantly affecting active behavior. These findings, together with previous results indicating that it is the anti-inflammatory property of α-MSH that is responsible for its behavioral effects during prolonged separation, suggest that peripheral CRF speeds the induction of passive responding through a mechanism involving enhanced proinflammatory activity. PMID:19492314

  18. New melanocortin 1 receptor binding motif based on the C-terminal sequence of alpha-melanocyte-stimulating hormone.

    PubMed

    Schiöth, Helgi B; Muceniece, Ruta; Mutule, Ilga; Wikberg, Jarl E S

    2006-10-01

    The C-terminal tripeptide of the alpha-melanocyte stimulating hormone (alpha-MSH11-13) possesses strong antiinflammatory activity without known cellular target. In order to better understand the structural requirements for function of such motif, we designed, synthesized and tested out Trp- and Tyr-containing analogues of the alpha-MSH11-13. Seven alpha-MSH11-13 analogues were synthesized and characterized for their binding to the melanocortin receptors recombinantly expressed in insect (Sf9) cells, infected with baculovirus carrying corresponding MC receptor DNA. We also tested these analogues on B16-F1 mouse melanoma cells endogenously expressing the MC1 receptor for binding and for ability to increase cAMP levels as well as on COS-7 cells transfected with the human MC receptors. The data indicate that HS401 (Ac-Tyr-Lys-Pro-Val-NH2) and HS402 (Ac-Lys-Pro-Val-Tyr-NH2) selectively bound to the MC1 receptor and stimulated cAMP generation in a concentration dependent way while the other Tyr- and Trp-containing alpha-MSH11-13 analogues neither bound to MC receptors nor stimulated cAMP. We have thus identified new MC receptor binding motif derived from the C-terminal sequence of alpha-MSH. The tetrapeptides have novel properties as the both act via MC-ergic pathways and also carry the anti-inflammatory alpha-MSH11-13 message sequence.

  19. 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultralong biological activity.

    PubMed Central

    Sawyer, T K; Sanfilippo, P J; Hruby, V J; Engel, M H; Heward, C B; Burnett, J B; Hadley, M E

    1980-01-01

    alpha-Melanocyte-stimulating hormone (alpha-MSH) reversibly darkens frog skins by stimulating melanosome movement (dispersion) within melanophores. Heat-alkali treatment of alpha-MSH results in prolonged biological activity of the hormone. Quantitative gas chromatographic analysis of the hydrolyzed heat-alkali-treated peptide revealed partial racemization particularly at the 4(methionine) and 7(phenylalanine) positions. [Nle4]-alpha-MSH, a synthetic analogue of alpha-MSH, reversibly darkens frog skins and also exhibits prolonged activity after heat-alkali treatment. Synthesis of [Nle4, D-Phe7]-alpha-MSH provided an analogue with prolonged biological activity identical to that observed with heat-alkali-treated alpha-MSH or [Nle4]-alpha-MSH. [Nle4, D-Phe7]-alpha-MSH was resistant to enzymatic degradation by serum enzymes. In addition, this peptide exhibited dramatically increased biological activity as determined by frog skin bioassay, activation of mouse melanoma adenylate cyclase, and stimulation of mouse melanoma cell tyrosinase activity. This Nle4, D-Phe7 synthetic analogue of alpha-MSH is a very porent melanotropin, 26 times as potent as alpha-MSH in the adenylate cyclase assay. The resistance of the peptide to enzymatic degradation and its extraordinarily potent and prolonged biological activity should make this analogue of alpha-MSH an important molecular probe for studying the melanotropin receptors of both normal and abnormal (melanoma) melanocytes. PMID:6777774

  20. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers

    PubMed Central

    Váradi, Judit; Harazin, András; Fenyvesi, Ferenc; Réti-Nagy, Katalin; Gogolák, Péter; Vámosi, György; Bácskay, Ildikó; Fehér, Pálma; Ujhelyi, Zoltán; Vasvári, Gábor; Róka, Eszter; Haines, David; Deli, Mária A.; Vecsernyés, Miklós

    2017-01-01

    Alpha-melanocyte-stimulating hormone (α-MSH) is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB) was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines. PMID:28103316

  1. Reducing renal uptake of 90Y- and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues

    SciTech Connect

    Miao, Yubin; Fisher, Darrell R.; Quinn, Thomas P.

    2006-06-15

    The purpose of this study was to improve the tumor-to-kidney uptake ratios of 90Y- and 177Lu-[1,2,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Re-Cys,D-Phe,Arg]alpha-melanocyte stimulating hormone (DOTA-RE(Arg)CCMSH), through coupling a negatively charged glutamic acid (Glu) to the peptide sequence. A new peptide of DOTA-Re(Glu,Arg)CCMSH was designed, synthesized and labeled with 90Y and 177Lu. Pharmacokinetics of 90Y- and 177Lu-DOTA-RE(Glu,Arg)CCNSH were determined in B16/F1 murine melanoma-bearing C57 mice. Both exhibited significantly less renal uptake than 90Y- and 177Lu-DOTA-Re(Arg)CCMSH at 30 min and at 2, 3, and 24 h after dose administration. The renal uptake values of 90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH were 28.16% and 28.81% of those of 90Y- and 177Lu-DOTA-RE(Arg)CCMSH, respectively, at 4 hr post-injection. We also showed higher tumor-to-kidney uptake ratios 2.28 and 1.69 times that of 90Y- and 177Lu-DOTA-Re(Arg)CCMSH, respectively, at 4 h post-injection. The90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH activity accumulation was low in normal organs except for kidneys. Coupling a negatively charged amino acid (Glu) to the CCMSH peptide sequence dramatically reduced the renal uptake values and increased the tumor-to-kidney uptake ratios of 90Y- and 177Lu-DOTA-Re(Glu,Arg)CCMSH, facilitating their potential applications as radiopharmaceuticals for targeted radionuclide therapy of melanoma.

  2. Alpha-melanocyte-stimulating hormone peptide analogs labeled with technetium-99m and indium-111 for malignant melanoma targeting.

    PubMed

    Chen, JianQing; Cheng, Zhen; Miao, Yubin; Jurisson, Silvia S; Quinn, Thomas P

    2002-02-15

    Previous studies have shown that the compact structure of a rhenium-cyclized alpha--melanocyte-stimulating hormone peptide analog, [Cys3410,D-Phe7]alpha-MSH(3--13), or Re-CCMSH, significantly enhanced its in vivo tumor uptake and retention. In this study, the metal chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to the N-terminus of Re-CCMSH in order to develop a melanoma-targeting peptide that could be labeled with a wider variety of imaging and therapeutic radionuclides. Biodistribution properties of indium-111 ((111)In)--labeled DOTA-Re-CCMSH were compared with the non-DOTA-containing technetium-99m ((99m)Tc)--CCMSH in murine melanoma--bearing C57 mice to determine the effects of DOTA on tumor uptake and whole-body clearance. The tumor targeting capacity and clearance kinetics of (111)In-DOTA-Re-CCMSH were also compared with other related cyclic and linear (111)In-labeled DOTA-alpha-MSH complexes. The in vivo distribution data showed that the conjugation of DOTA to Re-CCMSH did not reduce its initial tumor uptake kinetics but did enhance its tumor retention and renal clearance properties. The tumor uptake of (111)In-DOTA-Re-CCMSH was significantly higher than the other (111)In-DOTA--coupled cyclic or linear alpha-MSH analogs used in this study. Moreover, (111)In-DOTA-Re-CCMSH displayed lower radioactivity accumulation in normal tissues of interest than its non-Re-cyclized counterpart, (111)In-DOTA-CCMSH; the disulfide bond--cyclized (111)In-DOTA-CMSH; or the linear (111)In-DOTA-NDP. Peptide cyclization via rhenium coordination significantly enhanced the tumor targeting and renal clearance properties of DOTA-Re-CCMSH, making it an excellent candidate for melanoma radiodetection and radiotherapy. Copyright 2002 American Cancer Society.

  3. Interaction of alpha-melanocyte stimulating hormone with binary phospholipid membranes: structural changes and relevance of phase behavior.

    PubMed Central

    Contreras, L M; de Almeida, R F; Villalaín, J; Fedorov, A; Prieto, M

    2001-01-01

    The interaction of alpha-melanocyte stimulating hormone (alpha-MSH) with negatively charged binary membrane systems composed of either 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], (DMPC/DMPG) or DMPC/1,2-dimyristoyl-sn-glycero-3-phosphate (DMPC/DMPA), both at a 3:1 ratio, was studied using complementary techniques (differential scanning calorimetry, infrared and ultraviolet absorption spectroscopy, and steady-state and time-resolved fluorescence). The peptide structure in buffer, at medium to high concentrations, is a mixture of aggregated beta-strands and random coil, and upon increasing the temperature the random coil configuration becomes predominant. At low concentrations (micromolar) there are essentially no aggregates. When in interaction with the lipidic systems this transition is prevented and the peptide is stabilized in a specific conformation different from the one in solution. The incorporation of alpha-MSH into phosphatidic acid-containing systems produced a significant alteration of the calorimetric data. Lateral heterogeneity can be induced by the peptide in the DMPA-containing mixture, at variance with the one of DMPG. In addition, the lipid/water partition coefficient for the peptide in the presence of DMPC/DMPA is greater in the gel phase as compared to the fluid phase. From the high values of limiting anisotropies it can be concluded that the peptide presents a very reduced rotational dynamics when in interaction with the lipids, pointing out to a strong interaction. Overall, these results show that the structure and stability of alpha-MSH in a negatively charged membrane environment are substantially different from those of the peptide in solution, being stabilized in a specific conformation that could be important to eliciting its biological activity. PMID:11325729

  4. 203Pb-Labeled Alpha-Melanocyte-Stimulating Hormone Peptide as an Imaging Probe for Melanoma Detection

    SciTech Connect

    Yubin, Miao; Figueroa, Said D.; Fisher, Darrell R.; Moore, Herbert A.; Testa, Richard F.; Hoffman, Timothy J.; Quinn, Thomas P.

    2008-05-01

    Abbreviations: a-MSH; alpha melanocyte stimulating hormone, DOTA; 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, Re(Arg11)CCMSH; DOTA-[Cys3,4,10, D-Phe7, Arg11]a-MSH3-13, NDP; [Nle4,d-Phe7] a-MSH3-13. Abstract Peptide-targeted alpha therapy with 200 mCi of 212Pb-DOTA-Re(Arg11)CCMSH cured 45% of B16/F1 murine melanoma-bearing C57 mice in a 120-day study, highlighting its melanoma treatment potential. However, there is a need to develop an imaging surrogate for patient specific dosimetry and to monitor the tumor response to 212Pb-DOTA-Re(Arg11)CCMSH therapy. The purpose of this study was to evaluate the potential of 203Pb-DOTA-Re(Arg11)CCMSH as a matched-pair SPECT imaging agent for 212Pb-DOTA-Re(Arg11)CCMSH. Method: DOTA-Re(Arg11)CCMSH was labeled with 203Pb in 0.5 M NH4OAc buffer at pH 5.4. The internalization and efflux of 203Pb-DOTA-Re(Arg11)CCMSH were determined in B16/F1 melanoma cells. The pharmacokinetics of 203Pb-DOTA-Re(Arg11)CCMSH were examined in B16/F1 melanoma-bearing C57 mice. A micro-SPECT/CT imaging study was performed with 203Pb-DOTA-Re(Arg11)CCMSH in a B16/F1 melanoma-bearing C57 mouse at 2 h post-injection. Results: 203Pb-DOTA-Re(Arg11)CCMSH was easily prepared in NH4OAc buffer and completely separated from the excess non-radiolabeled peptide by RP-HPLC. 203Pb-DOTA-Re(Arg11)CCMSH displayed fast internalization and extended retention in B16/F1 cells. Approximately 73% of 203Pb-DOTA-Re(Arg11)CCMSH activity internalized after a 20-min incubation at 25C. After incubating the cells in culture media for 20 min, 78% of internalized activity remained in the cells. 203Pb-DOTA-Re(Arg11)CCMSH exhibited similar biodistribution pattern with 212Pb-DOTA-Re(Arg11)CCMSH in B16/F1 melanoma-bearing mice. 203Pb-DOTA-Re(Arg11)CCMSH exhibited the peak tumor uptake of 12.00 +/- 3.20 %ID/g at 1 h post-injection. The tumor uptake gradually decreased to 3.43 +/- 1.12 %ID/g at 48 h post-injection. 203Pb-DOTA-Re(Arg11)CCMSH exhibited the peak tumor to kidney

  5. Adolescent Alcohol Exposure-Induced Changes in Alpha-Melanocyte Stimulating Hormone and Neuropeptide Y Pathways via Histone Acetylation in the Brain During Adulthood.

    PubMed

    Kokare, Dadasaheb M; Kyzar, Evan J; Zhang, Huaibo; Sakharkar, Amul J; Pandey, Subhash C

    2017-09-01

    Adolescent intermittent ethanol exposure causes long-lasting alterations in brain epigenetic mechanisms. Melanocortin and neuropeptide Y signaling interact and are affected by ethanol exposure in the brain. Here, the persistent effects of adolescent intermittent ethanol on alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and their regulation by histone acetylation mechanisms were investigated in adulthood. Male rats were exposed to adolescent intermittent ethanol (2 g/kg, i.p.) or volume-matched adolescent intermittent saline from postnatal days 28 to 41 and allowed to grow to postnatal day 92. Anxiety-like behaviors were measured by the elevated plus-maze test. Brain regions from adult rats were used to examine changes in alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and the histone acetylation status of their promoters. Adolescent intermittent ethanol-exposed adult rats displayed anxiety-like behaviors and showed increased pro-opiomelanocortin mRNA levels in the hypothalamus and increased melanocortin 4 receptor mRNA levels in both the amygdala and hypothalamus compared with adolescent intermittent saline-exposed adult rats. The alpha-Melanocyte stimulating hormone and melanocortin 4 receptor protein levels were increased in the central and medial nucleus of the amygdala, paraventricular nucleus, and arcuate nucleus of the hypothalamus in adolescent intermittent ethanol-exposed compared with adolescent intermittent saline-exposed adult rats. Neuropeptide Y protein levels were decreased in the central and medial nucleus of the amygdala of adolescent intermittent ethanol-exposed compared with adolescent intermittent saline-exposed adult rats. Histone H3K9/14 acetylation was decreased in the neuropeptide Y promoter in the amygdala but increased in the melanocortin 4 receptor gene promoter in the amygdala and the melanocortin 4 receptor and pro-opiomelanocortin promoters in the

  6. Ultraviolet B, melanin and mitochondrial DNA: Photo-damage in human epidermal keratinocytes and melanocytes modulated by alpha-melanocyte-stimulating hormone

    PubMed Central

    Böhm, Markus; Hill, Helene Z.

    2016-01-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) increases melanogenesis and protects from UV-induced DNA damage. However, its effect on mitochondrial DNA (mtDNA) damage is unknown. We have addressed this issue in a pilot study using human epidermal keratinocytes and melanocytes incubated with alpha-MSH and irradiated with UVB. Real-time touchdown PCR was used to quantify total and deleted mtDNA. The deletion detected encompassed the common deletion but was more sensitive to detection. There were 4.4 times more mtDNA copies in keratinocytes than in melanocytes. Irradiation alone did not affect copy numbers. Alpha-MSH slightly increased copy numbers in both cell types in the absence of UVB and caused a similar small decrease in copy number with dose in both cell types. Deleted copies were nearly twice as frequent in keratinocytes as in melanocytes. Alpha-MSH reduced the frequency of deleted copies by half in keratinocytes but not in melanocytes. UVB dose dependently led to an increase in the deleted copy number in alpha-MSH-treated melanocytes. UVB irradiation had little effect on deleted copy number in alpha-MSH-treated keratinocytes. In summary, alpha-MSH enhances mtDNA damage in melanocytes presumably by increased melanogenesis, while α-MSH is protective in keratinocytes, the more so in the absence of irradiation. PMID:27303631

  7. Ultraviolet B, melanin and mitochondrial DNA: Photo-damage in human epidermal keratinocytes and melanocytes modulated by alpha-melanocyte-stimulating hormone.

    PubMed

    Böhm, Markus; Hill, Helene Z

    2016-01-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) increases melanogenesis and protects from UV-induced DNA damage. However, its effect on mitochondrial DNA (mtDNA) damage is unknown. We have addressed this issue in a pilot study using human epidermal keratinocytes and melanocytes incubated with alpha-MSH and irradiated with UVB. Real-time touchdown PCR was used to quantify total and deleted mtDNA. The deletion detected encompassed the common deletion but was more sensitive to detection. There were 4.4 times more mtDNA copies in keratinocytes than in melanocytes. Irradiation alone did not affect copy numbers. Alpha-MSH slightly increased copy numbers in both cell types in the absence of UVB and caused a similar small decrease in copy number with dose in both cell types. Deleted copies were nearly twice as frequent in keratinocytes as in melanocytes. Alpha-MSH reduced the frequency of deleted copies by half in keratinocytes but not in melanocytes. UVB dose dependently led to an increase in the deleted copy number in alpha-MSH-treated melanocytes. UVB irradiation had little effect on deleted copy number in alpha-MSH-treated keratinocytes. In summary, alpha-MSH enhances mtDNA damage in melanocytes presumably by increased melanogenesis, while α-MSH is protective in keratinocytes, the more so in the absence of irradiation.

  8. Increased alpha-melanocyte-stimulating hormone (alpha-MSH) levels and melanocortin receptors expression associated with pigmentation in an NC/Nga mouse model of atopic dermatitis.

    PubMed

    Hiramoto, Keiichi; Kobayashi, Hiromi; Ishii, Masamitsu; Sato, Eisuke; Inoue, Masayasu

    2010-02-01

    Patients with a specific subtype of atopic dermatitis (AD) display particular patterns of pigmentation, such as ripple pattern pigmentation on the neck, pigmented macules on the lip and diffuse pigmentation. However, the mechanism underlying these patterns has not been determined. The purpose of our research is to investigate the factors influencing this type of pigmentation in AD. We observed that AD model mice (NC/Nga mice) displayed an increase in the number of 3, 4-dihydroxyphenylalanine (Dopa)-positive melanocytes in the epidermis and intestine (jejunum and colon) while in the inflammatory state. The plasma levels of alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocoticotropin (ACTH) also increased in NC/Nga mice with dermatitis. Furthermore, the expression of melanocortin receptor 5 and melanocortin receptor 1 (MC1R) increased in the skin, and melanocortin receptor 3 (MC3R) expression increased in the intestine. However, the changes in the Dopa-positive cells of conventional NC/Nga mice were not induced by treatment with either agouti (an MC1R antagonist) or agouti-related protein (an MC3R antagonist). These results indicate that the pigmentation of AD is related to increased levels of alpha-MSH, MC1R (in the skin) and MC3R (in the intestines).

  9. [half-Cys4,half-Cys10]-alpha-Melanocyte-stimulating hormone: a cyclic alpha-melanotropin exhibiting superagonist biological activity.

    PubMed Central

    Sawyer, T K; Hruby, V J; Darman, P S; Hadley, M E

    1982-01-01

    alpha-Melanocyte-stimulating hormone (alpha-melanotropin; alpha-MSH) is a linear tridecapeptide (Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2) that reversibly darkens amphibian skins by stimulating melanomsome (pigment granule) dispersion within melanophores. By using a number of in vitro melanocyte assays, we have examined the conformational requirements for alpha-MSH activity. Synthesis of [half-Cys4,half-Cys10]-alpha-MSH, a cyclic, conformationally restricted, "isosteric" analogue of alpha-MSH, provided a melanotropin with a potency greater than 10,000 times that of the native hormone in stimulating frog (Rana pipiens) skin darkening. The cyclic analogue also showed substantially prolonged activity relative to the native hormone. [half-Cys4,half-Cys10]-alpha-MSH was approximately 30 times more potent than alpha-MSH in stimulating lizard (Anolis carolinensis) skin melanophores in vitro. By using a cell-free Cloudman S-91 mouse melanoma plasma membrane preparation, we found the cyclic analogue to be approximately 3 times as potent as the native hormone in stimulating adenylate cyclase activity. These results provide insight into the conformational requirements for biological activity of alpha-MSH, and the comparative conformational requirements of alpha-MSH at a number of pigment cell receptors. PMID:6281785

  10. Physiological role of alpha-melanocyte-stimulating hormone in modulating the secretion of prolactin and luteinizing hormone in the female rat.

    PubMed Central

    Khorram, O; Bedran de Castro, J C; McCann, S M

    1984-01-01

    Long-term ovariectomized (OVX) rats were injected in the third cerebral ventricle with 5 microliter of the globulin fraction of an antiserum raised against alpha-melanocyte-stimulating hormone (alpha-MSH) or an equal volume of the globulin fraction of normal rabbit serum (NRS). Immunoneutralization of brain alpha-MSH produced an increase in the area under the secretion curve of prolactin (Prl), the amplitude of Prl pulses, and mean plasma Prl (P less than 0.01). In animals that had received two injections of NRS or anti-MSH and were subjected to a 2-min ether stress, Prl levels significantly increased within 5 minutes in the NRS-injected rats, whereas Prl levels in the antiserum-injected rats did not increase any further from the initially high baseline levels. The administration of antibodies against alpha-MSH produced a small increase (P less than 0.05) in the area under the secretion of luteinizing hormone (LH) and mean plasma LH; however, the number of LH pulses was unaffected. We conclude that endogenous alpha-MSH of central origin is a physiological neuromodulator of release of Prl and LH in the OVX rat and is involved in the stress-induced release of Prl. PMID:6595673

  11. De novo design, synthesis, and pharmacology of alpha-melanocyte stimulating hormone analogues derived from somatostatin by a hybrid approach.

    PubMed

    Han, Guoxia; Haskell-Luevano, Carrie; Kendall, Laura; Bonner, Gregg; Hadley, Mac E; Cone, Roger D; Hruby, Victor J

    2004-03-11

    A number of alpha-melanotropin (alpha-MSH) analogues have been designed de novo, synthesized, and bioassayed at different melanocortin receptors from frog skin (fMC1R) and mouse/rat (mMC1R, rMC3R, mMC4R, and mMC5R). These ligands were designed from somatostatin by a hybrid approach, which utilizes a modified cyclic structure (H-d-Phe-c[Cys---Cys]-Thr-NH(2)) related to somatostatin analogues (e.g. sandostatin) acting at somatostatin receptors, CTAP which binds specifically to micro opioid receptors, and the core pharmacophore of alpha-MSH (His-Phe-Arg-Trp). Ligands designed were H-d-Phe-c[XXX-YYY-ZZZ-Arg-Trp-AAA]-Thr-NH(2) [XXX and AAA = Cys, d-Cys, Hcy, Pen, d-Pen; YYY = His, His(1'-Me), His(3'-Me); ZZZ = Phe and side chain halogen substituted Phe, d-Phe, d-Nal(1'), and d-Nal(2')]. The compounds showed a wide range of bioactivities at the frog skin MC1R; e.g. H-d-Phe-c[Hcy-His-d-Phe-Arg-Trp-Cys]-Thr-NH(2) (6, EC(50) = 0.30 nM) and H-d-Phe-c[Cys-His-d-Phe-Arg-Trp-d-Cys]-Thr-NH(2) (8, EC(50) = 0.10 nM). In addition, when a lactam bridge was used as in H-d-Phe-c[Asp-His-d-Phe-Arg-Trp-Lys]-Thr-NH(2) (7, EC(50) = 0.10 nM), the analogue obtained is as potent as alpha-MSH in the frog skin MC1R assay. Interestingly, switching the bridge of 6 to give H-d-Phe-c[Cys-His-d-Phe-Arg-Trp-Hcy]-Thr-NH(2) (5, EC(50) = 1000 nM) led to a 3000-fold decrease in agonist activity. An increase in steric size in the side chain of d-Phe(7) reduced the bioactivity significantly. For example, H-d-Phe-c[Cys-His-d-Nal(1')-Arg-Trp-d-Cys]-Thr-NH(2) (24) is 2000-fold less active than 9. On the other hand, H-d-Phe-c[Cys-His-d-Phe(p-I)-Arg-Trp-d-Cys]-Thr-NH(2) (23) lost all agonist activity and became a weak antagonist (IC(50) = 1 x 10(-5) M). Furthermore, the modified CTAP analogues with a d-Trp at position 7 all showed weak antagonist activities (EC(50) = 10(-6) to 10(-7) M). Compounds bioassayed at mouse/rat MCRs displayed intriguing results. Most of them are potent at all four receptors tested (m

  12. Analogs of alpha-melanocyte stimulating hormone with high agonist potency and selectivity at human melanocortin receptor 1b: the role of Trp(9) in molecular recognition.

    PubMed

    Bednarek, Maria A; Macneil, Tanya; Tang, Rui; Fong, Tung M; Angeles Cabello, M; Maroto, Marta; Teran, Ana

    2008-05-01

    alpha-Melanocyte stimulating hormone (alphaMSH), Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2), is an endogenous agonist for the melanocortin receptor 1 (MC1R), the receptor found in the skin, several types of immune cells, and other peripheral sites. Three-dimensional models of complexes of this receptor with alphaMSH and its synthetic analog NDP-alphaMSH, Ac-Ser(1)-Tyr(2)-Ser(3)-Nle(4)-Glu(5)-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2), have been previously proposed. In those models, the 6-9 segment of the ligand was considered essential for the ligand-receptor interactions. In this study, we probed the role of Trp(9) of NDP-alphaMSH in interactions with hMC1bR. Analogs of NDP-alphaMSH with various amino acids in place of Trp(9) were synthesized and tested in vitro in receptor affinity binding and cAMP functional assays at human melanocortin receptors 1b, 3, 4, and 5 (hMC1b,3-5R). Several new compounds displayed high agonist potency at hMC1bR (EC(50) = 0.5-5 nM) and receptor subtype selectivity greater than 2000-fold versus hMC3-5R. The Trp(9) residue of NDP-alphaMSH was determined to be not essential for molecular recognition at hMC1bR.

  13. Nitric oxide enhances the sensitivity of alpaca melanocytes to respond to {alpha}-melanocyte-stimulating hormone by up-regulating melanocortin-1 receptor

    SciTech Connect

    Dong, Yanjun; Cao, Jing; Wang, Haidong; Zhang, Jie; Zhu, Zhiwei; Bai, Rui; Hao, HuanQing; He, Xiaoyan; Fan, Ruiwen; Dong, Changsheng

    2010-06-11

    Nitric oxide (NO) and {alpha}-melanocyte-stimulating hormone ({alpha}-MSH) have been correlated with the synthesis of melanin. The NO-dependent signaling of cellular response to activate the hypothalamopituitary proopiomelanocortin system, thereby enhances the hypophysial secretion of {alpha}-MSH to stimulate {alpha}-MSH-receptor responsive cells. In this study we investigated whether an NO-induced pathway can enhance the ability of the melanocyte to respond to {alpha}-MSH on melanogenesis in alpaca skin melanocytes in vitro. It is important for us to know how to enhance the coat color of alpaca. We set up three groups for experiments using the third passage number of alpaca melanocytes: the control cultures were allowed a total of 5 days growth; the UV group cultures like the control group but the melanocytes were then irradiated everyday (once) with 312 mJ/cm{sup 2} of UVB; the UV + L-NAME group is the same as group UV but has the addition of 300 {mu}M L-NAME (every 6 h). To determine the inhibited effect of NO produce, NO produces were measured. To determine the effect of the NO to the key protein and gene of {alpha}-MSH pathway on melanogenesis, the key gene and protein of the {alpha}-MSH pathway were measured by quantitative real-time PCR and Western immunoblotting. The results provide exciting new evidence that NO can enhance {alpha}-MSH pathway in alpaca skin melanocytes by elevated MC1R. And we suggest that the NO pathway may more rapidly cause the synthesis of melanin in alpaca skin under UV, which at that time elevates the expression of MC1R and stimulates the keratinocytes to secrete {alpha}-MSH to enhance the {alpha}-MSH pathway on melanogenesis. This process will be of considerable interest in future studies.

  14. Pivotal roles of alpha-melanocyte-stimulating hormone and the melanocortin 4 receptor in leptin stimulation of prolactin secretion in rats.

    PubMed

    Watanobe, Hajime; Schiöth, Helgi B; Izumi, Junkichi

    2003-04-01

    Leptin, the obese gene product, was reported to stimulate prolactin (PRL) secretion, but the neuroendocrine mechanism underlying this hormonal response is largely unknown. Thus, in this study we examined the involvement of several important PRL regulators in the leptin-induced PRL secretion in male rats. Compared with the values in normally fed rats, food deprivation for 3 days significantly decreased both PRL and leptin levels in the plasma. These changes were reverted to normal by a 3-day constant infusion of 75 microg/kg/day of leptin to the fasted rats, while 225 microg/kg/day of leptin further elevated both PRL and leptin levels. These four groups of animals were used for the following experiments. Results of dopamine and serotonin turnover studies in the brain and the pituitary indicated that neither of these biogenic amines plays a primary role in mediating leptin's effects on PRL. Repeated intracerebroventricular injections over 72 h of neutralizing antibodies against vasoactive intestinal peptide, PRL-releasing peptide, or beta-endorphin, did not significantly suppress the leptin actions. However, both the blockade of the melanocortin (MC) 4 receptor (R) and the immunoquenching of brain alpha-melanocyte-stimulating hormone (alpha-MSH) completely abolished the leptin-induced PRL release, and the stimulation of the MC4-R, but not the MC3-R, significantly elevated PRL levels in the fasted rats. These results suggest that alpha-MSH, a cleaved peptide from pro-opiomelanocortin of which synthesis is stimulated by leptin, may be the pivotal neuropeptide in the brain mediating the leptin's stimulatory influence on PRL secretion. It was also suggested that the MC4-R may be the primary subtype of the MC-Rs mediating this action of alpha-MSH.

  15. Betulin binds to melanocortin receptors and antagonizes alpha-melanocyte stimulating hormone induced cAMP generation in mouse melanoma cells.

    PubMed

    Muceniece, Ruta; Saleniece, Kristine; Riekstina, Una; Krigere, Liga; Tirzitis, Gunars; Ancans, Janis

    2007-01-01

    Betulin is a principal component of birch bark and is known to possess a broad range of biological activities, including antiinflammatory, antiviral and anticancer actions. The present study was carried out in vitro to clarify the influence of betulin on melanocortin (MC) receptor-ergic signalling by using COS-7 cells transfected with corresponding human MC receptor DNA. The results showed that betulin binds to the human melanocortin MC1, three to five receptors with selectivity to the MC1 subtype (K(i) value 1.022 +/- 0.115 microM). Betulin binds to the MC receptors with the following potency order-MC > MC3 > MC5 > MC4. Betulin itself does not stimulate cAMP generation, however, it slightly antagonizes alpha-melanocyte-stimulating hormone (alpha-MSH)-induced cAMP accumulation in the mouse melanoma cell line B16-F1. As a water-insoluble substance, betulin was dissolved in DMSO therefore DMSO competition with the labelled ligand NDP-MSH for the binding to the MC receptors was tested in the identical experimental set-up. We found that DMSO competes for binding to all the MC receptor subtypes, at 20% concentration and above. Selectivity for one or another receptor subtype was not observed. We have demonstrated for the first time, the ability of the plant compound betulin to bind to the MC receptors. One may suggest MC receptor MC1 subtype as the essential target for the antimelanoma action of betulin and its structurally close molecules such as betulinic acid. Moreover, we have found a new non-peptide small molecule MC mimetic, that is betulin. Thus, we report a new chemical motif for the binding to the MC receptors that could be used as a template for the search of more selective MC mimetics.

  16. Role of tyrosine kinase and protein kinase C in the steroidogenic actions of angiotensin II, alpha-melanocyte-stimulating hormone and corticotropin in the rat adrenal cortex.

    PubMed Central

    Kapas, S; Purbrick, A; Hinson, J P

    1995-01-01

    The role of protein kinases in the steroidogenic actions of alpha-melanocyte-stimulating hormone (alpha-MSH), angiotensin II (AngII) and corticotropin (ACTH) in the rat adrenal zona glomerulosa was examined. Ro31-8220, a potent selective inhibitor of protein kinase C (PKC), inhibited both AngII- and alpha-MSH-stimulated aldosterone secretion but had no effect on aldosterone secretion in response to ACTH. The effect of Ro31-8220 on PKC activity was measured in subcellular fractions. Basal PKC activity was higher in cytosol than in membrane or nuclear fractions. Incubation of the zona glomerulosa with either alpha-MSH or AngII resulted in significant increases in PKC activity in the nuclear and cytosolic fractions and decreases in the membrane fraction. These effects were all inhibited by Ro31-8220. ACTH caused a significant increase in nuclear PKC activity only, and this was inhibited by Ro31-8220 without any significant effect on the steroidogenic response to ACTH, suggesting that PKC translocation in response to ACTH may be involved in another aspect of adrenal cellular function. Tyrosine phosphorylation has not previously been considered to be an important component of the response of adrenocortical cells to peptide hormones. Both AngII and alpha-MSH were found to activate tyrosine kinase, but ACTH had no effect, observations that have not been previously reported. Tyrphostin 23, a specific antagonist of tyrosine kinases, inhibited aldosterone secretion in response to AngII and alpha-MSH, but not ACTH. These data confirm the importance of PKC in the adrenocortical response to AngII and alpha-MSH, and, furthermore, indicate that tyrosine kinase may play a critical role in the steroidogenic actions of AngII and alpha-MSH in the rat adrenal zona glomerulosa. PMID:7832756

  17. Alpha-melanocyte stimulating hormone (α-MSH) is a post-caspase suppressor of apoptosis in RAW 264.7 macrophages.

    PubMed

    Taylor, Andrew W

    2013-01-01

    The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) is an important regulator of immune cell activity within the immunosuppressive ocular microenvironment. Its constitutive presence not only suppresses macrophage inflammatory activity, it also participates in retinal pigment epithelial cell (RPE) mediated activation of macrophages to function similar to myeloid suppressor cells. In addition, α-MSH promotes survival of the alternatively activated macrophages where without α-MSH RPE induce apoptosis in the macrophages, which is seen as increased TUNEL stained cells. Since there is little know about α-MSH as an anti-apoptotic factor, the effects of α-MSH on caspase activity, mitochondrial membrane potential, Bcl2 to BAX expression, along with TUNEL staining, and Annexin V binding were examined in RAW 264.7 macrophages under serum-starved conditions that trigger apoptosis. There was no effect of α-MSH on activated Caspase 9 and Caspase 3 while there was suppression of Caspase 8 activity. In addition, α-MSH did not improve mitochondrial membrane potential, change the ratio between Bcl-2 and BAX, nor reduce Annexin V binding. These results demonstrate that the diminution in TUNEL staining by α-MSH is through α-MSH mediating suppression of the apoptotic pathway that is post-Caspase 3, but before DNA fragmentation. Therefore, as α-MSH promotes the alternative activation of macrophages it also provides a survival signal, and the potential for the caspases to participate in non-apoptotic activities that can contribute to an immunosuppressive microenvironment.

  18. Alpha-melanocyte stimulating hormone-induced anorexia in Japanese quail (Coturnix japonica) likely involves the ventromedial hypothalamus and paraventricular nucleus of the hypothalamus.

    PubMed

    Lear, Taylor; Liu, Lingbin; O'Donnell, Madison; McConn, Betty R; Denbow, D Michael; Cline, Mark A; Gilbert, Elizabeth R

    2017-10-01

    Alpha-melanocyte stimulating hormone (α-MSH) reduces food intake in birds and mammals. The objective of this experiment was to determine effects of α-MSH on food and water intake, and hypothalamic c-Fos immunoreactivity and appetite-associated factor mRNA in Japanese quail (Coturnix japonica), a species that has not undergone the same artificial selection for growth-related traits as the chicken. At 7days post-hatch, 3-h-fasted quail were intracerebroventricularly (ICV) injected into the lateral ventricle with 0 (vehicle), 0.5, 5, or 50pmol of α-MSH and food and water intake were recorded at 30min intervals for 180min. In the second and third experiment, quail were injected with 50pmol α-MSH and hypothalami were collected at 1h to determine c-Fos immunoreactivity and mRNA abundance, respectively. At 30min, quail injected with 5 or 50pmol of α-MSH ate and drank less than vehicle-injected quail. Quail injected with 50pmol ate less for the entire duration of the experiment and drank less than vehicle-injected quail for 120min post-injection. Hypothalamic expression of agouti-related peptide and DOPA decarboxylase were greater in vehicle- than α-MSH-injected quail, whereas melanocortin receptor 4 (MC4R) mRNA was greater in α-MSH- than vehicle-injected birds. Alpha-MSH injection was associated with more c-Fos immunoreactive cells in the ventromedial hypothalamus (VMH) and paraventricular nucleus (PVN) of the hypothalamus. Results suggest that the anorexigenic effect of α-MSH is conserved among avians and that effects in quail are associated with the VMH and PVN and involve MC4R. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Nitric oxide enhances the sensitivity of alpaca melanocytes to respond to alpha-melanocyte-stimulating hormone by up-regulating melanocortin-1 receptor.

    PubMed

    Dong, Yanjun; Cao, Jing; Wang, Haidong; Zhang, Jie; Zhu, Zhiwei; Bai, Rui; Hao, HuanQing; He, Xiaoyan; Fan, Ruiwen; Dong, Changsheng

    2010-06-11

    Nitric oxide (NO) and alpha-melanocyte-stimulating hormone (alpha-MSH) have been correlated with the synthesis of melanin. The NO-dependent signaling of cellular response to activate the hypothalamopituitary proopiomelanocortin system, thereby enhances the hypophysial secretion of alpha-MSH to stimulate alpha-MSH-receptor responsive cells. In this study we investigated whether an NO-induced pathway can enhance the ability of the melanocyte to respond to alpha-MSH on melanogenesis in alpaca skin melanocytes in vitro. It is important for us to know how to enhance the coat color of alpaca. We set up three groups for experiments using the third passage number of alpaca melanocytes: the control cultures were allowed a total of 5 days growth; the UV group cultures like the control group but the melanocytes were then irradiated everyday (once) with 312 mJ/cm(2) of UVB; the UV+L-NAME group is the same as group UV but has the addition of 300 microM L-NAME (every 6h). To determine the inhibited effect of NO produce, NO produces were measured. To determine the effect of the NO to the key protein and gene of alpha-MSH pathway on melanogenesis, the key gene and protein of the alpha-MSH pathway were measured by quantitative real-time PCR and Western immunoblotting. The results provide exciting new evidence that NO can enhance alpha-MSH pathway in alpaca skin melanocytes by elevated MC1R. And we suggest that the NO pathway may more rapidly cause the synthesis of melanin in alpaca skin under UV, which at that time elevates the expression of MC1R and stimulates the keratinocytes to secrete alpha-MSH to enhance the alpha-MSH pathway on melanogenesis. This process will be of considerable interest in future studies.

  20. Inhibitory effect of Gastrodia elata Blume extract on alpha-melanocyte stimulating hormone-induced melanogenesis in murine B16F10 melanoma

    PubMed Central

    Shim, Eugene; Song, Eunju; Choi, Kyoung Sook; Choi, Hyuk-Joon

    2017-01-01

    BACKGROUND/OBJECTIVES Gastrodia elata Blume (GEB), a traditional herbal medicine, has been used to treat a wide range of neurological disorders (e.g., paralysis and stroke) and skin problems (e.g., atopic dermatitis and eczema) in oriental medicine. This study was designed to investigate whether GEB extract inhibits melanogenesis activity in murine B16F10 melanoma. MATERIALS/METHOD Murine B16F10 cells were treated with 0-5 mg/mL of GEB extract or 400 µg/mL arbutin (a positive control) for 72 h after treatment with/without 200 nM alpha-melanocyte stimulating hormone (α-MSH) for 24 h. Melanin concentration, tyrosinase activity, mRNA levels, and protein expression of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (Trp)1, and Trp2 were analyzed in α-MSH-untreated and α-MSH-treated B16F10 cells. RESULTS Treatment with 200 nM α-MSH induced almost 2-fold melanin synthesis and tyrosinase activity along with increased mRNA levels and protein expression of MITF, tyrosinase, Trp1 and Trp2. Irrespective of α-MSH stimulation, GEB extract at doses of 0.5-5 mg/mL inhibited all these markers for skin whitening in a dose-dependent manner. While lower doses (0.5-1 mg/mL) of GEB extract generally had a tendency to decrease melanogenesis, tyrosinase activity, and mRNA levels and protein expression of MITF, tyrosinase, Trp1, and Trp2, higher doses (2-5 mg/mL) significantly inhibited all these markers in α-MSH-treated B16F10 cells in a dose-dependent manner. These inhibitory effects of the GEB extract at higher concentrations were similar to those of 400 µg/mL arbutin, a well-known depigmenting agent. CONCLUSIONS These results suggest that GEB displays dose-dependent inhibition of melanin synthesis through the suppression of tyrosinase activity as well as molecular levels of MITF, tyrosinase, Trp1, and Trp2 in murine B16F10 melanoma. Therefore, GEB may be an effective and natural skin-whitening agent for application in the cosmetic

  1. Alpha-melanocyte stimulating hormone suppresses the proliferation of human tenon's capsule fibroblast proliferation induced by transforming growth factor beta 1.

    PubMed

    Zhang, Zheng; Ma, Jin; Yao, Ke; Yin, Jinfu

    2012-01-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) is a proopiomelanocortin derivative and a multi-function neuropeptide, well know for its pigment-inducing capacity, inhibitory action on proinflammatory cytokines and chemoattractant cytokines, and suppressive action on collagen synthesis. Human Tenon's capsule fibroblasts (HTF) are the main effector cells in the initiation and mediation of wound healing and fibrotic scar formation after trabeculectomy. In this study the effects of alpha-MSH on proliferation of HTF stimulated by transforming growth factor beta1 (TGF-beta1), have been investigated and discussed. Fibroblasts were cultured in Dulbecco's modified Eagle's medium (DMEM) in the control group, and in DMEM with TGF-beta1 at concentration of 10(-12) M in the TGF-beta1 group, and DMEM with 10(-12) M TGF-beta1 and alpha-MSH ranging from 0, 10(-8) to 10(-4) M in the TGF-beta1/alpha-MSH groups. Cell proliferation was assessed 48 h later by the CellTiter 96 Aqueous One Solution Cell Proliferation Assay. After administration of TGF-beta1 at a concentration of 10(-12) M, or TGF-beta1 at 10(-12) M plus alpha-MSH at 10(-6) M, the mRNA level of type I (alpha1) collagen, fibronectin, TNF-alpha, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), MMP-1, MMP-2, TIMP-1, and TIMP-2 in HTF were analyzed using the real time reverse transcription polymerase chain reaction. Alpha-MSH demonstrated an inhibitory effect on the proliferation of HTF induced by TGF-beta1 in a dose-dependent manner, when the concentration was lower than 10(-5) M, and a suppressive effect on the mRNA expression of type I (alpha1) collagen, TNF-alpha, ICAM-1 and VCAM-1, which were up-regulated by TGF-beta1. Our results showed a reverse effect of alpha-MSH on the imbalance between MMPs and TIMPs compared with TGF-beta1. Based on all these results, we conclude that alpha-MSH could effectively suppress HTF proliferation and modulate correlative genes in collagen

  2. Novel Anticancer β-Lactams

    NASA Astrophysics Data System (ADS)

    Banik, Bimal K.; Banik, Indrani; Becker, Frederick F.

    Stereocontrolled synthesis of racemic and chiral novel β-lactams using polyaromatic imines has been accomplished. Domestic and automated microwave-induced reactions have been investigated for the preparation of these types of β-lactams. A preliminary mechanism of this reaction has been advanced. Formation of trans-β-lactams has been explained through isomerization of the enolates formed during the reaction of acid chloride with imines in the presence of tertiary base. A donor-acceptor complex pathway has been believed to be involved in the formation of cis-β-lactams. The effect of a peri hydrogen has been found to be significant in controlling the stereochemistry of the β-lactams. Structure-activity relationship has identified β-lactams with anticancer activity. The presence of an acetoxy group has proven very important for anticancer activity. The preparation and mechanism of action of several other new anticancer β-lactams have also been explored.

  3. Mapping of the gene encoding the melanocortin-1 ([alpha]-melanocyte stimulating hormone) receptor (MC1R) to human chromosome 16q24. 3 by fluorescence in situ hybridization

    SciTech Connect

    Gantz, I.; Yamada, Tadataka; Tashiro, Takao; Konda, Yoshitaka; Shimoto, Yoshimasa; Miwa, Hiroto; Trent, J.M. )

    1994-01-15

    [alpha]-Melanocyte stimulating hormone ([alpha]-MSH), a hormone originally named for its ability to regulate pigmentation of melanocytes, is a 13-amino-acid post-translational product of the pro-opiomelanocortin (POMC) gene. [alpha]-MSH and the other products of POMC processing, which share the core heptapeptide amino acid sequence Met-Glu (Gly)-His-Phe-Arg-Trp-Gly (Asp), the adrenocorticotropic hormone (ACTH), [beta]-MSH, and [gamma]-MSH, are collectively referred to as melanocortins. While best known for their effects on the melanocyte (pigmentation) and adrenal cortical cells (steroidogenesis), melanocortins have been postulated to function in diverse activities, including enhancement of learning and memory, control of the cardiovascular system, analgesia, thermoregulation, immunomodulation, parturition, and neurotrophism. To identify the chromosomal band encoding the human melanocortin-1 receptor gene, 1 [mu]g of an EMBL clone coding region of the human MC1R and approximately 15 kb of surrounding DNA was labeled with biotin and hybridized to human metaphase chromosomes as previously described. The results indicate that the human MC1R gene is localized to 16q24.3. 15 refs., 1 fig.

  4. β-Lactam Antibiotics Renaissance

    PubMed Central

    Qin, Wenling; Panunzio, Mauro; Biondi, Stefano

    2014-01-01

    Since the 1940s β-lactam antibiotics have been used to treat bacterial infections. However, emergence and dissemination of β-lactam resistance has reached the point where many marketed β-lactams no longer are clinically effective. The increasing prevalence of multidrug-resistant bacteria and the progressive withdrawal of pharmaceutical companies from antibiotic research have evoked a strong reaction from health authorities, who have implemented initiatives to encourage the discovery of new antibacterials. Despite this gloomy scenario, several novel β-lactam antibiotics and β-lactamase inhibitors have recently progressed into clinical trials, and many more such compounds are being investigated. Here we seek to provide highlights of recent developments relating to the discovery of novel β-lactam antibiotics and β-lactamase inhibitors. PMID:27025744

  5. Replacement of the Lys linker with an Arg linker resulting in improved melanoma uptake and reduced renal uptake of Tc-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptide.

    PubMed

    Yang, Jianquan; Guo, Haixun; Padilla, R Steve; Berwick, Marianne; Miao, Yubin

    2010-09-15

    The purpose of this study was to reduce the non-specific renal uptake of Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone (alpha-MSH) hybrid peptide through structural modification or L-lysine co-injection. The RGD motif {cyclic(Arg-Gly-Asp-DTyr-Asp)} was coupled to [Cys(3,4,10), D-Phe7, Arg11] alpha-MSH3-13 {(Arg11)CCMSH} through the Arg linker (substituting the Lys linker) to generate a novel RGD-Arg-(Arg11)CCMSH hybrid peptide. The melanoma targeting and pharmacokinetic properties of 99mTc-RGD-Arg-(Arg11)CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The effect of L-lysine co-injection on the renal uptake was determined through the co-injection of L-lysine with 99mTc-RGD-Arg-(Arg11)CCMSH or 99mTc-RGD-Lys-(Arg11)CCMSH. Replacement of the Lys linker with an Arg linker exhibited a profound effect in reducing the non-specific renal uptake of 99mTc-RGD-Arg-(Arg11)CCMSH, as well as increasing the tumor uptake of 99mTc-RGD-Arg-(Arg11)CCMSH compared to 99mTc-RGD-Lys-(Arg11)CCMSH. 99mTc-RGD-Arg-(Arg11)CCMSH exhibited high tumor uptake (21.41+/-3.74% ID/g at 2 h post-injection) and prolonged tumor retention (6.81+/-3.71% ID/g at 24 h post-injection) in B16/F1 melanoma-bearing mice. The renal uptake values of 99mTc-RGD-Arg-(Arg11)CCMSH were 40.14-64.08% of those of 99mTc-RGD-Lys-(Arg11)CCMSH (p<0.05) at 0.5, 2, 4 and 24 h post-injection. Co-injection of L-lysine was effective in decreasing the renal uptakes of 99mTc-RGD-Arg-(Arg11)CCMSH by 27.7% and 99mTc-RGD-Lys-(Arg11)CCMSH by 52.1% at 2 h post-injection. Substitution of the Lys linker with an Arg linker dramatically improved the melanoma uptake and reduced the renal uptake of 99mTc-RGD-Arg-(Arg11)CCMSH, warranting the further evaluation of 188Re-labeled RGD-Arg-(Arg11)CCMSH as a novel MC1 receptor-targeting therapeutic peptide for melanoma treatment in the future.

  6. Enthalpies of formation of lactams

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V. N.; Verevkin, S. P.; Turovtsev, V. V.; Orlov, Yu. D.

    2013-06-01

    Combustion calorimetry is used to measure the enthalpies of combustion and formation of azacyclooctan-2-one (I), azacyclononan-2-one (II), and azacyclotridecan-2-one (III) in the crystalline, liquid, and gaseous states. Conformational analysis is conducted, and quantum chemical calculations of the compounds' enthalpies of formation in the gas phase for conformers corresponding to the global minima are performed. The experimental findings and published data are used to determine mutually congruent combinations of enthalpy parameters for a number of nonsubstituted lactams. The strain energies are estimated. Trends in their changes are considered for the series of cycloalkanes and lactams.

  7. Skin testing with β-lactam antibiotics for diagnosis of β-lactam hypersensitivity in children.

    PubMed

    Manuyakorn, Wiparat; Singvijarn, Prapasiri; Benjaponpitak, Suwat; Kamchaisatian, Wasu; Rerkpattanapipat, Ticha; Sasisakulporn, Cherapat; Jotikasthira, Wanlapa

    2016-09-01

    Skin testing with penicilloyl-polylysine (PPL) and a minor determinant mixture (MDM) were previously recommended for evaluating β-lactam hypersensitivity. However, PPL and MDM have not been commercially available. This study was to determine the negative predictive value (NPV) of skin testing with β-lactam antibiotics for the diagnosis of β-lactam hypersensitivity. Patients age 1-18 years old with a history of β-lactam hypersensitivity were evaluated by skin tests (a skin prick test, an intradermal test) with penicillin G, ampicillin, amoxicillin-clavulanic acid, and the suspect βlactam. The patients who had a negative skin test were performed with a drug provocation test (DPT) in a 3-dose-graded challenge. The hypersensitivity reactions were classified into immediate and non-immediate reactions. A total of 126 patients were evaluated for β-lactam hypersensitivity. Twenty two patients (17.4%) were confirmed with a ?-lactam hypersensitivity. 12 (54.54 %) of them were confirmed by a skin test. There was no systemic reaction occurring after the skin tests. Ten patients (9.6%) from 104 patients with a negative skin test showed reactions after a DPT providing the NPV of the skin test with a 91.2% value. Among those children with a history of β-lactam hypersensitivity, skin testing with penicillin G, ampicillin, amoxicillin-clavulanic acid, and the suspect β-lactam was safe and provided a good NPV when PPL and MDM were unavailable. However, a skin test with β-lactam antibiotics alone did not provide a high sensitivity, thus a DPT procedure was necessary in order to confirm the diagnosis of β-lactam hypersensitivity.

  8. β-lactam-associated eosinophilic colitis.

    PubMed

    Mogilevski, Tamara; Nickless, David; Hume, Sam

    2015-06-23

    A 42-year-old man with a history of childhood asthma presented with a 2-week history of watery diarrhoea and marked peripheral eosinophilia in the setting of recent use of cephalexin. His colonoscopy revealed patchy colitis. Biopsies were consistent with eosinophilic colitis. Two months later he received a course of amoxicillin resulting in recurrence of peripheral eosinophilia. Given the time-frame of β-lactam administration to symptom onset and elimination of all other precipitating causes, he was diagnosed with β-lactam-associated eosinophilic colitis. The patient's symptoms resolved and peripheral eosinophil count decreased with no specific treatment. Eosinophilic colitis is a rare heterogeneous condition, the pathogenesis of which is likely to be an interplay between environmental and genetic factors. It can be secondary to a helminthic infection or a drug reaction and has been associated with ulcerative colitis. If secondary causes of eosinophilic colitis have been excluded, the mainstay of treatment is with corticosteroids.

  9. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics.

    PubMed

    Li, Lu; Wang, Qiyao; Zhang, Hui; Yang, Minjun; Khan, Mazhar I; Zhou, Xiaohui

    2016-02-09

    β-Lactams disrupt bacterial cell wall synthesis, and these agents are the most widely used antibiotics. One of the principle mechanisms by which bacteria resist the action of β-lactams is by producing β-lactamases, enzymes that degrade β-lactams. In Gram-negative bacteria, production of β-lactamases is often induced in response to the antibiotic-associated damage to the cell wall. Here, we have identified a previously unidentified mechanism that governs β-lactamase production. In the Gram-negative enteric pathogen Vibrio parahaemolyticus, we found a histidine kinase/response regulator pair (VbrK/VbrR) that controls expression of a β-lactamase. Mutants lacking either VbrK or VbrR do not produce the β-lactamase and are no longer resistant to β-lactam antibiotics. Notably, VbrK autophosphorylation is activated by β-lactam antibiotics, but not by other lactams. However, single amino acid substitutions in the putative periplasmic binding pocket of VbrK leads its phosphorylation in response to both β-lactam and other lactams, suggesting that this kinase is a β-lactam receptor that can directly detect β-lactam antibiotics instead of detecting the damage to cell wall resulting from β-lactams. In strong support of this idea, we found that purified periplasmic sensor domain of VbrK binds penicillin, and that such binding is critical for VbrK autophosphorylation and β-lactamase production. Direct recognition of β-lactam antibiotics by a histidine kinase receptor may represent an evolutionarily favorable mechanism to defend against β-lactam antibiotics.

  10. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics

    PubMed Central

    Li, Lu; Wang, Qiyao; Zhang, Hui; Yang, Minjun; Khan, Mazhar I.; Zhou, Xiaohui

    2016-01-01

    β-Lactams disrupt bacterial cell wall synthesis, and these agents are the most widely used antibiotics. One of the principle mechanisms by which bacteria resist the action of β-lactams is by producing β-lactamases, enzymes that degrade β-lactams. In Gram-negative bacteria, production of β-lactamases is often induced in response to the antibiotic-associated damage to the cell wall. Here, we have identified a previously unidentified mechanism that governs β-lactamase production. In the Gram-negative enteric pathogen Vibrio parahaemolyticus, we found a histidine kinase/response regulator pair (VbrK/VbrR) that controls expression of a β-lactamase. Mutants lacking either VbrK or VbrR do not produce the β-lactamase and are no longer resistant to β-lactam antibiotics. Notably, VbrK autophosphorylation is activated by β-lactam antibiotics, but not by other lactams. However, single amino acid substitutions in the putative periplasmic binding pocket of VbrK leads its phosphorylation in response to both β-lactam and other lactams, suggesting that this kinase is a β-lactam receptor that can directly detect β-lactam antibiotics instead of detecting the damage to cell wall resulting from β-lactams. In strong support of this idea, we found that purified periplasmic sensor domain of VbrK binds penicillin, and that such binding is critical for VbrK autophosphorylation and β-lactamase production. Direct recognition of β-lactam antibiotics by a histidine kinase receptor may represent an evolutionarily favorable mechanism to defend against β-lactam antibiotics. PMID:26831117

  11. Enthalpy of phase transitions of lactams

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V. N.; Verevkin, S. P.; Ralys, R. V.; Turovtsev, V. V.; Orlov, V. Yu.

    2012-10-01

    The transpiration method is used to measure the temperature dependences of the vapors pressures of azacyclobutan-2-one (I, CAS 930-21-2) azacyclohexan-2-one (II, CAS 675-20-7); azacyclooctan-2-one (III, CAS 673-66-5); azacyclononan-2-one (IV, CAS 935-30-8) and azacyclotridecan-2-one (V, CAS 947-04-6). Enthalpies of sublimation and vaporisation are determined. The temperatures and enthalpies of fusion of compounds (I, III-V) are found by means of differential scanning calorimetry. The dependences of the enthalpies of vaporisation of lactones, lactams, cycloalkanes, cycloalkanones on the size of a cycle are analyzed.

  12. Extended Spectrum Beta-lactam Resistance among Salmonella

    USDA-ARS?s Scientific Manuscript database

    Salmonella is an important food bourn pathogen capable of infecting both humans and animals. One of the most effective treatments for Salmonella infections is beta-lactam antibiotics, particularly extended spectrum beta-lactams; however, Salmonella resistant to these antibiotics have been recovered ...

  13. Desensitization in patients with beta-lactam drug allergy.

    PubMed

    Yusin, J S; Klaustermeyer, W; Simmons, C W; Baum, M

    2013-01-01

    Patients with a history of beta-lactam antibiotic allergy are often admitted to the hospital with severe or life-threatening infections requiring beta-lactam antibiotics. Strict avoidance of beta lactams to such patients may prevent them from getting adequate coverage and can lead to an increase in the use of alternative antibiotics, which can predispose to antibiotic resistance. Past studies revealed a lower incidence of pen allergy then patients' histories suggest. Fortunately today, there are three options for patients presenting with a history of beta-lactam allergy. Penicillin skin testing, beta-lactam challenge or beta-lactam desensitization. Recently Pre Pen has been FDA re-approved and when combined with Pen G is a valid way to determine if patients are able to tolerate beta-lactam antibiotic. When these agents are not available one must decide about desensitization or challenge. When a patient has a positive penicillin skin test, desensitization or beta-lactam avoidance are the only options. This paper reviews the safety of beta-lactam desensitization. To perform a chart review on patients desensitised with beta lactam to determine if desensitizations can be performed safely without minimal complications. A retrospective chart review was performed on allergy and immunology inpatient consultations for beta-lactam desensitization between September 2003 and August 2006 at the Cedars-Sinai Medical Centre in Los Angeles. Patient data and outcomes of desensitization were analysed. A total of 13 intravenous desensitizations were performed on 12 patients. The patients consisted of eight females and four males with an average age of 65 years. Age range was 36-92 years old. All 13 intravenous desensitizations were completed without complications. No patient required a slower rate of desensitization or discontinuance of the desensitization. Patients were able to tolerate the initial therapeutic dose of their beta-lactam antibiotic and were then able to complete full

  14. Intravenous desensitization to beta-lactam antibiotics.

    PubMed

    Borish, L; Tamir, R; Rosenwasser, L J

    1987-09-01

    Patients allergic to penicillin (PCN) often require treatment with beta-lactam antibiotics for life-threatening bacterial infections. In this article, we review our experience with rapid intravenous desensitization for patients who gave a history of PCN allergy and who had hypersensitivity demonstrated by skin tests. Skin testing was performed with both prick and intradermal techniques and with the recommended antibiotic as well as PCN G, penicilloyl polylysine, and a minor determinant mixture. Patients were transferred to the intensive care unit, and desensitization was performed with a buret technique that required minimal preparation and was easily applied to any antibiotic. Fifteen desensitizations in 12 patients were associated with no immediate reactions. One patient developed a delayed reaction consisting of a pruritic rash and angioedema. A second patient developed a more serious delayed serum sickness-like illness with fever, rash, eosinophilia, abnormal liver function tests, and urinary abnormalities. These reactions did not necessitate stopping the antibiotic, although the latter patient required corticosteroids to suppress his symptoms. Rapid intravenous desensitization is a rapid, safe, and effective technique for patients demonstrating hypersensitivity to beta-lactam antibiotics who require therapy with these medications.

  15. Evolutionary ecology of beta-lactam gene clusters in animals.

    PubMed

    Suring, Wouter; Meusemann, Karen; Blanke, Alexander; Mariën, Janine; Schol, Tim; Agamennone, Valeria; Faddeeva-Vakhrusheva, Anna; Berg, Matty P; Brouwer, Abraham; van Straalen, Nico M; Roelofs, Dick

    2017-06-01

    Beta-lactam biosynthesis was thought to occur only in fungi and bacteria, but we recently reported the presence of isopenicillin N synthase in a soil-dwelling animal, Folsomia candida. However, it has remained unclear whether this gene is part of a larger beta-lactam biosynthesis pathway and how widespread the occurrence of penicillin biosynthesis is among animals. Here, we analysed the distribution of beta-lactam biosynthesis genes throughout the animal kingdom and identified a beta-lactam gene cluster in the genome of F. candida (Collembola), consisting of isopenicillin N synthase (IPNS), δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS), and two cephamycin C genes (cmcI and cmcJ) on a genomic scaffold of 0.76 Mb. All genes are transcriptionally active and are inducible by stress (heat shock). A beta-lactam compound was detected in vivo using an ELISA beta-lactam assay. The gene cluster also contains an ABC transporter which is coregulated with IPNS and ACVS after heat shock. Furthermore, we show that different combinations of beta-lactam biosynthesis genes are present in over 60% of springtail families, but they are absent from genome- and transcript libraries of other animals including close relatives of springtails (Protura, Diplura and insects). The presence of beta-lactam genes is strongly correlated with an euedaphic (soil-living) lifestyle. Beta-lactam genes IPNS and ACVS each form a phylogenetic clade in between bacteria and fungi, while cmcI and cmcJ genes cluster within bacteria. This suggests a single horizontal gene transfer event most probably from a bacterial host, followed by differential loss in more recently evolving species. © 2017 John Wiley & Sons Ltd.

  16. The antioxidant effect of derivatives pyroglutamic lactam

    SciTech Connect

    Rohadi, Atisya; Lazim, Azwani Mat; Hasbullah, Siti Aishah

    2013-11-27

    Diphenylpicrylhydrazyl (DPPH) is widely used for quickly accessing the ability of polyphenols to transfer labile H atoms to radicals. The antioxidant activity of all the synthesized compounds was screened by DPPH method. Compound (4) showed 54% antioxidant potential while all other compounds were found to have moderate to have moderate to mild antioxidant activity ranging from 47–52%. Pyroglutamic lactams have been synthesized stereoselectively in racemic form from levulinic acid as bifunctional adduct using convertible isocyanide in one-pot Ugi 4-center-3-component condensation reaction (U-4C-3CR). The product formed provides biologically interesting products in excellent yields in a short reaction time. The structures of the synthesized compounds were elucidated using spectroscopic data and elemental analysis.

  17. The antioxidant effect of derivatives pyroglutamic lactam

    NASA Astrophysics Data System (ADS)

    Rohadi, Atisya; Lazim, Azwani Mat; Hasbullah, Siti Aishah

    2013-11-01

    Diphenylpicrylhydrazyl (DPPH) is widely used for quickly accessing the ability of polyphenols to transfer labile H atoms to radicals. The antioxidant activity of all the synthesized compounds was screened by DPPH method. Compound (4) showed 54% antioxidant potential while all other compounds were found to have moderate to have moderate to mild antioxidant activity ranging from 47-52%. Pyroglutamic lactams have been synthesized stereoselectively in racemic form from levulinic acid as bifunctional adduct using convertible isocyanide in one-pot Ugi 4-center-3-component condensation reaction (U-4C-3CR). The product formed provides biologically interesting products in excellent yields in a short reaction time. The structures of the synthesized compounds were elucidated using spectroscopic data and elemental analysis.

  18. Recommendations for the management of beta-lactam intolerance.

    PubMed

    Macy, Eric; Ngor, Eunis

    2014-08-01

    Beta-lactam intolerance, most of which is not IgE or even immunologically mediated even though it is commonly called an "allergy," can be safely managed using the following seven steps: 1. Avoid testing, re-challenging, or desensitizing individuals with histories of beta-lactam associated toxic epidermal necrolysis, Stevens-Johnson syndrome, drug reaction with eosinophilia and systemic symptoms syndrome, severe hepatitis, interstitial nephritis, or hemolytic anemia. 2. Avoid unnecessary antibiotic use, especially in the setting of viral infections. 3. Expect new intolerances to be reported after 0.5 to 4% of all antibiotic utilizations, dependent on gender and the specific antibiotic used. 4. Expect a higher incidence of new intolerances in individuals with three or more medication intolerances already noted in their medical records. 5. For individuals with an appropriate penicillin class antibiotic intolerance based on a history of anaphylaxis, urticaria, macular papular rashes, unknown symptoms, or symptoms not excluded in step one, proceed with penicillin skin testing. Skin test with penicilloyl-poly-lysine and native penicillin. If skin test is negative, proceed with an oral amoxicillin challenge. If skin test and oral challenge are negative, penicillin class antibiotics may be used. If skin test or oral challenge is positive, avoid penicillin class antibiotics. If skin test or oral challenge is positive, non-penicillin-beta-lactams may be used, unless there is a history of intolerance to a specific non-penicillin-beta-lactam, then avoid that specific non-penicillin-beta-lactam. If there is life-threatening infection that can only be treated with a penicillin class antibiotic, proceed with oral penicillin desensitization prior to any oral or parenteral penicillin use. 6. For individuals with an appropriate non-penicillin-beta-lactam intolerance, avoid re-exposure to the beta-lactam implicated. An alternative beta-lactam may be used, ideally with different side

  19. Interactions of beta-lactam antibiotics and antineoplastic agents.

    PubMed Central

    Ueda, Y; Saito, A; Fukuoka, Y; Yamashiro, Y; Ikeda, Y; Taki, H; Yasuda, T; Saikawa, I

    1983-01-01

    The in vitro interactions of four beta-lactam antibiotics and five antineoplastic agents were examined with 100 clinically isolated strains of four species of gram-negative bacilli. Generally, by the checkerboard dilution method, beta-lactam antibiotics, when tested in combination with mitomycin C, bleomycin, or 5-fluorouracil, showed synergistic action, whereas when tested in combination with carboquone, they showed antagonistic action. Almost no combinations of adriamycin showed the interactions. Among beta-lactam antibiotics, piperacillin was more frequently synergistic than cefoperazone, cefazolin, or carbenicillin when tested in combination with each antineoplastic agent against various species. PMID:6405686

  20. Short and efficient synthesis of fluorinated δ-lactams.

    PubMed

    Cogswell, Thomas J; Donald, Craig S; Long, De-Liang; Marquez, Rodolfo

    2015-01-21

    The diastereoselective synthesis of fluorinated δ-lactams has been achieved through an efficient five step process. The route can tolerate a range of functionalities, and provides a quick route for the generation of new fluorinated medicinal building blocks.

  1. Recent Approaches Toward Solid Phase Synthesis of β-Lactams

    NASA Astrophysics Data System (ADS)

    Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb

    Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.

  2. Ni-Catalyzed Enantioselective C-Acylation of α-Substituted Lactams.

    PubMed

    Hayashi, Masaki; Bachman, Shoshana; Hashimoto, Satoshi; Eichman, Chad C; Stoltz, Brian M

    2016-07-27

    A new strategy for catalytic enantioselective C-acylation to generate α-quaternary-substituted lactams is reported. Ni-catalyzed three-component coupling of lactam enolates, benzonitriles, and aryl halides produces β-imino lactams that then afford β-keto lactams by acid hydrolysis. Use of a readily available Mandyphos-type ligand and addition of LiBr enable the construction of quaternary stereocenters on α-substituted lactams to form β-keto lactams in up to 94% ee.

  3. Cross-Reactivity among Beta-Lactams.

    PubMed

    Romano, Antonino; Gaeta, Francesco; Arribas Poves, Maria Francisca; Valluzzi, Rocco Luigi

    2016-03-01

    Penicillins and cephalosporins are the major classes of beta-lactam (BL) antibiotics in use today and one of the most frequent causes of hypersensitivity reactions to drugs. Monobactams, carbapenems, oxacephems, and beta-lactamase inhibitors constitute the four minor classes of BLs. This review takes into account mainly the prospective studies which evaluated cross-reactivity among BLs in subjects with a well-demonstrated hypersensitivity to a certain class of BLs by performing allergy tests with alternative BLs and, in case of negative results, administering them. In subjects with either IgE-mediated or T-cell-mediated hypersensitivity, cross-reactivity among BLs, particularly among penicillins and among cephalosporins, as well as between penicillins and cephalosporins, seems to be mainly related to structural similarities among their side-chain determinants. Specifically, in penicillin-allergic subjects, cross-reactivity between penicillins and cephalosporins may exceed 30% when they are administered cephalosporins with identical side chains to those of responsible penicillins. In these subjects, a few prospective studies have demonstrated a rate of cross-reactivity between penicillins and both carbapenems and aztreonam lower than 1%. With regard to subjects with an IgE-mediated hypersensitivity to cephalosporins, in a single study, about 25% of the 98 subjects with such hypersensitivity had positive results to penicillins, 3% to aztreonam, 2% to imipenem/cilastatin, and 1% to meropenem. The cross-reactivity related to the selective recognition of the BL ring by IgE or T lymphocytes, which entails positive responses to all BLs tested, appears to be exceptional. Some studies concerning cross-reactivity among BLs have found patterns of allergy-test positivity which cannot be explained by either the common BL ring or by similar or identical side chains, thus indicating the possibility of coexisting sensitivities to different BLs because of prior exposures to them.

  4. Penicillin and beta-lactam allergy: epidemiology and diagnosis.

    PubMed

    Macy, Eric

    2014-11-01

    Penicillin is the most common beta-lactam antibiotic allergy and the most common drug class allergy, reported in about 8% of individuals using health care in the USA. Only about 1% of individuals using health care in the USA have a cephalosporin allergy noted in their medical record, and other specific non-penicillin, non-cephalosporin beta-lactam allergies are even rarer. Most reported penicillin allergy is not associated with clinically significant IgE-mediated reactions after penicillin rechallenge. Un-verified penicillin allergy is a significant and growing public health problem. Clinically significant IgE-mediated penicillin allergy can be safely confirmed or refuted using skin testing with penicilloyl-poly-lysine and native penicillin G and, if skin test is negative, an oral amoxicillin challenge. Acute tolerance of an oral therapeutic dose of a penicillin class antibiotic is the current gold standard test for a lack of clinically significant IgE-mediated penicillin allergy. Cephalosporins and other non-penicillin beta-lactams are widely, safely, and appropriately used in individuals, even with confirmed penicillin allergy. There is little, if any, clinically significant immunologic cross-reactivity between penicillins and other beta-lactams. Routine cephalosporin skin testing should be restricted to research settings. It is rarely needed clinically to safely manage patients and has unclear predictive value at this time. The use of alternative cephalosporins, with different side chains, is acceptable in the setting of a specific cephalosporin allergy. Carbapenems and monobactams are also safely used in individuals with confirmed penicillin allergy. A certain predictable, but low, rate of adverse reactions will occur with all beta-lactam antibiotic use both pre- and post-beta-lactam allergy evaluations.

  5. Consequences of avoiding β-lactams in patients with β-lactam allergies.

    PubMed

    Jeffres, Meghan N; Narayanan, Prasanna P; Shuster, Jerrica E; Schramm, Garrett E

    2016-04-01

    The choice of empiric antibiotics for the treatment of gram-negative bacilli (GNB) bloodstream infections (BSIs) in patients presenting with a β-lactam (BL) allergy is often a difficult decision given that these agents are first-line treatment in many guidelines. We sought to compare rates of clinical failure between patients with a history of BL allergy who received either a BL or a non-β-lactam (NBL). Adult patients with a past medical history of BL allergy and receipt of antibiotics for treatment of a GNB BSI were included from 3 academic medical centers. Treatment groups were classified as BL or NBL groups based on the empiric antibiotics received. Clinical failure was assessed 72 to 96 hours after initiation of empiric antibiotics. Hypersensitivity reactions during receipt of antibiotic therapy for the index BSI were recorded. A total of 552 patients were included for analysis: 433 patients in the BL group and 119 patients in the NBL group. Clinical failure was higher in the NBL group compared with the BL group (38.7% vs 27.4%, P = .030). The most common cause of clinical failure was a temperature of greater than 38.0°C 72 to 96 hours after receipt of empiric antibiotics (NBL group: 22.7% vs BL group: 13.9%, P = .016). Hypersensitivity occurred in 16 (2.9%) of 552 patients. Thirteen (2.5%) of 552 patients experiencing hypersensitivity reactions were exposed to a BL during treatment for GNB BSI. Among patients with a BL allergy, use of BL antibiotics is associated with a lower rate of clinical failure. The low rate of hypersensitivity provides further evidence about the risk of cross-reactivity between BL classes. These results support the practice of using a BL from an alternative class for patients in need of gram-negative antibiotic coverage. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Synthesis of spirocyclic carbazole- and acridine-lactams.

    PubMed

    Würdemann, Martina; Christoffers, Jens

    2010-04-21

    Spirocyclic carbazole- and acridine-lactams were prepared by Fischer-indole or Friedländer-quinoline synthesis starting from spirocyclic ketones with a lactam ring. All annulation products were obtained as mixtures of separable regioisomers, which differ only in the position of one methyl group. The starting materials were prepared from 2-pyrrolidone and 2-piperidone by a sequence of protection (by N-allylation), alpha-acylation, iron-catalyzed Michael reaction followed by Robinson-annulation, palladium-catalyzed N-deprotection and catalytic hydrogenation. The overall yields of this six-step sequence are 13 and 17%, respectively, and the racemic ketones are obtained as single diastereoisomers.

  7. Management of allergy to penicillins and other beta-lactams.

    PubMed

    Mirakian, R; Leech, S C; Krishna, M T; Richter, A G; Huber, P A J; Farooque, S; Khan, N; Pirmohamed, M; Clark, A T; Nasser, S M

    2015-02-01

    The Standards of Care Committee of the British Society for Allergy and Clinical Immunology (BSACI) and an expert panel have prepared this guidance for the management of immediate and non-immediate allergic reactions to penicillins and other beta-lactams. The guideline is intended for UK specialists in both adult and paediatric allergy and for other clinicians practising allergy in secondary and tertiary care. The recommendations are evidence based, but where evidence is lacking, the panel reached consensus. During the development of the guideline, all BSACI members were consulted using a Web-based process and all comments carefully considered. Included in the guideline are epidemiology of allergic reactions to beta-lactams, molecular structure, formulations available in the UK and a description of known beta-lactam antigenic determinants. Sections on the value and limitations of clinical history, skin testing and laboratory investigations for both penicillins and cephalosporins are included. Cross-reactivity between penicillins and cephalosporins is discussed in detail. Recommendations on oral provocation and desensitization procedures have been made. Guidance for beta-lactam allergy in children is given in a separate section. An algorithm to help the clinician in the diagnosis of patients with a history of penicillin allergy has also been included.

  8. Enantioselective synthesis of alkaloids from phenylglycinol-derived lactams.

    PubMed

    Amat, Mercedes; Llor, Núria; Griera, Rosa; Pérez, Maria; Bosch, Joan

    2011-04-01

    This review is focused on recent synthetic achievements and ongoing work in our laboratory using phenylglycinol-derived oxazolopiperidone lactams as starting materials for the enantioselective synthesis of piperidine-containing alkaloids: madangamines, 2,5-disubstituted decahydroquinoline and 1-substituted tetrahydroisoquinoline alkaloids, the indole alkaloids 20S- and 20R-dihydrocleavamine and quebrachamine, and indole alkaloids of the uleine and silicine groups.

  9. Correlation analysis of gene polymorphisms and β-lactam allergy*

    PubMed Central

    Li, Jing; Liu, Xin-yue; Li, Lin-jing; You, Chong-ge; Shi, Lei; Zhang, Shang-di; Liu, Qian; Wang, Jun; Liu, Ze-jing; Lv, Ting-hong

    2015-01-01

    A total of 64 patients with β-lactam allergy and 30 control subjects were enrolled in a case-control study. This study is aimed to analyze the relationship between β-lactam allergy and 10 single nucleotide polymorphisms (SNPs) in interleukin-10 (IL-10), IL-13, IL-4Rα, high-affinity immunoglobulin E-receptor β chain (FcεRIβ), interferon γ receptor 2 (IFNGR2), and CYP3A4, and within the Han Chinese population of Northwest China. Genotyping for the SNPs was conducted using the Sequenom MassARRAY®platform. SPSS 17.0 was employed to analyze the statistical data and SHEsis was used to perform the haplotype reconstruction and analyze linkage disequilibrium of SNPs of IL-10 and IL-13. The results showed that the genotype distribution of CYP3A4 rs2242480/CT differed significantly between case and control groups of males (P=0.022; odds ratio (OR)=0.167, 95% confidence interval (CI): 0.032–0.867). Further analysis showed that CCA, CCG, and TAA haplotypes of IL-10 had no significant correlation in patients with β-lactam allergy. The correlation between CCT and CAC haplotypes of IL-13 and β-lactam allergy needs to be further studied. The analysis did not reveal any differences in the distribution of others gene polymorphisms between cases and controls. PMID:26160721

  10. Spirocyclic β-Lactams: Synthesis and Biological Evaluation of Novel Heterocycles

    NASA Astrophysics Data System (ADS)

    Bari, Shamsher S.; Bhalla, Aman

    β-Lactam rings containing compounds are a group of antibiotics of unparalleled importance in chemotherapy. Considerable effort has been reported in the development of novel, more effective β-lactam compounds as well as their biological evaluation. This article reviews the progress made in the stereoselective synthesis of spiro-β-lactams, a unique class of heterocycles, their biological evaluation, and their applications in various related fields. The introductory paragraph highlights the significance of the β-lactam chemistry and is followed by an overview of monocyclic-, bicyclic-, and tricyclic-β-lactams. The other sections of the article deal with the stereoselective synthesis and biological evaluation of spiro-β-lactams, including their use as synthetic intermediates for β-turn mimics and β-turn nucleators. The potential of spiro-β-lactams as cholesterol absorption inhibitors, β-lactamase inhibitors, and antiviral, antibacterial, and antimicrobial agents has also been described.

  11. Lower mortality among patients with community-acquired pneumonia treated with a macrolide plus a beta-lactam agent versus a beta-lactam agent alone.

    PubMed

    García Vázquez, E; Mensa, J; Martínez, J A; Marcos, M A; Puig, J; Ortega, M; Torres, A

    2005-03-01

    A cohort of 1,391 patients with community-acquired pneumonia of unknown etiology, atypical pneumonia, Legionella pneumophila pneumonia, viral pneumonia, or pneumococcal pneumonia was studied according to a standard protocol to analyse whether the addition of a macrolide to beta-lactam empirical treatment decreases mortality rates. Patients admitted to the intensive care unit were excluded. Severity was assessed using the PORT score. An etiological diagnosis was achieved in 498 (35.8%) patients (292 infections due to Streptococcus pneumoniae). Treatment was chosen by the attending physician according to his/her own criteria: beta-lactam agent in 270 and beta-lactam agent plus a macrolide in 918 cases. The mortality rate was 13.3% in the group treated with a beta-lactam agent alone and 6.9% in the group treated with a beta-lactam agent plus a macrolide (p=0.001). The percentage of PORT-group V patients was 32.6% in the group treated with a beta-lactam agent alone compared to 25.7% in the group who received a beta-lactam agent plus a macrolide (p=0.02). After controlling for PORT score, the odds of fatal outcome was two times higher in patients treated with a beta-lactam agent alone than in those treated with a beta-lactam agent plus a macrolide (adjusted OR = 2, 95%CI 1.24-3.23). The results suggest that the addition of a macrolide to an initial beta-lactam-based antibiotic regimen is associated with lower mortality in patients with community-acquired pneumonia, independent of severity of infection, thus supporting the recommendation of a beta-lactam-agent plus a macrolide as empirical therapy.

  12. Novel and Recent Synthesis and Applications of β-Lactams

    NASA Astrophysics Data System (ADS)

    Troisi, Luigino; Granito, Catia; Pindinelli, Emanuela

    In this chapter, a comprehensive overview of the most significant and interesting contributions published from 2000 until now, concerning the preparation of novel β-lactam structures is presented. Among the different synthetic strategies available, either novel or already known but efficient and versatile methodologies are covered. The simple modifications of one or more substituents linked to the nitrogen N-1, the C-3, and the C-4 carbon atoms of the β-lactam nucleus were considered as an alternative synthetic protocol of more complex and polyfunctionalized molecules. Indeed, it is well known and extensively reviewed that the biological activity of this strained four-membered heterocycle is strictly dependent on the nature of the substituent groups that affect the reactivity towards the molecular active sites, increasing or lowering the possibility of interaction with the substrates. Finally, a synthetic survey of the most significant biological and pharmacological applications of the 2-azetidinones is reported.

  13. Modulating the hydration behaviour of calcium chloride by lactam complexation.

    PubMed

    Perrin, Andrea; Musa, Osama M; Steed, Jonathan W

    2016-07-26

    Complexation of calcium chloride with bis(lactam) ligand L1 allows the formation of both an unstable anhydrous complex, an aqua complex {[Ca2(μ-L1)2(H2O)9]Cl4]}n (1) and a related hydrate incorporating additional lattice water of crystallization {[Ca(μ-L1)(H2O)5]Cl2·H2O}n (2). Related mono(lactam) L2 does not form aqua complexes but the anhydrous complex {[CaCl2(μ-L2)2]}n (3), is highly deliquescent. An unusual ethanol solvate is also reported {[CaCl2(L2)(EtOH)]}n (4).

  14. Convergent biosynthetic pathways to β-lactam antibiotics

    PubMed Central

    Townsend, Craig A.

    2016-01-01

    Five naturally-occurring β-lactams have inspired a class of drugs that constitute >60% of the antimicrobials used in human medicine. Their biosynthetic pathways reveal highly individualized synthetic strategies that yet converge on a common azetidinone ring assembled in structural contexts that confer selective binding and inhibition of D,D-transpeptidases that play essential roles in bacterial cell wall (peptidoglycan) biosynthesis. These enzymes belong to a single “clan” of evolutionarily distinct serine hydrolases whose active site geometry and mechanism of action is specifically matched by these antibiotics for inactivation that is kinetically competitive with their native function. Unusual enzyme-mediated reactions and catalytic multitasking in these pathways are discussed with particular attention to the diverse ways the β-lactam itself is generated, and more broadly how the intrinsic reactivity of this core structural element is modulated in natural systems through the introduction of ring strain and electronic effects. PMID:27693891

  15. Cycloreversion of β-lactams via photoinduced electron transfer.

    PubMed

    Pérez-Ruiz, Raúl; Sáez, Jose A; Jiménez, M Consuelo; Miranda, Miguel A

    2014-11-14

    The radical anions of β-lactams, photogenerated in the presence of DABCO as an electron donor, undergo cycloreversion via N-C4 bond cleavage, back electron transfer and final C2-C3 bond cleavage, leading to olefins. The involved intermediates are 1,4-radical anions and 1,4-biradicals. The experimental observations are consistent with the results of DFT calculations.

  16. A New Pathway for Protein Haptenation by β-Lactams.

    PubMed

    Pérez-Ruíz, Raúl; Lence, Emilio; Andreu, Inmaculada; Limones-Herrero, Daniel; González-Bello, Concepción; Miranda, Miguel A; Jiménez, M Consuelo

    2017-10-09

    The covalent binding of β-lactams to proteins upon photochemical activation has been demonstrated by using an integrated approach that combines photochemical, proteomic and computational studies, selecting human serum albumin (HSA) as a target protein and ezetimibe (1) as a probe. The results have revealed a novel protein haptenation pathway for this family of drugs that is an alternative to the known nucleophilic ring opening of β-lactams by the free amino group of lysine residues. Thus, photochemical ring splitting of the β-lactam ring, following a formal retro-Staudinger reaction, gives a highly reactive ketene intermediate that is trapped by the neighbouring lysine residues, leading to an amide adduct. For the investigated 1/HSA system, covalent modification of residues Lys414 and Lys525, which are located in sub-domains IIIA and IIIB, respectively, occurs. The observed photobinding may constitute the key step in the sequence of events leading to photoallergy. Docking and molecular dynamics simulation studies provide an insight into the molecular basis of the selectivity of 1 for these HSA sub-domains and the covalent modification mechanism. Computational studies also reveal positive cooperative binding of sub-domain IIIB that explains the experimentally observed modification of Lys414, which is located in a barely accessible pocket (sub-domain IIIA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tolerance of Haemophilus influenzae to beta-lactam antibiotics.

    PubMed Central

    Bergeron, M G; Lavoie, G Y

    1985-01-01

    Two hundred clinical isolates of Haemophilus influenzae were tested for tolerance (MBC/MIC greater than or equal to 32) to ampicillin and cefotaxime by broth dilution tests. Of 200 strains, 9 were tolerant to ampicillin, and 10 were tolerant to cefotaxime. Tolerant organisms were identified in both systemic and nonsystemic infections and among different biotypes and serotypes of H. influenzae. These tolerant isolates were compared with nontolerant isolates by broth dilution and killing curves with log-phase and stationary-phase inocula. Both tolerant and nontolerant bacteria in log phase were killed more rapidly by antibiotics than bacteria in stationary-phase growth. When tested against 11 different beta-lactams, several patterns of tolerance were observed. Six of the ten strains were tolerant to aztreonam, four were tolerant to cefuroxime, three were tolerant to cefamandole, and two were tolerant to cefoxitin. Strain H130 was tolerant to all beta-lactam antibiotics studied. None of the 10 tolerant H. influenzae isolates were tolerant to chloramphenicol, rifampin, tobramycin, ciprofloxacin, enoxacin, and trimethoprim-sulfamethoxazole. Although the clinical significance of tolerance is not determined, this study suggests that the bactericidal activity (MBC) of beta-lactam antibiotics against H. influenzae should be determined in cases of severe infections in which clinical response is slow or unsatisfactory. PMID:3879660

  18. β-lactam antibiotic concentrations during continuous renal replacement therapy

    PubMed Central

    2014-01-01

    Introduction The use of standard doses of β-lactam antibiotics during continuous renal replacement therapy (CRRT) may result in inadequate serum concentrations. The aim of this study was to evaluate the adequacy of unadjusted drug regimens (i.e., similar to those used in patients with normal renal function) in patients treated with CRRT and the influence of CRRT intensity on drug clearance. Methods We reviewed data from 50 consecutive adult patients admitted to our Department of Intensive Care in whom routine therapeutic drug monitoring (TDM) of broad-spectrum β-lactam antibiotics (ceftazidime or cefepime, CEF; piperacillin/tazobactam; TZP; meropenem, MEM) was performed using unadjusted β-lactam antibiotics regimens (CEF = 2 g q8h; TZP = 4 g q6h; MEM = 1 g q8h). Serum drug concentrations were measured twice during the elimination phase by high-performance liquid chromatography (HPLC-UV). We considered therapy was adequate when serum drug concentrations were between 4 and 8 times the minimal inhibitory concentration (MIC) of Pseudomonas aeruginosa during optimal periods of time for each drug (≥70% for CEF; ≥ 50% for TZP; ≥ 40% for MEM). Therapy was considered as early (ET) or late (LT) phase if TDM was performed within 48 hours of antibiotic initiation or later on, respectively. Results We collected 73 serum samples from 50 patients (age 58 ± 13 years; Acute Physiology and Chronic Health Evaluation II (APACHE II) score on admission 21 (17–25)), 35 during ET and 38 during LT. Drug concentrations were above 4 times the MIC in 63 (90%), but above 8 times the MIC in 39 (53%) samples. The proportions of patients with adequate drug concentrations during ET and LT were quite similar. We found a weak but significant correlation between β-lactam antibiotics clearance and CRRT intensity. Conclusions In septic patients undergoing CRRT, doses of β-lactam antibiotics similar to those given to patients with normal renal function achieved drug

  19. Secondary metabolism in simulated microgravity: beta-lactam production by Streptomyces clavuligerus

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Koenig, D. W.; Demain, A. L.

    1997-01-01

    Rotating bioreactors designed at NASA's Johnson Space Center were used to simulate a microgravity environment in which to study secondary metabolism. The system examined was beta-lactam antibiotic production by Streptomyces clavuligerus. Both growth and beta-lactam production occurred in simulated microgravity. Stimulatory effects of phosphate and L-lysine, previously detected in normal gravity, also occurred in simulated microgravity. The degree of beta-lactam antibiotic production was markedly inhibited by simulated microgravity.

  20. Secondary metabolism in simulated microgravity: beta-lactam production by Streptomyces clavuligerus

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Koenig, D. W.; Demain, A. L.

    1997-01-01

    Rotating bioreactors designed at NASA's Johnson Space Center were used to simulate a microgravity environment in which to study secondary metabolism. The system examined was beta-lactam antibiotic production by Streptomyces clavuligerus. Both growth and beta-lactam production occurred in simulated microgravity. Stimulatory effects of phosphate and L-lysine, previously detected in normal gravity, also occurred in simulated microgravity. The degree of beta-lactam antibiotic production was markedly inhibited by simulated microgravity.

  1. Palladium-catalyzed oxidative carbonylation of N-allylamines for the synthesis of β-lactams.

    PubMed

    Li, Wu; Liu, Chao; Zhang, Heng; Ye, Keyin; Zhang, Guanghui; Zhang, Wangzheng; Duan, Zhengli; You, Shuli; Lei, Aiwen

    2014-02-24

    β-Lactam scaffolds are considered to be ideal building blocks for the synthesis of nitrogen-containing compounds. A new palladium-catalyzed oxidative carbonylation of N-allylamines for the synthesis of α-methylene-β-lactams is reported. DFT calculations suggest that the formation of β-lactams via a four-membered-ring transition state is favorable. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sesquiterpene farnesol contributes to increased susceptibility to β-lactams in strains of Burkholderia pseudomallei.

    PubMed

    Brilhante, R S N; Valente, L G A; Rocha, M F G; Bandeira, T J P G; Cordeiro, R A; Lima, R A C; Leite, J J G; Ribeiro, J F; Pereira, J F; Castelo-Branco, D S C M; Monteiro, A J; Sidrim, J J C

    2012-04-01

    This study aimed to evaluate the in vitro combination of farnesol and β-lactams against Burkholderia pseudomallei. A total of 12 β-lactamase-positive strains were tested according to CLSI standards. All strains were inhibited by farnesol, with MICs ranging from 75 to 150 μM. The combination of this compound with β-lactams resulted in statistically significant β-lactam MIC reduction (P ≤ 0.05). This study provides new perspectives for the use of farnesol combined with β-lactam antibiotics against strains of B. pseudomallei.

  3. Electrostatic and structural similarity of classical and non-classical lactam compounds

    NASA Astrophysics Data System (ADS)

    Coll, Miguel; Frau, Juan; Vilanova, Bartolomé; Donoso, Josefa; Muñoz, Francisco

    2001-09-01

    Various electrostatic and structural parameters for a series of classical and non-classical β-lactams were determined and compared in order to ascertain whether some specific β-lactams possess antibacterial or β-lactamase inhibitory properties. The electrostatic parameters obtained, based on the Distributed Multipole Analysis (DMA) of high-quality wavefunctions for the studied structures, suggest that some non-classical β-lactams effectively inhibit the action of β-lactamases. As shown in this work, such electrostatic parameters provide much more reliable information about the antibacterial and inhibitory properties of β-lactams than do structural parameters.

  4. Positional scanning for peptide secondary structure by systematic solid-phase synthesis of amino lactam peptides.

    PubMed

    Jamieson, Andrew G; Boutard, Nicolas; Beauregard, Kim; Bodas, Mandar S; Ong, Huy; Quiniou, Christiane; Chemtob, Sylvain; Lubell, William D

    2009-06-10

    Incorporation of amino lactams into biologically active peptides has been commonly used to restrict conformational mobility, enhance selectivity, and increase potency. A solid-phase method using a Fmoc-protection strategy has been developed for the systematic synthesis of peptides containing configurationally defined alpha- and beta-amino gamma-lactams. N-Alkylation of N-silyl peptides with five- and six-member cyclic sulfamidates 9 and 8 minimized bis-alkylation and provided N-alkyl peptides, which underwent lactam annulation under microwave heating. Employing this solid-phase protocol on the growth hormone secretagogue GHRP-6, as well as on the allosteric modulator of the IL-1 receptor 101.10, has furnished 16 lactam derivatives and validated the effectiveness of this approach on peptides bearing aliphatic, aromatic, branched, charged, and heteroatomic side chains. The binding affinity IC(50) values of the GHRP-6 lactam analogues on both the GHS-R1a and CD36 receptors are reported as well as inhibition of thymocyte proliferation measurements for the 101.10 lactam analogues. In these cases, lactam analogues were prepared exhibiting similar or improved properties compared with the parent peptide. Considering the potential for amino lactams to induce peptide turn conformations, the effective method described herein for their supported construction on growing peptides, and for the systematical amino lactam scan of peptides, has proven useful for the rapid identification of the secondary structure necessary for peptide biological activity.

  5. Synthesis of Chiral γ-Lactams via in Situ Elimination/Iridium-Catalyzed Asymmetric Hydrogenation of Racemic γ-Hydroxy γ-Lactams.

    PubMed

    Yuan, Qianjia; Liu, Delong; Zhang, Wanbin

    2017-04-07

    Chiral γ-lactams have been synthesized in excellent yields and enantioselectivities (up to 99% yield and 96% ee) from easily accessible racemic γ-hydroxy γ-lactams via an iridium-phosphoramidite catalyzed asymmetric hydrogenation. The reaction was designed based on insight into the reaction mechanism demonstrated in previous work and can be carried out at a reduced catalyst loading of 0.1 mol % on a gram scale. Several potential bioactive compounds can be synthesized from the reduced products. Mechanistic studies indicated that the reduced products were obtained via the hydrogenation of the N-acyliminium cations, generated from γ-hydroxy γ-lactams.

  6. γ-Lactam alkaloids from the flower buds of daylily.

    PubMed

    Matsumoto, Takahiro; Nakamura, Seikou; Nakashima, Souichi; Ohta, Tomoe; Yano, Mamiko; Tsujihata, Junichiro; Tsukioka, Junko; Ogawa, Keiko; Fukaya, Masashi; Yoshikawa, Masayuki; Matsuda, Hisashi

    2016-07-01

    Four new alkaloids, hemerocallisamines IV-VII, were isolated from the methanol extract of flower buds of daylily. The chemical structures of the new compounds were elucidated on the basis of chemical and physicochemical evidence. The absolute stereochemistry of the hemerocallisamines IV-VI was elucidated by the application of the modified Mosher's method, HPLC analysis, and optical rotation. In the present study, the isolated alkaloids significantly inhibited the aggregation of Aβ42 in vitro. This is the first report about bioactive alkaloids with a γ-lactam ring from daylily. In addition, isolated nucleosides showed accelerative effects on neurite outgrowth under the non-fasting condition.

  7. Synthesis of fluorinated β-aminophosphonates and γ-lactams.

    PubMed

    Alonso, Concepción; González, María; Fuertes, María; Rubiales, Gloria; Ezpeleta, Jose María; Palacios, Francisco

    2013-04-19

    The functionalized polyfluorophosphorylated 1-azadienes I have been prepared by a Wittig reaction of ethyl glyoxalate and perfluorophosphorylated conjugated phosphoranes, obtained by reaction of phosphazenes and fluorinated acetylenic phosphonates. Subsequent reduction of both carbon-carbon and carbon-nitrogen double bonds of these 1-azadienes I affords the fluorine-containing β-aminophosphonates II, with the syn β-aminophosphonate being obtained as the major diastereoisomer. Base-mediated cyclocondensation of a diastereomeric mixture of aminophosphonates II leads exclusively to a new type of functionalized trans-γ-lactams III in a diastereoselective way. A computational study has also been used to explain the observed diastereoselectivity of these reactions.

  8. Mechanisms of β-lactam killing and resistance in the context of Mycobacterium tuberculosis.

    PubMed

    Wivagg, Carl N; Bhattacharyya, Roby P; Hung, Deborah T

    2014-09-01

    β-Lactams are one of the most useful classes of antibiotics against many common bacterial pathogens. One exception is Mycobacterium tuberculosis. However, with increasing incidence of multidrug-resistant tuberculosis and a need for new agents to treat it, the use of β-lactams, specifically the combination of carbapenem and clavulanate, is now being revisited. With this attention, comes the need to better understand both the mechanisms of action of β-lactams against M. tuberculosis as well as possible mechanisms of resistance, within the context of what is known about the β-lactam action in other bacteria. M. tuberculosis has two major mechanisms of intrinsic resistance: a highly active β-lactamase and a poorly permeable outer membrane. Within the cell wall, β-lactams bind several enzymes with differing peptidoglycan-synthetic and -lytic functions. The inhibition of these enzymes may lead to cell death through several mechanisms, involving disruption of the balance of synthetic and lethal activities. Currently, all known means of resistance to the β-lactams rely on diminishing the proportion of peptidoglycan-synthetic proteins bound and inhibited by β-lactams, through either exclusion or destruction of the antibiotic, or through replacement or supplementation of target enzymes. In this review, we discuss possible mechanisms for β-lactam activity in M. tuberculosis and the means by which it may acquire resistance, within the context of what is known in other bacterial species.

  9. Selective trihydroxyazepane NagZ inhibitors increase sensitivity of Pseudomonas aeruginosa to β-lactams.

    PubMed

    Mondon, Martine; Hur, Soo; Vadlamani, Grishma; Rodrigues, Prerana; Tsybina, Polina; Oliver, Antonio; Mark, Brian L; Vocadlo, David J; Blériot, Yves

    2013-12-04

    AmpC β-lactamase confers resistance to β-lactam antibiotics in many Gram negative bacteria. Inducible expression of AmpC requires an N-acetylglucosaminidase termed NagZ. Here we describe the synthesis and characterization of hydroxyazepane inhibitors of NagZ. We find that these inhibitors enhance the susceptibility of clinically relevant Pseudomonas aeruginosa to β-lactams.

  10. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation.

    PubMed

    Zhang, Kejia; Zhou, Xinyan; Du, Penghui; Zhang, Tuqiao; Cai, Meiquan; Sun, Peizhe; Huang, Ching-Hua

    2017-10-15

    Peracetic acid (PAA) is a disinfection oxidant used in many industries including wastewater treatment. β-Lactams, a group of widely prescribed antibiotics, are frequently detected in wastewater effluents and surface waters. The reaction kinetics and transformation of seven β-lactams (cefalexin (CFX), cefadroxil (CFR), cefapirin (CFP), cephalothin (CFT), ampicillin (AMP), amoxicillin (AMX) and penicillin G (PG)) toward PAA were investigated to elucidate the behavior of β-lactams during PAA oxidation processes. The reaction follows second-order kinetics and is much faster at pH 5 and 7 than at pH 9 due to speciation of PAA. Reactivity to PAA follows the order of CFR ∼ CFX > AMP ∼ AMX > CFT ∼ CFP ∼ PG and is related to β-lactam's nucleophilicity. The thioether sulfur of β-lactams is attacked by PAA to generate sulfoxide products. Presence of the phenylglycinyl amino group on β-lactams can significantly influence electron distribution and the highest occupied molecular orbital (HOMO) location and energy in ways that enhance the reactivity to PAA. Reaction rate constants obtained in clean water matrix can be used to accurately model the decay of β-lactams by PAA in surface water matrix and only slightly overestimate the decay in wastewater matrix. Results of this study indicate that the oxidative transformation of β-lactams by PAA can be expected under appropriate wastewater treatment conditions. Copyright © 2017. Published by Elsevier Ltd.

  11. Discovery of Potent Carbonic Anhydrase and Acetylcholinesterase Inhibitors: 2-Aminoindan β-Lactam Derivatives

    PubMed Central

    Genç, Hayriye; Kalin, Ramazan; Köksal, Zeynep; Sadeghian, Nastaran; Kocyigit, Umit M.; Zengin, Mustafa; Gülçin, İlhami; Özdemir, Hasan

    2016-01-01

    β-Lactams are pharmacologically important compounds because of their various biological uses, including antibiotic and so on. β-Lactams were synthesized from benzylidene-inden derivatives and acetoxyacetyl chloride. The inhibitory effect of these compounds was examined for human carbonic anhydrase I and II (hCA I, and II) and acetylcholinesterase (AChE). The results reveal that β-lactams are inhibitors of hCA I, II and AChE. The Ki values of β-lactams (2a–k) were 0.44–6.29 nM against hCA I, 0.93–8.34 nM against hCA II, and 0.25–1.13 nM against AChE. Our findings indicate that β-lactams (2a–k) inhibit both carbonic anhydrases (CA) isoenzymes and AChE at low nanomolar concentrations. PMID:27775608

  12. Beta-lactam hypersensitivity and cross-reactivity.

    PubMed

    Terico, Adrienne T; Gallagher, Jason C

    2014-12-01

    Penicillin is the most frequently reported cause of drug allergy, and cross-reactivity of penicillins with other beta-lactam antibiotics is an area of debate. This review evaluates the available data on immunoglobulin E-mediated penicillin hypersensitivity and cross-reactivity with cephalosporin, carbapenem, and monobactam antibiotics. A MEDLINE search was conducted from 1950 to October 2013, and selected references from review articles were also evaluated. There is a wide variety in reported incidences of cross-reactivity between penicillins and cephalosporins or carbapenems, with early retrospective studies suggesting up to 41.7% and 47.4% cross-reactivity, respectively. Conversely, the use of monobactam antibiotics is frequently employed in the case of a penicillin allergy, as prescribers believe that there is no cross-reactivity between the 2 drug classes. More recent prospective studies suggest that the rates of cross-reactivity with cephalosporins and carbapenems are <5% and <1%, respectively. Similarities in penicillin and cephalosporin side chains may play a role in cross-reactivity between these classes. Cross-reactivity with monobactams is essentially negligible; however, there are some clinical data to support an interaction between ceftazidime and aztreonam, due to the similarity of their side chains. The data reviewed suggest that avoidance of other beta-lactams in patients with type 1 hypersensitivity to penicillins should be reconsidered.

  13. β-lactams against emerging 'superbugs': progress and pitfalls.

    PubMed

    Skalweit Helfand, Marion

    2008-07-01

    Bacterial resistance to antimicrobial agents is an ever-growing problem. So-called 'superbugs', such as multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa harboring multiple resistance determinants, including extended-spectrum β-lactamases, carbapenemases, efflux pumps and downregulated outer-membrane proteins or porins, are becoming more prevalent in hospital, intensive and long-term care settings. Enterobacteriaceae are also acquiring a myriad of β-lactamases, such as class A and D carbapenemases, and plasmid-borne class C cephalosporinases. Gram-positive superbugs, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate or heteroglycopeptide-intermediate S. aureus, vancomycin-resistant S. aureus and penicillin-resistant Streptococcus pneumoniae (PRSP), are problematic pathogens, both in the hospital and in the community (e.g., community-acquired MRSA and PRSP). β-lactam antibiotics remain among the most effective and safest anti-infectives in use, although their utility is being severely challenged by these superbugs. This review will discuss aspects of resistance seen in these pathogens and will review some of the newer β-lactam agents, both investigational and in clinical use, that target these superbugs.

  14. Substituted Lactam and Cyclic Azahemiacetals Modulate Pseudomonas aeruginosa Quorum Sensing

    PubMed Central

    Malladi, Venkata L. A.; Sobczak, Adam J.; Maricic, Natalie; Murugapiran, Senthil Kumar; Schneper, Lisa; Makemson, John; Mathee, Kalai; Wnuk, Stanislaw F.

    2011-01-01

    Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence that is critical for establishing infection. The most common QS signaling molecule used by Gram-negative bacteria are acylhomoserine lactones. The development of non-native acylhomoserine lactone (AHL) ligands has emerged as a promising new strategy to inhibit QS in Gram-negative bacteria. In this work, we have synthesized a set of optically pure γ-lactams and their reduced cyclic azahemiacetal analogues, bearing the additional alkylthiomethyl substituent, and evaluated their effect on the AHL-dependent Pseudomonas aeruginosa las and rhl QS pathways. The concentration of these ligands and the simple structural modification such as the length of the alkylthio substituent has notable effect on activity. The γ-lactam derivatives with nonylthio or dodecylthio chains acted as inhibitors of las signaling with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent was found to strongly inhibit both las and rhl signaling at higher concentrations while the propylthio analogue strongly stimulated the las QS system at lower concentrations. PMID:21855349

  15. Reliable determination of amidicity in acyclic amides and lactams.

    PubMed

    Glover, Stephen A; Rosser, Adam A

    2012-07-06

    Two independent computational methods have been used for determination of amide resonance stabilization and amidicities relative to N,N-dimethylacetamide for a wide range of acyclic and cyclic amides. The first method utilizes carbonyl substitution nitrogen atom replacement (COSNAR). The second, new approach involves determination of the difference in amide resonance between N,N-dimethylacetamide and the target amide using an isodesmic trans-amidation process and is calibrated relative to 1-aza-2-adamantanone with zero amidicity and N,N-dimethylacetamide with 100% amidicity. Results indicate excellent coherence between the methods, which must be regarded as more reliable than a recently reported approach to amidicities based upon enthalpies of hydrogenation. Data for acyclic planar and twisted amides are predictable on the basis of the degrees of pyramidalization at nitrogen and twisting about the C-N bonds. Monocyclic lactams are predicted to have amidicities at least as high as N,N-dimethylacetamide, and the β-lactam system is planar with greater amide resonance than that of N,N-dimethylacetamide. Bicyclic penam/em and cepham/em scaffolds lose some amidicity in line with the degree of strain-induced pyramidalization at the bridgehead nitrogen and twist about the amide bond, but the most puckered penem system still retains substantial amidicity equivalent to 73% that of N,N-dimethylacetamide.

  16. Augmented renal clearance and therapeutic monitoring of β-lactams.

    PubMed

    Udy, Andrew A; De Waele, Jan J; Lipman, Jeffrey

    2015-04-01

    Successful application of antibacterial therapy in the critically ill requires an appreciation of the complex interaction between the host, the causative pathogen and the chosen pharmaceutical. A pathophysiological change in the intensive care unit (ICU) patient challenging the 'one dose fits all' concept includes augmented renal clearance (ARC), defined as a creatinine clearance (CL(Cr)) of ≥130 mL/min. Ideally, CL(Cr) values should be obtained by a timed measured collection of urine, with plasma and urine creatinine levels. Increased renal clearance of antibiotics also occurs in the ICU patient and therefore β-lactam antibiotic exposure in the critically ill could easily lead to trough drug concentrations below therapeutic ranges. One way to document and alter drug levels is via therapeutic drug monitoring (TDM). The interactions of ARC and β-lactam TDM are further explored in this article in specific reference to a concomitant article in this issue of the journal. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. 76 FR 14024 - Draft Guidance for Industry on Non-Penicillin Beta-Lactam Risk Assessment: A CGMP Framework...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Non-Penicillin Beta-Lactam... guidance for industry entitled ``Non-Penicillin Beta-Lactam Risk Assessment: A CGMP Framework.'' This... non- penicillin beta-lactam antibiotics. The draft guidance is intended to assist manufacturers...

  18. Carbamoyl Radical-Mediated Synthesis and Semipinacol Rearrangement of β-Lactam Diols

    PubMed Central

    Betou, Marie; Male, Louise; Steed, Jonathan W; Grainger, Richard S

    2014-01-01

    In an approach to the biologically important 6-azabicyclo[3.2.1]octane ring system, the scope of the tandem 4-exo-trig carbamoyl radical cyclization—dithiocarbamate group transfer reaction to ring-fused β-lactams is evaluated. β-Lactams fused to five-, six-, and seven-membered rings are prepared in good to excellent yield, and with moderate to complete control at the newly formed dithiocarbamate stereocentre. No cyclization is observed with an additional methyl substituent on the terminus of the double bond. Elimination of the dithiocarbamate group gives α,β- or β,γ-unsaturated lactams depending on both the methodology employed (base-mediated or thermal) and the nature of the carbocycle fused to the β-lactam. Fused β-lactam diols, obtained from catalytic OsO4-mediated dihydroxylation of α,β-unsaturated β-lactams, undergo semipinacol rearrangement via the corresponding cyclic sulfite or phosphorane to give keto-bridged bicyclic amides by exclusive N-acyl group migration. A monocyclic β-lactam diol undergoes Appel reaction at a primary alcohol in preference to semipinacol rearrangement. Preliminary investigations into the chemo- and stereoselective manipulation of the two carbonyl groups present in a representative 7,8-dioxo-6-azabicyclo[3.2.1]octane rearrangement product are also reported. PMID:24711140

  19. Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.

    PubMed

    Chen, Xiu; Li, Yuhua; Zhang, Yan; Yang, Jianting; Bian, Liujiao

    2017-04-15

    TEM-1 beta-lactamases can accurately catalyze the hydrolysis of the beta-lactam rings in beta-lactam antibiotics, which make beta-lactam antibiotics lose its activity, and the prerequisite for the hydrolysis procedure in the binding interaction of TEM-1 beta-lactamases with beta-lactam antibiotics is the beta-lactam rings in beta-lactam antibiotics. Therefore, the binding of TEM-1 beta-lactamase to three beta-lactam antibiotics including penicillin G, cefalexin as well as cefoxitin was explored here by frontal affinity chromatography in combination with fluorescence spectra, adsorption and thermodynamic data in the temperature range of 278-288K under simulated physiological conditions. The results showed that all the binding of TEM-1 beta-lactamase to the three antibiotics were spontaneously exothermic processes with the binding constants of 8.718×10(3), 6.624×10(3) and 2.244×10(3) (mol/L), respectively at 288K. All the TEM-1 beta-lactamases were immobilized on the surface of the stationary phase in the mode of monolayer and there existed only one type of binding sites on them. Each TEM-1 beta-lactamase bound with only one beta-lactam antibiotic and hydrogen bond interaction and Van der Waals force were the main forces between them. This work provided an insight into the binding interactions between TEM-1 beta-lactamases and beta-lactam antibiotics, which may be beneficial for the designing and developing of new substrates resistant to TEM-1 beta-lactamases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Beta-lactam Antibiotics: From Antibiosis to Resistance and Bacteriology

    PubMed Central

    Kong, Kok-Fai; Schneper, Lisa; Mathee, Kalai

    2010-01-01

    SUMMARY This review focuses on the era of antibiosis that led to a better understanding of bacterial morphology, in particlar the cell wall component peptidoglycan. This is an effort to take readers on a tour de force from the concept of antibiosis, to the serepidity of antibiotics, evolution of beta-lactam development, and the molecular biology of antibiotic resistance. These areas of research have culminated in a deeper understanding of microbiology, particularly in the area of bacterial cell wall synthesis and recycling. In spite of this knowledge, which has enabled design of new even more effective therapeutics to combat bacterial infection and has provided new research tools, antibiotic resistance remains a worldwide health care problem. PMID:20041868

  1. Nitrogen metabolism in tabtoxinine-. beta. -lactam-tolerant oats

    SciTech Connect

    Knight, T.J.; Langston-Unkefer, P.J. New Mexico State Univ. Plant Genetic Engineering Lab., Las Cruces ); Sengupta-Gopalan, C. )

    1989-04-01

    Infestation of the rhizosphere of oat plants with Pseudomonas syringae pv. tabaci results in rapid death of normal oats. This is a consequence of the action of the bacterially delivered inhibitor of glutamine synthetase, tabtoxinine-{beta}-lactam (T{beta}L). Such infested plants contain no active glutamine synthetase. We have screened for a small population of oats that contain leaf glutamine synthetases that are insensitive to T{beta}L and which have increased leaf GS activity. The root GS is inactive. We have examined these plants' altered nitrogen metabolism and further characterized their novel glutamine synthetase using both biochemical and molecular biological approaches. This investigation has revealed a GS with unusual electrophoretic mobility by native PAGE.

  2. Immunological aspects of nonimmediate reactions to beta-lactam antibiotics.

    PubMed

    Rodilla, Esther Morena; González, Ignacio Dávila; Yges, Elena Laffond; Bellido, Francisco Javier Múñoz; Bara, María Teresa Gracia; Toledano, Félix Lorente

    2010-09-01

    beta-lactam antibiotics are the agents most frequently implied in immune drug adverse reactions. These can be classified as immediate or nonimmediate according to the time interval between the last drug administration and their onset. Mechanisms of immediate IgE-mediated reactions are widely studied and are therefore better understood. Nonimmediate reactions include a broad number of clinical entities like mild maculopapular exanthemas, the most common, and other less frequent but more severe reactions such as Stevens-Johnson syndrome, toxic epidermal necrolysis, acute exanthematic pustulosis or cytopenias. These nonimmediate reactions are mainly mediated by T cells but the precise underlying mechanisms are not well elucidated. This fact complicates the allergological evaluation of patients with this type of reaction and available tests have demonstrated poor sensitivity and specificity.

  3. Autophagy deficiency promotes beta-lactam production in Penicillium chrysogenum.

    PubMed

    Bartoszewska, Magdalena; Kiel, Jan A K W; Bovenberg, Roel A L; Veenhuis, Marten; van der Klei, Ida J

    2011-02-01

    We have investigated the significance of autophagy in the production of the β-lactam antibiotic penicillin (PEN) by the filamentous fungus Penicillium chrysogenum. In this fungus PEN production is compartmentalized in the cytosol and in peroxisomes. We demonstrate that under PEN-producing conditions significant amounts of cytosolic and peroxisomal proteins are degraded via autophagy. Morphological analysis, based on electron and fluorescence microscopy, revealed that this phenomenon might contribute to progressive deterioration of late subapical cells. We show that deletion of the P. chrysogenum ortholog of Saccharomyces cerevisiae serine-threonine kinase atg1 results in impairment of autophagy. In P. chrysogenum atg1 cells, a distinct delay in cell degeneration is observed relative to wild-type cells. This phenomenon is associated with an increase in the enzyme levels of the PEN biosynthetic pathway and enhanced production levels of this antibacterial compound.

  4. Is the addition of aminoglycosides to beta-lactams in cancer patients with febrile neutropenia needed?

    PubMed

    Contreras, Valeria; Sepúlveda, Sebastián; Heredia, Ana

    2016-02-24

    It is still controversial if the combined use of beta-lactam antibiotics and aminoglycosides has advantages over broad-spectrum beta-lactam monotherapy for the empirical treatment of cancer patients with febrile neutropenia. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified three systematic reviews including 14 pertinent randomized trials. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded the combination of beta-lactam antibiotics and aminoglycosides probably does not lead to a reduced mortality in febrile neutropenic cancer patients and it might increase nephrotoxicity.

  5. Synthesis of novel N-cyclopentenyl-lactams using the Aubé reaction

    PubMed Central

    Shinde, Madhuri V; Ople, Rohini S; Sangtani, Ekta; Gonnade, Rajesh

    2015-01-01

    Summary A novel and convenient method utilizing the Aubé reaction to access a new class of compounds that are similar to carbocyclic nucleosides is reported. The azido alcohol derived from Vince lactam undergoes the Aubé reaction with various cyclic ketones to give cyclopentenyl-substituted lactams. Upon dihydroxylation, this affords the N-cyclopentenyl-lactam compounds in racemic form. Given the numerous uses of nucleosides and related compounds, we were interested in the synthesis of carbocylic nucleoside mimics. The attempts and results are described herein. PMID:26199661

  6. Cyclic sulfamidates as lactam precursors. An efficient asymmetric synthesis of (-)-aphanorphine.

    PubMed

    Bower, John F; Szeto, Peter; Gallagher, Timothy

    2005-12-14

    A short and efficient enantioselective synthesis of (-)-aphanorphine is described based on the use of a cyclic sulfamidate to provide a suitably functionalised lactam that allows for construction of the tricyclic 3-benzazepine scaffold.

  7. Molecular Targets of β-Lactam-Based Antimicrobials: Beyond the Usual Suspects

    PubMed Central

    Konaklieva, Monika I.

    2014-01-01

    The common practice in antibacterial drug development has been to rapidly make an attempt to find ever-more stable and broad-spectrum variants for a particular antibiotic, once a drug resistance for that antibiotic is detected. We are now facing bacterial resistance toward our clinically relevant antibiotics of such a magnitude that the conversation for antimicrobial drug development ought to include effective new antibiotics with alternative mechanisms of action. The electrophilic β-lactam ring is amenable for the inhibition of different enzyme classes by a suitable decoration of the core scaffold. Monocyclic β-lactams lacking an ionizable group at the lactam nitrogen exhibit target preferences toward bacterial enzymes important for resistance and virulence. The present review intends to draw attention to the versatility of the β-lactams as antimicrobials with “unusual” molecular targets. PMID:27025739

  8. Rapid screening assay for beta-lactam antibiotics in milk: collaborative study.

    PubMed

    Charm, S E; Chi, R K

    1982-09-01

    A 15 min assay for beta-lactam antibiotics has been used by dairies for several years as a screening procedure for testing milk tankers before they unload. The test is based on a competition between 14C-penicillin and beta-lactam antibiotics in the milk samples for sites on a microbial cell wall that specifically binds beta-lactam. In a collaborative study, 11 laboratories correctly distinguished 10 coded zero penicillin G samples and 10 coded 0.01 IU/mL samples. The proposed test is qualitative, positive or negative, and can detect the presence of beta-lactam antibiotics at the 0.01 IU/mL level. The control point for determining positive or negative samples is more than 3 standard deviations from the mean of 0.01 IU/mL. The method has been adopted official first action.

  9. Beta-lactam antibiotics prevent Salmonella-mediated bovine encephalopathy regardless of the β-lactam resistance status of the bacteria.

    PubMed

    Xiong, Nalee; Brewer, Matt T; Anderson, Kristi L; Watrous, Gwyneth K; Weeks, Katherine E; Barnhill, Alison E; Day, Tim A; Kimber, Michael J; Carlson, Steve A

    2012-06-01

    This study assessed the capacity of β-lactam antibiotics to prevent salmonella-mediated encephalopathy in calves given the putative neuroprotective effects of these drugs of increasing glutamate export from the brain. Both ampicillin and ceftiofur prevented the development of encephalopathy despite resistance of the inoculated Salmonella enterica serovar Saint-Paul isolate to both drugs. A glutamate receptor antagonist also prevented this salmonella-mediated encephalopathy. Glutamate exporters were hyper-expressed in the presence of β-lactam antibiotics while a glutamate export inhibitor obviated the effects of these antibiotics, demonstrating a neuroprotective effect through glutamate export from the brain. The findings indicate that β-lactam antibiotics remain an important treatment option for this atypical form of bovine salmonellosis.

  10. [Stereoselective Synthesis of Multi-substituted Fluoro-β-lactams and Their Conversion to Fluorinated β-Amino Acid Core].

    PubMed

    Tarui, Atsushi

    2015-01-01

    Multi-substituted β-lactam compounds have not only attracted considerable interest as core structures of pharmaceutical compounds such as antibiotics but also have been used as building blocks for the construction of β-amino acids. Electrophilic β-lactams can be used to enhance essential biological activities. Furthermore, the ring-opening reactions of electrophilic β-lactams can be used to provide facile access to β-amino acids. The introduction of an electronegative fluorine atom to a β-lactam ring to give the corresponding fluoro-β-lactam can be used as an effective strategy for the preparation of electrophilic β-lactams. In this review, we provide a summary of our recent research towards the direct functionalization of fluoro-β-lactams. This review has been divided into four topics, including: 1) the alkylation and hydroxyalkylation of α-bromo-α-fluoro-β-lactams (1); 2) the nickel-catalyzed cross coupling reaction of 1; 3) the asymmetric synthesis of fluoro-β-lactams using chiral ligands; and 4) the utilization of fluoro-β-lactams as highly electrophilic building blocks.

  11. Selection and characterization of beta-lactam-resistant Escherichia coli K-12 mutants.

    PubMed Central

    Jaffé, A; Chabbert, Y A; Derlot, E

    1983-01-01

    beta-Lactam-resistant mutants of Escherichia coli K-12 were selected by using 12 different beta-lactam derivatives. The mutants fell into three categories showing (i) altered permeation through reduction or loss of outer membrane porin proteins (including ompF, ompR, and envZ alleles); (ii) increase in the rate of synthesis of chromosomally mediated beta-lactamase; or (iii) defective synthesis or action of cyclic adenosine 3',5'-phosphate (cya and crp alleles). PMID:6344786

  12. Chemical and microbiologic aspects of penems, a distinct class of beta-lactams: focus on faropenem.

    PubMed

    Hamilton-Miller, Jeremy M T

    2003-11-01

    Many beta-lactam antimicrobials were developed between the 1960s and 1980s, with continuing development driven by the emergence of microbial resistance. Penems form a discrete class of beta-lactams that comprises structural hybrids of penicillins (penams) and cephalosporins (cephems). The chemistry and microbiology of the representative penems MEN 10700, ritipenem, CGP 31608, sulopenem, BRL 42715, and faropenem are reviewed. Particular emphasis is placed on faropenem, which is in late clinical development.

  13. Interactions of Yersinia pestis penicillin-binding proteins with beta-lactam antibiotics.

    PubMed Central

    Ferreira, R C; Park, J T; Camelo, D; De Almeida, D F; Ferreira, L C

    1995-01-01

    The affinities of six major penicillin-binding proteins (PBPs) of Yersinia pestis EV76 to different beta-lactam antibiotics were determined. The results indicate that, similar to their counterparts in Escherichia coli, PBP2 and PBP3 are the lethal targets of amdinocillin and furazlocillin, respectively. The PBP contents of four additional Y. pestis strains and the morphological effects produced by some beta-lactam antibiotics are also reported. PMID:7486931

  14. Subtleties in practical application of prolonged infusion of β-lactam antibiotics.

    PubMed

    De Waele, Jan J; Lipman, Jeffrey; Carlier, Mieke; Roberts, Jason A

    2015-05-01

    Prolonged infusion (PI) of β-lactam antibiotics is increasingly used in order to optimise antibiotic exposure in critically ill patients. Physicians are often not aware of a number of subtleties that may jeopardise the treatment. In this clinically based paper, we stress pragmatic issues, such as the importance of a loading dose before PI, and discuss a number of important practicalities that are mandatory to benefit from the pharmacokinetic advantages of prolonged β-lactam antibiotic administration.

  15. Effect of hydroxycobalamin[c-lactam] on propionate and carnitine metabolism in the rat.

    PubMed Central

    Brass, E P; Allen, R H; Ruff, L J; Stabler, S P

    1990-01-01

    The administration in vivo of the cobalamin analogue hydroxycobalamin[c-lactam] inhibits hepatic L-methylmalonyl-CoA mutase activity. The current studies characterize in vivo and in vitro the hydroxycobalamin[c-lactam]-treated rat as a model of disordered propionate and methylmalonic acid metabolism. Treatment of rats with hydroxycobalamin[c-lactam] (2 micrograms/h by osmotic minipump) increased urinary methylmalonic acid excretion from 0.55 mumol/day to 390 mumol/day after 2 weeks. Hydroxycobalamin[c-lactam] treatment was associated with increased urinary propionylcarnitine excretion and increased short-chain acylcarnitine concentrations in plasma and liver. Hepatocytes isolated from cobalamin-analogue-treated rats metabolized propionate (1.0 mM) to CO2 and glucose at rates which were only 18% and 1% respectively of those observed in hepatocytes from control (saline-treated) rats. In contrast, rates of pyruvate and palmitate oxidation were higher than control in hepatocytes from the hydroxycobalamin[c-lactam]-treated rats. In hepatocytes from hydroxycobalamin[c-lactam]-treated rats, propionylcarnitine was the dominant product generated from propionate when carnitine (10 mM) was present. The addition of carnitine thus resulted in a 4-fold increase in total propionate utilization under these conditions. Hepatocytes from hydroxycobalamin[c-lactam]-treated rats were more sensitive than control hepatocytes to inhibition of palmitate oxidation by propionate. This inhibition of palmitate oxidation was partially reversed by addition of carnitine. Thus hydroxycobalamin[c-lactam] treatment in vivo rapidly causes a severe defect in propionate metabolism. The consequences of this metabolic defect in vivo and in vitro are those predicted on the basis of propionyl-CoA and methylmalonyl-CoA accumulation. The cobalamin-analogue-treated rat provides a useful model for studying metabolism under conditions of a metabolic defect causing acyl-CoA accretion. PMID:2327967

  16. Designing Predictive Models for Beta-Lactam Allergy Using the Drug Allergy and Hypersensitivity Database.

    PubMed

    Chiriac, Anca Mirela; Wang, Youna; Schrijvers, Rik; Bousquet, Philippe Jean; Mura, Thibault; Molinari, Nicolas; Demoly, Pascal

    2017-07-21

    Beta-lactam antibiotics represent the main cause of allergic reactions to drugs, inducing both immediate and nonimmediate allergies. The diagnosis is well established, usually based on skin tests and drug provocation tests, but cumbersome. To design predictive models for the diagnosis of beta-lactam allergy, based on the clinical history of patients with suspicions of allergic reactions to beta-lactams. The study included a retrospective phase, in which records of patients explored for a suspicion of beta-lactam allergy (in the Allergy Unit of the University Hospital of Montpellier between September 1996 and September 2012) were used to construct predictive models based on a logistic regression and decision tree method; a prospective phase, in which we performed an external validation of the chosen models in patients with suspicion of beta-lactam allergy recruited from 3 allergy centers (Montpellier, Nîmes, Narbonne) between March and November 2013. Data related to clinical history and allergy evaluation results were retrieved and analyzed. The retrospective and prospective phases included 1991 and 200 patients, respectively, with a different prevalence of confirmed beta-lactam allergy (23.6% vs 31%, P = .02). For the logistic regression method, performances of the models were similar in both samples: sensitivity was 51% (vs 60%), specificity 75% (vs 80%), positive predictive value 40% (vs 57%), and negative predictive value 83% (vs 82%). The decision tree method reached a sensitivity of 29.5% (vs 43.5%), specificity of 96.4% (vs 94.9%), positive predictive value of 71.6% (vs 79.4%), and negative predictive value of 81.6% (vs 81.3%). Two different independent methods using clinical history predictors were unable to accurately predict beta-lactam allergy and replace a conventional allergy evaluation for suspected beta-lactam allergy. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Efflux Pump, the Masked Side of ß-Lactam Resistance in Klebsiella pneumoniae Clinical Isolates

    PubMed Central

    Pages, Jean-Marie; Lavigne, Jean-Philippe; Leflon-Guibout, Véronique; Marcon, Estelle; Bert, Frédéric; Noussair, Latifa; Nicolas-Chanoine, Marie-Hélène

    2009-01-01

    Background β-lactamase production and porin decrease are the well-recognized mechanisms of acquired ß-lactam resistance in Klebsiella pneumoniae isolates. However, such mechanisms proved to be absent in K. pneumoniae isolates that are non susceptible to cefoxitin (FOX) and succeptible to amoxicillin+clavulanic acid in our hospital. Assessing the role of efflux pumps in this β-lactam phenotype was the aim of this study. Methodology/Findings MICs of 9 β-lactams, including cloxacillin (CLX), and other antibiotic families were tested alone and with an efflux pump inhibitor (EPI), then with both CLX (subinhibitory concentrations) and EPI against 11 unique bacteremia K. pneumoniae isolates displaying the unusual phenotype, and 2 ATCC strains. CLX and EPI-dose dependent effects were studied on 4 representatives strains. CLX MICs significantly decreased when tested with EPI. A similar phenomenon was observed with piperacillin+tazobactam whereas MICs of the other β-lactams significantly decreased only in the presence of both EPI and CLX. Thus, FOX MICs decreased 128 fold in the K. pneumoniae isolates but also16 fold in ATCC strain. Restoration of FOX activity was CLX dose-dependent suggesting a competitive relationship between CLX and the other β-lactams with regard to their efflux. For chloramphenicol, erythromycin and nalidixic acid whose resistance was also due to efflux, adding CLX to EPI did not increase their activity suggesting differences between the efflux process of these molecules and that of β-lactams. Conclusion This is the first study demonstrating that efflux mechanism plays a key role in the β-lactam susceptibility of clinical isolates of K. pneumoniae. Such data clearly evidence that the involvement of efflux pumps in ß-lactam resistance is specially underestimated in clinical isolates. PMID:19279676

  18. Tyrosol and its analogues inhibit alpha-melanocyte-stimulating hormone induced melanogenesis.

    PubMed

    Wen, Kuo-Ching; Chang, Chih-Shiang; Chien, Yin-Chih; Wang, Hsiao-Wen; Wu, Wan-Chen; Wu, Chin-Sheng; Chiang, Hsiu-Mei

    2013-11-28

    Melanin is responsible for skin color and plays a major role in defending against harmful external factors such as ultraviolet (UV) irradiation. Tyrosinase is responsible for the critical steps of melanogenesis, including the rate-limiting step of tyrosine hydroxylation. The mechanisms of action of skin hypopigmenting agents are thought to be based on the ability of a given agent to inhibit the activity of tyrosinase and, hence, down regulate melanin synthesis. Tyrosol and its glycoside, salidroside, are active components of Rhodiola rosea, and in our preliminary study we found that Rhodiola rosea extract inhibited melanogenesis. In this study, we examined the effects of tyrosol and its analogues on melanin synthesis. We found that treatment of B16F0 cells to tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), 2-hydroxyphenylacetic acid (7), or salidroside (11) resulted in a reduction in melanin content and inhibition of tyrosinase activity as well as its expression. Tyrosol (1), 4-hydroxyphenylacetic acid (5) and 2-hydroxyphenylacetic acid (7) suppressed MC1R expression. Tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), and 2-hydroxyphenylacetic acid (7) inhibited α-MSH induced TRP-1 expression, but salidroside (11) did not. All the compounds did not affect MITF and TRP-2 expression. Furthermore, we found that the cell viability of tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), and 2-hydroxyphenylacetic acid (7) at concentrations below 4 mM and salidroside (11) at concentrations below 0.5 mM were higher than 90%. The compounds exhibited metal-coordinating interactions with copper ion in molecular docking with tyrosinase. Our results suggest that tyrosol, 4-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 2-hydroxyphenylacetic acid, and salidroside are potential hypopigmenting agents.

  19. Optimizing empiric antibiotic therapy in patients with severe β-lactam allergy.

    PubMed

    Koliscak, Lindsey P; Johnson, James W; Beardsley, James R; Miller, David P; Williamson, John C; Luther, Vera P; Ohl, Christopher A

    2013-12-01

    Antibiotic selection is challenging in patients with severe β-lactam allergy due to declining reliability of alternate antibiotics. Organisms isolated from these patients may exhibit unique resistance phenotypes. The objective of this study was to determine which alternate antibiotics or combinations provide adequate empirical therapy for patients with β-lactam allergy who develop Gram-negative infections at our institution. We further sought to determine the effects of risk factors for drug resistance on empirical adequacy. A retrospective analysis was conducted for adult patients hospitalized from September 2009 to May 2010 who had a severe β-lactam allergy and a urine, blood, or respiratory culture positive for a Gram-negative organism and who met predefined criteria for infection. Patient characteristics, culture and susceptibility data, and predefined risk factors for antibiotic resistance were collected. Adequacies of β-lactam and alternate antibiotics were compared for all infections and selected subsets. The primary outcome was adequacy of each alternate antibiotic or combination for all infections. One hundred sixteen infections (40 pneumonias, 67 urinary tract infections, and 9 bacteremias) were identified. Single alternate agents were adequate less frequently than β-lactams and combination regimens. Only in cases without risk factors for resistance did single-agent regimens demonstrate acceptable adequacy rates; each factor conferred a doubling of risk for resistance. Resistance risk factors should be considered in selecting empirical antibiotics for Gram-negative pathogens in patients unable to take β-lactams due to severe allergy.

  20. Novel Aspects on the Preparation of Spirocyclic and Fused Unusual β-Lactams

    NASA Astrophysics Data System (ADS)

    Alcaide, Benito; Almendros, Pedro

    β-Lactam antibiotics have occupied a central role in the fight against pathogenic bacteria and the subsequent rise in quality of life for the world population as a whole. However, the extensive use of common β-lactam antibiotics such as penicillins and cephalosporins in medicine has resulted in an increasing number of resistant strains of bacteria through mutation and β-lactamase gene transfer. The resistance of bacteria to the classical β-lactam antibiotics can be overcome, e.g., by using novel β-lactam moieties in drugs, which show much higher stability towards these resistance bacteria. In addition, there are many important nonantibiotic uses of 2-azetidinones in fields ranging from enzyme inhibition to gene activation. These biological activities, combined with the use of these products as starting materials to prepare α- and β-amino acids, alkaloids, heterocycles, taxoids, and other types of compounds of biological and medicinal interest, provide the motivation to explore new methodologies for the synthesis of substances based on the β-lactam core. The aim of this chapter is to provide a survey of the types of reactions used to prepare nonconventional spirocyclic and fused β-lactams, concentrating on the advances that have been made in the last decade, particularly in the last 5 years. We will draw special attention to radical cyclizations, cycloaddition reactions, and transition metal-catalyzed reactions.

  1. Mass Spectral Profile for Rapid Differentiating Beta-Lactams from Their Ring-Opened Impurities.

    PubMed

    Wang, Hecheng; Huang, Haiwei; Cao, Jin; Chui, Dehua; Xiao, Shengyuan

    2015-01-01

    High performance liquid chromatography tandem mass spectrometry (HPLC MS) has been widely used for β-lactam antibiotics determination. However, its application to identify impurities of these frequently used drugs is not sufficient at present. In this job, characteristic profiles of the collision induced dissociation (CID) spectra of both β-lactams and ring-opened β-lactams were extracted from the MS data of six β-lactam antibiotics and their forty-five impurities, and were confirmed by the MS data reported in the literature. These characteristics have been successfully applied to rapid differentiation of β-lactam and ring-opened β-lactam impurities in cefixime, cefdinir, and cefaclor. However, these characteristic profiles can only be obtained under low activating voltage. They did not display in the high energy activated CID spectra. Diagnostic fragmentations for determining the localization of double bond and substituents on the thiazine ring and the side chain were also observed. In addition, several characteristic fragmentations are hopeful to be used to differentiate the configurations of C-2 on the thiazine ring of ring-opened impurities, which is generally disadvantageous of mass spectrometry. Taken together, forty-five impurities were identified from the capsules of cefixime, cefdinir, and cefaclor.

  2. Antibacterial and β-Lactamase Inhibitory Activity of Monocyclic β-Lactams.

    PubMed

    Decuyper, Lena; Jukič, Marko; Sosič, Izidor; Žula, Aleš; D'hooghe, Matthias; Gobec, Stanislav

    2017-08-16

    Due to the widespread emergence of resistant bacterial strains, an urgent need for the development of new antibacterial agents with novel modes of action has emerged. The discovery of naturally occurring monocyclic β-lactams in the late 1970s, mainly active against aerobic Gram-negative bacteria, has introduced a new approach in the design and development of novel antibacterial β-lactam agents. The main goal was the derivatization of the azetidin-2-one core in order to improve their antibacterial potency, broaden their spectrum of activity, and enhance their β-lactamase stability. In that respect, our review covers the updates in the field of monocyclic β-lactam antibiotics during the last three decades, taking into account an extensive collection of references. An overview of the relationships between the structural features of these monocyclic β-lactams, classified according to their N-substituent, and the associated antibacterial or β-lactamase inhibitory activities is provided. The different paragraphs disclose a number of well-established classes of compounds, such as monobactams, monosulfactams, monocarbams, monophosphams, nocardicins, as well as other known representative classes. Moreover, this review draws attention to some less common but, nevertheless, possibly important types of monocyclic β-lactams and concludes by highlighting the recent developments on siderophore-conjugated classes of monocyclic β-lactams. © 2017 Wiley Periodicals, Inc.

  3. Rapid quantification of six β-lactams to optimize dosage regimens in severely septic patients.

    PubMed

    Wolff, Fleur; Deprez, Guillaume; Seyler, Lucie; Taccone, Fabio; Hites, Maya; Gulbis, Béatrice; Vincent, Jean-Louis; Jacobs, Frédérique; Cotton, Frédéric

    2013-01-15

    A fast analytical procedure was developed for the simultaneous quantification of cefepime (CEF), meropenem (MEM), ceftazidime (CZA), cefuroxime (CFX), aztreonam (AZT), and piperacillin (PIP) in serum of intensive care patients. The β-lactam pharmacokinetic parameters can be altered in severe sepsis due to changes in the distribution, the metabolism and the elimination process. Therapeutic drug monitoring (TDM) of β-lactams is therefore recommended in critically ill patients. The plasma samples were spiked with cefoperazone as internal standard and proteins were precipitated with methanol. The different β-lactams were separated with high performance liquid chromatography within 18 min, and quantified by UV spectrophotometry with a diode array detector. The method was validated by means of the accuracy profile approach based on β expectation tolerance intervals. The acceptance limits were settled at ± 30% according to the regulatory requirements. Assay validation demonstrated good performance for all β-lactams analyzed in terms of trueness, repeatability, linearity and intermediate precision over the range of 2-200 μg/mL. The simple extraction procedure provides respective absolute and relative recoveries ranging from 70% to 86% and from 66% to 89% for all the β-lactams analyzed. Few interferences were observed and the method was easily applicable to TDM in intensive care patients. The quantification of β-lactams should allow for antibiotic regimen adjustment in critically ill patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams.

    PubMed

    Chen, Yanni; Wang, Yongwei; Liu, Liqiang; Wu, Xiaoling; Xu, Liguang; Kuang, Hua; Li, Aike; Xu, Chuanlai

    2015-10-21

    A novel gold immunochromatographic assay (GICA) based on anti-β-lactam receptors was innovatively developed that successfully allowed rapid and simultaneous detection of fifteen β-lactams in milk samples in 5-10 minutes. By replacing the antibodies used in traditional GICA with anti-β-lactam receptors, the difficulty in producing broad specific antibodies against β-lactams was overcome. Conjugates of ampicillin with BSA and goat anti-mouse immunoglobulin (IgG) were immobilized onto the test and control lines on the nitrocellulose membrane, respectively. Since goat anti-mouse IgG does not combine with receptors, negative serum from mice labelled with gold nanoparticles (GNP) was mixed with GNP-labelled receptors. Results were obtained within 20 min using a paper-based sensor. The utility of the assay was confirmed by the analysis of milk samples. The limits of detection (LOD) for amoxicillin, ampicillin, penicillin G, penicillin V, cloxacillin, dicloxacillin, nafcillin, oxacillin, cefaclor, ceftezole, cefotaxime, ceftiofur, cefoperazone, cefathiamidine, and cefepime were 0.25, 0.5, 0.5, 0.5, 1, 5, 5, 10, 25, 10, 100, 10, 5, 5, and 2 ng mL(-1), respectively, which satisfies the maximum residue limits (MRL) set by the European Union (EU). In conclusion, our newly developed GICA-based anti-β-lactam receptor assay provides a rapid and effective method for one-site detection of multiple β-lactams in milk samples.

  5. Mass Spectral Profile for Rapid Differentiating Beta-Lactams from Their Ring-Opened Impurities

    PubMed Central

    Wang, Hecheng; Huang, Haiwei; Cao, Jin; Chui, Dehua

    2015-01-01

    High performance liquid chromatography tandem mass spectrometry (HPLC MS) has been widely used for β-lactam antibiotics determination. However, its application to identify impurities of these frequently used drugs is not sufficient at present. In this job, characteristic profiles of the collision induced dissociation (CID) spectra of both β-lactams and ring-opened β-lactams were extracted from the MS data of six β-lactam antibiotics and their forty-five impurities, and were confirmed by the MS data reported in the literature. These characteristics have been successfully applied to rapid differentiation of β-lactam and ring-opened β-lactam impurities in cefixime, cefdinir, and cefaclor. However, these characteristic profiles can only be obtained under low activating voltage. They did not display in the high energy activated CID spectra. Diagnostic fragmentations for determining the localization of double bond and substituents on the thiazine ring and the side chain were also observed. In addition, several characteristic fragmentations are hopeful to be used to differentiate the configurations of C-2 on the thiazine ring of ring-opened impurities, which is generally disadvantageous of mass spectrometry. Taken together, forty-five impurities were identified from the capsules of cefixime, cefdinir, and cefaclor. PMID:26090434

  6. Characterization of Novel Mycobacterium tuberculosis and Mycobacterium smegmatis Mutants Hypersusceptible to β-Lactam Antibiotics

    PubMed Central

    Flores, Anthony R.; Parsons, Linda M.; Pavelka, Martin S.

    2005-01-01

    Our laboratory previously constructed mutants of Mycobacterium tuberculosis and Mycobacterium smegmatis with deletions in the genes for their major β-lactamases, BlaC and BlaS, respectively, and showed that the mutants have increased susceptibilities to most β-lactam antibiotics, particularly the penicillins. However, there is still a basal level of resistance in the mutants to certain penicillins, and the susceptibilities of the mutants to some cephalosporin-based β-lactams are essentially the same as those of the wild types. We hypothesized that characterizing additional mutants (derived from β-lactamase deletion mutants) that are hypersusceptible to β-lactam antibiotics might reveal novel genes involved with other mechanisms of β-lactam resistance, peptidoglycan assembly, and cell envelope physiology. We report here the isolation and characterization of nine β-lactam antibiotic-hypersusceptible transposon mutants, two of which have insertions in genes known to be involved with peptidoglycan biosynthesis (ponA2 and dapB); the other seven mutants have insertions which affect novel genes. These genes can be classified into three groups: those involved with peptidoglycan biosynthesis, cell division, and other cell envelope processes. Two of the peptidoglycan-biosynthetic genes (ponA2 and pbpX) may encode β-lactam antibiotic-resistant enzymes proposed to be involved with the synthesis of the unusual diaminopimelyl linkages within the mycobacterial peptidoglycan. PMID:15743935

  7. Broadening the Spectrum of β-Lactam Antibiotics through Inhibition of Signal Peptidase Type I

    PubMed Central

    Therien, Alex G.; Huber, Joann L.; Wilson, Kenneth E.; Beaulieu, Patrick; Caron, Alexandre; Claveau, David; Deschamps, Kathleen; Donald, Robert G. K.; Galgoci, Andrew M.; Gallant, Michel; Gu, Xin; Kevin, Nancy J.; Lafleur, Josiane; Leavitt, Penny S.; Lebeau-Jacob, Christian; Lee, Suzy S.; Lin, Molly M.; Michels, Anna A.; Ogawa, Aimie M.; Painter, Ronald E.; Parish, Craig A.; Park, Young-Whan; Benton-Perdomo, Liliana; Petcu, Mihai; Phillips, John W.; Powles, Mary Ann; Skorey, Kathryn I.; Tam, John; Tan, Christopher M.; Young, Katherine; Wong, Simon; Waddell, Sherman T.

    2012-01-01

    The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all β-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of β-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to β-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with β-lactams by preventing the signal peptidase-mediated secretion of proteins required for β-lactam resistance. Combinations of SpsB inhibitors and β-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to β-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections. PMID:22710113

  8. Synthetic lethality reveals mechanisms of Mycobacterium tuberculosis resistance to β-lactams.

    PubMed

    Lun, Shichun; Miranda, David; Kubler, Andre; Guo, Haidan; Maiga, Mariama C; Winglee, Kathryn; Pelly, Shaaretha; Bishai, William R

    2014-09-16

    Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe's innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. The global emergence of multidrug-resistant and extensively drug-resistant M. tuberculosis strains has threatened public health worldwide, yet the pipeline of new tuberculosis drugs under development remains limited. One strategy to cope with the urgent need for new antituberculosis agents is to repurpose existing, approved antibiotics. The carbapenem class of β-lactam antibiotics has been proposed as one such class of drugs. Our

  9. Diagnosis of immediate hypersensitivity to β-lactam antibiotics can be made safely with current approaches.

    PubMed

    Celik, Gulfem E; Aydin, Ömür; Dogu, Figen; Cipe, Funda; Boyvat, Ayşe; Ikinciogullari, Aydan; Akyol, Aynur; Demirel, Yavuz S

    2012-01-01

    Diagnosing immediate hypersensitivity to β-lactam antibiotics is still a significant problem. Recently, a new penicillin testing reagent was introduced to the market. In this study, the recommendations of the European Network of Drug Allergy (ENDA) for the diagnosis of immediate reactions to β-lactams were followed, and the negative predictive value of this approach with currently available reagents was assessed. Eighty patients (age range: 6-74 years) with a history of immediate reactions to β-lactams were included. All cases underwent skin testing with benzylpenicilloyl-polylysine (PPL) and minor determinant mixture (MDM), followed by the culprit drug if necessary. If this step was negative, a drug provocation test was offered. If this step also yielded a negative result, then the patients were recommended to use β-lactam antibiotics in future whenever their use was indicated. Overall, 29 patients (36.2%) were diagnosed as β-lactam allergic. The majority of the cases (72.4%) were diagnosed by positive skin tests to either PPL or MDM, whereas 10.3% were diagnosed by skin testing with culprit drugs and 17.2% with drug provocation tests. Regarding the use of the tested drug in the long term, almost half of the contacted patients had had an indication to use the tested drug and the majority had taken the whole course without problems. Although currently available new penicillin tests provide sufficient allergy data, all the steps recommended by ENDA should be followed in the diagnosis of immediate reactions to β-lactams. If these steps are negative, the patients usually tolerate β-lactams and only a few develop mild, non-life-threatening reactions in the long term. Copyright © 2011 S. Karger AG, Basel.

  10. Synthetic Beta-Lactam Antibiotics as a Selective Breast Cancer Cell Apoptosis Inducer: Significance in Breast Cancer Prevention and Treatment

    DTIC Science & Technology

    2007-03-01

    apoptosis in human breast cancer but not normal cells. To test this innovative hypothesis, we have performed the proposed experiments as reported below...H O OH3CO HY 20 O OCH3 N O SCH3 O ClO H N O HY16 The un-acylated bis-hydroxyl lactam, HY 17, was also prepared for testing . N O SCH3 HO...activities of novel β-lactams. In order to discover more potent β- lactams against cancer, we have tested numerous of β-lactams that were synthesized by

  11. High Serum β-Lactams Specific/Total IgE Ratio Is Associated with Immediate Reactions to β-Lactams Antibiotics

    PubMed Central

    Vultaggio, Alessandra; Virgili, Gianni; Gaeta, Francesco; Romano, Antonino; Maggi, Enrico; Matucci, Andrea

    2015-01-01

    Total serum IgE result from the combination of specific and non-specific pools. High specific/total IgE ratio may reflect high level of allergen-specific IgE on mast cells. No data regarding its applications to drug allergies is available. One hundred seventy-one patients with a history of immediate reactions to β-lactams, confirmed by positive skin testing, and 122 control subjects tolerant to β-lactams, were studied. CAP System was used for the detection of serum total and specific IgE antibodies. The specific/total IgE ratio was tested for diagnostic accuracy compared with conventional criteria. We finally performed a simulation study to expand our investigation of the performance of the specific/total IgE ratio index in a scenario in which the new CAP detection threshold is lowered further. Specific/total IgE ratio values ≥0.002 were observed more frequently in reactive than in controls. Seventy-four of 80 subjects with values ≥0.002 were allergic to β-lactams, yielding a positive predictive value of 92.5%. The application of specific/total IgE ratio significantly improves the positive likelihood ratio and the overall diagnostic performance. In addition, we showed the capability of this new criterion to identify true reactive patients even among subjects with high levels of total IgE (>200 kU/L). Significant increase in both receiver operator characteristic (ROC) curve and sensitivity were observed in imputed case of the simulation study. The β-lactams-specific/total IgE ratio may be an additional index compared to the common criterion of positivity to a single hapten in the allergological work-up of patients with β-lactams immediate adverse reactions. PMID:25880869

  12. High serum β-lactams specific/total IgE ratio is associated with immediate reactions to β-lactams antibiotics.

    PubMed

    Vultaggio, Alessandra; Virgili, Gianni; Gaeta, Francesco; Romano, Antonino; Maggi, Enrico; Matucci, Andrea

    2015-01-01

    Total serum IgE result from the combination of specific and non-specific pools. High specific/total IgE ratio may reflect high level of allergen-specific IgE on mast cells. No data regarding its applications to drug allergies is available. One hundred seventy-one patients with a history of immediate reactions to β-lactams, confirmed by positive skin testing, and 122 control subjects tolerant to β-lactams, were studied. CAP System was used for the detection of serum total and specific IgE antibodies. The specific/total IgE ratio was tested for diagnostic accuracy compared with conventional criteria. We finally performed a simulation study to expand our investigation of the performance of the specific/total IgE ratio index in a scenario in which the new CAP detection threshold is lowered further. Specific/total IgE ratio values ≥0.002 were observed more frequently in reactive than in controls. Seventy-four of 80 subjects with values ≥0.002 were allergic to β-lactams, yielding a positive predictive value of 92.5%. The application of specific/total IgE ratio significantly improves the positive likelihood ratio and the overall diagnostic performance. In addition, we showed the capability of this new criterion to identify true reactive patients even among subjects with high levels of total IgE (>200 kU/L). Significant increase in both receiver operator characteristic (ROC) curve and sensitivity were observed in imputed case of the simulation study. The β-lactams-specific/total IgE ratio may be an additional index compared to the common criterion of positivity to a single hapten in the allergological work-up of patients with β-lactams immediate adverse reactions.

  13. Energetic, Structural, and Antimicrobial Analyses of [beta]-Lactam Side Chain Recognition by [beta]-Lactamases

    SciTech Connect

    Caselli, E.; Powers, R.A.; Blaszczak, L.C.; Wu, C.Y.E.; Prati, F.; Shoichet, B.K.

    2010-03-05

    Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these {beta}-lactams, most often through bacterial expression of {beta}-lactamases, threatens public health. To understand how {beta}-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because {beta}-lactams form covalent adducts with {beta}-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of {beta}-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well as four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine {beta}-lactamases. Therefore, binding energies can be calculated directly from K{sub i} values. The K{sub i} values measured span four orders of magnitude against the Group I {beta}-lactamase AmpC and three orders of magnitude against the Group II {beta}-lactamase TEM-1. The acylglycineboronic acids have K{sub i} values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of {beta}-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of {beta}-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to {beta}-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 {angstrom} and 1.75 {angstrom} resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between {beta}-lactam side chains and {beta}-lactamases. Surprisingly

  14. Heat inactivation of beta-lactam antibiotics in milk.

    PubMed

    Zorraquino, M A; Roca, M; Fernandez, N; Molina, M P; Althaus, R

    2008-06-01

    The presence of residues of antimicrobial substances in milk is one of the main concerns of the milk industry, as it poses a risk of toxicity to public health, and can seriously influence the technological properties of milk and dairy products. Moreover, the information available on the thermostability characteristics of these residues, particularly regarding the heat treatments used in control laboratories and the dairy industry, is very scarce. The aim of the study was, therefore, to analyze the effect of different heat treatments (40 degrees C for 10 min, 60 degrees C for 30 min, 83 degrees C for 10 min, 120 degrees C for 20 min, and 140 degrees C for 10 s) on milk samples fortified with three concentrations of nine beta-lactam antibiotics (penicillin G: 3, 6, and 12 microg/liter; ampicillin: 4, 8, and 16 microg/liter; amoxicillin: 4, 8, and 16 microg/liter; cloxacillin: 60, 120, and 240 microg/liter; cefoperazone: 55, 110, and 220 microg/liter; cefquinome: 100, 200, and 400 microg/liter; cefuroxime: 65, 130, and 260 microg/liter; cephalexin: 80, 160, and 220 microg/ liter; and cephalonium: 15, 30, and 60 microg/liter). The method used was a bioassay based on the inhibition of Geobacillus stearothermophilus var. calidolactis. The results showed that heating milk samples at 40 degrees C for 10 min hardly produced any heat inactivation at all, while the treatment at 83 degrees C for 10 min caused a 20% loss in penicillin G, 27% in cephalexin, and 35% in cefuroxime. Of the three dairy industry heat treatments studied in this work, low pasteurization (60 degrees C for 30 min) and treatment at 140 degrees C for 10 s only caused a small loss of antimicrobial activity, whereas classic sterilization (120 degrees C for 20 min) showed a high level of heat inactivation of over 65% for penicillins and 90% for cephalosporins.

  15. Regulation and compartmentalization of β‐lactam biosynthesis

    PubMed Central

    Martín, Juan F.; Ullán, Ricardo V.; García‐Estrada, Carlos

    2010-01-01

    Summary Penicillins and cephalosporins are β‐lactam antibiotics widely used in human medicine. The biosynthesis of these compounds starts by the condensation of the amino acids l‐α‐aminoadipic acid, l‐cysteine and l‐valine to form the tripeptide δ‐l‐α‐aminoadipyl‐l‐cysteinyl‐d‐valine catalysed by the non‐ribosomal peptide ‘ACV synthetase’. Subsequently, this tripeptide is cyclized to isopenicillin N that in Penicillium is converted to hydrophobic penicillins, e.g. benzylpenicillin. In Acremonium and in streptomycetes, isopenicillin N is later isomerized to penicillin N and finally converted to cephalosporin. Expression of genes of the penicillin (pcbAB, pcbC, pendDE) and cephalosporin clusters (pcbAB, pcbC, cefD1, cefD2, cefEF, cefG) is controlled by pleitropic regulators including LaeA, a methylase involved in heterochromatin rearrangement. The enzymes catalysing the last two steps of penicillin biosynthesis (phenylacetyl‐CoA ligase and isopenicillin N acyltransferase) are located in microbodies, as shown by immunoelectron microscopy and microbodies proteome analyses. Similarly, the Acremonium two‐component CefD1–CefD2 epimerization system is also located in microbodies. This compartmentalization implies intracellular transport of isopenicillin N (in the penicillin pathway) or isopenicillin N and penicillin N in the cephalosporin route. Two transporters of the MFS family cefT and cefM are involved in transport of intermediates and/or secretion of cephalosporins. However, there is no known transporter of benzylpenicillin despite its large production in industrial strains. PMID:21255328

  16. Continuous infusion vs. bolus dosing: implications for beta-lactam antibiotics.

    PubMed

    Mohd Hafiz, Abdul-Aziz; Staatz, C E; Kirkpatrick, C M J; Lipman, J; Roberts, J A

    2012-01-01

    Beta-lactam antibiotics display time-dependant pharmacodynamics whereby constant antibiotic concentrations rather than high peak concentrations are most likely to result in effective treatment of infections caused by susceptible bacteria. Continuous administration has been suggested as an alternative strategy, to conventional intermittent dosing, to optimise beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) properties. With the availability of emerging data, we elected to systematically investigate the published literature describing the comparative PK/PD and clinical outcomes of beta-lactam antibiotics administered by continuous or intermittent infusion. We found that the studies have been performed in various patient populations including critically ill, cancer and cystic fibrosis patients. Available in vitro PK/PD data conclusively support the administration of beta-lactams via continuous infusion for maximizing bacterial killing from consistent attainment of pharmacodynamic end-points. In addition, clinical outcome data supports equivalence, even with the use of a lower dose by continuous infusion. However, the present clinical data is limited with small sample sizes common with insufficient power to detect advantages in favour of either dosing strategy. With abundant positive pre-clinical data as well as document in vivo PK/PD advantages, large multi-centre trials are needed to describe whether continuous administration of beta-lactams is truly more effective than intermittent dosing.

  17. Prolonging β-lactam infusion: a review of the rationale and evidence, and guidance for implementation.

    PubMed

    MacVane, Shawn H; Kuti, Joseph L; Nicolau, David P

    2014-02-01

    Given the sparse antibiotic pipeline and the increasing prevalence of resistant organisms, efforts should be made to optimise the pharmacodynamic exposure of currently available agents. Prolonging the infusion duration is a strategy used to increase the percentage of the dosing interval that free drug concentrations remain above the minimum inhibitory concentration (fT>MIC), the pharmacodynamic efficacy driver for time-dependent antibiotics such as β-lactams. β-Lactams, the most commonly prescribed class of antibiotics owing to their efficacy and safety profile, have been the mainstay of therapy since the discovery of penicillin over 60 years ago. Mounting evidence, including the use of population pharmacokinetic modelling and Monte Carlo simulation, suggests that prolonging the infusion time of β-lactam antibiotics may have advantages over standard infusion techniques, including an enhanced probability of achieving requisite fT>MIC exposures, lower mortality and potentially reductions in infection/antibiotic-related costs. As a result of these favourable attributes, clinical practice guidelines support the use of prolonged-infusion β-lactams in the treatment of many severe infections. This article discusses the rationale and evidence for prolonging the infusion of β-lactam antibiotics and provides guidance for the implementation of a prolonged-infusion programme.

  18. Biochemical pathways supporting beta-lactam biosynthesis in the springtail Folsomia candida

    PubMed Central

    Suring, Wouter; Mariën, Janine; Broekman, Rhody; van Straalen, Nico M.

    2016-01-01

    ABSTRACT Recently, an active set of beta-lactam biosynthesis genes was reported in the genome of the arthropod springtail Folsomia candida (Collembola). Evidence was provided that these genes were acquired through horizontal gene transfer. However, successful integration of fungal- or bacterial-derived beta-lactam biosynthesis into the metabolism of an animal requires the beta-lactam precursor L-α-aminoadipic acid and a phosphopantetheinyl transferase for activation of the first enzyme of the pathway, δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS). In this study, we characterized these supporting pathways and their transcriptional regulation in F. candida. We identified one phosphopantetheinyl transferase and three pathways for L-α-aminoadipic acid production, distinct from the pathways utilized by microorganisms. We found that after heat shock, the phosphopantetheinyl transferase was co-regulated with ACVS, confirming its role in activating ACVS. Two of the three L-α-aminoadipic acid production pathways were downregulated, while PIPOX, an enzyme participating in the pipecolate pathway, was slightly co-regulated with ACVS. This indicates that L-α-aminoadipic acid may not be a limiting factor in beta-lactam biosynthesis in F. candida, in contrast to microorganisms. In conclusion, we show that all components for L-α-aminoadipic acid synthesis are present and transcriptionally active in F. candida. This demonstrates how springtails could have recruited native enzymes to integrate a beta-lactam biosynthesis pathway into their metabolism after horizontal gene transfer. PMID:27793835

  19. Educational case series: β-lactam allergy and cross-reactivity.

    PubMed

    Atanasković-Marković, Marina

    2011-12-01

    Penicillins and cephalosporins are the most widely used antibiotics for the treatment of common infections, and they are the two main classes of β-lactams. On the basis of the time of appearance of the reaction after drug intake and for diagnostic purposes, hypersensitivity reactions to β-lactams have been classified as immediate or non-immediate. The diagnostic evaluation of allergic reactions to β-lactams has changed over the last decade, for several reasons. In many countries, major and minor determinants for skin testing are not available. In immediate allergic reactions, the sensitivity of skin testing is decreasing. For non-immediate reactions, skin testing appears to be less sensitive than previously reported. The drug provocation test is still necessary for diagnosis. In this education review series, we described three cases of β-lactam allergy: first, a child with an IgE-mediated allergy to benzyl-penicillin; second, a child with a non-allergic hypersensitivity to amoxicillin; and in the third patient, we will discuss about cross-reactivity between penicillins and cephalosporins. These cases are correlated with the practical management of evaluating β-lactam allergy.

  20. Triggering of autolytic cell wall degradation in Escherichia coli by beta-lactam antibiotics.

    PubMed Central

    Kitano, K; Tomasz, A

    1979-01-01

    A biochemical method was developed to quantitatively compare the effectiveness of beta-lactams in triggering murein degradation (autolysin activity) in Escherichia coli. Bacteria prelabeled in their cell walls with radioactive diaminopimelic acid in growth medium were exposed for 10 min to the antibiotics at the appropriate minimal growth inhibitory concentrations and at multiples of these values, and the rate of cell wall degradation was followed during subsequent penicillin-binding protein (PBP)-1 were the most effective triggers of autolytic wall degradation; beta-lactams selective for PBP-2 were the poorest; and antibiotics preferentially binding to PBP-3 showed intermediate activities. The relative effectiveness of beta-lactams in autolysin triggering was found to parallel the effectiveness of the same drugs in causing rapid loss of viability, culture lysis, and spheroplast formation. Autolysin triggering was suppressed by inhibitors of protein and ribonucleic acid biosynthesis but not by inhibitors of deoxyribonucleic acid synthesis. The beta-lactam-induced cell wall degradation did not seem to involve a direct stimulation of enzyme activity or synthesis of new enzyme molecules, and murein sacculi isolated from cells that had been preexposed to a triggering dose of beta-lactam treatment exhibited the same sensitivity to crude, homologous autolysins as sacculi prepared from untreated control bacteria. On the basis of these observations, mechanisms are considered for the triggering of E. coli autolysins and for the role of autolytic activity in bacterial spheroplast formation, lysis, and death. Images PMID:93877

  1. Synthesis of ¹⁸F-labelled β-lactams by using the Kinugasa reaction.

    PubMed

    Zlatopolskiy, Boris D; Krapf, Philipp; Richarz, Raphael; Frauendorf, Holm; Mottaghy, Felix M; Neumaier, Bernd

    2014-04-14

    Owing to their broad spectrum of biological activities and low toxicity, β-lactams are attractive lead structures for the design of novel molecular probes. However, the synthesis of positron emission tomography (PET)-isotope-labelled β-lactams has not yet been reported. Herein, we describe the simple preparation of radiofluorinated β-lactams by using the fast Kinugasa reaction between (18)F-labelled nitrone [(18)F]-1 and alkynes of different reactivity. Additionally, (18)F-labelled fused β-lactams were obtained through the reaction of a cyclic nitrone 7 with radiofluorinated alkynes [(18)F]-6 a,b. Radiochemical yields of the Kinugasa reaction products could be significantly increased by the use of different Cu(I) ligands, which additionally allowed a reduction in the amount of precursor and/or reaction time. Model radiofluorinated β-lactam-peptide and protein conjugates ([(18)F]-10 and (18)F-labelled BSA conjugate) were efficiently obtained in high yield under mild conditions (aq. MeCN, ambient temperature) within a short reaction time, demonstrating the suitability of the developed method for radiolabelling of sensitive molecules such as biopolymers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Implication of porins in beta-lactam resistance of Providencia stuartii.

    PubMed

    Tran, Que-Tien; Mahendran, Kozhinjampara R; Hajjar, Eric; Ceccarelli, Matteo; Davin-Regli, Anne; Winterhalter, Mathias; Weingart, Helge; Pagès, Jean-Marie

    2010-10-15

    An integrative approach combining biophysical and microbiological methods was used to characterize the antibiotic translocation through the outer membrane of Providencia stuartii. Two novel members of the General Bacterial Porin family of Enterobacteriaceae, named OmpPst1 and OmpPst2, were identified in P. stuartii. In the presence of ertapenem (ERT), cefepime (FEP), and cefoxitin (FOX) in growth media, several resistant derivatives of P. stuartii ATCC 29914 showed OmpPst1-deficiency. These porin-deficient strains showed significant decrease of susceptibility to β-lactam antibiotics. OmpPst1 and OmpPst2 were purified to homogeneity and reconstituted into planar lipid bilayers to study their biophysical characteristics and their interactions with β-lactam molecules. Determination of β-lactam translocation through OmpPst1 and OmpPst2 indicated that the strength of interaction decreased in the order of ertapenem ≫ cefepime > cefoxitin. Moreover, the translocation of these antibiotics through OmpPst1 was more efficient than through OmpPst2. Heterologous expression of OmpPst1 in the porin-deficient E. coli strain BL21(DE3)omp8 was associated with a higher antibiotic susceptibility of the E. coli cells to β-lactams compared with expression of OmpPst2. All our data enlighten the involvement of porins in the resistance of P. stuartii to β-lactam antibiotics.

  3. Resistance patterns to beta-lactams and quinolones in clinical isolates of bacteria from Cuban hospitals.

    PubMed

    Gonzáles, I; Niebla, A; Vallin, C

    1995-01-01

    The resistance patterns to 26 beta-lactams and 8 quinolones of clinical isolates from Cuban hospitals were evaluated using the disk susceptibility test, according to the NCCLS guidelines (1992). The genera studied were Escherichia sp (320), Enterobacter sp (10), Klebsiella sp (90), Proteus sp (10), Pseudomonas sp (90), Serratia sp (20), and Staphylococcus sp (80). Higher resistance to beta-lactams was observed in the genera Pseudomonas, Escherichia and Klebsiella. For fluoroquinolones we found no significant resistance, with the exception of the genus Klebsiella. The most effective antibiotics were cephalosporins of the second and third generations, fluoroquinolones, and non-classical beta-lactams (cephamycins, moxalactam and monobactams). On the contrary, a pronounced resistance was found to penicillin, oxacillin, ticarcillin, ampicillin, methicillin, nalidixic acid and cinoxacin. These resistance patterns correspond to the high consumption of these antibiotics throughout the country.

  4. Ammonia synthons for the multicomponent assembly of complex γ-lactams

    PubMed Central

    Tan, Darlene Q.; Martin, Kevin S.; Fettinger, James C.; Shaw, Jared T.

    2011-01-01

    The synthesis of γ-lactams that are unsubstituted at the 1-position (nitrogen) as well as their subsequent N-functionalization is reported. A recently discovered four-component reaction (4CR) is employed with either an ammonia precursor or a protected form of ammonia that can be deprotected in a subsequent synthetic step. These methods represent the first multicomponent assembly of complex lactam structures that are unsubstituted at nitrogen. In addition, two methods for the introduction of nitrogen substituents that are not possible through the original 4CR are reported. X-ray crystallographic analysis of representative structures reveals conformational changes in the core structure that will enable future deployment of this chemistry in the design and synthesis of diverse collections of lactams suitable for the discovery of new biological probes. PMID:21289284

  5. Distinct single-cell morphological dynamics under beta-lactam antibiotics

    PubMed Central

    Yao, Zhizhong; Kahne, Daniel; Kishony, Roy

    2012-01-01

    Summary The bacterial cell wall is conserved in prokaryotes, stabilizing cells against osmotic stress. Beta-lactams inhibit cell wall synthesis and induce lysis through a bulge-mediated mechanism; however, little is known about the formation dynamics and stability of these bulges. To capture processes of different timescales, we developed an imaging platform combining automated image analysis with live cell microscopy at high time resolution. Beta-lactam killing of Escherichia coli cells proceeded through four stages: elongation, bulge formation, bulge stagnation and lysis. Both the cell wall and outer membrane (OM) affect the observed dynamics; damaging the cell wall with different beta-lactams and compromising OM integrity cause different modes and rates of lysis. Our results show that the bulge formation dynamics is determined by how the cell wall is perturbed. The OM plays an independent role in stabilizing the bulge once it is formed. The stabilized bulge delays lysis, and allows recovery upon drug removal. PMID:23103254

  6. Radical photocyclization route for macrocyclic lactone ring expansion and conversion to macrocyclic lactams and ketones.

    PubMed

    Nishikawa, Keisuke; Yoshimi, Yasuharu; Maeda, Kousuke; Morita, Toshio; Takahashi, Ichiro; Itou, Tatsuya; Inagaki, Sho; Hatanaka, Minoru

    2013-01-18

    A new method for the synthesis of macrocyclic lactones, lactams, and ketones, which utilizes photoinduced intramolecular radical cyclization reactions of substrates containing tethered carboxylic acids and α,β-unsaturated carbonyl moieties, has been uncovered. Photocyclization of the carboxylic acids tethered acrylate ester, which were prepared starting from the macrocyclic lactones, gave the two-carbon elongated macrocyclic lactones via decarboxylation. Similar photoreactions of carboxylic acid tethered acryl amide or α,β-unsaturated ketone moieties, which were also prepared starting from the macrocyclic lactones, produced macrocyclic lactams or ketones, respectively. The simple approach can be readily applied to the preparation of a variety of macrocyclic lactones, lactams, and ketones with tunable ring sizes.

  7. Combinations of lysostaphin with beta-lactams are synergistic against oxacillin-resistant Staphylococcus epidermidis.

    PubMed

    Kiri, Nandini; Archer, Gordon; Climo, Michael W

    2002-06-01

    Oxacillin-resistant Staphylococcus aureus is rapidly killed by the endopeptidase lysostaphin, and the addition of beta-lactam antibiotics provides synergistic killing. We investigated the possibility that beta-lactams given in combination with lysostaphin would improve the activity of lysostaphin against oxacillin-resistant Staphylococcus epidermidis (ORSE), which is normally less susceptible to lysostaphin. Checkerboard synergy testing was performed for lysostaphin given in combination with oxacillin against 10 ORSE isolates for which the lysostaphin MICs were > o r= 8 microg/ml. The fractional inhibitory concentration index ranged from 0.0234 to 0.2656, indicating synergy, which was confirmed in growth curve experiments. In the rabbit model of experimental aortic valve endocarditis using an ORSE strain, the combination of lysostaphin and nafcillin was as effective as vancomycin alone and significantly better than lysostaphin or nafcillin alone. We conclude that beta-lactam antibiotics given in combination with lysostaphin are synergistic against many strains of ORSE.

  8. A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams

    NASA Astrophysics Data System (ADS)

    Chen, Yanni; Wang, Yongwei; Liu, Liqiang; Wu, Xiaoling; Xu, Liguang; Kuang, Hua; Li, Aike; Xu, Chuanlai

    2015-10-01

    A novel gold immunochromatographic assay (GICA) based on anti-β-lactam receptors was innovatively developed that successfully allowed rapid and simultaneous detection of fifteen β-lactams in milk samples in 5-10 minutes. By replacing the antibodies used in traditional GICA with anti-β-lactam receptors, the difficulty in producing broad specific antibodies against β-lactams was overcome. Conjugates of ampicillin with BSA and goat anti-mouse immunoglobulin (IgG) were immobilized onto the test and control lines on the nitrocellulose membrane, respectively. Since goat anti-mouse IgG does not combine with receptors, negative serum from mice labelled with gold nanoparticles (GNP) was mixed with GNP-labelled receptors. Results were obtained within 20 min using a paper-based sensor. The utility of the assay was confirmed by the analysis of milk samples. The limits of detection (LOD) for amoxicillin, ampicillin, penicillin G, penicillin V, cloxacillin, dicloxacillin, nafcillin, oxacillin, cefaclor, ceftezole, cefotaxime, ceftiofur, cefoperazone, cefathiamidine, and cefepime were 0.25, 0.5, 0.5, 0.5, 1, 5, 5, 10, 25, 10, 100, 10, 5, 5, and 2 ng mL-1, respectively, which satisfies the maximum residue limits (MRL) set by the European Union (EU). In conclusion, our newly developed GICA-based anti-β-lactam receptor assay provides a rapid and effective method for one-site detection of multiple β-lactams in milk samples.A novel gold immunochromatographic assay (GICA) based on anti-β-lactam receptors was innovatively developed that successfully allowed rapid and simultaneous detection of fifteen β-lactams in milk samples in 5-10 minutes. By replacing the antibodies used in traditional GICA with anti-β-lactam receptors, the difficulty in producing broad specific antibodies against β-lactams was overcome. Conjugates of ampicillin with BSA and goat anti-mouse immunoglobulin (IgG) were immobilized onto the test and control lines on the nitrocellulose membrane, respectively

  9. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams.

    PubMed

    Qiao, Yuan; Srisuknimit, Veerasak; Rubino, Frederick; Schaefer, Kaitlin; Ruiz, Natividad; Walker, Suzanne; Kahne, Daniel

    2017-07-01

    Peptidoglycan is an essential crosslinked polymer that surrounds bacteria and protects them from osmotic lysis. β-lactam antibiotics target the final stages of peptidoglycan biosynthesis by inhibiting the transpeptidases that crosslink glycan strands to complete cell wall assembly. Characterization of transpeptidases and their inhibition by β-lactams have been hampered by lack of access to a suitable substrate. We describe a general approach to accumulate Lipid II in bacteria and to obtain large quantities of this cell wall precursor. We demonstrate the utility of this strategy by isolating Staphylococcus aureus Lipid II and reconstituting the synthesis of crosslinked peptidoglycan by the essential penicillin-binding protein 2 (PBP2), which catalyzes both glycan polymerization and transpeptidation. We also show that we can compare the potencies of different β-lactams by directly monitoring transpeptidase inhibition. The methods reported here will enable a better understanding of cell wall biosynthesis and facilitate studies of next-generation transpeptidase inhibitors.

  10. Resistance to β-lactams in Bacteria Isolated from Different Types of Portuguese Cheese

    PubMed Central

    Amador, Paula; Fernandes, Ruben; Prudêncio, Cristina; Brito, Luísa

    2009-01-01

    The purpose of this study was to investigate the presence of β-lactam-resistant bacteria in six different types of Portuguese cheese. The numbers of ampicillin resistant (AMPr) bacteria varied from 4.7 × 102 to 1.5 × 107 CFU/g. Within 172 randomly selected β-lactam-resistant bacteria, 44 resistant phenotypes were found and 31.4% were multidrug resistant. The majority (85%) of the isolates identified belonged to the Enterobacteriaceae family. The presence of the blaTEM gene was detected in 80.9% of the tested isolates. The results suggest that without thermal processing of the milk and good hygienic practices, cheese may act as a vehicle of transfer of β-lactam-resistant bacteria to the gastrointestinal tract of consumers. PMID:19468324

  11. Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes.

    PubMed Central

    Smith, D J; Burnham, M K; Bull, J H; Hodgson, J E; Ward, J M; Browne, P; Brown, J; Barton, B; Earl, A J; Turner, G

    1990-01-01

    A cosmid clone containing closely linked beta-lactam antibiotic biosynthetic genes was isolated from a gene library of Flavobacterium sp. SC 12,154. The location within the cluster of the DNA thought to contain the gene for delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS), the first step in the beta-lactam antibiotic biosynthetic pathway, was identified by a novel method. This DNA facilitated the isolation, by cross-hybridization, of the corresponding DNA from Streptomyces clavuligerus ATCC 27064, Penicillium chrysogenum Oli13 and Aspergillus nidulans R153. Evidence was obtained which confirmed that the cross-hybridizing sequences contained the ACVS gene. In each case the ACVS gene was found to be closely linked to other beta-lactam biosynthetic genes and constituted part of a gene cluster. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2107074

  12. Redefining the Role of psr in β-Lactam Resistance and Cell Autolysis of Enterococcus hirae

    PubMed Central

    Sapunaric, Frédéric; Franssen, Christine; Stefanic, Patrick; Amoroso, Ana; Dardenne, Olivier; Coyette, Jacques

    2003-01-01

    The contribution of penicillin-binding protein 5 (PBP5) and the PBP5 synthesis repressor (Psr) to the β-lactam resistance, growth, and cell autolysis of wild-type strain ATCC 9790 and resistant strain R40 of Enterococcus hirae was investigated by disruption or substitution of the corresponding pbp5 and psr genes by Campbell-type recombination. The resulting modifications were confirmed by hybridization and PCR. The low susceptibility of E. hirae to β-lactams was confirmed to be largely dependent on the presence of PBP5. However, against all expectations, inactivation of psr in ATCC 9790 or complementation of R40 cells with psr did not modify the susceptibility to benzylpenicillin or the growth and cell autolysis rates. These results indicated that the psr gene does not seem to be involved in the regulation of PBP5 synthesis and consequently in β-lactam resistance or in the regulation of cell autolysis in E. hirae. PMID:14526002

  13. Novel synthesis of steroidal oximes and lactams and their biological evaluation as antiproliferative agents.

    PubMed

    Martínez-Pascual, Roxana; Meza-Reyes, Socorro; Vega-Baez, José Luis; Merino-Montiel, Penélope; Padrón, José M; Mendoza, Ángel; Montiel-Smith, Sara

    2017-04-07

    A novel three-step methodology to obtain 6a-aza-B-homo steroidal lactams has been developed starting from the easily available cholesterol and pregnenolone. In addition, a new procedure for the synthesis of a 6a-aza-B-homo steroidal lactam analog of vespertilin, starting from diosgenin has been established. In both synthetic pathways, the key intermediate is a hydroxyimino derivative obtained in a one- or two-step sequence from the starting materials. These methods avoid the use of hazardous oxidant agents in the process. The new steroidal oximes and lactams were examined for their antiproliferative activities against several tumor cell lines. The 6,23-dihydroxyimino derivative exhibited the highest activity with GI50 values of 11-22 µM.

  14. Cyclobutanone Analogues of β-Lactam Antibiotics: β-Lactamase Inhibitors with Untapped Potential?

    PubMed

    Devi, Prarthana; Rutledge, Peter J

    2017-02-16

    β-Lactam antibiotics have been used for many years to treat bacterial infections. However the effective treatment of an increasing range of microbial infections is threatened by bacterial resistance to β-lactams: the prolonged, widespread (and at times reckless) use of these drugs has spawned widespread resistance, which renders them ineffective against many bacterial strains. The cyclobutanone ring system is isosteric with β-lactam: in cyclobutanone analogues, the eponymous cyclic amide is replaced with an all-carbon ring, the amide N is substituted by a tertiary C-H α to a ketone. Cyclobutanone analogues of various β-lactam antibiotics have been investigated over the last 35 years, initially as prospective antibiotics in their own right and inhibitors of the β-lactamase enzymes that impart resistance to β-lactams. More recently they have been tested as inhibitors of other serine proteases and as mechanistic probes of β-lactam biosynthesis. Cyclobutanone analogues of the penam ring system are the first reversible inhibitors with moderate activity against all classes of β-lactamase; other compounds from this family inhibit Streptomyces R61 dd-carboxypeptidase/transpeptidase, human neutrophil elastase and porcine pancreatic elastase. But has their potential as enzyme inhibitors been fully exploited? Challenges in synthesising diversely functionalised cyclobutanone derivatives mean that only a limited number have been made (with limited structural diversity) and evaluated. This review surveys the different synthetic approaches that have been taken to these compounds, the investigations made to evaluate their biological activity and prospects for future developments in this area. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In vitro activity of beta-lactam antibiotics against CTX-M-producing Escherichia coli.

    PubMed

    Tärnberg, M; Ostholm-Balkhed, A; Monstein, H-J; Hällgren, A; Hanberger, H; Nilsson, L E

    2011-08-01

    Beta-lactam antibiotics have been discussed as options for the treatment of infections caused by multiresistant extended-spectrum beta-lactamase (ESBL)-producing bacteria if the minimum inhibitory concentration (MIC) is low. The objective of this study was to investigate the in vitro activity of different beta-lactam antibiotics against CTX-M-producing Escherichia coli. A total of 198 isolates of E. coli with the ESBL phenotype were studied. Polymerase chain reaction (PCR) amplification of CTX-M genes and amplicon sequencing were performed. The MICs for amoxicillin-clavulanic acid, aztreonam, cefepime, cefotaxime, ceftazidime, ceftibuten, ertapenem, imipenem, mecillinam, meropenem, piperacillin-tazobactam, and temocillin were determined with the Etest. Susceptibility was defined according to the breakpoints of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). MIC(50) and MIC(90) values were calculated. Isolates from CTX-M group 9 showed higher susceptibility to the beta-lactam antibiotics tested than isolates belonging to CTX-M group 1. More than 90% of the isolates belonging to CTX-M group 9 were susceptible to amoxicillin-clavulanic acid, ceftazidime, ceftibuten, piperacillin-tazobactam, and temocillin. The susceptibility was high to mecillinam, being 91%, regardless of the CTX-M group. All isolates were susceptible to imipenem and meropenem, and 99% to ertapenem. This study shows significant differences in susceptibility to different beta-lactam antibiotics among the CTX-M-producing E. coli isolates and a significant difference for many antibiotics tested between the CTX-M-producing groups 1 and 9. The good in vitro activity of other beta-lactam antibiotics compared to carbapenems indicate that clinical studies are warranted in order to examine the potential role of these beta-lactam antibiotics in the treatment of infections caused by multiresistant ESBL-producing E. coli.

  16. Kinetic Features of L,D-Transpeptidase Inactivation Critical for β-Lactam Antibacterial Activity

    PubMed Central

    Lecoq, Lauriane; Bougault, Catherine; Mainardi, Jean-Luc; Rice, Louis B.; Ethève-Quelquejeu, Mélanie; Gutmann, Laurent; Marie, Arul; Dubost, Lionel; Hugonnet, Jean-Emmanuel; Simorre, Jean-Pierre; Arthur, Michel

    2013-01-01

    Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldtfm) conveys high-level resistance to β-lactams of the penam class in Enterococcus faecium with a minimal inhibitory concentration (MIC) of ampicillin >2,000 µg/ml. Unexpectedly, Ldtfm does not confer resistance to β-lactams of the carbapenem class (imipenem MIC = 0.5 µg/ml) whereas cephems display residual activity (ceftriaxone MIC = 128 µg/ml). Mass spectrometry, fluorescence kinetics, and NMR chemical shift perturbation experiments were performed to explore the basis for this specificity and identify β-lactam features that are critical for efficient L,D-transpeptidase inactivation. We show that imipenem, ceftriaxone, and ampicillin acylate Ldtfm by formation of a thioester bond between the active-site cysteine and the β-lactam-ring carbonyl. However, slow acylation and slow acylenzyme hydrolysis resulted in partial Ldtfm inactivation by ampicillin and ceftriaxone. For ampicillin, Ldtfm acylation was followed by rupture of the C5–C6 bond of the β-lactam ring and formation of a secondary acylenzyme prone to hydrolysis. The saturable step of the catalytic cycle was the reversible formation of a tetrahedral intermediate (oxyanion) without significant accumulation of a non-covalent complex. In agreement, a derivative of Ldtfm blocked in acylation bound ertapenem (a carbapenem), ceftriaxone, and ampicillin with similar low affinities. Thus, oxyanion and acylenzyme stabilization are both critical for rapid L,D-transpeptidase inactivation and antibacterial activity. These results pave the way for optimization of the β-lactam scaffold for L,D-transpeptidase-inactivation. PMID:23861815

  17. Can beta-lactams be re-engineered to beat MRSA?

    PubMed

    Livermore, D M

    2006-04-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are important nosocomial pathogens worldwide and now are also of growing importance in community-acquired infection. Their resistance depends upon a supplementary peptidoglycan transpeptidase, PBP2' (PBP-2a), which continues to function when normal PBPs have been inactivated by beta-lactams. PBP2' is encoded by the mecA gene, which is carried by the staphylococcal cassette chromosome, a large and somewhat variable DNA insert of uncertain origin. PBP2' does not wholly lack affinity for beta-lactams, but its affinity for available analogues is very weak. In principle, it should be possible to re-engineer beta-lactams to bind PBP2' strongly, and the desirability of this approach is self-evident: no other antibiotic class has a record equal to the beta-lactams for safety and efficacy. Moreover, there is consensus that beta-lactams are inherently more efficacious than vancomycin against infections due to susceptible staphylococci. In practice, finding viable PBP2'-active beta-lactams has proved difficult and the catalogue of near-misses extends back to the 1980s. At last, however, one cephalosporin with high affinity for PBP2'--ceftobiprole--is entering phase III trials. Ceftobiprole inhibits MRSA at 1-2 mg/L under standard conditions. Even when mecA/PBP2' was induced strongly, ceftobiprole MICs for MRSA only reached 4 mg/L, a clinically attainable concentration. A phase II trial in skin and skin structure infection recorded cures by ceftobiprole in 4/4 MRSA infections, and results of the phase III trials are awaited with great interest.

  18. Case-Control Study of Drug Monitoring of β-Lactams in Obese Critically Ill Patients

    PubMed Central

    Taccone, Fabio Silvio; Wolff, Fleur; Cotton, Frédéric; Beumier, Marjorie; De Backer, Daniel; Roisin, Sandrine; Lorent, Sophie; Surin, Rudy; Seyler, Lucie; Vincent, Jean-Louis; Jacobs, Frédérique

    2013-01-01

    Severe sepsis and septic shock can alter the pharmacokinetics of broad-spectrum β-lactams (meropenem, ceftazidime/cefepime, and piperacillin-tazobactam), resulting in inappropriate serum concentrations. Obesity may further modify the pharmacokinetics of these agents. We reviewed our data on critically ill obese patients (body mass index of ≥30 kg/m2) treated with a broad-spectrum β-lactam in whom therapeutic drug monitoring was performed and compared the data to those obtained in critically nonobese patients (body mass index of <25 kg/m2) to assess whether there were differences in reaching optimal drug concentrations for the treatment of nosocomial infections. Sixty-eight serum levels were obtained from 49 obese patients. There was considerable variability in β-lactam serum concentrations (coefficient of variation of 50% to 92% for the three drugs). Standard drug regimens of β-lactams resulted in insufficient serum concentrations in 32% of the patients and overdosed concentrations in 25%. Continuous renal replacement therapy was identified by multivariable analysis as a risk factor for overdosage and a protective factor for insufficient β-lactam serum concentrations. The serum drug levels from the obese cohort were well matched for age, gender, renal function, and sequential organ failure assessment (SOFA) score to 68 serum levels measured in 59 nonobese patients. The only difference observed between the two cohorts was in the subgroup of patients treated with meropenem and who were not receiving continuous renal replacement therapy: serum concentrations were lower in the obese cohort. No differences were observed in pharmacokinetic variables between the two groups. Routine therapeutic drug monitoring of β-lactams should be continued in obese critically ill patients. PMID:23147743

  19. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex.

    PubMed

    Guérin, François; Isnard, Christophe; Cattoir, Vincent; Giard, Jean Christophe

    2015-12-01

    Enterobacter cloacae complex (ECC), an opportunistic pathogen causing numerous infections in hospitalized patients worldwide, is able to resist β-lactams mainly by producing the AmpC β-lactamase enzyme. AmpC expression is highly inducible in the presence of some β-lactams, but the underlying genetic regulation, which is intricately linked to peptidoglycan recycling, is still poorly understood. In this study, we constructed different mutant strains that were affected in genes encoding enzymes suspected to be involved in this pathway. As expected, the inactivation of ampC, ampR (which encodes the regulator protein of ampC), and ampG (encoding a permease) abolished β-lactam resistance. Reverse transcription-quantitative PCR (qRT-PCR) experiments combined with phenotypic studies showed that cefotaxime (at high concentrations) and cefoxitin induced the expression of ampC in different ways: one involving NagZ (a N-acetyl-β-D-glucosaminidase) and another independent of NagZ. Unlike the model established for Pseudomonas aeruginosa, inactivation of DacB (also known as PBP4) was not responsible for a constitutive ampC overexpression in ECC, whereas it caused AmpC-mediated high-level β-lactam resistance, suggesting a post-transcriptional regulation mechanism. Global transcriptomic analysis by transcriptome sequencing (RNA-seq) of a dacB deletion mutant confirmed these results. Lastly, analysis of 37 ECC clinical isolates showed that amino acid changes in the AmpD sequence were likely the most crucial event involved in the development of high-level β-lactam resistance in vivo as opposed to P. aeruginosa where dacB mutations have been commonly found. These findings bring new elements for a better understanding of β-lactam resistance in ECC, which is essential for the identification of novel potential drug targets.

  20. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex

    PubMed Central

    Guérin, François; Isnard, Christophe; Giard, Jean Christophe

    2015-01-01

    Enterobacter cloacae complex (ECC), an opportunistic pathogen causing numerous infections in hospitalized patients worldwide, is able to resist β-lactams mainly by producing the AmpC β-lactamase enzyme. AmpC expression is highly inducible in the presence of some β-lactams, but the underlying genetic regulation, which is intricately linked to peptidoglycan recycling, is still poorly understood. In this study, we constructed different mutant strains that were affected in genes encoding enzymes suspected to be involved in this pathway. As expected, the inactivation of ampC, ampR (which encodes the regulator protein of ampC), and ampG (encoding a permease) abolished β-lactam resistance. Reverse transcription-quantitative PCR (qRT-PCR) experiments combined with phenotypic studies showed that cefotaxime (at high concentrations) and cefoxitin induced the expression of ampC in different ways: one involving NagZ (a N-acetyl-β-d-glucosaminidase) and another independent of NagZ. Unlike the model established for Pseudomonas aeruginosa, inactivation of DacB (also known as PBP4) was not responsible for a constitutive ampC overexpression in ECC, whereas it caused AmpC-mediated high-level β-lactam resistance, suggesting a post-transcriptional regulation mechanism. Global transcriptomic analysis by transcriptome sequencing (RNA-seq) of a dacB deletion mutant confirmed these results. Lastly, analysis of 37 ECC clinical isolates showed that amino acid changes in the AmpD sequence were likely the most crucial event involved in the development of high-level β-lactam resistance in vivo as opposed to P. aeruginosa where dacB mutations have been commonly found. These findings bring new elements for a better understanding of β-lactam resistance in ECC, which is essential for the identification of novel potential drug targets. PMID:26438498

  1. Diagnosis of allergy against beta-lactams in primary care: prevalence and diagnostic criteria.

    PubMed

    Salden, Odette A E; Rockmann, Heike; Verheij, Theo J M; Broekhuizen, Berna D L

    2015-06-01

    Secondary care studies showed that a recorded allergy to beta-lactams could not be confirmed by valid allergy testing in >85% of cases. In daily practice, recorded beta-lactam allergies probably cause prescription of secondary choice antibiotics. This overrating of beta-lactam allergy hampers appropriate use of narrow spectrum antibiotic and generates unnecessary cost and bacterial resistance. To assess registration and over diagnosis of allergies against beta-lactams in Dutch primary care. A retrospective cohort study in 8288 primary care subjects was performed. Patients with recorded allergy were identified through International Classification for Primary Care coding. Signs and symptoms of the recorded allergic reaction and patient's characteristics were extracted from patient's files and patients were sent a questionnaire. The probability of allergy was based on a composite reference standard that was scored by two authors independently. One hundred sixty-three subjects had a recorded allergy (2.0%). In 51.5% of cases, no characteristics of the recorded allergic reaction were reported in patients' medical files. Based on our composite reference standard, allergy was excluded in 19 subjects (11.7%). Risk factors for allergy registration were female gender, age <4 years, and the comorbidities-asthma, allergies and skin disorders. The prevalence of recorded allergy against beta-lactam antibiotics in a large Dutch primary care centre was 2%. Due to lack of registration of accompanying signs and symptoms of the recorded allergy, this diagnosis is uncertain in most patients. Better documentation and classification by a screening algorithm of future possible allergic reactions to beta-lactams are needed in primary care. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Case-control study of drug monitoring of β-lactams in obese critically ill patients.

    PubMed

    Hites, Maya; Taccone, Fabio Silvio; Wolff, Fleur; Cotton, Frédéric; Beumier, Marjorie; De Backer, Daniel; Roisin, Sandrine; Lorent, Sophie; Surin, Rudy; Seyler, Lucie; Vincent, Jean-Louis; Jacobs, Frédérique

    2013-02-01

    Severe sepsis and septic shock can alter the pharmacokinetics of broad-spectrum β-lactams (meropenem, ceftazidime/cefepime, and piperacillin-tazobactam), resulting in inappropriate serum concentrations. Obesity may further modify the pharmacokinetics of these agents. We reviewed our data on critically ill obese patients (body mass index of ≥ 30 kg/m(2)) treated with a broad-spectrum β-lactam in whom therapeutic drug monitoring was performed and compared the data to those obtained in critically nonobese patients (body mass index of <25 kg/m(2)) to assess whether there were differences in reaching optimal drug concentrations for the treatment of nosocomial infections. Sixty-eight serum levels were obtained from 49 obese patients. There was considerable variability in β-lactam serum concentrations (coefficient of variation of 50% to 92% for the three drugs). Standard drug regimens of β-lactams resulted in insufficient serum concentrations in 32% of the patients and overdosed concentrations in 25%. Continuous renal replacement therapy was identified by multivariable analysis as a risk factor for overdosage and a protective factor for insufficient β-lactam serum concentrations. The serum drug levels from the obese cohort were well matched for age, gender, renal function, and sequential organ failure assessment (SOFA) score to 68 serum levels measured in 59 nonobese patients. The only difference observed between the two cohorts was in the subgroup of patients treated with meropenem and who were not receiving continuous renal replacement therapy: serum concentrations were lower in the obese cohort. No differences were observed in pharmacokinetic variables between the two groups. Routine therapeutic drug monitoring of β-lactams should be continued in obese critically ill patients.

  3. Auxiliary factors: a chink in the armor of MRSA resistance to β-lactam antibiotics.

    PubMed

    Roemer, Terry; Schneider, Tanja; Pinho, Mariana G

    2013-10-01

    Combination agents provide an important orthogonal approach to treat infectious diseases, particularly those caused by drug resistant pathogens. Indeed, applying a biologically 'rational' and systems-level paradigm to discover potent, selective, and synergistic agents would augment current (and arguably overly relied upon) empirical and serendipitous approaches to such discovery efforts. Here, we review the cellular mechanisms of β-lactam drug resistance and tolerance achieved amongst methicillin-resistant Staphylococcus aureus (MRSA) as well as their molecular targets and strategies to identify cognate inhibitors as potential combination agents to restore β-lactam efficacy against MRSA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Cyclic sulfamidates as versatile lactam precursors. An evaluation of synthetic strategies towards (-)-aphanorphine.

    PubMed

    Bower, John F; Szeto, Peter; Gallagher, Timothy

    2007-01-07

    A full account of studies which led to the efficient asymmetric synthesis of (-)-aphanorphine is reported. Two routes to the key cyclic sulfamidate intermediate are described, the first was based on a chiral auxiliary approach and the second utilised asymmetric hydrogenation methodology. A range of C(3)-substituted lactams (, and ) were synthesised and evaluated as precursors for Pd(0) catalysed entries (based on (i) alpha-arylation of a lactam enolate and (ii) reductive Heck reaction) to the 3-benzazepine core of . These approaches were less effective than an aryl radical cyclisation which allowed the completion of a synthesis of in 12 steps from anisaldehyde.

  5. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

    PubMed

    Byrd, Katherine M

    2015-01-01

    The conjugate addition reaction has been a useful tool in the formation of carbon-carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  6. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    PubMed Central

    2015-01-01

    Summary The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams. PMID:25977728

  7. Automated three-component synthesis of a library of γ-lactams

    PubMed Central

    Fenster, Erik; Hill, David; Reiser, Oliver

    2012-01-01

    Summary A three-component method for the synthesis of γ-lactams from commercially available maleimides, aldehydes, and amines was adapted to parallel library synthesis. Improvements to the chemistry over previous efforts include the optimization of the method to a one-pot process, the management of by-products and excess reagents, the development of an automated parallel sequence, and the adaption of the method to permit the preparation of enantiomerically enriched products. These efforts culminated in the preparation of a library of 169 γ-lactams. PMID:23209515

  8. Automated three-component synthesis of a library of γ-lactams.

    PubMed

    Fenster, Erik; Hill, David; Reiser, Oliver; Aubé, Jeffrey

    2012-01-01

    A three-component method for the synthesis of γ-lactams from commercially available maleimides, aldehydes, and amines was adapted to parallel library synthesis. Improvements to the chemistry over previous efforts include the optimization of the method to a one-pot process, the management of by-products and excess reagents, the development of an automated parallel sequence, and the adaption of the method to permit the preparation of enantiomerically enriched products. These efforts culminated in the preparation of a library of 169 γ-lactams.

  9. Synthesis of cryptophycins via an N-acyl-beta-lactam macrolactonization.

    PubMed

    Vidya, Ramdas; Eggen, MariJean; Nair, Sajiv K; Georg, Gunda I; Himes, Richard H

    2003-12-12

    An efficient and concise approach to the synthesis of the macrolide core of the cryptophycins has been developed. A novel macrolactonization utilizing a reactive acyl-beta-lactam intermediate incorporates the beta-amino acid moiety within the 16-membered macrolide core. This modular approach, involving a cyanide-initiated acyl-beta-lactam ring opening followed by cyclization, was successfully applied to the total synthesis of cryptophycin-24. The strategy was also used in an efficient synthesis of the 6,6-dimethyl-substituted dechlorocryptophycin-52. In this case, the cyanide-initiated ring opening of the bis-substituted 2-azetidinone followed by macrolactonization was achieved through a catalytic process.

  10. Synergistic effects of vancomycin and β-lactams against vancomycin highly resistant Staphylococcus aureus.

    PubMed

    Tabuchi, Fumiaki; Matsumoto, Yasuhiko; Ishii, Masaki; Tatsuno, Keita; Okazaki, Mitsuhiro; Sato, Tomoaki; Moriya, Kyoji; Sekimizu, Kazuhisa

    2017-06-01

    We previously reported isolating vancomycin (VAN) highly resistant Staphylococcus aureus (VRSA) strains from clinical methicillin-resistant S. aureus strains by repeating steps of in vitro mutagenesis and VAN selection. Here we describe that the in vitro susceptibility of these VRSA strains to VAN was markedly increased by combined treatment with β-lactams such as ceftriaxone and oxacillin. Furthermore, in an in vivo silkworm infection model with VRSA, a combination of VAN and ceftriaxone exhibited therapeutic effects, whereas a combination of VAN and oxacillin did not. These findings suggest that combining VAN with an appropriate β-lactam, such as ceftriaxone, is therapeutically effective against infectious diseases caused by VRSA.

  11. Substituent effects on the molecular and electronic structure of β-lactams

    NASA Astrophysics Data System (ADS)

    Glidewell, Christopher; Mollison, Gavin S. M.

    1981-03-01

    Calculations have been made of the molecular geometry and electron distribution for each of eight unfused β-lactams and thirteen fused β-Iactams, using MINDO/3: electron distributions for unfused β-lactams have been determined by ab initio calculations. Systematic variations with substituent are found in d(C-N) and d(C-O), and in the net atomic charges. The geometrical and electronic effects of imposed non-planarity at nitrogen have been investigated for the parent β-Iactam, azetidin-2-one.

  12. Review of Antibiotic and Non-Antibiotic Properties of Beta-lactam Molecules.

    PubMed

    Ochoa-Aguilar, Abraham; Ventura-Martinez, Rosa; Sotomayor-Sobrino, Marco Antonio; Gómez, Claudia; Morales-Espinoza, María del Rosario

    2016-01-01

    Beta-lactam molecules are a family of drugs commonly used for their antibiotic properties; however, recent research has shown that several members of this group present a large number of other effects such as neuroprotective, antioxidant, analgesic or immunomodulatory capabilities. These properties have been used in both preclinical and clinical studies in different diseases such as hypoxic neuronal damage or acute and chronic pain. The present work briefly reviews the antibiotic effect of these molecules, and will then focus specially on the non-antibiotic effects of three beta-lactam subfamilies: penicillins, cephalosporins and beta lactamase inhibitors, each of which have different molecular structure and pharmacokinetics and therefore have several potential clinical applications. A thorough search of bibliographic databases for peer-reviewed research was performed including only classic experiments or high quality reviews for the antibiotic mechanisms of beta-lactam molecules and only experimental research papers where included when the non-antibiotic properties of these molecules were searched. Only published articles from indexed journals were included. Quality of retrieved papers was assessed using standard tools. The characteristics of screened papers were described and findings of included studies were contextualized to either a mechanistic or a clinical framework. Seventy-eight papers were included in the review; the majority (56) were relative to the non-antibiotic properties of beta-lactam molecules. The non-antibiotic effects reviewed were divided accordingly to the amount of information available for each one. Twelve papers outlined the epileptogenic effects induced by beta-lactam molecules administration; these included both clinical and basic research as well as probable mechanistic explanations. Eighteen papers described a potential neuroprotective effect, mostly in basic in vitro and in vivo experiments. Analgesic properties where identified in

  13. Urea/oxalamide tethered β-lactam-7-chloroquinoline conjugates: synthesis and in vitro antimalarial evaluation.

    PubMed

    Singh, Pardeep; Raj, Raghu; Singh, Parvesh; Gut, Jiri; Rosenthal, Philip J; Kumar, Vipan

    2014-01-01

    The manuscript pertains to the synthesis of urea/oxalamide tethered β-lactam-7-chloroquinoline conjugates with well modulated chain lengths and their antimalarial evaluation. The results reveal the dependence of activity profiles on the N-1 substituent of the β-lactam ring, the nature of the linker as well as the length of the alkyl chain. The most potent of the tested compounds showed an IC50 of 34.97 nM against chloroquine resistant W2 strain of Plasmodium falciparum.

  14. 4-Aminoquinoline-β-lactam conjugates: synthesis, antimalarial, and antitubercular evaluation.

    PubMed

    Raj, Raghu; Biot, Christophe; Carrère-Kremer, Séverine; Kremer, Laurent; Guérardel, Yann; Gut, Jiri; Rosenthal, Philip J; Kumar, Vipan

    2014-02-01

    A library of quinoline-β-lactam-based hybrids was synthesized and tested for their antimalarial and antitubercular activities. The present antimalarial data showed the dependence of activity on the nature of linker, N-1 substituent of the β-lactam ring as well as the length of alkyl chain. Most of the compounds are not as efficient as chloroquine in inhibiting the culture growth of Plasmodium falciparum W2 strain. Nevertheless, the synthesized hybrids showed better antitubercular activities (up to five times) compared with cephalexin (up to three times) and ethionamide.

  15. Diastereoselective Synthesis of γ- and δ-Lactams from Imines and Sulfone-Substituted Anhydrides

    PubMed Central

    2015-01-01

    Sulfone-substituted γ- and δ-lactams have been prepared in a single step with high diastereoselectivity. Sulfonylglutaric anhydrides produce intermediates that readily decarboxylate to provide δ-lactams with high diastereoselectivity. Substituents at the 3- or 4-position of the glutaric anhydride induce high levels of stereocontrol. Sulfonylsuccinic anhydrides produce intermediate carboxylic acids that can be trapped as methyl esters or allowed to decarboxylate under mild conditions. This method has been applied to a short synthesis of the pyrrolizidine alkaloid (±)-isoretronecanol. PMID:24552208

  16. Soluble penicillin-binding protein 2a: beta-lactam binding and inhibition by non-beta-lactams using a 96-well format.

    PubMed

    Toney, J H; Hammond, G G; Leiting, B; Pryor, K D; Wu, J K; Cuca, G C; Pompliano, D L

    1998-01-01

    High level methicillin resistance in Staphylococcus aureus is dependent upon the acquisition of the mecA gene encoding penicillin-binding protein 2a (PBP2a). PBP2a is a member of a family of peptidoglycan biosynthetic enzymes involved in assembly of the cell wall in bacteria and is poorly inactivated by beta-lactam antibiotics. We describe a 96-well-filter binding assay using recombinant, soluble PBP2a which allows for kinetic measurement of penicillin binding. The deacylation rate constant for the PBP2a-penicillin G covalent complex was found to be 5.7 +/- 1.0 x 10(-5) s-1 at 30 degrees C (half-life of approximately 200 min). For the PBP2a acylation reaction, the value of K(m) (penicillin G) = 0.5 +/- 0.1 mM and kcat = 1 x 10(-3) s-1, which yields a second-order rate constant (kcat/K(m)) for inactivation of 2.0 M-1 s-1. Using this assay, several non-beta-lactam inhibitors including Cibacron blue have been found which exhibit IC50 values between 10 and 30 microM. The binding affinities of several carbapenems and beta-lactams correlated well between the filter binding assay described in this report and an electrophoretic assay for PBP2a using membranes prepared form methicillin-resistant S. aureus.

  17. Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis

    PubMed Central

    Gaudelli, Nicole M.; Townsend, Craig A.

    2014-01-01

    Nonribosomal peptide synthetases (NRPSs) are versatile engines of bioactive natural product biosynthesis that function according to the multiple carrier thiotemplate mechanism. C-terminal thioesterase (TE) domains of these giant modular proteins typically catalyze product release by hydrolysis or macrocylization. We now report an unprecedented, dual-function TE involved in nocardicin A biosynthesis, the paradigm monocyclic β-lactam antibiotic. Contrary to expectation, a stereodefined series of potential peptide substrates for the nocardicin TE domain failed to undergo hydrolysis. The stringent discrimination against peptide intermediates was dramatically overcome by prior monocyclic β-lactam formation at an L-seryl site. Kinetic data are interpreted such that the TE domain acts as a gatekeeper to hold the assembling peptide on an upstream domain until β-lactam formation takes place and then rapidly catalyzes epimerization, not previously observed as a TE catalytic function, and thioesterase cleavage to discharge a fully fledged pentapeptide β-lactam harboring nocardicin G, the universal precursor of the nocardicins. PMID:24531841

  18. How β-Lactam Antibiotics Enter Bacteria: A Dialogue with the Porins

    PubMed Central

    Molitor, Alexander; Bolla, Jean-Michel; Bessonov, Andrey N.; Winterhalter, Mathias; Pagès, Jean-Marie

    2009-01-01

    Background Multi-drug resistant (MDR) infections have become a major concern in hospitals worldwide. This study investigates membrane translocation, which is the first step required for drug action on internal bacterial targets. β-lactams, a major antibiotic class, use porins to pass through the outer membrane barrier of Gram-negative bacteria. Clinical reports have linked the MDR phenotype to altered membrane permeability including porin modification and efflux pump expression. Methodology/Principal Findings Here influx of β-lactams through the major Enterobacter aerogenes porin Omp36 is characterized. Conductance measurements through a single Omp36 trimer reconstituted into a planar lipid bilayer allowed us to count the passage of single β-lactam molecules. Statistical analysis of each transport event yielded the kinetic parameters of antibiotic travel through Omp36 and distinguishable translocation properties of β-lactams were quantified for ertapenem and cefepime. Expression of Omp36 in an otherwise porin-null bacterial strain is shown to confer increases in the killing rate of these antibiotics and in the corresponding bacterial susceptibility. Conclusions/Significance We propose the idea of a molecular “passport” that allows rapid transport of substrates through porins. Deciphering antibiotic translocation provides new insights for the design of novel drugs that may be highly effective at passing through the porin constriction zone. Such data may hold the key for the next generation of antibiotics capable of rapid intracellular accumulation to circumvent the further development MDR infections. PMID:19434239

  19. In Vitro and In Vivo Synergy of the Oxadiazole Class of Antibacterials with β-Lactams

    PubMed Central

    Janardhanan, Jeshina; Meisel, Jayda E.; Ding, Derong; Schroeder, Valerie A.; Wolter, William R.; Mobashery, Shahriar

    2016-01-01

    The oxadiazole antibacterials target the bacterial cell wall and are bactericidal. We investigated the synergism of ND-421 with the commonly used β-lactams and non-β-lactam antibiotics by the checkerboard method and by time-kill assays. ND-421 synergizes well with β-lactam antibiotics, and it also exhibits a long postantibiotic effect (4.7 h). We also evaluated the in vivo efficacy of ND-421 in a murine neutropenic thigh infection model alone and in combination with oxacillin. ND-421 has in vivo efficacy by itself in a clinically relevant infection model (1.49 log10 bacterial reduction for ND-321 versus 0.36 log10 for linezolid with NRS119) and acts synergistically with β-lactam antibiotics in vitro and in vivo, and the combination of ND-421 with oxacillin is efficacious in a mouse neutropenic thigh methicillin-resistant Staphylococcus aureus (MRSA) infection model (1.60 log10 bacterial reduction). The activity of oxacillin was potentiated in the presence of ND-421, as the strain would have been resistant to oxacillin otherwise. PMID:27401567

  20. Synergism at clinically attainable concentrations of aminoglycoside and beta-lactam antibiotics.

    PubMed Central

    Hooton, T M; Blair, A D; Turck, M; Counts, G W

    1984-01-01

    We evaluated the in vitro synergistic activity at clinically attainable concentrations of combinations of aminoglycoside and beta-lactam antibiotics against 30 gentamicin-resistant clinical isolates of gram-negative bacilli. All 56 pairs of 4 aminoglycosides and 14 beta-lactams were evaluated. Combinations with amikacin demonstrated inhibitory synergistic activity in 29% of the assays, as compared with 22% for netilmicin (P = 0.018), 17% for gentamicin (P less than 0.001), and 13% for tobramycin (P less than 0.001). Among the beta-lactams, combinations with cefoperazone, ceftriaxone, or cefpiramide (SM-1652) demonstrated inhibitory synergistic activity most often (39, 38, and 35% of the assays, respectively) and with ceforanide, cefsulodin, and imipenem least often (less than or equal to 8% each). The most active combination was amikacin and ceftriaxone, with which 67% of the assays demonstrated inhibitory synergism. Isolates with high-level resistance to either antibiotic in a combination were unlikely to be inhibited synergistically by the combination. Further, combinations generally demonstrated little synergistic activity against isolates highly susceptible to beta-lactams. PMID:6517544

  1. Simple and suitable immunosensor for β-lactam antibiotics analysis in real matrixes: milk, serum, urine.

    PubMed

    Merola, Giovanni; Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi

    2015-03-15

    The anti-penicillin G was conjugated to avidin-peroxidase and biotin to obtain immunogen and competitor which were then used to develop a competitive immunosensor assay for the detection of penicillin G and other β-lactam antibiotics, with Kaff values of the order of 10(8) M(-1). The new immunosensor appears to afford a number of advantages in terms of sensitivity, possibility of "in situ" analysis, but especially of simplicity and lower costs, compared with other existing devices, or different chemical instrumental methods reported in the literature and used for the analysis of β-lactam compounds. Satisfactory results were found in the analysis of real matrixes and good recoveries were obtained by applying the standard addition method to spiked milk, urine, serum and drug samples. The new device uses an amperometric electrode for hydrogen peroxide as transducer, the BSA-penicillin G immobilized on polymeric membrane overlapping the amperometric transducer and the peroxidase enzyme as marker. It proved to be highly sensitive, inexpensive and easily reproducible; LOD was of the order of 10(-11)M. Lastly, the new immunosensor displayed low selectivity versus the entire class of β-lactam antibiotics and higher selectivity toward other classes of non-β-lactam antibiotics.

  2. Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.

    PubMed

    Lee, Young-Duck; Park, Jong-Hyun

    2016-02-01

    Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.

  3. Continuous infusion of beta-lactam antibiotics in severe infections: a review of its role.

    PubMed

    Roberts, Jason A; Paratz, Jennifer; Paratz, Elizabeth; Krueger, Wolfgang A; Lipman, Jeffrey

    2007-07-01

    Continuous infusion of beta-lactam antibiotics has been widely promoted to optimise their time-dependent activity. Increasing evidence is emerging suggesting potential benefits in patient populations with altered pathophysiology, such as seriously ill patients. From a pharmacokinetic viewpoint, much information supports higher trough concentrations of beta-lactam antibiotics when administered by continuous infusion. This advantage of continuous infusion translates into a superior ability to achieve pharmacodynamic targets, particularly when the minimum inhibitory concentration (MIC) of the pathogen is >or=4 mg/L. One drawback of continuous infusion may be limited physicochemical stability. This issue exists particularly for carbapenem antibiotics whereby prolonged infusions (i.e. >3h) can be used to improve the time above the MIC compared with conventional bolus dosing. Few studies have examined clinical outcomes of bolus and continuous dosing of beta-lactam antibiotics in seriously ill patients. No statistically significant differences have been shown for: mortality; time to normalisation of leukocytosis or pyrexia; or duration of mechanical ventilation, intensive care unit stay or hospital stay. Some evidence suggests improved clinical cure and resolution of illness with continuous infusion in seriously ill patients. Pharmacoeconomic advantages of continuous infusion of beta-lactam antibiotics are well characterised. Available data suggest that seriously ill patients with severe infections requiring significant antibiotic courses (>or=4 days) may be the subgroup that will achieve better outcomes with continuous infusion.

  4. Selective Pharmacologic Inhibition of a PASTA Kinase Increases Listeria monocytogenes Susceptibility to β-Lactam Antibiotics

    PubMed Central

    Pensinger, Daniel A.; Aliota, Matthew T.; Schaenzer, Adam J.; Boldon, Kyle M.; Ansari, Israr-ul H.; Vincent, William J. B.; Knight, Benjamin; Reniere, Michelle L.; Striker, Rob

    2014-01-01

    While β-lactam antibiotics are a critical part of the antimicrobial arsenal, they are frequently compromised by various resistance mechanisms, including changes in penicillin binding proteins of the bacterial cell wall. Genetic deletion of the penicillin binding protein and serine/threonine kinase-associated protein (PASTA) kinase in methicillin-resistant Staphylococcus aureus (MRSA) has been shown to restore β-lactam susceptibility. However, the mechanism remains unclear, and whether pharmacologic inhibition would have the same effect is unknown. In this study, we found that deletion or pharmacologic inhibition of the PASTA kinase in Listeria monocytogenes by the nonselective kinase inhibitor staurosporine results in enhanced susceptibility to both aminopenicillin and cephalosporin antibiotics. Resistance to vancomycin, another class of cell wall synthesis inhibitors, or antibiotics that inhibit protein synthesis was unaffected by staurosporine treatment. Phosphorylation assays with purified kinases revealed that staurosporine selectively inhibited the PASTA kinase of L. monocytogenes (PrkA). Importantly, staurosporine did not inhibit a L. monocytogenes kinase without a PASTA domain (Lmo0618) or the PASTA kinase from MRSA (Stk1). Finally, inhibition of PrkA with a more selective kinase inhibitor, AZD5438, similarly led to sensitization of L. monocytogenes to β-lactam antibiotics. Overall, these results suggest that pharmacologic targeting of PASTA kinases can increase the efficacy of β-lactam antibiotics. PMID:24867981

  5. Susceptibility of Enterobacteriaceae to beta-lactam agents and fluoroquinolones: a 3-year survey in France.

    PubMed

    Sirot, J; Nicolas-Chanoine, M H; Chardon, H; Avril, J L; Cattoen, C; Croix, J C; Dabernat, H; Fosse, T; Ghnassia, J C; Lecaillon, E; Marmonier, A; Roussel-Delvallez, M; Soussy, C J; Trevoux, A; Vandenesch, F; Dib, C; Moniot-Ville, N; Rezvani, Y

    2002-04-01

    To assess trends in the susceptibility to beta-lactam agents and to fluoroquinolones of clinically relevant Enterobacteriaceae isolated over a 3-year period in 14 French hospital laboratories. During the second quarter of 1996, 1997 and 1998, 180 consecutive non-duplicate isolates of Enterobacteriaceae were collected in each center. Sixteen beta-lactams and four quinolones were tested by the disk diffusion method. In addition, the double-disk synergy test was used to screen for the production of extended-spectrum beta-lactamase (ESBL). Totals of 2507, 2312 and 2506 clinical isolates were obtained in each period, respectively. The distribution of Enterobacteriaceae species according to clinical specimens and wards was similar in each study period. No significant variation in the susceptibility rates to beta-lactams and fluoroquinolones was observed, except in Klebsiella pneumoniae and Enterobacter aerogenes. The prevalence of ESBL-producing isolates decreased from 18% to 9% in the former, while it increased from 32% to 54% in the latter. At the same time, the susceptibility to ofloxacin and pefloxacin increased for K. pneumoniae (P < 0.003) and cephalosporinase-producing species (P < 0.05), except Enterobacter spp. Over the 3-year study period beta-lactams and fluoroquinolones remained highly active against Enterobacteriaceae clinical isolates, with the exception of E. aerogenes, probably as a result of the dissemination of multiresistant clones in French hospitals.

  6. Novel amino-β-lactam derivatives as potent cholesterol absorption inhibitors

    PubMed Central

    Dražić, Tonko; Molčanov, Krešimir; Sachdev, Vinay; Malnar, Martina; Hećimović, Silva; Patankar, Jay V.; Obrowsky, Sascha; Levak-Frank, Sanja; Habuš, Ivan; Kratky, Dagmar

    2014-01-01

    Two new trans-(3R,4R)-amino-β-lactam derivatives and their diastereoisomeric mixtures were synthesized as ezetimibe bioisosteres and tested in in vitro and in vivo experiments as novel β-lactam cholesterol absorption inhibitors. Both compounds exhibited low cytotoxicity in MDCKII, hNPC1L1/MDCKII, and HepG2 cell lines and potent inhibitory effect in hNPC1L1/MDCKII cells. In addition, these compounds markedly reduced cholesterol absorption in mice, resulting in reduced cholesterol concentrations in plasma, liver, and intestine. We determined the crystal structure of one amino-β-lactam derivative to establish unambiguously both the absolute and relative configuration at the new stereogenic centre C17, which was assigned to be S. The pKa values for both compounds are 9.35, implying that the amino-β-lactam derivatives and their diastereoisomeric mixtures are in form of ammonium salt in blood and the intestine. The IC50 value for the diastereoisomeric mixture is 60 μM. In vivo, it efficiently inhibited cholesterol absorption comparable to ezetimibe. PMID:25305716

  7. Bifunctional N-heterocyclic carbene-catalyzed highly enantioselective synthesis of spirocyclic oxindolo-β-lactams.

    PubMed

    Zhang, Han-Ming; Gao, Zhong-Hua; Ye, Song

    2014-06-06

    The N-heterocyclic carbene-catalyzed Staudinger reaction of ketenes with isatin-derived ketimines was investigated. The bifunctional NHCs with a free hydroxyl group were demonstrated as efficient catalysts for the reaction, giving the corresponding spirocyclic oxindolo-β-lactams in high yields with excellent diastereo- and enantioselectivities.

  8. Asymmetric synthesis of 2-alkyl-perhydroazepines from [5,3,0]-bicyclic lactams.

    PubMed

    Meyers, A I; Downing, S V; Weiser, M J

    2001-02-23

    The synthesis and utility of a novel class of [5,3,0]-bicyclic lactams are described. Produced by the cyclodehydration of (R)-phenylglycinol with omega-keto acids, lactams 4-6 were obtained as separable diastereomeric mixtures ( approximately 2:1) in low yields ( approximately 40%). Higher chemical yield (up to 61%) was realized via an alternate route involving ring closure metathesis of 2-allyl-N-acroyl oxazolidines, 8. Stereoselective reductions of the syn-bicyclic lactams, 4a and 5a, occurred with the use of alane or lithiumaluminum hydride, affording azepine alcohols, 11a and 15a, of the R configuration at the 2-position, in good to moderate yields (50-88%). High selectivity was also observed in the diisobutylaluminum hydride reduction of the epimeric anti lactams, 4b and 5b, affording azepine alcohols, 11b and 15b, of the S configuration at C-2. Hydrogenolytic cleavage of the N-benzyl moiety afforded chiral 2-substituted perhydroazepines, (R)- and (S)-12, in good yields and good enantiomeric excesses (84-94%).

  9. Antimicrobial Susceptibility and Mechanisms of Resistance to Quinolones and β-Lactams in Acinetobacter Genospecies 3

    PubMed Central

    Ribera, A.; Fernández-Cuenca, F.; Beceiro, A.; Bou, G.; Martínez-Martínez, L.; Pascual, A.; Cisneros, J. M.; Rodríguez-Baño, J.; Pachón, J.; Vila, J.

    2004-01-01

    Antimicrobial susceptibility was determined in 15 epidemiologically unrelated clinical isolates of Acinetobacter genospecies 3. Moreover, the mechanisms of resistance to some β-lactam antibiotics may be associated with the presence of a chromosomal cephalosporinase, AmpC, and the resistance to quinolones related to mutations in the gyrA and parC genes. PMID:15047561

  10. Draft Genome Sequences of Three β-Lactam-Catabolizing Soil Proteobacteria

    PubMed Central

    Wang, Bin; Spivak, Aaron; Gianoulis, Tara A.; Forsberg, Kevin J.; Gibson, Molly K.; Johnsky, Lauren A.; Broomall, Stacey M.; Rosenzweig, C. Nicole; Skowronski, Evan W.; Gibbons, Henry S.; Sommer, Morten O. A.; Dantas, Gautam

    2017-01-01

    ABSTRACT Most antibiotics are derived from the soil, but their catabolism there, which is necessary to close the antibiotic carbon cycle, remains uncharacterized. We report the first draft genome sequences of soil Proteobacteria identified for subsisting solely on β-lactams as their carbon sources. The genomes encode multiple β-lactamases, although their antibiotic catabolic pathways remain enigmatic. PMID:28798166

  11. VCD spectroscopic investigation of enantiopure cyclic beta-lactams obtained through Lipolase-catalyzed enantioselective ring-opening reaction.

    PubMed

    Vass, Elemér; Hollósi, Miklós; Forró, Eniko; Fülöp, Ferenc

    2006-09-01

    A direct enzymatic method for the preparation of cyclic beta-lactams and beta-amino acids was recently developed, involving the Lipolase-catalyzed enantioselective hydrolysis of racemic beta-lactams in an organic solvent. Vibrational circular dichroism (VCD) spectroscopy combined with quantum chemical calculations at ab initio (DFT) level of theory has now been applied to determine the absolute configuration and conformation of a series of cyclic beta-lactams (1-10). The absolute configuration of 8 was derived from X-ray crystallography. Only indirect evidence was available for 1, 2, 5, 6, and 7. The absolute configuration of the new lactams 3, 4, 9, and 10 was not known previously. The VCD analysis indicated the homochirality of the studied lactams. The conformation of the flexible beta-lactams was also predicted from the VCD data. Even in the cases where multiple conformers are allowed, the predominance of one conformer was found, with the exception of 2, being present as a mixture of four conformers. Beta-lactams tend to form H-bonded dimers. The fine structure of the amide I VCD band suggested that only a small population of H-bonded dimers is formed in deuterated chloroform.

  12. Induction of MRSA Biofilm by Low-Dose β-Lactam Antibiotics: Specificity, Prevalence and Dose-Response Effects.

    PubMed

    Ng, Mandy; Epstein, Samuel B; Callahan, Mary T; Piotrowski, Brian O; Simon, Gary L; Roberts, Afsoon D; Keiser, John F; Kaplan, Jeffrey B

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of hospital- and community-associated infections. The formation of adherent clusters of cells known as biofilms is an important virulence factor in MRSA pathogenesis. Previous studies showed that subminimal inhibitory (sub-MIC) concentrations of methicillin induce biofilm formation in the community-associated MRSA strain LAC. In this study we measured the ability sub-MIC concentrations of eight other β-lactam antibiotics and six non-β-lactam antibiotics to induce LAC biofilm. All eight β-lactam antibiotics, but none of the non-β-lactam antibiotics, induced LAC biofilm. The dose-response effects of the eight β-lactam antibiotics on LAC biofilm varied from biphasic and bimodal to near-linear. We also found that sub-MIC methicillin induced biofilm in 33 out of 39 additional MRSA clinical isolates, which also exhibited biphasic, bimodal and linear dose-response curves. The amount of biofilm formation induced by sub-MIC methicillin was inversely proportional to the susceptibility of each strain to methicillin. Our results demonstrate that induction of biofilm by sub-MIC antibiotics is a common phenotype among MRSA clinical strains and is specific for β-lactam antibiotics. These findings may have relevance to the use of β-lactam antibiotics in clinical and agricultural settings.

  13. PBP5, PBP6 and DacD play different roles in intrinsic β-lactam resistance of Escherichia coli.

    PubMed

    Sarkar, Sujoy Kumar; Dutta, Mouparna; Chowdhury, Chiranjit; Kumar, Akash; Ghosh, Anindya S

    2011-09-01

    Escherichia coli PBP5, PBP6 and DacD, encoded by dacA, dacC and dacD, respectively, share substantial amino acid identity and together constitute ~50 % of the total penicillin-binding proteins of E. coli. PBP5 helps maintain intrinsic β-lactam resistance within the cell. To test if PBP6 and DacD play simlar roles, we deleted dacC and dacD individually, and dacC in combination with dacA, from E. coli 2443 and compared β-lactam sensitivity of the mutants and the parent strain. β-Lactam resistance was complemented by wild-type, but not dd-carboxypeptidase-deficient PBP5, confirming that enzymic activity of PBP5 is essential for β-lactam resistance. Deletion of dacC and expression of PBP6 during exponential or stationary phase did not alter β-lactam resistance of a dacA mutant. Expression of DacD during mid-exponential phase partially restored β-lactam resistance of the dacA mutant. Therefore, PBP5 dd-carboxypeptidase activity is essential for intrinsic β-lactam resistance of E. coli and DacD can partially compensate for PBP5 in this capacity, whereas PBP6 cannot.

  14. Stereoselective synthesis of optically active bicyclic beta-lactam carboxylic acids that target pilus biogenesis in pathogenic bacteria.

    PubMed

    Emtenäs, Hans; Carlsson, Marcus; Pinkner, Jerome S; Hultgren, Scott J; Almqvist, Fredrik

    2003-04-21

    Optically active bicyclic beta-lactams were synthesized, starting from 2-H-delta 2-thiazolines and Meldrum's acid derivatives. Several methods to accomplish an ester hydrolysis without damaging the beta-lactam framework were investigated. A rapid CsOH saponification of the beta-lactam methyl esters was developed and protonation of the Cs-carboxylates by Amberlite (IR-120 H+) afforded a series of bicyclic beta-lactam carboxylic acids. Moreover, a convenient method for the synthesis of 2-H-delta 2-thiazolinecarboxylic acid methyl ester 2 was developed. Bicyclic beta-lactam carboxylic acids 7a-g and aldehydes 4a-d were screened for their affinity to the bacterial periplasmic chaperone PapD using a surface plasmon resonance technique. beta-Lactams substituted with large acyl substitutents showed better binding to the chaperone than the native C-terminal peptide PapG 8, demonstrating that bicyclic beta-lactams constitute a new class of potential bacterial chaperone inhibitors.

  15. Combinations of cefoxitin plus other β-lactams are synergistic in vitro against community associated methicillin-resistant Staphylococcus aureus.

    PubMed

    Banerjee, R; Fernandez, M G; Enthaler, N; Graml, C; Greenwood-Quaintance, K E; Patel, R

    2013-06-01

    In vitro studies demonstrate that oxacillin minimal inhibitory concentrations (MICs) of methicillin-resistant S. aureus (MRSA) strains USA300 and 400 decrease in the presence of cefoxitin. The aim of this study was to characterize the activity of cefoxitin plus β-lactams against a collection of MRSA isolates. We assessed the in vitro antimicrobial activity of a selection of β-lactams alone and together with subinhibitory concentrations of cefoxitin against a collection of MRSA, methicillin-susceptible S. aureus (MSSA), and vancomycin-intermediate S. aureus (VISA) isolates using MICs and time kill assays. For community-associated (CA) MRSA strains USA300 and USA400, MICs of nafcillin, cefazolin, cephalexin, cefuroxime, ceftriaxone and cefotaxime decreased by 8- to 64-times in the presence of 10 μg/ml cefoxitin. In contrast, for hospital-associated (HA) strains COLn, N315, and Mu50, there was no change in any β-lactam MIC in the presence of cefoxitin. When combined with cefoxitin, the cephalexin MIC decreased for eight CA-MRSA and five MSSA sequence types but did not change for seven HA-MRSA sequence types. β-lactam/cefoxitin combinations were synergistic against CA- but not HA-MRSA strains in time kill assays. Cefoxitin combined with a variety of β-lactams enhances their activity against CA-MRSA strains in vitro. Further studies of combination β-lactam therapy may provide insight into β-lactam biology, penicillin binding protein cooperativity, and novel therapeutic strategies against MRSA.

  16. NADPH-dependent glutamate dehydrogenase in Penicillium chrysogenum is involved in regulation of beta-lactam production.

    PubMed

    Thykaer, Jette; Rueksomtawin, Kanchana; Noorman, Henk; Nielsen, Jens

    2008-04-01

    The interactions between the ammonium assimilatory pathways and beta-lactam production were investigated by disruption of the NADPH-dependent glutamate dehydrogenase gene (gdhA) in two industrial beta-lactam-producing strains of Penicillium chrysogenum. The strains used were an adipoyl-7-ADCA- and a penicillin-producing strain. The gdhA gene disruption caused a decrease in maximum specific growth rate of 26 % and 35 % for the adipoyl-7-ADCA-producing strain and the penicillin-producing strain, respectively, compared to the corresponding reference strains. Interestingly, no beta-lactam production was detected in either of the DeltagdhA strains. Supplementation with glutamate restored growth but no beta-lactam production was detected for the constructed strains. Cultures with high ammonium concentrations (repressing conditions) and with proline as nitrogen source (de-repressed conditions) showed continued beta-lactam production for the reference strains whereas the DeltagdhA strains remained non-productive under all conditions. By overexpressing the NAD-dependent glutamate dehydrogenase, the specific growth rate could be restored, but still no beta-lactam production was detected. The results indicate that the NADPH-dependent glutamate dehydrogenase may be directly or indirectly involved in the regulation of beta-lactam production in industrial strains of P. chrysogenum.

  17. Physician approaches to beta-lactam use in patients with penicillin hypersensitivity.

    PubMed

    Prematta, Tracy; Shah, Shenil; Ishmael, Faoud T

    2012-01-01

    Beta-lactam antibiotics are widely used, but hypersensitivity reactions are common and difficult to manage. This study was designed to identify lack of knowledge regarding the safe use of alternative beta-lactams in penicillin-allergic patients and assess management differences between allergists and nonallergists. An electronic physician survey was sent to 623 providers in allergy, internal medicine, pediatrics, and family medicine, querying beta-lactam use in patients with a history of penicillin allergy. A total of 110 (17.7%) surveys were completed. For patients with a prior maculopapular rash to penicillin, most providers were uncomfortable prescribing penicillins again, although they would use other beta-lactams. In patients with an exfoliative dermatitis to penicillin, 46% of responders would not prescribe any beta-lactam again. For patients with a positive skin test to penicillin, only 45.1% of nonallergists were comfortable prescribing monobactams versus 62.5% of allergists; 30.3% of all responders would give a carbapenem. In patients with urticaria to penicillin, pediatricians were the most comfortable prescribing third- or fourth-generation cephalosporins. Providers (both allergists and nonallergists) were unfamiliar with the safety of prescribing penicillin in patients with history of maculopapular rash, the safety of monobactams, and low cross-reactivity with carbapenems in penicillin-allergic individuals. Nonallergists were also unfamiliar with the usefulness of penicillin skin testing. Improved education is needed to address these areas. Additionally, we found variability in responses regarding exfoliative dermatitis and comfort prescribing cephalosporins in patients with suspected IgE-mediated drug allergy to penicillin, highlighting the need for additional research in these areas.

  18. Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes

    PubMed Central

    Chewapreecha, Claire; Marttinen, Pekka; Croucher, Nicholas J.; Salter, Susannah J.; Harris, Simon R.; Mather, Alison E.; Hanage, William P.; Goldblatt, David; Nosten, Francois H.; Turner, Claudia

    2014-01-01

    Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of “mosaic genes” as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology. PMID:25101644

  19. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes.

    PubMed

    Chewapreecha, Claire; Marttinen, Pekka; Croucher, Nicholas J; Salter, Susannah J; Harris, Simon R; Mather, Alison E; Hanage, William P; Goldblatt, David; Nosten, Francois H; Turner, Claudia; Turner, Paul; Bentley, Stephen D; Parkhill, Julian

    2014-08-01

    Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of "mosaic genes" as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology.

  20. Screening for Beta-Lactam Allergy in Joint Arthroplasty Patients to Improve Surgical Prophylaxis Practice.

    PubMed

    McDanel, Deanna L; Azar, Antoine E; Dowden, Amy M; Murray-Bainer, Samantha; Noiseux, Nicolas O; Willenborg, Melissa; Clark, Charles R; Callaghan, John J; Haleem, Ambar

    2017-09-01

    The reliability of patient-reported penicillin allergies has been disputed. A Drug Allergy Clinic (DAC) was established at our institution in combination with an electronic best practice alert (BPA) in the Orthopedic Clinic. Joint arthroplasty patients with a reported history of beta-lactam allergy (HOBA) were preoperatively referred via the BPA to the DAC. The purpose of this study was to determine the effectiveness of beta-lactam allergy screening in enabling the surgical team to optimize antimicrobial prophylaxis. Between February 2013 and May 2015, 161 patients with a HOBA were referred to the DAC where they underwent penicillin skin testing (PST), a drug challenge to a beta-lactam antibiotic, and/or had no intervention depending on the history obtained. PST was performed on 140 of 161 (87%) patients. A negative PST was noted in 139 (99%) patients, indicating no penicillin allergy. Cefazolin was safe to use in 145 (90%) patients evaluated. Significantly more patients evaluated in the DAC vs those not seen got cefazolin in any surgical prophylaxis regimen (90% vs 77%) without any adverse perioperative reactions. Concurrently, the use of non-beta-lactam antibiotics was significantly less in the patients evaluated vs not evaluated (16% vs 27%). The overall use of cefazolin in orthopedic surgeries in patients with HOBA was >84% over the course of the study period. Beta-lactam allergy screening using a BPA and a DAC promotes the use of standard surgical prophylaxis with cefazolin. Joint arthroplasty surgeons should consider implementing allergy screening programs to promote antimicrobial stewardship. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Novel Metagenome-Derived Carboxylesterase That Hydrolyzes β-Lactam Antibiotics▿†

    PubMed Central

    Jeon, Jeong Ho; Kim, Soo-Jin; Lee, Hyun Sook; Cha, Sun-Shin; Lee, Jung Hun; Yoon, Sang-Hong; Koo, Bon-Sung; Lee, Chang-Muk; Choi, Sang Ho; Lee, Sang Hee; Kang, Sung Gyun; Lee, Jung-Hyun

    2011-01-01

    It has been proposed that family VIII carboxylesterases and class C β-lactamases are phylogenetically related; however, none of carboxylesterases has been reported to hydrolyze β-lactam antibiotics except nitrocefin, a nonclinical chromogenic substrate. Here, we describe the first example of a novel carboxylesterase derived from a metagenome that is able to cleave the amide bond of various β-lactam substrates and the ester bond of p-nitrophenyl esters. A clone with lipolytic activity was selected by functional screening of a metagenomic library using tributyrin agar plates. The sequence analysis of the clone revealed the presence of an open reading frame (estU1) encoding a polypeptide of 426 amino acids, retaining an S-X-X-K motif that is conserved in class C β-lactamases and family VIII carboxylesterases. The gene was overexpressed in Escherichia coli, and the purified recombinant protein (EstU1) was further characterized. EstU1 showed esterase activity toward various chromogenic p-nitrophenyl esters. In addition, it exhibited hydrolytic activity toward nitrocefin, leading us to investigate whether EstU1 could hydrolyze β-lactam antibiotics. EstU1 was able to hydrolyze first-generation β-lactam antibiotics, such as cephalosporins, cephaloridine, cephalothin, and cefazolin. In a kinetic study, EstU1 showed a similar range of substrate affinities for both p-nitrophenyl butyrate and first-generation cephalosporins while the turnover efficiency for the latter was much lower. Furthermore, site-directed mutagenesis studies revealed that the catalytic triad of EstU1 plays a crucial role in hydrolyzing both ester bonds of p-nitrophenyl esters and amide bonds of the β-lactam ring of antibiotics, implicating the predicted catalytic triad of EstU1 in both activities. PMID:21908637

  2. Reduced Susceptibility to Extended-Spectrum β-Lactams in Vibrio cholerae Isolated in Bangladesh

    PubMed Central

    Ceccarelli, Daniela; Alam, Munirul; Huq, Anwar; Colwell, Rita R.

    2016-01-01

    β-lactams are antibiotic molecules able to inhibit cell wall biosynthesis. Among other mechanisms, resistance in Gram-negative bacteria is mostly associated with production of β-lactamase enzymes able to bind and hydrolyze the β-lactam ring. Extended-spectrum β-lactamases extend this ability also to third- and fourth-generation cephalosporins, as well as to carbapenems and monobactams. Vibrio cholerae is the causative agent of epidemic cholera and a public health burden for developing countries like Bangladesh. Although appropriate oral or intravenous rehydration is the therapy of choice for cholera, severe infections and V. cholerae-associated septicemia are treated with antimicrobial drugs, including doxycycline, erythromycin, azithromycin, ciprofloxacin, and/or third-generation cephalosporins. In the years after the introduction of antibiotics in clinical practice, V. cholerae developed resistance to commonly used drugs worldwide mostly through gene acquisition via horizontal gene transfer. Reduced susceptibility of V. cholerae to third-generation cephalosporins has been occasionally documented. However, carbapenemase-producing V. cholerae has been reported at higher rates than resistance to extended-spectrum β-lactams, mainly associated with blaNDM-1 emergence and successful plasmid dissemination. Recent findings suggest limited β-lactam resistance is present in V. cholerae O1 isolates collected during ecological and epidemiological surveillance in Bangladesh. However, a trend to intermediate-susceptibility insurgence was observed. Horizontal gene transfer of β-lactam resistance from enteric pathogens to environmental microorganisms should not be underrated, given the ability of V. cholerae to acquire new genetic information. PMID:27803895

  3. Tobramycin and Beta-Lactam Antibiotic Use in Cystic Fibrosis Exacerbations: A Pharmacist Approach.

    PubMed

    Zobell, Jeffery T; Epps, Kevin; Kittell, Frederick; Sema, Clarissa; McDade, Erin J; Peters, Stacy J; Duval, Mariela A; Pettit, Rebecca S

    2016-01-01

    Survey suggests that recommended doses and dosage regimens for antipseudomonal antibiotics for the treatment of acute pulmonary exacerbations in cystic fibrosis (CF) patients are not used, and one way to address these disparities is the involvement of pharmacists who are dedicated to CF. This is the first survey specifically designed for pharmacists at Cystic Fibrosis Foundation (CFF)-accredited centers to identify how tobramycin and antipseudomonal beta-lactams are being used. The purpose of this survey is to quantify this information and to promote future study to allow for implementation of tobramycin and beta-lactam dosage and monitoring standardization. An anonymous national cross-sectional survey of pharmacists that are affliated with CFF-accredited programs was performed using Qualtrics.com. The survey had a 48.5% response rate. Most pediatric pharmacists (78.6%) report using extended-interval tobramycin dosage. The most common reported starting dosage was 10 mg/kg every 24 hours; most centers aim for a maximum serum concentration (Cmax) between 20 and 40 mg/L (78.6%). A total of 26 adult pharmacists reported using extended-interval dosage (96%), using an initial dosage of 10 mg/kg/day. The most common parameters used to adjust dosage were Cmax and area under the curve (AUC; 31%); the Cmax goal was 20 to 40 mg/L (84.2%). Most respondents (79%) report using beta-lactams in combination with tobramycin. Extended-infusion and continuous-infusion beta-lactams were used more in adults than pediatric patients. Most CF pharmacists report using extended-interval tobramycin. With the information from this survey, the establishment of future consensus recommendations by pharmacists for optimal and consistent tobramycin and antipseudomonal beta-lactam dosage and monitoring strategies needs to be considered.

  4. Tobramycin and Beta-Lactam Antibiotic Use in Cystic Fibrosis Exacerbations: A Pharmacist Approach

    PubMed Central

    Zobell, Jeffery T.; Epps, Kevin; Kittell, Frederick; Sema, Clarissa; McDade, Erin J.; Peters, Stacy J.; Duval, Mariela A.

    2016-01-01

    OBJECTIVES: Survey suggests that recommended doses and dosage regimens for antipseudomonal antibiotics for the treatment of acute pulmonary exacerbations in cystic fibrosis (CF) patients are not used, and one way to address these disparities is the involvement of pharmacists who are dedicated to CF. This is the first survey specifically designed for pharmacists at Cystic Fibrosis Foundation (CFF)–accredited centers to identify how tobramycin and antipseudomonal beta-lactams are being used. The purpose of this survey is to quantify this information and to promote future study to allow for implementation of tobramycin and beta-lactam dosage and monitoring standardization. METHODS: An anonymous national cross-sectional survey of pharmacists that are affliated with CFF-accredited programs was performed using Qualtrics.com. RESULTS: The survey had a 48.5% response rate. Most pediatric pharmacists (78.6%) report using extended-interval tobramycin dosage. The most common reported starting dosage was 10 mg/kg every 24 hours; most centers aim for a maximum serum concentration (Cmax) between 20 and 40 mg/L (78.6%). A total of 26 adult pharmacists reported using extended-interval dosage (96%), using an initial dosage of 10 mg/kg/day. The most common parameters used to adjust dosage were Cmax and area under the curve (AUC; 31%); the Cmax goal was 20 to 40 mg/L (84.2%). Most respondents (79%) report using beta-lactams in combination with tobramycin. Extended-infusion and continuous-infusion beta-lactams were used more in adults than pediatric patients. CONCLUSIONS: Most CF pharmacists report using extended-interval tobramycin. With the information from this survey, the establishment of future consensus recommendations by pharmacists for optimal and consistent tobramycin and antipseudomonal beta-lactam dosage and monitoring strategies needs to be considered. PMID:27453702

  5. Reduced Susceptibility to Extended-Spectrum β-Lactams in Vibrio cholerae Isolated in Bangladesh.

    PubMed

    Ceccarelli, Daniela; Alam, Munirul; Huq, Anwar; Colwell, Rita R

    2016-01-01

    β-lactams are antibiotic molecules able to inhibit cell wall biosynthesis. Among other mechanisms, resistance in Gram-negative bacteria is mostly associated with production of β-lactamase enzymes able to bind and hydrolyze the β-lactam ring. Extended-spectrum β-lactamases extend this ability also to third- and fourth-generation cephalosporins, as well as to carbapenems and monobactams. Vibrio cholerae is the causative agent of epidemic cholera and a public health burden for developing countries like Bangladesh. Although appropriate oral or intravenous rehydration is the therapy of choice for cholera, severe infections and V. cholerae-associated septicemia are treated with antimicrobial drugs, including doxycycline, erythromycin, azithromycin, ciprofloxacin, and/or third-generation cephalosporins. In the years after the introduction of antibiotics in clinical practice, V. cholerae developed resistance to commonly used drugs worldwide mostly through gene acquisition via horizontal gene transfer. Reduced susceptibility of V. cholerae to third-generation cephalosporins has been occasionally documented. However, carbapenemase-producing V. cholerae has been reported at higher rates than resistance to extended-spectrum β-lactams, mainly associated with blaNDM-1 emergence and successful plasmid dissemination. Recent findings suggest limited β-lactam resistance is present in V. cholerae O1 isolates collected during ecological and epidemiological surveillance in Bangladesh. However, a trend to intermediate-susceptibility insurgence was observed. Horizontal gene transfer of β-lactam resistance from enteric pathogens to environmental microorganisms should not be underrated, given the ability of V. cholerae to acquire new genetic information.

  6. [Beta-lactamic antibiotics allergy in cataract surgery. Prevalence and preoperative characteristics of allergic patients].

    PubMed

    Fernández-Rubio, M E; Cuesta-Rodríguez, T; Urcelay-Segura, J L; Cortés-Valdés, C

    2014-03-01

    To describe the proportion of patients allergic to β-lactam antibiotics and the prevalence of preoperative conjunctival bacteria among those undergoing cataract surgery in our area. Retrospective cross-sectional study of prevalence of β-lactam allergic patients consecutively scheduled for cataract surgery from 11 July 2005 to November 2012. For studying the prevalence of conjunctival bacteria and clinical characteristics in the patients' preoperative examination, those under 18 years and those with cataract surgery combined with other eye surgeries were excluded. Data from the first preoperative examination of the remaining patients were selected. Clinical data were extracted from the database generated in the evaluation made for anesthetic purposes, and the microbiological data from the laboratory database. Both bases were linked through a patient history code. A comparison was made between the prevalence of conjunctival bacteria and clinical characteristics in allergic and non-allergic patients. From 12,409 adults selected for the bacteriological study, 862 (6.96%) were allergic to β-lactams, their mean age (74.45 years) was higher than that of the non-allergic (P=.005). The proportion of women (71.4%) in the allergic patient group was much higher than that of men. The prevalence of pathogenic bacteria (especially Bacillus spp and Pseudomonas aeruginosa), lung disease and heart failure, was higher in allergic patients. The prevalence of allergy to β-lactams in this study is within the range described in other populations. The higher prevalence of pathogenic bacteria and the predominance of women in those allergic to β-lactams are useful data to guide their surgical prophylaxis. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  7. Paradoxical Hypersusceptibility of Drug-resistant Mycobacteriumtuberculosis to β-lactam Antibiotics.

    PubMed

    Cohen, Keira A; El-Hay, Tal; Wyres, Kelly L; Weissbrod, Omer; Munsamy, Vanisha; Yanover, Chen; Aharonov, Ranit; Shaham, Oded; Conway, Thomas C; Goldschmidt, Yaara; Bishai, William R; Pym, Alexander S

    2016-07-01

    Mycobacterium tuberculosis (M. tuberculosis) is considered innately resistant to β-lactam antibiotics. However, there is evidence that susceptibility to β-lactam antibiotics in combination with β-lactamase inhibitors is variable among clinical isolates, and these may present therapeutic options for drug-resistant cases. Here we report our investigation of susceptibility to β-lactam/β-lactamase inhibitor combinations among clinical isolates of M. tuberculosis, and the use of comparative genomics to understand the observed heterogeneity in susceptibility. Eighty-nine South African clinical isolates of varying first and second-line drug susceptibility patterns and two reference strains of M. tuberculosis underwent minimum inhibitory concentration (MIC) determination to two β-lactams: amoxicillin and meropenem, both alone and in combination with clavulanate, a β-lactamase inhibitor. 41/91 (45%) of tested isolates were found to be hypersusceptible to amoxicillin/clavulanate relative to reference strains, including 14/24 (58%) of multiple drug-resistant (MDR) and 22/38 (58%) of extensively drug-resistant (XDR) isolates. Genome-wide polymorphisms identified using whole-genome sequencing were used in a phylogenetically-aware linear mixed model to identify polymorphisms associated with amoxicillin/clavulanate susceptibility. Susceptibility to amoxicillin/clavulanate was over-represented among isolates within a specific clade (LAM4), in particular among XDR strains. Twelve sets of polymorphisms were identified as putative markers of amoxicillin/clavulanate susceptibility, five of which were confined solely to LAM4. Within the LAM4 clade, 'paradoxical hypersusceptibility' to amoxicillin/clavulanate has evolved in parallel to first and second-line drug resistance. Given the high prevalence of LAM4 among XDR TB in South Africa, our data support an expanded role for β-lactam/β-lactamase inhibitor combinations for treatment of drug-resistant M. tuberculosis.

  8. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams.

    PubMed

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-06-06

    In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.

  9. Cross-reactivity and Tolerability of Ertapenem in Patients With IgE-Mediated Hypersensitivity to β-Lactams.

    PubMed

    Buonomo, A; Pascolini, L; Rizzi, A; Aruanno, A; Pecora, V; Ricci, A G; Mezzacappa, S; Di Rienzo, A; Centrone, M; Nucera, E; Schiavino, D

    2016-01-01

    Administration of carbapenems to β-lactam-allergic patients has always been considered potentially harmful because of a 47.4% rate of cross-reactivity to imipenem reported in a single study. Nevertheless, recent studies have shown that the rate of cross-reactivity of imipenem and meropenem with penicillins is lower than 1%. The aim of this study was to evaluate the possibility of using ertapenem in patients with an established IgE-mediated β-lactam allergy. We studied all participants who came to our allergy unit and had a clinical history of immediate hypersensitivity reactions to β-lactams. The inclusion criteria were a positive skin test result to at least 1 β-lactam molecule and/or positive specific IgE (when available). All participants underwent immediate-type skin tests with several β-lactam molecules including ertapenem. Challenges with intravenous ertapenem were performed on 2 different days in patients with negative skin test results. We examined 49 patients with a clinical history of immediate reactions to β-lactams. All the patients had positive skin tests and/or positive specific IgE to at least 1 β-lactam reagent and negative carbapenem skin tests. Thirty-six patients agreed to undergo the challenges and 35 tolerated the full dose of ertapenem. The practice of avoiding carbapenems in patients with β-lactam allergy should be abandoned considering the very low rate of cross-reactivity. β-Lactam-allergic patients who need ertapenem therapy should undergo skin tests and, if negative, a graded challenge to assess tolerability.

  10. One ring to rule them all: Current trends in combating bacterial resistance to the β‐lactams

    PubMed Central

    King, Dustin T.; Sobhanifar, Solmaz

    2016-01-01

    Abstract From humble beginnings of a contaminated petri dish, β‐lactam antibiotics have distinguished themselves among some of the most powerful drugs in human history. The devastating effects of antibiotic resistance have nevertheless led to an “arms race” with disquieting prospects. The emergence of multidrug resistant bacteria threatens an ever‐dwindling antibiotic arsenal, calling for new discovery, rediscovery, and innovation in β‐lactam research. Here the current state of β‐lactam antibiotics from a structural perspective was reviewed. PMID:26813250

  11. Exploring the Scope of Asymmetric Synthesis of β-Hydroxy-γ-lactams via Noyori-type Reductions.

    PubMed

    Lynch, Denis; Deasy, Rebecca E; Clarke, Leslie-Ann; Slattery, Catherine N; Khandavilli, U B Rao; Lawrence, Simon E; Maguire, Anita R; Magnus, Nicholas A; Moynihan, Humphrey A

    2016-10-07

    Enantio- and diastereoselective hydrogenation of β-keto-γ-lactams with a ruthenium-BINAP catalyst, involving dynamic kinetic resolution, has been employed to provide a general, asymmetric approach to β-hydroxy-γ-lactams, a structural motif common to several bioactive compounds. Full conversion to the desired β-hydroxy-γ-lactams was achieved with high diastereoselectivity (up to >98% de) by addition of catalytic HCl and LiCl, while β-branching of the ketone substituent demonstrated a pronounced effect on the modest to excellent enantioselectivity (up to 97% ee) obtained.

  12. Sustainable, Stereoregular, and Optically Active Polyamides via Cationic Polymerization of ε-Lactams Derived from the Terpene β-Pinene.

    PubMed

    Winnacker, Malte; Sag, Jacob; Tischner, Andreas; Rieger, Bernhard

    2017-03-08

    A convenient synthesis of sustainable polyamides, which contain side groups and stereocenters, starting from the biobased small terpene β-pinene is reported. The polyamides, which are obtained via the pinene-based lactam via ring-opening polymerization, show excellent thermal properties, rendering this approach very interesting for the utilization of novel biobased and structurally significant high-performance polymers and materials. Polymer masses and yields are shown to be dependent on different parameters, and the stereoinformation of the lactam monomer can thus be transferred into the polymer chain. In addition, another lactam side product can also be transformed to polyamides.

  13. Enantioselective cis-β-lactam synthesis by intramolecular C-H functionalization from enoldiazoacetamides and derivative donor-acceptor cyclopropenes

    PubMed Central

    Deng, Yongming; Yim, David N.; Zavalij, Peter Y.

    2015-01-01

    β-Lactam derivatives are produced through intermediate donor-acceptor cyclopropene intermediates in high yield, exclusive cis-diastereoselectivity, and high enantiocontrol in a chiral dirhodium carboxylate catalyzed intramolecular C-H functionalization reaction of enoldiazoacetamides. PMID:26029355

  14. Point-of-care Beta-lactam Allergy Skin Testing by Antimicrobial Stewardship Programs: A Pragmatic Multicenter Prospective Evaluation.

    PubMed

    Leis, Jerome A; Palmay, Lesley; Ho, Grace; Raybardhan, Sumit; Gill, Suzanne; Kan, Tiffany; Campbell, Jackie; Kiss, Alex; McCready, Janine B; Das, Pavani; Minnema, Brian; Powis, Jeff E; Walker, Sandra A N; Ferguson, Heather; Wong, Benny; Weber, Elizabeth

    2017-06-01

    Beta-lactam allergy skin testing (BLAST) is recommended by antimicrobial stewardship program (ASP) guidelines, yet few studies have systematically evaluated its impact when delivered at point-of-care. We conducted a pragmatic multicenter prospective evaluation of the use of point-of-care BLAST by ASPs. In staggered 3-month intervals, ASP teams at three hospitals received training by allergists to offer BLAST for eligible patients with infectious diseases receiving non-preferred beta-lactam therapy due to severity of their allergy. The primary outcome was the proportion of patients receiving the preferred beta-lactam therapy. Of 827 patients with reported beta-lactam allergy over 15-months, beta-lactam therapy was preferred among 632(76%). During baseline periods, 50% (124/246) received preferred beta-lactam therapy based on history, compared with 60% (232/386) during the intervention periods (p=0.02), which improved further to 81% (313/386) upon provision of BLAST (p<0.001) without any increase in incidence of adverse drug reactions (4% vs. 3%; p=0.4). After adjusting for patient variables and the correlation between hospitals, the intervention period was associated with a 4.5-fold greater odds of receiving preferred beta-lactam therapy (95% CI, 2.4-8.2; p<0.0001). The use of BLAST at the point-of-care across three hospital ASPs resulted in greater use of preferred beta-lactam therapy without increasing the risk of adverse drug reactions. Longer term studies are needed to better assess the safety and clinical impact of this ASP intervention.

  15. Antimicrobial activity of beta-lactams against multiresistant micro-organisms from the family Enterobacteriaceae, and genus Pseudomonas.

    PubMed

    Niebla, A; González, I; Vallín, C

    1994-01-01

    The antimicrobial activity of twenty beta-lactams was determined against multiresistant micro-organisms from the Enterobacteriaceae family (450) and the genus Pseudomonas (90). The antimicrobial susceptibility was assessed by the disk diffusion method. The most effective antibiotics were cephalosporins of the second and third generation, and non-classical beta-lactams (imipenem and moxalactam). A pronounced resistance was found to carbenicillin, ampicillin, cephalotin and cefazolin. These resistance patterns corresponded to a high consumption of these antibiotics.

  16. Exposure to β-lactams results in the alteration of penicillin-binding proteins in Clostridium perfringens.

    PubMed

    Park, Miseon; Rafii, Fatemeh

    2017-02-07

    Clostridium perfringens causes a variety of mild to severe infections in humans and other animals. A decrease in the affinity of penicillin-binding protein (PBP) transpeptidases for β-lactams is considered one of the mechanisms of β-lactam resistance in bacteria. Two strains of C. perfringens isolated from bovines and one isolated from a chicken, which had decreased susceptibility to β-lactams, had variations in the amino acid sequences of the central penicillin-binding regions of the PBPs. β-Lactam-resistant mutants of another C. perfringens strain, ATCC 13124, were selected in vitro to determine the effects of exposure to β-lactams on the PBP genes. Cultures of the wild type rapidly developed resistance to penicillin G, cephalothin and ceftriaxone. The susceptibilities of all of the selected mutants to some other β-lactams also decreased. The largest PBP found in C. perfringens, CPF_2395, appeared to be the primary target of all three drugs. Strain resistant to penicillin G had mutation resulting in the substitution of one amino acid within the central penicillin-binding/transpeptidase domain, but the ceftrioxane and cephalothin-resistant strains had mutations resulting in the substitution of two amino acids in this region. The cephalothin-resistant mutant also had additional mutations in the CPF_0340 and CPF_2218 genes in this critical region. No other mutations were observed in the three other PBPs of the in vitro resistant mutants. Resistance development also altered the growth rate and cell morphology of the mutants, so in addition to the PBPs, some other genes, including regulatory genes, may have been affected during the interaction with β-lactam antibiotics. This is the first study showing the effects of β-lactam drugs on the substitution of amino acids in PBPs of C. perfringens and points to the need for studies to detect other unknown alterations affecting the physiology of resistant strains.

  17. Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting β-Lactam Resistance Levels in Streptococcus pneumoniae

    PubMed Central

    Metcalf, Benjamin J.; Chochua, Sopio; Li, Zhongya; Gertz, Robert E.; Walker, Hollis; Hawkins, Paulina A.; Tran, Theresa; Whitney, Cynthia G.; McGee, Lesley; Beall, Bernard W.

    2016-01-01

    ABSTRACT β-Lactam antibiotics are the drugs of choice to treat pneumococcal infections. The spread of β-lactam-resistant pneumococci is a major concern in choosing an effective therapy for patients. Systematically tracking β-lactam resistance could benefit disease surveillance. Here we developed a classification system in which a pneumococcal isolate is assigned to a “PBP type” based on sequence signatures in the transpeptidase domains (TPDs) of the three critical penicillin-binding proteins (PBPs), PBP1a, PBP2b, and PBP2x. We identified 307 unique PBP types from 2,528 invasive pneumococcal isolates, which had known MICs to six β-lactams based on broth microdilution. We found that increased β-lactam MICs strongly correlated with PBP types containing divergent TPD sequences. The PBP type explained 94 to 99% of variation in MICs both before and after accounting for genomic backgrounds defined by multilocus sequence typing, indicating that genomic backgrounds made little independent contribution to β-lactam MICs at the population level. We further developed and evaluated predictive models of MICs based on PBP type. Compared to microdilution MICs, MICs predicted by PBP type showed essential agreement (MICs agree within 1 dilution) of >98%, category agreement (interpretive results agree) of >94%, a major discrepancy (sensitive isolate predicted as resistant) rate of <3%, and a very major discrepancy (resistant isolate predicted as sensitive) rate of <2% for all six β-lactams. Thus, the PBP transpeptidase signatures are robust indicators of MICs to different β-lactam antibiotics in clinical pneumococcal isolates and serve as an accurate alternative to phenotypic susceptibility testing. PMID:27302760

  18. A potential substrate binding conformation of β-lactams and insight into the broad spectrum of NDM-1 activity.

    PubMed

    Yuan, Qinghui; He, Lin; Ke, Hengming

    2012-10-01

    New Delhi metallo-β-lactamase 1 (NDM-1) is a key enzyme that the pathogen Klebsiella pneumonia uses to hydrolyze almost all β-lactam antibiotics. It is currently unclear why NDM-1 has a broad spectrum of activity. Docking of the representatives of the β-lactam families into the active site of NDM-1 is reported here. All the β-lactams naturally fit the NDM-1 pocket, implying that NDM-1 can accommodate the substrates without dramatic conformation changes. The docking reveals two major binding modes of the β-lactams, which we tentatively name the S (substrate) and I (inhibitor) conformers. In the S conformers of all the β-lactams, the amide oxygen and the carboxylic group conservatively interact with two zinc ions, while the substitutions on the fused rings show dramatic differences in their conformations and positions. Since the bridging hydroxide ion/water in the S conformer is at the position for the nucleophilic attack, the S conformation may simulate the true binding of a substrate to NDM-1. The I conformer either blocks or displaces the bridging hydroxide ion/water, such as in the case of aztreonam, and is thus inhibitory. The docking also suggests that substitutions on the β-lactam ring are required for β-lactams to bind in the S conformation, and therefore, small β-lactams such as clavulanic acid would be inhibitors of NDM-1. Finally, our docking shows that moxalactam uses its tyrosyl-carboxylic group to compete with the S conformer and would thus be a poor substrate of NDM-1.

  19. A Potential Substrate Binding Conformation of β-Lactams and Insight into the Broad Spectrum of NDM-1 Activity

    PubMed Central

    Yuan, Qinghui; He, Lin

    2012-01-01

    New Delhi metallo-β-lactamase 1 (NDM-1) is a key enzyme that the pathogen Klebsiella pneumonia uses to hydrolyze almost all β-lactam antibiotics. It is currently unclear why NDM-1 has a broad spectrum of activity. Docking of the representatives of the β-lactam families into the active site of NDM-1 is reported here. All the β-lactams naturally fit the NDM-1 pocket, implying that NDM-1 can accommodate the substrates without dramatic conformation changes. The docking reveals two major binding modes of the β-lactams, which we tentatively name the S (substrate) and I (inhibitor) conformers. In the S conformers of all the β-lactams, the amide oxygen and the carboxylic group conservatively interact with two zinc ions, while the substitutions on the fused rings show dramatic differences in their conformations and positions. Since the bridging hydroxide ion/water in the S conformer is at the position for the nucleophilic attack, the S conformation may simulate the true binding of a substrate to NDM-1. The I conformer either blocks or displaces the bridging hydroxide ion/water, such as in the case of aztreonam, and is thus inhibitory. The docking also suggests that substitutions on the β-lactam ring are required for β-lactams to bind in the S conformation, and therefore, small β-lactams such as clavulanic acid would be inhibitors of NDM-1. Finally, our docking shows that moxalactam uses its tyrosyl-carboxylic group to compete with the S conformer and would thus be a poor substrate of NDM-1. PMID:22825119

  20. Synthesis of fused-β-lactams through selective gold-catalyzed oxycyclization of dioxolane-tethered enynes.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Martínez del Campo, Teresa; Torres, M Rosario

    2013-09-20

    The gold-catalyzed preparation of 2-azetidinone-fused oxacycles was accomplished from β-lactam-linked enynes through heterocyclization reaction taking advantage of the acetonide pendant group. While the synthesis of fused tetrahydrofuran-β-lactams from 1,3-enynes could be considered as an unusual metal-catalyzed cyclization of enynols, α-alkoxy dioxolane-tethered 1,3-enynes exclusively undergo bis-oxycyclization to afford tricyclic bridged acetals.

  1. In vitro comparison of Pseudomonas aeruginosa isolates with various susceptibilities to aminoglycosides and ten beta-lactam antibiotics.

    PubMed Central

    Wu, D H; Baltch, A L; Smith, R P

    1984-01-01

    Susceptibilities of 98 clinical isolates of Pseudomonas aeruginosa, including 33 strains with known mechanisms of amikacin resistance, were tested by the agar dilution method against 10 beta-lactam drugs. Ceftazidime, imipenem, and cefsulodin had the greatest activity, regardless of the aminoglycoside susceptibilities. The strains which were highly resistant to amikacin appeared to be less susceptible to some beta-lactam drugs, especially if their resistance was related to amikacin-inactivating enzymes; statistical significance, however, was observed for aztreonam only. PMID:6428308

  2. P4 capped amides and lactams as HCV NS3 protease inhibitors with improved potency and DMPK profile

    SciTech Connect

    Nair, Latha G.; Sannigrahi, Mousumi; Bogen, Stephane; Pinto, Patrick; Chen, Kevin X.; Prongay, Andrew; Tong, Xiao; Cheng, K.-C.; Girijavallabhann, Viyyoor; Njoroge, F. George

    2010-09-03

    SAR studies on the extension of P3 unit of Boceprevir (1, SCH 503034) with amides and lactams and their synthesis is described. Extensive SAR studies resulted in the identification of 36 bearing 4,4-dimethyl lactam as the new P4 cap unit with improved potency (K*{sub i}, EC 90 = 70 nM) and pharmacokinetic properties (Rat AUC (PO) = 3.52 {micro}M h) compared to 1.

  3. Comparative analyses of laccase-catalyzed amination reactions for production of novel β-lactam antibiotics.

    PubMed

    Mikolasch, Annett; Manda, Katrin; Schlüter, Rabea; Lalk, Michael; Witt, Sabine; Seefeldt, Simone; Hammer, Elke; Schauer, Frieder; Jülich, Wolf-Dieter; Lindequist, Ulrike

    2012-01-01

    Seven novel β-lactam antibiotics with activities against Gram-positive bacterial strains, among them methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, were synthesized by amination of 2,5-dihydroxyphenylacetic acid in usable yields (30-60%). These products protected mice against an infection with S. aureus lethal to the control animals. The results show the usefulness of laccase for the synthesis of potential new antibiotics, in addition to the interdependence of the laccase substrates, the amino coupling partners, and the product formation, yield, and activity. The syntheses of β-lactam antibiotics with 2,5-dihydroxyaromatic acid substructures (para-substituted) are then compared with those of 3,4-dihydroxyaromatic acid substructures (ortho-substituted). Para-substituted laccase substrates were better reaction partners in these syntheses than ortho-substituted compounds.

  4. Prolonged infusions of β-lactam antibiotics: implication for antimicrobial stewardship.

    PubMed

    George, Jomy M; Towne, Trent G; Rodvold, Keith A

    2012-08-01

    The optimal dosage and administration of antibiotics are not only important measures to combat antimicrobial resistance, but they are also integral to antimicrobial stewardship. In light of a diminishing antibiotic pipeline and an alarming rise in resistance, the optimal dosage and administration of antimicrobial agents have been under a great deal of scrutiny. Prolonged infusions of β-lactam antibiotics have been proposed as an alternate dosing strategy. To summarize the evidence on prolonged infusions of β-lactam agents and provide their clinical implications for antimicrobial stewardship, we performed a MEDLINE search (1950-2011) of all relevant articles. This article provides a review of data from Monte Carlo simulations, clinical outcome analyses, and pharmacoeconomic studies. Furthermore, protocol implementation strategies are discussed to address antimicrobial stewardship.

  5. Avibactam is a covalent, reversible, non–β-lactam β-lactamase inhibitor

    PubMed Central

    Ehmann, David E.; Jahić, Haris; Ross, Philip L.; Gu, Rong-Fang; Hu, Jun; Kern, Gunther; Walkup, Grant K.; Fisher, Stewart L.

    2012-01-01

    Avibactam is a β-lactamase inhibitor that is in clinical development, combined with β-lactam partners, for the treatment of bacterial infections comprising Gram-negative organisms. Avibactam is a structural class of inhibitor that does not contain a β-lactam core but maintains the capacity to covalently acylate its β-lactamase targets. Using the TEM-1 enzyme, we characterized avibactam inhibition by measuring the on-rate for acylation and the off-rate for deacylation. The deacylation off-rate was 0.045 min−1, which allowed investigation of the deacylation route from TEM-1. Using NMR and MS, we showed that deacylation proceeds through regeneration of intact avibactam and not hydrolysis. Other than TEM-1, four additional clinically relevant β-lactamases were shown to release intact avibactam after being acylated. We showed that avibactam is a covalent, slowly reversible inhibitor, which is a unique mechanism of inhibition among β-lactamase inhibitors. PMID:22753474

  6. Bacteriological Study on Effects of Beta-Lactam Group Antibiotics in High Concentrations

    PubMed Central

    Nishino, Takeshi; Nakazawa, Shozo

    1976-01-01

    The growth and viability of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa exposed to various concentrations of a number of β-lactam group antibiotics were determined. In S. aureus, the bacteriolytic and bactericidal activity of these drugs was lower at very high drug concentrations than that occurring at low concentrations, but these phenomena were not observed in E. coli and P. aeruginosa. Under phase-contrast and scanning electron microscopy, S. aureus treated with high concentrations of β-lactam group antibiotics revealed a lower frequency of bacteriolysis than at low drug concentrations, and similarly by transmission electron microscopy fewer cells were transformed into spheroplasts at high drug concentrations. However, swelling of the cell wall septum was seen in many cells. Spheroplast formation occurred with the highest frequency at drug levels near the minimum inhibitory concentration and became less frequent as drug concentrations were increased. Images PMID:820242

  7. Continuous-Infusion Antipseudomonal Beta-Lactam Therapy in Patients With Cystic Fibrosis

    PubMed Central

    Prescott, William A.; Gentile, Allison E.; Nagel, Jerod L.; Pettit, Rebecca S.

    2011-01-01

    Objective: We sought to evaluate the pharmacokinetics, efficacy, safety, stability, pharmacoeconomics, and quality-of-life effects of continuous-infusion antipseudomonal beta-lactam therapy in patients with cystic fibrosis (CF). Data Sources: Literature retrieval was accessed through Medline (from 1950 to December 2010) using the following terms: cystic fibrosis; beta-lactams or piperacillin or ticarcillin or cefepime or ceftazidime or doripenem or meropenem or imipenem/cilastin or aztreonam; continuous infusion or constant infusion; drug stability; economics, pharmaceutical; and quality of life. In addition, reference citations from identified publications were reviewed. Study Selection and Data Extraction: We evaluated all articles in English identified from the data sources. Data Synthesis: Patients with CF often harbor colonies of multidrug-resistant organisms, increasing the risk of suboptimal dosing and failure to meet the time above the minimum inhibitory concentration (T > MIC) pharmacodynamic targets. The pharmacokinetics of continuous-infusion antipseudomonal beta-lactam therapy in CF maintains serum concentrations above the MIC of susceptible strains and is more likely than intermittent infusion to achieve optimal T > MIC targets for some intermediate and resistant strains of Pseudomonas aeruginosa. Three noncomparative and four comparative studies have assessed the efficacy and safety of continuous-infusion antipseudomonal beta-lactam therapy during CF pulmonary exacerbations. Ceftazidime, the most extensively studied antibiotic for continuous infusion in CF, has been shown to improve forced expiratory volume in 1 second (FEV1), to improve forced vital capacity (FVC), and to extend the time between pulmonary exacerbations. Continuous-infusion cefepime has been studied in a small number of patients, and a trend toward improved pulmonary function has been observed. Continuous-infusion antipseudomonal beta-lactam therapy appears to be well tolerated

  8. Analysis of different beta-lactams antibiotics in pharmaceutical preparations using micellar electrokinetic capillary chromatography.

    PubMed

    Pérez, M I Bailón; Rodríguez, L Cuadros; Cruces-Blanco, C

    2007-01-17

    The potential of micellar electrokinetic capillary chromatography (MEKC) for analyzing nine beta-lactams antibiotics (cloxacillin, dicloxacillin, oxacillin, penicillin G, penicillin V, ampicillin, nafcillin, piperacillin, amoxicillin) in different pharmaceutical preparations, have been demonstrated. An experimental design strategy has been applied to optimize the main variables: pH and buffer concentration, concentration of the micellar medium, separation voltage and capillary temperature. Borate buffer (26mM) at pH 8.5 containing 100mM sodium dodecyl sulphate (SDS) was used as the background electrolyte. The method was validated. Linearity, limit of detection and quantitation and precision were established for each compound. The analysis of some of the beta-lactams in Orbenin capsules, Britapen tables and in Veterin-Micipen injectable, all used in human and veterinary medicine, have demonstrated the applicability of these technique for quality control in the pharmaceutical industry.

  9. IDEXX SNAP beta-lactam ST validation for penicillin G detection.

    PubMed

    Waldron, Travis T

    2013-01-01

    IDEXX has produced a robust and improved rapid test kit optimized to detect penicillin G in a variety of milk matrixes. The SNAP Beta-Lactam ST Test Kit is designed to be run without the use of a heat block. The new test is optimized to ensure a detection capability for penicillin G that is at or below the European Union maximum residue limit of 4 parts per billion. The test can be used with commingled cow milk, commingled goat milk, commingled sheep milk, and reconstituted whole fat powdered milk. The SNAP Beta-Lactam ST Test Kit contains all the items necessary to run and interpret the test in a single package. No heat block or reader is required. The results can be read visually or with an IDEXX SNAPshot or SNAPshot DSR Reader. The total assay time is approximately 7 minutes.

  10. How similar is the electronic structures of β-lactam and alanine?

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhojyoti; Ahmed, Marawan; Wang, Feng

    2016-02-01

    The C1s spectra of β-lactam i.e. 2-azetidinone (C3H5NO), a drug and L-alanine (C3H7NO2), an amino acid, exhibit striking similarities, which may be responsible for the competition between 2-azetidinone and the alanyl-alanine moiety in biochemistry. The present study is to reveal the degree of similarities and differences between their electronic structures of the two model molecular pairs. It is found that the similarities in C1s and inner valence binding energy spectra are due to their bonding connections but other properties such as ring structure (in 2-azetidinone) and chiral carbon (alanine) can be very different. Further, the inner valence region of ionization potential greater than 18 eV for 2-azetidinone and alanine is also significantly similar. Finally the strained lactam ring exhibits more chemical reactivity measured at all non-hydrogen atoms by Fukui functions with respect to alanine.

  11. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery

    PubMed Central

    Cho, Hongbaek; Uehara, Tsuyoshi; Bernhardt, Thomas G.

    2014-01-01

    SUMMARY Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality-control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development. PMID:25480295

  12. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery.

    PubMed

    Cho, Hongbaek; Uehara, Tsuyoshi; Bernhardt, Thomas G

    2014-12-04

    Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum.

    PubMed

    Weber, Stefan S; Bovenberg, Roel A L; Driessen, Arnold J M

    2012-02-01

    Industrial production of β-lactam antibiotics by the filamentous fungus Penicillium chrysogenum is based on successive classical strain improvement cycles. This review summarizes our current knowledge on the results of this classical strain improvement process, and discusses avenues to improve β-lactam biosynthesis and to exploit P. chrysogenum as an industrial host for the production of other antibiotics and peptide products. Genomic and transcriptional analysis of strain lineages has led to the identification of several important alterations in high-yielding strains, including the amplification of the penicillin biosynthetic gene cluster, elevated transcription of genes involved in biosynthesis of penicillin and amino acid precursors, and genes encoding microbody proliferation factors. In recent years, successful metabolic engineering and synthetic biology approaches have resulted in the redirection of the penicillin pathway towards the production of cephalosporins. This sets a new direction in industrial antibiotics productions towards more sustainable methods for the fermentative production of unnatural antibiotics and related compounds.

  14. [Emergence of beta-lactam-dependent Bacillus cereus associated with prolonged treatment with cefepime in a neutropenic patient].

    PubMed

    Ko, Sun-Young; Chung, Hee-Jung; Sung, Heong-Sup; Kim, Mi-Na

    2007-06-01

    Antibiotic dependence in clinical isolates has been reported, albeit rarely, such as vancomycin-dependent enterococcus and beta-lactam-dependent Staphylococcus saprophyticus. We report herein a clinical isolate of beta-lactam-dependent Bacillus cereus. A 16-yr-old female was admitted on 8 September 2005 with neutropenic fever during chemotherapy following surgical removal of peripheral neuroectodermal tumor. She had had an indwelling chemoport since August 2004 and experienced B. cereus bacteremia three times during the recent 3-month period prior to the admission; the bacteremias were treated with cefepime-based chemotherapy. On hospital days 1 and 3, B. cereus was isolated from blood drawn through the chemoport. The isolates were resistant to penicillin, ceftriaxone, and erythromycin, and susceptible to vancomycin and ciprofloxacin. The isolate of hospital day 3 grew only nearby the beta-lactam disks including penicillin and ceftriaxone on disk diffusion testing. The beta-lactam-dependent isolate required a minimum of 0.064 microg/mL of penicillin or 0.023 microgram/mL of cefotaxime for growth, which was demonstrated by E test (AB Biodisk, Sweden). Light microscopy and transmission electron microscopy revealed a marked elongation of the dependent strain compared with the non-dependent strain. Prolonged therapy with beta-lactams in the patient with an indwelling intravenous catheter seemed to be a risk factor for the emergence of beta-lactam-dependence in B. cereus.

  15. Two-dimensional thin-layer chromatography for simultaneous detection of bacterial beta-lactam acylases and beta-lactamases.

    PubMed Central

    Chen, K C

    1986-01-01

    A rapid and specific procedure was developed for the simultaneous detection of bacterial acylases and beta-lactamases, using ampicillin and cephalexin as substrates. Bacterial suspensions from agar plates were incubated separately with each beta-lactam substrate for 1 h at 37 degrees C. The supernatant of the reaction mixture was dansylated, and the dansyl derivatives were separated by two-dimensional thin-layer chromatography on polyamide sheets. The end products resulting from acylase hydrolysis, including the intact beta-lactam nucleus, 6-aminopenicillanic acid or 7-aminodeacetoxycephalosporanic acid, and the acyl side chain acid, D-(-)-alpha-aminophenylacetic acid, and the end product resulting from beta-lactamase hydrolysis (D-phenylglycylpenicilloic acid or D-phenylglycyldeacetoxycephalosporoic acid) were separated from each unhydrolyzed substrate and amino acids by this procedure. The presence of the intact beta-lactam nucleus in the reaction mixture is the indication of acylase activity. This method is sensitive and reproducible and has been successfully applied to screening for acylase activity in a variety of bacteria. It may be pharmaceutically useful for identifying organisms capable of removing the acyl side chain from naturally occurring beta-lactam antibiotics such as penicillin G, penicillin V, and cephalosporin C for production of the beta-lactam nuclei which serve as the starting materials for semisynthetic beta-lactam antibiotics. Images PMID:3539008

  16. Design and synthesis of lactam-thiophene carboxylic acids as potent hepatitis C virus polymerase inhibitors.

    PubMed

    Barnes-Seeman, David; Boiselle, Carri; Capacci-Daniel, Christina; Chopra, Rajiv; Hoffmaster, Keith; Jones, Christopher T; Kato, Mitsunori; Lin, Kai; Ma, Sue; Pan, Guoyu; Shu, Lei; Wang, Jianling; Whiteman, Leah; Xu, Mei; Zheng, Rui; Fu, Jiping

    2014-08-15

    Herein we report the successful incorporation of a lactam as an amide replacement in the design of hepatitis C virus NS5B Site II thiophene carboxylic acid inhibitors. Optimizing potency in a replicon assay and minimizing potential risk for CYP3A4 induction led to the discovery of inhibitor 22a. This lead compound has a favorable pharmacokinetic profile in rats and dogs.

  17. Construction of Polycyclic γ-Lactams and Related Heterocycles via Electron Catalysis

    PubMed Central

    2016-01-01

    Cascade radical cyclization of 1,6-enynes for the construction of biologically important polycyclic γ-lactams and related heterocycles is reported. In these radical cascade processes, three new C–C bonds are formed and transition metals are not required to run these sequences. The mild reaction conditions, broad substrate scope, and the importance of the heterocyclic products render the approach valuable. PMID:27978670

  18. Microwave-promoted synthesis of bicyclic azocine-β-lactams from bis(allenes).

    PubMed

    Alcaide, Benito; Almendros, Pedro; Aragoncillo, Cristina; Fernández, Israel; Gómez-Campillos, Gonzalo

    2014-08-01

    A metal-free preparation of structurally novel bicyclic azocine-β-lactams has been developed. The first examples accounting for the preparation of eight-membered rings from bis(allenes) in the absence of metals have been achieved by the thermolysis of nonconjugated 2-azetidinone-tethered bis(allenes) on application of microwave irradiation. This selective carbocyclization reaction has been studied experimentally, and additionally, its mechanism has been investigated by a DFT study.

  19. Commensal Streptococci Serve as a Reservoir for β-Lactam Resistance Genes in Streptococcus pneumoniae

    PubMed Central

    Valdórsson, Oskar; Frimodt-Møller, Niels; Hollingshead, Susan; Kilian, Mogens

    2015-01-01

    Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, septicemia, and middle ear infections. The incidence of S. pneumoniae isolates that are not susceptible to penicillin has risen worldwide and may be above 20% in some countries. Beta-lactam antibiotic resistance in pneumococci is associated with significant sequence polymorphism in penicillin-binding proteins (PBPs). Commensal streptococci, especially S. mitis and S. oralis, have been identified as putative donors of mutated gene fragments. However, no studies have compared sequences of the involved pbp genes in large collections of commensal streptococci with those of S. pneumoniae. We therefore investigated the sequence diversity of the transpeptidase region of the three pbp genes, pbp2x, pbp2b, and pbp1a in 107, 96, and 88 susceptible and nonsusceptible strains of commensal streptococci, respectively, at the nucleotide and amino acid levels to determine to what extent homologous recombination between commensal streptococci and S. pneumoniae plays a role in the development of beta-lactam resistance in S. pneumoniae. In contrast to pneumococci, extensive sequence variation in the transpeptidase region of pbp2x, pbp2b, and pbp1a was observed in both susceptible and nonsusceptible strains of commensal streptococci, conceivably reflecting the genetic diversity of the many evolutionary lineages of commensal streptococci combined with the recombination events occurring with intra- and interspecies homologues. Our data support the notion that resistance to beta-lactam antibiotics in pneumococci is due to sequences acquired from commensal Mitis group streptococci, especially S. mitis. However, several amino acid alterations previously linked to beta-lactam resistance in pneumococci appear to represent species signatures of the donor strain rather than being causal of resistance. PMID:25845880

  20. Enantioselective formal synthesis of uleine alkaloids from phenylglycinol-derived bicyclic lactams.

    PubMed

    Amat, Mercedes; Pérez, Maria; Llor, Núria; Martinelli, Marisa; Molins, Elies; Bosch, Joan

    2004-07-21

    A two-step route for the enantioselective construction of the tetracyclic ring system of uleine alkaloids, involving the stereoselective conjugate addition of an appropriate indole-containing nucleophile to a chiral bicyclic delta-lactam and the subsequent cyclization on the indole 3-position of the resulting 4,5-disubstituted 2-piperidone, has culminated in the formal total synthesis of several alkaloids of this group.

  1. Different Dynamic Patterns of β-Lactams, Quinolones, Glycopeptides and Macrolides on Mouse Gut Microbial Diversity.

    PubMed

    Yin, Jia; M, Prabhakar; Wang, Shan; Liao, Shuo-Xi; Peng, Xin; He, Yan; Chen, Yi-Ran; Shen, Hua-Fang; Su, Jin; Chen, Ye; Jiang, Yun-Xia; Zhang, Guo-Xia; Zhou, Hong-Wei

    2015-01-01

    The adverse impact of antibiotics on the gut microbiota has attracted extensive interest, particularly due to the development of microbiome research techniques in recent years. However, a direct comparison of the dynamic effects of various types of antibiotics using the same animal model has not been available. In the present study, we selected six antibiotics from four categories with the broadest clinical usage, namely, β-lactams (Ceftriaxone Sodium, Cefoperazone/Sulbactam and meropenem), quinolones (ofloxacin), glycopeptides (vancomycin), and macrolides (azithromycin), to treat BALB/c mice. Stool samples were collected during and after the administration of antibiotics, and microbial diversity was analyzed through Illumina sequencing and bioinformatics analyses using QIIME. Both α and β diversity analyses showed that ceftriaxone sodium, cefoperazone/sulbactam, meropenem and vancomycin changed the gut microbiota dramatically by the second day of antibiotic administration whereas the influence of ofloxacin was trivial. Azithromycin clearly changed the gut microbiota but much less than vancomycin and the β-lactams. In general, the community changes induced by the three β-lactam antibiotics showed consistency in inhibiting Papillibacter, Prevotella and Alistipes while inducing massive growth of Clostridium. The low diversity and high Clostridium level might be an important cause of Clostridium difficile infection after usage of β-lactams. Vancomycin was unique in that it inhibited Firmicutes, mainly the genus Clostridium. On the other hand, it induced the growth of Escherichia and effect lasted for months afterward. Azithromycin and meropenem induced the growth of Enterococcus. These findings will be useful for understanding the potential adverse effects of antibiotics on the gut microbiome and ensuring their better usage.

  2. Different Dynamic Patterns of β-Lactams, Quinolones, Glycopeptides and Macrolides on Mouse Gut Microbial Diversity

    PubMed Central

    Wang, Shan; Liao, Shuo-Xi; Peng, Xin; He, Yan; Chen, Yi-Ran; Shen, Hua-Fang; Su, Jin; Chen, Ye; Jiang, Yun-Xia; Zhang, Guo-Xia; Zhou, Hong-Wei

    2015-01-01

    The adverse impact of antibiotics on the gut microbiota has attracted extensive interest, particularly due to the development of microbiome research techniques in recent years. However, a direct comparison of the dynamic effects of various types of antibiotics using the same animal model has not been available. In the present study, we selected six antibiotics from four categories with the broadest clinical usage, namely, β-lactams (Ceftriaxone Sodium, Cefoperazone/Sulbactam and meropenem), quinolones (ofloxacin), glycopeptides (vancomycin), and macrolides (azithromycin), to treat BALB/c mice. Stool samples were collected during and after the administration of antibiotics, and microbial diversity was analyzed through Illumina sequencing and bioinformatics analyses using QIIME. Both α and β diversity analyses showed that ceftriaxone sodium, cefoperazone/sulbactam, meropenem and vancomycin changed the gut microbiota dramatically by the second day of antibiotic administration whereas the influence of ofloxacin was trivial. Azithromycin clearly changed the gut microbiota but much less than vancomycin and the β-lactams. In general, the community changes induced by the three β-lactam antibiotics showed consistency in inhibiting Papillibacter, Prevotella and Alistipes while inducing massive growth of Clostridium. The low diversity and high Clostridium level might be an important cause of Clostridium difficile infection after usage of β-lactams. Vancomycin was unique in that it inhibited Firmicutes, mainly the genus Clostridium. On the other hand, it induced the growth of Escherichia and effect lasted for months afterward. Azithromycin and meropenem induced the growth of Enterococcus. These findings will be useful for understanding the potential adverse effects of antibiotics on the gut microbiome and ensuring their better usage. PMID:25970622

  3. Enantioselective synthesis of α,α-difluoro-β-lactams using amino alcohol ligands.

    PubMed

    Tarui, Atsushi; Ikebata, Takeshi; Sato, Kazuyuki; Omote, Masaaki; Ando, Akira

    2014-09-07

    A practical and highly enantioselective Reformatsky reaction of ethyl bromodifluoroacetate with imines using a cheap and commercially available amino alcohol ligand is described. A variety of α,α-difluoro-β-lactams were obtained in up to 74% yield with high enantioselectivity in excess of 99% ee. The use of ethyl bromodifluoroacetate provides for ease of operation because of the inherent chemical stability of this reagent.

  4. Methicillin-resistant Staphylococcus aureus infections: role of daptomycin/β-lactams combination.

    PubMed

    Leone, Sebastiano; Noviello, Silvana; Boccia, Giovanni; De Caro, Francesco; Esposito, Silvano

    2015-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) associated infection has become a worrisome issue worldwide. Glycopeptides are the backbone antibiotics for the treatment of MRSA infections. However, several reports have highlighted the limitations of vancomycin. Daptomycin is successfully used for the treatment of serious MRSA infections, however selection of resistant strains has been reported during daptomycin-monotherapy. This review will briefly discuss the available data on daptomycin/beta-lactam combination therapies for the treatment of MRSA infections.

  5. Bactericidal and intracellular activity of β-lactams against Mycobacterium abscessus.

    PubMed

    Lefebvre, Anne-Laure; Dubée, Vincent; Cortes, Mélanie; Dorchêne, Delphine; Arthur, Michel; Mainardi, Jean-Luc

    2016-06-01

    Cefoxitin and imipenem are the sole recommended β-lactams for the treatment of Mycobacterium abscessus pulmonary infections. Here, we investigated whether one of these drugs displays superiority in terms of killing and intracellular activity. We have also evaluated whether the use of a β-lactamase inhibitor could improve their activity. The impact of the β-lactamase BlaMab on the activity of β-lactams was assessed by comparing M. abscessus CIP104536 and its β-lactamase-deficient ΔblaMab derivative, as well as by using the β-lactamase inhibitor avibactam. The activity of cefoxitin, imipenem, amoxicillin and ceftaroline, alone and in various combinations including amikacin, was compared based on determination of time-kill curves and of intracellular proliferation in human macrophages. Imipenem was superior to cefoxitin in both the time-kill and macrophage assays. Production of BlaMab limited the activity of imipenem. The combination of imipenem and amikacin was bactericidal against the ΔblaMab mutant. Deletion of blaMab extended the spectrum of β-lactams active against M. abscessus to include amoxicillin and ceftaroline. In the absence of BlaMab, amoxicillin was as active as imipenem. These drugs were more active than ceftaroline and cefoxitin was the least active. Avibactam increased the intracellular activity of ceftaroline, but inhibition of BlaMab was only partial, as previously reported for amoxicillin. Evaluation of the killing and intracellular activities of β-lactams indicates that imipenem is superior to cefoxitin at clinically achievable drug concentrations. Inhibition of BlaMab could improve the efficacy of imipenem and extend the spectrum of drugs potentially useful to treat pulmonary infections. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. An unexpected isomerization of 1,3-benzothiazine and isoquinoline-condensed β-lactams

    NASA Astrophysics Data System (ADS)

    Fodor, Lajos; Csomós, Péter; Fülöp, Ferenc; Csámpai, Antal; Sohár, Pál

    2010-11-01

    A series of novel aryl-substituted β-lactams condensed with 1,3-benzothiazines, isoquinolines or 1,4-benzothiazepine were obtained by means of the Staudinger reaction and isomerized in the presence of sodium methoxide to the thermodynamically more stable form. The structures of the new molecules were determined by NMR spectroscopy. Theoretical calculations corroborate the experimentally observed structure-reactivity relationships.

  7. QSAR modeling of β-lactam binding to human serum proteins

    NASA Astrophysics Data System (ADS)

    Hall, L. Mark; Hall, Lowell H.; Kier, Lemont B.

    2003-02-01

    The binding of beta-lactams to human serum proteins was modeled with topological descriptors of molecular structure. Experimental data was the concentration of protein-bound drug expressed as a percent of the total plasma concentration (percent fraction bound, PFB) for 87 penicillins and for 115 β-lactams. The electrotopological state indices (E-State) and the molecular connectivity chi indices were found to be the basis of two satisfactory models. A data set of 74 penicillins from a drug design series was successfully modeled with statistics: r2=0.80, s = 12.1, q2=0.76, spress=13.4. This model was then used to predict protein binding (PFB) for 13 commercial penicillins, resulting in a very good mean absolute error, MAE = 12.7 and correlation coefficient, q2=0.84. A group of 28 cephalosporins were combined with the penicillin data to create a dataset of 115 beta-lactams that was successfully modeled: r2=0.82, s = 12.7, q2=0.78, spress=13.7. A ten-fold 10% leave-group-out (LGO) cross-validation procedure was implemented, leading to very good statistics: MAE = 10.9, spress=14.0, q2 (or r2 press)=0.78. The models indicate a combination of general and specific structure features that are important for estimating protein binding in this class of antibiotics. For the β-lactams, significant factors that increase binding are presence and electron accessibility of aromatic rings, halogens, methylene groups, and =N- atoms. Significant negative influence on binding comes from amine groups and carbonyl oxygen atoms.

  8. The beta-lactam antibiotic, ceftriaxone, attenuates morphine-evoked hyperthermia in rats

    PubMed Central

    Rawls, S M; Tallarida, R; Robinson, W; Amin, M

    2007-01-01

    Background and purpose: Beta-lactam antibiotics are the first practical pharmaceuticals capable of increasing the expression and activity of the glutamate transporter, GLT-1, in the CNS. However, the functional impact of beta-lactam antibiotics on specific drugs which produce their pharmacological effects by increasing glutamatergic transmission is unknown. One such drug is morphine, which causes hyperthermia in rats, mediated by an increase in glutamatergic transmission. Since drugs (e.g. antibiotics) that enhance glutamate uptake also decrease glutamatergic transmission, we tested the hypothesis that ceftriaxone, a beta-lactam antibiotic, would block the glutamate-dependent portion of morphine-evoked hyperthermia. Experimental approach: A body temperature assay was used to determine if ceftriaxone decreased morphine-induced hyperthermia in rats by increasing glutamate uptake. Key results: Body temperatures of rats treated with ceftriaxone (200 mg kg−1, i.p. × 7 days) did not differ from rats receiving saline. Morphine (1, 4, 8 and 15 mg kg−1, s.c.) caused significant hyperthermia. Pre-treatment with ceftriaxone, as described above, decreased the hyperthermic response to these doses of morphine. The effects of ceftriaxone were prevented by TBOA (0.2 μmol, i.c.v.), an inhibitor of glutamate transport. Conclusions and implications: Ceftriaxone attenuated the hyperthermia caused by morphine, an effect prevented by inhibiting glutamate transport. Thus this effect of ceftriaxone was most likely mediated by increased glutamate uptake. These data revealed a functional interaction between ceftriaxone and morphine and indicated that a beta-lactam antibiotic decreased the efficacy of morphine in conscious rats. PMID:17592517

  9. Interaction of oxyimino beta-lactams with a class C beta-lactamase and a mutant with a spectrum extended to beta-lactams.

    PubMed Central

    Nukaga, M; Tsukamoto, K; Yamaguchi, H; Sawai, T

    1994-01-01

    The class C beta-lactamase of Citrobacter freundii GN346 is a typical cephalosporinase comprising 361 amino acids, and substitution of the glutamic acid at position 219 in the enzyme by lysine was previously shown to broaden its substrate spectrum to oxyimino beta-lactams (K. Tsukamoto, R. Ohno, and T. Sawai, J. Bacteriol. 172:4348-4351, 1990). To clarify this spectrum extension from the kinetic point of view, the interactions of cefuroxime, ceftazidime, and aztreonam with the wild-type and mutant enzymes were analyzed. In addition to aztreonam, known as a progressive inhibitor of class C beta-lactamases, cefuroxime and ceftazidime were found to act as progressive inhibitors of the wild-type enzyme. On the other hand, only aztreonam showed weak progressive inhibition of the mutant enzyme. On the basis of kinetic parameters, a minimum scheme for interaction of the oxyimino beta-lactams with the wild-type enzyme was proposed, and the rate-limiting step of the hydrolysis of unfavorable substrates was indicated to be conversion of the stable acyl-enzyme intermediate to the unstable intermediate. In aztreonam hydrolysis by the mutant enzyme, the reaction rate at the rate-limiting step was 2,000 times that of the wild-type enzyme. These results indicate that the mutation at position 219 disturbs the stabilization of the stable intermediate. PMID:8092840

  10. SYNTHESIS AND EVALUATION OF NEW PHTHALAZINE SUBSTITUTED β-LACTAM DERIVATIVES AS CARBONIC ANHYDRASE INHIBITORS.

    PubMed

    Berber, Nurcan; Arslan, Mustafa; Bilen, Çiğdem; Sackes, Zübeyde; Gençer, Nahit; Arslan, Oktay

    2015-01-01

    A new series of phthalazine substituted β-lactam derivatives were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase (hCA I and II) were evaluated. 2H-Indazolo[2,1-b]phthala- zine-trione derivative was prepared with 4-nitrobenzaldehyde, dimedone, and phthalhydrazide in the presence of TFA in DMF, and the nitro group was reduced to 13-(4-aminophenyl)-3,3-dimethyl-3,4-dihydro- 2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione with SnCl2 · 2H2O. The reduced compound was re- acted with different aromatic aldehydes, and phthalazine substituted imines were synthesized. The imine compounds undergo (2+2) cycloaddition reactions with ketenes to produce 2H-indazolo[2,1-b]phthala-zine-trione substituted β-lactam derivatives. The β-lactam compounds were tested as inhibitors of the CA isoenzyme activity. The results showed that all the synthesized compounds inhibited the CA isoenzyme activity. 1-(4-(3,3-dimethyl- 1,6,1 1-trioxo-2,3,4,6,11,13-hexahydro-1H-indazolo[1,2-b]phthalazin-13- yl)phenyl)-2-oxo-4-p-tolylazetidin-3-yl acetate (IC50 = 6.97 µM for hCA I and 8.48 µM for hCA II) had the most inhibitory effect.

  11. Mechanisms of resistance and clinical relevance of resistance to β-lactams, glycopeptides, and fluoroquinolones.

    PubMed

    Rice, Louis B

    2012-02-01

    The widespread use of antibiotics has resulted in a growing problem of antimicrobial resistance in the community and hospital settings. Antimicrobial classes for which resistance has become a major problem include the β-lactams, the glycopeptides, and the fluoroquinolones. In gram-positive bacteria, β-lactam resistance most commonly results from expression of intrinsic low-affinity penicillin-binding proteins. In gram-negative bacteria, expression of acquired β-lactamases presents a particular challenge owing to some natural spectra that include virtually all β-lactam classes. Glycopeptide resistance has been largely restricted to nosocomial Enterococcus faecium strains, the spread of which is promoted by ineffective infection control mechanisms for fecal organisms and the widespread use of colonization-promoting antimicrobials (especially cephalosporins and antianaerobic antibiotics). Fluoroquinolone resistance in community-associated strains of Escherichia coli, many of which also express β-lactamases that confer cephalosporin resistance, is increasingly prevalent. Economic and regulatory forces have served to discourage large pharmaceutical companies from developing new antibiotics, suggesting that the antibiotics currently on the market may be all that will be available for the coming decade. As such, it is critical that we devise, test, and implement antimicrobial stewardship strategies that are effective at constraining and, ideally, reducing resistance in human pathogenic bacteria. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  12. Mechanisms of Resistance and Clinical Relevance of Resistance to β-Lactams, Glycopeptides, and Fluoroquinolones

    PubMed Central

    Rice, Louis B.

    2012-01-01

    The widespread use of antibiotics has resulted in a growing problem of antimicrobial resistance in the community and hospital settings. Antimicrobial classes for which resistance has become a major problem include the β-lactams, the glycopeptides, and the fluoroquinolones. In gram-positive bacteria, β-lactam resistance most commonly results from expression of intrinsic low-affinity penicillin-binding proteins. In gram-negative bacteria, expression of acquired β-lactamases presents a particular challenge owing to some natural spectra that include virtually all β-lactam classes. Glycopeptide resistance has been largely restricted to nosocomial Enterococcus faecium strains, the spread of which is promoted by ineffective infection control mechanisms for fecal organisms and the widespread use of colonization-promoting antimicrobials (especially cephalosporins and antianaerobic antibiotics). Fluoroquinolone resistance in community-associated strains of Escherichia coli, many of which also express β-lactamases that confer cephalosporin resistance, is increasingly prevalent. Economic and regulatory forces have served to discourage large pharmaceutical companies from developing new antibiotics, suggesting that the antibiotics currently on the market may be all that will be available for the coming decade. As such, it is critical that we devise, test, and implement antimicrobial stewardship strategies that are effective at constraining and, ideally, reducing resistance in human pathogenic bacteria. PMID:22305032

  13. Atomistic Model for the Polyamide Formation from β-Lactam Catalyzed by Candida Antarctica Lipase B

    SciTech Connect

    Baum, Iris; Elsasser, Brigitta M.; Schwab, Leendert; Loos, Katja; Fels, Gregor

    2011-04-01

    Candida antarctica lipase B (CALB) is an established biocatalyst for a variety of transesterification, amidation, and polymerization reactions. In contrast to polyesters, polyamides are not yet generally accessible via enzymatic polymerization. In this regard, an enzyme-catalyzed ring-opening polymerization of {beta}-lactam (2-azetidinone) using CALB is the first example of an enzymatic polyamide formation yielding unbranched poly({beta}-alanine), nylon 3. The performance of this polymerization, however, is poor, considering the maximum chain length of 18 monomer units with an average length of 8, and the molecular basis of the reaction so far is not understood. We have employed molecular modeling techniques using docking tools, molecular dynamics, and QM/MM procedures to gain insight into the mechanistic details of the various reaction steps involved. As a result, we propose a catalytic cycle for the oligomerization of {beta}-lactam that rationalizes the activation of the monomer, the chain elongation by additional {beta}-lactam molecules, and the termination of the polymer chain. In addition, the processes leading to a premature chain termination are studied. Particularly, the QM/MM calculation enables an atomistic description of all eight steps involved in the catalytic cycle, which features an in situ-generated {beta}-alanine as the elongating monomer and which is compatible with the experimental findings.

  14. Recent trends in the design, synthesis and biological exploration of β-lactams.

    PubMed

    Veinberg, G; Potorocina, I; Vorona, M

    2014-01-01

    Since the discovery of penicillin, natural and synthetic β-lactams have aroused great interest not only as sources of effective antibacterial agents but also as specific inhibitors of proteases responsible for various non-bacterial pathological processes. This interest was reflected in our review published in Current Medicinal Chemistry in 2003. The present article summarises new data published during the last decade dedicated to the design, synthesis and biological exploration of new β-lactams with anti-inflammatory, antiviral, anticancer and other activities based on the inhibition of human leukocyte elastase, porcine pancreatic elastase, tryptase, chymase, human cytomegalovirus protease, fatty acid amide hydrolase, protein phosphatase methylesterase-1, serine protease responsible for tumor proliferation, cysteine proteases, matrix metalloproteinases, human 20s proteasome, human immunodeficiency virus, cholesterol absorption, human fatty acid synthase, bacterial RNase A and Leishmania D-mannosyl phosphate transferase. Antitumor effect was achieved also by new β-lactams activating apoptosis-specific poly(ADP-ribose) polymerase or participating in DNA intercalation.

  15. A Peptidoglycan Fragment Triggers β-lactam Resistance in Bacillus licheniformis

    PubMed Central

    Amoroso, Ana; Boudet, Julien; Berzigotti, Stéphanie; Duval, Valérie; Teller, Nathalie; Mengin-Lecreulx, Dominique; Luxen, André; Simorre, Jean-Pierre; Joris, Bernard

    2012-01-01

    To resist to β-lactam antibiotics Eubacteria either constitutively synthesize a β-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of β-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a β-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible β-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation. PMID:22438804

  16. Aerobic oxidation of cyclic amines to lactams catalyzed by ceria-supported nanogold

    DOE PAGES

    Dairo, Taiwo O.; Nelson, Nicholas C.; Slowing, Igor I.; ...

    2016-09-23

    Here, the oxidative transformation of cyclic amines to lactams, which are important chemical feedstocks, is efficiently catalyzed by CeO2-supported gold nanoparticles (Au/CeO2) and Aerosil 200 in the presence of an atmosphere of O2. The complete conversion of pyrrolidine was achieved in 6.5 h at 160 °C, affording a 97 % yield of the lactam product 2-pyrrolidone (γ-butyrolactam), while 2-piperidone (δ-valerolactam) was synthesized from piperidine (83 % yield) in 2.5 h. Caprolactam, the precursor to the commercially important nylon-6, was obtained from hexamethyleneimine in 37 % yield in 3 h. During the oxidation of pyrrolidine, two transient species, 5-(pyrrolidin-1-yl)-3,4-dihydro-2H-pyrrole (amidine-5) andmore » 4-amino-1-(pyrrolidin-1-yl)butan-1-one, were observed. Both of these compounds were oxidized to 2-pyrrolidone under catalytic conditions, indicating their role as intermediates in the reaction pathway. In addition to the reactions of cyclic secondary amines, Au/CeO2 also efficiently catalyzes the oxidation of N-methyl cyclic tertiary amines to the corresponding lactams at 80 and 100 °C.« less

  17. Kinetics and mechanisms of sulfate radical oxidation of β-lactam antibiotics in water.

    PubMed

    Rickman, Kimberly A; Mezyk, Stephen P

    2010-09-01

    The quantitative removal of contaminant antibiotic activity from waters intended for reuse is one of the biggest problems facing water utilities today. As conventional water treatments are not sufficient, advanced Oxidation and Reduction Processes (AO/RPs) are being considered for additional remediation. In support of the potential use of sulfate radical based AO/RPs, we have determined the reaction rate constants for the sulfate radical with a large library of β-lactam antibiotics. The SO(4)(-)() reactivity with the five-member ring species was found to have an extrapolated zero ionic strength average rate constant of (1.6±0.9) x 10(9)M(-1)s(-1), slightly slower than for the six-member antibiotics at (2.1±0.6) x 10(9)M(-1)s(-1). Transient spectral studies indicated that the majority of these radicals reacted at the five- or six-member rings adjacent to the β-lactam core, predominately at the sulfur atom and the double bond, respectively. As these oxidations occur next to the β-lactam moiety, rather than at the peripheral aromatic rings observed for hydroxyl radical reaction, sulfate radical remediation through the use of added persulfate might result in more efficient antibiotic activity removal than when using a traditional AO/RP treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA

    PubMed Central

    Gonzales, Patrick R.; Pesesky, Mitchell W.; Bouley, Renee; Ballard, Anna; Biddy, Brent A.; Suckow, Mark A.; Wolter, William R.; Schroeder, Valerie A.; Burnham, Carey-Ann D.; Mobashery, Shahriar; Chang, Mayland; Dantas, Gautam

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent multidrug-resistant pathogens worldwide, exhibiting increasing resistance to the latest antibiotic therapies. Here we show that the triple β-lactam combination meropenem/piperacillin/tazobactam (ME/PI/TZ) acts synergistically and is bactericidal against MRSA N315 and 72 clinical MRSA isolates in vitro, and clears MRSA N315 infection in a mouse model. ME/PI/TZ suppresses evolution of resistance in MRSA via reciprocal collateral sensitivity of its constituents. We demonstrate that these activities also extend to other carbapenem/penicillin/β-lactamase inhibitor combinations. ME/PI/TZ circumvents the tight regulation of the mec and bla operons in MRSA, the basis for inducible resistance to β-lactam antibiotics. Furthermore, ME/PI/TZ subverts the function of penicillin-binding protein 2a (PBP2a) action via allostery, which we propose as the mechanism for both synergy and collateral sensitivity. Showing similar in vivo activity to linezolid, ME/PI/TZ demonstrates that combinations of older β-lactam antibiotics could be effective against MRSA infections in humans. PMID:26368589

  19. Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of beta-lactam antibiotics.

    PubMed

    Schneider, György; Czeller, Miklós; Rostás, Viktor; Kovács, Tamás

    2015-06-01

    Beta-lactam antibiotics comprise the largest group of antibacterial agents. Due to their bactericidal properties and limited toxicity to humans they are preferred in antimicrobial therapy. In most cases, therapy is empiric since susceptibility testing in diagnostic laboratories takes a relatively long time. This paper presents a novel platform that is based on the microbial fuel cell (MFC) technology and focuses on the early antibiogram determination of isolates against a series of beta-lactam antibiotics. An advantage of the system is that it can be integrated into traditional microbiological diagnostic laboratory procedures. Tested bacterium suspensions are uploaded into the anodic chambers of each miniaturized MFC unit integrated into a panel system, containing different antibiotic solutions. Electronic signals gained in each MFC unit are continuously monitored and are proportional to the metabolic activity of the presenting test bacterium. Using this method, antibiotic susceptibility can be evaluated in 2-4h after inoculation. Hereby we demonstrate the efficacy of the platform in antibiogram determination by testing the susceptibilities of Escherichia coli strain ATCC 25922 and Staphylococcus aureus strain ATCC 29213 against 10 beta-lactam antibiotics (penicillin, ampicillin, ticarcillin, cefazolin, cefuroxime, cefoperazone, cefepime, cefoxitin, cefaclor, imipenem). This paper also presents the construction of the background instrumentation and the panel system into which a printed circuit board (PCB) based electrode was integrated. Our results suggest that MFC based biosensors have the potential to be used in diagnostics for antibiogram determination. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mechanism of β-Lactam Action in Streptococcus pneumoniae: the Piperacillin Paradox

    PubMed Central

    Philippe, Jules; Gallet, Benoit; Morlot, Cécile; Denapaite, Dalia; Hakenbeck, Regine; Chen, Yuxin; Vernet, Thierry

    2014-01-01

    The human pathogen Streptococcus pneumoniae has been treated for decades with β-lactam antibiotics. Its resistance is now widespread, mediated by the expression of mosaic variants of the target enzymes, the penicillin-binding proteins (PBPs). Understanding the mode of action of β-lactams, not only in molecular detail but also in their physiological consequences, will be crucial to improving these drugs and any counterresistances. In this work, we investigate the piperacillin paradox, by which this β-lactam selects primarily variants of PBP2b, whereas its most reactive target is PBP2x. These PBPs are both essential monofunctional transpeptidases involved in peptidoglycan assembly. PBP2x participates in septal synthesis, while PBP2b functions in peripheral elongation. The formation of the “lemon”-shaped cells induced by piperacillin treatment is consistent with the inhibition of PBP2x. Following the examination of treated and untreated cells by electron microscopy, the localization of the PBPs by epifluorescence microscopy, and the determination of the inhibition time course of the different PBPs, we propose a model of peptidoglycan assembly that accounts for the piperacillin paradox. PMID:25385114

  1. Aerobic oxidation of cyclic amines to lactams catalyzed by ceria-supported nanogold

    SciTech Connect

    Dairo, Taiwo O.; Nelson, Nicholas C.; Slowing, Igor I.; Angelici, Robert J.; Woo, L. Keith

    2016-09-23

    Here, the oxidative transformation of cyclic amines to lactams, which are important chemical feedstocks, is efficiently catalyzed by CeO2-supported gold nanoparticles (Au/CeO2) and Aerosil 200 in the presence of an atmosphere of O2. The complete conversion of pyrrolidine was achieved in 6.5 h at 160 °C, affording a 97 % yield of the lactam product 2-pyrrolidone (γ-butyrolactam), while 2-piperidone (δ-valerolactam) was synthesized from piperidine (83 % yield) in 2.5 h. Caprolactam, the precursor to the commercially important nylon-6, was obtained from hexamethyleneimine in 37 % yield in 3 h. During the oxidation of pyrrolidine, two transient species, 5-(pyrrolidin-1-yl)-3,4-dihydro-2H-pyrrole (amidine-5) and 4-amino-1-(pyrrolidin-1-yl)butan-1-one, were observed. Both of these compounds were oxidized to 2-pyrrolidone under catalytic conditions, indicating their role as intermediates in the reaction pathway. In addition to the reactions of cyclic secondary amines, Au/CeO2 also efficiently catalyzes the oxidation of N-methyl cyclic tertiary amines to the corresponding lactams at 80 and 100 °C.

  2. Synthesis and structural analysis of tetra- and pentacyclic lactams derived from regioisomeric tetrahydroisoquinoline diamines

    NASA Astrophysics Data System (ADS)

    Kivelä, Henri; Tähtinen, Petri; Martiskainen, Olli; Pihlaja, Kalevi; Lázár, László; Vigóczki, Edina; Fülöp, Ferenc

    2010-11-01

    By means of the domino ring-closure reactions of 1-(aminomethyl)- and 3-(aminomethyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline with acyclic and aromatic γ- or δ-oxo acids, angularly or linearly condensed tetra- and pentacyclic lactam derivatives were formed with moderate to excellent diastereoselectivities. NMR analysis indicated that the cis diastereomer ( a) was the main or the only product in each case, depending on the nature of the starting oxo acid used. The angularly-condensed cis diastereomers were observed to populate two types of conformations in CDCl 3 solution, the preferred conformation being determined by the substitution on the lactam ring. These conformers are related by ring inversion of the approximately half-chair-like tetrahydropyridine ring, combined with a pyramidal inversion of its nitrogen atom. For the other combinations of regio- and diastereochemistry, the preferred conformation was not strongly influenced by the lactam substitution within the subset. The linear and angular structural isomers gave fragment ions that were useful for distinguishing between isomers, but with diastereomers the differences were not so clear.

  3. [Importance of quality control for the detection of β-lactam antibiotic resistance in Enterobacteriaceae].

    PubMed

    Rivera, Alba; Larrosa, Nieves; Mirelis, Beatriz; Navarro, Ferran

    2014-02-01

    β-lactam antimicrobial agents are frequently used to treat infections caused by Enterobacteriaceae. The main mechanism of resistance to these antibiotics is the production of certain enzymes, collectively named β-lactamases. Due to their substrate profile and their epidemiological implications, the most clinically important β-lactamases are extended-spectrum β-lactamases, class C β-lactamases and carbapenemases. Phenotypic detection of these enzymes may be complicated and is based on the use of specific inhibitors of each β-lactamase and on the loss of activity on some β-lactam indicators. Various international committees postulate that it is no longer necessary to interpret the susceptibility results or determine the mechanism of resistance. Several critics disagree, however, and consider that susceptibility results should be interpreted until more data are available on the clinical efficacy of treatment with β-lactams. Given these methodological difficulties and constant changes in the interpretation criteria, we consider that training and external quality controls are essential to keep updated in this field. For learning purposes, these external quality controls should always be accompanied by a review of the results and methodology used, and the analysis of errors. In this paper we review and contextualize all the aspects related to the detection and interpretation of these β-lactamases.

  4. Access to β-lactams by enantioselective palladium(0)-catalyzed C(sp3)-H alkylation.

    PubMed

    Pedroni, Julia; Boghi, Michele; Saget, Tanguy; Cramer, Nicolai

    2014-08-18

    β-Lactams are very important structural motifs because of their broad biological activities as well as their propensity to engage in ring-opening reactions. Transition-metal-catalyzed C-H functionalizations have emerged as strategy enabling yet uncommon highly efficient disconnections. In contrast to the significant progress of Pd(0)-catalyzed C-H functionalization for aryl-aryl couplings, related reactions involving the formation of saturated C(sp(3))-C(sp(3)) bonds are elusive. Reported here is an asymmetric C-H functionalization approach to β-lactams using readily accessible chloroacetamide substrates. Important aspects of this transformation are challenging C(sp(3))-C(sp(3)) and strain-building reductive eliminations to for the four-membered ring. In general, the β-lactams are formed in excellent yields and enantioselectivities using a bulky taddol phosphoramidite ligand in combination with adamantyl carboxylic acid as cocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biosynthesis of active pharmaceuticals: β-lactam biosynthesis in filamentous fungi.

    PubMed

    Van Den Berg, Marco; Gidijala, Loknath; Kiela, Jan; Bovenberg, Roel; Vander Keli, Ida

    2010-01-01

    β-lactam antibiotics (e.g. penicillins, cephalosporins) are of major clinical importance and contribute to over 40% of the total antibiotic market. These compounds are produced as secondary metabolites by certain actinomycetes and filamentous fungi (e.g. Penicillium, Aspergillus and Acremonium species). The industrial producer of penicillin is the fungus Penicillium chrysogenum. The enzymes of the penicillin biosynthetic pathway are well characterized and most of them are encoded by genes that are organized in a cluster in the genome. Remarkably, the penicillin biosynthetic pathway is compartmentalized: the initial steps of penicillin biosynthesis are catalyzed by cytosolic enzymes, whereas the two final steps involve peroxisomal enzymes. Here, we describe the biochemical properties of the enzymes of β-lactam biosynthesis in P. chrysogenum and the role of peroxisomes in this process. An overview is given on strain improvement programs via classical mutagenesis and, more recently, genetic engineering, leading to more productive strains. Also, the potential of using heterologous hosts for the development of novel ß-lactam antibiotics and non-ribosomal peptide synthetase-based peptides is discussed.

  6. Kinase Inhibitors that Increase the Sensitivity of Methicillin Resistant Staphylococcus aureus to β-Lactam Antibiotics

    PubMed Central

    Vornhagen, Jay; Burnside, Kellie; Whidbey, Christopher; Berry, Jessica; Qin, Xuan; Rajagopal, Lakshmi

    2015-01-01

    Staphylococcus aureus are Gram-positive bacteria that are the leading cause of recurrent infections in humans that include pneumonia, bacteremia, osteomyelitis, arthritis, endocarditis, and toxic shock syndrome. The emergence of methicillin resistant S. aureus strains (MRSA) has imposed a significant concern in sustained measures of treatment against these infections. Recently, MRSA strains deficient in expression of a serine/threonine kinase (Stk1 or PknB) were described to exhibit increased sensitivity to β-lactam antibiotics. In this study, we screened a library consisting of 280 drug-like, low-molecular-weight compounds with the ability to inhibit protein kinases for those that increased the sensitivity of wild-type MRSA to β-lactams and then evaluated their toxicity in mice. We report the identification of four kinase inhibitors, the sulfonamides ST085384, ST085404, ST085405, and ST085399 that increased sensitivity of WT MRSA to sub-lethal concentrations of β-lactams. Furthermore, these inhibitors lacked alerting structures commonly associated with toxic effects, and toxicity was not observed with ST085384 or ST085405 in vivo in a murine model. These results suggest that kinase inhibitors may be useful in therapeutic strategies against MRSA infections. PMID:26506394

  7. Comparative Treatment Failure Rates of Respiratory Fluoroquinolones or β-Lactam + Macrolide Versus β-Lactam Alone in the Treatment for Community-Acquired Pneumonia in Adult Outpatients: An Analysis of a Nationally Representative Claims Database.

    PubMed

    Lee, Meng-Tse Gabriel; Lee, Shih-Hao; Chang, Shy-Shin; Chan, Ya-Lan; Pang, Laura; Hsu, Sue-Ming; Lee, Chien-Chang

    2015-09-01

    No comparative effectiveness study has been conducted for the following 3 antibiotics: respiratory fluoroquinolones, β-lactam, and β-lactam + advanced macrolide. To gain insights into the real-world clinical effectiveness of these antibiotics for community-acquired pneumonia in adult outpatients, our study investigated the treatment failure rates in 2 million representative participants from the National Health Informatics Project (NHIP) of Taiwan. A new-user cohort design was used to follow NHIP participants from January 2000 until December 2009. Treatment failure was defined by either one of the following events: a second antibiotic prescription, hospitalization due to CAP, an emergency department visit with a diagnosis of CAP, or 30-day nonaccident-related mortality. From 2006 to 2009, we identified 9256 newly diagnosed CAP outpatients, 1602 of whom were prescribed levofloxacin, 2100 were prescribed moxifloxacin, 5049 were prescribed β-lactam alone, and 505 were prescribed advanced macrolide + β-lactam. Compared with the β-lactam-based regimen, the propensity score-matched odds ratio for composite treatment failure was 0.81 (95% CI, 0.67-0.97) for moxifloxacin, 1.10 (95% CI, 0.90-1.35) for levofloxacin, and 0.95 (95% CI, 0.67-1.35) for macrolide +β-lactam. Moxifloxacin was associated with lower treatment failure rates compared with β-lactam alone, or levofloxacin in Taiwanese CAP outpatients. However, due to inherent limitations in our claims database, more randomized controlled trials are required before coming to a conclusion on which antibiotic is more effective for Taiwanese CAP outpatients. More population-based comparative effectiveness studies are also encouraged and should be considered as an integral piece of evidence in local CAP treatment guidelines.

  8. Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy.

    PubMed

    Ulldemolins, Marta; Vaquer, Sergi; Llauradó-Serra, Mireia; Pontes, Caridad; Calvo, Gonzalo; Soy, Dolors; Martín-Loeches, Ignacio

    2014-06-23

    Although early and appropriate antibiotic therapy remains the most important intervention for successful treatment of septic shock, data guiding optimization of beta-lactam prescription in critically ill patients prescribed with continuous renal replacement therapy (CRRT) are still limited. Being small hydrophilic molecules, beta-lactams are likely to be cleared by CRRT to a significant extent. As a result, additional variability may be introduced to the per se variable antibiotic concentrations in critically ill patients. This article aims to describe the current clinical scenario for beta-lactam dosing in critically ill patients with septic shock and CRRT, to highlight the sources of variability among the different studies that reduce extrapolation to clinical practice, and to identify the opportunities for future research and improvement in this field. Three frequently prescribed beta-lactams (meropenem, piperacillin and ceftriaxone) were chosen for review. Our findings showed that present dosing recommendations are based on studies with drawbacks limiting their applicability in the clinical setting. In general, current antibiotic dosing regimens for CRRT follow a one-size-fits-all fashion despite emerging clinical data suggesting that drug clearance is partially dependent on CRRT modality and intensity. Moreover, some studies pool data from heterogeneous populations with CRRT that may exhibit different pharmacokinetics (for example, admission diagnoses different to septic shock, such as trauma), which also limit their extrapolation to critically ill patients with septic shock. Finally, there is still no consensus regarding the %T>MIC (percentage of dosing interval when concentration of the antibiotic is above the minimum inhibitory concentration of the pathogen) value that should be chosen as the pharmacodynamic target for antibiotic therapy in patients with septic shock and CRRT. For empirically optimized dosing, during the first day a loading dose is required

  9. Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy

    PubMed Central

    2014-01-01

    Although early and appropriate antibiotic therapy remains the most important intervention for successful treatment of septic shock, data guiding optimization of beta-lactam prescription in critically ill patients prescribed with continuous renal replacement therapy (CRRT) are still limited. Being small hydrophilic molecules, beta-lactams are likely to be cleared by CRRT to a significant extent. As a result, additional variability may be introduced to the per se variable antibiotic concentrations in critically ill patients. This article aims to describe the current clinical scenario for beta-lactam dosing in critically ill patients with septic shock and CRRT, to highlight the sources of variability among the different studies that reduce extrapolation to clinical practice, and to identify the opportunities for future research and improvement in this field. Three frequently prescribed beta-lactams (meropenem, piperacillin and ceftriaxone) were chosen for review. Our findings showed that present dosing recommendations are based on studies with drawbacks limiting their applicability in the clinical setting. In general, current antibiotic dosing regimens for CRRT follow a one-size-fits-all fashion despite emerging clinical data suggesting that drug clearance is partially dependent on CRRT modality and intensity. Moreover, some studies pool data from heterogeneous populations with CRRT that may exhibit different pharmacokinetics (for example, admission diagnoses different to septic shock, such as trauma), which also limit their extrapolation to critically ill patients with septic shock. Finally, there is still no consensus regarding the %T>MIC (percentage of dosing interval when concentration of the antibiotic is above the minimum inhibitory concentration of the pathogen) value that should be chosen as the pharmacodynamic target for antibiotic therapy in patients with septic shock and CRRT. For empirically optimized dosing, during the first day a loading dose is required

  10. Comparison of various assays used for detection of beta-lactam antibiotics in poultry meat.

    PubMed

    Popelka, P; Nagy, J; Germuska, R; Marcincák, S; Jevinová, P; De Rijk, A

    2005-06-01

    In this study, microbiological tests for the detection of beta-lactam antibiotics in meat and meat products were evaluated. The traditional FPT (four plate test, containing Bacillus subtilis and Kocuria rhizophila), BsDA (Bacillus stearothermophilus disc assay) and a newly developed microbiological test, Premi Test (containing Bacillus stearothermophilus) were included in the study. The limit of detection (LOD) of the Premi Test was compared with the LOD of the traditional methods. The detection limits of the tests were determined by using beta-lactam antibiotic standards dissolved in meat juice, as well as meat tissue obtained from laying hens after experimental administration of amoxicillin. Positive samples, based on inhibition of growth of the organism in the test, were confirmed by high performance liquid chromatography (HPLC). Growth inhibition in the traditional tests is visible as a clear zone on the plate, whereas for Premi Test, this is based on the absence of a colour change of the test. The LODs of antibiotics tested were as follows: Penicillin G (PENG) 5 microg kg(-1), amoxicillin (AMOX) 10 microg kg(-1), ampicillin (AMP) 25 microg kg(-1), oxacillin (OXA) 30 microg kg(-1), and cloxacillin (CLOX) 30 microg kg(-1) on the plate with Bacillus stearothermophilus. Beta-lactam antibiotics can be detected also on one plate seeded with Kocuria rhizophila, although the LODs are higher: PENG 10 microg kg(-1), AMOX 25 microg kg(-1), AMP 30 microg kg(-1), OXA 50 microg kg(-1), and CLOX 50 microg kg(-1). Premi Test was performed according to the Standard Operating Procedure intended for detection of beta-lactam antibiotics in poultry tissues with following LODs: PENG 4 microg kg(-1), AMOX 5 microg kg(-1), AMP 5 microg kg(-1), OXA 40 microg kg(-1), CLOX 50 microg kg(-1). All tests are able to detect beta-lactam antibiotics such as penicillin G, ampicillin, amoxicillin, oxacillin and cloxacillin below the maximum residue level (MRL). However, the detection limits of

  11. Exposure of Staphylococcus aureus to Subinhibitory Concentrations of β-Lactam Antibiotics Induces Heterogeneous Vancomycin-Intermediate Staphylococcus aureus

    PubMed Central

    Roch, Mélanie; Clair, Perrine; Renzoni, Adriana; Reverdy, Marie-Elisabeth; Dauwalder, Olivier; Bes, Michèle; Martra, Annie; Freydière, Anne-Marie; Laurent, Frédéric; Reix, Philippe; Dumitrescu, Oana

    2014-01-01

    Glycopeptides are known to select for heterogeneous vancomycin-intermediate Staphylococcus aureus (h-VISA) from susceptible strains. In certain clinical situations, h-VISA strains have been isolated from patients without previous exposure to glycopeptides, such as cystic fibrosis patients, who frequently receive repeated treatments with beta-lactam antibiotics. Our objective was to determine whether prolonged exposure to beta-lactam antibiotics can induce h-VISA. We exposed 3 clinical vancomycin-susceptible methicillin-resistant Staphylococcus aureus (MRSA) strains to ceftazidime, ceftriaxone, imipenem, and vancomycin (as a control) at subinhibitory concentrations for 18 days in vitro. Population analyses showed progressive increases in vancomycin resistance; seven of the 12 derived strains obtained after induction were classified as h-VISA according to the following criteria: area under the curve (AUC) on day 18/AUC of Mu3 of ≥90% and/or growth on brain heart infusion (BHI) agar with 4 mg/liter vancomycin. The derived isolates had thickened cell walls proportional to the level of glycopeptide resistance. Genes known to be associated with glycopeptide resistance (vraSR, yvqF, SA1703, graRS, walKR, and rpoB) were PCR sequenced; no de novo mutations were observed upon beta-lactam exposure. To determine whether trfA, a gene encoding a glycopeptide resistance factor, was essential in the selection of h-VISA upon beta-lactam pressure, a trfA-knockout strain was generated by allelic replacement. Indeed, beta-lactam exposure of this mutated strain showed no capacity to induce vancomycin resistance. In conclusion, these results showed that beta-lactam antibiotics at subinhibitory concentrations can induce intermediate vancomycin resistance in vitro. This induction required an intact trfA locus. Our results suggest that prior use of beta-lactam antibiotics can compromise vancomycin efficacy in the treatment of MRSA infections. PMID:24957836

  12. Exposure of Staphylococcus aureus to subinhibitory concentrations of β-lactam antibiotics induces heterogeneous vancomycin-intermediate Staphylococcus aureus.

    PubMed

    Roch, Mélanie; Clair, Perrine; Renzoni, Adriana; Reverdy, Marie-Elisabeth; Dauwalder, Olivier; Bes, Michèle; Martra, Annie; Freydière, Anne-Marie; Laurent, Frédéric; Reix, Philippe; Dumitrescu, Oana; Vandenesch, François

    2014-09-01

    Glycopeptides are known to select for heterogeneous vancomycin-intermediate Staphylococcus aureus (h-VISA) from susceptible strains. In certain clinical situations, h-VISA strains have been isolated from patients without previous exposure to glycopeptides, such as cystic fibrosis patients, who frequently receive repeated treatments with beta-lactam antibiotics. Our objective was to determine whether prolonged exposure to beta-lactam antibiotics can induce h-VISA. We exposed 3 clinical vancomycin-susceptible methicillin-resistant Staphylococcus aureus (MRSA) strains to ceftazidime, ceftriaxone, imipenem, and vancomycin (as a control) at subinhibitory concentrations for 18 days in vitro. Population analyses showed progressive increases in vancomycin resistance; seven of the 12 derived strains obtained after induction were classified as h-VISA according to the following criteria: area under the curve (AUC) on day 18/AUC of Mu3 of ≥90% and/or growth on brain heart infusion (BHI) agar with 4 mg/liter vancomycin. The derived isolates had thickened cell walls proportional to the level of glycopeptide resistance. Genes known to be associated with glycopeptide resistance (vraSR, yvqF, SA1703, graRS, walKR, and rpoB) were PCR sequenced; no de novo mutations were observed upon beta-lactam exposure. To determine whether trfA, a gene encoding a glycopeptide resistance factor, was essential in the selection of h-VISA upon beta-lactam pressure, a trfA-knockout strain was generated by allelic replacement. Indeed, beta-lactam exposure of this mutated strain showed no capacity to induce vancomycin resistance. In conclusion, these results showed that beta-lactam antibiotics at subinhibitory concentrations can induce intermediate vancomycin resistance in vitro. This induction required an intact trfA locus. Our results suggest that prior use of beta-lactam antibiotics can compromise vancomycin efficacy in the treatment of MRSA infections.

  13. Ability of the VITEK 2 Advanced Expert System To Identify β-Lactam Phenotypes in Isolates of Enterobacteriaceae and Pseudomonas aeruginosa

    PubMed Central

    Sanders, Christine C.; Peyret, Michel; Moland, Ellen Smith; Shubert, Carole; Thomson, Kenneth S.; Boeufgras, Jean-Marc; Sanders, W. Eugene

    2000-01-01

    The Advanced Expert System (AES) was used in conjunction with the VITEK 2 automated antimicrobial susceptibility test system to ascertain the β-lactam phenotypes of 196 isolates of the family Enterobacteriaceae and the species Pseudomonas aeruginosa. These isolates represented a panel of strains that had been collected from laboratories worldwide and whose β-lactam phenotypes had been characterized by biochemical and molecular techniques. The antimicrobial susceptibility of each isolate was determined with the VITEK 2 instrument, and the results were analyzed with the AES to ascertain the β-lactam phenotype. The results were then compared to the β-lactam resistance mechanism determined by biochemical and molecular techniques. Overall, the AES was able to ascertain a β-lactam phenotype for 183 of the 196 (93.4%) isolates tested. For 111 of these 183 (60.7%) isolates, the correct β-lactam phenotype was identified definitively in a single choice by the AES, while for an additional 46 isolates (25.1%), the AES identified the correct β-lactam phenotype provisionally within two or more choices. For the remaining 26 isolates (14.2%), the β-lactam phenotype identified by the AES was incorrect. However, for a number of these isolates, the error was due to remediable problems. These results suggest that the AES is capable of accurate identification of the β-lactam phenotypes of gram-negative isolates and that certain modifications can improve its performance even further. PMID:10655347

  14. Interconvertions between delta-lactam and delta-lactone derivatives initiated by unique transannular interactions of the rigid cyclohexane boat structure in pentacycloundecane.

    PubMed

    Kruger, Hendrik G; Martins, Frans J C; Viljoen, Agatha M

    2004-07-09

    The pentacycloundecane (PCU) cage structure resembles a perfect boat conformation, and for the first time unique lactam/lactone interconversions on the flagpole carbons of a cyclohexane boat structure are reported. The syntheses of a novel dihydroxy-PCU-delta-lactone and two novel N-substituted PCU-delta-lactams are reported. Hydrolysis of some of the PCU-delta-lactam compounds produced delta-lactones, and reaction of the lactones with ammonia or primary amines again produced delta-lactams. Reaction mechanisms to account for the unusual interconversion reactions induced by transannular interactions are proposed.

  15. Mechanism of inhibition of human leucocyte elastase by beta-lactams. 2. Stability, reactivation kinetics, and products of beta-lactam-derived E-I complexes.

    PubMed

    Green, B G; Chabin, R; Mills, S; Underwood, D J; Shah, S K; Kuo, D; Gale, P; Maycock, A L; Liesch, J; Burgey, C S

    1995-11-07

    The monocyclic beta-lactams reported by Knight et al. [Knight, W. B., et al. (1992) Biochemistry 31, 8160; Chabin, R., et al. (1993) Biochemistry 32, 8970] as inhibitors of human leucocyte elastase (HLE) produce stable HLE-inhibitor complexes that slowly reactivate with half-lives ranging from less than 1 to 15 h at 37 degrees C. The complexes produced between PPE and two C-3 dimethyl-substituted beta-lactams are less stable than those produced between HLE and analogous C-3 diethyl-substituted lactams. The stability of the HLE-I complexes is governed primarily by the structure of the substituted urea portion of the inhibitors and not by the identity or presence of a leaving group at C-4 of the lactam ring. In some cases substitutions on the urea portion of the inhibitors yielded complexes that displayed biphasic reactivation kinetics. This suggests the presence of at least two different complexes. The stereochemistry of the leaving group at C-4 has a small effect on the stability of the final complex (1.3-2-fold); therefore, the identity of the final complex is dependent upon the initial stereochemistry at that position. The stability of the complexes was relatively insensitive to hydroxylamine, which suggests that the acyl-enzymes are protected from nucleophilic "rescue". The rate of reactivation of the complex derived from L-680,833,[S-R*,S*)]-4-[(1-(((1-(4- methylphenyl)butyl)amino)carbonyl)-3,3-diethyl-2-oxo-4-azetidinyl)ben zeneacetic acid, was pH independent, while the L-684,481, (R)-(1-(((1-(4-methylphenyl)butyl)amino)carbonyl)-3,3-diethyl-2-azeti din one generated complex displayed a pH-dependent reactivation rate. In the latter case, the increase in reactivation rate with pH displayed a pKa of 7.2. This is consistent with the requirement for base catalysis by the active site histidine to regenerate enzymatic activity. Reactivation of the L-680,833-derived complex produced different products as a function of pH, suggesting two different pH-dependent routes

  16. [The outpatient use of beta lactam antibiotics in Montenegro before the introduction of new reform strategy on drug market].

    PubMed

    Duborija-Kovacević, Natasa

    2006-01-01

    The study represents the first investigation of outpatient use of beta lactam antibiotics in Montenegro carried out in accordance with internationally approved methodology (DDD/ATC). The objective of our study was to establish both the scope and overall use of beta lactam antibiotics, and to assess their compatibility with current pharmacotherapeutic guidelines and their use in developed countries. The retrospective pharmaco-epidemiological study comprised a 100%-sample of beta lactams that were used in the period prior to introduction of new reform strategy on drug market. Beta lactam antibiotics (J01C, J01D) were the most frequently applied anti-infectives for systemic use (ATC group J) in 2000 (11.3 DDD/1000 inh./day, 61%). Penicillins (J01C) were the most utilized (8.0 DDD/1000 inh./day, 71%). Cephalosporin derivatives (cephalexin and cefaclor) accounted for the remaining 29% (3.3 DDD/1000 inh./day). Aminopenicillins were prevailing among penicillins (85%). Beta lactamase sensitive penicillins were in the second place and approximately accounted for 14%. The results of our study showed that the use of beta lactam antibacterials could be estimated as partially satisfactory. There is a need to make additional efforts with a view of further rationalization.

  17. Homoserine-derived cyclic sulfamidate as chiral educt for the diversity-oriented synthesis of lactam-bridged dipeptides.

    PubMed

    Galaud, Fabrice; Lubell, William D

    2005-01-01

    Introduction of structural constraint into peptides is an effective way for studying their conformation-activity relationships. Conformationally restrained dipeptidyl lactams, important building blocks for the synthesis of peptidomimetics, have now been synthesized from N-[9-(9-phenylfluorenyl)]-L-aspartic acid alpha-cumyl beta-methyl diester as an inexpensive chiral educt. After selective reduction of the beta-methyl ester with diisobutylaluminum hydride (DIBAL-H), homoserine was treated with thionyl chloride, imidazole, and triethylamine to give sulfamidites. Diastereoisomers were separated by chromatography and oxidation of the major sulfamidite (2R,4S)- with catalytic ruthenium trichloride afforded sulfamidate. A series of gamma-lactam-bridged dipeptides was then obtained by ring opening of sulfamidate cumyl ester with a series of amino esters, selective cumyl ester removal, and lactam formation. The resulting dipeptidyl lactams possessed aliphatic, aromatic, amino, thioether, and carboxylate side chains. A gamma-lactam analog of Pro-Leu-Gly-NH2 (PLG), was synthesized to illustrate the potential for using this approach in the synthesis of biologically active peptide mimics.

  18. β-Lactam Selectivity of Multidrug Transporters AcrB and AcrD Resides in the Proximal Binding Pocket*

    PubMed Central

    Kobayashi, Naoki; Tamura, Norihisa; van Veen, Hendrik W.; Yamaguchi, Akihito; Murakami, Satoshi

    2014-01-01

    β-Lactams are mainstream antibiotics that are indicated for the prophylaxis and treatment of bacterial infections. The AcrA-AcrD-TolC multidrug efflux system confers much stronger resistance on Escherichia coli to clinically relevant anionic β-lactam antibiotics than the homologous AcrA-AcrB-TolC system. Using an extensive combination of chimeric analysis and site-directed mutagenesis, we searched for residues that determine the difference in β-lactam specificity between AcrB and AcrD. We identified three crucial residues at the “proximal” (or access) substrate binding pocket. The simultaneous replacement of these residues in AcrB by those in AcrD (Q569R, I626R, and E673G) transferred the β-lactam specificity of AcrD to AcrB. Our findings indicate for the first time that the difference in β-lactam specificity between AcrB and AcrD relates to interactions of the antibiotic with residues in the proximal binding pocket. PMID:24558035

  19. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: ampicillin, cefalotin and cefoxitin.

    PubMed

    Mitchell, Shannon M; Ullman, Jeffrey L; Teel, Amy L; Watts, Richard J

    2014-01-01

    An understanding of antibiotic hydrolysis rates is important for predicting their environmental persistence. Hydrolysis rates and Arrhenius constants were determined as a function of pH and temperature for three common β-lactam antibiotics, ampicillin, cefalotin, and cefoxitin. Antibiotic hydrolysis rates at pH4-9 at 25 °C, 50 °C, and 60 °C were quantified, and degradation products were identified. The three antibiotics hydrolyzed under ambient conditions (pH7 and 25 °C); half-lives ranged from 5.3 to 27 d. Base-catalyzed hydrolysis rates were significantly greater than acid-catalyzed and neutral pH hydrolysis rates. Hydrolysis rates increased 2.5- to 3.9-fold for a 10 °C increase in temperature. Based on the degradation product masses found, the likely functional groups that underwent hydrolysis were lactam, ester, carbamate, and amide moieties. Many of the proposed products resulting from the hydrolysis of ampicillin, cefalotin, and cefoxitin likely have reduced antimicrobial activity because many products contained a hydrated lactam ring. The results of this research demonstrate that β-lactam antibiotics hydrolyze under ambient pH and temperature conditions. Degradation of β-lactam antibiotics will likely occur over several weeks in most surface waters and over several days in more alkaline systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Role of PBPD1 in Stimulation of Listeria monocytogenes Biofilm Formation by Subminimal Inhibitory β-Lactam Concentrations

    PubMed Central

    Nguyen, Uyen T.; Harvey, Hanjeong; Hogan, Andrew J.; Afonso, Alexandria C. F.; Wright, Gerard D.

    2014-01-01

    Disinfectant-tolerant Listeria monocytogenes biofilms can colonize surfaces that come into contact with food, leading to contamination and, potentially, food-borne illnesses. To better understand the process of L. monocytogenes biofilm formation and dispersal, we screened 1,120 off-patent FDA-approved drugs and identified several that modulate Listeria biofilm development. Among the hits were more than 30 β-lactam antibiotics, with effects ranging from inhibiting (≤50%) to stimulating (≥200%) biofilm formation compared to control. Most β-lactams also dispersed a substantial proportion of established biofilms. This phenotype did not necessarily involve killing, as >50% dispersal could be achieved with concentrations as low as 1/20 of the MIC of some cephalosporins. Penicillin-binding protein (PBP) profiling using a fluorescent penicillin analogue showed similar inhibition patterns for most β-lactams, except that biofilm-stimulatory drugs did not bind PBPD1, a low-molecular-weight d,d-carboxypeptidase. Compared to the wild type, a pbpD1 mutant had an attenuated biofilm response to stimulatory β-lactams. The cephalosporin-responsive CesRK two-component regulatory system, whose regulon includes PBPs, was not required for the response. The requirement for PBPD1 activity for β-lactam stimulation of L. monocytogenes biofilms shows that the specific set of PBPs that are inactivated by a particular drug dictates whether a protective biofilm response is provoked. PMID:25136010

  1. Reactions of Peptidoglycan-Mimetic β-Lactams with Penicillin-Binding Proteins In Vivo and in Membranes

    PubMed Central

    Kumar, Ish; Josephine, Helen R.; Pratt, R.F.

    2008-01-01

    The membrane-bound bacterial DD-peptidases or penicillin-binding proteins catalyze the final transpeptidation reaction of bacterial cell wall biosynthesis and are the targets of β-lactam antibiotics. Rather surprisingly, the substrate specificity of these enzymes is not well understood. In this paper we present measurements of the reactivity of typical examples of these enzymes with peptidoglycan-mimetic β-lactams under in vivo conditions. The MICs of β-lactams with Escherichia coli-specific side chains were determined against E. coli cells. Analogous measurements were made with Streptococcus pneumoniae R6. The reactivity of the relevant β-lactams with E. coli PBPs in membrane preparations was also determined. The results show that under none of the above protocols were β-lactams with peptidoglycan-mimetic side chains more reactive than generic analogues. This suggests that in vivo, as in vitro, these enzymes do not specifically recognize elements of peptidoglycan structure local to the reaction center. Substrate recognition must thus involve extended structure. PMID:17894439

  2. Profiling of β-Lactam Selectivity for Penicillin-Binding Proteins in Escherichia coli Strain DC2

    PubMed Central

    Kocaoglu, Ozden

    2015-01-01

    Penicillin-binding proteins (PBPs) are integral players in bacterial cell division, and their catalytic activities can be monitored with β-lactam-containing chemical probes. Compounds that target a single PBP could provide important information about the specific role(s) of each enzyme, making identification of such molecules important. We evaluated 22 commercially available β-lactams for inhibition of the PBPs in live Escherichia coli strain DC2. Whole cells were titrated with β-lactam antibiotics and subsequently incubated with a fluorescent penicillin derivative, Bocillin-FL (Boc-FL), to label uninhibited PBPs. Protein visualization was accomplished by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation and fluorescent scanning. The examined β-lactams exhibited diverse PBP selectivities, with amdinocillin (mecillinam) showing selectivity for PBP2, aztreonam, piperacillin, cefuroxime, cefotaxime, and ceftriaxone for PBP3, and amoxicillin and cephalexin for PBP4. The remaining β-lactams did not block any PBPs in the DC2 strain of E. coli or inhibited more than one PBP at all examined concentrations in this Gram-negative organism. PMID:25733506

  3. [Personalized optimization of beta-lactam regimens based on studies of the pharmacokinetics-pharmacodynamics at the target sites].

    PubMed

    Ikawa, Kazuro

    2009-07-01

    Beta-lactam antibiotics are used for the treatment of various infections such as intra-abdominal infections and bacterial meningitis. Beta-lactams act at the infection site and their antibacterial effects relate to the exposure time during which the drug concentrations remain above the minimum inhibitory concentration for bacteria (T>MIC). The penetration into and exposure of beta-lactams at the target sites, such as the abdominal cavity and the cerebrospinal space, are therefore considered to be good indicators of their efficacies. However, earlier clinical research has focused primary on the drug concentrations in plasma. We therefore examined the pharmacokinetics-pharmacodynamics of beta-lactams at the target sites, and analyzed them using a population pharmacokinetic modeling and statistical technique called Monte Carlo simulation. This review summarizes our recent findings on carbapenem and cephem antibiotics in peritoneal and cerebrospinal fluids, and our new approaches to personalize and optimize beta-lactam dosing regimens based on their site-specific pharmacokinetic-pharmacodynamic profiles.

  4. Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus.

    PubMed

    Lim, Daniel; Strynadka, Natalie C J

    2002-11-01

    The multiple antibiotic resistance of methicillin-resistant strains of Staphylococcus aureus (MRSA) has become a major clinical problem worldwide. The key determinant of the broad-spectrum beta-lactam resistance in MRSA strains is the penicillin-binding protein 2a (PBP2a). Because of its low affinity for beta-lactams, PBP2a provides transpeptidase activity to allow cell wall synthesis at beta-lactam concentrations that inhibit the beta-lactam-sensitive PBPs normally produced by S. aureus. The crystal structure of a soluble derivative of PBP2a has been determined to 1.8 A resolution and provides the highest resolution structure for a high molecular mass PBP. Additionally, structures of the acyl-PBP complexes of PBP2a with nitrocefin, penicillin G and methicillin allow, for the first time, a comparison of an apo and acylated resistant PBP. An analysis of the PBP2a active site in these forms reveals the structural basis of its resistance and identifies features in newly developed beta-lactams that are likely important for high affinity binding.

  5. Microbiological Quality and Prevalence of β-Lactam Antibiotic Resistance Genes in Oysters ( Crassostrea rhizophorae ).

    PubMed

    Brandão, Maria Aparecida da RessurreiÇão; Lopes, Amanda Teixeira Sampaio; Neta, Maria Tereza da Silva; de Oliveira, Rhyan Barros Farias; Rezende, Rachel Passos; Albuquerque, George Rêgo; Gonçalves, Verônica Dias; Rodrigues, Dália Dos Prazeres; Boehs, Guisla; Maciel, Bianca Mendes

    2017-03-01

    The microbiological quality of oysters reflects the microbiological quality of their habitats because they are filter feeders. The objective of this study was to assess the bacterial composition of the edible oyster Crassostrea rhizophorae in urban and preserved estuaries. Particularly, we assessed the presence of pathogenic bacteria, investigated antibiotic susceptibility in bacterial isolates, and quantified β-lactam antibiotic resistance genes (blaTEM, blaSHV, and blaKPC) via quantitative PCR of oyster DNA. Our results detected total coliforms, Escherichia coli , and enterobacteria in the oysters from urban estuaries, which is indicative of poor water quality. In addition, our detection of the eaeA and stxA2 virulence genes in 16.7% of E. coli isolates from oysters from this region suggests the presence of multiantibiotic-resistant enteropathogenic and enterohemorrhagic E. coli strains. During periods of low precipitation, increased contamination by E. coli (in winter) and Vibrio parahaemolyticus (in autumn) was observed. In contrast, cultivated oysters inhabiting monitored farms in preserved areas had low levels of bacterial contamination, emphasizing that oyster culture monitoring enhances food quality and makes oysters fit for human consumption. Distinct antibiotic resistance profiles were observed in bacteria isolated from oysters collected from different areas, including resistance to β-lactam antibiotics. The presence of the blaTEM gene in 91.3% of oyster samples indicated that microorganisms in estuarine water conferred the capability to produce β-lactamase. To our knowledge, this is the first study to directly quantify and detect β-lactam antibiotic resistance genes in oysters. We believe our study provides baseline data for bacterial dynamics in estuarine oysters; such knowledge contributes to developing risk assessments to determine the associated hazards and consequences of consuming oysters from aquatic environments containing pathogenic bacteria

  6. Profiling of β-lactam selectivity for penicillin-binding proteins in Streptococcus pneumoniae D39.

    PubMed

    Kocaoglu, Ozden; Tsui, Ho-Ching T; Winkler, Malcolm E; Carlson, Erin E

    2015-01-01

    Selective fluorescent β-lactam chemical probes enable the visualization of the transpeptidase activity of penicillin-binding proteins (PBPs) at different stages of bacterial cell division. To facilitate the development of new fluorescent probes for PBP imaging, we evaluated 20 commercially available β-lactams for selective PBP inhibition in an unencapsulated derivative of the D39 strain of Streptococcus pneumoniae. Live cells were treated with β-lactam antibiotics at different concentrations and subsequently incubated with Bocillin FL (Boc-FL; fluorescent penicillin) to saturate uninhibited PBPs. Fluorophore-labeled PBPs were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorescence scanning. Among 20 compounds tested, carbapenems (doripenem and meropenem) were coselective for PBP1a, PBP2x, and PBP3, while six of the nine penicillin compounds were coselective for PBP2x and PBP3. In contrast, the seven cephalosporin compounds tested display variability in their PBP-binding profiles. Three cephalosporin compounds (cefoxitin, cephalexin, and cefsulodin) and the monobactam aztreonam exhibited selectivity for PBP3, while only cefuroxime (a cephalosporin) was selective for PBP2x. Treatment of S. pneumoniae cultures with a sublethal concentration of cefuroxime that inhibited 60% of PBP2x activity and less than 20% of the activity of other PBPs resulted in formation of elongated cells. In contrast, treatment of S. pneumoniae cultures with concentrations of aztreonam and cefoxitin that inhibited up to 70% of PBP3 activity and less than 30% of other PBPs resulted in no discernible morphological changes. Additionally, correlation of the MIC and IC50s for each PBP, with the exception of faropenem, amdinocillin (mecillinam), and 6-APA, suggests that pneumococcal growth inhibition is primarily due to the inhibition of PBP2x.

  7. Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams.

    PubMed

    Weiss, E; Zahar, J-R; Lesprit, P; Ruppe, E; Leone, M; Chastre, J; Lucet, J-C; Paugam-Burtz, C; Brun-Buisson, C; Timsit, J-F

    2015-07-01

    Empirical broad spectrum antimicrobial therapy prescribed in life-threatening situations should be de-escalated to mitigate the risk of resistance emergence. Definitions of de-escalation (DE) vary among studies, thereby biasing their results. The aim of this study was to provide a consensus definition of DE and to establish a ranking of β-lactam according to both their spectra and their ecological consequences. Twenty-eight experts from intensive care, infectious disease and clinical microbiology were consulted using the Delphi method (four successive questionnaires) from July to November 2013. More than 70% of similar answers to a question were necessary to reach a consensus. According to our consensus definition, DE purpose was to reduce both the spectrum of antimicrobial therapy and the selective pressure on microbiota. DE included switching from combination to monotherapy. A six-rank consensual classification of β-lactams allowing gradation of DE was established. The group was unable to differentiate ecological consequences of molecules included in group 4, i.e. piperacillin/tazobactam, ticarcillin/clavulanic acid, fourth-generation cephalosporin and antipseudomonal third-generation cephalosporin. Furthermore, no consensus was reached on the delay within which DE should be performed and on whether or not the shortening of antibiotic therapy duration should be included in DE definition. This study provides a consensual ranking of β-lactams according to their global ecological consequences that may be helpful in future studies on DE. However, this work also underlines the difficulties of reaching a consensus on the relative ecological impact of each individual drug and on the timing of DE. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Profiling of β-Lactam Selectivity for Penicillin-Binding Proteins in Streptococcus pneumoniae D39

    PubMed Central

    Kocaoglu, Ozden; Tsui, Ho-Ching T.; Winkler, Malcolm E.

    2015-01-01

    Selective fluorescent β-lactam chemical probes enable the visualization of the transpeptidase activity of penicillin-binding proteins (PBPs) at different stages of bacterial cell division. To facilitate the development of new fluorescent probes for PBP imaging, we evaluated 20 commercially available β-lactams for selective PBP inhibition in an unencapsulated derivative of the D39 strain of Streptococcus pneumoniae. Live cells were treated with β-lactam antibiotics at different concentrations and subsequently incubated with Bocillin FL (Boc-FL; fluorescent penicillin) to saturate uninhibited PBPs. Fluorophore-labeled PBPs were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorescence scanning. Among 20 compounds tested, carbapenems (doripenem and meropenem) were coselective for PBP1a, PBP2x, and PBP3, while six of the nine penicillin compounds were coselective for PBP2x and PBP3. In contrast, the seven cephalosporin compounds tested display variability in their PBP-binding profiles. Three cephalosporin compounds (cefoxitin, cephalexin, and cefsulodin) and the monobactam aztreonam exhibited selectivity for PBP3, while only cefuroxime (a cephalosporin) was selective for PBP2x. Treatment of S. pneumoniae cultures with a sublethal concentration of cefuroxime that inhibited 60% of PBP2x activity and less than 20% of the activity of other PBPs resulted in formation of elongated cells. In contrast, treatment of S. pneumoniae cultures with concentrations of aztreonam and cefoxitin that inhibited up to 70% of PBP3 activity and less than 30% of other PBPs resulted in no discernible morphological changes. Additionally, correlation of the MIC and IC50s for each PBP, with the exception of faropenem, amdinocillin (mecillinam), and 6-APA, suggests that pneumococcal growth inhibition is primarily due to the inhibition of PBP2x. PMID:25845878

  9. Escherichia coli murein-DD-endopeptidase insensitive to beta-lactam antibiotics.

    PubMed Central

    Keck, W; Schwarz, U

    1979-01-01

    A novel endopeptidase degrading the peptide cross-links in sacculi has been isolated from Escherichia coli and purified to homogeneity. The enzyme has a molecular weight of 30,000 and, in contrast to already known enzymes of similar specificity, remains fully active in the presence of beta-lactam antibiotics. In addition, it is exceptional in being inhibited by single-stranded deoxyribonucleic acid and by some polynucleotides. The possible role of the enzyme in cell division is discussed. Images PMID:383691

  10. Comparison of different methods for determining beta-lactam susceptibility in Pseudomonas aeruginosa.

    PubMed

    Sapino, Barbara; Mazzuccato, Sandra; Solinas, Maria; Gion, Massimo; Grandesso, Stefano

    2012-10-01

    This study compared the results of antimicrobial susceptibility testing of 77 clinical strains isolated for Pseudomonas aeruginosa to five beta-lactam agents: aztreonam, ceftazidime, imipenem, meropenem and piperacillin+tazobactam. Four different methods were employed: two automated systems (VITEK 2 and Sensititre) and two standardized manual methods (Kirby-Bauer and E-test). The concordances for the susceptibility categories were better for Kirby-Bauer (medium value =89.6%), followed by Sensititre (medium value =87.0%) and VITEK 2 (medium value =82.8%). The disk diffusion method did not present very major errors in comparison to the two automated systems.

  11. X-ray powder diffraction patterns for certain beta-lactam, tetracycline and macrolide antibiotic drugs.

    PubMed

    Thangadurai, S; Abraham, J T; Srivastava, A K; Moorthy, M Nataraja; Shukla, S K; Anjaneyulu, Y

    2005-07-01

    X-ray powder diffraction (XRD) data for eight beta-lactam viz., ampicillin sodium, ampicillin trihydrate, penicillin G procaine, benzathine penicillin, benzyl penicillin sodium, cefalexin, cefotaxime sodium and ceftriaxone sodium; three tetracyclines viz., doxycycline hydrochloride, oxytetracycline dihydrate and tetracycline hydrochloride; and two macrolide viz., azithromycin and erythromycin estolate antibiotic drugs were obtained using a powder diffractometer. The drugs were scanned from Bragg angles (2theta) of 10 degrees to 70 degrees. The obtained data were tabulated in terms of the lattice spacing (A) and relative line intensities (I/I(I)). This new information may be useful for identifying these drugs from confiscated materials, which has been frequently encountered in forensic laboratories.

  12. Conjugate additions to phenylglycinol-derived unsaturated delta-lactams. Enantioselective synthesis of uleine alkaloids.

    PubMed

    Amat, Mercedes; Pérez, Maria; Llor, Núria; Escolano, Carmen; Luque, F Javier; Molins, Elies; Bosch, Joan

    2004-12-10

    The stereochemical outcome of the conjugate addition of a variety of stabilized nucleophiles (2-indoleacetic enolates and sulfur-stabilized anions) to the phenylglycinol-derived unsaturated lactams trans-2, cis-2, and its 8-ethyl-substituted analogue 10 is studied. The factors governing the exo or endo facial stereoselectivity are discussed. This methodology provides short synthetic routes to either cis- or trans-3,4-disubstituted enantiopure piperidines as well as efficient routes for the enantioselective construction of the tetracyclic ring system of uleine alkaloids, both in the normal and 20-epi series. The formal total synthesis of several alkaloids of this group is reported.

  13. Risk Factors for Resistance to β-Lactam/β-Lactamase Inhibitors and Ertapenem in Bacteroides Bacteremia.

    PubMed

    Smith, Janessa M; Avdic, Edina; Tamma, Pranita D; Zhang, Long; Carroll, Karen C; Cosgrove, Sara E

    2015-08-01

    The objective of this study was to determine risk factors for the development of resistance to β-lactams/β-lactamase inhibitors (βL/βLIs) and ertapenem among Bacteroides species bacteremia. We conducted a retrospective case-control study of 101 adult patients with Bacteroides species bacteremia at a 1,051-bed tertiary care medical center. The duration of exposure to βL/βLIs (odds ratio [OR], 1.25; 95% confidence interval [CI], 1.08 to 2.31) was the only independent risk factor for resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Non-transpeptidase binding arylthioether β-lactams active against Mycobacterium tuberculosis and Moraxella catarrhalis.

    PubMed

    Beck, Tim N; Lloyd, Dina; Kuskovsky, Rostislav; Minah, Jeanette; Arora, Kriti; Plotkin, Balbina J; Green, Jacalyn M; Boshoff, Helena I; Barry, Clifton; Deschamps, Jeffrey; Konaklieva, Monika I

    2015-02-01

    The prevalence of drug resistance in both clinical and community settings as a consequence of alterations of biosynthetic pathways, enzymes or cell wall architecture is a persistent threat to human health. We have designed, synthesized, and tested a novel class of non-transpeptidase, β-lactamase resistant monocyclic β-lactams that carry an arylthio group at C4. These thioethers exhibit inhibitory and cidal activity against serine β-lactamase producing Mycobacterium tuberculosis wild type strain (Mtb) and multiple (n=8) β-lactamase producing Moraxella catarrhalis clinical isolates.

  15. Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins

    PubMed Central

    Zapun, André; Morlot, Cécile; Taha, Muhamed-Kheir

    2016-01-01

    Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that cause a variety of life-threatening systemic and local infections, such as meningitis or gonorrhoea. The treatment of such infection is becoming more difficult due to antibiotic resistance. The focus of this review is on the mechanism of reduced susceptibility to penicillin and other β-lactams due to the modification of chromosomally encoded penicillin-binding proteins (PBP), in particular PBP2 encoded by the penA gene. The variety of penA alleles and resulting variant PBP2 enzymes is described and the important amino acid substitutions are presented and discussed in a structural context. PMID:27690121

  16. Beta-lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 in Pseudomonas aeruginosa.

    PubMed Central

    Reguera, J A; Baquero, F; Berenguer, J; Martinez-Ferrer, M; Martinez, J L

    1990-01-01

    Antagonism between fosfomycin and antipseudomonal penicillins, cefotaxime, and ceftriaxone was observed in Pseudomonas aeruginosa RYC212. Fosfomycin, a non-beta-lactam antibiotic that acts on bacterial cell wall synthesis, decreased the expression of penicillin-binding protein 3 and induced beta-lactamase. The antagonistic effect was reduced in the presence of high concentrations of the beta-lactamase inhibitor tazobactam or in fosfomycin-resistant mutants. We suggest that products resulting from fosfomycin cell wall damage could interact with a system that regulates penicillin-binding protein and beta-lactamase production. Images PMID:2127343

  17. In vitro activity, efficacy, and pharmacology of moxalactam, a new beta-lactam antibiotic.

    PubMed Central

    Snepar, R; Poporad, G; Romano, J; Levison, M E

    1981-01-01

    Moxalactam, a potent new beta-lactam antibiotic with a relatively wide spectrum of activity against facultative and anaerobic gram-negative bacilli, was evaluated in vitro and in 28 patients with a variety of severe infections with moxalactam-susceptible organisms (minimum inhibitory concentration less than or equal to 31 microgram/ml). Although therapy was successful in most of these patients, caution is suggested because of the development of resistance on therapy in one patient, persistence of Bacteroides fragilis endocarditis in another, and for certain organisms, a significant inoculum effect on the minimum inhibitory concentration and minimum bactericidal concentration of moxalactam. PMID:6459763

  18. Enzymatic method for rapid and sensitive determination of beta-lactam antibiotics.

    PubMed Central

    Frère, J M; Klein, D; Ghuysen, J M

    1980-01-01

    A rapid and sensitive procedure for the estimation of beta-lactam antibiotics is described which makes use of the ability of these antibiotics to inactivate the R39 DD-carboxypeptidase. Depending on the values of the kinetic parameters which govern the reaction, the antibiotics fall into two groups. The lower limit for the quantitative estimation of the antibiotics of groups I and II is about 5 and 50 pmol/ml, respectively. The procedure has been adopted to biological fluids such as human sera and cows' milk. PMID:7192533

  19. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams

    PubMed Central

    Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías

    2017-01-01

    Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328

  20. Towards a general synthesis of 3-metal-substituted β-lactams.

    PubMed

    Baeza, Beatriz; Casarrubios, Luis; Sierra, Miguel A

    2013-08-26

    Joining metals and antibiotics: Studies towards a general method for the synthesis of β-lactams that have a metal complex moiety attached to the C3-position are reported (see scheme). The cis/trans selectivity of the reactions ranges from low in complexes containing the alkyne moiety joined directly to the cyclopentadienyl ring to complete when the metal moiety is separated from the reactive alkyne by an alkynyl-aryl fragment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pseudomonas syringae self-protection from tabtoxinine-β-lactam by ligase TblF and acetylase Ttr.

    PubMed

    Wencewicz, Timothy A; Walsh, Christopher T

    2012-10-02

    Plant pathogenic Pseudomonas syringae produce the hydroxy-β-lactam antimetabolite tabtoxinine-β-lactam (TβL) as a time-dependent inactivating glutamine analogue of plant glutamine synthetases. The producing pseudomonads use multiple modes of self-protection, two of which are characterized in this study. The first is the dipeptide ligase TblF which converts tabtoxinine-β-lactam to the TβL-Thr dipeptide known as tabtoxin. The dipeptide is not recognized by glutamine synthetase. This represents a Trojan Horse strategy: the dipeptide is secreted, taken up by dipeptide permeases in neighboring cells, and TβL is released by peptidase action. The second self-protection mode is elaboration by the acetyltransferase Ttr, which acetylates the α-amino group of the proximal inactivator TβL, but not the tabtoxin dipeptide.

  2. Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents: beta-lactams and fluoroquinolones.

    PubMed

    Tanaka, G; Shigeta, M; Komatsuzawa, H; Sugai, M; Suginaka, H; Usui, T

    1999-01-01

    The growth rate of biofilm bacteria of a leucine-requiring mutant Pseudomonas aeruginosa HU1 was regulated by the leucine concentration in a chemically-defined medium. The semiquantitative measurement of glycocalyx and scanning electron microscopy revealed that the kinetics of HU1-biofilm formation were dependent on the incubation time and the leucine concentration in the medium. The effect of the growth rate of biofilm cells on their susceptibility to antimicrobial agents, three beta-lactams and four fluoroquinolones, was evaluated. beta-Lactams showed weak bactericidal activity to biofilm cells; the activity was greater in younger biofilm cells growing in high concentrations of leucine. Fluoroquinolones revealed strong bactericidal activity to biofilm bacteria regardless of the growth rate. The following is suggested: the bactericidal action of beta-lactams against biofilm cells is affected by the cell growth rate, while that of fluoroquinolones is considerably greater and independent on the growth rate.

  3. Microwave-assisted solid-phase synthesis of side-chain to side-chain lactam-bridge cyclic peptides.

    PubMed

    Tala, Srinivasa R; Schnell, Sathya M; Haskell-Luevano, Carrie

    2015-12-15

    Side-chain to side-chain lactam-bridged cyclic peptides have been utilized as therapeutic agents and biochemical tools. Previous synthetic methods of these peptides need special reaction conditions, form side products and take longer reaction times. Herein, an efficient microwave-assisted synthesis of side-chain to side-chain lactam-bridge cyclic peptides SHU9119 and MTII is reported. The synthesis time and efforts are significantly reduced in the present method, without side product formation. The analytical and pharmacological data of the synthesized cyclic peptides are in accordance with the commercially obtained compounds. This new method could be used to synthesize other side-chain to side-chain lactam-bridge peptides and amenable to automation and extensive SAR compound derivatization.

  4. Cu(I)/bis(azaferrocene)-catalyzed enantioselective synthesis of beta-lactams via couplings of alkynes with nitrones.

    PubMed

    Lo, Michael M-C; Fu, Gregory C

    2002-05-01

    As a consequence of the wide-ranging significance of beta-lactams (e.g., use as drugs and as chiral building blocks), a great deal of effort has been dedicated to the development of methods for their stereoselective synthesis. Although considerable progress has been achieved, nearly all of the approaches that have been described are based on the use of chiral precursors; direct catalytic enantioselective routes to beta-lactams are rare as well as limited in scope. In this communication, we establish that, using a new C2-symmetric planar-chiral bis(azaferrocene) ligand, we can generate beta-lactams with very good enantiomeric excess and cis diastereoselection via catalytic enantioselective Kinugasa reactions (couplings of alkynes with nitrones). Appealing attributes of this process include the ready availability of the starting materials, the functional-group tolerance of the reaction, and the convergency of the approach.

  5. Alpha-melanocyte-stimulating hormone suppresses oxidative stress through a p53-mediated signaling pathway in human melanocytes.

    PubMed

    Kadekaro, Ana Luisa; Chen, Juping; Yang, Jennifer; Chen, Shuna; Jameson, Joshua; Swope, Viki B; Cheng, Tan; Kadakia, Madhavi; Abdel-Malek, Zalfa

    2012-06-01

    Epidermal melanocytes are skin cells specialized in melanin production. Activation of the melanocortin 1 receptor (MC1R) on melanocytes by α-melanocyte-stimulating hormone (α-MSH) induces synthesis of the brown/black pigment eumelanin that confers photoprotection from solar UV radiation (UVR). Contrary to keratinocytes, melanocytes are slow proliferating cells that persist in the skin for decades, in an environment with high levels of UVR-induced reactive oxygen species (ROS). We previously reported that in addition to its role in pigmentation, α-MSH also reduces oxidative stress and enhances the repair of DNA photoproducts in melanocytes, independent of melanin synthesis. Given the significance of ROS in carcinogenesis, here we investigated the mechanisms by which α-MSH exerts antioxidant effects in melanocytes. We show that activation of the MC1R by α-MSH contributes to phosphorylation of p53 on serine 15, a known requirement for stabilization and activation of p53, a major sensor of DNA damage. This effect is mediated by the cAMP/PKA pathway and by the activation of phosphoinositide 3-kinase (PI3K) ATR and DNA protein kinase (DNA-PK). α-MSH increases the levels of 8-oxoguanine DNA glycosylase (OGG1) and apurinic apyrimidinic endonuclease 1 (APE-1/Ref-1), enzymes essential for base excision repair. Nutlin-3, an HDM2 inhibitor, mimicked the effects of α-MSH resulting in reduced phosphorylation of H2AX (γ-H2AX), a marker of DNA damage. Conversely, the p53 inhibitor pifithrin-α or silencing of p53 abolished the effects of α-MSH and augmented oxidative stress. These results show that p53 is an important target of the downstream MC1R signaling that reduces oxidative stress and possibly malignant transformation of melanocytes.

  6. Potent and selective agonists of human melanocortin receptor 5: cyclic analogues of alpha-melanocyte-stimulating hormone.

    PubMed

    Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana

    2007-05-17

    The physiological role of melanocortin receptor 5 (MC5R) in humans is not clear despite its broad presence in various peripheral sites and in the brain, cortex, and cerebellum. To differentiate between functions of this receptor and those of the other melanocortin receptors (hMC1,3,4R), peptides with improved receptor subtype selectivity are needed. The endogenous ligands, melanocortins, and their various synthetic analogues are not particularly selective for hMC5R. In this study, cyclic peptides derived from MTII, Ac-Nle-cyclo(Asp-His6-D-Phe7-Arg8-Trp-Lys)-NH2 (a pan-agonist at the melanocortin receptors) were prepared and tested in binding and functional assays on CHO cells expressing hMC1b,3-5R. The analogues included in their structures sterically constrained hydrophobic amino acids in positions 6 (His) and 8 (Arg), and the D-4,4'-biphenyl residue in position 7 (D-Phe). Several of the new compounds were selective potent agonists at hMC5R. They are exemplified by peptide 29, Ac-Nle-cyclo(Asp-Oic6-D-4,4'-Bip7-Pip8-Trp-Lys)-NH2 (Oic=octahydroindole-2-COOH; 4,4'-Bip=4,4'-biphenylalanine; Pip=pipecolic acid) of IC50=0.95 nM and EC50=0.99 nM at hMC5R and selectivity for this receptor with respect to the other melanocortin receptors greater than 5000-fold.

  7. alpha-Melanocyte-stimulating hormone, MSH 11-13 KPV and adrenocorticotropic hormone signalling in human keratinocyte cells.

    PubMed

    Elliott, Richard J; Szabo, Marika; Wagner, Mark J; Kemp, E Helen; MacNeil, Sheila; Haycock, John W

    2004-04-01

    alpha-MSH signals by binding to the melanocortin-1 receptor (MC-1R) and elevating cyclic AMP in several different cells. The anti-inflammatory properties of this peptide are also believed to be cyclic AMP dependent. The carboxyl terminal tripeptides of alpha-MSH (KPV / KP-D-V) are the smallest minimal sequences reported to prevent inflammation but it is not known if they operate via MC-1R or cyclic AMP. The aim of this study was to examine the intracellular signalling of key MSH and ACTH peptides in human keratinotocytes. No elevation in cyclic AMP was detected in either HaCaT or normal human keratinocytes in response to alpha-MSH, KPV or ACTH peptides. Rapid and acute intracellular calcium, however, were observed in HaCaT keratinocytes in response to alpha-MSH (10(-15)-10(-7) M), KPV (10(-15)-10(-7) M), KP-D-V (10(-15)-10(-7) M) and ACTH (10(-15)-10(-7) M), but only in the presence of PIA, an adenosine agonist that inhibits the cyclic AMP pathway. Normal keratinocytes responded to all the above peptides but in addition responded to ACTH 1-17 (10(-13)-10(-7) M) in contrast to the HaCaT keratinocytes. Stable transfection of Chinese hamster ovary cells with the MC-1 receptor showed that alpha-MSH and the KPV peptides elevated intracellular calcium.

  8. Interleukin-4 and interferon-γ are possible allergic markers in pediatric patients with β-lactam hypersensitivity

    PubMed Central

    Mahmoud, Khaled H; Alzolibani, Abdullateef A; Rasheed, Zafar; Farouk, Yasser; Saif, Ghada Bin; Al Robaee, Ahmad A

    2016-01-01

    Background: β-lactam agents are known to elicit T-cell-mediated immune responses that play a central role in the onset of allergic reactions, but the involvement of specific type of cytokines in drug allergy remains largely unexplored in humans. Objectives: This study was undertaken to investigate the role of cytokines involvement in pediatric patients with β-lactam hypersensitivity and to determine whether involvement of cytokines in drug-mediated reactions are important for the perspective of allergic patient's management. Methods: β-lactam-induced hypersensitivity reactions in eighty pediatric patients were determined by clinical manifestations and skin prick or intradermal testing. Production of T-helper (Th) type-1 cytokine interferon (INF)-γ, Th-2 cytokine interleukin (IL)-4, regulatory T-cell cytokine IL-10, and other cytokines IL-6 and IL-12 were determined by sandwich ELISAs. Results: Diagnosis of β-lactam allergy was confirmed in 53 pediatric patients. IL-4 secretion in patients' sera was significantly higher as compared with healthy controls (P < 0.05). However, INF-γ level in patients' sera was significantly lower as compared with controls (P < 0.05). No significant alterations were found in the protein secretion of IL-10, IL-12, and IL-6 in allergic patients as compared with controls (P > 0.05). Conclusion: We conclude that IL-4 is specific marker for the diagnosis of β-lactam-induced hypersensitivity. Moreover, IL-4 in combination with INF-γ is more sensitive for the diagnosis of these reactions. This study also concludes that both IL-4 and INF-γ may play an active role in the onset of allergic reactions against β-lactam antibiotics. PMID:27857897

  9. Mutations Decreasing Intrinsic β-Lactam Resistance Are Linked to Cell Division in the Nosocomial Pathogen Acinetobacter baumannii.

    PubMed

    Knight, Daniel; Dimitrova, Daniela D; Rudin, Susan D; Bonomo, Robert A; Rather, Philip N

    2016-06-01

    Transposon mutagenesis was used to identify novel determinants of intrinsic β-lactam resistance in Acinetobacter baumannii An EZ-Tn5 transposon insertion in a gene corresponding to the A1S_0225 sequence resulted in a 4-fold decrease in resistance to ampicillin, cefotaxime, imipenem, and ceftriaxone but did not alter resistance to other classes of antibiotics. Based on this phenotype, the gene was designated blhA (β-lactam hypersusceptibility). The blhA::EZ-Tn5 mutation conferred a similar phenotype in A. baumannii strain ATCC 17978. The wild-type blhA gene complemented the blhA::EZTn5 insertion and restored β-lactam resistance levels back to wild-type levels. The blhA mutation also increased β-lactam susceptibility in an adeB adeJ double mutant, indicating that the blhA mutation acted independently of these efflux systems to mediate susceptibility. In addition, mRNA levels for the blaOXA and blaADC β-lactamase genes were not altered by the blhA mutation. The blhA mutation resulted in a prominent cell division and morphological defect, with cells exhibiting a highly elongated phenotype, combined with large bulges in some cells. The blhA gene is unique to Acinetobacter and likely represents a novel gene involved in cell division. Three additional mutations, in zipA, zapA, and ftsK, each of which encode predicted cell division proteins, also conferred increased β-lactam susceptibility, indicating a common link between cell division and intrinsic β-lactam resistance in A. baumannii.

  10. Molecular Bases Determining Daptomycin Resistance-Mediated Resensitization to β-Lactams (Seesaw Effect) in Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Renzoni, Adriana; Kelley, William L.; Rosato, Roberto R.; Martinez, Maria P.; Roch, Melanie; Fatouraei, Maryam; Haeusser, Daniel P.; Margolin, William; Fenn, Samuel; Turner, Robert D.; Foster, Simon J.

    2016-01-01

    ABSTRACT Antimicrobial resistance is recognized as one of the principal threats to public health worldwide, yet the problem is increasing. Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most difficult to treat in clinical settings due to the resistance of MRSA to nearly all available antibiotics. The cyclic anionic lipopeptide antibiotic daptomycin (DAP) is the clinical mainstay of anti-MRSA therapy. The decreased susceptibility to DAP (DAP resistance [DAPr]) reported in MRSA is frequently accompanied by a paradoxical decrease in β-lactam resistance, a process known as the “seesaw effect.” Despite the observed discordance in resistance phenotypes, the combination of DAP and β-lactams has been proven to be clinically effective for the prevention and treatment of infections due to DAPr MRSA strains. However, the mechanisms underlying the interactions between DAP and β-lactams are largely unknown. In the study described here, we studied the role of mprF with DAP-induced mutations in β-lactam sensitization and its involvement in the effective killing by the DAP-oxacillin (OXA) combination. DAP-OXA-mediated effects resulted in cell wall perturbations, including changes in peptidoglycan insertion, penicillin-binding protein 2 (PBP 2) delocalization, and reduced membrane amounts of PBP 2a, despite the increased transcription of mecA through mec regulatory elements. We have found that the VraSR sensor-regulator is a key component of DAP resistance, triggering mutated mprF-mediated cell membrane (CM) modifications that result in impairment of PrsA location and chaperone functions, both of which are essential for PBP 2a maturation, the key determinant of β-lactam resistance. These observations provide for the first time evidence that synergistic effects between DAP and β-lactams involve PrsA posttranscriptional regulation of CM-associated PBP 2a. PMID:27795377

  11. Mutations Decreasing Intrinsic β-Lactam Resistance Are Linked to Cell Division in the Nosocomial Pathogen Acinetobacter baumannii

    PubMed Central

    Knight, Daniel; Dimitrova, Daniela D.; Rudin, Susan D.; Bonomo, Robert A.

    2016-01-01

    Transposon mutagenesis was used to identify novel determinants of intrinsic β-lactam resistance in Acinetobacter baumannii. An EZ-Tn5 transposon insertion in a gene corresponding to the A1S_0225 sequence resulted in a 4-fold decrease in resistance to ampicillin, cefotaxime, imipenem, and ceftriaxone but did not alter resistance to other classes of antibiotics. Based on this phenotype, the gene was designated blhA (β-lactam hypersusceptibility). The blhA::EZ-Tn5 mutation conferred a similar phenotype in A. baumannii strain ATCC 17978. The wild-type blhA gene complemented the blhA::EZTn5 insertion and restored β-lactam resistance levels back to wild-type levels. The blhA mutation also increased β-lactam susceptibility in an adeB adeJ double mutant, indicating that the blhA mutation acted independently of these efflux systems to mediate susceptibility. In addition, mRNA levels for the blaOXA and blaADC β-lactamase genes were not altered by the blhA mutation. The blhA mutation resulted in a prominent cell division and morphological defect, with cells exhibiting a highly elongated phenotype, combined with large bulges in some cells. The blhA gene is unique to Acinetobacter and likely represents a novel gene involved in cell division. Three additional mutations, in zipA, zapA, and ftsK, each of which encode predicted cell division proteins, also conferred increased β-lactam susceptibility, indicating a common link between cell division and intrinsic β-lactam resistance in A. baumannii. PMID:27067318

  12. Does prolonged β-lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials

    PubMed Central

    2011-01-01

    Background The emergence of multi-drug resistant Gram-negatives (MDRGNs) coupled with an alarming scarcity of new antibiotics has forced the optimization of the therapeutic potential of available antibiotics. To exploit the time above the minimum inhibitory concentration mechanism of β-lactams, prolonging their infusion may improve outcomes. The primary objective of this meta-analysis was to determine if prolonged β-lactam infusion resulted in decreased mortality and improved clinical cure compared to intermittent β-lactam infusion. Methods Relevant studies were identified from searches of MEDLINE, EMBASE, and CENTRAL. Heterogeneity was assessed qualitatively, in addition to I2 and Chi-square statistics. Pooled relative risks (RR) and 95% confidence intervals (CI) were calculated using Mantel-Haenszel random-effects models. Results Fourteen randomized controlled trials (RCTs) were included. Prolonged infusion β-lactams were not associated with decreased mortality (n= 982; RR 0.92; 95% CI:0.61-1.37) or clinical cure (n = 1380; RR 1.00 95% CI:0.94-1.06) compared to intermittent infusions. Subgroup analysis for β-lactam subclasses and equivalent total daily β-lactam doses yielded similar results. Most studies had notable methodological flaws. Conclusions No clinical advantage was observed for prolonged infusion β-lactams. The limited number of studies with MDRGNs precluded evaluation of prolonged infusion of β-lactams for this subgroup. A large, multicenter RCT with critically ill patients infected with MDRGNs is needed. PMID:21696619

  13. FeCl3-catalyzed cascade cyclization in one pot: synthesis of ring-fused tetrahydroquinoline derivatives from arylamines and N-substituted lactams.

    PubMed

    Sun, Manman; Zhang, Tianshui; Bao, Weiliang

    2013-08-16

    Multiple cross-dehydrogenative-coupling reactions catalyzed by FeCl3 in one pot were developed. Arylamines and N-substituted lactams were reacted, and ring-fused tetrahydroquinoline derivatives were formed by two C-C bonds and one C-N bond formation as well as one C-N bond cleavage. The lactams were also used as solvent.

  14. Efficient Synthesis of Polycyclic γ-Lactams by Catalytic Carbonylation of Ene-Imines via Nickelacycle Intermediates.

    PubMed

    Hoshimoto, Yoichi; Ashida, Keita; Sasaoka, Yukari; Kumar, Ravindra; Kamikawa, Ken; Verdaguer, Xavier; Riera, Antoni; Ohashi, Masato; Ogoshi, Sensuke

    2017-07-03

    The nickel(0)-catalyzed carbonylative cycloaddition of 1,5- and 1,6-ene-imines with carbon monoxide (CO) is reported. Key to this reaction is the efficient regeneration of the catalytically active nickel(0) species from nickel carbonyl complexes such as [Ni(CO)3 L]. A variety of tri- and tetracyclic γ-lactams were thus prepared in excellent yields with 100 % atom efficiency. Preliminary results on asymmetric derivatives promise potential in the synthesis of enantioenriched polycyclic γ-lactams. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enterobactin-Mediated Delivery of β-Lactam Antibiotics Enhances Antibacterial Activity against Pathogenic Escherichia coli

    PubMed Central

    2015-01-01

    The design, synthesis, and characterization of enterobactin–antibiotic conjugates, hereafter Ent-Amp/Amx, where the β-lactam antibiotics ampicillin (Amp) and amoxicillin (Amx) are linked to a monofunctionalized enterobactin scaffold via a stable poly(ethylene glycol) linker are reported. Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams. Studies with E. coli K-12 derivatives defective in ferric enterobactin transport reveal that the enhanced antibacterial activity observed for this strain requires the outer membrane ferric enterobactin transporter FepA. A remarkable 1000-fold decrease in minimum inhibitory concentration (MIC) value is observed for uropathogenic E. coli CFT073 relative to Amp/Amx, and time-kill kinetic studies demonstrate that Ent-Amp/Amx kill this strain more rapidly at 10-fold lower concentrations than the parent antibiotics. Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms. These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition. PMID:24927110

  16. Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production.

    PubMed

    Fazius, Felicitas; Zaehle, Christoph; Brock, Matthias

    2013-05-01

    Plants as well as pro- and eukaryotic microorganisms are able to synthesise lysine via de novo synthesis. While plants and bacteria, with some exceptions, rely on variations of the meso-diaminopimelate pathway for lysine biosynthesis, fungi exclusively use the α-aminoadipate pathway. Although bacteria and fungi are, in principle, both suitable as lysine producers, current industrial fermentations rely on the use of bacteria. In contrast, fungi are important producers of β-lactam antibiotics such as penicillins or cephalosporins. The synthesis of these antibiotics strictly depends on α-aminoadipate deriving from lysine biosynthesis. Interestingly, despite the resulting industrial importance of the fungal α-aminoadipate pathway, biochemical reactions leading to α-aminoadipate formation have only been studied on a limited number of fungal species. In this respect, just recently an essential isomerisation reaction required for the formation of α-aminoadipate has been elucidated in detail. This review summarises biochemical pathways leading to lysine production, discusses the suitability of interrupting lysine biosynthesis as target for new antibacterial and antifungal compounds and emphasises on biochemical reactions involved in the formation of α-aminoadipate in fungi as an essential intermediate for both, lysine and β-lactam antibiotics production.

  17. Effects of cranberry juice on pharmacokinetics of beta-lactam antibiotics following oral administration.

    PubMed

    Li, Meng; Andrew, Marilee A; Wang, Joanne; Salinger, David H; Vicini, Paolo; Grady, Richard W; Phillips, Brian; Shen, Danny D; Anderson, Gail D

    2009-07-01

    Cranberry juice consumption is often recommended along with low-dose oral antibiotics for prophylaxis for recurrent urinary tract infection (UTI). Because multiple membrane transporters are involved in the intestinal absorption and renal excretion of beta-lactam antibiotics, we evaluated the potential risk of pharmacokinetic interactions between cranberry juice and the beta-lactams amoxicillin (amoxicilline) and cefaclor. The amoxicillin-cranberry juice interaction was investigated in 18 healthy women who received on four separate occasions a single oral test dose of amoxicillin at 500 mg and 2 g with or without cranberry juice cocktail (8 oz) according to a crossover design. A parallel cefaclor-cranberry juice interaction study was also conducted in which 500 mg cefaclor was administered with or without cranberry juice cocktail (12 oz). Data were analyzed by noncompartmental methods and nonlinear mixed-effects compartmental modeling. We conclude that the concurrent use of cranberry juice has no significant effect on the extent of oral absorption or the renal clearance of amoxicillin and cefaclor. However, delays in the absorption of amoxicillin and cefaclor were observed. These results suggest that the use of cranberry juice at usual quantities as prophylaxis for UTI is not likely to alter the pharmacokinetics of these two oral antibiotics.

  18. Effects of Cranberry Juice on Pharmacokinetics of β-Lactam Antibiotics following Oral Administration▿

    PubMed Central

    Li, Meng; Andrew, Marilee A.; Wang, Joanne; Salinger, David H.; Vicini, Paolo; Grady, Richard W.; Phillips, Brian; Shen, Danny D.; Anderson, Gail D.

    2009-01-01

    Cranberry juice consumption is often recommended along with low-dose oral antibiotics for prophylaxis for recurrent urinary tract infection (UTI). Because multiple membrane transporters are involved in the intestinal absorption and renal excretion of β-lactam antibiotics, we evaluated the potential risk of pharmacokinetic interactions between cranberry juice and the β-lactams amoxicillin (amoxicilline) and cefaclor. The amoxicillin-cranberry juice interaction was investigated in 18 healthy women who received on four separate occasions a single oral test dose of amoxicillin at 500 mg and 2 g with or without cranberry juice cocktail (8 oz) according to a crossover design. A parallel cefaclor-cranberry juice interaction study was also conducted in which 500 mg cefaclor was administered with or without cranberry juice cocktail (12 oz). Data were analyzed by noncompartmental methods and nonlinear mixed-effects compartmental modeling. We conclude that the concurrent use of cranberry juice has no significant effect on the extent of oral absorption or the renal clearance of amoxicillin and cefaclor. However, delays in the absorption of amoxicillin and cefaclor were observed. These results suggest that the use of cranberry juice at usual quantities as prophylaxis for UTI is not likely to alter the pharmacokinetics of these two oral antibiotics. PMID:19398645

  19. Beta-Lactamase Production and Resistance to Beta-Lactam Antibiotics in Nocardia

    PubMed Central

    Wallace, Richard J.; Vance, Paula; Weissfeld, Alice; Martin, R. Russell

    1978-01-01

    Although ampicillin has been suggested as a useful agent for the treatment of nocardiosis in man, little is known regarding the presence of beta-lactamase in Nocardia or its possible role in determining resistance to ampicillin and the other beta-lactam antibiotics. We have evaluated 55 isolates of Nocardia for susceptibility to five beta-lactam antibiotics and for the presence of beta-lactamase. Nocardia were resistant to penicillin G, cloxacillin, and cefazolin, but 27 and 62% were susceptible to 3.1 and 25 μg of ampicillin per ml, respectively. Almost 90% of these ampicillin-susceptible or intermediate strains were also susceptible to carbenicillin. The combination of ampicillin and cloxacillin was synergistic against many ampicillin-resistant strains. Beta-lactamase was detected in 89% of Nocardia isolates when intact cells were used and in six of six strains after cell fractionation. This beta-lactamase was most active against penicillin G and ampicillin, with lesser activity against carbenicillin and cephaloridine. These studies suggest that beta-lactamase may be present in all clinical isolates of Nocardia and that mechanisms of antimicrobial resistance other than or in addition to beta-lactamase are responsible for resistance of Nocardia to ampicillin and carbenicillin. PMID:310280

  20. Antiproliferative lactams and spiroenone from adlay bran in human breast cancer cell lines.

    PubMed

    Chung, Cheng-Pei; Hsu, Chih-Ying; Lin, Jing-Hui; Kuo, Yueh-Hsiung; Chiang, Wenchang; Lin, Yun-Lian

    2011-02-23

    Two new lactams, coixspirolactam D (1) and coixspirolactam E (2), and a new spiroenone, coixspiroenone (3), together with seven known compounds, coixspirolactam A (4), coixspirolactam B (5), coixspirolactam C (6), coixlactam (7), coixol (8), ethyl dioxindole-3-acetate (9), and isoindol-1-one (10), and two neolignans, zhepiresionol (11) and ficusal (12), were isolated from the bioactive subfraction of adlay bran ethanolic extract (ABE). Compounds 9 and 10 are the first isolates from natural resources. The structures of new compounds were identified by spectroscopic methods, including infrared (IR) spectrum, 1D and 2D nuclear magnetic resonance (NMR), and mass spectrum (MS). All of the isolated compounds were tested for antiproliferative effects on MCF-7, MDA-MB-231, and T-47D cells. Results showed that compounds 1, 3, 4, 6, and 7 at 50 μM significantly inhibited MCF-7 cell proliferation by 30.2, 19.2, 21.0, 13.5, and 32.4%, respectively; compounds 2, 4, and 7 significantly inhibited T-47D cells at 50 μM by 20.7, 24.8, and 28.9%; and compounds 1, 2, and 12 significantly inhibited MDA-MB-231 cells at 50 μM by 47.4, 25.3, and 69.3%, respectively. In conclusion, ABE has antiproliferative activities, and this effect is partially related to the presence of lactams and spiroenone.

  1. Clickable 4-Oxo-β-lactam-Based Selective Probing for Human Neutrophil Elastase Related Proteomes.

    PubMed

    Ruivo, Eduardo F P; Gonçalves, Lídia M; Carvalho, Luís A R; Guedes, Rita C; Hofbauer, Stefan; Brito, José A; Archer, Margarida; Moreira, Rui; Lucas, Susana D

    2016-09-20

    Human neutrophil elastase (HNE) is a serine protease associated with several inflammatory processes such as chronic obstructive pulmonary disease (COPD). The precise involvement of HNE in COPD and other inflammatory disease mechanisms has yet to be clarified. Herein we report a copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC, or 'click' chemistry) approach based on the 4-oxo-β-lactam warhead that yielded potent HNE inhibitors containing a triazole moiety. The resulting structure-activity relationships set the basis to develop fluorescent and biotinylated activity-based probes as tools for molecular functional analysis. Attaching the tags to the 4-oxo-β-lactam scaffold did not affect HNE inhibitory activity, as revealed by the IC50 values in the nanomolar range (56-118 nm) displayed by the probes. The nitrobenzoxadiazole (NBD)-based probe presented the best binding properties (ligand efficiency (LE)=0.31) combined with an excellent lipophilic ligand efficiency (LLE=4.7). Moreover, the probes showed adequate fluorescence properties, internalization in human neutrophils, and suitable detection of HNE in the presence of a large excess of cell lysate proteins. This allows the development of activity-based probes with promising applications in target validation and identification, as well as diagnostic tools.

  2. Stability in aqueous solution of two monocyclic beta-lactam antibiotics: aztreonam and nocardicin A.

    PubMed

    Méndez, R; Alemany, T; Martín-Villacorta, J

    1992-12-01

    The catalytic effect of various buffer systems (citrates, acetates, phosphates, borates and carbonates) on the degradation of aztreonam and nocardicin A in aqueous solution was studied at 35 degrees C and a constant ionic strength of 0.5 mol.dm-3 over a pH range of 3.50 to 10.50. The observed degradation rates, obtained by measuring the remaining intact antibiotic, were shown to follow pseudo-first-order kinetics with regard to antibiotic concentrations and to be influenced by general acid and general base catalysis. The changes in the concentration of intact beta-lactam antibiotic in the solutions were established by reverse-phase HPLC with UV-detection. In general the buffer systems employed in the kinetic studies showed a very weak catalytic effect on the degradation of aztreonam and nocardicin A. The pH-rate profiles for these antibiotics showed degradation minimums at pH 5.38 and 6.13, respectively. Aztreonam is slightly more reactive with hydrogen ions than nocardicin A and is much more reactive with hydroxide ions. In comparison with other beta-lactamic antibiotics, aztreonam and nocardicin A are much more stable in aqueous solution, except for aztreonam in a base solution, which is just as unstable as penicillins and cephalosporins. The Arrhenius activation energies were determined for aztreonam and nocardicin A at pH's 4.23, 6.59 and 8.60.

  3. Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics.

    PubMed

    Ogawara, Hiroshi

    2016-05-10

    Antibiotic resistance is one of the most serious public health problems. Among bacterial resistance, β-lactam antibiotic resistance is the most prevailing and threatening area. Antibiotic resistance is thought to originate in antibiotic-producing bacteria such as Streptomyces. In this review, β-lactamases and penicillin-binding proteins (PBPs) in Streptomyces are explored mainly by phylogenetic analyses from the viewpoint of self-resistance. Although PBPs are more important than β-lactamases in self-resistance, phylogenetically diverse β-lactamases exist in Streptomyces. While class A β-lactamases are mostly detected in their enzyme activity, over two to five times more classes B and C β-lactamase genes are identified at the whole genomic level. These genes can subsequently be transferred to pathogenic bacteria. As for PBPs, two pairs of low affinity PBPs protect Streptomyces from the attack of self-producing and other environmental β-lactam antibiotics. PBPs with PASTA domains are detectable only in class A PBPs in Actinobacteria with the exception of Streptomyces. None of the Streptomyces has PBPs with PASTA domains. However, one of class B PBPs without PASTA domain and a serine/threonine protein kinase with four PASTA domains are located in adjacent positions in most Streptomyces. These class B type PBPs are involved in the spore wall synthesizing complex and probably in self-resistance. Lastly, this paper emphasizes that the resistance mechanisms in Streptomyces are very hard to deal with, despite great efforts in finding new antibiotics.

  4. Non-immediate Cutaneous Reactions to Beta-Lactams: Approach to Diagnosis.

    PubMed

    Romano, Antonino; Valluzzi, Rocco Luigi; Caruso, Cristiano; Maggioletti, Michela; Gaeta, Francesco

    2017-04-01

    Non-immediate cutaneous reactions (i.e., occurring at least 1 h after the initial drug administration), particularly maculopapular exanthemas and urticarial eruptions, are common during beta-lactam treatments. A T cell-mediated pathogenic mechanism has been demonstrated in some cutaneous reactions, such as maculopapular exanthema, fixed drug eruption, acute generalized exanthematous pustulosis, and drug-induced hypersensitivity syndrome. In the diagnostic work-up, patch testing is useful, together with delayed-reading intradermal testing. Patch tests are a simple and safe diagnostic tool, which in the case of severe reactions should be used as the first line of investigation. However, patch tests are less sensitive than intradermal tests, which are preferable in subjects with mild reactions. Lymphocyte transformation or activation tests and enzyme-linked immunosorbent spot assays can be used as complementary tests. In selected cases of mild or moderate reactions, displaying negative results in the aforesaid allergy tests, a graded challenge with the implicated beta-lactam can be performed.

  5. Computational Studies on the Synthesis of β-Lactams via [2+2] Thermal Cycloadditions

    NASA Astrophysics Data System (ADS)

    Arrieta, Ana; Lecea, Begoña; Cossío, Fernando P.

    The main computational studies on the formation of β-lactams through [2+2] cycloadditions published during 1992-2008 are reported with special emphasis on the mechanistic and selectivity aspects of these reactions. Disconnection of the N1-C2 and C3-C4 bonds of the azetidin-2-one ring leads to the reaction between ketenes and imines. Computational and experimental results point to a stepwise mechanism for this reaction. The first step consists of a nucleophilic attack of the iminic nitrogen on the sp-hybridized carbon atom of the ketene. The zwitterionic intermediate thus formed yields the corresponding β-lactam by means of a four-electron conrotatoty electrocyclization. The steroecontrol and the periselectivity of the reaction support this two-step mechanism. The [2+2] cycloaddition between isocyanates and alkenes takes place via a concerted (but asynchronous) mechanism that can be interpreted in terms of a [π2s + (π2s + π2s)] interaction between both reactants. Both the regio and the stereochemistry observed are compatible with this computational model. However, the combination of solvent and substituent effects can result in a stepwise mechanism.

  6. N-Activated β-Lactams as Versatile Reagents for Acyl Carrier Protein Labeling

    PubMed Central

    Prasad, Gitanjeli; Amoroso, Jon W.; Borketey, Lawrence S.; Schnarr, Nathan A.

    2014-01-01

    Acyl carrier proteins are critical components of fatty acid and polyketide biosynthesis. Their primary function is to shuttle intermediates between active sites via a covalently bound phosphopantetheine arm. Small molecules capable of acylating this prosthetic group will provide a simple and reversible means of introducing novel functionality onto carrier protein domains. A series of N-activated β-lactams are prepared to examine site-specific acylation of the phosphopantetheine-thiol. In general, β-lactams are found to be significantly more reactive than our previously studied β-lactones. Selectivity for the holo over apo-form of acyl carrier proteins is demonstrated indicating that only the phosphopantetheine-thiol is modified. Incorporation of an N-propargyloxycarbonyl group provides an alkyne handle for conjugation to fluorophores and affinity labels. The utility of these groups for mechanistic interrogation of a critical step in polyketide biosynthesis is examined through comparison to traditional probes. In all, we expect the probes described in this study to serve as valuable and versatile tools for mechanistic interrogation of fatty acid, polyketide, and nonribosomal peptide biosynthesis. PMID:22293823

  7. A new tetracyclic lactam building block for thick, broad-bandgap photovoltaics.

    PubMed

    Kroon, Renee; Diaz de Zerio Mendaza, Amaia; Himmelberger, Scott; Bergqvist, Jonas; Bäcke, Olof; Faria, Gregório Couto; Gao, Feng; Obaid, Abdulmalik; Zhuang, Wenliu; Gedefaw, Desta; Olsson, Eva; Inganäs, Olle; Salleo, Alberto; Müller, Christian; Andersson, Mats R

    2014-08-20

    A new tetracyclic lactam building block for polymer semiconductors is reported that was designed to combine the many favorable properties that larger fused and/or amide-containing building blocks can induce, including improved solid-state packing, high charge carrier mobility, and improved charge separation. Copolymerization with thiophene resulted in a semicrystalline conjugated polymer, PTNT, with a broad bandgap of 2.2 eV. Grazing incidence wide-angle X-ray scattering of PTNT thin films revealed a strong tendency for face-on π-stacking of the polymer backbone, which was retained in PTNT:fullerene blends. Corresponding solar cells featured a high open-circuit voltage of 0.9 V, a fill factor around 0.6, and a power conversion efficiency as high as 5% for >200 nm thick active layers, regardless of variations in blend stoichiometry and nanostructure. Moreover, efficiencies of >4% could be retained when thick active layers of ∼400 nm were employed. Overall, these values are the highest reported for a conjugated polymer with such a broad bandgap and are unprecedented in materials for tandem and particularly ternary blend photovoltaics. Hence, the newly developed tetracyclic lactam unit has significant potential as a conjugated building block in future organic electronic materials.

  8. [Guides for rational use of B-lactam antibiotics:resistance mechanism and clinical interpretation].

    PubMed

    Arias, César A; Panesso, Diana; Zúñiga, Mauricio

    2003-06-01

    beta-lactams are the antibiotic compounds most widely used against hospital and community acquired infections. However, resistance has emerged in both Gram-positive and Gram-negative bacteria, limiting their therapeutic efficacy. The choice of appropriate treatment depends on analysis of susceptibility data that indicates a specific mechanism of resistance. Correct interpretation of susceptibility tests permits a rational approach to the resistance problem and selection of alternatives for treatment. The laboratory must first be able to identify accurately microorganisms to the species level and then test a minimum of relevant antimicrobials. beta-lactam resistance in Enterobacteriaceae is mainly due to the production of plasmid or chromosomal encoded beta-lactamases. In Gram-negative non-fermenting bacteria, impermeability and efflux are relatively more important to the treatment selected. In Gram-positive bacteria, resistance mechanisms can involve changes in penicillin-binding proteins (PBPs), production of new PBPs or synthesis of beta-lactamases. The range of therapeutic options must be based on the current status of local resistance mechanisms.

  9. The glutathione metabolism of the beta-lactam producer filamentous fungus Penicillium chrysogenum.

    PubMed

    Pócsi, I; Emri, T; Sámi, L; Leiter, E; Szentirmai, A

    2001-01-01

    Glutathione (gamma-L-glutamyl-L-cysteinyl-glycine; GSH) shares structural similarities with the beta-lactam biosynthetic intermediate ACV-tripeptide (delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine). Not surprisingly, GSH has been reported to inhibit the beta-lactam biosynthetic machinery quite effectively and, hence, strategies to decrease the intracellular GSH concentrations without influencing negatively the physiological status of idiophasic mycelia would attract industrial interests. Here we present a detailed map of the GSH metabolic network of P. chrysogenum and show a promising way to keep the GSH pool selectively down under penicillin producing conditions. This procedure includes a well-controlled and transient lowering of pH at the beginning of the production phase, and it relies on the GSH-dependent detoxification of the protonophore penicillin side-chain precursors phenoxyacetic acid (POA) and phenylacetic acid (PA). Encouraging preliminary fed-batch fermentation experiments have been performed to test this technological proposal. Interestingly, the mechanism of the activation of POA and PA to the appropriate CoA derivatives has remained yet to be answered but the involvement of GSH seems to be rather unlikely in this case. Our data also challenge the hypothesis that the formation of different kinds of penicillins would be an alternative to GSH-dependent detoxification processes in P. chrysogenum.

  10. Comparison of ß-lactam plus aminoglycoside versus ß-lactam plus fluoroquinolone empirical therapy in serious nosocomial infections due to Gram-negative bacilli.

    PubMed

    Ereshefsky, Benjamin J; Al-Hasan, Majdi N; Gokun, Yevgeniya; Martin, Craig A

    2017-02-01

    We sought to compare clinical cure on day 7 and a 28-day all-cause mortality in patients who received an anti-pseudomonal ß-lactam with a fluoroquinolone or an aminoglycoside for treatment of nosocomial bacteremia or pneumonia due to Gram-negative bacilli while in the ICU. This retrospective cohort study was conducted in critically ill patients at an academic medical centre from January 2005 to August 2011. A total of 129 patients (83 receiving aminoglycoside and 46 receiving fluoroquinolone combinations) were included. Seven-day clinical cure rates were 74% and 72% for fluoroquinolone and aminoglycoside groups, respectively (p = 0.84). There was no significant difference in the odds of clinical cure with a fluoroquinolone as compared to an aminoglycoside combination (adjusted odds ratio 2.4, 95% confidence interval [CI] 0.7-9.0). There was no significant difference in 28-day mortality in patients who received a fluoroquinolone or an aminoglycoside combination (22% vs. 18%, adjusted hazard ratio 0.82, 95% CI 0.29-2.28).

  11. A response regulator from a soil metagenome enhances resistance to the beta-lactam antibiotic carbenicillin in Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Environmental reservoirs of antibiotic resistance genes are thought to harbor as-yet-unknown mechanisms of antibiotic resistance. Here we report on an unconventional mode by which a metagenomic response regulator confers resistance to the beta-lactam antibiotic carbenicillin in Escherichia coli. A...

  12. Synthesis of polyhydroxylated piperidine and pyrrolidine peptidomimetics via one-pot sequential lactam reduction/Joullié-Ugi reaction.

    PubMed

    Szcześniak, Piotr; Maziarz, Elżbieta; Stecko, Sebastian; Furman, Bartłomiej

    2015-04-03

    A direct approach to the synthesis of polyhydroxylated piperidine and pyrrolidine peptidomimetics is described. The presented strategy is based on one-pot reduction of sugar-derived lactams with Schwartz's reagent followed by a multicomponent Ugi-Joullié reaction.

  13. A FLUORESCENT CARBAPENEM FOR STRUCTURE FUNCTION STUDIES OF PENICILLIN-BINDING PROTEINS, B-LACTAMASES AND B-LACTAM SENSORS

    PubMed Central

    June, Cynthia M.; Vaughan, Robert M.; Ulberg, Lucas S.; Bonomo, Robert A.; Witucki, Laurie A.; Leonard, David A.

    2014-01-01

    By reacting fluorescein isothiocyanate with meropenem, we have prepared a carbapenem-based fluorescent β-lactam. Fluorescein-meropenem binds both penicillin binding proteins and β-lactam sensors, and undergoes a typical acylation reaction in the active site of these proteins. The probe binds the class D carbapenemase OXA-24/40 with close to the same affinity as meropenem, and undergoes a complete catalytic hydrolysis reaction. The visible light excitation and strong emission of fluorescein render this molecule a useful structure-function probe through its application in SDS-polyacrylamide gel electrophoresis assays, as well as solution-based kinetic anisotropy assays. Its classification as a carbapenem β-lactam and the position of its fluorescent modification render it a useful complement to other fluorescent β-lactams, most notably Bocillin FL. In this study we show the utility of fluorescein-meropenem by using it to detect mutants of OXA-24/40 that arrest at the acyl-intermediate state with carbapenem substrates, but maintain catalytic competency with penicillin substrates. PMID:25058926

  14. HDAC and NF-κB mediated cytotoxicity induced by novel N-Chloro β-lactams and benzisoxazole derivatives.

    PubMed

    Rajashekar Reddy, C B; Rajasekhara Reddy, Sabbasani; Suthindhiran, Krish; Sivakumar, Arumugam

    2016-02-25

    Novel N-chloro â-Lactam and benzisoxazole derivatives were successfully synthesized with excellent yields (92-96%) under simple and mild reaction conditions. The β-lactams as a class acquired importance since the discovery of penicillin which contains β-lactam unit as an essential structural feature of its molecule, this interest continued unabated because of the therapeutic importance of β-lactam antibiotics. In silico studies of the compounds with cancer drug target enzymes showed the inhibition of HDAC (Histone Deacetylase) and NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) significantly. The compounds were then investigated for the inhibitory potential against the same enzymes in vitro. NF-κB inhibition was investigated by trans activation assay using HEK293/NF-κB-luc cells. Overall, the synthesized compounds induce the cancer cell toxicity by restraining the NF-κB transcription factor mediated by HDAC inhibition and thus the compounds act as dual inhibitors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Homochiral metal-organic frameworks with enantiopure proline units for the catalytic synthesis of β-lactams.

    PubMed

    Xu, Zhong-Xuan; Tan, Yan-Xi; Fu, Hong-Ru; Liu, Juan; Zhang, Jian

    2014-11-17

    Two enantiopure organic ligands integrating flexible proline units and rigid isophthalate units have been rationally designed and employed for the construction of four homochiral porous metal-organic frameworks (MOFs), respectively. One pair of these MOFs is used as heterogeneous catalysts to construct β-lactam derivatives by oxidative coupling reactions.

  16. Structure of Rhomboid Protease in Complex with β-Lactam Inhibitors Defines the S2′ Cavity

    PubMed Central

    Vinothkumar, Kutti R.; Pierrat, Olivier A.; Large, Jonathan M.; Freeman, Matthew

    2013-01-01

    Summary Rhomboids are evolutionarily conserved serine proteases that cleave transmembrane proteins within the membrane. The increasing number of known rhomboid functions in prokaryotes and eukaryotes makes them attractive drug targets. Here, we describe structures of the Escherichia coli rhomboid GlpG in complex with β-lactam inhibitors. The inhibitors form a single bond to the catalytic serine and the carbonyl oxygen of the inhibitor faces away from the oxyanion hole. The hydrophobic N-substituent of β-lactam inhibitors points into a cavity within the enzyme, providing a structural explanation for the specificity of β-lactams on rhomboid proteases. This same cavity probably represents the S2′ substrate binding site of GlpG. We suggest that the structural changes in β-lactam inhibitor binding reflect the state of the enzyme at an initial stage of substrate binding to the active site. The structural insights from these enzyme-inhibitor complexes provide a starting point for structure-based design for rhomboid inhibitors. PMID:23665170

  17. Enantiomerically pure trans-beta-lactams from alpha-amino acids via compact fluorescent light (CFL) continuous-flow photolysis.

    PubMed

    Vaske, Yvette S Mimieux; Mahoney, Maximillian E; Konopelski, Joseph P; Rogow, David L; McDonald, William J

    2010-08-18

    Photolysis of alpha-diazo-N-methoxy-N-methyl (Weinreb) beta-ketoamides derived from enantiomerically pure (EP) alpha-amino acids affords the corresponding EP beta-lactams via an intramolecular Wolff rearrangement. The photochemistry is promoted with either standard UV irradiation or through the use of a 100 W compact fluorescent light; the latter affords a safe and environmentally friendly alternative to standard photolysis conditions. A continuous-flow photochemical reactor made from inexpensive laboratory equipment reduced reaction times and was amenable to scale-up. The diastereoselectivity (cis or trans) of the product beta-lactams has been shown to vary from modest to nearly complete. An extremely facile, atom-economical method for the epimerization of the product mixture to the trans isomer, which is generally highly crystalline, has been developed. Evidence for C3 epimerization of Weinreb amide structures via a nonbasic, purely thermal route is presented. Subsequent transformations of both the Weinreb amide at C3 (beta-lactam numbering) and the amino acid side chain at C4 are well-tolerated, allowing for a versatile approach to diverse beta-lactam structures. The technology is showcased in the synthesis of a common intermediate used toward several carbapenem-derived structures starting from unfunctionalized aspartic acid.

  18. Enantiomerically Pure trans-β-Lactams from α-Amino Acids via Compact Fluorescent Light (CFL) Continuous Flow Photolysis

    PubMed Central

    Mimieux Vaske, Yvette S.; Mahoney, Maximillian E.; Konopelski, Joseph P.; Rogow, David L.; McDonald, William J.

    2010-01-01

    Photolysis of α-diazo N-methoxy-N-methyl (Weinreb) β-ketoamides derived from enantiomerically pure (EP) α-amino acids affords the corresponding EP β-lactam via an intramolecular Wolff rearrangement. Photochemistry is promoted with either standard UV irradiation or through the use of a 100W compact fluorescent light (CFL); the latter affords a safe and environmentally friendly alternative to standard photolysis conditions. A continuous-flow photochemical reactor, made from inexpensive laboratory equipment, expedites reaction times and is amenable to scale-up. Diastereoselectivity (cis or trans) of the product β-lactams has been shown to vary from modest to nearly complete. An extremely facile, atom-economical method for the epimerization of the product mixture to the trans isomer, generally highly crystalline, has been developed. Evidence is presented for C-3 epimerization of Weinreb amide structures via a non-basic, purely thermal route. Subsequent transformations of both the Weinreb amide at C-3 (β-lactam numbering) and amino acid side chain at C-4 are well tolerated, allowing for a versatile approach to diverse β-lactam structures. The technology is showcased in the synthesis of a common intermediate used toward several carbapenem-derived structures starting from unfunctionalized aspartic acid. PMID:20698705

  19. Susceptibilities of Bacteroides and Fusobacterium spp. from foot rot in goats to 10 beta-lactam antibiotics.

    PubMed Central

    Piriz Duran, S; Valle Manzano, J; Cuenca Valera, R; Vadillo Machota, S

    1990-01-01

    The agar dilution method was used to determine the bacteriostatic activities of 10 beta-lactam antibiotics against 132 strains belonging to the genus Bacteroides and 25 strains belonging to the genus Fusobacterium, all isolated from clinical cases of caprine foot rot. The three ureidopenicillins studied proved to be the most effective antimicrobial agents. PMID:2344172

  20. Molecular Investigations of PenA-mediated β-lactam Resistance in Burkholderia pseudomallei

    PubMed Central

    Rholl, Drew A.; Papp-Wallace, Krisztina M.; Tomaras, Andrew P.; Vasil, Michael L.; Bonomo, Robert A.; Schweizer, Herbert P.

    2011-01-01

    Burkholderia pseudomallei is the etiological agent of melioidosis. Because of the bacterium’s intrinsic resistance and propensity to establish latent infections, melioidosis therapy is complicated and prolonged. Newer generation β-lactams, specifically ceftazidime, are used for acute phase therapy, but resistance to this cephalosporin has been observed. The chromosomally encoded penA gene encodes a putative twin arginine translocase (TAT)-secreted β-lactamase, and penA mutations have been implicated in ceftazidime resistance in clinical isolates. However, the role of PenA in resistance has not yet been systematically studied in isogenetic B. pseudomallei mutant backgrounds. We investigated the effects of penA deletion, point mutations, and up-regulation, as well as tat operon deletion and PenA TAT-signal sequence mutations. These experiments were made possible by employing a B. pseudomallei strain that is excluded from Select Agent regulations. Deletion of penA significantly (>4-fold) reduced the susceptibility to six of the nine β-lactams tested and ≥16-fold for ampicillin, amoxicillin, and carbenicillin. Overexpression of penA by single-copy, chromosomal expression of the gene under control of the inducible Ptac promoter, increased resistance levels for all β-lactams tested 2- to 10-fold. Recreation of the C69Y and P167S PenA amino acid substitutions previously observed in resistant clinical isolates increased resistance to ceftazidime by ≥85- and 5- to 8-fold, respectively. Similarly, a S72F substitution resulted in a 4-fold increase in resistance to amoxicillin and clavulanic acid. Susceptibility assays with PenA TAT-signal sequence and ΔtatABC mutants, as well as Western blot analysis, confirmed that PenA is a TAT secreted enzyme and not periplasmic but associated with the spheroplastic cell fraction. Lastly, we determined that two LysR-family regulators encoded by genes adjacent to penA do not play a role in transcriptional regulation of pen

  1. The complexed structure and antimicrobial activity of a non-beta-lactam inhibitor of AmpC beta-lactamase.

    PubMed

    Powers, R A; Blázquez, J; Weston, G S; Morosini, M I; Baquero, F; Shoichet, B K

    1999-11-01

    Beta-lactamases are the major resistance mechanism to beta-lactam antibiotics and pose a growing threat to public health. Recently, bacteria have become resistant to beta-lactamase inhibitors, making this problem pressing. In an effort to overcome this resistance, non-beta-lactam inhibitors of beta-lactamases were investigated for complementarity to the structure of AmpC beta-lactamase from Escherichia coli. This led to the discovery of an inhibitor, benzo(b)thiophene-2-boronic acid (BZBTH2B), which inhibited AmpC with a Ki of 27 nM. This inhibitor is chemically dissimilar to beta-lactams, raising the question of what specific interactions are responsible for its activity. To answer this question, the X-ray crystallographic structure of BZBTH2B in complex with AmpC was determined to 2.25 A resolution. The structure reveals several unexpected interactions. The inhibitor appears to complement the conserved, R1-amide binding region of AmpC, despite lacking an amide group. Interactions between one of the boronic acid oxygen atoms, Tyr150, and an ordered water molecule suggest a mechanism for acid/base catalysis and a direction for hydrolytic attack in the enzyme catalyzed reaction. To investigate how a non-beta-lactam inhibitor would perform against resistant bacteria, BZBTH2B was tested in antimicrobial assays. BZBTH2B significantly potentiated the activity of a third-generation cephalosporin against AmpC-producing resistant bacteria. This inhibitor was unaffected by two common resistance mechanisms that often arise against beta-lactams in conjunction with beta-lactamases. Porin channel mutations did not decrease the efficacy of BZBTH2B against cells expressing AmpC. Also, this inhibitor did not induce expression of AmpC, a problem with many beta-lactams. The structure of the BZBTH2B/AmpC complex provides a starting point for the structure-based elaboration of this class of non-beta-lactam inhibitors.

  2. Contribution of peptidoglycan amidation to beta-lactam and lysozyme resistance in different genetic lineages of Staphylococcus aureus.

    PubMed

    Figueiredo, Teresa A; Ludovice, Ana Madalena; Sobral, Rita G

    2014-06-01

    The enzymes responsible for peptidoglycan amidation in Staphylococcus aureus, MurT and GatD, were recently identified and shown to be required for optimal expression of resistance to beta-lactams, bacterial growth, and resistance to lysozyme. In this study, we analyzed the impact of peptidoglycan amidation in representative strains of the most widespread clones of methicillin resistant S. aureus (MRSA). The inhibition of the expression of murT-gatD operon resulted in different phenotypes of resistance to beta-lactams and lysozyme according to the different genetic backgrounds. Further, clonal lineages CC1 and CC398 (community-acquired MRSA [CA-MRSA]) showed a stronger dependency on MurT-GatD for resistance to beta-lactams, when compared to the impact of the impairment of the cell wall step catalyzed by MurF. In the remaining backgrounds similar phenotypes of beta-lactam resistance were observed upon the impairment of both cell-wall-related genes. Therefore, for CA-related backgrounds, the predominant beta-lactam resistance mechanism seems to involve genes associated with secondary modifications of peptidoglycan. On the other hand, the lack of glutamic acid amidation had a more substantial impact on lysozyme resistance for cells of CA-MRSA backgrounds, than for hospital-acquired MRSA (HA-MRSA). However, no significant differences were found in the resistance level of the respective peptidoglycan structure, suggesting that the lysozyme resistance mechanism involves other factors. Taken together, these results suggested that the different genetic lineages of MRSA were able to develop different molecular strategies to overcome the selective pressures experienced during evolution.

  3. Development of a direct ELISA based on carboxy-terminal of penicillin-binding protein BlaR for the detection of β-lactam antibiotics in foods.

    PubMed

    Peng, Juan; Cheng, Guyue; Huang, Lingli; Wang, Yulian; Hao, Haihong; Peng, Dapeng; Liu, Zhenli; Yuan, Zonghui

    2013-11-01

    β-Lactam antibiotics, including penicillins and cephalosporins, are commonly used in veterinary medicine. Illegal use and abuse of β-lactams could cause allergy and selected bacterial resistance. BlaR-CTD, the carboxy-terminal of penicillin-recognizing protein BlaR from Bacillus licheniformis ATCC 14580, was utilized in this study to develop a receptor-based ELISA for detection and determination of β-lactam antibiotics in milk, beef, and chicken. This assay was based on directly competitive inhibition of binding of horseradish peroxidase-labeled ampicillin to the immobilized BlaR-CTD by β-lactams. The assay was developed as screening test with the option as semiquantitative assay, when the identity of a single type of residual β-lactam was known. The IC50 values of 15 β-lactam antibiotics, including benzylpenicillin, ampicillin, amoxicillin, dicloxacillin, oxacillin, nafcillin, cefapirin, cefoperazone, cefalotin, cefazolin, cefquinome, ceftriaxone, cefotaxime, cefalexin, ceftiofur and its metabolite desfuroylceftiofur were evaluated and ranged from 0.18 to 170.81 μg L(-1). Simple sample extraction method was carried out with only phosphate-buffered saline, and the recoveries of selected β-lactam antibiotics in milk, beef, and chicken were in the range of 53.27 to 128.29 %, most ranging from 60 to 120 %. The inter-assay variability was below 30 %. Limits of detection in milk, beef, and chicken muscles with cefquinome matrix calibration were 2.10, 30.68, and 31.13 μg kg(-1), respectively. This study firstly established a rapid, simple, and accurate method for simultaneous detection of 15 β-lactams in edible tissues, among which 11 β-lactams controlled by European Union could be detected below maximum residue limits.

  4. Cooperative catalysis by carbenes and Lewis acids in a highly stereoselective route to γ-lactams

    NASA Astrophysics Data System (ADS)

    Raup, Dustin E. A.; Cardinal-David, Benoit; Holte, Dane; Scheidt, Karl A.

    2010-09-01

    Enzymes are a continuing source of inspiration for the design of new chemical reactions that proceed with efficiency, high selectivity and minimal waste. In many biochemical processes, different catalytic species, such as Lewis acids and bases, are involved in precisely orchestrated interactions to activate reactants simultaneously or sequentially. This type of `cooperative catalysis', in which two or more catalytic cycles operate concurrently to achieve one overall transformation, has great potential in enhancing known reactivity and driving the development of new chemical reactions with high value. In this disclosure, a cooperative N-heterocyclic carbene/Lewis acid catalytic system promotes the addition of homoenolate equivalents to hydrazones, generating highly substituted γ-lactams in moderate to good yields and with high levels of diastereo- and enantioselectivity.

  5. Origin of Glycine from Acid Hydrolysis of the β-Lactam Antibiotic A16886B

    PubMed Central

    Brannon, D. R.; Mabe, J. A.; Ellis, R.; Whitney, J. G.; Nagarajan, R.

    1972-01-01

    Structural analysis of two new β-lactam antibiotics, A16884A and A16886B, indicated that they, like cephalosporin C, were composed of modified valine and cysteine residues, and α-aminoadipic acid. However, acid hydrolysis of A16886B and A16884A produced three times as much glycine as did hydrolysis of cephalosporin C under the same conditions. Samples of A16886B-14C-6 and A16886B-14C-8 were prepared by the addition of cysteine-14C-3 and cystine-14C-1 to fermentations of Streptomyces clavuligerus. The specific activity of glycine obtained from hydrolysis of A16886B-14C-6 was considerably higher than that from hydrolysis of A16886B-14C-8. An explanation for the difference in amounts of glycine obtained from hydrolysis of these antibiotics is discussed. PMID:5045470

  6. The incidence and beta-lactam resistance of Proteus vulgaris in hospital infections: the last decade.

    PubMed

    Gomez-Alferez, A; Baquero, F; Canton, R; Loza, E; Martinez-Beltran, J

    1991-10-01

    During the period of 1980-1990, 581 Proteus vulgaris strains were obtained in a general hospital. They were considered as the significant isolate in 0.6% of soft tissue infections, 0.6% of urinary tract infections and in 0.2% of bacteremic episodes. Sixty-three percent of the 393 tested strains showed resistance to ampicillin, cefazolin and cefamandole or cefuroxime. About 7% were susceptible to all beta-lactam drugs, and showed a very low beta-lactamase activity and 5% of the strains showed a phenotype of resistance including ampicillin, carbenicillin-ticarcillin, cefazolin and cefamandole or cefuroxime, and presented increased chromosomal beta-lactamase activity. Cefotaxime-resistance was detected in 2% of the isolates which appeared in the period 1987-1990.

  7. Lactam nonanic acid, a new substance from Cleome viscosa with allelopathic and antimicrobial properties.

    PubMed

    Jana, Anirban; Biswas, Suparna Mandal

    2011-03-01

    Cleome viscosa L. (Capparidaceae) is well known for its medicinal properties. Lactam nonanoic acid (LNA) [2-amino-9-(4-oxoazetidin-2-yl)-nonanoic acid; C12H22N2O3, mol. wt. 242] has been isolated and purified from the root exudates of Cleome viscosa. The aqueous solution of this pure compound has been tested on bacteria (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and fungi (Aspergillus fumigatus, A. niger and A. tamarii). At a dosage of 500 ppm and above, P. aeruginosa and S. aureus were totally inhibited while E. coli remained unaffected. On the other hand, growth of A. niger and A. tamarii was stimulated while there was no effect on A. fumigatus. This pure compound showed concentration-dependent inhibitory activity on rice, gram and mustard seeds.

  8. Enantioselective Diels-Alder-lactamization organocascades employing a furan-based diene.

    PubMed

    Abbasov, Mikail E; Hudson, Brandi M; Kong, Weixu; Tantillo, Dean J; Romo, Daniel

    2017-04-11

    α,β-Unsaturated acylammonium salts are useful dienophiles enabling highly enantioselective and stereodivergent Diels-Alder-initiated organocascades with furan-based dienes. Complex polycyclic systems can thus be obtained from readily prepared dienes, commodity acid chlorides, and a chiral isothiourea organocatalyst under mild conditions. We describe the use of furan-based dienes bearing pendant sulfonamides leading to the generation of oxa-bridged, trans-fused tricyclic γ-lactams. This process constitutes the first highly enantio- and diastereoselective, organocatalytic Diels-Alder cycloadditions with these typically problematic dienes due to their reversibility. Computational studies suggest that the high diastereoselectivity with these furan dienes may be due to a reversible Diels-Alder cycloaddition for the endo adducts. In addition, the utility of this methodology is demonstrated through a concise approach to a core structure with similarity to the natural product isatisine A and a nonpeptidyl ghrelin-receptor inverse agonist.

  9. New synthetic siderophores and their beta-lactam conjugates based on diamino acids and dipeptides.

    PubMed

    Wittmann, S; Schnabelrauch, M; Scherlitz-Hofmann, I; Möllmann, U; Ankel-Fuchs, D; Heinisch, L

    2002-06-01

    Linking of siderophores to antibiotics improves the penetration and therefore increases the antibacterial activity of the antibiotics. We synthesized the acylated catecholates and hydroxamates as siderophore components for antibiotic conjugates to reduce side effects of unprotected catecholate and hydroxamate moieties. In this paper, we report on bis- and tris-catecholates and mixed catecholate hydroxamates based on diamino acids or dipeptides. These compounds were active as siderophores in a growth promotion assay under iron limitation. Most of the conjugates with beta-lactams showed high in vitro activity against Gram-negative bacteria especially Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Serratia marcescens and Stenotrophomonas maltophilia. The compounds with enhanced antibacterial activity use active iron uptake routes to penetrate the bacterial outer membrane barrier, demonstrated by assays with mutants deficient in components of the iron transport system. Correlation between chemical structure and biological activity was studied.

  10. In vitro interactions between different beta-lactam antibiotics and fosfomycin against bloodstream isolates of enterococci.

    PubMed Central

    Pestel, M; Martin, E; Aucouturier, C; Lemeland, J F; Caron, F

    1995-01-01

    The effects of 16 different beta-lactam-fosfomycin combinations against 50 bloodstream enterococci were compared by a disk diffusion technique. Cefotaxime exhibited the best interaction. By checkerboard studies, the cefotaxime-fosfomycin combination provided a synergistic bacteriostatic effect against 45 of the 50 isolates (MIC of cefotaxime at which 90% of the isolates were inhibited, >2,048 micrograms/ml; MIC of fosfomycin at which 90% of the isolates were inhibited, 128 micrograms/ml; mean of fractional inhibitory concentration indexes, 0.195). By killing curves, cefotaxime (at 64 micrograms/ml) combined with fosfomycin (at > or = 64 micrograms/ml) was bactericidal against 6 of 10 strains tested. PMID:8619593

  11. A general catalytic β-C-H carbonylation of aliphatic amines to β-lactams.

    PubMed

    Willcox, Darren; Chappell, Ben G N; Hogg, Kirsten F; Calleja, Jonas; Smalley, Adam P; Gaunt, Matthew J

    2016-11-18

    Methods for the synthesis and functionalization of amines are intrinsically important to a variety of chemical applications. We present a general carbon-hydrogen bond activation process that combines readily available aliphatic amines and the feedstock gas carbon monoxide to form synthetically versatile value-added amide products. The operationally straightforward palladium-catalyzed process exploits a distinct reaction pathway, wherein a sterically hindered carboxylate ligand orchestrates an amine attack on a palladium anhydride to transform aliphatic amines into β-lactams. The reaction is successful with a wide range of secondary amines and can be used as a late-stage functionalization tactic to deliver advanced, highly functionalized amine products of utility for pharmaceutical research and other areas. Copyright © 2016, American Association for the Advancement of Science.

  12. Stereocontrol in Asymmetric γ-Lactam Syntheses from Imines and Cyanosuccinic Anhydrides

    PubMed Central

    Pattawong, Ommidala; Tan, Darlene Q.; Fettinger, James C.; Shaw, Jared T.; Cheong, Paul Ha-Yeon

    2014-01-01

    Computations (SCS-MP2//B3LYP) reveal that the asymmetric synthesis of highly substituted γ-lactams with three stereogenic centers, including one quaternary center, proceeds through a Mannich reaction between the enol form of the anhydride and the E-imine, followed by a transannular acylation. This new mechanistic picture accounts for both the observed reactivity and stereoselectivity. CH-O and hydrogen bonding interactions in the Mannich step and torsional steering effects in the acylation step are responsible for stereocontrol. It is demonstrated that this new mechanistic picture applies to the related reactions of homophthalic anhydrides with imines and presents new vistas for the design of a new reaction to access complex molecular architectures. PMID:24070216

  13. Density functional IR, Raman, and VCD spectra of halogen substituted β-lactams

    NASA Astrophysics Data System (ADS)

    Rode, Joanna E.; Dobrowolski, Jan Cz.

    2003-06-01

    Halogenoazetidinones are important as synthetic intermediates for preparation of halogen β-lactam (2-azetidinone) antibiotics and as building blocks for carbohydrates and amino acids. In this paper, we consider the influence of the halogen atom, substituted at the C4 position of the 2-azetidinone ring, on the geometry, IR, Raman, and vibrational circular dichroism spectra. The vibrational spectra were calculated for the chiral 4-( R)-X-2-azetidinone (X=F, Cl or Br) molecules at the B3PW91/aug-cc-pVTZ level. It was shown that the geometry of the molecules studied do not change much upon the change of the halogen atom. In case of the vibrational spectra, the position but even more the intensities depend strongly on the kind of halogen substituent.

  14. Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12.

    PubMed Central

    Yoshimura, F; Nikaido, H

    1985-01-01

    Diffusion rates of various beta-lactam antibiotics through the OmpF and OmpC porin channels of Escherichia coli K-12 were measured by the use of reconstituted proteoliposomes. The results can be interpreted on the basis of the gross physicochemical properties of the antibiotics along the following lines. (i) As noted previously (Nikaido et al., J. Bacteriol., 153:232-240, 1983), there was a monotonous dependence of the penetration rate on the hydrophobicity of the molecule among the classical monoanionic beta-lactams, and a 10-fold increase in the octanol-water partition coefficient of the uncharged molecule decreased the penetration rate by a factor of 5 to 6. (ii) Compounds with exceptionally bulky side chains, such as mezlocillin, piperacillin, and cefoperazone, showed much slower penetration rates than expected from their hydrophobicity. (iii) The substituted oxime side chain on the alpha-carbon of the substituent group at position 7 of the cephem nucleus decreased the penetration rate almost by an order of magnitude; this appears to be largely due to the steric effect. (iv) The presence of a methoxy group at position 7 of the cephalosporins also reduced the penetration rate by 20%, probably also due to the steric hindrance. (v) Zwitterionic compounds penetrated very rapidly, and the correlation between the rate and hydrophobicity appeared to be much weaker than with the monoanionic compounds. Imipenem showed the highest permeability among the compounds tested, presumably due, at least in part, to its compact molecular structure. (vi) Compounds with two negative charges penetrated more slowly than did analogs with only one negatively charged group. Among them, only moxalactam, ceftriaxone, and azthreonam showed penetration rates corresponding to, or higher than, 10% of that of imipenem. PMID:2580479

  15. Quantitative assessment of faecal shedding of β-lactam-resistant Escherichia coli and enterococci in dogs.

    PubMed

    Espinosa-Gongora, Carmen; Shah, Syed Qaswar Ali; Jessen, Lisbeth Rem; Bortolaia, Valeria; Langebæk, Rikke; Bjørnvad, Charlotte Reinhard; Guardabassi, Luca

    2015-12-31

    Quantitative data on faecal shedding of antimicrobial resistant bacteria are crucial to assess the risk of transmission from dogs to other animals as well as humans. In this study we investigated prevalence and concentrations of β-lactam-resistant Escherichia coli and enterococci in the faeces of 108 dogs presenting at a veterinary hospital in Denmark. The dogs had not been treated with antimicrobials for 4 weeks prior to the study. Total E. coli and enterococci were quantified by counts on MacConkey and Slanetz-Bartley, respectively. Resistant E. coli and enterococci were counted on the same media containing relevant antibiotic concentrations, followed by species identification using MALDI-TOF. Ampicillin- and cefotaxime-resistant E. coli were detected in 40% and 8% of the dogs, respectively, whereas approximately 15% carried ampicillin-resistant enterococci, mainly Enterococcus faecium. In the faeces of the carriers, the proportion of resistant strains in the total bacterial species population was on average 15% for both ampicillin-resistant E. coli (median faecal load 3.2×10(4)cfu/g) and E. faecium (5.8×10(2) cfu/g), and 4.6% for cefotaxime-resistant E. coli (8.6×10(3) cfu/g). Cefotaxime resistance was associated with the presence of blaCTX-M-1 (n=4), blaCMY-2 (n=4) or multiple mutations in the promoter and coding region of chromosomal ampC (n=1). Altogether the results indicate that the risks of zoonotic transmission of β-lactam-resistant bacteria via human exposure to canine faeces greatly vary amongst individual dogs and are influenced by unidentified factors other than recent antimicrobial use.

  16. Metal-based biologically active azoles and β-lactams derived from sulfa drugs.

    PubMed

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S; Almayah, Abdulelah A; Bolandnazar, Zeinab; Swadi, Ali G; Ebrahimi, Amirpasha

    2016-03-01

    Metal complexes of Schiff bases derived from sulfamethoxazole (SMZ) and sulfathiazole (STZ), converted to their β-lactam derivatives have been synthesized and experimentally characterized by elemental analysis, spectral (IR, (1)H NMR, (13)C NMR, and EI-mass), molar conductance measurements and thermal analysis techniques. The structural and electronic properties of the studied molecules were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The spectral and thermal analysis reveals that the Schiff bases act as bidentate ligands via the coordination of azomethine nitrogen to metal ions as well as the proton displacement from the phenolic group through the metal ions; therefore, Cu complexes can attain the square planner arrangement and Zn complexes have a distorted tetrahedral structure. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps. In addition, the antibacterial activities of synthesized compounds have been screened in vitro against various pathogenic bacterial species. Inspection of the results revealed that all newly synthesized complexes individually exhibit varying degrees of inhibitory effects on the growth of the tested bacterial species, therefore, they may be considered as drug candidates for bacterial pathogens. The free Schiff base ligands (1-2) exhibited a broad spectrum antibacterial activity against Gram negative Escherichia coli, Pseudomonas aeruginosa, and Proteus spp., and Gram positive Staphylococcus aureus bacterial strains. The results also indicated that the β-lactam derivatives (3-4) have high antibacterial activities on Gram positive bacteria as well as the metal complexes (5-8), particularly Zn complexes, have a significant activity against all Gram negative bacterial strains. It has been shown that the metal complexes have significantly higher activity than corresponding

  17. Determining β-lactam exposure threshold to suppress resistance development in Gram-negative bacteria.

    PubMed

    Tam, Vincent H; Chang, Kai-Tai; Zhou, Jian; Ledesma, Kimberly R; Phe, Kady; Gao, Song; Van Bambeke, Françoise; Sánchez-Díaz, Ana María; Zamorano, Laura; Oliver, Antonio; Cantón, Rafael

    2017-05-01

    β-Lactams are commonly used for nosocomial infections and resistance to these agents among Gram-negative bacteria is increasing rapidly. Optimized dosing is expected to reduce the likelihood of resistance development during antimicrobial therapy, but the target for clinical dose adjustment is not well established. We examined the likelihood that various dosing exposures would suppress resistance development in an in vitro hollow-fibre infection model. Two strains of Klebsiella pneumoniae and two strains of Pseudomonas aeruginosa (baseline inocula of ∼10 8  cfu/mL) were examined. Various dosing exposures of cefepime, ceftazidime and meropenem were simulated in the hollow-fibre infection model. Serial samples were obtained to ascertain the pharmacokinetic simulations and viable bacterial burden for up to 120 h. Drug concentrations were determined by a validated LC-MS/MS assay and the simulated exposures were expressed as C min /MIC ratios. Resistance development was detected by quantitative culture on drug-supplemented media plates (at 3× the corresponding baseline MIC). The C min /MIC breakpoint threshold to prevent bacterial regrowth was identified by classification and regression tree (CART) analysis. For all strains, the bacterial burden declined initially with the simulated exposures, but regrowth was observed in 9 out of 31 experiments. CART analysis revealed that a C min /MIC ratio ≥3.8 was significantly associated with regrowth prevention (100% versus 44%, P  = 0.001). The development of β-lactam resistance during therapy could be suppressed by an optimized dosing exposure. Validation of the proposed target in a well-designed clinical study is warranted.

  18. Cupric oxide nanoparticles-enhanced chemiluminescence method for measurement of β-lactam antibiotics.

    PubMed

    Iranifam, Mortaza; Khabbaz Kharameh, Merhnaz

    2015-08-01

    A simple, sensitive cupric oxide nanoparticles (CuO NPs) enhanced chemiluminescence (CL) method was developed for the measurement of β-lactam antibiotics, including amoxicillin and cefazolin sodium. The method was based on suppression of the CuO NPs-luminol-H2O2 CL reaction by β-lactam antibiotics. Experimental parameters that influenced the inhibitory effect of the antibiotic drugs on the CL system, such as NaOH (mol/L), luminol (µmol/L), H2O2 (mol/L) and CuO NPs (mg/L) concentrations, were optimized. Calibration graphs were linear and had dynamic ranges of 1.0 × 10(-6) to 8.0 × 10(-6) mol/L and 3.0 × 10(-5) to 5.0 × 10(-3) mol/L for amoxicillin and cefazolin sodium, respectively, with corresponding detection limits of 7.9 × 10(-7) mol/L and 1.8 × 10(-5) mol/L. The relative standard deviations of five replicate measurements of 5.0 × 10(-6) amoxicillin and 5 × 10(-4) cefazolin sodium were 5.43 and 5.01%, respectively. The synthesized CuO NPs were characterized by X-ray diffraction (XRD) and transmission electronmicroscopy (TEM). The developed approach was exploited successfully to measure antibiotics in pharmaceutical preparations.

  19. Synergistic activity of fosfomycin, β-lactams and peptidoglycan recycling inhibition against Pseudomonas aeruginosa.

    PubMed

    Hamou-Segarra, Myriam; Zamorano, Laura; Vadlamani, Grishma; Chu, Mitchell; Sanchez-Diener, Irina; Juan, Carlos; Blazquez, Jesús; Hattie, Mitchell; Stubbs, Keith A; Mark, Brian L; Oliver, Antonio

    2017-02-01

    To evaluate the interconnection between peptidoglycan (PG) recycling, fosfomycin susceptibility and synergy between fosfomycin and β-lactams in Pseudomonas aeruginosa METHODS: Fosfomycin MICs were determined by broth microdilution and Etest for a panel of 47 PAO1 mutants defective in several components of PG recycling and/or AmpC induction pathways. PAO1 fosfomycin MICs were also determined in the presence of a 5 mM concentration of the NagZ inhibitor PUGNAc. Population analysis of fosfomycin susceptibility and characterization of the resistant mutants that emerged was also performed for selected strains. Finally, fosfomycin, imipenem and fosfomycin + imipenem killing curves were assessed. Mutants defective in AmpG, NagZ or all three AmpD amidases showed a marked increase in fosfomycin susceptibility (at least two 2-fold dilutions with respect to WT PAO1). Moreover, PAO1 fosfomycin MICs were consistently reduced from 48 to 24 mg/L in the presence of a 5 mM concentration of PUGNAc. Fosfomycin hypersusceptibility of the ampG, nagZ and triple ampD mutants was also clearly confirmed in the performed population analysis, although the emergence of resistant mutants, through GlpT mutations, was not avoided. Synergy between fosfomycin and imipenem was evidenced for the WT strain, the AmpC-hyperproducing strain (triple AmpD mutant) and the NagZ and AmpG mutants in killing curves. Moreover, regrowth of resistant mutants was not evidenced for the combination. PG recycling inhibitors are envisaged as useful adjuvants in the treatment of P. aeruginosa infections with β-lactams and fosfomycin and therefore further development of these molecules is encouraged. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Persistence and degradation of new β-lactam antibiotics in the soil and water environment.

    PubMed

    Braschi, I; Blasioli, S; Fellet, C; Lorenzini, R; Garelli, A; Pori, M; Giacomini, D

    2013-09-01

    The development of new antibiotics with low environmental persistence is of utmost importance in contrasting phenomena of antibiotic resistance. In this study, the persistence of two newly synthesized monocyclic β-lactam antibiotics: (2R)-1-(methylthio)-4-oxoazetidin-2-yl acetate, P1, and (2R,3R)-3-((1R)-1-(tert-butyldimethylsilanyloxy)ethyl)-1-(methylthio)-4-oxoazetidin-2-yl acetate, P2, has been investigated in water in the pH range 3-9 and in two (calcareous and forest) soils, then compared to amoxicillin, a β-lactam antibiotic used in human and veterinary medicine. P1 and P2 persistence in water was lower than that of amoxicillin with only a few exceptions. P1 hydrolysis was catalyzed at an acidic pH whereas P2 hydrolysis takes place at both acidic and alkaline pH values. P1 persistence in soils depended mainly on their water potential (t1/2: 35.0-70.7d at wilting point; <1d at field capacity) whereas for P2 it was shorter and unaffected by soil water content (t1/2 0.13-2.5d). Several degradation products were detected in soils at both water potentials, deriving partly from hydrolytic pathways and partly from microbial transformation. The higher LogKow value for P2 compared with P1 seemingly confers P2 with high permeability to microbial membranes regardless of soil water content. P1 and P2 persistence in soils at wilting point was shorter than that of amoxicillin, whereas it had the same extent at field capacity.

  1. A Multicenter Randomized Trial of Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis.

    PubMed

    Dulhunty, Joel M; Roberts, Jason A; Davis, Joshua S; Webb, Steven A R; Bellomo, Rinaldo; Gomersall, Charles; Shirwadkar, Charudatt; Eastwood, Glenn M; Myburgh, John; Paterson, David L; Starr, Therese; Paul, Sanjoy K; Lipman, Jeffrey

    2015-12-01

    Continuous infusion of β-lactam antibiotics may improve outcomes because of time-dependent antibacterial activity compared with intermittent dosing. To evaluate the efficacy of continuous versus intermittent infusion in patients with severe sepsis. We conducted a randomized controlled trial in 25 intensive care units (ICUs). Participants commenced on piperacillin-tazobactam, ticarcillin-clavulanate, or meropenem were randomized to receive the prescribed antibiotic via continuous or 30-minute intermittent infusion for the remainder of the treatment course or until ICU discharge. The primary outcome was the number of alive ICU-free days at Day 28. Secondary outcomes were 90-day survival, clinical cure 14 days post antibiotic cessation, alive organ failure-free days at Day 14, and duration of bacteremia. We enrolled 432 eligible participants with a median age of 64 years and an Acute Physiology and Chronic Health Evaluation II score of 20. There was no difference in ICU-free days: 18 days (interquartile range, 2-24) and 20 days (interquartile range, 3-24) in the continuous and intermittent groups (P = 0.38). There was no difference in 90-day survival: 74.3% (156 of 210) and 72.5% (158 of 218); hazard ratio, 0.91 (95% confidence interval, 0.63-1.31; P = 0.61). Clinical cure was 52.4% (111 of 212) and 49.5% (109 of 220); odds ratio, 1.12 (95% confidence interval, 0.77-1.63; P = 0.56). There was no difference in organ failure-free days (6 d; P = 0.27) and duration of bacteremia (0 d; P = 0.24). In critically ill patients with severe sepsis, there was no difference in outcomes between β-lactam antibiotic administration by continuous and intermittent infusion. Australian New Zealand Clinical Trials Registry number (ACT RN12612000138886).

  2. Biofilm production and beta-lactamic resistance in Brazilian Staphylococcus aureus isolates from bovine mastitis.

    PubMed

    Marques, Viviane Figueira; Motta, Cássia Couto da; Soares, Bianca da Silva; Melo, Dayanne Araújo de; Coelho, Shana de Mattos de Oliveira; Coelho, Irene da Silva; Barbosa, Helene Santos; Souza, Miliane Moreira Soares de

    Staphylococcus spp. play an important role in the etiology of bovine mastitis. Staphylococcus aureus is considered the most relevant species due to the production of virulence factors such as slime, which is required for biofilm formation. This study aimed to evaluate biofilm production and its possible relation to beta-lactamic resistance in 20 S. aureus isolates from bovine mastitic milk. The isolates were characterized by pheno-genotypic and MALDI TOF-MS assays and tested for genes such as icaA, icaD, bap, agr RNAIII, agr I, agr II, agr III, and agr IV, which are related to slime production and its regulation. Biofilm production in microplates was evaluated considering the intervals determined along the bacterial growth curve. In addition, to determine the most suitable time interval for biofilm analysis, scanning electron microscopy was performed. Furthermore, genes such as mecA and blaZ that are related to beta-lactamic resistance and oxacillin susceptibility were tested. All the studied isolates were biofilm producers and mostly presented icaA and icaD. The Agr type II genes were significantly prevalent. According to the SEM, gradual changes in the bacterial arrangement were observed during biofilm formation along the growth curve phases, and the peak was reached at the stationary phase. In this study, the penicillin resistance was related to the production of beta-lactamase, and the high minimal bactericidal concentration for cefoxitin was possibly associated with biofilm protection. Therefore, further studies are warranted to better understand biofilm formation, possibly contributing to our knowledge about bacterial resistance in vivo.

  3. Palladium-catalyzed unactivated C(sp3)-H bond activation and intramolecular amination of carboxamides: a new approach to β-lactams.

    PubMed

    Sun, Wen-Wu; Cao, Pei; Mei, Ren-Qiang; Li, Yue; Ma, Yuan-Liang; Wu, Bin

    2014-01-17

    An efficient method to synthesize the β-lactams with high regioselectivity via Pd-catalyzed C(sp(3))-H bond activation and intramolecular amination of simple and readily available aminoquinoline carboxamides was demonstrated. C6F5I plays a significant role in the formation of the C-N bond of the four-membered ring β-lactams. High yield along with wide substrate scope and functional group tolerance makes this reaction applicable to build natural-product-derived β-lactams. This method has been applied to the efficient synthesis of the β-lactamase inhibitor MK-8712.

  4. Investigation of β-lactam antibacterial drugs, β-lactamases, and penicillin-binding proteins with fluorescence polarization and anisotropy: a review

    NASA Astrophysics Data System (ADS)

    Shapiro, Adam B.

    2016-06-01

    This review covers the uses of fluorescence polarization and anisotropy for the investigation of bacterial penicillin binding proteins (PBPs), which are the targets of β-lactam antibacterial drugs (penicillins, cephalosporins, carbapenems, and monobactams), and of the β-lactamase enzymes that destroy these drugs and help to render bacterial pathogens resistant to them. Fluorescence polarization and anisotropy-based methods for quantitation of β-lactam drugs are also reviewed. A particular emphasis is on methods for quantitative measurement of the interactions of β-lactams and other inhibitors with PBPs and β-lactamases.

  5. Diastereoselective synthesis of potent antimalarial cis-β-lactam agents through a [2 + 2] cycloaddition of chiral imines with a chiral ketene.

    PubMed

    Jarrahpour, Aliasghar; Ebrahimi, Edris; Sinou, Véronique; Latour, Christine; Brunel, Jean Michel

    2014-11-24

    The effect of double asymmetric induction for the synthesis of new cis-β-lactams by [2 + 2] cycloaddition reactions of chiral imines with a chiral ketene was investigated. The cycloaddition reaction was found to be totally diastereoselective leading exclusively to the formation of the cis-β-lactam derivatives. The newly synthesized cycloadducts were evaluated for their antimalarial activities against Plasmodium falciparum K14 resistant strain with moderate to excellent IC50 values varying from 8 to 50 μM. Of the fifteen β-lactams tested, four showed IC50 ≤ 11 μM.

  6. Relationship between structure and convulsant properties of some beta-lactam antibiotics following intracerebroventricular microinjection in rats.

    PubMed Central

    De Sarro, A; Ammendola, D; Zappala, M; Grasso, S; De Sarro, G B

    1995-01-01

    The epileptogenic activities of several beta-lactam antibiotics were compared following their intracerebroventricular administration in rats. Different convulsant potencies were observed among the various beta-lactam antibiotics tested, but the epileptogenic patterns were similar. The patterns consisted of an initial phase characterized by wet-dog shakes followed by head tremor, nodding, and clonic convulsions. After the largest doses of beta-lactam antibiotics injected, clonus of all four limbs and/or the trunk, rearing, jumping, falling down, escape response, transient tonic-clonic seizures, and sometimes generalized seizures were observed, followed by a postictal period with a fatal outcome. At a dose of 0.033 mumol per rat, cefazolin was the most powerful epileptogenic compound among the drugs tested. It was approximately three times more potent than benzylpenicillin in generating a response and much more potent than other cephalosporins, such as ceftriaxone, cefoperazone, and cefamandole. No epileptogenic signs were observed with equimolar doses of cefotaxime, cefonicid, cefixime, and ceftizoxime in this model. The more convulsant compounds (i.e., cefazolin and ceftezole) are both characterized by the presence of a tetrazole nucleus at position 7 and show a marked chemical similarity to pentylenetetrazole. Imipenem and meropenem, the two carbapenems tested, also showed epileptogenic properties, but imipenem was more potent than meropenem, with a convulsant potency similar to those of ceftezole and benzylpenicillin. In addition, the monobactam aztreonam possessed convulsant properties more potent than those of cefoperazone and cefamandole. This suggest that the beta-lactam ring is a possible determinant of production of epileptogenic activity, with likely contributory factors in the substitutions at the 7-aminocephalosporanic or 6-aminopenicillanic acid that may increase or reduce the epileptogenic properties of the beta-lactam antibiotics. While the structure

  7. In silico analysis of different generation β lactams antibiotics with penicillin binding protein-2 of Neisseria meningitidis for curing meningococcal disease.

    PubMed

    Tripathi, Vijay; Tripathi, Pooja; Srivastava, Navita; Gupta, Dwijendra

    2014-12-01

    Neisseria meningitidis is a gram negative, diplococcic pathogen responsible for the meningococcal disease and fulminant septicemia. Penicillin-binding proteins-2 (PBPs) is crucial for the cell wall biosynthesis during cell proliferation of N. meningitidis and these are the target for β-lactam antibiotics. For many years penicillin has been recognized as the antibiotic for meningococcal disease but the meningococcus has seemed to be antibiotic resistance. In the present work we have verified the molecular interaction of Penicillin binding protein-2 N. meningitidis to different generation of β-lactam antibiotics and concluded that the third generation of β-lactam antibiotics shows efficient binding with Penicillin binding protein-2 of N. meningitidis. On the basis of binding efficiency and inhibition constant, ceftazidime emerged as the most efficient antibiotic amongst the other advanced β-lactam antibiotics against Penicillin-binding protein-2 of N. meningitidis.

  8. Structure-activity analysis of the growth hormone secretagogue GHRP-6 by alpha- and beta-amino gamma-lactam positional scanning.

    PubMed

    Boutard, Nicolas; Jamieson, Andrew G; Ong, Huy; Lubell, William D

    2010-01-01

    Incorporation of amino lactams into biologically active peptides restricts conformational mobility and may enhance selectivity and increase potency. alpha- and beta-amino gamma-lactams (Agl and Bgl), in both S and R configurations, were introduced into the growth hormone secretagogue GHRP-6 using a Fmoc-compatible solid-phase protocol relying on N-alkylation with five- and six-membered cyclic sulfamidates, followed by lactam annulation under microwave heating. Using this protocol in conjunction with IRORI Kan techniques furnished eleven new GHRP-6 analogs, and their binding affinity IC50 values on both the growth hormone secretagogue receptor 1a (GHS-R1a) and CD36 receptors are herein reported. The results indicate that selectivity towards one receptor or the other can be modulated by lactam substitution, typically at the Ala3 and the D-Phe5 positions.

  9. Protonation-assisted conjugate addition of axially chiral enolates: asymmetric synthesis of multisubstituted β-lactams from α-amino acids.

    PubMed

    Yoshimura, Tomoyuki; Takuwa, Masatoshi; Tomohara, Keisuke; Uyama, Makoto; Hayashi, Kazuhiro; Yang, Pan; Hyakutake, Ryuichi; Sasamori, Takahiro; Tokitoh, Norihiro; Kawabata, Takeo

    2012-11-26

    β-Lactams with contiguous tetra- and trisubstituted carbon centers were prepared in a highly enantioselective manner through 4-exo-trig cyclization of axially chiral enolates generated from readily available α-amino acids. Use of a weak base (metal carbonate) in a protic solvent (EtOH) is the key to the smooth production of β-lactams. Use of the weak base is expected to generate the axially chiral enolates in a very low concentration, which undergo intramolecular conjugate addition without suffering intermolecular side reactions. Highly strained β-lactam enolates thus formed through reversible intramolecular conjugate addition (4-exo-trig cyclization) of axially chiral enolates undergo prompt protonation by EtOH in the reaction media (not during the work-up procedure) to give β-lactams in up to 97% ee. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effects on learning and memory of 2-week treatments with chlordiazepoxide lactam, N-desmethyldiazepam, oxazepam and methyloxazepam, alone or in combination with alcohol.

    PubMed

    Liljequist, R; Palva, E; Linnoila, M

    1979-01-01

    A double-blind study with 40 healthy students was done in order to measure the effects of a 2-week treatment with chloridiazepoxide lactam (5 mg), nordiazepam (10 mg), oxazepam (15 mg) and methyloxazepam (20 mg) on immediate memory and associative learning. The drugs were administered t.i.d. and the tests were done after the very last capsule was given. It was ingested with a placebo drink and 0.5 g alcohol/kg body weight. Oxazepam and methyloxazepam alone behaved similar to the placebo. Immediate memory was significantly impaired following the treatment with nordiazepam, chlordiazepoxide lactam, alcohol, and after the simultaneous administration of nordiazepam and chlordiazepoxide lactam with alcohol. Chlordiazepoxide lactam was the only drug which alone impaired associative learning. Also alcohol alone, and all the drugs in combination with alcohol retarded learning acquisition.

  11. Multiresidue determination of beta-lactam antibiotics in milk and tissues with the aid of high-performance liquid chromatographic fractionation for clean up.

    PubMed

    Moats, W A; Romanowski, R D

    1998-07-03

    Screening of milk shipments for beta-lactam antibiotic residues is mandatory in the USA and is widely used in other countries. Interpretation of positive screening test results has been difficult. Only six beta-lactam antibiotics are approved for use in food-producing animals in the USA but many others are used in other countries. A multiresidue procedure was developed for identification and quantitation of unknown beta-lactam antibiotics. The residues were extracted with acetonitrile and tetraethylammonium chloride. The extract was concentrated by evaporation and filtered. The concentrated extract was then loaded onto an HPLC column in 100% 0.01 M KH2PO4 and eluted with an acetonitrile gradient. Fractions corresponding to analytes of interest were collected and tested for antibiotics using rapid milk screening tests. Fractions testing positive were analyzed by HPLC. The identity of beta-lactams was confirmed by treating a replicate with beta-lactamase.

  12. Beta lactam antibiotics residues in cow’s milk: comparison of efficacy of three screening tests used in Bosnia and Herzegovina

    PubMed Central

    Fejzić, Nihad; Begagić, Muris; Šerić-Haračić, Sabina; Smajlović, Muhamed

    2014-01-01

    Beta lactam antibiotics are widely used in therapy of cattle, particularly for the treatment of mastitis. Over 95% of residue testing in dairies in Bosnia and Herzegovina is for Beta lactams. The aim of this paper is to compare the efficacy of three most common screening tests for Beta lactam residues in cow’s milk in our country. The tests used in the study are SNAP β Lactam test (Idexx), Rosa Charm β Lactam test (Charm Sciences) and Inhibition MRL test (A&M). Study samples included: standardized concentrations of penicillin solution (0, 2, 3, 4, 5 and 6 ppb). In addition we tested milk samples from three equal size study groups (not receiving any antibiotic therapy, treated with Beta lactams for mastitis and treated with Beta lactams for diseases other than mastitis). Sensitivity and specificity were determined for each test, using standard penicillin concentrations with threshold value set at concentration of 4 ppb (Maximum residue level – MLR). Additionally we determined proportions of presumably false negative and false positive results for each test using results of filed samples testing. Agreement of test results for each test pair was assessed through Kappa coefficients interpreted by Landis-Koch scale. Detection level of all tests was shown to be well below MRL. This alongside with effects of natural inhibitors in milk contributed to finding of positive results in untreated and treated animals after the withholding period. Screening tests for beta lactam residues are important tools for ensuring that milk for human consumption is free from antibiotics residues. PMID:25172975

  13. Fluoroquinolones or macrolides alone versus combined with β-lactams for adults with community-acquired pneumonia: Systematic review and meta-analysis.

    PubMed

    Raz-Pasteur, Ayelet; Shasha, David; Paul, Mical

    2015-09-01

    Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality. This review compared two of the main treatment alternatives: quinolone or macrolide monotherapy versus their combination with β-lactams. A systematic review and meta-analysis of randomised controlled trials (RCTs) including adult inpatients and outpatients with CAP that compared treatment with any respiratory fluoroquinolone or macrolide administered as single agent with combination therapy of a β-lactam plus either a fluoroquinolone or a macrolide (four separate comparisons) were conducted. The primary outcome was all-cause 30-day mortality. Secondary outcomes included clinical and microbiological failure, treatment discontinuation and adverse events. A comprehensive search was conducted with no date, language or publication status restrictions. Pooled risk ratios (RRs) with 95% confidence intervals are reported. Sixteen RCTs randomising 4809 patients were included. All but one included hospitalised patients. Mortality was low, and no differences between groups were observed in all comparisons. Quinolone monotherapy resulted in significantly less clinical failures [RR=0.72 (0.57-0.91)], treatment discontinuations [RR=0.65 (0.54-0.78)] and diarrhoea [RR=0.13 (0.05-0.34)] compared with β-lactam/macrolide combinations (nine trials). Addition of a β-lactam to quinolones did not improve outcomes (three trials). In all comparisons, treatment discontinuation and diarrhoea were more frequent in patients receiving combination therapy with a β-lactam. Overall, there is no evidence for a benefit of β-lactam/macrolide or β-lactam/quinolone combination therapies over monotherapy with a respiratory fluoroquinolone. The ecological implications of selecting fluoroquinolone or β-lactam monotherapy as the preferred regimen for hospitalised CAP among adults should be further investigated. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  14. [Cross allergy between penicillins and other beta lactam antibiotics--the risk is much less than previously thought].

    PubMed

    Tängden, Thomas; Furebring, Mia; Löwdin, Elisabeth; Werner, Sonja

    2015-02-03

    Severe IgE-mediated allergic reactions to penicillins are rare but might be fatal. Because some studies demonstrated a high risk of cross-sensitivity to cephalosporins and carbapenems it has been recommended to avoid these antibiotics in patients with suspected hypersensitivity to penicillins. However, recent studies and analyses conclude that the risk of cross-reactivity was overestimated in the earlier studies and that it is in fact very low for parenteral cephalosporins and perhaps even negligible for carbapenems. The new knowledge has implications for the choice of therapy for bacterial infections in patients with a history of penicillin hypersensitivity, because alternative antibiotic regimens are often inferior to beta-lactam antibiotics. The aim of the present review is to present existing knowledge on cross-sensitivity between beta-lactams, as well as to discuss the management of patients with suspected allergic reactions to these antibiotics.

  15. The kinetics of non-stoichiometric bursts of beta-lactam hydrolysis catalysed by class C beta-lactamases.

    PubMed

    Page, M G

    1993-10-01

    Class C beta-lactamases from Pseudomonas aeruginosa and several species of the Enterobacteriaceae have been observed to undergo a rapid burst in hydrolysis of beta-lactam antibiotics before relaxation to a steady-state rate of hydrolysis. The amplitude of the burst corresponds to the hydrolysis of between 1 and 10,000 mol of the substrate per mol of enzyme. The decay of the rate of hydrolysis in the burst phase comprises two exponential reactions, which indicates that there are three different reactive states of the enzymes. Examination of the kinetics of acylation by slowly reacting beta-lactams suggests that there are three forms of the free enzyme in slow equilibrium. Thus it would appear that the burst kinetics exhibited by class C enzymes can be attributed to redistribution of the enzyme between different conformations induced by the reaction with substrate.

  16. The Use of Noncarbapenem β-Lactams for the Treatment of Extended-Spectrum β-Lactamase Infections.

    PubMed

    Tamma, Pranita D; Rodriguez-Bano, Jesus

    2017-04-01

    The continued rise in infections caused by extended-spectrum β-lactamase (ESBL)-producing pathogens is recognized globally as one of the most pressing concerns facing the healthcare community. Carbapenems are widely regarded as the antibiotics of choice for the treatment of ESBL-producing infections, even when in vitro activity to other β-lactams has been demonstrated. However, indiscriminant carbapenem use is not without consequence, and carbapenem overuse has contributed to the emergence of carbapenem-resistant Enterobacteriaceae. The use of non-carbapenem β-lactams for the treatment of ESBL infections has yielded conflicting results. In this review, we discuss the available data for the use of cephamycins, cefepime, piperacillin-tazobactam, ceftolozane-tazobactam, and ceftazidime-avibactam for the treatment of ESBL infections.

  17. Are new antibiotics better than beta-lactams for non-critical inpatients with community-acquired pneumonia?

    PubMed

    Reyes B, Tomás; Ortega G, Marcos; Saldías P, Fernando

    2016-08-05

    Treatment for community-acquired pneumonia in immunocompetent adults is mainly empirical. Beta-lactam antibiotics have been traditionally considered first-line therapy. New antibiotics could be more effective but the evidence is not clear until now, and its use could entail greater costs, an increase in bacterial resistance and other adverse effects. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified six systematic reviews including 36 randomized trials addressing this question. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded new antibiotics are not better than beta-lactam antibiotics for the treatment of non-critical inpatients with community-acquired pneumonia in relation to clinical failure or adverse effects.

  18. Sustainable Chiral Polyamides with High Melting Temperature via Enhanced Anionic Polymerization of a Menthone-Derived Lactam.

    PubMed

    Winnacker, Malte; Neumeier, Michael; Zhang, Xiaohan; Papadakis, Christine M; Rieger, Bernhard

    2016-05-01

    Polyamides are very important polymers that find applications from commodities up to the automotive and biomedical sectors, and their impact is continuously growing. The synthesis of structurally significant, chiral, and sustainable polyamides is described via a new, convenient, and solvent-free anionic polymerization of a biobased ε-lactam, which is obtained from the renewable terpenoid ketone l-menthone in a one-step synthesis. These polyamides are shown to have outstanding structural and thermal properties, which are thus introduced via the structure and chirality of the natural lactam monomer and which are discussed and compared with those of petroleum-based, established, and commercial polyamide Nylon-6. X-ray data reveal a remarkable degree of crystallinity in these green polymers and emphasize the impact of their structural features on the resulting properties.

  19. Rhodium-catalyzed oxygenative [2 + 2] cycloaddition of terminal alkynes and imines for the synthesis of β-lactams.

    PubMed

    Kim, Insu; Roh, Sang Weon; Lee, Dong Gil; Lee, Chulbom

    2014-05-02

    A rhodium-catalyzed oxygenative [2 + 2] cycloaddition of terminal alkynes and imines has been developed, which gives β-lactams as products with high trans diastereoselectivity. In the presence of a Rh(I) catalyst and 4-picoline N-oxide, a terminal alkyne is converted to a rhodium ketene species via oxidation of a vinylidene complex and subsequently undergoes a [2 + 2] cycloaddition with an imine to give rise to the 2-azetidinone ring system. Mechanistic studies suggest that the reaction proceeds through a metalloketene rather than free ketene intermediate. The new method taking advantage of catalytic generation of a ketene species directly from a terminal alkyne provides a novel and efficient entry to the Staudinger synthesis of β-lactams under mild conditions.

  20. Selection of Naturally Occurring Extended-Spectrum TEM β-Lactamase Variants by Fluctuating β-Lactam Pressure

    PubMed Central

    Blazquez, Jesús; Morosini, María-Isabel; Negri, María-Cristina; Baquero, Fernando

    2000-01-01

    Despite the large number of in vitro mutations that increase resistance to extended-spectrum cephalosporins in TEM-type β-lactamases, only a small number occur in naturally occurring enzymes. In nature, and particularly in the hospital, bacteria that contain β-lactamases encounter simultaneous or consecutive selective pressure with different β-lactam molecules. All variants obtained by submitting an Escherichia coli strain that contains a blaTEM-1 gene to fluctuating challenge with both ceftazidime and amoxicillin contained only mutations previously detected in naturally occurring β-lactamases. Nevertheless, some variants obtained by ceftazidime challenge alone contained mutations never detected in naturally occurring TEM β-lactamases, suggesting that extended-spectrum TEM variants in hospital isolates result from fluctuating selective pressure with several β-lactams rather than selection with a single antibiotic. PMID:10898697

  1. Regioselective Synthesis of a Family of β‐Lactams Bearing a Triazole Moiety as Potential Apoptosis Inhibitors

    PubMed Central

    Garrido, Maria; Corredor, Miriam; Orzáez, Mar; Alfonso, Ignacio

    2016-01-01

    Abstract Apoptosis is a biological process important to several human diseases; it is strongly regulated through protein–protein interactions and complex formation. We previously reported the synthesis of apoptosis inhibitors bearing an exocyclic triazole amide isoster by using an Ugi four‐component coupling reaction (Ugi‐4CC), followed by a base‐promoted intramolecular cyclization. Depending on the substitution patterns and the reaction conditions, this cyclization forms the six‐ or four‐membered ring. Two compounds bearing the β‐lactam scaffold turned out to be the most potent inhibitors. This encouraged us to optimize the modulation of the cyclization, and prepare a library of 15 β‐lactams with total regioselectivity. Moreover, we aimed to improve the bioavailability of these compounds through the introduction of diversity at different substitution positions. The activity of these compounds as apoptosis inhibitors in cellular extracts has been evaluated, showing an increase in their potency. PMID:27777842

  2. Regioselective Synthesis of a Family of β-Lactams Bearing a Triazole Moiety as Potential Apoptosis Inhibitors.

    PubMed

    Garrido, Maria; Corredor, Miriam; Orzáez, Mar; Alfonso, Ignacio; Messeguer, Angel

    2016-10-01

    Apoptosis is a biological process important to several human diseases; it is strongly regulated through protein-protein interactions and complex formation. We previously reported the synthesis of apoptosis inhibitors bearing an exocyclic triazole amide isoster by using an Ugi four-component coupling reaction (Ugi-4CC), followed by a base-promoted intramolecular cyclization. Depending on the substitution patterns and the reaction conditions, this cyclization forms the six- or four-membered ring. Two compounds bearing the β-lactam scaffold turned out to be the most potent inhibitors. This encouraged us to optimize the modulation of the cyclization, and prepare a library of 15 β-lactams with total regioselectivity. Moreover, we aimed to improve the bioavailability of these compounds through the introduction of diversity at different substitution positions. The activity of these compounds as apoptosis inhibitors in cellular extracts has been evaluated, showing an increase in their potency.

  3. Treatment of Gram-negative pneumonia in the critical care setting: is the beta-lactam antibiotic backbone broken beyond repair?

    PubMed

    Bassetti, Matteo; Welte, Tobias; Wunderink, Richard G

    2016-01-29

    Beta-lactam antibiotics form the backbone of treatment for Gram-negative pneumonia in mechanically ventilated patients in the intensive care unit. However, this beta-lactam antibiotic backbone is increasingly under pressure from emerging resistance across all geographical regions, and health-care professionals in many countries are rapidly running out of effective treatment options. Even in regions that currently have only low levels of resistance, the effects of globalization are likely to increase local pressures on the beta-lactam antibiotic backbone in the near future. Therefore, clinicians are increasingly faced with a difficult balancing act: the need to prescribe adequate and appropriate antibiotic therapy while reducing the emergence of resistance and the overuse of antibiotics. In this review, we explore the burden of Gram-negative pneumonia in the critical care setting and the pressure that antibiotic resistance places on current empiric therapy regimens (and the beta-lactam antibiotic backbone) in this patient population. New treatment approaches, such as systemic and inhaled antibiotic alternatives, are on the horizon and are likely to help tackle the rising levels of beta-lactam antibiotic resistance. In the meantime, it is imperative that the beta-lactam antibiotic backbone of currently available antibiotics be supported through stringent antibiotic stewardship programs.

  4. In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to Β-Lactams

    PubMed Central

    Fouhy, Fiona; O’Connell Motherway, Mary; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; van Sinderen, Douwe; Cotter, Paul D.

    2013-01-01

    Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria. PMID:24324818

  5. Regio- and stereoselective synthesis of benzothiazolo-pyrimidinones via an NHC-catalyzed Mannich/lactamization domino reaction.

    PubMed

    Ni, Qijian; Song, Xiaoxiao; Xiong, Jiawen; Raabe, Gerhard; Enders, Dieter

    2015-01-25

    An NHC-catalyzed regio- and stereoselective Mannich/lactamization domino reaction of N-(benzothiazolyl)imines with α-chloroaldehydes has been developed. This new protocol provides a facile approach for the asymmetric synthesis of benzothiazolo-pyrimidinones and a pyrrolo[1,2-a]indolone in moderate to good yields (34-78%) and excellent stereoselectivities (87-99% ee, up to >20 : 1 d.r.).

  6. In silico assigned resistance genes confer Bifidobacterium with partial resistance to aminoglycosides but not to β-lactams.

    PubMed

    Fouhy, Fiona; O'Connell Motherway, Mary; Fitzgerald, Gerald F; Ross, R Paul; Stanton, Catherine; van Sinderen, Douwe; Cotter, Paul D

    2013-01-01

    Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.

  7. Potent β-Lactam Enhancer Activity of Zidebactam and WCK 5153 against Acinetobacter baumannii, Including Carbapenemase-Producing Clinical Isolates.

    PubMed

    Moya, Bartolome; Barcelo, Isabel M; Bhagwat, Sachin; Patel, Mahesh; Bou, German; Papp-Wallace, Krisztina M; Bonomo, Robert A; Oliver, Antonio

    2017-08-28

    Multidrug-resistant Acinetobacter baumannii has rapidly spread worldwide resulting in a serious threat to hospitalized patients. Zidebactam and WCK 5153 are novel non-β-lactam bicyclo-acyl hydrazide β-lactam enhancer antibiotics being developed to target multidrug-resistant A. baumannii. The objectives of this work were to determine the penicillin-binding protein (PBP) IC50s, OXA-23 inhibition profiles, and antimicrobial activities of zidebactam and WCK 5153, alone and in combination with β-lactams, against multidrug-resistant A. baumannii MICs and time kill kinetics were performed against an A. baumannii clinical strain producing the carbapenemase OXA-23 and belonging to the widespread European clone II, sequence type 2 (ST2). Inhibition of OXA-23 purified enzyme by zidebactam, WCK 5153, and comparators was assessed. All of the compounds tested displayed Ki app values >100 μM indicating poor OXA-23 β-lactamase inhibition. The PBP IC50 values of zidebactam, WCK 5153, cefepime, ceftazidime, meropenem and sulbactam (range of concentrations tested 0.02 - 2 μg/mL) were also determined. Zidebactam and WCK 5153 demonstrated specific high-affinity PBP2 binding in A. baumannii (0.01 μg/mL for both of the compounds). MICs of zidebactam and WCK 5153 were >1024 μg/mL for wild-type and multidrug-resistant Acinetobacter spp. strains. Importantly, combinations of cefepime or sulbactam with 8 μg/mL of zidebactam or WCK 5153 led to a 4- and 8-fold MIC reduction, respectively and showed enhanced killing. Notably, several of the combinations resulted in full bacterial eradication at 24h. We conclude that zidebactam and WCK 5153 are PBP2 inhibitors that show potent β-lactam enhancer effect against A. baumannii, including a multidrug-resistant OXA-23-producing ST2 international clone. Copyright © 2017 American Society for Microbiology.

  8. Highly efficient asymmetric hydrogenation of cyano-substituted acrylate esters for synthesis of chiral γ-lactams and amino acids.

    PubMed

    Kong, Duanyang; Li, Meina; Wang, Rui; Zi, Guofu; Hou, Guohua

    2016-01-28

    A highly efficient and enantioselective synthesis of γ-lactams and γ-amino acids by Rh-catalyzed asymmetric hydrogenation has been developed. Using the Rh-(S,S)-f-spiroPhos complex, under mild conditions a wide range of 3-cyano acrylate esters including both E and Z-isomers and β-cyano-α-aryl-α,β-unsaturated ketones were first hydrogenated with excellent enantioselectivities (up to 98% ee) and high turnover numbers (TON up to 10,000).

  9. AmpG Inactivation Restores Susceptibility of Pan-β-Lactam-Resistant Pseudomonas aeruginosa Clinical Strains▿

    PubMed Central

    Zamorano, Laura; Reeve, Thomas M.; Juan, Carlos; Moyá, Bartolomé; Cabot, Gabriel; Vocadlo, David J.; Mark, Brian L.; Oliver, Antonio

    2011-01-01

    Constitutive AmpC hyperproduction is the most frequent mechanism of resistance to the weak AmpC inducers antipseudomonal penicillins and cephalosporins. Previously, we demonstrated that inhibition of the β-N-acetylglucosaminidase NagZ prevents and reverts this mechanism of resistance, which is caused by ampD and/or dacB (PBP4) mutations in Pseudomonas aeruginosa. In this work, we compared NagZ with a second candidate target, the AmpG permease for GlcNAc-1,6-anhydromuropeptides, for their ability to block AmpC expression pathways. Inactivation of nagZ or ampG fully restored the susceptibility and basal ampC expression of ampD or dacB laboratory mutants and impaired the emergence of one-step ceftazidime-resistant mutants in population analysis experiments. Nevertheless, only ampG inactivation fully blocked ampC induction, reducing the MICs of the potent AmpC inducer imipenem from 2 to 0.38 μg/ml. Moreover, through population analysis and characterization of laboratory mutants, we showed that ampG inactivation minimized the impact on resistance of the carbapenem porin OprD, reducing the MIC of imipenem for a PAO1 OprD mutant from >32 to 0.5 μg/ml. AmpG and NagZ targets were additionally evaluated in three clinical isolates that are pan-β-lactam resistant due to AmpC hyperproduction, OprD inactivation, and overexpression of several efflux pumps. A marked increase in susceptibility to ceftazidime and piperacillin-tazobactam was observed in both cases, while only ampG inactivation fully restored wild-type imipenem susceptibility. Susceptibility to meropenem, cefepime, and aztreonam was also enhanced, although to a lower extent due to the high impact of efflux pumps on the activity of these antibiotics. Thus, our results suggest that development of small-molecule inhibitors of AmpG could provide an excellent strategy to overcome the relevant mechanisms of resistance (OprD inactivation plus AmpC induction) to imipenem, the only currently available β-lactam not

  10. Synthesis, high-throughput screening and pharmacological characterization of β-lactam derivatives as TRPM8 antagonists.

    PubMed

    de la Torre-Martínez, Roberto; Bonache, M Angeles; Llabrés-Campaner, Pedro J; Balsera, Beatriz; Fernández-Carvajal, Asia; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio; Pérez de Vega, M Jesús; González-Muñiz, Rosario

    2017-09-07

    The mammalian transient receptor potential melastatin channel 8 (TRPM8), highly expressed in trigeminal and dorsal root ganglia, mediates the cooling sensation and plays an important role in the cold hypersensitivity characteristic of some types of neuropathic pain, as well as in cancer. Consequently, the identification of selective and potent ligands for TRPM8 is of great interest. Here, a series of compounds, having a β-lactam central scaffold, were prepared to explore the pharmacophore requirements for TRPM8 modulation. Structure-activity studies indicate that the minimal requirements for potent β-lactam-based TRPM8 blockers are hydrophobic groups (benzyl preferentially or (t) Bu) on R(1), R(2), R(3) and R(5) and a short N-alkyl chain (≤3 carbons). The best compounds in the focused library (41 and 45) showed IC50 values of 46 nM and 83 nM, respectively, in electrophysiology assays. These compounds selectively blocked all modalities of TRPM8 activation, i.e. menthol, voltage, and temperature. Molecular modelling studies using a homology model of TRPM8 identified two putative binding sites, involving networks of hydrophobic interactions, and suggesting a negative allosteric modulation through the stabilization of the closed state. Thus, these β-lactams provide a novel pharmacophore scaffold to evolve TRPM8 allosteric modulators to treat TRPM8 channel dysfunction.

  11. Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli

    PubMed Central

    Hugonnet, Jean-Emmanuel; Mengin-Lecreulx, Dominique; Monton, Alejandro; den Blaauwen, Tanneke; Carbonnelle, Etienne; Veckerlé, Carole; Brun, Yves, V.; van Nieuwenhze, Michael; Bouchier, Christiane; Tu, Kuyek; Rice, Louis B; Arthur, Michel

    2016-01-01

    The target of β-lactam antibiotics is the D,D-transpeptidase activity of penicillin-binding proteins (PBPs) for synthesis of 4→3 cross-links in the peptidoglycan of bacterial cell walls. Unusual 3→3 cross-links formed by L,D-transpeptidases were first detected in Escherichia coli more than four decades ago, however no phenotype has previously been associated with their synthesis. Here we show that production of the L,D-transpeptidase YcbB in combination with elevated synthesis of the (p)ppGpp alarmone by RelA lead to full bypass of the D,D-transpeptidase activity of PBPs and to broad-spectrum β-lactam resistance. Production of YcbB was therefore sufficient to switch the role of (p)ppGpp from antibiotic tolerance to high-level β-lactam resistance. This observation identifies a new mode of peptidoglycan polymerization in E. coli that relies on an unexpectedly small number of enzyme activities comprising the glycosyltransferase activity of class A PBP1b and the D,D-carboxypeptidase activity of DacA in addition to the L,D-transpeptidase activity of YcbB. DOI: http://dx.doi.org/10.7554/eLife.19469.001 PMID:27767957

  12. Extended infusion of beta-lactam antibiotics: optimizing therapy in critically-ill patients in the era of antimicrobial resistance.

    PubMed

    Rizk, Nesrine A; Kanafani, Zeina A; Tabaja, Hussam Z; Kanj, Souha S

    2017-07-01

    Beta-lactams are at the cornerstone of therapy in critical care settings, but their clinical efficacy is challenged by the rise in bacterial resistance. Infections with multi-drug resistant organisms are frequent in intensive care units, posing significant therapeutic challenges. The problem is compounded by a dearth in the development of new antibiotics. In addition, critically-ill patients have unique physiologic characteristics that alter the drugs pharmacokinetics and pharmacodynamics. Areas covered: The prolonged infusion of antibiotics (extended infusion [EI] and continuous infusion [CI]) has been the focus of research in the last decade. As beta-lactams have time-dependent killing characteristics that are altered in critically-ill patients, prolonged infusion is an attractive approach to maximize their drug delivery and efficacy. Several studies have compared traditional dosing to EI/CI of beta-lactams with regard to clinical efficacy. Clinical data are primarily composed of retrospective studies and some randomized controlled trials. Several reports show promising results. Expert commentary: Reviewing the currently available evidence, we conclude that EI/CI is probably beneficial in the treatment of critically-ill patients in whom an organism has been identified, particularly those with respiratory infections. Further studies are needed to evaluate the efficacy of EI/CI in the management of infections with resistant organisms.

  13. Penicillin-binding protein 3 of Streptococcus pneumoniae and its application in screening of β-lactams in milk.

    PubMed

    Zhang, Jing; Wang, Zhanhui; Wen, Kai; Liang, Xiao; Shen, Jianzhong

    2013-11-15

    The soluble form of penicillin-binding protein 3 (sPBP3(∗)) from Streptococcus pneumoniae was expressed in Escherichia coli as a six-histidine fusion protein. The protein was purified and used to develop a microplate assay in direct competitive format for the detection of penicillins and cephalosporins in milk. The assay was based on competitive inhibition of the binding of horseradish peroxidase-labeled ampicillin (HRP-Amp) to the sPBP3(∗) by free β-lactam antibiotics in milk. Under optimized conditions, most of the β-lactam antibiotics (11 penicillins and 16 cephalosporins) could be detected at concentrations corresponding to the maximum residue limits (MRLs) set by the European Union. Analysis of spiked milk samples showed that acceptable recoveries ranged from 74.06 to 106.31% in skimmed milk and from 63.97 to 107.26% in whole milk, with coefficients of variation (CVs) less than 16%. With the high sensitivity and wide-range affinities to penicillins and cephalosporins, the developed assay based on sPBP3(∗) exhibited the potential to be a screening assay for fast detection of β-lactam antibiotics in milk.

  14. In Vitro and In Vivo Efficacy of β-Lactams against Replicating and Slowly Growing/Nonreplicating Mycobacterium tuberculosis

    PubMed Central

    Dinesh, Neela; Shandil, Radha; Ramachandran, Vasanthi; Sharma, Sreevalli; Bhattacharjee, Deepa; Ganguly, Samit; Reddy, Jitendar; Ahuja, Vijaykamal; Panduga, Vijender; Parab, Manish; Vishwas, K. G.; Kumar, Naveen; Balganesh, Meenakshi; Balasubramanian, V.

    2013-01-01

    Beta-lactams, in combination with beta-lactamase inhibitors, are reported to have activity against Mycobacterium tuberculosis bacteria growing in broth, as well as inside the human macrophage. We tested representative beta-lactams belonging to 3 different classes for activity against replicating M. tuberculosis in broth and nonreplicating M. tuberculosis under hypoxia, as well as against streptomycin-starved M. tuberculosis strain 18b (ss18b) in the presence or absence of clavulanate. Most of the combinations showed bactericidal activity against replicating M. tuberculosis, with up to 200-fold improvement in potency in the presence of clavulanate. None of the combinations, including those containing meropenem, imipenem, and faropenem, killed M. tuberculosis under hypoxia. However, faropenem- and meropenem-containing combinations killed strain ss18b moderately. We tested the bactericidal activities of meropenem-clavulanate and amoxicillin-clavulanate combinations in the acute and chronic aerosol infection models of tuberculosis in BALB/c mice. Based on pharmacokinetic/pharmacodynamic indexes reported for beta-lactams against other bacterial pathogens, a cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (%TMIC) of 20 to 40% was achieved in mice using a suitable dosing regimen. Both combinations showed marginal reduction in lung CFU compared to the late controls in the acute model, whereas both were inactive in the chronic model. PMID:23507276

  15. In vitro and in vivo efficacy of β-lactams against replicating and slowly growing/nonreplicating Mycobacterium tuberculosis.

    PubMed

    Solapure, Suresh; Dinesh, Neela; Shandil, Radha; Ramachandran, Vasanthi; Sharma, Sreevalli; Bhattacharjee, Deepa; Ganguly, Samit; Reddy, Jitendar; Ahuja, Vijaykamal; Panduga, Vijender; Parab, Manish; Vishwas, K G; Kumar, Naveen; Balganesh, Meenakshi; Balasubramanian, V

    2013-06-01

    Beta-lactams, in combination with beta-lactamase inhibitors, are reported to have activity against Mycobacterium tuberculosis bacteria growing in broth, as well as inside the human macrophage. We tested representative beta-lactams belonging to 3 different classes for activity against replicating M. tuberculosis in broth and nonreplicating M. tuberculosis under hypoxia, as well as against streptomycin-starved M. tuberculosis strain 18b (ss18b) in the presence or absence of clavulanate. Most of the combinations showed bactericidal activity against replicating M. tuberculosis, with up to 200-fold improvement in potency in the presence of clavulanate. None of the combinations, including those containing meropenem, imipenem, and faropenem, killed M. tuberculosis under hypoxia. However, faropenem- and meropenem-containing combinations killed strain ss18b moderately. We tested the bactericidal activities of meropenem-clavulanate and amoxicillin-clavulanate combinations in the acute and chronic aerosol infection models of tuberculosis in BALB/c mice. Based on pharmacokinetic/pharmacodynamic indexes reported for beta-lactams against other bacterial pathogens, a cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (%TMIC) of 20 to 40% was achieved in mice using a suitable dosing regimen. Both combinations showed marginal reduction in lung CFU compared to the late controls in the acute model, whereas both were inactive in the chronic model.

  16. Evaluation of Inhibitory Action of Novel Non β-Lactam Inhibitor against Klebsiella pneumoniae Carbapenemase (KPC-2)

    PubMed Central

    Khan, Arbab; Faheem, Mohammad; Danishuddin, Mohd; Khan, Asad U.

    2014-01-01

    The use of three classical β-lactamase inhibitors (Clavulanic acid, tazobactam and sulbactam) in combination with β-lactam antibiotics is presently the mainstay of antibiotic therapy against Gram-negative bacterial infections. However these inhibitors are unable to inhibit carbapenemase KPC-2 effectively. They being β-lactam derivatives behave as substrates for this enzyme instead of inactivating it. We have initiated our study to check the in vitro inhibition activity of the two novel screened inhibitors (ZINC01807204 and ZINC02318494) in combination with carbapenems against KPC-2 expressing bacterial strain and their effect on purified enzyme KPC-2. The MIC values of meropenem and ertapenem showed maximum reduction (8 folds) in combination with screened compounds (ZINC01807204 and ZINC02318494). CLSM images also depicted their strong antibacterial activity in comparison to conventional β-lactamase inhibitors. Moreover no toxic effect has been shown on HeLa cell line. Though the IC50 value of ZINC01807204 was high (200 µM), it exhibited fairly good affinity for KPC-2 (Ki = 43.82 µM). With promising results this study identifies ZINC01807204 as a lead molecule for further optimization and development of more potent non β-lactam inhibitors against KPC-2. PMID:25265157

  17. Development of a rapid multi-residue assay for detecting β-lactams using penicillin binding protein 2x*.

    PubMed

    Zeng, Kun; Zhang, Jing; Wang, Yang; Wang, Zhan Hui; Zhang, Su Xia; Wu, Chong Ming; Shen, Jian Zhong

    2013-02-01

    To develop a rapid multi-residue assay for detecting 16 demanded by the European Union (EU). A recombinant penicillin-binding protein (PBP) 2x* from Streptococcus pneumoniae R6 was expressed in vitro and six β-lactams were conjugated to HRP by four methods. A rapid multi-residue assay for β-lactams was established with PBP2x* and HRP-conjugate. PBP2x* was expressed and purified successfully and the ideal HRP-conjugate was identified. The multi-residue assay was developed. After optimization, penicillin G, ampicillin, amoxicillin, cloxacillin, dicloxacillin, oxacillin, nafcillin, cephalexin, ceftiofur, cefalonium, cefquinome, cefazolin, cefoperazone, cephacetrile, and cephapirin can be detected at levels below MRL in milk with simple pretreatment. This assay developed can detect all 16 β-lactams demanded by the European Union (EU). The whole procedure takes only 45 min and can detect 42 samples and the standards with duplicate analysis. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. The complex clinical picture of beta-lactam hypersensitivity: penicillins, cephalosporins, monobactams, carbapenems, and clavams.

    PubMed

    Torres, Maria J; Blanca, Miguel

    2010-07-01

    Beta-lactam antibiotics are the drugs most frequently involved in drug hypersensitivity reactions that are mediated by specific immunologic mechanisms. In addition to benzylpenicillin, several chemical structures belonging to 5 major subgroups can induce reactions. The most relevant structure is that of the amoxicillin molecule. Reactions belong to the 4 major mechanisms described by Coombs and Gell, whereby type IV reactions have recently been further subclassified. The most frequent reactions are type I, which are IgE mediated, and type IV, which are nonimmediate and T-cell dependent. IgE-specific antibodies may recognize the benzylpenicilloyl structure or another part of the molecule, such as the side chain, as antigenic determinants. Depending on specific recognition, subjects can be either cross-reactors or selective responders. A variety of entities exist in T-cell reactions, ranging from mild exanthema to life-threatening, severe reactions, such as Stevens-Johnson syndrome or toxic epidermal necrolysis. Diagnostic tests for IgE-mediated reactions can be done in vivo by testing skin with different penicillin determinants or in vitro by quantitating specific IgE antibodies. For nonimmediate reactions, there are also in vitro and in vivo tests, with variable degrees of sensitivity and specificity. The natural history of IgE-mediated reactions indicates that the count of specific IgE antibodies decreases over time and that results of diagnostic tests can become negative.

  19. Klebsiella species: antimicrobial susceptibilities, bactericidal kinetics, and in vitro inactivation of beta-lactam agents.

    PubMed Central

    Panwalker, A P; Trager, G M; Porembski, P E

    1980-01-01

    In vitro properties of 19 antimicrobial agents were tested with 56 isolates of Klebsiella spp. The aminoglycosides and the new beta-lactam compounds cefotaxime and moxalactam were the most inhibitory drugs tested. Chloramphenicol, tetracycline, trimethoprim, and trimethoprim-sulfamethoxazole were moderately active, whereas piperacillin, mezlocillin, and furazlocillin were ineffective against 25% of the isolates. Gentamicin was the only agent tested that was uniformly bactericidal in time-kill experiments with drug concentrations of four times the minimal inhibitory concentration. In combination studies with gentamicin, moxalactam and furazlocillin each increased the rate of bacterial killing for three of five isolates as compared with gentamicin alone, whereas chloramphenicol significantly retarded the rate of bacterial killing for the same number of strains. Furazlocillin was completely inactivated after 24 h of incubation with each of five selected strains. The inactivation of moxalactam, cefoxitin, and cephalothin was 36, 56, and 72%, respectively. In all instances in which these four agents were inactivated to levels below the minimal bactericidal concentration, there was accelerated growth after initial inhibition. However, regrowth also occurred in three instances in which drug levels were higher than the minimal bactericidal concentration. Retesting after drug exposure revealed a 4- to 32-fold rise in the minimal inhibitory concentration and minimal bactericidal concentration in two of these isolates. PMID:7235676

  20. Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth.

    PubMed

    Comeau, André M; Tétart, Françoise; Trojet, Sabrina N; Prère, Marie-Françoise; Krisch, H M

    2007-08-29

    Although the multiplication of bacteriophages (phages) has a substantial impact on the biosphere, comparatively little is known about how the external environment affects phage production. Here we report that sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacterial cell's production of some virulent phage. For example, a low dosage of cefotaxime, a cephalosporin, increased an uropathogenic Escherichia coli strain's production of the phage PhiMFP by more than 7-fold. We name this phenomenon Phage-Antibiotic Synergy (PAS). A related effect was observed in diverse host-phage systems, including the T4-like phages, with beta-lactam and quinolone antibiotics, as well as mitomycin C. A common characteristic of these antibiotics is that they inhibit bacterial cell division and trigger the SOS system. We therefore examined the PAS effect within the context of the bacterial SOS and filamentation responses. We found that the PAS effect appears SOS-independent and is primarily a consequence of cellular filamentation; it is mimicked by cells that constitutively filament. The fact that completely unrelated phages manifest this phenomenon suggests that it confers an important and general advantage to the phages.

  1. An overview of harms associated with β-lactam antimicrobials: where do the carbapenems fit in?

    PubMed Central

    Owens, Robert C

    2008-01-01

    The US Institute of Medicine's focus on patient safety has motivated hospital administrators to facilitate a culture of safety. As a result, subcommittees of the pharmacy and therapeutics committee have emerged in many hospitals to focus on adverse events and patient safety. Antimicrobial harms have gained the attention of practicing clinicians and hospital formulary committees, because they top the list of drugs that are associated with adverse events and because of certain serious harms that have ultimately led to the withdrawal of some antimicrobial agents. In the near future, several antimicrobials in the late phase of development will become available for clinical use (ceftobiprole, ceftaroline, and telavancin), and others (doripenem and dalbavancin) have recently joined the armamentarium. Because new antimicrobials will become part of the treatment armamentarium, it is important to discuss our current understanding of antimicrobial harms in general. Although not thought of as traditional adverse events, Clostridium difficile infection and development of resistance during therapy are adverse events that occur as a result of antimicrobial exposure and therefore are discussed. In addition, a distillation of our current understanding of β-lactam specific adverse events will be provided. Finally, new methods of administration are being evaluated that may influence peak concentration-related antimicrobial adverse events. PMID:18495060

  2. Ultrafast quantification of β-lactam antibiotics in human plasma using UPLC-MS/MS.

    PubMed

    Carlier, Mieke; Stove, Veronique; De Waele, Jan J; Verstraete, Alain G

    2015-01-26

    There is an increasing interest in monitoring plasma concentrations of β-lactam antibiotics. The objective of this work was to develop and validate a fast ultra-performance liquid chromatographic method with tandem mass spectrometric detection (UPLC-MS/MS) for simultaneous quantification of amoxicillin, cefuroxime, ceftazidime, meropenem and piperacillin with minimal turn around time. Sample clean-up included protein precipitation with acetonitrile containing 5 deuterated internal standards, and subsequent dilution of the supernatant with water after centrifugation. Runtime was only 2.5 min. Chromatographic separation was performed on a Waters Acquity UPLC system using a BEH C18 column (1.7 μm, 100 mm × 2.1 mm) applying a binary gradient elution of water and methanol both containing 0.1% formic acid and 2 mmol/L ammonium acetate on a Water TQD instrument in MRM mode. All compounds were detected in electrospray positive ion mode and could be quantified between 1 and 100 mg/L for amoxicillin and cefuroxime, between 0.5 and 80 mg/L for meropenem and ceftazidime, and between 1 and 150 mg/L for piperacillin. The method was validated in terms of precision, accuracy, linearity, matrix effect and recovery and has been compared to a previously published UPLC-MS/MS method.

  3. In vitro selective antibiotic concentrations of beta-lactams for penicillin-resistant Streptococcus pneumoniae populations.

    PubMed Central

    Negri, M C; Morosini, M I; Loza, E; Baquero, F

    1994-01-01

    Therapeutic regimens containing beta-lactam antibiotics are selecting penicillin-resistant Streptococcus pneumoniae populations all over the world. The selective pressure after 4 h of exposure to different concentrations of amoxicillin, cefixime, cefuroxime, and cefotaxime for low-level or high-level penicillin-resistant S. pneumoniae was evaluated in an in vitro model with mixed populations with penicillin susceptibilities of 0.015, 0.5, 1, and 2 micrograms/ml. The antibiotic concentration selecting for low-level resistance strongly reduced the susceptible population. Increasing antibiotic concentrations tended to decrease the total proportion of penicillin-resistant bacteria because of reduced numbers of the low-level-resistant population. The antibiotic concentration selecting for high-level resistance produced fewer resistant populations, but most of the organisms selected represented high-level resistance. In general, amoxicillin was a good selector for the low-level-resistant population and a poor selector for high-level resistance; cefuroxime and cefotaxime were poor selectors for low-level resistance and better selectors than amoxicillin for high-level penicillin resistance. Cefixime was the best selector of low-level penicillin resistance. When only resistant populations were mixed, the strains with high-level resistance were selected even at low antibiotic concentrations. Determination of the effects of selective antibiotic concentrations on mixed cultures of bacteria expressing different antibiotic resistance levels may help researchers to understand the ecology and epidemiology of penicillin-resistant S. pneumoniae populations. PMID:8141563

  4. Chalcogen analogues of nicotine lactam studied by NMR, FTIR, DFT and X-ray methods

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Beata; Malczewska-Jaskóła, Karolina; Kowalczyk, Iwona; Warżajtis, Beata; Rychlewska, Urszula

    2014-07-01

    The selenoanalogue of nicotine has been synthesized and characterized by spectroscopic and X-ray diffraction methods. The crystals of selenonicotine are isomorphic with the thionicotine homologue and consist of molecules engaged in columnar π⋯π stacking interactions between antiparallely arranged pyridine moieties. These interactions, absent in other crystals containing nicotine fragments, seem to be induced by the presence of a lactam group. The molecular structures in the vacuum of the oxo-, thio- and selenonicotine homologues have been calculated by the DFT method and compared with the available X-ray data. The delocalized structure of thionicotine is stabilized by intramolecular Csbnd H⋯S hydrogen bond, which becomes weaker in the partial zwitterionic resonance structure of selenonicotine in favor of multiple Csbnd H⋯Se intermolecular hydrogen-bonds. The calculated data allow a complete assignment of vibration modes in the solid state FTIR spectra. The 1H and 13C NMR chemical shifts were calculated by the GIAO method with B3LYP/6-311G(3df) level. A comparison between experimental and calculated theoretical results indicates that the density functional B3LYP method provided satisfactory results for predicting FTIR, 1H, 13C NMR spectra properties.

  5. A catalase-peroxidase for oxidation of β-lactams to their (R)-sulfoxides.

    PubMed

    Sangar, Shefali; Pal, Mohan; Moon, Lomary S; Jolly, Ravinder S

    2012-07-01

    In this communication we report for the first time a biocatalytic method for stereoselective oxidation of β-lactams, represented by penicillin-G, penicillin-V and cephalosporin-G to their (R)-sulfoxides. The method involves use of a bacterium, identified as Bacillus pumilis as biocatalyst. The enzyme responsible for oxidase activity has been purified and characterized as catalase-peroxidase (KatG). KatG of B. pumilis is a heme containing protein showing characteristic heme spectra with soret peak at 406 nm and visible peaks at 503 and 635 nm. The major properties that distinguish B. pumilis KatG from other bacterial KatGs are (i) it is a monomer and contains one heme per monomer, whereas KatGs of other bacteria are dimers or tetramers and have low heme content of about one per dimer or two per tetramer and (ii) its 12-residue, N-terminal sequence obtained by Edman degradation did not show significant similarity with any of known KatGs.

  6. Revisiting Beta-lactams - PK/PD improves dosing of old antibiotics.

    PubMed

    MacGowan, Alasdair

    2011-10-01

    Pre-clinical pharmacokinetic-pharmacodynamic assessments indicate Beta-lactam antibiotics have time-dependent killing, variable persistent antibiotic effects and that free drug T>MIC is the dominant pharmacodynamic index. Prolonged or continuous infusion therapy has improved microbiological responses in pathogens with MICs at or 2-4 fold higher than existing EUCAST clinical breakpoints in pre-clinical studies. Human population pharmacokinetic modelling combined with Monte Carlo Simulation indicates improved pharmacodynamic target attainment rates and hence predicts improved clinical responses for those pathogens with raised MICs. However, the majority of human clinical trials comparing prolonged or continuous infusion to intermittent injection have failed to show superior clinical cures and for the most part microbiological successes. The exception being in various subgroup analyses. Future clinical trials need to focus on defining the T>MIC sizes associated with clinical or microbiological cure in man, on those subgroups of patients where continuous, or prolonged infusion, is likely to be of greatest benefit, seek to reduce pharmacokinetic variability by the use of therapeutic drug monitoring and include measurement of the risks of emergence of resistance in target pathogens At present, the clinical evidence base for prolonged or continuous infusion therapy is insufficiently strong to support widespread use.

  7. Poly-amido-saccharides: synthesis via anionic polymerization of a β-lactam sugar monomer.

    PubMed

    Dane, Eric L; Grinstaff, Mark W

    2012-10-03

    Enantiopure poly-amido-saccharides (PASs) with a defined molecular weight and narrow dispersity are synthesized using an anionic ring-opening polymerization of a β-lactam sugar monomer. The PASs have a previously unreported main chain structure that is composed of pyranose rings linked through the 1- and 2-positions by an amide with α-stereochemistry. The monomer is synthesized in one-step from benzyl-protected D-glucal and polymerized using mild reaction conditions to give degrees of polymerization ranging from 25 to >120 in high yield. Computational modeling reveals how the monomer's structure and steric bulk affect the thermodynamics and kinetics of polymerization. Protected and deprotected polymers and model compounds are characterized using a variety of methods (NMR, GPC, IR, DLS, etc.). On the basis of circular dichroism, the deprotected polymer possesses a regular secondary structure in aqueous solution, which agrees favorably with the prediction of a helical structure using molecular modeling. Furthermore, we provide evidence suggesting that the polymers bind the lectin concanavalin A at the same site as natural carbohydrates, showing the potential of these polymers to mimic natural polysaccharides. PASs offer the advantages associated with synthetic polymers, such as greater control over structure and derivitization. At the same time, they preserve many of the structural features of natural polysaccharides, such as a stereochemically regular, rigid pyranose backbone, that make natural carbohydrate polymers important materials both for their unique properties and useful applications.

  8. N-arylated-lactam-type iminosugars as new immunosuppressive agents: discovery, optimization, and biological evaluation.

    PubMed

    Wu, Xiaowei; Zhang, Fu-Yu; Zhu, Jingjing; Song, Chengcheng; Xiong, De-Cai; Zhou, Yifa; Cui, Yuxin; Ye, Xin-Shan

    2014-08-01

    We have previously described the discovery of N-alkylated iminosugars that showed immunosuppressive activity both in vitro and in vivo. Herein, we report the synthesis and biological evaluation of N-arylated lactam-type iminosugar derivatives. The synthesis started from simple monosaccharides and featured a Buchwald-Hartwig coupling reaction to construct the key N-aryl connection, thereby providing a highly diverse compound library. Structure-activity relationship studies, guided by a mouse-spleen-proliferation assay, led to the identification of 'hit' compound 12 f. Subsequently, the systematic modification of compound 12 f afforded compounds 21 h, 21 k, 21 n, 21 t, and 21 x with improved activities (IC50 =12-30 μM) and low Jurkat cytotoxicities (IC50 >100 μM). These new compounds also inhibited the secretion of IFN-γ and IL-4, which are hallmark cytokines of Th1 and Th2 cells, respectively. This work demonstrated that the N-arylated iminosugar structure represents a new scaffold with immunosuppressive activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis

    DOE PAGES

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet; ...

    2017-04-17

    ε-Caprolactam and δ-valerolactam are important commodity chemicals used in the manufacture of nylons, with millions of tons produced annually. Biological production of these highly valued chemicals has been limited due to a lack of enzymes that cyclize ω-amino fatty acid precursors to corresponding lactams under ambient conditions. In this study, we demonstrated production of these chemicals using ORF26, an acyl-CoA ligase involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis. This enzyme has a broad substrate spectrum and can cyclize 4-aminobutyric acid into γ-butyrolactam, 5-aminovaleric acid into δ-valerolactam and 6-aminocaproic acid into ε-caprolactam. Recombinant E. coli expressing ORF26 produced valerolactammore » and caprolactam when 5-aminovaleric acid and 6-aminocaproic acid were added to the culture medium. Upon coexpressing ORF26 with a metabolic pathway that produced 5-aminovaleric acid from lysine, we were able to demonstrate production of δ-valerolactam from lysine.« less

  10. Hypersensitivity reactions to β-lactams: relevance of hapten-protein conjugates.

    PubMed

    Ariza, A; Mayorga, C; Fernandez, T D; Barbero, N; Martín-Serrano, A; Pérez-Sala, D; Sánchez-Gómez, F J; Blanca, M; Torres, M J; Montanez, M I

    2015-01-01

    β-Lactams (BL) are the drugs most frequently involved in allergic reactions. They are classified according to their chemical structure as penicillins, cephalosporins, monobactams, carbapenems, and clavams. All BL antibiotics have a BL ring that is fused to a 5-member or 6-member ring (except in monobactams) and has 1, 2 or 3 side chains (except in clavams). Differences in chemical structure mean that a wide range of BLs are recognized by the immune system, and patients may experience clinical reactions to one BL while tolerating others. Diagnosis is based on skin and in vitro testing, although both display low sensitivity, possibly because they are based on drugs or drug conjugates that are not optimally recognized by the immune system. BLs are haptens that need to bind to proteins covalently to elicit an immune response. These drugs have a high capacity to form covalent adducts with proteins through nucleophilic attack of amino groups in proteins on the BL ring. Allergenic determinants have been described for all BLs, although benzylpenicillin is the most widely studied. Moreover, formation of BL-protein adducts is selective, as we recently demonstrated for amoxicillin, which mainly modifies albumin, transferrin, and immunoglobulin heavy and light chains in human serum. Given the complexity of BL allergy, understanding the immunological mechanisms involved and optimization of diagnostic methods require multidisciplinary approaches that take into account the chemical structures of the drugs and the carrier molecules, as well as the patient immune response.

  11. Qualitative ampule and multitest for beta-lactam residues in fluid milk products: collaborative study.

    PubMed

    Kelley, W N

    1982-09-01

    A collaborative study was performed on a rapid Bacillus stearothermophilus agar diffusion ampule method to detect low levels of penicillin G in 7 types of fluid milk products. A multitest technique for processing a large number of samples simultaneously was also studied. Slight modifications were made in the original method to establish more uniformity and to eliminate doubtful responses by specifying a confirmation procedure. Twenty samples spiked with penicillin G (0.000 to 0.008 IU/mL) and tetracycline hydrochloride were frozen and sent to 20 laboratories in the ampule test, and 16 laboratories in the multitest. Each analyst was asked to do a screening run and a confirmation run. Results were reported by color reaction and also as positive or negative for beta-lactam inhibitors. The concentrations (penicillin G) where percent positive results equal 100 or not significantly less than 100 (alpha = 0.05) ranged from 0.005 to 0.007 IU/mL in the ampule test and from 0.004 to 0.007 IU/mL in the multitest. Both techniques have been adopted official first action.

  12. In vitro selection of resistance in haemophilus influenzae by 4 quinolones and 5 beta-lactams.

    PubMed

    Clark, Catherine; Kosowska, Klaudia; Bozdogan, Bülent; Credito, Kim; Dewasse, Bonifacio; McGhee, Pamela; Jacobs, Michael R; Appelbaum, Peter C

    2004-05-01

    We tested abilities of ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, amoxicillin, amoxicillin/clavulanate, cefixime, cefpodoxime, and cefdinir to select resistant mutants in 5 beta-lactamase positive and 5 beta-lactamase negative Haemophilus influenzae strains by single and multistep methodology. In multistep tests, amoxicillin, amoxicillin/clavulanate and cefpodoxime exposure did not cause >4-fold minimum inhibitory concentration (MIC) increase after 50 days. One mutant selected by cefdinir had one amino acid substitution (Gly490Glu) in PBP3 and became resistant to cefdinir. Cefixime exposure caused 8-fold MIC-increase in 1 strain with TEM but the mutant remained cefixime susceptible and had no alteration in PBP3 or TEM. Among 10 strains tested, ciprofloxacin, moxifloxacin, gatifloxacin, levofloxacin caused >4-fold MIC increase in 6, 6, 5, and 2 strain, respectively. Despite the increases in quinolone MICs, none of the mutants became resistant to quinolones by established criteria. Quinolone selected mutants had quindone resistance-determining region (QRDR) alterations in GyrA, GyrB, ParC, ParE. Four quinolone mutants had no QRDR alterations. Among beta-lactams cefdinir and cefixime selected one mutant each with higher MICs however amoxicillin, amoxicillin/clavulanate, and cefpodoxime exposure did not select resistant mutants.

  13. Bioactivity-guided isolation of laevicarpin, an antitrypanosomal and anticryptococcal lactam from Piper laevicarpu (Piperaceae).

    PubMed

    da Silva A Maciel, Dayany; Freitas, Viviane P; Conserva, Geanne A Alves; Alexandre, Tatiana R; Purisco, Sonia U; Tempone, Andre G; Melhem, Márcia Souza C; Kato, Massuo J; Guimarães, Elsie F; Lago, João Henrique G

    2016-06-01

    Crude CH2Cl2 extract from leaves of Piper laevicarpu (Piperaceae) displayed antitrypanosomal activity against trypomastigote forms of Trypanosoma cruzi (Y strain) and antimicrobial potential against Cryptococcus gattii (strain-type WM 178). Bioactivity-guided fractionation of crude extract afforded one new natural bioactive lactam derivative, named laevicarpin. The structure of isolated compound, which displayed a very rare ring system, was elucidated based on NMR, IR and MS spectral analysis. Using MTT assay, the trypomastigotes of T. cruzi demonstrated susceptibility to laevicarpin displaying IC50 value of 14.7μg/mL (49.6μM), about 10-fold more potent than the standard drug benznidazole. The mammalian cytotoxicity of laevicarpin was verified against murine fibroblasts (NCTC cells) and demonstrated a CC50 value of 100.3μg/mL (337.7μM-SI=7). When tested against Cryptococcus gattii, laevicarpin showed an IC50 value of 2.3μg/mL (7.9μM) and a MIC value of 7.4μg/mL (25μM). Based in the obtained results, laevicarpin could be used as a scaffold for future drug design studies against the Chagas disease and anti-cryptococosis agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An investigation of resistance to β-lactam antimicrobials among staphylococci isolated from pigs with exudative epidermitis

    PubMed Central

    2013-01-01

    Background A high proportion of staphylococci isolated from pigs affected with exudative epidermitis were found to be resistant to β-lactam antimicrobials. The primary objective of this research was to investigate and characterize β-lactam resistance in Staphylococcus hyicus, Staphylococcus aureus and other staphylococci isolated from these pigs. Results The antimicrobial resistance patterns of 240 staphylococci isolates were determined by disk diffusion, of which 176 (73.3%) of the isolates were resistant to 3 β-lactams (penicillin G, ampicillin, and ceftiofur). The presence of mecA gene was identified in 63 staphylococci isolates from skin samples by PCR. The mecA gene was identified in 19 S. aureus, 31 S. hyicus, 9 Staphylococcus chromogenes, 2 Staphylococcus pseudintermedius isolates, and in 1 isolate each of Staphylococcus arlettae, and Staphylococcus cohnii subspecies urealyticus. From SCCmec typing results, the majority (45/63, 71.4%) were shown to be SCCmec type V. One isolate was SCCmec III. Fourteen isolates were detected as mec class A, mec class C or ccr type 5. The ccr complex and mec complex was not detected in 3 isolates of methicillin resistant S. hyicus (MRSH) based on multiplex PCR. Of the 30 isolates of MRSA identified from nasal samples of the pigs, 29 isolates were SCCmec type V and 1 isolate was SCCmec type II. Staphyloccoci isolates that were mecA negative but resistant to β-lactam antimicrobials were further examined by screening for mecC, however all were negative. Furthermore, the majority of mecA negative β-lactam resistant staphylococci isolates were susceptible to oxacillin and amoxicillin-clavulanic acid in a double disk diffusion test. Conclusions Methicillin resistance can be identified in a variety of staphylococcal species isolated from pigs. In this study there was a great deal of similarity in the SCCmec types between staphylococcal species, suggesting that resistance may be passed from one species of staphylococci to

  15. An investigation of resistance to β-lactam antimicrobials among staphylococci isolated from pigs with exudative epidermitis.

    PubMed

    Park, Jeonghwa; Friendship, Robert M; Weese, J Scott; Poljak, Zvonimir; Dewey, Cate E

    2013-10-17

    A high proportion of staphylococci isolated from pigs affected with exudative epidermitis were found to be resistant to β-lactam antimicrobials. The primary objective of this research was to investigate and characterize β-lactam resistance in Staphylococcus hyicus, Staphylococcus aureus and other staphylococci isolated from these pigs. The antimicrobial resistance patterns of 240 staphylococci isolates were determined by disk diffusion, of which 176 (73.3%) of the isolates were resistant to 3 β-lactams (penicillin G, ampicillin, and ceftiofur). The presence of mecA gene was identified in 63 staphylococci isolates from skin samples by PCR. The mecA gene was identified in 19 S. aureus, 31 S. hyicus, 9 Staphylococcus chromogenes, 2 Staphylococcus pseudintermedius isolates, and in 1 isolate each of Staphylococcus arlettae, and Staphylococcus cohnii subspecies urealyticus. From SCCmec typing results, the majority (45/63, 71.4%) were shown to be SCCmec type V. One isolate was SCCmec III. Fourteen isolates were detected as mec class A, mec class C or ccr type 5. The ccr complex and mec complex was not detected in 3 isolates of methicillin resistant S. hyicus (MRSH) based on multiplex PCR. Of the 30 isolates of MRSA identified from nasal samples of the pigs, 29 isolates were SCCmec type V and 1 isolate was SCCmec type II. Staphyloccoci isolates that were mecA negative but resistant to β-lactam antimicrobials were further examined by screening for mecC, however all were negative. Furthermore, the majority of mecA negative β-lactam resistant staphylococci isolates were susceptible to oxacillin and amoxicillin-clavulanic acid in a double disk diffusion test. Methicillin resistance can be identified in a variety of staphylococcal species isolated from pigs. In this study there was a great deal of similarity in the SCCmec types between staphylococcal species, suggesting that resistance may be passed from one species of staphylococci to another species of staphylococci

  16. Impact of β-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy.

    PubMed

    Economou, Caleb J P; Wong, Gloria; McWhinney, Brett; Ungerer, Jacobus P J; Lipman, Jeffrey; Roberts, Jason A

    2017-03-21

    The objective of this study was to describe the effect of therapeutic drug monitoring (TDM) and dose adjustments of β-lactam antibiotics administered to critically ill patients undergoing continuous renal replacement therapy (CRRT) in a 30-bed tertiary intensive care unit (ICU). β-Lactam TDM data in our tertiary referral ICU were retrospectively reviewed. Clinical, demographic and dosing data were collected for patients administered β-lactam antibiotics while undergoing CRRT. The target trough concentration range was 1-10× the minimum inhibitory concentration (MIC). A total of 111 TDM samples from 76 patients (46 male) with a mean ± standard deviation age of 56.6 ± 15.9 years and weight of 89.1 ± 25.8 kg were identified. The duration of antibiotic therapy was between 2 days and 42 days. TDM identified a need for dose modification of β-lactam antibiotics in 39 (35%) instances; in 27 (24%) samples, TDM values resulted in decreasing the prescribed dose of β-lactam antibiotic whereas an increase in the prescribed dose occurred in 12 (11%) cases. In patients treated for hospital-acquired pneumonia and primary or secondary bacteraemia, the dose was required to be decreased in 10/25 (40%) and 7/46 (15%) cases, respectively, to attain target concentrations. β-Lactam TDM is a useful tool for guiding drug dosing in complex patients such as those receiving CRRT. Although over one-third of patients manifested concentrations outside the therapeutic range, most of these CRRT patients had excessive β-lactam concentrations.

  17. Synergistic Anti-bacterial Effects of Phellinus baumii Ethyl Acetate Extracts and β-Lactam Antimicrobial Agents Against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Hong, Seung Bok; Rhee, Man Hee; Yun, Bong-Sik; Lim, Young Hoon; Song, Hyung Geun

    2016-01-01

    Background The development of new drugs or alternative therapies effective against methicillin-resistant Staphylococcus aureus (MRSA) is of great importance, and various natural anti-MRSA products are good candidates for combination therapies. We evaluated the antibacterial activities of a Phellinus baumii ethyl acetate extract (PBEAE) and its synergistic effects with β-lactams against MRSA. Methods The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the PBEAE. The PBEAE synergistic effects were determined by evaluating the MICs of anti-staphylococcal antibiotic mixtures, with or without PBEAE. Anti-MRSA synergistic bactericidal effects of the PBEAE and β-lactams were assessed by time-killing assay. An ELISA was used to determine the effect of the PBEAE on penicillin binding protein (PBP)2a production. Results The MICs and MBCs of PBEAE against MRSA were 256-512 and 1,024-2,048 µg/mL, respectively. The PBEAE significantly reduced MICs of all β-lactams tested, including oxacillin, cefazolin, cefepime, and penicillin. However, the PBEAE had little or no effect on the activity of non-β-lactams. Time-killing assays showed that the synergistic effects of two β-lactams (oxacillin and cefazolin) with the PBEAE were bactericidal in nature (Δlog10 colony forming unit/mL at 24 hr: 2.34-2.87 and 2.10-3.04, respectively). The PBEAE induced a dose-dependent decrease in PBP2a production by MRSA, suggesting that the inhibition of PBP2a production was a major synergistic mechanism between the β-lactams and the PBEAE. Conclusions PBEAE can enhance the efficacy of β-lactams for combined therapy in patients infected with MRSA. PMID:26709257

  18. β-Lactams Increase the Antibacterial Activity of Daptomycin against Clinical Methicillin-Resistant Staphylococcus aureus Strains and Prevent Selection of Daptomycin-Resistant Derivatives

    PubMed Central

    Mehta, Shrenik; Singh, Christopher; Plata, Konrad B.; Chanda, Palas K.; Paul, Arundhati; Riosa, Sarah; Rosato, Roberto R.

    2012-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has emerged to be one of the most important pathogens both in health care and in community-onset infections. Daptomycin (DAP) is a cyclic anionic lipopeptide recommended for treatment of skin infections, bacteremia, and right-sided endocarditis caused by MRSA. Resistance to DAP (DAPr) has been reported in MRSA and is mostly accompanied by a parallel decrease in oxacillin resistance, a process known as the “seesaw effect.” Our study provides evidence that the seesaw effect applies to other β-lactams and carbapenems of clinical use, including nafcillin (NAF), cefotaxime (CTX), amoxicillin-clavulanic (AMC), and imipenem (IMP), in heterogeneous DAPr MRSA strains but not in MRSA strains expressing homogeneous β-lactam resistance. The antibacterial efficacy of DAP in combination with β-lactams was evaluated in isogenic DAP-susceptible (DAPs)/Dapr MRSA strains originally obtained from patients that failed DAP monotherapy. Both in vitro (MIC, synergy-kill curve) and in vivo (wax worm model) approaches were used. In these models, DAP and a β-lactam proved to be highly synergistic against both heterogeneous and homogeneous clinical DAPr MRSA strains. Mechanistically, β-lactams induced a reduction in the cell net positive surface charge, reverting the increased repulsion provoked by DAP alone, an effect that may favor the binding of DAP to the cell surface. The ease of in vitro mutant selection was observed when DAPs MRSA strains were exposed to DAP. Importantly, the combination of DAP and a β-lactam prevented the selection of DAPr variants. In summary, our data show that the DAP–β-lactam combination may significantly enhance both the in vitro and in vivo efficacy of anti-MRSA therapeutic options against DAPr MRSA infections and represent an option in preventing DAPr selection in persistent or refractory MRSA infections. PMID:22985884

  19. β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives.

    PubMed

    Mehta, Shrenik; Singh, Christopher; Plata, Konrad B; Chanda, Palas K; Paul, Arundhati; Riosa, Sarah; Rosato, Roberto R; Rosato, Adriana E

    2012-12-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has emerged to be one of the most important pathogens both in health care and in community-onset infections. Daptomycin (DAP) is a cyclic anionic lipopeptide recommended for treatment of skin infections, bacteremia, and right-sided endocarditis caused by MRSA. Resistance to DAP (DAP(r)) has been reported in MRSA and is mostly accompanied by a parallel decrease in oxacillin resistance, a process known as the "seesaw effect." Our study provides evidence that the seesaw effect applies to other β-lactams and carbapenems of clinical use, including nafcillin (NAF), cefotaxime (CTX), amoxicillin-clavulanic (AMC), and imipenem (IMP), in heterogeneous DAP(r) MRSA strains but not in MRSA strains expressing homogeneous β-lactam resistance. The antibacterial efficacy of DAP in combination with β-lactams was evaluated in isogenic DAP-susceptible (DAP(s))/Dap(r) MRSA strains originally obtained from patients that failed DAP monotherapy. Both in vitro (MIC, synergy-kill curve) and in vivo (wax worm model) approaches were used. In these models, DAP and a β-lactam proved to be highly synergistic against both heterogeneous and homogeneous clinical DAP(r) MRSA strains. Mechanistically, β-lactams induced a reduction in the cell net positive surface charge, reverting the increased repulsion provoked by DAP alone, an effect that may favor the binding of DAP to the cell surface. The ease of in vitro mutant selection was observed when DAP(s) MRSA strains were exposed to DAP. Importantly, the combination of DAP and a β-lactam prevented the selection of DAP(r) variants. In summary, our data show that the DAP-β-lactam combination may significantly enhance both the in vitro and in vivo efficacy of anti-MRSA therapeutic options against DAP(r) MRSA infections and represent an option in preventing DAP(r) selection in persistent or refractory MRSA infections.

  20. Synergistic Anti-bacterial Effects of Phellinus baumii Ethyl Acetate Extracts and β-Lactam Antimicrobial Agents Against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Hong, Seung Bok; Rhee, Man Hee; Yun, Bong-Sik; Lim, Young Hoon; Song, Hyung Geun; Shin, Kyeong Seob

    2016-03-01

    The development of new drugs or alternative therapies effective against methicillin-resistant Staphylococcus aureus (MRSA) is of great importance, and various natural anti-MRSA products are good candidates for combination therapies. We evaluated the antibacterial activities of a Phellinus baumii ethyl acetate extract (PBEAE) and its synergistic effects with β-lactams against MRSA. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the PBEAE. The PBEAE synergistic effects were determined by evaluating the MICs of anti-staphylococcal antibiotic mixtures, with or without PBEAE. Anti-MRSA synergistic bactericidal effects of the PBEAE and β-lactams were assessed by time-killing assay. An ELISA was used to determine the effect of the PBEAE on penicillin binding protein (PBP)2a production. The MICs and MBCs of PBEAE against MRSA were 256-512 and 1,024-2,048 μg/mL, respectively. The PBEAE significantly reduced MICs of all β-lactams tested, including oxacillin, cefazolin, cefepime, and penicillin. However, the PBEAE had little or no effect on the activity of non-β-lactams. Time-killing assays showed that the synergistic effects of two β-lactams (oxacillin and cefazolin) with the PBEAE were bactericidal in nature (Δlog10 colony forming unit/mL at 24 hr: 2.34-2.87 and 2.10-3.04, respectively). The PBEAE induced a dose-dependent decrease in PBP2a production by MRSA, suggesting that the inhibition of PBP2a production was a major synergistic mechanism between the β-lactams and the PBEAE. PBEAE can enhance the efficacy of β-lactams for combined therapy in patients infected with MRSA.

  1. Is β-Lactam Plus Macrolide More Effective than β-Lactam Plus Fluoroquinolone among Patients with Severe Community-Acquired Pneumonia?: a Systemic Review and Meta-Analysis

    PubMed Central

    2017-01-01

    Adding either macrolide or fluoroquinolone (FQ) to β-lactam has been recommended for patients with severe community-acquired pneumonia (CAP). However, due to the limited evidence available, there is a question as to the superiority of the two combination therapies. The MEDLINE, EMBASE, Cochrane Central Register, Scopus, and Web of Science databases were searched for systematic review and meta-analysis. A total of eight trials were analyzed. The total number of patients in the β-lactam plus macrolide (BL-M) and β-lactam plus fluoroquinolone (BL-F) groups was 2,273 and 1,600, respectively. Overall mortality of the BL-M group was lower than that of the BL-F group (19.4% vs. 26.8%), which showed statistical significance (odds ratio [OR], 0.68; 95% confidence interval [CI], 0.49 to 0.94; P = 0.02). Length of hospital stay was reduced in the BL-M group compared to the BL-F group (mean difference, −3.05 days; 95% CI, −6.01 to −0.09; P = 0.04). However, there was no significant difference in length of intensive care unit (ICU) stay between the two groups. Among patients with severe CAP, BL-M therapy may better reduce overall mortality and length of hospital stay than BL-F therapy. However, we could not elicit strong conclusions from the available trials due to high risk of bias and methodological limitations. PMID:27914135

  2. Paper analytical devices for fast field screening of beta lactam antibiotics and anti-tuberculosis pharmaceuticals

    PubMed Central

    Weaver, Abigail A.; Reiser, Hannah; Barstis, Toni; Benvenuti, Michael; Ghosh, Debarati; Hunckler, Michael; Joy, Brittney; Koenig, Leah; Raddell, Kellie; Lieberman, Marya

    2013-01-01

    Reports of low quality pharmaceuticals have been on the rise in the last decade with the greatest prevalence of substandard medicines in developing countries, where lapses in manufacturing quality control or breaches in the supply chain allow substandard medicines to reach the marketplace. Here, we describe inexpensive test cards for fast field screening of pharmaceutical dosage forms containing beta lactam antibiotics or combinations of the four first-line antituberculosis (TB) drugs. The devices detect the active pharmaceutical ingredients (APIs) ampicillin, amoxicillin, rifampicin, isoniazid, ethambutol, and pyrazinamide, and also screen for substitute pharmaceuticals such as acetaminophen and chloroquine that may be found in counterfeit pharmaceuticals. The tests can detect binders and fillers like chalk, talc, and starch not revealed by traditional chromatographic methods. These paper devices contain twelve lanes, separated by hydrophobic barriers, with different reagents deposited in the lanes. The user rubs some of the solid pharmaceutical across the lanes and dips the edge of the paper into water. As water climbs up the lanes by capillary action, it triggers a library of different chemical tests and a timer to indicate when the tests are completed. The reactions in each lane generate colors to form a “color bar code” which can be analyzed visually by comparison to standard outcomes. While quantification of the APIs is poor compared to conventional analytical methods, the sensitivity and selectivity for the analytes is high enough to pick out suspicious formulations containing no API or a substitute API, as well as formulations containing APIs that have been “cut” with inactive ingredients. PMID:23725012

  3. Saliva, supragingival biofilm and root canals can harbor gene associated with resistance to lactamic agents.

    PubMed

    Moraes, Ludmila Coutinho; Fatturi-Parolo, Clarissa Cavalcanti; Ferreira, Maria Beatriz Cardoso; Só, Marcus Vinicius Reis; Montagner, Francisco

    2015-01-01

    This study aimed to determine the presence of Prevotella strains and genes associated with resistance to lactamics in different oral niches from patients with/without primary endodontic infections. Saliva (S) and supragingival biofilm (SB) were collected from three patient groups: Group I - no endodontic infection (n = 15); Group II - acute endodontic infection (n = 12); and Group III - chronic endodontic infection (n = 15). Root canal (RC) samples were collected from Groups II and III. The presence of P. intermedia, P nigrescens, P. tannerae and cfxA/cfxA2 gene was assessed by PCR. The cfxA/cfxA2 gene was not detected in all environments within the same patient. The cfxA/cfxA2 gene was present in 23.81% of S samples, 28.57% of SB samples, and 7.41% of RC samples. Prevotella species were detected in 53.97%, 47.62% and 34.56% of the S, SB, and RC samples, respectively. P. intermedia had a high frequency in saliva samples from Group 3. Saliva samples from Group 1 had higher detection rates of P. nigrescens than did Groups 2 and 3. Patients without endodontic disease had high frequencies of P. nigrescens in the SB samples. The presence or absence of spontaneous symptoms was not related to the detection rates for resistance genes in the RC samples. Saliva, supragingival biofilm and root canals can harbor resistant bacteria. The presence of symptomatology did not increase the presence of the cfxA/cfxA2 gene in the supragingival biofilm and inside root canals.

  4. Structural specificity requirements in the binding of beta lactam antibiotics to human serum albumin.

    PubMed

    Nerli, B; Romanini, D; Picó, G

    1997-05-02

    The binding of some cephalosporins of pharmacological interest, to human serum albumin was studied using ultrafiltration method. The identification of the binding sites in albumin was also performed using probes for the so-called sites I, II, bilirubin and fatty acids binding sites. Cephalosporins were classified into three groups according to their affinity for albumin: low affinity (K = 10-10(2) M-1), medium affinity (K = 10(3) M-1) and high affinity (K = 10(4) M-1). Cephalosporin binding to albumin produced a perturbation of several basic amino acids of the protein such as histidine and lysine. It was found that only cefuroxime, ceftazidime and cefoperazone interact slightly with site I on serum albumin, while site II possesses capacity to bind: cephradine, cephalexin, ceftazidime, ceftriaxone, cefoperazone, cefaclor and cefsulodin. The bilirubin binding site showed capacity to interact with a great number of cephalosporins: ceftriaxone, cefazolin, cephaloglycin, cefamandole, cefotaxime, cefoxitin, cefuroxime, cefoperazone and cefadroxil. Ceftriaxone showed capacity to bind to the fatty acid binding site on HSA. No relation was found between the displacement of the marker and the chemical nature of the substituents at R1 and R2. Cephalosporins interact with HSA at the binding region that involves: tyrosyl 411, histidyl 146 and lysyls 195, 199, 225, 240 and 525 residues. The chemical modification of specific amino acids showed that the interaction of these amino acids with beta lactam antibiotics is not carried out to the same extent for all the cephalosporins tested. The results obtained revealed that the binding sites for cephalosporins on albumin are structurally heterogeneous, having different amino acids in the vicinity of the ligand molecule.

  5. Molecular mechanisms of β-lactam resistance in carbapenemase-producing Klebsiella pneumoniae from Sri Lanka.

    PubMed

    Hall, Jarrad M; Corea, Enoka; Sanjeewani, H D Anusha; Inglis, Timothy J J

    2014-08-01

    Carbapenemases are increasingly important antimicrobial resistance determinants. Little is known about the carbapenem resistance mechanisms in Sri Lanka. We examined 22 carbapenem-resistant Klebsiella pneumoniae from Sri Lanka to determine their β-lactam resistance mechanisms. The predominant resistance mechanisms we detected in this study were OXA-181, NDM-1 carbapenemases and extended-spectrum β-lactamase CTX-M-15. All isolates were then genotyped by pulsed-field gel electrophoresis, variable-number tandem repeat sequence analysis and multilocus sequence typing, and seven distinct genotypes were observed. Five OXA-181-positive Klebsiella pneumoniae isolates were genotypically related to an isolate of Indian origin. Multilocus sequence typing found that these related isolates belong to ST-14, which has been associated with dissemination of OXA-181 from the Indian subcontinent. Other genotypes we discovered were ST-147 and ST-340, also associated with intercontinental spread of carbapenemases of suspected subcontinental origin. The major porin genes ompK35 and ompK36 from these isolates had insertions, deletions and substitutions. Some of these were exclusive to strains within single pulsotypes. We detected one ompK36 variant, ins AA134-135GD, in six ST-14- and six ST-147, blaOXA-181-positive isolates. This porin mutation was an independent predictor of high-level meropenem resistance in our entire Sri Lankan isolate collection (P=0.0030). Analysis of the Sri Lankan ST-14 and ST-147 ins AA134-135GD-positive isolates found ST-14 was more resistant to meropenem than other isolates (mean MIC: 32±0 µg ml(-1) and 20±9.47 µg ml(-1), respectively, P=0.0277). The likely international transmission of these carbapenem resistance determinants highlights the need for regional collaboration and prospective surveillance of carbapenem-resistant Enterobacteriaceae.

  6. Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals.

    PubMed

    Weaver, Abigail A; Reiser, Hannah; Barstis, Toni; Benvenuti, Michael; Ghosh, Debarati; Hunckler, Michael; Joy, Brittney; Koenig, Leah; Raddell, Kellie; Lieberman, Marya

    2013-07-02

    Reports of low-quality pharmaceuticals have been on the rise in the past decade, with the greatest prevalence of substandard medicines in developing countries, where lapses in manufacturing quality control or breaches in the supply chain allow substandard medicines to reach the marketplace. Here, we describe inexpensive test cards for fast field screening of pharmaceutical dosage forms containing beta lactam antibiotics or combinations of the four first-line antituberculosis (TB) drugs. The devices detect the active pharmaceutical ingredients (APIs) ampicillin, amoxicillin, rifampicin, isoniazid, ethambutol, and pyrazinamide and also screen for substitute pharmaceuticals, such as acetaminophen and chloroquine that may be found in counterfeit pharmaceuticals. The tests can detect binders and fillers such as chalk, talc, and starch not revealed by traditional chromatographic methods. These paper devices contain 12 lanes, separated by hydrophobic barriers, with different reagents deposited in the lanes. The user rubs some of the solid pharmaceutical across the lanes and dips the edge of the paper into water. As water climbs up the lanes by capillary action, it triggers a library of different chemical tests and a timer to indicate when the tests are completed. The reactions in each lane generate colors to form a "color bar code" which can be analyzed visually by comparison with standard outcomes. Although quantification of the APIs is poor compared with conventional analytical methods, the sensitivity and selectivity for the analytes is high enough to pick out suspicious formulations containing no API or a substitute API as well as formulations containing APIs that have been "cut" with inactive ingredients.

  7. Free-radical destruction of beta-lactam antibiotics in aqueous solution.

    PubMed

    Song, Weihua; Chen, Weisang; Cooper, William J; Greaves, John; Miller, George E

    2008-08-14

    Many pharmaceutical compounds and metabolites are being found in surface and ground waters, indicating their ineffective removal by conventional wastewater treatment technologies. Advanced oxidation/reduction processes (AO/RPs), which utilize free-radical reactions to directly degrade chemical contaminants, are alternatives to traditional water treatment. This study reports the absolute rate constants for reaction of three beta-lactam antibiotics (penicillin G, penicillin V, amoxicillin) and a model compound (+)-6-aminopenicillanic acid with the two major AO/RP reactive species: hydroxyl radical ((*)OH) and hydrated electron (e(-)aq). The bimolecular reaction rate constants (M(-1) s(-1)) for penicillin G, penicillin V, amoxicillin, and (+)-6-aminopenicillanic acid for (*)OH were (7.97 +/- 0.11) x 10(9), (8.76 +/- 0.28) x 10(9), (6.94 +/- 0.44) x 10(9), and (2.40 +/- 0.05) x 10(9) and for e(-)aq were (3.92 +/- 0.10) x 10(9), (5.76 +/- 0.24) x 10(9), (3.47 +/- 0.07) x 10(9), and (3.35 +/- 0.06) x 10(9), respectively. To provide a better understanding of the decomposition of the intermediate radicals produced by hydroxyl radical reactions, transient absorption spectra were observed from 1 to 100 micros. In addition, preliminary degradation mechanisms and major products were elucidated using (137)Cs gamma irradiation and LC-MS. These data are required for both evaluating the potential use of AO/RPs for the destruction of these compounds and studies of their fate and transport in surface waters where radical chemistry may be important in assessing their lifetime.

  8. Hepatic Effects of Pharmacological Doses of Hydroxy-Cobalamin[c-lactam] in Mice

    PubMed Central

    Haegler, Patrizia; Grünig, David; Berger, Benjamin; Terracciano, Luigi; Krähenbühl, Stephan

    2017-01-01

    The vitamin B12 analog hydroxy-cobalamin[c-lactam] (HCCL) impairs hepatic mitochondrial protein synthesis and function of the electron transport chain in rats. We aimed to establish an in vivo model for mitochondrial dysfunction in mice, which could be used to investigate hepatotoxicity of mitochondrial toxicants. In a first step, we performed a dose-finding study in mice treated with HCCL 0.4 mg/kg and 4 mg/kg i.p. for two to four weeks. The plasma methylmalonate concentration was strongly increased at 4 mg/kg starting at three weeks of treatment. We subsequently treated mice daily with 4 mg/kg HCCL i.p. for three weeks and characterized liver function and histology as well as liver mitochondrial function. We found an increase in liver weight in HCCL-treated mice, which was paralleled by hepatocellular accumulation of triglycerides. In liver homogenate of HCCL-treated mice, the complex I activity of the electron transport chain was reduced, most likely explaining hepatocellular triglyceride accumulation. The activity of CPT1 was not affected by methylmalonyl-CoA in isolated liver mitochondria. Despite impaired complex I activity, mitochondrial superoxide anion production was not increased and the hepatocellular glutathione (GSH) pool was maintained. Finally, the mitochondrial DNA content was not altered with HCCL treatment. In conclusion, treatment of mice with HCCL is associated with increased liver weight explained by hepatocellular triglyceride accumulation. Hepatocellular fat accumulation is most likely a consequence of impaired activity of the mitochondrial electron transport chain. The impairment of complex I activity is not strong enough to result in ROS accumulation and reduction of the GSH stores. PMID:28135329

  9. Diversity of mechanisms conferring resistance to β-lactams among OXA-23-producing Acinetobacter baumannii clones.

    PubMed

    Cardoso, Juliana Provasi; Cayô, Rodrigo; Girardello, Raquel; Gales, Ana Cristina

    2016-05-01

    A total of 31 unrelated OXA-23-producing Acinetobacter baumannii strains isolated from 14 hospitals located in distinct Brazilian regions were evaluated in this study. These isolates were grouped into 12 different sequence types (STs), of which 7 had unique allelic sequences (ST188, ST189, ST190, ST191, ST192, ST228, and ST299). Most isolates belonged to the clonal complex CC79 followed by CC15 and CC1. Only polymyxin B and minocycline showed good activity against the OXA-23-producing A. baumannii clones. The ISAba1 upstream blaOXA-23, blaOXA-51-like, or ampC was found in 100%, 54.8%, and 77.4% of the isolates, respectively. High resistance rates to ceftazidime and cefotaxime were observed among those isolates possessing ISAba1 upstream ampC, in contrast to those isolates that did not carry this configuration. Moreover, a ≥2 Log2 decrease in the MICs of meropenem and ceftazidime was observed in the presence of phenyl-arginine-β-naphthylamide for 80.6% and 54.8% of isolates, respectively. Overexpression of the adeB was observed in 61.3% of isolates, particularly among those isolates belonging to the ST1 (CC1). It was also verified that ompW was down-regulated in all isolates belonging to the ST15 (CC15). On the other hand, carO and omp33-36 genes were overexpressed in 48.4% and 58.1% of the isolates, respectively. In this study, we show that overexpression of AdeABC system could significantly contribute for resistance to meropenem and ceftazidime among OXA-23-producing A. baumannii clones in Brazil, demonstrating the complexity involved in the β-lactam resistance in such isolates.

  10. Regiospecific β-lactam ring-opening/recyclization reactions of N-aryl-3-spirocyclic-β-lactams catalyzed by a Lewis-Brønsted acids combined superacid catalyst system: a new entry to 3-spirocyclicquinolin-4(1H)-ones.

    PubMed

    Hu, Yinqiao; Fu, Xiaolan; Barry, Badru-Deen; Bi, Xihe; Dong, Dewen

    2012-01-18

    The regiospecific β-lactam ring-opening/recyclization reaction of N-aryl-3-spirocyclic-β-lactams, made by the one-pot cyclization reaction of acetoacetanilides, has been achieved for the first time using a Lewis-Brønsted acids combined superacid catalyst system, thus providing an efficient entry to 3-spirocyclicquinolin-4(1H)-ones. A mechanism involving superacid-catalysis was proposed.

  11. Comprehensive allergy work-up is mandatory in cystic fibrosis patients who report a history suggestive of drug allergy to beta-lactam antibiotics

    PubMed Central

    2012-01-01

    Background In the general population, reports on suspected ß-lactam hypersensitivity are common. After a drug allergy work-up at best 20% of the selected patients are positive. However, these considerations have not been explored in cystic fibrosis patients for whom antibiotics are even more crucial. Methods The study, part of the Drug Allergy and Hypersensitivity (DAHD) cohort, was performed in the regional cystic fibrosis center of Montpellier, France. After identifying patients with a clinical history suggestive of drug allergy to ß-lactams, a complete drug allergy work-up, was carried out according to the EAACI recommendations. Results Among the 171 patients involved, 23 reported clinical manifestations potentially compatible with a drug allergy to ß-lactams. After performing the complete drug-allergy work-up, 7 were considered as drug hypersensitive (3 had positive skin tests, 1 a positive provocation test, 3 declined the tests). Excluding the latter 3 patients with incomplete drug allergy work-up, the rate of proven drug allergy was 2.3%. Conclusions Drug allergy to ß-lactams in cystic fibrosis patients is of importance. A full drug allergy work-up is mandatory in case of suspicion, because ß-lactam responsibility is often ruled out. PMID:22697261

  12. Should β-lactam antibiotics be administered by continuous infusion in critically ill patients? A survey of Australia and New Zealand intensive care unit doctors and pharmacists.

    PubMed

    Cotta, Menino O; Dulhunty, Joel M; Roberts, Jason A; Myburgh, John; Lipman, Jeffrey

    2016-06-01

    Although there is a biological precedent for administration of β-lactam antibiotics by continuous or extended infusion, there is no definitive evidence of a survival benefit compared with intermittent administration. The aim of this study was to explore clinician uncertainty with regard to the administration of β-lactam antibiotics by continuous infusion. Doctors and pharmacists in Australian and New Zealand intensive care units (ICUs) were surveyed to investigate current β-lactam antibiotic administration practices as well as the degree of uncertainty regarding the benefit of continuous infusion of two commonly used broad-spectrum β-lactams, namely meropenem and piperacillin/tazobactam (TZP). There were 111 respondents to the survey. Intermittent infusion was reported as standard practice for meropenem (73.9%) and TZP (82.0%). A greater proportion of pharmacists compared with doctors believed continuous infusion to be more effective than intermittent administration (85.4% vs. 34.3%, respectively; P <0.001). Both groups reported uncertainty as to whether administration by continuous infusion resulted in better patient outcomes (65.9% and 74.6%, respectively; P = 0.85). Overall, 91.0% of respondents were prepared to enrol eligible patients into a definitive randomised controlled trial on β-lactam antibiotic administration. In conclusion, there is equipoise among clinicians working in Australian and New Zealand ICUs as to whether administration by continuous infusion offers a survival benefit in critically ill patients.

  13. Total Chemical Synthesis of a Heterodimeric Interchain Bis-Lactam-Linked Peptide: Application to an Analogue of Human Insulin-Like Peptide 3

    PubMed Central

    Karas, John; Shabanpoor, Fazel; Hossain, Mohammed Akhter; Wade, John D.; Scanlon, Denis B.

    2013-01-01

    Nonreducible cystine isosteres represent important peptide design elements in that they can maintain a near-native tertiary conformation of the peptide while simultaneously extending the in vitro and in vivo half-life of the biomolecule. Examples of these cystine mimics include dicarba, diselenide, thioether, triazole, and lactam bridges. Each has unique physicochemical properties that impact upon the resulting peptide conformation. Each also requires specific conditions for its formation via chemical peptide synthesis protocols. While the preparation of peptides containing two lactam bonds within a peptide is technically possible and reported by others, to date there has been no report of the chemical synthesis of a heterodimeric peptide linked by two lactam bonds. To examine the feasibility of such an assembly, judicious use of a complementary combination of amine and acid protecting groups together with nonfragment-based, total stepwise solid phase peptide synthesis led to the successful preparation of an analogue of the model peptide, insulin-like peptide 3 (INSL3), in which both of the interchain disulfide bonds were replaced with a lactam bond. An analogue containing a single disulfide-substituted interchain lactam bond was also prepared. Both INSL3 analogues retained significant cognate RXFP2 receptor binding affinity. PMID:24288548

  14. Stereocontrolled access to orthogonally protected anti,anti-4-aminopiperidine-3,5-diols through chemoselective reduction of enantiopure beta-lactam cyanohydrins.

    PubMed

    Alcaide, Benito; Almendros, Pedro; Cabrero, Gema; Ruiz, M Pilar

    2007-10-12

    The cyanosilylation of enantiopure 4-oxoazetidine-2-carbaldehydes with tert-butyldimethylsilyl cyanide was promoted by either molecular sieves or catalytic amount of sodium carbonate to give O-silylated beta-lactam cyanohydrins with good yield and diastereoselectivity. In contrast, Lewis acids did not effectively promote the cyanosilylation under different experimental conditions, and instead hydrocyanation took place affording the corresponding free cyanohydrins in variable yield and selectivity. Starting from beta-lactam cyanohydrin hybrids, two concise, complementary stereocontrolled routes to optically pure orthogonally protected anti,anti-4-amino-3,5-piperidine diols were achieved. Key features of the first approach include chemoselective reductive opening of the beta-lactam ring with LiBH4 to a 3-amino-5-hydroxy pentanenitrile followed by reductive cyclization of a conveniently functionalized cyanomesylate derivative with NaBH4/NiCl2. The second approach involves LiAlH4 reduction of protected anti,anti-4-amino-3,5-dihydroxypiperidin-2-ones, which were easily obtained by chemoselective reduction of the cyano group in the beta-lactam cyanohydrin hybrids with NaBH4/NiCl2 and subsequent intramolecular rearrangement of the resulting amino beta-lactams. Both routes make use of an oxidative N-dearylation with diacetoxyiodobenzene of a 4-methoxyphenylamino group as a common synthetic step. Specifically, the utility of this novel reaction sequence has been demonstrated by the synthesis of fully orthogonally protected sialidase inhibitors.

  15. In vitro activities of 22 beta-lactam antibiotics against penicillin-resistant and penicillin-susceptible viridans group streptococci isolated from blood.

    PubMed Central

    Alcaide, F; Liñares, J; Pallares, R; Carratala, J; Benitez, M A; Gudiol, F; Martin, R

    1995-01-01

    A total of 410 strains of viridans group streptococci isolated consecutively from blood were tested by the microdilution method for in vitro susceptibility to 22 beta-lactam antibiotics. One hundred thirty-eight strains (33.6%) were resistant to penicillin with a MIC range of 0.25 to 8 micrograms/ml. MICs of all beta-lactam agents tested were higher for penicillin-resistant strains than for susceptible strains. These antibiotics were classified into three groups according to their in vitro activities (MICs at which 50 and 90% of the isolates are inhibited). Beta-Lactams of the first group (these included imipenem, cefpirome, FK-037, cefditoren, cefotaxime, ceftriaxone, and cefepime) showed activities higher than or similar to that of penicillin against penicillin-resistant viridans group streptococci. However, 80% of highly penicillin-resistant Streptococcus mitis organisms required cefotaxime and ceftriaxone MICs of > or = 2 micrograms/ml (range, 2 to 16 micrograms/ml). Beta-Lactams of the second group (cefpodoxime, ampicillin, amoxicillin-clavulanate, piperacillin, and cefuroxime) showed lower activities than penicillin. Finally, antibiotics of the third group (cephalothin, oxacillin, ceftazidime, cefixime, cefaclor, cefetamet, cefadroxil, cephalexin, and ceftibuten) showed poor in vitro activities. Therefore, some of the beta-lactam agents included in the first group could be an acceptable alternative in the treatment of serious infections due to strains highly resistant to penicillin, although clinical experience is needed. PMID:8619576

  16. Antibiotic dose impact on resistance selection in the community: a mathematical model of beta-lactams and Streptococcus pneumoniae dynamics.

    PubMed

    Opatowski, Lulla; Mandel, Jonas; Varon, Emmanuelle; Boëlle, Pierre-Yves; Temime, Laura; Guillemot, Didier

    2010-06-01

    Streptococcus pneumoniae is a major pathogen in the community and presents high rates of resistance to the available antibiotics. To prevent antibiotic treatment failure caused by highly resistant bacteria, increasing the prescribed antibiotic dose has recently been suggested. The aim of the present study was to assess the influence of beta-lactam prescribed doses on the emergence of resistance and selection in the community. A mathematical model was constructed by combining S. pneumoniae pharmacodynamic and population-dynamic approaches. The received-dose heterogeneity in the population was specifically modeled. Simulations over a 50-year period were run to test the effects of dose distribution and antibiotic exposure frequency changes on community resistance patterns, as well as the accuracy of the defined daily dose as a predictor of resistance. When the frequency of antibiotic exposure per year was kept constant, dose levels had a strong impact on the levels of resistance after a 50-year simulation. The lowest doses resulted in a high prevalence of nonsusceptible strains (> or =70%) with MICs that were still low (1 mg/liter), whereas high doses resulted in a lower prevalence of nonsusceptible strains (<40%) and higher MICs (2 mg/liter). Furthermore, by keeping the volume of antibiotics constant in the population, different patterns of use (low antibiotic dose and high antibiotic exposure frequency versus high dose and low frequency) could lead to markedly different rates of resistance distribution and prevalence (from 10 to 100%). Our results suggest that pneumococcal resistance patterns in the community are strongly related to the individual beta-lactam doses received: limiting beta-lactam use while increasing the doses could help reduce the prevalence of resistance, although it should select for higher levels of resistance. Surveillance networks are therefore encouraged to collect both daily antibiotic exposure frequencies and individual prescribed doses.

  17. Beta- Lactam Antibiotics Stimulate Biofilm Formation in Non-Typeable Haemophilus influenzae by Up-Regulating Carbohydrate Metabolism

    PubMed Central

    Wu, Siva; Li, Xiaojin; Gunawardana, Manjula; Maguire, Kathleen; Guerrero-Given, Debbie; Schaudinn, Christoph; Wang, Charles; Baum, Marc M.; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. PMID:25007395

  18. High target attainment for β-lactam antibiotics in intensive care unit patients when actual minimum inhibitory concentrations are applied.

    PubMed

    Woksepp, H; Hällgren, A; Borgström, S; Kullberg, F; Wimmerstedt, A; Oscarsson, A; Nordlund, P; Lindholm, M-L; Bonnedahl, J; Brudin, L; Carlsson, B; Schön, T

    2017-03-01

    Patients in the intensive care unit (ICU) are at risk for suboptimal levels of β-lactam antibiotics, possibly leading to poor efficacy. Our aim was to investigate whether the actual minimum inhibitory concentration (MIC) compared to the more commonly used arbitrary epidemiological cut-off values (ECOFFs) would affect target attainment in ICU patients on empirical treatment with broad-spectrum β-lactam antibiotics and to identify risk factors for not reaching target. In a prospective, multicenter study, ICU patients ≥18 years old and treated with piperacillin/tazobactam, meropenem, or cefotaxime were included. Clinical and laboratory data were recorded. Serum trough antibiotic levels from three consecutive days were analyzed by liquid chromatography-mass spectrometry (LC-MS). The target was defined as the free trough concentration above the MIC (100% fT>MIC). MICECOFF was used as the target and, when available, the actual MIC (MICACTUAL) was applied. The median age of the patients was 70 years old, 52% (58/111) were males, and the median estimated glomerular filtration rate (eGFR) was 48.0 mL/min/1.73 m(2). The rate of patients reaching 100% fT > MICACTUAL was higher (89%, 31/35) compared to the same patients using MICECOFF (60%, p = 0.002). In total, 55% (61/111) reached 100% fT > MICECOFF. Increased renal clearance was independently associated to not reaching 100% fT > MICECOFF. On repeated sampling, >77% of patients had stable serum drug levels around the MICECOFF. Serum concentrations of β-lactam antibiotics vary extensively between ICU patients. The rate of patients not reaching target was markedly lower for the actual MIC than when the arbitrary MIC based on the ECOFF was used, which is important to consider in future studies.

  19. β-Lactam hypersensitivity involves expansion of circulating and skin-resident TH22 cells.

    PubMed

    Sullivan, Andrew; Wang, Eryi; Farrell, John; Whitaker, Paul; Faulkner, Lee; Peckham, Daniel; Park, B Kevin; Naisbitt, Dean J

    2017-02-20

    β-Lactam hypersensitivity has been classified according to the phenotype and function of drug-specific T cells. However, new T-cell subsets have not been considered. The objective of this study was to use piperacillin as a model of β-lactam hypersensitivity to study the nature of the drug-specific T-cell response induced in the blood and skin of hypersensitive patients and healthy volunteers. Drug-specific T cells were cloned from blood and inflamed skin, and cellular phenotype and function were explored. Naive T cells from healthy volunteers were primed to piperacillin, cloned, and subjected to the similar analyses. PBMC and T-cell clones (n = 570, 84% CD4(+)) from blood of piperacillin-hypersensitive patients proliferated and secreted TH1/TH2 cytokines alongside IL-22 after drug stimulation. IL-17A secretion was not detected. Drug-specific clones from inflamed skin (n = 96, 83% CD4(+)) secreted a similar profile of cytokines but displayed greater cytolytic activity, secreting perforin, granzyme B, and Fas ligand when activated. Blood- and skin-derived clones expressed high levels of skin-homing chemokine receptors and migrated in the presence of the ligands CCL17 and CCL27. Piperacillin-primed naive T cells from healthy volunteers also secreted IFN-γ, IL-13, IL-22, and cytolytic molecules. Aryl hydrocarbon receptor blockade prevented differentiation of the naive T cells into antigen-specific IL-22-secreting cells. Together, our results reveal that circulating and skin-resident, antigen-specific, IL-22-secreting T cells are detectable in patients with β-lactam hypersensitivity. Furthermore, differentiation of naive T cells into antigen-specific TH22 cells is dependent on aryl hydrocarbon receptor signaling. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Catalysis of hydrolysis and aminolysis of non-classical beta-lactam antibiotics by metal ions and metal chelates.

    PubMed

    Méndez, R; Alemany, T; Martín-Villacorta, J

    1992-12-01

    The Zn(2+)-tris (hydroxymethyl)aminomethane (Tris) system has a great catalytic effect on the hydrolysis and aminolysis of some beta-lactam antibiotics. In order to ascertain the mechanism of this catalysis we have analysed the effects of the beta-lactam antibiotic structure. First we studied the kinetics of the decomposition of imipenem, SCH 29482, aztreonam and nocardicin A in aqueous solution of Tris at 35.0 degrees C, 0.5 mol.dm-3 ionic strength and in the presence of metal ions (Zn2+, Cd2+, Co2+, Cu2+, Ni2+ and Mn2+). From these studies, we conclude that Tris and metal ions (in separate solutions) exert a great catalytic effect on the hydrolysis of imipenem and SCH 29482. We suggest that in metal ion solutions a 1:1 complex is formed between the metal ion and beta-lactam antibiotic, which is attacked by hydroxide ions. Studies of the degradation of the antibiotics studied in solutions of Tris and metal ions together indicate that the systems Cd(2+)-Tris and Zn(2+)-Tris have a great catalytic effect on the hydrolysis and aminolysis of imipenem and SCH 29482. We suggest that this catalysis takes place via a ternary complex in which the metal ion plays a double role by (a) placing the antibiotic and the Tris in the right position for the reaction and (b) lowering the pKa of the hydroxide group of Tris, which is coordinated with the metal ion, generating a strong nucleophile.

  1. Cephalosporin-NO-donor prodrug PYRRO-C3D shows β-lactam-mediated activity against Streptococcus pneumoniae biofilms.

    PubMed

    Allan, Raymond N; Kelso, Michael J; Rineh, Ardeshir; Yepuri, Nageshwar R; Feelisch, Martin; Soren, Odel; Brito-Mutunayagam, Sanjita; Salib, Rami J; Stoodley, Paul; Clarke, Stuart C; Webb, Jeremy S; Hall-Stoodley, Luanne; Faust, Saul N

    2017-05-01

    Bacterial biofilms show high tolerance towards antibiotics and are a significant problem in clinical settings where they are a primary cause of chronic infections. Novel therapeutic strategies are needed to improve anti-biofilm efficacy and support reduction in antibiotic use. Treatment with exogenous nitric oxide (NO) has been shown to modulate bacterial signaling and metabolic processes that render biofilms more susceptible to antibiotics. We previously reported on cephalosporin-3'-diazeniumdiolates (C3Ds) as NO-donor prodrugs designed to selectively deliver NO to bacterial infection sites following reaction with β-lactamases. With structures based on cephalosporins, C3Ds could, in principal, also be triggered to release NO following β-lactam cleavage mediated by transpeptidases/penicillin-binding proteins (PBPs), the antibacterial target of cephalosporin antibiotics. Transpeptidase-reactive C3Ds could potentially show both NO-mediated anti-biofilm properties and intrinsic (β-lactam-mediated) antibacterial effects. This dual-activity concept was explored using Streptococcus pneumoniae, a species that lacks β-lactamases but relies on transpeptidases for cell-wall synthesis. Treatment with PYRRO-C3D (a representative C3D containing the diazeniumdiolate NO donor PYRRO-NO) was found to significantly reduce viability of planktonic and biofilm pneumococci, demonstrating that C3Ds can elicit direct, cephalosporin-like antibacterial activity in the absence of β-lactamases. While NO release from PYRRO-C3D in the presence of pneumococci was confirmed, the anti-pneumococcal action of the compound was shown to arise exclusively from the β-lactam component and not through NO-mediated effects. The compound showed similar potency to amoxicillin against S. pneumoniae biofilms and greater efficacy than azithromycin, highlighting the potential of C3Ds as new agents for treating pneumococcal infections.

  2. Identification of beta-Lactamases and beta-Lactam-Related Proteins in Human Pathogenic Bacteria using a Computational Search Approach.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Perez-Rueda, Ernesto; Barrios, Humberto; Dávalos-Rodríguez, Nory Omayra; Dávalos-Rodríguez, Ingrid Patricia; Cardona-Muñoz, Ernesto Germán; Salazar-Páramo, Mario

    2017-08-01

    A systematic analysis of beta-lactamases based on comparative proteomics has not been performed thus far. In this report, we searched for the presence of beta-lactam-related proteins in 591 bacterial proteomes belonging to 52 species that are pathogenic to humans. The amino acid sequences for 19 different types of beta-lactamases (ACT, CARB, CifA, CMY, CTX, FOX, GES, GOB, IMP, IND, KPC, LEN, OKP, OXA, OXY, SHV, TEM, NDM, and VIM) were obtained from the ARG-ANNOT database and were used to construct 19 HMM profiles, which were used to identify potential beta-lactamases in the completely sequenced bacterial proteomes. A total of 2877 matches that included the word "beta-lactamase" and/or "penicillin" in the functional annotation and/or in any of its regions were obtained. These enzymes were mainly described as "penicillin-binding proteins," "beta-lactamases," and "metallo-beta-lactamases" and were observed in 47 of the 52 species studied. In addition, proteins classified as "beta-lactamases" were observed in 39 of the species included. A positive correlation between the number of beta-lactam-related proteins per species and the proteome size was observed (R 0.78, P < 0.00001). This correlation partially explains the high presence of beta-lactam-related proteins in large proteomes, such as Nocardia brasiliensis, Bacillus anthracis, and Mycobacterium tuberculosis, along with their absence in small proteomes, such as Chlamydia spp. and Mycoplasma spp. We detected only five types of beta-lactamases (TEM, SHV, CTX, IMP, and OXA) and other related proteins in particular species that corresponded with those reported in the literature. We additionally detected other potential species-specific beta-lactamases that have not yet been reported. In the future, better results will be achieved due to more accurate sequence annotations and a greater number of sequenced genomes.

  3. Emergence and risk factors of β-lactamase-mediated resistance to oxyimino-β-lactams in Enterobacteriaceae isolates.

    PubMed

    Manageiro, Vera; Ferreira, Eugénia; Jones-Dias, Daniela; Louro, Deolinda; Pinto, Margarida; Diogo, José; Caniça, Manuela

    2012-03-01

    We studied 193 Enterobacteriaceae isolates presenting diminished susceptibility to oxyimino-cephalosporins recovered in a Portuguese hospital (2004-2008). CTX-M-3 producers, firstly detected in Portugal, were associated with a Klebsiella pneumoniae microepidemic clone. Production of CTX-M-type enzymes (CTX-M-1/-3/-9/-14/-15/-32), age ≥65 years, and nosocomial infection were risk factors for higher nonsusceptibility to oxyimino-β-lactams. CMY-2 and DHA-1 β-lactamases were only identified in 1% of isolates. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Transition Metal-Free Selective Double sp(3) C-H Oxidation of Cyclic Amines to 3-Alkoxyamine Lactams.

    PubMed

    Osorio-Nieto, Urbano; Chamorro-Arenas, Delfino; Quintero, Leticia; Höpfl, Herbert; Sartillo-Piscil, Fernando

    2016-09-16

    The first chemical method for selective dual sp(3) C-H functionalization at the alpha-and beta positions of cyclic amines to their corresponding 3-alkoxyamine lactams is reported. Unlike traditional Cα-H oxidation of amines to amides mediated by transition metals, the present protocol, which involves the use of NaClO2/TEMPO/NaClO in either aqueous or organic solvent, not only allows the Cα-H oxidation but also the subsequent functionalization of the unreactive β-methylene group in an unprecedented tandem fashion and using environmentally friendly reactants.

  5. Lactamization of sp(2) C-H Bonds with CO2 : Transition-Metal-Free and Redox-Neutral.

    PubMed

    Zhang, Zhen; Liao, Li-Li; Yan, Si-Shun; Wang, Lei; He, Yun-Qi; Ye, Jian-Heng; Li, Jing; Zhi, Yong-Gang; Yu, Da-Gang

    2016-06-13

    The first direct use of carbon dioxide in the lactamization of alkenyl and heteroaryl C-H bonds to synthesize important 2-quinolinones and polyheterocycles in moderate to excellent yields is reported. Carbon dioxide, a nontoxic, inexpensive, and readily available greenhouse gas, acts as an ideal carbonyl source. Importantly, this transition-metal-free and redox-neutral process is eco-friendly and desirable for the pharmaceutical industry. Moreover, these reactions feature a broad substrate scope, good functional group tolerance, facile scalability, and easy product derivatization.

  6. Early synergistic interactions between amikacin and six beta-lactam antibiotics against multiply resistant members of the family Enterobacteriaceae.

    PubMed Central

    Glew, R H; Pavuk, R A

    1984-01-01

    An in vitro comparison of the early synergistic interaction between amikacin and each of six beta-lactam antibiotics was made by using time-kill curves against 48 multiply resistant members of the family Enterobacteriaceae. Overall, these six combinations demonstrated early synergism (greater than or equal to 2 logs of increased kill after 7 h of incubation) against the 48 strains on 74% (range, 67 to 85%) of occasions; cefotaxime-amikacin and piperacillin-amikacin were the most efficacious combinations. Antagonism was not observed with any of the combinations against any of the 48 Enterobacteriaceae strains tested. PMID:6508266

  7. [The use of aminoglycosides, colistin and beta-lactam antibiotics as animal feed drugs for pigs in Schleswig-Holstein].

    PubMed

    Broll, Susanne; Kietzmann, Manfred; Bettin, Ulrich; Kreienbrock, Lothar

    2004-01-01

    An evaluation of production orders for medicated feedingstuffs for pigs given in 1998 in Schleswig-Holstein showed aminoglycosides, colistin and beta-lactam antibiotics as regularly used antibiotical ingredients. The presented study analyses the production orders which include these antibiotics more in detail particularly with regard to the prescribed dosages. In part, there were deviations to the rules of good clinical practise for the use of anitbiotics. The applied dosage of spectinomycin and apramycin was often lower than suggested in the literature. The low oral bioavailability of amoxicillin was not considered when using amoxicillin in medicated feedingstuffs.

  8. Evidence for the evolutionary steps leading to mecA-mediated β-lactam resistance in staphylococci.

    PubMed

    Rolo, Joana; Worning, Peder; Boye Nielsen, Jesper; Sobral, Rita; Bowden, Rory; Bouchami, Ons; Damborg, Peter; Guardabassi, Luca; Perreten, Vincent; Westh, Henrik; Tomasz, Alexander; de Lencastre, Hermínia; Miragaia, Maria

    2017-04-10

    The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA-an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all β-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the β-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to β-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of β-lactam resistance in

  9. Simultaneous Determination of 12 β-Lactam Antibiotics in Human Plasma by High-Performance Liquid Chromatography with UV Detection: Application to Therapeutic Drug Monitoring▿

    PubMed Central

    Verdier, Marie-Clémence; Tribut, Olivier; Tattevin, Pierre; Le Tulzo, Yves; Michelet, Christian; Bentué-Ferrer, Danièle

    2011-01-01

    A rapid and specific high-performance liquid chromatography method with UV detection (HPLC-UV) for the simultaneous determination of 12 beta-lactam antibiotics (amoxicillin, cefepime, cefotaxime, ceftazidime, ceftriaxone, cloxacillin, imipenem, meropenem, oxacillin, penicillin G, piperacillin, and ticarcillin) in small samples of human plasma is described. Extraction consisted of protein precipitation by acetonitrile. An Atlantis T3 analytical column with a linear gradient of acetonitrile and a pH 2 phosphoric acid solution was used for separation. Wavelength photodiode array detection was set either at 210 nm, 230 nm, or 298 nm according to the compound. This method is accurate and reproducible (coefficient of variation [CV] < 8%), allowing quantification of beta-lactam plasma levels from 5 to 250 μg/ml without interference with other common drugs. This technique is easy to use in routine therapeutic drug monitoring of beta-lactam antibiotics. PMID:21788467

  10. •OH and e-aq are yet good candidates for demolishing the β-lactam system of a penicillin eliminating the antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    Tracking the pharmacophore of a drug subjected to advanced oxidation is essential for evaluating the efficiency of the process in terms of wastewater treatment. From this standpoint, the •OH and eaq- induced deactivation mechanism of amoxicillin, a penicillin derivative was investigated in dilute aqueous solution using pulse- and gamma-radiolysis techniques. Based on IR measurements, •OH and eaq- destroys the β-lactam system of amoxicillin with ~55% and ~84% efficiency, respectively. In aerated solution the elimination of the pharmacophore was slightly impaired since the reaction pathway of the ring-opening was disturbed owing to the reactivity of O2 and O2• - toward the intermediates of sulfur oxidation. The high potency of eaq- for β-lactam deactivation is attributed to the enhanced electron deficiency of the carbonyl carbon inside the lactam ring.

  11. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals.

    PubMed

    McDanel, Jennifer S; Perencevich, Eli N; Diekema, Daniel J; Herwaldt, Loreen A; Smith, Tara C; Chrischilles, Elizabeth A; Dawson, Jeffrey D; Jiang, Lan; Goto, Michihiko; Schweizer, Marin L

    2015-08-01

    Previous studies indicate that vancomycin is inferior to beta-lactams for treatment of methicillin-susceptible Staphylococcus aureus (MSSA) bloodstream infections. However, it is unclear if this association is true for empiric and definitive therapy. Here, we compared beta-lactams with vancomycin for empiric and definitive therapy of MSSA bloodstream infections among patients admitted to 122 hospitals. This retrospective cohort study included all patients admitted to Veterans Affairs hospitals from 2003 to 2010 who had positive blood cultures for MSSA. Hazard ratios (HR) and 95% confidence intervals (CIs) were calculated using Cox proportional hazards regression. Empiric therapy was defined as starting treatment 2 days before and up to 4 days after the first MSSA blood culture was collected. Definitive therapy was defined as starting treatment between 4 and 14 days after the first positive blood culture was collected. Patients who received empiric therapy with a beta-lactam had similar mortality compared with those who received vancomycin (HR, 1.03; 95% CI, .89-1.20) after adjusting for other factors. However, patients who received definitive therapy with a beta-lactam had 35% lower mortality compared with patients who received vancomycin (HR, 0.65; 95% CI, .52-.80) after controlling for other factors. The hazard of mortality decreased further for patients who received cefazolin or antistaphylococcal penicillins compared with vancomycin (HR, 0.57; 95% CI, .46-.71). For patients with MSSA bloodstream infections, beta-lactams are superior to vancomycin for definitive therapy but not for empiric treatment. Patients should receive beta-lactams for definitive therapy, specifically antistaphylococcal penicillins or cefazolin. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Glycopeptides versus β-lactams for the prevention of surgical site infections in cardiovascular and orthopedic surgery: a meta-analysis.

    PubMed

    Saleh, Anas; Khanna, Ashish; Chagin, Kevin M; Klika, Alison K; Johnston, Douglas; Barsoum, Wael K

    2015-01-01

    To compare the efficacy of glycopeptides and β-lactams in preventing surgical site infections (SSIs) in cardiac, vascular, and orthopedic surgery. The cost-effectiveness of switching from β-lactams to glycopeptides for preoperative antibiotic prophylaxis has been controversial. β-Lactams are generally recommended in clean surgical procedures, but they are ineffective against resistant gram-positive bacteria. PubMed, International Pharmaceuticals Abstracts, Scopus, and Cochrane were searched for randomized clinical trials comparing glycopeptides and β-lactams for prophylaxis in adults undergoing cardiac, vascular, or orthopedic surgery. Abstracts and conference proceedings were included. Two independent reviewers performed study selection, data extraction, and assessment of risk of bias. Fourteen studies with a total of 8952 patients were analyzed. No difference was detected in overall SSIs between antibiotic types. However, compared with β-lactams, glycopeptides reduced the risk of resistant staphylococcal SSIs by 48% (relative risk, 0.52; 95% confidence interval, 0.29-0.93; P = 0.03) and enterococcal SSIs by 64% (relative risk, 0.36; 95% confidence interval, 0.16-0.80; P = 0.01), but increased respiratory tract infections by 54% (relative risk, 1.54; 95% confidence interval, 1.19-2.01; P ≤ 0.01). Subgroup analysis of cardiac procedures showed superiority of β-lactams in preventing superficial and deep chest SSIs, susceptible staphylococcal SSIs, and respiratory tract infections. Glycopeptides reduce the risk of resistant staphylococcal SSIs and enterococcal SSIs, but increase the risk of respiratory tract infections. Additional high-quality randomized clinical trials are needed as these results are limited by high risk of bias.

  13. Fluoroquinolones versus β-Lactam/β-Lactamase Inhibitors in Outpatients with Chronic Obstructive Pulmonary Disease and Pneumonia: A Nationwide Population-Based Study

    PubMed Central

    Lin, Kuan-Yin; Wang, Chi-Chuan; Lin, Chia-Hui; Sheng, Wang-Huei; Chang, Shan-Chwen

    2015-01-01

    Background Studies on the association between antibiotic treatment and outcomes in outpatients with chronic obstructive pulmonary disease (COPD) and pneumonia are scarce. This study aimed to evaluate the effectiveness of fluoroquinolones and β-lactam/β-lactamase inhibitors for pneumonia in COPD outpatients. Methods We conducted a retrospective cohort study and identified 4,851 episodes of pneumonia among COPD outpatients treated with fluoroquinolones or β-lactam/β-lactamase inhibitors from the Taiwan National Health Insurance Research Database during 2002–2011. Using the propensity score analysis, 1,296 pairs of episodes were matched for the demographic and clinical characteristics. The primary outcome was pneumonia/empyema-related hospitalization or emergency department (ED) visits, and the secondary outcomes were treatment failure, all-cause mortality and medical costs within 30 days. Results Compared with episodes treated with β-lactam/β-lactamase inhibitors, episodes treated with fluoroquinolones had similar clinical outcomes. The rates of pneumonia/empyema-related hospitalization or ED visits were 3.9% and 3.5% in the fluoroquinolone and β-lactam/β-lactamase inhibitor groups, respectively (adjusted hazard ratio [aHR], 1.11; 95% confidence interval [CI], 0.74–1.66). The percentage of treatment failure and all-cause mortality were 28.2% versus 31.3% (adjusted odds ratio, 0.86; 95% CI, 0.73–1.02) and 0.5% versus 0.4% (aHR, 1.40; 95% CI, 0.45–4.41) in the fluoroquinolone and β-lactam/β-lactamase inhibitor groups, respectively. The medical expenditures, including total medical costs (528 versus 455 US dollars) and pneumonia-related costs (202 vs. 155 USD) were also balanced between the two treatment groups (both P >0.05). Conclusions For pneumonia in COPD outpatients, fluoroquinolones were associated with similar clinical outcomes and medical expenditures compared with β-lactam/β-lactamase inhibitors. PMID:26305908

  14. Fluoroquinolones versus β-Lactam/β-Lactamase Inhibitors in Outpatients with Chronic Obstructive Pulmonary Disease and Pneumonia: A Nationwide Population-Based Study.

    PubMed

    Lin, Kuan-Yin; Wang, Chi-Chuan; Lin, Chia-Hui; Sheng, Wang-Huei; Chang, Shan-Chwen

    2015-01-01

    Studies on the association between antibiotic treatment and outcomes in outpatients with chronic obstructive pulmonary disease (COPD) and pneumonia are scarce. This study aimed to evaluate the effectiveness of fluoroquinolones and β-lactam/β-lactamase inhibitors for pneumonia in COPD outpatients. We conducted a retrospective cohort study and identified 4,851 episodes of pneumonia among COPD outpatients treated with fluoroquinolones or β-lactam/β-lactamase inhibitors from the Taiwan National Health Insurance Research Database during 2002-2011. Using the propensity score analysis, 1,296 pairs of episodes were matched for the demographic and clinical characteristics. The primary outcome was pneumonia/empyema-related hospitalization or emergency department (ED) visits, and the secondary outcomes were treatment failure, all-cause mortality and medical costs within 30 days. Compared with episodes treated with β-lactam/β-lactamase inhibitors, episodes treated with fluoroquinolones had similar clinical outcomes. The rates of pneumonia/empyema-related hospitalization or ED visits were 3.9% and 3.5% in the fluoroquinolone and β-lactam/β-lactamase inhibitor groups, respectively (adjusted hazard ratio [aHR], 1.11; 95% confidence interval [CI], 0.74-1.66). The percentage of treatment failure and all-cause mortality were 28.2% versus 31.3% (adjusted odds ratio, 0.86; 95% CI, 0.73-1.02) and 0.5% versus 0.4% (aHR, 1.40; 95% CI, 0.45-4.41) in the fluoroquinolone and β-lactam/β-lactamase inhibitor groups, respectively. The medical expenditures, including total medical costs (528 versus 455 US dollars) and pneumonia-related costs (202 vs. 155 USD) were also balanced between the two treatment groups (both P >0.05). For pneumonia in COPD outpatients, fluoroquinolones were associated with similar clinical outcomes and medical expenditures compared with β-lactam/β-lactamase inhibitors.

  15. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

    PubMed Central

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. Materials and Methods: An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (ampR) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kanaR) plasmid as the case or the pP15A, kanaR empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. Results: The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. Conclusions: Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages

  16. Redeploying β-Lactam Antibiotics as a Novel Antivirulence Strategy for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections

    SciTech Connect

    Waters, Elaine M.; Rudkin, Justine K.; Coughlan, Simone; Clair, Geremy C.; Adkins, Joshua N.; Gore, Suzanna; Xia, Guoqing; Black, Nikki S.; Downing, Tim; O'Neill, Eoghan; Kadioglu, Aras; O'Gara, James P.

    2016-11-14

    Innovative approaches to the use of existing antibiotics is an important strategy in efforts to address the escalating antimicrobial resistance crisis. Here, the beta-lactam antibiotic oxacillin was shown to significantly attenuate the virulence of MRSA despite the pathogen being resistant to this drug. Oxacillin-mediated repression of the Agr quorum-sensing system and altered cell wall architecture, was associated with reduced cytolytic activity and increased susceptibility to host killing. These findings support the inclusion of -lactam antibiotics as an adjunctive anti-virulence therapy in the treatment of MRSA infections, with the potential to significantly improve patient outcomes in a safe, cost effective manner.

  17. Isothiourea-catalyzed asymmetric synthesis of β-lactams and β-amino esters from arylacetic acid derivatives and N-sulfonylaldimines.

    PubMed

    Smith, Siobhan R; Douglas, James; Prevet, Hugues; Shapland, Peter; Slawin, Alexandra M Z; Smith, Andrew D

    2014-02-21

    The isothiourea HBTM-2.1 (5 mol %) catalyzes the asymmetric formal [2 + 2] cycloaddition of both arylacetic acids (following activation with tosyl chloride) and preformed 2-arylacetic anhydrides with N-sulfonylaldimines, generating stereodefined 2,3-diaryl-β-amino esters (after ring-opening) and 3,4-diaryl-anti-β-lactams, respectively, with high diastereocontrol (up to >95:5 dr) and good to excellent enantiocontrol. Deprotection of the N-tosyl substituent within the β-lactam framework was possible without racemization by treatment with SmI2.

  18. Stereoselective synthesis of chiral α-amino-β-lactams through palladium(II)-catalyzed sequential monoarylation/amidation of C(sp(3) )-H bonds.

    PubMed

    Zhang, Qi; Chen, Kai; Rao, Weihao; Zhang, Yuejun; Chen, Fa-Jie; Shi, Bing-Feng

    2013-12-16

    Give Me an Ar, give Me an N! Arylation of the methyl group in a simple derivative of readily available alanine under palladium catalysis was followed by intramolecular amidation at the same position to give chiral α-amino-β-lactams with a wide range of aryl substituents (see scheme; Phth=phthaloyl). The α-amino-β-lactams were obtained in moderate to high yields with good functional-group tolerance and high diastereoselectivity. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficient Synthesis of β-Aryl-γ-lactams and Their Resolution with (S)-Naproxen: Preparation of (R)- and (S)-Baclofen.

    PubMed

    Montoya-Balbás, Iris J; Valentín-Guevara, Berenice; López-Mendoza, Estefanía; Linzaga-Elizalde, Irma; Ordoñez, Mario; Román-Bravo, Perla

    2015-12-10

    An efficient synthesis of enantiomerically-pure β-aryl-γ-lactams is described. The principal feature of this synthesis is the practical resolution of β-aryl-γ-lactams with (S)-Naproxen. The procedure is based on the Michael addition of nitromethane to benzylidenemalonates, which was easily obtained, followed by the reduction of the γ-nitroester in the presence of Raney nickel and the subsequent saponification/decarboxylation reaction. The utility of this methodology was highlighted by the preparation of enantiomerically-pure (R)- and (S)-Baclofen hydrochloride.

  20. Antibiofilm Peptides Increase the Susceptibility of Carbapenemase-Producing Klebsiella pneumoniae Clinical Isolates to β-Lactam Antibiotics

    PubMed Central

    Ribeiro, Suzana Meira; de la Fuente-Núñez, César; Baquir, Beverlie; Faria-Junior, Célio

    2015-01-01

    Multidrug-resistant carbapenemase-producing Klebsiella pneumoniae (KpC) strains are becoming a common cause of infections in health care centers. Furthermore, Klebsiella can develop multicellular biofilms, which lead to elevated adaptive antibiotic resistance. Here, we describe the antimicrobial and antibiofilm activities of synthetic peptides DJK-5, DJK-6, and 1018 against five KpC isolates. Using static microplate assays, it was observed that the concentration required to prevent biofilm formation by these clinical isolates was below the MIC for planktonic cells. More-sophisticated flow cell experiments confirmed the antibiofilm activity of the peptides against 2-day-old biofilms of different KpC isolates, and in some cases, the peptides induced significant biofilm cell death. Clinically relevant combinations of DJK-6 and β-lactam antibiotics, including the carbapenem meropenem, also prevented planktonic growth and biofilm formation of KpC strain1825971. Interestingly, peptide DJK-6 was able to enhance, at least 16-fold, the ability of meropenem to eradicate preformed biofilms formed by this strain. Using peptide DJK-6 to potentiate the activity of β-lactams, including meropenem, represents a promising strategy to treat infections caused by KpC isolates. PMID:25896694

  1. The Streptococcus pneumoniae pezAT Toxin–Antitoxin System Reduces β-Lactam Resistance and Genetic Competence

    PubMed Central

    Chan, Wai T.; Espinosa, Manuel

    2016-01-01

    Chromosomally encoded Type II Toxin–Antitoxin operons are ubiquitous in bacteria and archaea. Antitoxins neutralize the toxic effect of cognate Toxins by protein–protein interactions and sequestering the active residues of the Toxin. Toxins target essential bacterial processes, mostly translation and replication. However, one class apart is constituted by the PezAT pair because the PezT toxin target cell wall biosynthesis. Here, we have examined the role of the pezAT toxin–antitoxin genes in its natural host, the pathogenic bacterium Streptococcus pneumoniae. The pezAT operon on Pneumococcal Pathogenicity Island 1 was deleted from strain R6 and its phenotypic traits were compared with those of the wild type. The mutant cells formed shorter chains during exponential phase, leading to increased colony-forming units. At stationary phase, the mutant was more resilient to lysis. Importantly, the mutant exhibited higher resistance to antibiotics targeting cell walls (β-lactams), but not to antibiotics acting at other levels. In addition, the mutants also showed enhanced genetic competence. We suggest that PezAT participates in a subtle equilibrium between loss of functions (resistance to β-lactams and genetic competence) and gain of other traits (virulence). PMID:27610103

  2. In vitro activity of clinically implemented β-lactams against Aerococcus urinae: presence of non-susceptible isolates in Switzerland.

    PubMed

    Lupo, Agnese; Guilarte, Yuvia N; Droz, Sara; Hirzel, Cèdric; Furrer, Hansjakob; Endimiani, Andrea

    2014-10-01

    We analyzed the in vitro susceptibility to several ?-lactams and vancomycin of 80 Aerococcus urinae isolates collected during 2011-2012 in Switzerland. MICs were determined by Etest (bioMérieux) on Müller-Hinton agar with 5% sheep blood and interpreted according to the CLSI and EUCAST criteria set for viridans streptococci. MIC50/90 for penicillin, amoxicillin, ceftriaxone and vancomycin were 0.016/0.064 mg/l, 0.032/0.064 mg/l, 0.125/0.5 mg/l and 0.38/0.5 mg/l, respectively. Three (3.8%) isolates were resistant to ceftriaxone regardless of the criteria used (MICs ?2 mg/l); one of them was also non-susceptible to penicillin (MIC of 0.25 mg/l) according to CLSI. β-lactam resistance in A. urinae is a concern and suggests that more studies are needed to determine the molecular mechanisms of such resistance.

  3. Synergistic effect of (+)-pinitol from Saraca asoca with β-lactam antibiotics and studies on the in silico possible mechanism.

    PubMed

    Ahmad, Furkan; Misra, Laxminarain; Gupta, Vivek Kumar; Darokar, Mahendra Pandurang; Prakash, Om; Khan, Feroz; Shukla, Rakesh

    2016-01-01

    Saraca asoca bark has been used in the Ayurvedic system of medicine for female urino-genital disorders. We have recently reported the isolation and characterization of several compounds as markers to develop HPLC profiling of its methanol and aqueous methanol extracts. Now, a HPLC-PDA inactive compound, (+)-pinitol has been isolated and characterized from the bark of this medicinally important tree. Pinitol is a well known bioactive compound for a variety of biological activities, including hypoglycemic and anti-inflammatory activities. A process for the isolation of relatively good concentration of (+)-pinitol from S. asoca bark has been developed and its in vitro anti TNF-α and anti-inflammatory activities against carragenan-induced edema confirmed. While conducting experiments on the possible agonistic activity, it was found that (+)-pinitol showed up to eight fold reduction in the doses of β-lactam antibiotics. The mechanism of its agonistic activity was studied by docking experiments which showed that different conformations of (+)-pinitol and antibiotics were actually in the same binding site with no significant change in the binding energy. These docking simulations, thus predict the possible binding mode of studied compounds and probable reason behind the synergistic effect of (+)-pinitol along with β-lactam antibiotics.

  4. Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to β-lactam antibiotics.

    PubMed

    Ribeiro, Suzana Meira; de la Fuente-Núñez, César; Baquir, Beverlie; Faria-Junior, Célio; Franco, Octávio L; Hancock, Robert E W

    2015-07-01

    Multidrug-resistant carbapenemase-producing Klebsiella pneumoniae (KpC) strains are becoming a common cause of infections in health care centers. Furthermore, Klebsiella can develop multicellular biofilms, which lead to elevated adaptive antibiotic resistance. Here, we describe the antimicrobial and antibiofilm activities of synthetic peptides DJK-5, DJK-6, and 1018 against five KpC isolates. Using static microplate assays, it was observed that the concentration required to prevent biofilm formation by these clinical isolates was below the MIC for planktonic cells. More-sophisticated flow cell experiments confirmed the antibiofilm activity of the peptides against 2-day-old biofilms of different KpC isolates, and in some cases, the peptides induced significant biofilm cell death. Clinically relevant combinations of DJK-6 and β-lactam antibiotics, including the carbapenem meropenem, also prevented planktonic growth and biofilm formation of KpC strain1825971. Interestingly, peptide DJK-6 was able to enhance, at least 16-fold, the ability of meropenem to eradicate preformed biofilms formed by this strain. Using peptide DJK-6 to potentiate the activity of β-lactams, including meropenem, represents a promising strategy to treat infections caused by KpC isolates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. The Nonantibiotic Small Molecule Cyslabdan Enhances the Potency of β-Lactams against MRSA by Inhibiting Pentaglycine Interpeptide Bridge Synthesis

    PubMed Central

    Koyama, Nobuhiro; Tokura, Yuriko; Münch, Daniela; Sahl, Hans-Georg; Schneider, Tanja; Shibagaki, Yoshio; Ikeda, Haruo; Tomoda, Hiroshi

    2012-01-01

    The nonantibiotic small molecule cyslabdan, a labdan-type diterpene produced by Streptomyces sp. K04-0144, markedly potentiated the activity of the β-lactam drug imipenem against methicillin-resistant Staphylococcus aureus (MRSA). To study the mechanism of action of cyslabdan, the proteins that bind to cyslabdan were investigated in an MRSA lysate, which led to the identification of FemA, which is involved in the synthesis of the pentaglycine interpeptide bridge of the peptidoglycan of MRSA. Furthermore, binding assay of cyslabdan to FemB and FemX with the function similar to FemA revealed that cyslabdan had an affinity for FemB but not FemX. In an enzyme-based assay, cyslabdan inhibited FemA activity, where as did not affected FemX and FemB activities. Nonglycyl and monoglycyl murein monomers were accumulated by cyslabdan in the peptidoglycan of MRSA cell walls. These findings indicated that cyslabdan primarily inhibits FemA, thereby suppressing pentaglycine interpeptide bridge synthesis. This protein is a key factor in the determination of β-lactam resistance in MRSA, and our findings provide a new strategy for combating MRSA. PMID:23166602

  6. Appearance of β-lactam Resistance Genes in Agricultural Soils and Clinical Isolates over the 20th Century

    NASA Astrophysics Data System (ADS)

    Graham, David W.; Knapp, Charles W.; Christensen, Bent T.; McCluskey, Seánín; Dolfing, Jan

    2016-02-01

    Debate exists about whether agricultural versus medical antibiotic use drives increasing antibiotic resistance (AR) across nature. Both sectors have been inconsistent at antibiotic stewardship, but it is unclear which sector has most influenced acquired AR on broad scales. Using qPCR and soils archived since 1923 at Askov Experimental Station in Denmark, we quantified four broad-spectrum β-lactam AR genes (ARG; blaTEM, blaSHV, blaOXA and blaCTX-M) and class-1 integron genes (int1) in soils from manured (M) versus inorganic fertilised (IF) fields. “Total” β-lactam ARG levels were significantly higher in M versus IF in soils post-1940 (paired-t test; p < 0.001). However, dominant individual ARGs varied over time; blaTEM and blaSHV between 1963 and 1974, blaOXA slightly later, and blaCTX-M since 1988. These dates roughly parallel first reporting of these genes in clinical isolates, suggesting ARGs in animal manure and humans are historically interconnected. Archive data further show when non-therapeutic antibiotic use was banned in Denmark, blaCTX-M levels declined in M soils, suggesting accumulated soil ARGs can be reduced by prudent antibiotic stewardship. Conversely, int1 levels have continued to increase in M soils since 1990, implying direct manure application to soils should be scrutinized as part of future stewardship programs.

  7. In vitro Potential Effect of Morin in the Combination with β-Lactam Antibiotics Against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Mun, Su-Hyun; Lee, Young-Seob; Han, Sin-Hee; Lee, Sang-Won; Cha, Seon-Woo; Kim, Sung-bae; Seo, Yun-Soo; Kong, Ryong; Kang, Da-Hye; Shin, Dong-Won; Kang, Ok-Hwa; Kwon, Dong-Yeul

    2015-06-01

    Morin, a plant-derived flavonol, is known to be an effective inhibitor of Gram-positive bacteria. In this study, we explored the combined effect of morin with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen. The anti-MRSA activity of morin was investigated by the broth microdilution method, checkerboard dilution test, and time-kill curve assay. The expression of the resistant protein, penicillin-binding protein (PBP2a) encoded by mecA, was analyzed by the Western blotting method in the presence of morin and oxacillin. An increased susceptibility of MRSA toward oxacillin was observed in the presence of morin. The protein level of PBP2a was reduced when MRSA (ATCC 33591) was treated with the combination of morin and oxacillin, indicating that the combination of morin and oxacillin potentiates the killing effect against MRSA. The present study indicates that the killing effect by the combinative treatment of morin and β-lactam antibiotic is dependent on the PBP2a-mediated resistance mechanism.

  8. β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity

    PubMed Central

    Gutierrez, A.; Laureti, L.; Crussard, S.; Abida, H.; Rodríguez-Rojas, A.; Blázquez, J.; Baharoglu, Z.; Mazel, D.; Darfeuille, F.; Vogel, J.; Matic, I.

    2013-01-01

    Regardless of their targets and modes of action, subinhibitory concentrations of antibiotics can have an impact on cell physiology and trigger a large variety of cellular responses in different bacterial species. Subinhibitory concentrations of β-lactam antibiotics cause reactive oxygen species production and induce PolIV-dependent mutagenesis in Escherichia coli. Here we show that subinhibitory concentrations of β-lactam antibiotics induce the RpoS regulon. RpoS-regulon induction is required for PolIV-dependent mutagenesis because it diminishes the control of DNA-replication fidelity by depleting MutS in E. coli, Vibrio cholerae and Pseudomonas aeruginosa. We also show that in E. coli, the reduction in mismatch-repair activity is mediated by SdsR, the RpoS-controlled small RNA. In summary, we show that mutagenesis induced by subinhibitory concentrations of antibiotics is a genetically controlled process. Because this mutagenesis can generate mutations conferring antibiotic resistance, it should be taken into consideration for the development of more efficient antimicrobial therapeutic strategies. PMID:23511474

  9. [Activity of cefpodoxime and other oral beta-lactams against Haemophilus influenzae and Streptococcus pneumoniae with different susceptibilities to penicillin].

    PubMed

    Fenoll, A; Robledo, O; Lerma, M; Giménez, M J; Cebrián, L; Casal, J; Aguilar, L; Gómez-Lus, M L

    2006-03-01

    This study explores the influence on the intrinsic activity of different oral beta-lactams of beta-lactamase production in Haemophilus influenzae and penicillin resistance in Streptococcus pneumoniae. Three substudies were performed: a) a general susceptibility study, analyzing 550 strains received by the Spanish Laboratorio de Referencia de Neumococos throughout February and March 2005; b) a study on the influence of penicillin resistance on the activity of beta-lactams, analyzing 251 penicillin-susceptible strains (MICor=2 mg/l) randomly chosen among those received by the Spanish Laboratorio de Referencia de Neumococos throughout 2005; and c) an H. influenzae susceptibility study analyzing 150 strains received by Instituto Valenciano de Microbiologia throughout 2005. A total of 71% of S. pneumoniae strains were susceptible to penicillin, 21% exhibited intermediate resistance and 8% strains presented full resistance. H. influenzae beta-lactamase production rate was 18.6%. Of the non-beta-lactamase-producing strains, 3% were not susceptible to ampicillin. Cefpodoxime and cefixime exhibited the highest intrinsic activity against H. influenzae, while amoxicillin and cefpodoxime were the most active compounds against S. pneumoniae. All H. influenzae strains were susceptible to oral cephalosporins and amoxicillin/clavulanic acid. The increase in penicillin resistance in S. pneumoniae influenced cefixime, cefaclor and cefuroxime to a higher degree than amoxicillin and cefpodoxime.

  10. Susceptibility of pneumococci to 14 beta-lactam agents: comparison of strains resistant, intermediate-resistant, and susceptible to penicillin.

    PubMed Central

    Ward, J I; Moellering, R C

    1981-01-01

    To measure the susceptibility of penicillin-resistant pneumococci to newer beta-lactam agents, we evaluated 54 selected strains recovered from patients with bacteremia or meningitis. Three groups of pneumococci were tested: penicillin-susceptible strains, strains with intermediate penicillin resistance, and penicillin-resistant strains. Minimal inhibitory concentrations of benzyl penicillin, oxacillin, cephalothin, cefamandole, cefoxitin, moxalactam (LY127935), cefotaxime (HR756), piperacillin, pirbenicillin, N-formimidoyl thienamycin (MK0787), cefoperazone (T1551), mezlocillin, azlocillin, and mecillinam were determined. For all groups of pneumococci tested, cefotaxime, and particularly thienamycin, had the greatest activity. Piperacillin, mezlocillin, and azlocillin had activity similar to that of benzyl penicillin. Cefoperazone had less activity than penicillin against strains with penicillin minimal inhibitory concentrations of less than 1 microgram/ml but greater activity than penicillin against strains with greater resistance. Oxacillin, cephalothin, cefamandole, and pirbenicillin all had less activity for each group of pneumococci tested; moxalactam, cefoxitin, and mecillinam had the least activity. The relative differences in susceptibility to penicillin of each group of pneumococci tested were similar for each of the beta-lactam agents tested. The clinical effectiveness of cefotaxime and thienamycin for therapy of disease due to penicillin-resistant pneumococci needs further evaluation, and of particular interest will be the levels of these drugs which can be achieved in cerebrospinal fluid. PMID:6912777

  11. Hybrid anticancer compounds. Steroidal lactam esters of carboxylic derivatives of N,N-bis (2-chloroethyl) aniline (review).

    PubMed

    Catsoulacos, P; Catsoulacos, D

    1991-01-01

    For the rational design of more specific alkylating agents, we suggested new biological platforms able to deliver the alkylating moieties to specific target site and on the other hand we hoped to lead in compounds with synergistic activity. As biological platforms have been used steroidal lactams of A and D- ring and as alkylating agents carboxylic derivatives of N,N-bis (2-Chloroethyl) aniline which combine to the steroid by an easily cleaved ester bond. These homo-aza-steroidal esters gave satisfactory results in early and advanced P388, L1210 leukemias and solid tumors. Whereas unmodified steroidal esters have generally been reported to be inactive in treatment of L1210 leukemia. The steric arrangement of the alkylating moiety greatly effects toxicity and activity of the drugs, while the steric arrangement of the hydrogen atom at position 5 influences these parameters. Isosterism of alkylating agent is the factor for biological action. The amide group of the lactam molecule may be essential for activity.

  12. Lactam-based HDAC inhibitors for anticancer chemotherapy: restoration of RUNX3 by posttranslational modification and epigenetic control.

    PubMed

    Cho, Misun; Choi, Eunhyun; Kim, Jae Hyun; Kim, Hwan; Kim, Hwan Mook; Lee, Jang Ik; Hwang, Ki-Chul; Kim, Hyun-Jung; Han, Gyoonhee

    2014-03-01

    Expression and stability of the tumor suppressor runt-related transcription factor 3 (RUNX3) are regulated by histone deacetylase (HDAC). HDAC inhibition alters epigenetic and posttranslational stability of RUNX3, leading to tumor suppression. However, HDAC inhibitors can nonselectively alter global gene expression through chromatin remodeling. Thus, lactam-based HDAC inhibitors were screened to identify potent protein stabilizers that maintain RUNX3 stability by acetylation. RUNX activity and HDAC inhibition were determined for 111 lactam-based analogues through a cell-based RUNX activation and HDAC inhibition assay. 3-[1-(4-Bromobenzyl)-2-oxo-2,5-dihydro-1H-pyrrol-3-yl]-N-hydroxypropanamide (11-8) significantly increased RUNX3 acetylation and stability with relatively low RUNX3 mRNA expression and HDAC inhibitory activity. This compound showed significant antitumor effects, which were stronger than SAHA, in an MKN28 xenograft model. Thus, we propose a novel strategy, in which HDAC inhibitors serve as antitumor chemotherapeutic agents that selectively target epigenetic regulation and protein stability of RUNX3.

  13. Prevalence of β-lactam (bla TEM) and Metronidazole (nim) Resistance Genes in the Oral Cavity of Greek Subjects.

    PubMed

    Koukos, Georgios; Konstantinidis, Antonios; Tsalikis, Lazaros; Arsenakis, Minas; Slini, Theodora; Sakellari, Dimitra

    2016-01-01

    The aim of this study is to investigate the prevalence of bla TEM and nim genes that encode resistance to β-lactams and nitroimidazoles, respectively, in the oral cavity of systemically healthy Greek subjects. After screening 720 potentially eligible subjects, 154 subjects were recruited for the study, including 50 periodontally healthy patients, 52 cases of gingivitis and 52 cases of chronic periodontitis. The clinical parameters were assessed with an automated probe. Various samples were collected from the tongue, first molars and pockets >6mm, and analysed by polymerase chain reaction-amplification of the bla TEM and nim genes, using primers and conditions previously described in the literature. There was a high rate of detection of bla TEM in plaque and tongue samples alike in all periodontal conditions (37% of plaque and 60% of tongue samples, and 71% of participants). The bla TEM gene was detected more frequently in the tongue samples of the periodontally healthy (56%) and chronic periodontitis (62%) groups compared to the plaque samples from the same groups (36% and 29%, respectively; z-test with Bonferroni corrections-tests, P<0.05). The nim gene was not detected in any of the 343 samples analysed. The oral cavity of Greek subjects often harbours bla TEM but not nim genes, and therefore the antimicrobial activity of β-lactams might be compromised.

  14. Interactions of OP0595, a Novel Triple-Action Diazabicyclooctane, with β-Lactams against OP0595-Resistant Enterobacteriaceae Mutants.

    PubMed

    Livermore, David M; Warner, Marina; Mushtaq, Shazad; Woodford, Neil

    2015-11-09

    OP0595 is a novel diazabicyclooctane which, like avibactam, inhibits class A and C β-lactamases. In addition, unlike avibactam, it has antibacterial activity, with MICs of 0.5 to 4 μg/ml for most members of the family Enterobacteriaceae, owing to inhibition of PBP2; moreover, it acts synergistically with PBP3-active β-lactams independently of β-lactamase inhibition, via an "enhancer effect." Enterobacteriaceae mutants stably resistant to 16 μg/ml OP0595 were selected on agar at frequencies of approximately 10(-7). Unsurprisingly, OP0595 continued to potentiate substrate β-lactams against mutants derived from Enterobacteriaceae with OP0595-inhibited class A and C β-lactamases. Weaker potentiation of partners, especially aztreonam, cefepime, and piperacillin--less so meropenem--remained frequent for OP0595-resistant Enterobacteriaceae mutants lacking β-lactamases or with OP0595-resistant metallo-β-lactamases (MBLs), indicating that the enhancer effect is substantially retained even when antibiotic activity is lost. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Macrocycle-embedded β-lactams as novel inhibitors of the Penicillin Binding Protein PBP2a from MRSA.

    PubMed

    Dive, Georges; Bouillon, Camille; Sliwa, Aline; Valet, Bénédicte; Verlaine, Olivier; Sauvage, Eric; Marchand-Brynaert, Jacqueline

    2013-06-01

    Assuming that bicyclic β-lactams endowed with high conformational adaptability should more easily form acyl-enzyme complexes with PBP2a than the traditional antibiotics, we have prepared a series of bis-2-oxo-azetidinyl macrocycles as potential inhibitors. The compounds are formally "head-head" (HH) cyclodimers of 1-(ω-alkenoyl)-3-(S)-(ω'-alkenoylamino)-2-azetidinones, with various lengths of the alkene chains, obtained by two successive metathesis reactions using the Grubbs catalyst. All compounds behave as acylating inhibitors of PBP2a and one β-lactam (5c), embedded into the largest ring (32 atoms), features an activity close to that of Ceftobiprole. Conformational analyses, theoretical reactivity models and docking experiments in PBP2a cavity allow to propose a novel pharmacophore, i.e. the 3-(S)-acylamino-1-acyl-2-azetidinone ring, with the syn-conformation of the imide function, associated to a flexible macrocycle favoring the opening of the active site. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. β-Lactam Ring Opening: A Useful Entry to Amino Acids and Relevant Nitrogen-Containing Compounds

    NASA Astrophysics Data System (ADS)

    Palomo, C.; Oiarbide, M.

    The main strategies for the ring opening of β-lactams by chemical means are described. The discovery of each approach is put into context, sometimes in connection to processes occurring in biological systems, and the synthetic opportunities each approach offers are shown. Thus, this β-lactam route affords a number of synthetically relevant building-blocks, including α-amino acids, β-amino acids, their derived peptides, and other nitrogen containing heterocycles and open chain molecules. The content, which encompases references to initial work, further major development, and the most relevant recent literature contributions, is categorized according to the ring bond cleavaged (N 1-C 2, C 2-C 3, C 3 -C 4 , N 1-C 4), to finish with ring opening strategies leading to large heterocyclic compounds. Within each category, distinction has been made according to the type of nucleophilic agent employed, principally O-, N-, and C-nucleophiles. Also, a variety of applications of the strategy to the synthesis of interesting target compounds are shown.

  17. Inhibition of WTA Synthesis Blocks the Cooperative Action of PBPs and Sensitizes MRSA to β-Lactams

    PubMed Central

    2012-01-01

    Rising drug resistance is limiting treatment options for infections by methicillin-resistant Staphylococcus aureus (MRSA). Herein we provide new evidence that wall teichoic acid (WTA) biogenesis is a remarkable antibacterial target with the capacity to destabilize the cooperative action of penicillin-binding proteins (PBPs) that underlie β-lactam resistance in MRSA. Deletion of gene tarO, encoding the first step of WTA synthesis, resulted in the restoration of sensitivity of MRSA to a unique profile of β-lactam antibiotics with a known selectivity for penicillin binding protein 2 (PBP2). Of these, cefuroxime was used as a probe to screen for previously approved drugs with a cryptic capacity to potentiate its activity against MRSA. Ticlopidine, the antiplatelet drug Ticlid, strongly potentiated cefuroxime, and this synergy was abolished in strains lacking tarO. The combination was also effective in a Galleria mellonella model of infection. Using both genetic and biochemical strategies, we determined the molecular target of ticlopidine as the N-acetylglucosamine-1-phosphate transferase encoded in gene tarO and provide evidence that WTA biogenesis represents an Achilles heel supporting the cooperative function of PBP2 and PBP4 in creating highly cross-linked muropeptides in the peptidoglycan of S. aureus. This approach represents a new paradigm to tackle MRSA infection. PMID:23062620

  18. Discovery of a novel covalent non-β-lactam inhibitor of the metallo-β-lactamase NDM-1.

    PubMed

    Christopeit, Tony; Albert, Anastasia; Leiros, Hanna-Kirsti S

    2016-07-01

    The inhibition of metallo-β-lactamases (MBL) can prevent the hydrolysis of β-lactam antibiotics and hence is a promising strategy for the treatment of antibiotic resistant infections. In this study, we present a novel reversible covalent inhibitor of the clinically relevant MBL New Delhi metallo-β-lactamase 1 (NDM-1). Electrospray ionization-mass spectrometry (ESI-MS) and single site directed mutagenesis were used to show that the inhibitor forms a covalent bond with Lys224 in the active site of NDM-1. The inhibitor was further characterized using an enzyme inhibition assay, a surface plasmon resonance (SPR) based biosensor assay and covalent docking. The determined inhibition constant (KI(∗)) was 580nM and the inhibition constant for the initial complex (KI) was 76μM. To our knowledge, this inhibitor is the first example for a reversible covalent non-β-lactam inhibitor targeting NDM-1 and a promising starting point for the design of potent covalent inhibitors.

  19. Appearance of β-lactam Resistance Genes in Agricultural Soils and Clinical Isolates over the 20th Century

    PubMed Central

    Graham, David W.; Knapp, Charles W.; Christensen, Bent T.; McCluskey, Seánín; Dolfing, Jan

    2016-01-01

    Debate exists about whether agricultural versus medical antibiotic use drives increasing antibiotic resistance (AR) across nature. Both sectors have been inconsistent at antibiotic stewardship, but it is unclear which sector has most influenced acquired AR on broad scales. Using qPCR and soils archived since 1923 at Askov Experimental Station in Denmark, we quantified four broad-spectrum β-lactam AR genes (ARG; blaTEM, blaSHV, blaOXA and blaCTX-M) and class-1 integron genes (int1) in soils from manured (M) versus inorganic fertilised (IF) fields. “Total” β-lactam ARG levels were significantly higher in M versus IF in soils post-1940 (paired-t test; p < 0.001). However, dominant individual ARGs varied over time; blaTEM and blaSHV between 1963 and 1974, blaOXA slightly later, and blaCTX-M since 1988. These dates roughly parallel first reporting of these genes in clinical isolates, suggesting ARGs in animal manure and humans are historically interconnected. Archive data further show when non-therapeutic antibiotic use was banned in Denmark, blaCTX-M levels declined in M soils, suggesting accumulated soil ARGs can be reduced by prudent antibiotic stewardship. Conversely, int1 levels have continued to increase in M soils since 1990, implying direct manure application to soils should be scrutinized as part of future stewardship programs. PMID:26878889

  20. Enzymic analysis of NADPH metabolism in beta-lactam-producing Penicillium chrysogenum: presence of a mitochondrial NADPH dehydrogenase.

    PubMed

    Harris, Diana M; Diderich, Jasper A; van der Krogt, Zita A; Luttik, Marijke A H; Raamsdonk, Léonie M; Bovenberg, Roel A L; van Gulik, Walter M; van Dijken, Johannes P; Pronk, Jack T

    2006-03-01

    Based on assumed reaction network structures, NADPH availability has been proposed to be a key constraint in beta-lactam production by Penicillium chrysogenum. In this study, NADPH metabolism was investigated in glucose-limited chemostat cultures of an industrial P. chrysogenum strain. Enzyme assays confirmed the NADP(+)-specificity of the dehydrogenases of the pentose-phosphate pathway and the presence of NADP(+)-dependent isocitrate dehydrogenase. Pyruvate decarboxylase/NADP(+)-linked acetaldehyde dehydrogenase and NADP(+)-linked glyceraldehyde-3-phosphate dehydrogenase were not detected. Although the NADPH requirement of penicillin-G-producing chemostat cultures was calculated to be 1.4-1.6-fold higher than that of non-producing cultures, in vitro measured activities of the major NADPH-providing enzymes were the same. Isolated mitochondria showed high rates of antimycin A-sensitive respiration of NADPH, thus indicating the presence of a mitochondrial NADPH dehydrogenase that oxidises cytosolic NADPH. The presence of this enzyme in P. chrysogenum might have important implications for stoichiometric modelling of central carbon metabolism and beta-lactam production and may provide an interesting target for metabolic engineering.

  1. The activity of the dinuclear cobalt-β-lactamase from Bacillus cereus in catalysing the hydrolysis of β-lactams

    PubMed Central

    Badarau, Adriana; Damblon, Christian; Page, Michael I.

    2006-01-01

    Metallo-β-lactamases are native zinc enzymes that catalyse the hydrolysis of β-lactam antibiotics, but are also able to function with cobalt(II) and require one or two metal-ions for catalytic activity. The hydrolysis of cefoxitin, cephaloridine and benzylpenicillin catalysed by CoBcII (cobalt-substituted β-lactamase from Bacillus cereus) has been studied at different pHs and metal-ion concentrations. An enzyme group of pKa 6.52±0.1 is found to be required in its deprotonated form for metal-ion binding and catalysis. The species that results from the loss of one cobalt ion from the enzyme has no significant catalytic activity and is thought to be the mononuclear CoBcII. It appears that dinuclear CoBcII is the active form of the enzyme necessary for turnover, while the mononuclear CoBcII is only involved in substrate binding. The cobalt-substituted enzyme is a more efficient catalyst than the native enzyme for the hydrolysis of some β-lactam antibiotics suggesting that the role of the metal-ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate. PMID:16961465

  2. Identification of Functional Regulatory Residues of the β -Lactam Inducible Penicillin Binding Protein in Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Mbah, Andreas N; Isokpehi, Raphael D

    2013-01-01

    Resistance to methicillin by Staphylococcus aureus is a persistent clinical problem worldwide. A mechanism for resistance has been proposed in which methicillin resistant Staphylococcus aureus (MRSA) isolates acquired a new protein called β -lactam inducible penicillin binding protein (PBP-2'). The PBP-2' functions by substituting other penicillin binding proteins which have been inhibited by β -lactam antibiotics. Presently, there is no structural and regulatory information on PBP-2' protein. We conducted a complete structural and functional regulatory analysis of PBP-2' protein. Our analysis revealed that the PBP-2' is very stable with more hydrophilic amino acids expressing antigenic sites. PBP-2' has three striking regulatory points constituted by first penicillin binding site at Ser25, second penicillin binding site at Ser405, and finally a single metallic ligand binding site at Glu657 which binds to Zn(2+) ions. This report highlights structural features of PBP-2' that can serve as targets for developing new chemotherapeutic agents and conducting site direct mutagenesis experiments.

  3. Oral Gram-negative anaerobic bacilli as a reservoir of β-lactam resistance genes facilitating infections with multiresistant bacteria.

    PubMed

    Dupin, Clarisse; Tamanai-Shacoori, Zohreh; Ehrmann, Elodie; Dupont, Anais; Barloy-Hubler, Frédérique; Bousarghin, Latifa; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2015-02-01

    Many β-lactamases have been described in various Gram-negative bacilli (Capnocytophaga, Prevotella, Fusobacterium, etc.) of the oral cavity, belonging to class A of the Ambler classification (CepA, CblA, CfxA, CSP-1 and TEM), class B (CfiA) or class D in Fusobacterium nucleatum (FUS-1). The minimum inhibitory concentrations of β-lactams are variable and this variation is often related to the presence of plasmids or other mobile genetic elements (MGEs) that modulate the expression of resistance genes. DNA persistence and bacterial promiscuity in oral biofilms also contribute to genetic transformation and conjugation in this particular microcosm. Overexpression of efflux pumps is facilitated because the encoding genes are located on MGEs, in some multidrug-resistant clinical isolates, similar to conjugative transposons harbouring genes encoding β-lactamases. All these facts lead us to consider the oral cavity as an important reservoir of β-lactam resistance genes and a privileged place for genetic exchange, especially in commensal strictly anaerobic Gram-negative bacilli.

  4. Resistance to β-lactam antibiotic may influence nanH gene expression in Trueperella pyogenes isolated from bovine endometritis.

    PubMed

    Zhang, De-Xian; Tian, Kai; Han, Li-Mei; Wang, Qiu-Xia; Liu, Yao-Chuan; Tian, Chun-Lian; Liu, Ming-Chun

    2014-01-01

    Virulence could be modulated by many instinctive and environmental factors including oxygen, osmolarity and antimicrobial agents. This study aimed to investigate the correlation between drug resistance and the nanH expression in Trueperella pyogenes (T. pyogenes). Minimum inhibitory concentrations (MICs) of 6 β-lactam antimicrobial agents (penicillin G, amoxicillin, oxacillin, cefazolin, ceftiofur, and ampicillin) against T. pyogenes were tested by standard broth dilution