Sample records for lactate dehydrogenase aspartate

  1. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1440 Lactate dehydrogenase test system. (a) Identification. A lactate dehydrogenase test system is a device intended to measure the activity of the enzyme lactate dehydrogenase in serum. Lactate... hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction...

  2. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

    PubMed

    Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish

    2015-03-01

    The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Changes in creatine kinase, lactate dehydrogenase and aspartate aminotransferase in saliva samples after an intense exercise: a pilot study.

    PubMed

    Barranco, Tomas; Tvarijonaviciute, Asta; Tecles, Fernando; Carrillo, Jose M; Sánchez-Resalt, Cristina; Jimenez-Reyes, Pedro; Rubio, Monica; García-Balletbó, Monserrat; Cerón, Jose J; Cugat, Ramon

    2018-06-01

    The aim of this study was to evaluate changes in the enzymes creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) in saliva before and after an intense exercise consisting of a futsal match. CK, LDH and AST were analyzed in saliva and serum samples of eleven, injury-free, amateur young men before and 30 minutes, 12 hours and 36 hours after a futsal match. A significant increase in CK, LDH and AST was observed after the game in serum samples. In saliva, although a high interindividual variability was found with some individuals no showing increases, significant increases in CK and LDH were observed after the game. No significant changes were observed in saliva AST after the game. Our study showed for first time that CK and LDH can increase in saliva after an intensive exercise consisting on a futsal match. Results suggest that measurements of CK and LDH in saliva could be potentially used to evaluate possible muscle stress or damage in cases of intensive exercise.

  4. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  5. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of lactate...

  6. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of lactate...

  7. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.

  8. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    PubMed Central

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min-1 (mg protein)-1. By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  9. Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways.

    PubMed

    Contreras, Laura; Satrústegui, Jorgina

    2009-03-13

    Ca2+ signaling in mitochondria has been mainly attributed to Ca2+ entry to the matrix through the Ca2+ uniporter and activation of mitochondrial matrix dehydrogenases. However, mitochondria can also sense increases in cytosolic Ca2+ through a mechanism that involves the aspartate-glutamate carriers, extramitochondrial Ca2+ activation of the NADH malate-aspartate shuttle (MAS). Both pathways are linked through the shared substrate alpha-ketoglutarate (alphaKG). Here we have studied the interplay between the two pathways under conditions of Ca2+ activation. We show that alphaKG becomes limiting when Ca2+ enters in brain or heart mitochondria, but not liver mitochondria, resulting in a drop in alphaKG efflux through the oxoglutarate carrier and in a drop in MAS activity. Inhibition of alphaKG efflux and MAS activity by matrix Ca2+ in brain mitochondria was fully reversible upon Ca2+ efflux. Because of their differences in cytosolic calcium concentration requirements, the MAS and Ca2+ uniporter-mitochondrial dehydrogenase pathways are probably sequentially activated during a Ca2+ transient, and the inhibition of MAS at the center of the transient may provide an explanation for part of the increase in lactate observed in the stimulated brain in vivo.

  10. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    PubMed Central

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  11. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  12. Insufficient filling of vacuum tubes as a cause of microhemolysis and elevated serum lactate dehydrogenase levels. Use of a data-mining technique in evaluation of questionable laboratory test results.

    PubMed

    Tamechika, Yoshie; Iwatani, Yoshinori; Tohyama, Kaoru; Ichihara, Kiyoshi

    2006-01-01

    Experienced physicians noted unexpectedly elevated concentrations of lactate dehydrogenase in some patient samples, but quality control specimens showed no bias. To evaluate this problem, we used a "latent reference individual extraction method", designed to obtain reference intervals from a laboratory database by excluding individuals who have abnormal results for basic analytes other than the analyte in question, in this case lactate dehydrogenase. The reference interval derived for the suspected year was 264-530 U/L, while that of the previous year was 248-495 U/L. The only change we found was the introduction of an order entry system, which requests precise sampling volumes rather than complete filling of vacuum tubes. The effect of vacuum persistence was tested using ten freshly drawn blood samples. Compared with complete filling, 1/5 filling resulted in average elevations of lactate dehydrogenase, aspartic aminotransferase, and potassium levels of 8.0%, 3.8%, and 3.4%, respectively (all p<0.01). Microhemolysis was confirmed using a urine stick method. The length of time before centrifugation determined the degree of hemolysis, while vacuum during centrifugation did not affect it. Microhemolysis is the probable cause of the suspected pseudo-elevation noted by the physicians. Data-mining methodology represents a valuable tool for monitoring long-term bias in laboratory results.

  13. Structure of a fungal form of aspartate semialdehyde dehydrogenase from Cryptococcus neoformans

    PubMed Central

    Dahal, Gopal; Viola, Ronald E.

    2015-01-01

    Aspartate semialdehyde dehydrogenase (ASADH) functions at a critical junction in the aspartate-biosynthetic pathway and represents a valid target for antimicrobial drug design. This enzyme catalyzes the NADPH-dependent reductive dephosphorylation of β-aspartyl phosphate to produce the key intermediate aspartate semialdehyde. Production of this intermediate represents the first committed step in the biosynthesis of the essential amino acids methionine, isoleucine and threonine in fungi, and also the amino acid lysine in bacteria. The structure of a new fungal form of ASADH from Cryptococcus neoformans has been determined to 2.6 Å resolution. The overall structure of CnASADH is similar to those of its bacterial orthologs, but with some critical differences both in biological assembly and in secondary-structural features that can potentially be exploited for the development of species-selective drugs. PMID:26527262

  14. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactate dehydrogenase isoenzymes test system. 862.1445 Section 862.1445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  15. Lactate dehydrogenase activity drives hair follicle stem cell activation

    PubMed Central

    Aimee, Flores; John, Schell; Abby, Krall; David, Jelinek; Matilde, Miranda; Melina, Grigorian; Daniel, Braas; White Andrew, C; Jessica, Zhou; Nick, Graham; Thomas, Graeber; Pankaj, Seth; Denis, Evseenko; Hilary, Coller; Jared, Rutter; Heather, Christofk; Lowry William, E

    2017-01-01

    Summary While normally dormant, Hair Follicle Stem Cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allow them to remain dormant and yet quickly respond to appropriate proliferative stimuli. PMID:28812580

  16. Reference values of blood parameters in beef cattle of different ages and stages of lactation.

    PubMed Central

    Doornenbal, H; Tong, A K; Murray, N L

    1988-01-01

    Reference (normal) values for 12 blood serum components were determined for 48 Shorthorn cows (2-10 years old) and their 48 calves, 357 crossbred cows (12-14 years old), 36 feedlot bulls and 36 feedlot steers. In addition, hemoglobin, hematocrit, triiodothyronine, thyroxine and cortisol levels were determined for the crossbred cows, and feedlot bulls and steers. Reference values were tabulated according to sex, age and stage of lactation. Serum concentrations of urea, total protein and bilirubin, and serum activity of aspartate aminotransferase and lactate dehydrogenase increased with age (P less than 0.05), while calcium, phosphorus and alkaline phosphatase decreased with age (P less than 0.05) from birth to the age of ten years. The Shorthorn cows had the highest levels of glucose at parturition (P less than 0.05) with decreasing levels during lactation. Creatinine concentration decreased during lactation and increased during postweaning. Both lactate dehydrogenase and aspartate aminotransferase levels increased (P less than 0.05) during lactation. Urea and uric acid were present at higher concentrations in lactating than nonlactating cows (P less than 0.05). The values reported, based on a wide age range and large number of cattle, could serve as clinical guides and a basis for further research. PMID:3349406

  17. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio

    PubMed Central

    Ross, Jaime M.; Öberg, Johanna; Brené, Stefan; Coppotelli, Giuseppe; Terzioglu, Mügen; Pernold, Karin; Goiny, Michel; Sitnikov, Rouslan; Kehr, Jan; Trifunovic, Aleksandra; Larsson, Nils-Göran; Hoffer, Barry J.; Olson, Lars

    2010-01-01

    At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes. PMID:21041631

  18. High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio.

    PubMed

    Ross, Jaime M; Öberg, Johanna; Brené, Stefan; Coppotelli, Giuseppe; Terzioglu, Mügen; Pernold, Karin; Goiny, Michel; Sitnikov, Rouslan; Kehr, Jan; Trifunovic, Aleksandra; Larsson, Nils-Göran; Hoffer, Barry J; Olson, Lars

    2010-11-16

    At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes.

  19. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals

    PubMed Central

    Schueren, Fabian; Lingner, Thomas; George, Rosemol; Hofhuis, Julia; Dickel, Corinna; Gärtner, Jutta; Thoms, Sven

    2014-01-01

    Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB is targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit, into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes. DOI: http://dx.doi.org/10.7554/eLife.03640.001 PMID:25247702

  20. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization

    PubMed Central

    Jiang, Tianyi; Guo, Xiaoting; Yan, Jinxin; Zhang, Yingxin; Wang, Yujiao; Zhang, Manman; Sheng, Binbin; Ma, Cuiqing; Xu, Ping

    2017-01-01

    ABSTRACT Bacterial membrane-associated NAD-independent d-lactate dehydrogenase (Fe-S d-iLDH) oxidizes d-lactate into pyruvate. A sequence analysis of the enzyme reveals that it contains an Fe-S oxidoreductase domain in addition to a flavin adenine dinucleotide (FAD)-containing dehydrogenase domain, which differs from other typical d-iLDHs. Fe-S d-iLDH from Pseudomonas putida KT2440 was purified as a His-tagged protein and characterized in detail. This monomeric enzyme exhibited activities with l-lactate and several d-2-hydroxyacids. Quinone was shown to be the preferred electron acceptor of the enzyme. The two domains of the enzyme were then heterologously expressed and purified separately. The Fe-S cluster-binding motifs predicted by sequence alignment were preliminarily verified by site-directed mutagenesis of the Fe-S oxidoreductase domain. The FAD-containing dehydrogenase domain retained 2-hydroxyacid-oxidizing activity, although it decreased compared to the full Fe-S d-iLDH. Compared to the intact enzyme, the FAD-containing dehydrogenase domain showed increased catalytic efficiency with cytochrome c as the electron acceptor, but it completely lost the ability to use coenzyme Q10. Additionally, the FAD-containing dehydrogenase domain was no longer associated with the cell membrane, and it could not support the utilization of d-lactate as a carbon source. Based on the results obtained, we conclude that the Fe-S oxidoreductase domain functions as an electron transfer component to facilitate the utilization of quinone as an electron acceptor by Fe-S d-iLDH, and it helps the enzyme associate with the cell membrane. These functions make the Fe-S oxidoreductase domain crucial for the in vivo d-lactate utilization function of Fe-S d-iLDH. IMPORTANCE Lactate metabolism plays versatile roles in most domains of life. Lactate utilization processes depend on certain enzymes to oxidize lactate to pyruvate. In recent years, novel bacterial lactate-oxidizing enzymes have been

  1. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    PubMed

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  2. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    PubMed

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  3. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae)

    PubMed Central

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2016-01-01

    Testis-specific lactate dehydrogenase (LDH-C4) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4), Lactate Dehydrogenase B4 (LDH-B4), and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L), LDH-B4 (Ki = 23.800 mmol/L), and LDH-C4 (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4. PMID:26751442

  4. Properties of lactate dehydrogenase from the isopod, Saduria entomon.

    PubMed

    Mulkiewicz, E; Zietara, M S; Stachowiak, K; Skorkowski, E F

    2000-07-01

    Saduria entomon lactate dehydrogenase (LDH-A4*) from thorax muscle was purified about 89 fold to specific activity 510 micromol NADH/min/mg using Cibacron Blue 3GA Agarose and Oxamate-Agarose chromatographies. The enzyme is a tetramer, with molecular weight of 140 kDa for the native enzyme and 36 kDa for the subunit. The isoelectric point was at pH 5.7. The enzyme possesses high heat stability (T50 = 71.5 degrees C). The optimum pH for pyruvate reduction reaction was 6.5, while for lactate oxidation one, the maximum activity was at pH 9.1. The Km for pyruvate was minimal at 5 degrees C, the average environmental temperature of the isopod. The Km values determined at 30 degrees C and optimal pH for pyruvate reduction and lactate oxidation were 0.18 and 90.04 mM, respectively. Amino acid compositional analyses showed the strongest resemblance of the isopod isoenzyme to cod (Gadus morhua) LDH-C4.

  5. Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure.

    PubMed

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-24

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of

  6. Salivary lactate dehydrogenase and aminotransferases in diabetic patients

    PubMed Central

    Malicka, Barbara; Skoskiewicz-Malinowska, Katarzyna; Kaczmarek, Urszula

    2016-01-01

    Abstract Diabetes mellitus (DM) is a group of metabolic diseases resulting from impaired insulin secretion and/or action. DM is characterized by hyperglycemia that can lead to the dysfunction or damage of organs, including the salivary glands. The aim of this study was to compare the levels of salivary lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in diabetic patients. The study was approved by the Bioethics Committee of Wroclaw Medical University (Poland). The study comprised 90 adults of both sexes, aged 21 to 57 years. The patients were divided into 3 groups: type 1 diabetics (D1), type 2 diabetics (D2), and a healthy control group (C). Each group consisted of 30 age- and sex-matched subjects. Total protein (P, by Lowry method), LDH, AST, ALT (with Alpha Diagnostics kits), and salivary flow rate were measured in unstimulated mixed saliva. The level of glycosylated hemoglobin (HbA1c) was measured with DCA 2000 Reagent Kit. The obtained data were analyzed using the Mann–Whitney U test and the Spearman rank at a significance level of P < 0.05 with the use of STATISTICA 9.0 software. In comparison with C, D1 presented a significantly higher activity of LDH (P < 0.001), AST (P < 0.001), and ALT (P < 0.01), whereas D2 indicated higher levels of LDH (P < 0.001) and ALT (P < 0.05) compared with C. Comparing D1 to D2, approximately 3-fold higher activity of AST (P < 0.01) and approximately 4.5-fold higher activity of ALT (P < 0.01) was observed. Higher levels of salivary LDH, AST, and ALT in D1 compared with D2 and C confirm that salivary glands of D1 might be attributed to autoimmunological damage associated with the pathomechanism of DM. PMID:27893660

  7. Salivary lactate dehydrogenase and aminotransferases in diabetic patients.

    PubMed

    Malicka, Barbara; Skoskiewicz-Malinowska, Katarzyna; Kaczmarek, Urszula

    2016-11-01

    Diabetes mellitus (DM) is a group of metabolic diseases resulting from impaired insulin secretion and/or action. DM is characterized by hyperglycemia that can lead to the dysfunction or damage of organs, including the salivary glands.The aim of this study was to compare the levels of salivary lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in diabetic patients.The study was approved by the Bioethics Committee of Wroclaw Medical University (Poland). The study comprised 90 adults of both sexes, aged 21 to 57 years. The patients were divided into 3 groups: type 1 diabetics (D1), type 2 diabetics (D2), and a healthy control group (C). Each group consisted of 30 age- and sex-matched subjects. Total protein (P, by Lowry method), LDH, AST, ALT (with Alpha Diagnostics kits), and salivary flow rate were measured in unstimulated mixed saliva. The level of glycosylated hemoglobin (HbA1c) was measured with DCA 2000 Reagent Kit. The obtained data were analyzed using the Mann-Whitney U test and the Spearman rank at a significance level of P < 0.05 with the use of STATISTICA 9.0 software.In comparison with C, D1 presented a significantly higher activity of LDH (P < 0.001), AST (P < 0.001), and ALT (P < 0.01), whereas D2 indicated higher levels of LDH (P < 0.001) and ALT (P < 0.05) compared with C. Comparing D1 to D2, approximately 3-fold higher activity of AST (P < 0.01) and approximately 4.5-fold higher activity of ALT (P < 0.01) was observed.Higher levels of salivary LDH, AST, and ALT in D1 compared with D2 and C confirm that salivary glands of D1 might be attributed to autoimmunological damage associated with the pathomechanism of DM.

  8. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis).

    PubMed

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-03-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×10(5) cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology.

  9. Purification, properties and immunological relationship of L (+)-lactate dehydrogenase from Lactobacillus casei.

    PubMed

    Gordon, G L; Doelle, H W

    1976-08-16

    The fructose-1,6-bisphosphate-activated L-lactate dehydrogenase (EC 1.1.1.27) from Lactobacillus casei ATCC 393 has been purified to homogenity by including affinity chromatography (cibacronblue-Sephadex-G-200) and preparative polyacrylamide gel electrophoresis into the purification procedures. The enzyme has an Mr of 132000-135000 with a subunit Mr of 34000. The pH optimum was found to be 5.4 insodium acetate buffer. Tris/maleate and citrate/phosphate buffers inhibited enzyme activity at this pH. The enzyme was completely inactivated by a temperature increase from 60 degrees C to 70 degrees C. Pyruvate saturation curves were sigmoidal in the absence of fructose 1,6-bisphosphate. In the presence of 20 muM fructose 1,6-bisphosphate a Km of 1.0 mM for pyruvate was obtained, whereas fructose 1,6-bisphosphate had no effect on the Km of 0.01 mM for NADH. The use of pyruvate analogues revealed two types of pyruvate binding sites, a catalytic and an effector site. The enzyme from L. casei appears to be subject to strict metabolic control, since ADP, ATP, dihydroxyacetone phosphate and 6-phosphogluconate are strong inhibitors. Immunodiffusion experiments with a rabbit antiserum to L. casei lactate dehydrogenase revealed that L. casei ATCC 393 L (+)-lactate dehydrogenase is probably not immunologically related to group D and group N streptococci. Of 24 lactic acid bacterial strains tested only 5 strains did cross-react: L. casei ATCC 393 = L. casei var. rhamnosus ATCC 7469 - L. casei var. alactosus NCDO 680 greater than L. casei UQM 95 greater than L. plantarum ATCC 14917.

  10. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Ng, Chiam Yu; Song, Hyohak; Lee, Jinwon; Oh, Min-Kyu

    2012-07-01

    2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.

  11. Diammonium phosphate stimulates transcription of L-lactate dehydrogenase leading to increased L-lactate production in the thermotolerant Bacillus coagulans strain.

    PubMed

    Sun, Lifan; Li, Yanfeng; Wang, Limin; Wang, Yanping; Yu, Bo

    2016-08-01

    Exploration of cost-effective fermentation substrates for efficient lactate production is an important economic objective. Although some organic nitrogen sources are also cheaper, inorganic nitrogen salts for lactate fermentation have additional advantages in facilitating downstream procedures and significantly improving the commercial competitiveness of lactate production. In this study, we first established an application of diammonium phosphate to replace yeast extract with a reduced 90 % nitrogen cost for a thermotolerant Bacillus coagulans strain. In vivo enzymatic and transcriptional analyses demonstrated that diammonium phosphate stimulates the gene expression of L-lactate dehydrogenase, thus providing higher specific enzyme activity in vivo and increasing L-lactic acid production. This new information provides a foundation for establishing a cost-effective process for polymer-grade L-lactic acid production in an industrial setting.

  12. Hepatic lipidosis in anorectic, lactating holstein cattle: a retrospective study of serum biochemical abnormalities.

    PubMed

    Cebra, C K; Garry, F B; Getzy, D M; Fettman, M J

    1997-01-01

    The association between hepatic lipidosis (HL) and disease in 59 anorectic, ketotic, lactating Holstein heifers and cows was investigated. Severe HL, as determined by histologic evaluation of liver tissue, was present in 46 animals; only half of these animals required intensive treatment for ketosis, and only half had serum biochemical evidence of liver disease, as determined by the presence of a last value of 2-fold or greater than the upper limit of the reference ranges for at least 2 of the 4 serum tests: gamma-glutamyl transferase, aspartate aminotransferase, and sorbitol dehydrogenase activities and bile acid concentrations. Most cattle with biochemical evidence of liver disease and severe HL had been lactating for 14 or more days. Cows that required intensive treatment inconsistently had serum biochemical evidence of liver disease. Although cattle with severe HL had significantly higher serum bilirubin concentrations and aspartate aminotransferase and sorbitol dehydrogenase activities than cattle with less severe lipidosis, the specificity of abnormally high serum sorbitol dehydrogenase activity or bilirubin concentration for severe lipidosis was only 8%. Abnormally high serum aspartate aminotransferase activity was 83% sensitive and 62% specific for severe lipidosis. Serum glucose and total carbon dioxide concentrations were significantly lower in cattle with severe lipidosis than in those with mild or moderate lipidosis, and low serum glucose or total carbon dioxide concentrations were rare in cattle without severe lipidosis. From these data, we conclude that the use of a single biochemical or histopathologic criterion to define severity of disease or degree of liver compromise in anorectic, ketotic cows results in the misidentification of many animals.

  13. [Characterization of D-lactate dehydrogenase isozymes from a D-lactic acid producing bacterium Sporolactobacillus inulinus].

    PubMed

    Zhang, Danru; Zheng, Lu; Wu, Bin; He, Bingfang

    2016-11-04

    Sporolactobacillus inulinus, a typical homofermentative lactic acid bacterium, is an efficient D-lactic acid producer. Various environment factors affect the productivity of S. inulinus. Glucokinase, phosphofructokinase, pyruvate kinase and lactic dehydrogenase are the key enzymes of D-lactic acid production from glucose by S. inulinus. The characteristics of these enzymes are important in controlling and regulating the fermentation process. According to the genome bioinformatics analysis of S. inulinus CASD, three putative D-lactate dehydrogenases were identified, among which the bifunctional protein had been reported. In this study, we provided insights into the characteristics of the other two D-lactate dehydrogenase isozymes. S. inulinus Y2-8 genome was used as the template to amplify D-lactate dehydrogenase gene (dldh) and D-isomer specific 2-hydroxyacid dehydrogenase gene (dhdh). The two recombinant strains E-pET-28a/dldh and E-pET-28a/dhdh were constructed for enzyme expression. Both recombinants DLDH and DHDH could convert pyruvic acid into D-lactic acid. Enzymes expressed by recombinant strains were purified by Ni-NTA chromatography. The apparent molecular mass of DLDH was approximately 37 kDa by SDS-PAGE analysis, and DLDH showed a high affinity to pyruvate with the Km value of (0.58±0.04) mmol/L. The optimal reaction temperature and pH for DLDH was 35℃ and 6.5, respectively. The apparent molecular mass of DHDH was approximately 39 kDa, and the Km of DHDH toward pyruvate was (1.70±0.08) mmol/L. The optimum catalysis temperature and pH of DHDH were 30℃ and 7.5, respectively. According to the Km and optimal reaction pH, DLDH was suggested as the main catalyst in formation D-lactic acid from pyruvate during the fermentation. The enzymatic properties would contribute to the regulation of the fermentation of S. inulinus.

  14. Relationship of creatine kinase, aspartate aminotransferase, lactate dehydrogenase, and proteinuria to cardiomyopathy in the owl monkey (Aotus vociferans)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gozalo, Alfonso S.; Chavera, Alfonso; Montoya, Enrique J.

    2008-02-01

    The purpose of this study was to determine serum reference values for crea- tine kinase (CK), aspartate aminotransferase (AST), and lactate dehydroge- nase (LDH) in captive-born and wild-caught owl monkeys to assess their usefulness for diagnosing myocardial disease. Urine samples were also collected and semi-quantitative tests performed. There was no statistically significant difference between CK, AST, and LDH when comparing both groups. However, when comparing monkeys with proteinuria to those without proteinuria, a statistically significant difference in CK value was observed (P = 0.021). In addition, the CK/AST ratio revealed that 29% of the animals included in this study hadmore » values suggesting cardiac infarction. Grossly, cardiac concentric hypertrophy of the left ventricle and small, pitted kidneys were the most common findings. Microscopically, myocardial fibrosis, contraction band necrosis, hypertrophy and hyperplasia of coronary arteries, medium-sized renal arteries, and afferent glomerular arteriolae were the most significant lesions, along with increased mesangial matrix and hypercellularity of glomeruli, Bowman’s capsule, and peritubular space fibroplasia. These findings suggest that CK, AST, and LDH along with urinalysis provide a reliable method for diagnosing cardiomyopathies in the owl monkey. In addition, CK/AST ratio, proteinuria, and the observed histological and ultrastructural changes suggest that Aotus vociferans suffer from arterial hypertension and chronic myocardial infarction.« less

  15. Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors.

    PubMed

    Kohlmann, Anna; Zech, Stephan G; Li, Feng; Zhou, Tianjun; Squillace, Rachel M; Commodore, Lois; Greenfield, Matthew T; Lu, Xiaohui; Miller, David P; Huang, Wei-Sheng; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Zhang, Sen; Dodd, Rory; Liu, Shuangying; Xu, Rongsong; Xu, Yongjin; Miret, Juan J; Rivera, Victor; Clackson, Tim; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C

    2013-02-14

    Lactate dehydrogenase A (LDH-A) catalyzes the interconversion of lactate and pyruvate in the glycolysis pathway. Cancer cells rely heavily on glycolysis instead of oxidative phosphorylation to generate ATP, a phenomenon known as the Warburg effect. The inhibition of LDH-A by small molecules is therefore of interest for potential cancer treatments. We describe the identification and optimization of LDH-A inhibitors by fragment-based drug discovery. We applied ligand based NMR screening to identify low affinity fragments binding to LDH-A. The dissociation constants (K(d)) and enzyme inhibition (IC(50)) of fragment hits were measured by surface plasmon resonance (SPR) and enzyme assays, respectively. The binding modes of selected fragments were investigated by X-ray crystallography. Fragment growing and linking, followed by chemical optimization, resulted in nanomolar LDH-A inhibitors that demonstrated stoichiometric binding to LDH-A. Selected molecules inhibited lactate production in cells, suggesting target-specific inhibition in cancer cell lines.

  16. A Bacillus subtilis malate dehydrogenase gene.

    PubMed Central

    Jin, S; De Jesús-Berríos, M; Sonenshein, A L

    1996-01-01

    A Bacillus subtilis gene for malate dehydrogenase (citH) was found downstream of genes for citrate synthase and isocitrate dehydrogenase. Disruption of citH caused partial auxotrophy for aspartate and a requirement for aspartate during sporulation. In the absence of aspartate, citH mutant cells were blocked at a late stage of spore formation. PMID:8550482

  17. Ultrafiltration-LC-MS combined with semi-preparative HPLC for the simultaneous screening and isolation of lactate dehydrogenase inhibitors from Belamcanda chinensis.

    PubMed

    Li, Senlin; Li, Sainan; Tang, Ying; Liu, Chunming; Chen, Lina; Zhang, Yuchi

    2016-12-01

    Stroke represents the fourth leading cause of death in the USA and the second leading cause of death worldwide. Lactate dehydrogenase inhibitors are widely used in the treatment of ischemic stroke and natural products are considered a promising source of novel lactate dehydrogenase inhibitors. In this study, we used PC12 cells to determine the protective effect of extracts from the herb Belamcanda chinensis following toxic challenge. Using ultrafiltration high-performance liquid chromatography coupled with photo-diode array detection and electrospray ionization mass spectrometry, we screened and identified isoflavonoids from Belamcanda chinensis extracts. Semi-preparative high-performance liquid chromatography was then applied to separate and isolate the active constituents. Using these methods, we identified six major compounds in Belamcanda chinensis as lactate dehydrogenase inhibitors: tectoridin, iristectorin A, iridin, tectorigenin, irigenin, and irisflorentin, which were then isolated to >92% purity. This is the first report that Belamcanda chinensis extracts contain potent lactate dehydrogenase inhibitors. Our results demonstrate that the systematic isolation of bioactive components from Belamcanda chinensis guided by ultrafiltration high-performance liquid chromatography coupled with photo-diode array detection and electrospray ionization mass spectrometry represents a feasible and efficient technique that could be extended for the identification and isolation of other enzyme inhibitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Baseline Serum Clinical Chemistry Values in African Green Monkeys Before and After Sulfur Mustard

    DTIC Science & Technology

    2007-05-01

    aspartate transaminase (189 %), blood urea nitrogen (75 %), creatine kinase (721 %), and lactate dehydrogenase (114 %) one day after HD exposure...ALT, 93 %), aspartate transaminase (AST, 189 %), blood urea nitrogen (BUN, 75 %), creatine kinase (CK, 721 %), and lactate dehydrogenase (LDH, 114...alkaline phosphate (ALP), alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), calcium (Ca2+), creatine kinase (CK

  19. Some Lactobacillus l-Lactate Dehydrogenases Exhibit Comparable Catalytic Activities for Pyruvate and Oxaloacetate

    PubMed Central

    Arai, Kazuhito; Kamata, Takeo; Uchikoba, Hiroyuki; Fushinobu, Shinya; Matsuzawa, Hiroshi; Taguchi, Hayao

    2001-01-01

    The nonallosteric and allosteric l-lactate dehydrogenases of Lactobacillus pentosus and L. casei, respectively, exhibited broad substrate specificities, giving virtually the same maximal reaction velocity and substrate Km values for pyruvate and oxaloacetate. Replacement of Pro101 with Asn reduced the activity of the L. pentosus enzyme toward these alternative substrates to a greater extent than the activity toward pyruvate. PMID:11114942

  20. Increasing the Heme-Dependent Respiratory Efficiency of Lactococcus lactis by Inhibition of Lactate Dehydrogenase

    PubMed Central

    Arioli, Stefania; Zambelli, Daniele; Guglielmetti, Simone; De Noni, Ivano; Pedersen, Martin B.; Pedersen, Per Dedenroth; Dal Bello, Fabio

    2013-01-01

    The discovery of heme-induced respiration in Lactococcus lactis has radically improved the industrial processes used for the biomass production of this species. Here, we show that inhibition of the lactate dehydrogenase activity of L. lactis during growth under respiration-permissive conditions can stimulate aerobic respiration, thereby increasing not only growth efficiency but also the robustness of this organism. PMID:23064338

  1. LDHk, an unusual oxygen-sensitive lactate dehydrogenase expressed in human cancer.

    PubMed Central

    Anderson, G R; Kovacik, W P

    1981-01-01

    An unusual isozyme of lactate dehydrogenase (LDH; L-lactate:NAD+ oxidoreductase, EC 1.1.1.27), LDHk, has been described in cells transformed by the Kirsten murine sarcoma virus (KiMSV). This isozyme appears to contain one or more subunits encoded by the transforming gene of KiMSV and is readily distinguished from other isozymes of LDH. Specifically, it is more basic than other LDH isozymes, has an apparent subunit structure of (35,000)4(22,000)1, is essentially inactive if assayed under a normal atmosphere, and is strongly inhibited by GTP and various related compounds. We have examined human cancer and normal tissue controls for expression of an activity like LDHk. In 11 out of 16 human carcinomas, LDHk activity was increased 10- to 500-fold over the level seen in adjoining nontumor tissue. In contrast, other LDH isozymes were increased by only 2- to 5-fold. Images PMID:6942426

  2. Purification and Electrophoretic Characterization of Lactate Dehydrogenase from Mammalian Blood: A Different Twist on a Classic Experiment

    ERIC Educational Resources Information Center

    Brunauer, Linda S.

    2016-01-01

    A multiweek protein purification suite, suitable for upper-division biochemistry or biotechnology undergraduate students, is described. Students work in small teams to isolate the enzyme lactate dehydrogenase (LDH) from a nontraditional tissue source, mammalian blood, using a sequence of three column chromatographic procedures: ion-exchange, size…

  3. Purification, crystallization and preliminary X-ray diffraction analysis of aspartate semialdehyde dehydrogenase (Rv3708c) from Mycobacterium tuberculosis

    PubMed Central

    Vyas, Rajan; Kumar, Vijay; Panjikar, Santosh; Karthikeyan, Subramanian; Kishan, K. V. Radha; Tewari, Rupinder; Weiss, Manfred S.

    2008-01-01

    Aspartate semialdehyde dehydrogenase from Mycobacterium tuberculosis (Asd, ASADH, Rv3708c), which is the second enzyme in the lysine/homoserine-biosynthetic pathways, has been expressed heterologously in Escherichia coli. The enzyme was purified using affinity and gel-filtration chromatographic techniques and crystallized in two different crystal forms. Preliminary diffraction data analysis suggested the presence of up to four monomers in the asymmetric unit of the orthorhombic crystal form A and of one or two monomers in the cubic crystal form B. PMID:18323599

  4. Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment.

    PubMed

    Di Stefano, Giuseppina; Manerba, Marcella; Di Ianni, Lorenza; Fiume, Luigi

    2016-04-01

    Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition. The rationale for targeting LDH activity in these contexts is the same justifying the LDH-based approach in anticancer therapy: because of the enzyme position at the end of glycolytic pathway, LDH inhibitors are not expected to hinder glucose metabolism of normal cells. Moreover, we will summarize the latest contributions in the discovery of enzyme inhibitors and try to glance over the reasons underlying the complexity of this research.

  5. l-Lactate metabolism in HEP G2 cell mitochondria due to the l-lactate dehydrogenase determines the occurrence of the lactate/pyruvate shuttle and the appearance of oxaloacetate, malate and citrate outside mitochondria.

    PubMed

    Pizzuto, Roberto; Paventi, Gianluca; Porcile, Carola; Sarnataro, Daniela; Daniele, Aurora; Passarella, Salvatore

    2012-09-01

    As part of an ongoing study of l-lactate metabolism both in normal and in cancer cells, we investigated whether and how l-lactate metabolism occurs in mitochondria of human hepatocellular carcinoma (Hep G2) cells. We found that Hep G2 cell mitochondria (Hep G2-M) possess an l-lactate dehydrogenase (ml-LDH) restricted to the inner mitochondrial compartments as shown by immunological analysis, confocal microscopy and by assaying ml-LDH activity in solubilized mitochondria. Cytosolic and mitochondrial l-LDHs were found to differ from one another in their saturation kinetics. Having shown that l-lactate itself can enter Hep G2 cells, we found that Hep G2-M swell in ammonium l-lactate, but not in ammonium pyruvate solutions, in a manner inhibited by mersalyl, this showing the occurrence of a carrier-mediated l-lactate transport in these mitochondria. Occurrence of the l-lactate/pyruvate shuttle and the appearance outside mitochondria of oxaloacetate, malate and citrate arising from l-lactate uptake and metabolism together with the low oxygen consumption and membrane potential generation are in favor of an anaplerotic role for l-LAC in Hep G2-M. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Synthesis and evaluation of conformationally restricted inhibitors of aspartate semialdehyde dehydrogenase.

    PubMed

    Evitt, Andrew S; Cox, Russell J

    2011-05-01

    Inhibitors of the enzyme aspartate semialdehyde dehydrogenase, a key biological target for the generation of a new class of antibiotic compounds, have been developed. To investigate improvements to binding within an inhibitor series, the lowering of the entropic barrier to binding through conformational restriction was investigated. A library of linear and cyclic substrate analogues was generated and computational docking used to aid in structure selection. The cyclic phosphonate inhibitor 18 was thus identified as complimentary to the enzyme active-site. Synthesis and in vitro inhibition assay revealed a K(i) of 3.8 mM against natural substrate, where the linear analogue of 18, compound 15, had previously shown no inhibitory activity. Two further inhibitors, phosphate analogue diastereoisomers 17a and 17b, were synthesised and also found to have low millimolar K(i) values. As a result of the computational docking investigations, a novel substrate binding interaction was discovered: hydrogen bonding between the substrate (phosphate hydroxy-group as the hydrogen bond donor) and the NADPH cofactor (2'-oxygen as the hydrogen bond acceptor).

  7. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells.

    PubMed

    Noh, Soo Min; Park, Jin Hyoung; Lim, Myung Sin; Kim, Jong Won; Lee, Gyun Min

    2017-02-01

    Chinese hamster ovary (CHO) cell cultivation for production of therapeutic proteins is accompanied by production of metabolic wastes, mostly ammonia and lactate. To reduce ammonia production, the glutamine synthetase (GS) system was used to develop therapeutic monoclonal antibody (mAb)-producing CHO cells (SM-0.025). Additionally, the lactate dehydrogenase-A (LDH-A) was downregulated with shRNA to reduce lactate production in SM-0.025. The resulting mAb-producing cell lines (#2, #46, and #52) produced less ammonia than the host cell line during the exponential phase due to GS protein overexpression. LDH-A downregulation in SM-0.025 not only reduced lactate production but also further reduced ammonia production. Among the three LDH-A-downregulated clones, clone #2 had the highest mAb production along with significantly reduced specific lactate and ammonia production rates compared to those in SM-0.025. Waste reduction increased the galactosylation level of N-glycosylation, which improved mAb quality. LDH-A downregulation was also successfully applied to the host cell lines (CHO K1 and GS knockout CHO-K1). However, LDH-A downregulated host cells could not survive the pool-selection process wherein glutamine was excluded and methionine sulfoximine was added to the media. Taken together, LDH-A downregulation in the mAb-producing cell line generated with the GS system successfully reduced both ammonia and lactate levels, improving mAb galactosylation. However, LDH-A downregulation could not be applied to host cell lines because it hampered the selection process of the GS system.

  8. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors.

    PubMed

    Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E

    2015-10-15

    Aspartate-β-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Core of Allosteric Motion in Thermus caldophilus l-Lactate Dehydrogenase*

    PubMed Central

    Ikehara, Yoko; Arai, Kazuhito; Furukawa, Nayuta; Ohno, Tadashi; Miyake, Tatsuya; Fushinobu, Shinya; Nakajima, Masahiro; Miyanaga, Akimasa; Taguchi, Hayao

    2014-01-01

    For Thermus caldophilus l-lactate dehydrogenase (TcLDH), fructose 1,6-bisphosphate (FBP) reduced the pyruvate S0.5 value 103-fold and increased the Vmax value 4-fold at 30 °C and pH 7.0, indicating that TcLDH has a much more T state-sided allosteric equilibrium than Thermus thermophilus l-lactate dehydrogenase, which has only two amino acid replacements, A154G and H179Y. The inactive (T) and active (R) state structures of TcLDH were determined at 1.8 and 2.0 Å resolution, respectively. The structures indicated that two mobile regions, MR1 (positions 172–185) and MR2 (positions 211–221), form a compact core for allosteric motion, and His179 of MR1 forms constitutive hydrogen bonds with MR2. The Q4(R) mutation, which comprises the L67E, H68D, E178K, and A235R replacements, increased Vmax 4-fold but reduced pyruvate S0.5 only 5-fold in the reaction without FBP. In contrast, the P2 mutation, comprising the R173Q and R216L replacements, did not markedly increase Vmax, but 102-reduced pyruvate S0.5, and additively increased the FBP-independent activity of the Q4(R) enzyme. The two types of mutation consistently increased the thermal stability of the enzyme. The MR1-MR2 area is a positively charged cluster, and its center approaches another positively charged cluster (N domain cluster) across the Q-axis subunit interface by 5 Å, when the enzyme undergoes the T to R transition. Structural and kinetic analyses thus revealed the simple and unique allosteric machinery of TcLDH, where the MR1-MR2 area pivotally moves during the allosteric motion and mediates the allosteric equilibrium through electrostatic repulsion within the protein molecule. PMID:25258319

  10. The diagnostic significance of lactate dehydrogenase isoenzymes in urinary cytology.

    PubMed Central

    Nishikawa, A.; Tanaka, T.; Takeuchi, T.; Fujihiro, S.; Mori, H.

    1991-01-01

    Lactate dehydrogenase (LDH) isoenzyme distribution was examined in 106 urine samples being tested cytologically for evidence of bladder cancer; the samples were selected to have less than 20 leucocytes and erythrocytes per high power field and the LDH pattern determined by electrophoresis. The Papanicolaou stained-smears showed 68 negative, 17 suspicious and 21 positive. The LDH M-fraction of the urinary supernatant in cytologically positive cases was significantly greater than in negative cases, although the latter included a few false negative samples. Some of the false negatives gave positive results for the LDH M-fraction; these results suggest that the determination of LDH isoenzymes in the urine is useful in diagnosing urinary tract cancers, including early stage, and for follow-up of patients with bladder cancers after surgical resection. PMID:2039708

  11. Evidence of lactate dehydrogenase-B allozyme effects in the teleost, Fundulus heteroclitus.

    PubMed

    DiMichele, L; Paynter, K T; Powers, D A

    1991-08-23

    The evolutionary significance of protein polymorphisms has long been debated. Exponents of the balanced theory advocate that selection operates to maintain polymorphisms, whereas the neoclassical school argues that most genetic variation is neutral. Some studies have suggested that protein polymorphisms are not neutral, but their significance has been questioned because one cannot eliminate the possibility that linked loci were responsible for the observed differences. Evidence is presented that an enzymatic phenotype can affect carbon flow through a metabolic pathway. Glucose flux differences between lactate dehydrogenase-B phenotypes of Fundulus heteroclitus were reversed by substituting the Ldh-B gene product of one homozygous genotype with that of another.

  12. Empirical evaluation of a virtual laboratory approach to teach lactate dehydrogenase enzyme kinetics.

    PubMed

    Booth, Christine; Cheluvappa, Rajkumar; Bellinson, Zack; Maguire, Danni; Zimitat, Craig; Abraham, Joyce; Eri, Rajaraman

    2016-06-01

    Personalised instruction is increasingly recognised as crucial for efficacious learning today. Our seminal work delineates and elaborates on the principles, development and implementation of a specially-designed adaptive, virtual laboratory. We strived to teach laboratory skills associated with lactate dehydrogenase (LDH) enzyme kinetics to 2nd-year biochemistry students using our adaptive learning platform. Pertinent specific aims were to:(1)design/implement a web-based lesson to teach lactate dehydrogenase(LDH) enzyme kinetics to 2nd-year biochemistry students(2)determine its efficacious in improving students' comprehension of enzyme kinetics(3)assess their perception of its usefulness/manageability(vLab versus Conventional Tutorial). Our tools were designed using HTML5 technology. We hosted the program on an adaptive e-learning platform (AeLP). Provisions were made to interactively impart informed laboratory skills associated with measuring LDH enzyme kinetics. A series of e-learning methods were created. Tutorials were generated for interactive teaching and assessment. The learning outcomes herein were on par with that from a conventional classroom tutorial. Student feedback showed that the majority of students found the vLab learning experience "valuable"; and the vLab format/interface "well-designed". However, there were a few technical issues with the 1st roll-out of the platform. Our pioneering effort resulted in productive learning with the vLab, with parity with that from a conventional tutorial. Our contingent discussion emphasises not only the cornerstone advantages, but also the shortcomings of the AeLP method utilised. We conclude with an astute analysis of possible extensions and applications of our methodology.

  13. Age related rise in lactate and its correlation with lactate dehydrogenase (LDH) status in post-mitochondrial fractions isolated from different regions of brain in mice.

    PubMed

    Datta, Siddhartha; Chakrabarti, Nilkanta

    2018-04-18

    Rise in brain lactate is the hallmark of ageing. Separate studies report that ageing is associated with elevation of lactate level and alterations of lactate dehydrogenase (LDH)-A/B mRNA-expression-ratio in cerebral cortex and hippocampus. However, age related lactate rise in brain and its association with LDH status and their brain regional variations are still elusive. In the present study, level of lactate, LDH (A and B) activity and LDH-A expression were evaluated in post-mitochondrial fraction of tissues isolated from four different brain regions (cerebral cortex, hippocampus, substantia nigra and cerebellum) of young and aged mice. Lactate levels elevated in four brain regions with maximum rise in substantia nigra of aged mice. LDH-A protein expression and its activity decreased in cerebral cortex, hippocampus and substantia nigra without any changes of these parameters in cerebellum of aged mice. LDH-B activity decreased in hippocampus, substantia nigra and cerebellum whereas its activity remains unaltered in cerebral cortex of aged mice. Accordingly, the ratio of LDH-A/LDH-B-activity remains unaltered in hippocampus and substantia nigra, decreased in cerebral cortex and increased in cerebellum. Therefore, rise of lactate in three brain regions (cerebral cortex, hippocampus, substantia nigra) appeared to be not correlated with the alterations of its regulatory enzymes activities in these three brain regions, rather it supports the fact of involvement of other mechanisms, like lactate transport and/or aerobic/anaerobic metabolism as the possible cause(s) of lactate rise in these three brain regions. The increase in LDH-A/LDH-B-activity-ratio appeared to be positively correlated with elevated lactate level in cerebellum of aged mice. Overall, the present study indicates that the mechanism of rise in lactate in brain varies with brain regions where LDH status plays an important role during ageing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Resting oxygen consumption varies among lactate dehydrogenase genotypes in the sow bug, Porcellio scaber

    PubMed Central

    Mitton, J. B.; Carter, P. A.; DiGiacomo, A.

    1997-01-01

    Laboratory studies of respiration in the sow bug, Porcellio scaber, reveal that respiration rates are related to genetic variation at the lactate dehydrogenase (Ldh) locus. In population samples taken from Burlington, North Carolina and Pacific Grove, California, respiration rates differed among Ldh genotypes, but not among genotypes at the other enzyme polymorphisms. In both population samples, the respiration rate of the common Ldh homozygote exceeded the respiration rate of the heterozygote by more than 50 per cent. The differences in respiration rates are consistent with previously reported viability differentials at the Ldh polymorphism.

  15. Protein methylation as a marker of aspartate damage in glucose-6-phosphate dehydrogenase-deficient erythrocytes: role of oxidative stress.

    PubMed

    Ingrosso, Diego; Cimmino, Amelia; D'Angelo, Stefania; Alfinito, Fiorella; Zappia, Vincenzo; Galletti, Patrizia

    2002-04-01

    The 'Mediterranean' variant of glucose-6-phosphate dehydrogenase (G6PD) deficiency is due to the C563CT point mutation, leading to replacement of Ser with Phe at position 188, resulting in acute haemolysis triggered by oxidants. Previous work has shown increased formation of altered aspartate residues in membrane proteins during cell ageing and in response to oxidative stress in normal erythrocytes. These abnormal residues are specifically recognized by the repair enzyme L-isoaspartate (d-aspartate) protein O-methyltransferase (PCMT; EC 2.1.1.77). The aim of this work was to study the possible involvement of protein aspartate damage in the mechanism linking the G6PD defect and erythrocyte injury, through oxidative stress. Patients affected by G6PD deficiency (Mediterranean variant) were selected. In situ methylation assays were performed by incubating intact erythrocytes in the presence of methyl-labelled methionine. Altered aspartate residues were detected in membrane proteins by methyl ester quantification. We present here evidence that, in G6PD-deficient erythrocytes, damaged residues are significantly increased in membrane proteins, in parallel with the decay of pyruvate kinase activity, used as a cell age marker. Erythrocytes from patients were subjected to oxidative stress in vitro, by treatment with t-butylhydroperoxide, monitored by a rise in concentration of both methaemoglobin and thiobarbituric acid-reactive substances. L-Isoaspartate residues increased dramatically in G6PD-deficient erythrocytes in response to such treatment, compared with baseline conditions. The increased susceptibility of G6PD-deficient erythrocytes to membrane protein aspartate damage in response to oxidative stress suggests the involvement of protein deamidation/isomerization in the mechanisms of cell injury and haemolysis.

  16. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.

    PubMed

    Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong

    2015-08-01

    Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH.

  17. Examination of key intermediates in the catalytic cycle of aspartate-beta-semialdehyde dehydrogenase from a gram-positive infectious bacteria.

    PubMed

    Faehnle, Christopher R; Le Coq, Johanne; Liu, Xuying; Viola, Ronald E

    2006-10-13

    Aspartate-beta-semialdehyde dehydrogenase (ASADH) catalyzes a critical branch point transformation in amino acid bio-synthesis. The products of the aspartate pathway are essential in microorganisms, and this entire pathway is absent in mammals, making this enzyme an attractive target for antibiotic development. The first structure of an ASADH from a Gram-positive bacterium, Streptococcus pneumoniae, has now been determined. The overall structure of the apoenzyme has a similar fold to those of the Gram-negative and archaeal ASADHs but contains some interesting structural variations that can be exploited for inhibitor design. Binding of the coenzyme NADP, as well as a truncated nucleotide analogue, into an alternative conformation from that observed in Gram-negative ASADHs causes an enzyme domain closure that precedes catalysis. The covalent acyl-enzyme intermediate was trapped by soaking the substrate into crystals of the coenzyme complex, and the structure of this elusive intermediate provides detailed insights into the catalytic mechanism.

  18. Novel model of neuronal bioenergetics: postsynaptic utilization of glucose but not lactate correlates positively with Ca2+ signalling in cultured mouse glutamatergic neurons.

    PubMed

    Bak, Lasse K; Obel, Linea F; Walls, Anne B; Schousboe, Arne; Faek, Sevan A A; Jajo, Farah S; Waagepetersen, Helle S

    2012-04-05

    We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate)-induced synaptic activity and that lactate alone is not able to support neurotransmitter glutamate homoeostasis. Subsequently, a model was proposed to explain these results at the cellular level. In brief, the intermittent rises in intracellular Ca2+ during activation cause influx of Ca2+ into the mitochondrial matrix thus activating the tricarboxylic acid cycle dehydrogenases. This will lead to a lower activity of the MASH (malate-aspartate shuttle), which in turn will result in anaerobic glycolysis and lactate production rather than lactate utilization. In the present work, we have investigated the effect of an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity) on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose utilization is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based on the results, we propose a compartmentalized CiMASH (Ca2+-induced limitation of the MASH) model that includes intracellular compartmentation of glucose and lactate metabolism. We define pre- and post-synaptic compartments metabolizing glucose and glucose plus lactate respectively in which the latter displays a positive correlation between oxidative metabolism of glucose and Ca2+ signalling.

  19. Overproduction and nucleotide sequence of the respiratory D-lactate dehydrogenase of Escherichia coli.

    PubMed Central

    Rule, G S; Pratt, E A; Chin, C C; Wold, F; Ho, C

    1985-01-01

    Recombinant DNA plasmids containing the gene for the membrane-bound D-lactate dehydrogenase (D-LDH) of Escherichia coli linked to the promoter PL from lambda were constructed. After induction, the levels of D-LDH were elevated 300-fold over that of the wild type and amounted to 35% of the total cellular protein. The nucleotide sequence of the D-LDH gene was determined and shown to agree with the amino acid composition and the amino-terminal sequence of the purified enzyme. Removal of the amino-terminal formyl-Met from D-LDH was not inhibited in cells which contained these high levels of D-LDH. Images PMID:3882663

  20. Analysis of the Mycoplasma bovis lactate dehydrogenase reveals typical enzymatic activity despite the presence of an atypical catalytic site motif.

    PubMed

    Masukagami, Yumiko; Tivendale, Kelly Anne; Browning, Glenn Francis; Sansom, Fiona Margaret

    2018-02-01

    The lactate dehydrogenase (LDH) of Mycoplasma genitalium has been predicted to also act as a malate dehydrogenase (MDH), but there has been no experimental validation of this hypothesized dual function for any mollicute. Our analysis of the metabolite profile of Mycoplasma bovis using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) detected malate, suggesting that there may be MDH activity in M. bovis. To investigate whether the putative l-LDH enzyme of M. bovis has a dual function (MDH and LDH), we performed bioinformatic and functional biochemical analyses. Although the amino acid sequence and predicted structural analysis of M. bovisl-LDH revealed unusual residues within the catalytic site, suggesting that it may have the flexibility to possess a dual function, our biochemical studies using recombinant M. bovis -LDH did not detect any MDH activity. However, we did show that the enzyme has typical LDH activity that could be inhibited by both MDH substrates oxaloacetate (OAA) and malate, suggesting that these substrates may be able to bind to M. bovis LDH. Inhibition of the conversion of pyruvate to lactate by OAA may be one method the mycoplasma cell uses to reduce the potential for accumulation of intracellular lactate.

  1. Interaction of cytoplasmic dehydrogenases: quantitation of pathways of ethanol metabolism.

    PubMed

    Vind, C; Grunnet, N

    1983-01-01

    The interaction between xylitol, alcohol and lactate dehydrogenase has been studied in hepatocytes from rats by applying specifically tritiated substrates. A simple model, describing the metabolic fate of tritium from [2-3H] xylitol and (1R) [1-3H]ethanol is presented. The model allows calculation of the specific radioactivity of free, cytosolic NADH, based on transfer of tritium to lactate, glucose and water. From the initial labelling rate of lactate and the specific radioactivity of cytosolic NADH, we have determined the reversible flow through the lactate dehydrogenase catalyzed reaction to 1-5 mumol/min . g wet wt. The results suggest that xylitol, alcohol and lactate dehydrogenase share the same pool of NAD(H) in the cytoplasma. This finding allows estimation of the ethanol oxidation rate by the non-alcohol dehydrogenase pathways from the relative yield of tritium in water and glucose. The calculations are based on a comparison of the fate of the 1-pro-R hydrogen of ethanol and the hydrogen bound to carbon 2 of xylitol or carbon 2 of lactate under identical conditions.

  2. Role of malate dehydrogenase in facilitating lactate dehydrogenase to support the glycolysis pathway in tumors.

    PubMed

    Mansouri, Siavash; Shahriari, Ali; Kalantar, Hadi; Moini Zanjani, Taraneh; Haghi Karamallah, Mojtaba

    2017-04-01

    High aerobic glycolysis, as one of the hallmarks of cancer cells, requires nicotinamide adenine dinucleotide (NAD + ) as a vital co-factor, to guarantee the flow of glycolysis. Malate dehydrogenase (MDH), as an important enzyme in cancer metabolism, is a source of NAD + additional to lactate dehydrogenase (LDH). The current study aimed to elucidate the kinetic parameters of MDH in human breast cancer and evaluate its supportive role in the glycolysis pathway. The Michaelis-Menten constant (K m ) and maximum velocity (V max ) of MDH were determined in the crude extracts of human breast tumors and healthy tissue samples, which were obtained directly from the operating theatre. To assess the potential role of MDH in supporting glycolysis, the MDH activity was measured when the LDH activity was inhibited by different concentrations of oxamate, an inhibitor of LDH in breast cancer cell lines. The K m of cancerous MDH (C-MDH) was the same as the healthy MDH, although the V max of C-MDH was higher relative to the healthy MDH. Notably, the MDH activity was increased in the MDA-MB-231 cell line, which was treated with the LDH inhibitor (oxamate), but not in the MCF-7 cell line (P<0.05). The higher tendency of C-MDH for NAD + and malate generation in cancer cells is an effective approach for supporting glycolysis. Increasing MDH activity in the absence of LDH demonstrates the supportive role of MDH in glycolysis. Therefore, decreasing MDH activity and expression in a forward reaction may present as a valid molecular target to abolish its potential effect on tumor metabolism.

  3. White shrimp Litopenaeus vannamei recombinant lactate dehydrogenase: Biochemical and kinetic characterization.

    PubMed

    Fregoso-Peñuñuri, Ambar A; Valenzuela-Soto, Elisa M; Figueroa-Soto, Ciria G; Peregrino-Uriarte, Alma B; Ochoa-Valdez, Manuel; Leyva-Carrillo, Lilia; Yepiz-Plascencia, Gloria

    2017-09-01

    Shrimp lactate dehydrogenase (LDH) is induced in response to environmental hypoxia. Two protein subunits deduced from different transcripts of the LDH gene from the shrimp Litopenaeus vannamei (LDHvan-1 and LDHvan-2) were identified. These subunits are expressed by alternative splicing. Since both subunits are expressed in most tissues, the purification of the enzyme from the shrimp will likely produce hetero LDH containing both subunits. Therefore, the aim of this study was to overexpress, purify and characterize only one subunit as a recombinant protein, the LDHvan-2. For this, the cDNA from muscle was cloned and overexpressed in E. coli as a fusion protein containing an intein and a chitin binding protein domain (CBD). The recombinant protein was purified by chitin affinity chromatography column that retained the CBD and released solely the full and active LDH. The active protein appears to be a tetramer with molecular mass of approximately 140 kDa and can use pyruvate or lactate as substrates, but has higher specific activity with pyruvate. The enzyme is stable between pH 7.0 to 8.5, and between 20 and 50 °C with an optimal temperature of 50 °C. Two pK a of 9.3 and 6.6, and activation energy of 44.8 kJ/mol°K were found. The kinetic constants K m for NADH was 23.4 ± 1.8 μM, and for pyruvate was 203 ± 25 μM, while V max was 7.45 μmol/min/mg protein. The shrimp LDH that is mainly expressed in shrimp muscle preferentially converts pyruvate to lactate and is an important enzyme for the response to hypoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Novel model of neuronal bioenergetics: postsynaptic utilization of glucose but not lactate correlates positively with Ca2+ signalling in cultured mouse glutamatergic neurons

    PubMed Central

    Bak, Lasse K.; Obel, Linea F.; Walls, Anne B.; Schousboe, Arne; Faek, Sevan A.A.; Jajo, Farah S.; Waagepetersen, Helle S.

    2012-01-01

    We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate)-induced synaptic activity and that lactate alone is not able to support neurotransmitter glutamate homoeostasis. Subsequently, a model was proposed to explain these results at the cellular level. In brief, the intermittent rises in intracellular Ca2+ during activation cause influx of Ca2+ into the mitochondrial matrix thus activating the tricarboxylic acid cycle dehydrogenases. This will lead to a lower activity of the MASH (malate–aspartate shuttle), which in turn will result in anaerobic glycolysis and lactate production rather than lactate utilization. In the present work, we have investigated the effect of an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity) on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose utilization is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based on the results, we propose a compartmentalized CiMASH (Ca2+-induced limitation of the MASH) model that includes intracellular compartmentation of glucose and lactate metabolism. We define pre- and post-synaptic compartments metabolizing glucose and glucose plus lactate respectively in which the latter displays a positive correlation between oxidative metabolism of glucose and Ca2+ signalling. PMID:22385215

  5. Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells

    PubMed Central

    2013-01-01

    Background Most normal cells in the presence of oxygen utilize glucose for mitochondrial oxidative phosphorylation. In contrast, many cancer cells rapidly convert glucose to lactate in the cytosol, a process termed aerobic glycolysis. This glycolytic phenotype is enabled by lactate dehydrogenase (LDH), which catalyzes the inter-conversion of pyruvate and lactate. The purpose of this study was to identify and characterize potent and selective inhibitors of LDHA. Methods High throughput screening and lead optimization were used to generate inhibitors of LDHA enzymatic activity. Effects of these inhibitors on metabolism were evaluated using cell-based lactate production, oxygen consumption, and 13C NMR spectroscopy assays. Changes in comprehensive metabolic profile, cell proliferation, and apoptosis were assessed upon compound treatment. Results 3-((3-carbamoyl-7-(3,5-dimethylisoxazol-4-yl)-6-methoxyquinolin-4-yl) amino) benzoic acid was identified as an NADH-competitive LDHA inhibitor. Lead optimization yielded molecules with LDHA inhibitory potencies as low as 2 nM and 10 to 80-fold selectivity over LDHB. Molecules in this family rapidly and profoundly inhibited lactate production rates in multiple cancer cell lines including hepatocellular and breast carcinomas. Consistent with selective inhibition of LDHA, the most sensitive breast cancer cell lines to lactate inhibition in hypoxic conditions were cells with low expression of LDHB. Our inhibitors increased rates of oxygen consumption in hepatocellular carcinoma cells at doses up to 3 microM, while higher concentrations directly inhibited mitochondrial function. Analysis of more than 500 metabolites upon LDHA inhibition in Snu398 cells revealed that intracellular concentrations of glycolysis and citric acid cycle intermediates were increased, consistent with enhanced Krebs cycle activity and blockage of cytosolic glycolysis. Treatment with these compounds also potentiated PKM2 activity and promoted apoptosis in Snu

  6. Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millan, J.L.; Driscoll, C.E.; LeVan, K.M.

    The sequence and structure of human testis-specific L-lactate dehydrogenase (LDHC/sub 4/, LDHX; (L)-lactate:NAD/sup +/ oxidoreductase, EC 1.1.1.27) has been derived from analysis of a complementary DNA (cDNA) clone comprising the complete protein coding region of the enzyme. From the deduced amino acid sequence, human LDHC/sub 4/ is as different from rodent LDHC/sub 4/ (73% homology) as it is from human LDHA/sub 4/ (76% homology) and porcine LDHB/sub 4/ (68% homology). Subunit homologies are consistent with the conclusion that the LDHC gene arose by at least two independent duplication events. Furthermore, the lower degree of homology between mouse and human LDHC/submore » 4/ and the appearance of this isozyme late in evolution suggests a higher rate of mutation in the mammalian LDHC genes than in the LDHA and -B genes. Comparison of exposed amino acid residues of discrete anti-genic determinants of mouse and human LDHC/sub 4/ reveals significant differences. Knowledge of the human LDHC/sub 4/ sequence will help design human-specific peptides useful in the development of a contraceptive vaccine.« less

  7. Lactate dehydrogenase-A is indispensable for vascular smooth muscle cell proliferation and migration.

    PubMed

    Kim, Ji-Hyun; Bae, Kwi-Hyun; Byun, Jun-Kyu; Lee, Sungwoo; Kim, Jung-Guk; Lee, In Kyu; Jung, Gwon-Soo; Lee, You Mie; Park, Keun-Gyu

    2017-10-07

    The proliferation and migration of vascular smooth muscle cells (VSMCs) have been implicated in the pathogenesis of atherosclerosis. Increased aerobic glycolysis is a key feature of cellular phenotypes including cancer and immune cells. However, the role of aerobic glycolysis in the atherogenic phenotype of VSMCs remains largely unknown. Here, we investigated the role of lactate dehydrogenase-A (LDHA), which is a key enzyme for glycolysis, in the proliferation and migration of VSMCs. Activation of primary rat VSMCs with fetal bovine serum (FBS) or platelet-derived growth factor (PDGF) increased their proliferation and migration, glycolytic activity, and expression of LDHA. Wound healing and transwell migration assays demonstrated that small interfering RNA-mediated knockdown of LDHA and pharmacological inhibition of LDHA by oxamate both effectively inhibited VSMC proliferation and migration. Inhibition of LDHA activity by oxamate reduced PDGF-stimulated glucose uptake, lactate production, and ATP production. Taken together, this study shows that enhanced glycolysis in PDGF- or FBS-stimulated VSMCs plays an important role in their proliferation and migration and suggests that LDHA is a potential therapeutic target to prevent vessel lumen constriction during the course of atherosclerosis and restenosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production.

    PubMed

    Huang, Yanna; You, Chunping; Liu, Zhenmin

    2017-07-01

    Lactobacillus delbrueckii subsp. bulgaricus is a heterogenous lactic acid bacterium that converts pyruvate mainly to D-lactic acid using D-lactate dehydrogenases (D-LDHs), whose functional properties remain poorly characterized. Here, the D-LDHs genes (ldb0101, ldb0813, ldb1010, ldb1147 and ldb2021) were cloned and overexpressed in Escherichia coli JM109 from an inducible pUC18 vector, respectively, and the resulting strains were compared in terms of D-lactic acid production. The strain expressing ldb0101 and ldb1010 gene individually produced more D-lactate than other three strains. Further study revealed that Ldb0101 activity was down-regulated by the oxygen and, therefore, achieved a highest titer of D-lactate (1.94 g/L) under anaerobic condition, and introduction of ldb1010 gene enhanced D-lactate formation (0.94 and 0.85 g/L, respectively) both in aerobic and anaerobic conditions due to a relatively stable q d-lactate . Our results suggested that the enzyme Ldb0101 and Ldb1010 played a role of more importance in D-lactate formation. To the best of our knowledge, we demonstrate for the first time the roles of different D-LDH homologs from L. bulgaricus in D-lactic acid production.

  9. Cloning and polymorphisms of yak lactate dehydrogenase B gene.

    PubMed

    Wang, Guosheng; Zhao, Xingbo; Zhong, Juming; Cao, Meng; He, Qinghua; Liu, Zhengxin; Lin, Yaqiu; Xu, Yaou; Zheng, Yucai

    2013-06-05

    The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1) gene in yak (Bos grunniens). Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit) in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S) of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD+ or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak.

  10. Cloning and Polymorphisms of Yak Lactate Dehydrogenase b Gene

    PubMed Central

    Wang, Guosheng; Zhao, Xingbo; Zhong, Juming; Cao, Meng; He, Qinghua; Liu, Zhengxin; Lin, Yaqiu; Xu, Yaou; Zheng, Yucai

    2013-01-01

    The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1) gene in yak (Bos grunniens). Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit) in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S) of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD+ or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak. PMID:23739677

  11. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2})more » in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.« less

  12. Towards development of aptamers that specifically bind to lactate dehydrogenase of Plasmodium falciparum through epitopic targeting.

    PubMed

    Frith, Kelly-Anne; Fogel, Ronen; Goldring, J P Dean; Krause, Robert G E; Khati, Makobetsa; Hoppe, Heinrich; Cromhout, Mary E; Jiwaji, Meesbah; Limson, Janice L

    2018-05-03

    Early detection is crucial for the effective treatment of malaria, particularly in those cases infected with Plasmodium falciparum. There is a need for diagnostic devices with the capacity to distinguish P. falciparum from other strains of malaria. Here, aptamers generated against targeted species-specific epitopes of P. falciparum lactate dehydrogenase (rPfLDH) are described. Two classes of aptamers bearing high binding affinity and specificity for recombinant P. falciparum lactate dehydrogenase (rPfLDH) and P. falciparum-specific lactate dehydrogenase epitopic oligopeptide (LDHp) were separately generated. Structurally-relevant moieties with particular consensus sequences (GGTAG and GGCG) were found in aptamers reported here and previously published, confirming their importance in recognition of the target, while novel moieties particular to this work (ATTAT and poly-A stretches) were identified. Aptamers with diagnostically-supportive functions were synthesized, prime examples of which are the aptamers designated as LDHp 1, LDHp 11 and rLDH 4 and rLDH 15 in work presented herein. Of the sampled aptamers raised against the recombinant protein, rLDH 4 showed the highest binding to the target rPfLDH in the ELONA assay, with both rLDH 4 and rLDH 15 indicating an ability to discriminate between rPfLDH and rPvLDH. LDHp 11 was generated against a peptide selected as a unique P. falciparum LDH peptide. The aptamer, LDHp 11, like antibodies against the same peptide, only detected rPfLDH and discriminated between rPfLDH and rPvLDH. This was supported by affinity binding experiments where only aptamers generated against a unique species-specific epitope showed an ability to preferentially bind to rPfLDH relative to rPvLDH rather than those generated against the whole recombinant protein. In addition, rLDH 4 and LDHp 11 demonstrated in situ binding to P. falciparum cells during confocal microscopy. The utilization and application of LDHp 11, an aptamer generated against a

  13. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles.

    PubMed

    McMeel, O M; Hoey, E M; Ferguson, A

    2001-01-01

    The cDNA nucleotide sequences of the lactate dehydrogenase alleles LDH-C1*90 and *100 of brown trout (Salmo trutta) were found to differ at position 308 where an A is present in the *100 allele but a G is present in the *90 allele. This base substitution results in an amino acid change from aspartic acid at position 82 in the LDH-C1 100 allozyme to a glycine in the 90 allozyme. Since aspartic acid has a net negative charge whilst glycine is uncharged, this is consistent with the electrophoretic observation that the LDH-C1 100 allozyme has a more anodal mobility relative to the LDH-C1 90 allozyme. Based on alignment of the cDNA sequence with the mouse genomic sequence, a local primer set was designed, incorporating the variable position, and was found to give very good amplification with brown trout genomic DNA. Sequencing of this fragment confirmed the difference in both homozygous and heterozygous individuals. Digestion of the polymerase chain reaction products with BslI, a restriction enzyme specific for the site difference, gave one, two and three fragments for the two homozygotes and the heterozygote, respectively, following electrophoretic separation. This provides a DNA-based means of routine screening of the highly informative LDH-C1* polymorphism in brown trout population genetic studies. Primer sets presented could be used to sequence cDNA of other LDH* genes of brown trout and other species.

  14. Relayed 13C magnetization transfer: Detection of malate dehydrogenase reaction in vivo

    NASA Astrophysics Data System (ADS)

    Yang, Jehoon; Shen, Jun

    2007-02-01

    Malate dehydrogenase catalyzes rapid interconversion between dilute metabolites oxaloacetate and malate. Both oxaloacetate and malate are below the detection threshold of in vivo MRS. Oxaloacetate is also in rapid exchange with aspartate catalyzed by aspartate aminotransferase, the latter metabolite is observable in vivo using 13C MRS. We hypothesized that the rapid turnover of oxaloacetate can effectively relay perturbation of magnetization between malate and aspartate. Here, we report indirect observation of the malate dehydrogenase reaction by saturating malate C2 resonance at 71.2 ppm and detecting a reduced aspartate C2 signal at 53.2 ppm due to relayed magnetization transfer via oxaloacetate C2 at 201.3 ppm. Using this strategy the rate of the cerebral malate dehydrogenase reaction was determined to be 9 ± 2 μmol/g wet weight/min (means ± SD, n = 5) at 11.7 Tesla in anesthetized adult rats infused with [1,6- 13C 2]glucose.

  15. Expansion of the aspartate [beta]-semialdehyde dehydrogenase family: the first structure of a fungal ortholog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arachea, B.T.; Liu, X.; Pavlovsky, A.G.

    2010-08-13

    The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a critical transformation that produces the first branch-point intermediate in an essential microbial amino-acid biosynthetic pathway. The first structure of an ASADH isolated from a fungal species (Candida albicans) has been determined as a complex with its pyridine nucleotide cofactor. This enzyme is a functional dimer, with a similar overall fold and domain organization to the structurally characterized bacterial ASADHs. However, there are differences in the secondary-structural elements and in cofactor binding that are likely to cause the lower catalytic efficiency of this fungal enzyme. Alterations in the dimer interface, through deletion ofmore » a helical subdomain and replacement of amino acids that participate in a hydrogen-bonding network, interrupt the intersubunit-communication channels required to support an alternating-site catalytic mechanism. The detailed functional information derived from this new structure will allow an assessment of ASADH as a possible target for antifungal drug development.« less

  16. Occurrence of the malate-aspartate shuttle in various tumor types.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm.

  17. Purification and Properties of White Muscle Lactate Dehydrogenase from the Anoxia-Tolerant Turtle, the Red-Eared Slider, Trachemys scripta elegans

    PubMed Central

    Dawson, Neal J.; Bell, Ryan A. V.; Storey, Kenneth B.

    2013-01-01

    Lactate dehydrogenase (LDH; E.C. 1.1.1.27) is a crucial enzyme involved in energy metabolism in muscle, facilitating the production of ATP via glycolysis during oxygen deprivation by recycling NAD+. The present study investigated purified LDH from the muscle of 20 h anoxic and normoxic T. s. elegans, and LDH from anoxic muscle showed a significantly lower (47%) K m for L-lactate and a higher V max value than the normoxic form. Several lines of evidence indicated that LDH was converted to a low phosphate form under anoxia: (a) stimulation of endogenously present protein phosphatases decreased the K m of L-lactate of control LDH to anoxic levels, whereas (b) stimulation of kinases increased the K m of L-lactate of anoxic LDH to normoxic levels, and (c) dot blot analysis shows significantly less serine (78%) and threonine (58%) phosphorylation in anoxic muscle LDH as compared to normoxic LDH. The physiological consequence of anoxia-induced LDH dephosphorylation appears to be an increase in LDH activity to promote the reduction of pyruvate in muscle tissue, converting the glycolytic end product to lactate to maintain a prolonged glycolytic flux under energy-stressed anoxic conditions. PMID:23533717

  18. Purification and Properties of White Muscle Lactate Dehydrogenase from the Anoxia-Tolerant Turtle, the Red-Eared Slider, Trachemys scripta elegans.

    PubMed

    Dawson, Neal J; Bell, Ryan A V; Storey, Kenneth B

    2013-01-01

    Lactate dehydrogenase (LDH; E.C. 1.1.1.27) is a crucial enzyme involved in energy metabolism in muscle, facilitating the production of ATP via glycolysis during oxygen deprivation by recycling NAD(+). The present study investigated purified LDH from the muscle of 20 h anoxic and normoxic T. s. elegans, and LDH from anoxic muscle showed a significantly lower (47%) K m for L-lactate and a higher V max value than the normoxic form. Several lines of evidence indicated that LDH was converted to a low phosphate form under anoxia: (a) stimulation of endogenously present protein phosphatases decreased the K m of L-lactate of control LDH to anoxic levels, whereas (b) stimulation of kinases increased the K m of L-lactate of anoxic LDH to normoxic levels, and (c) dot blot analysis shows significantly less serine (78%) and threonine (58%) phosphorylation in anoxic muscle LDH as compared to normoxic LDH. The physiological consequence of anoxia-induced LDH dephosphorylation appears to be an increase in LDH activity to promote the reduction of pyruvate in muscle tissue, converting the glycolytic end product to lactate to maintain a prolonged glycolytic flux under energy-stressed anoxic conditions.

  19. Misconceptions regarding basic thermodynamics and enzyme kinetics have led to erroneous conclusions regarding the metabolic importance of lactate dehydrogenase isoenzyme expression.

    PubMed

    Bak, Lasse K; Schousboe, Arne

    2017-11-01

    Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate involving the coenzyme NAD + . Part of the foundation for the proposed shuttling of lactate from astrocytes to neurons during brain activation is the differential distribution of LDH isoenzymes between the two cell types. In this short review, we outline the basic kinetic properties of the LDH isoenzymes expressed in neurons and astrocytes, and argue that the distribution of LDH isoenzymes does not in any way govern directional flow of lactate between the two cellular compartments. The two main points are as follows. First, in line with the general concept of chemical catalysis, enzymes do not influence the thermodynamic equilibrium of a chemical reaction but merely the speed at which equilibrium is obtained. Thus, differential distribution of LDH isoenzymes with different kinetic parameters does not predict which cells are producing and which are consuming lactate. Second, the thermodynamic equilibrium of the reaction is toward the reduced substrate (i.e., lactate), which is reflected in the concentrations measured in brain tissue, suggesting that the reaction is at near-equilibrium at steady state. To conclude, the cellular distribution of LDH isoenzymes is of little if any consequence in determining any directional flow of lactate between neurons and astrocytes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Molecular Characterization of Two Lactate Dehydrogenase Genes with a Novel Structural Organization on the Genome of Lactobacillus sp. Strain MONT4

    PubMed Central

    Weekes, Jennifer; Yüksel, Gülhan Ü.

    2004-01-01

    Two lactate dehydrogenase (ldh) genes from Lactobacillus sp. strain MONT4 were cloned by complementation in Escherichia coli DC1368 (ldh pfl) and were sequenced. The sequence analysis revealed a novel genomic organization of the ldh genes. Subcloning of the individual ldh genes and their Northern blot analyses indicated that the genes are monocistronic. PMID:15466577

  1. From Gene to Structure: "Lactobacillus Bulgaricus" D-Lactate Dehydrogenase from Yogurt as an Integrated Curriculum Model for Undergraduate Molecular Biology and Biochemistry Laboratory Courses

    ERIC Educational Resources Information Center

    Lawton, Jeffrey A.; Prescott, Noelle A.; Lawton, Ping X.

    2018-01-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the "ldhA" gene from the yogurt-fermenting bacterium "Lactobacillus bulgaricus," which encodes the enzyme d-lactate dehydrogenase. The molecular…

  2. Lactate Dehydrogenase in Hepatocellular Carcinoma: Something Old, Something New.

    PubMed

    Faloppi, Luca; Bianconi, Maristella; Memeo, Riccardo; Casadei Gardini, Andrea; Giampieri, Riccardo; Bittoni, Alessandro; Andrikou, Kalliopi; Del Prete, Michela; Cascinu, Stefano; Scartozzi, Mario

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver tumour (80-90%) and represents more than 5.7% of all cancers. Although in recent years the therapeutic options for these patients have increased, clinical results are yet unsatisfactory and the prognosis remains dismal. Clinical or molecular criteria allowing a more accurate selection of patients are in fact largely lacking. Lactic dehydrogenase (LDH) is a glycolytic key enzyme in the conversion of pyruvate to lactate under anaerobic conditions. In preclinical models, upregulation of LDH has been suggested to ensure both an efficient anaerobic/glycolytic metabolism and a reduced dependence on oxygen under hypoxic conditions in tumour cells. Data from several analyses on different tumour types seem to suggest that LDH levels may be a significant prognostic factor. The role of LDH in HCC has been investigated by different authors in heterogeneous populations of patients. It has been tested as a potential biomarker in retrospective, small, and nonfocused studies in patients undergoing surgery, transarterial chemoembolization (TACE), and systemic therapy. In the major part of these studies, high LDH serum levels seem to predict a poorer outcome. We have reviewed literature in this setting trying to resume basis for future studies validating the role of LDH in this disease.

  3. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boernke, W. E.; Millard, C. S.; Stevens, P. W.

    1995-09-10

    Malate dehydrogenase and lactate dehydrogenase are members of the structurally and functionally homologous family of 2-ketoacid dehydrogenases. Both enzymes display high specificity for their respective keto substrates, oxaloacetate and pyruvate. Closer analysis of their specificity, however, reveals that the specificity of malate dehydrogenase is much stricter and less malleable than that of lactate dehydrogenase. Site-specific mutagenesis of the two enzymes in an attempt to reverse their specificity has met with contrary results. Conversion of a specific active-site glutamine to arginine in lactate dehydrogenase from Bacillus stearothermophilus generated an enzyme that displayed activity toward oxaloacetate equal to that of the nativemore » enzyme toward pyruvate (H. M. Wilks et al. (1988) Science 242, 1541-1544). We have constructed a series of mutants in the mobile, active site loop of the Escherichia coli malate dehydrogenase that incorporate the complementary change, conversion of arginine 81 to glutamine, to evaluate the role of charge distribution and conformational flexibility within this loop in defining the substrate specificity of these enzymes. Mutants incorporating the change R81Q all had reversed specificity, displaying much higher activity toward pyruvate than to the natural substrate, oxaloacetate. In contrast to the mutated lactate dehydrogenase, these reversed-specificity mutants were much less active than the native enzyme. Secondary mutations within the loop of the E. coli enzyme (A80N, A80P, A80P/M85E/D86T) had either no or only moderately beneficial effects on the activity of the mutant enzyme toward pyruvate. The mutation A80P, which can be expected to reduce the overall flexibility of the loop, modestly improved activity toward pyruvate. The possible physiological relevance of the stringent specificity of malate dehydrogenase was investigated. In normal strains of E. coli, fermentative metabolism was not affected by expression of the

  4. Microcomputer Assisted Interpretative Reporting of Sequential Creatine Kinase (CK) and Lactate Dehydrogenase (LDH) Isoenzyme Determination

    PubMed Central

    Talamo, Thomas S.; Losos, Frank J.; Mercer, Donald W.

    1984-01-01

    We have developed a microcomputer based system for interpretative reporting of creatine kinase (CK) and lactate dehydrogenase (LDH) isoenzyme studies. Patient demographic data and test results (total CK, CK-MB, LD-1, and LD-2) are entered manually through the keyboard. The test results are compared with normal range values and an interpretative report is generated. This report consists of all pertinent demographic information with a graphic display of up to 12 previous CK and LDH isoenzyme determinations. Diagnostic interpretative statements are printed beneath the graphic display following analysis of previously entered test results. The combination of graphic data display and interpretations based on analysis of up to 12 previous specimens provides useful and accurate information to the cardiologist.

  5. Free energy landscape of the Michaelis complex of lactate dehydrogenase: A network analysis of atomistic simulations

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoliang; Schwartz, Steven

    2015-03-01

    It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.

  6. Free energy surface of the Michaelis complex of lactate dehydrogenase: a network analysis of microsecond simulations.

    PubMed

    Pan, Xiaoliang; Schwartz, Steven D

    2015-04-30

    It has long been recognized that the structure of a protein creates a hierarchy of conformations interconverting on multiple time scales. The conformational heterogeneity of the Michaelis complex is of particular interest in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD(+)). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they show a strong variance in their propensity toward the on-enzyme chemical step. In this study, microsecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network of the Michaelis complex and the structures of the substates at atomistic scales. They also shed light on the complete picture of the catalytic mechanism of LDH.

  7. Glutamate Dehydrogenase from Apodachlya (Oomycetes) 1

    PubMed Central

    Price, Jeffrey S.; Gleason, Frank H.

    1972-01-01

    A glutamate dehydrogenase specific for nicotinamide-adenine-dinucleotide has been purified 50-fold from Apodachlya brachynema (Leptomitales). Certain physical, chemical, and kinetic properties of this enzyme have been studied, particularly specificity for coenzymes and substrates. With glucose as the sole carbon source, the synthesis of glutamate dehydrogenase was repressed, whereas glutamate, proline, alanine, or ornithine plus aspartate as sole carbon sources induced synthesis of the enzyme. These data indicate that the function of this enzyme is primarily degradative, although there is no evidence for a nicotinamide-adenine-dinucleotide-phosphate-specific biosynthetic glutamate dehydrogenase in Apodachlya. PMID:16657902

  8. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.

    PubMed

    Jiang, Ting; Xu, Yanbing; Sun, Xiucheng; Zheng, Zhaojuan; Ouyang, Jia

    2014-03-01

    Bacillus coagulans is a homofermentative, acid-tolerant and thermophilic sporogenic lactic acid bacterium, which is capable of producing high yields of optically pure lactic acid. The l-(+)-lactate dehydrogenase (l-LDH) from B. coagulans is considered as an ideal biocatalyst for industrial production. In this study, the gene ldhL encoding a thermostable l-LDH was amplified from B. coagulans NL01 genomic DNA and successfully expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was partially purified and its enzymatic properties were characterized. Sequence analysis demonstrated that the l-LDH was a fructose 1,6-diphosphate-activated NAD-dependent lactate dehydrogenase (l-nLDH). Its molecular weight was approximately 34-36kDa. The Km and Vmax values of the purified l-nLDH for pyruvate were 1.91±0.28mM and 2613.57±6.43μmol(minmg)(-1), respectively. The biochemical properties of l-nLDH showed that the specific activity were up to 2323.29U/mg with optimum temperature of 55°C and pH of 6.5 in the pyruvate reduction and 351.01U/mg with temperature of 55°C and pH of 11.5 in the lactate oxidation. The enzyme also showed some activity in the absence of FDP, with a pH optimum of 4.0. Compared to other lactic acid bacterial l-nLDHs, the enzyme was found to be relatively stable at 50°C. Ca(2+), Ba(2+), Mg(2+) and Mn(2+) ions had activated effects on the enzyme activity, and the enzyme was greatly inhibited by Ni(2+) ion. Besides these, l-nLDH showed the higher specificity towards pyruvate esters, such as methyl pyruvate and ethyl pyruvate. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Molecular cloing and bioinformatics analysis of lactate dehydrogenase from Taenia multiceps.

    PubMed

    Guo, Cheng; Wang, Yu; Huang, Xing; Wang, Ning; Yan, Ming; He, Ran; Gu, Xiaobin; Xie, Yue; Lai, Weimin; Jing, Bo; Peng, Xuerong; Yang, Guangyou

    2017-10-01

    Coenurus cerebralis, the larval stage (metacestode or coenurus) of Taenia multiceps, parasitizes sheep, goats, and other ruminants and causes coenurosis. In this study, we isolated and characterized complementary DNAs that encode lactate dehydrogenase A (Tm-LDHA) and B (Tm-LDHB) from the transcriptome of T. multiceps and expressed recombinant Tm-LDHB (rTm-LDHB) in Escherichia coli. Bioinformatic analysis showed that both Tm-LDH genes (LDHA and LDHB) contain a 996-bp open reading frame and encode a protein of 331 amino acids. After determination of the immunogenicity of the recombinant Tm-LDHB, an indirect enzyme-linked immunosorbent assay (ELISA) was developed for preliminary evaluation of the serodiagnostic potential of rTm-LDHB in goats. However, the rTm-LDHB-based indirect ELISA developed here exhibited specificity of only 71.42% (10/14) and sensitivity of 1:3200 in detection of goats infected with T. multiceps in the field. This study is the first to describe LDHA and LDHB of T. multiceps; meanwhile, our results indicate that rTm-LDHB is not a specific antigen candidate for immunodiagnosis of T. multiceps infection in goats.

  10. Toxicovigilance: new biochemical tool used in sulfonylurea herbicides toxicology studies.

    PubMed

    Belhadj-Tahar, Hafid; Adamczewski, Nicolas; Nassar, Bertrand; Coulais, Yvon

    2003-06-01

    In vitro toxic effects of sulfonylurea herbicides (thifensulfuron-methyl and metsulfuron-methyl) were evaluated according to a new protocol. Physiological conditions were reproduced in order to boost toxicovigilance. Sulfonylureas and their hydrolysis products were added to biological substrates such as urea, alanine, aspartic acid, alpha-ketoglutarate, oxaloacetate, pyruvate and then incubated with some specific enzymes. Addition of these sulfonylureas and their degradation products did not significantly change the enzymatic activity of the urease, aspartate-aminotransferase, glutamate dehydrogenase, malate dehydrogenase and lactate dehydrogenase. However, the acid hydrolysis products inhibited up to 95% of the activity of the alanine-aminotransferase at low concentrations (0.27 micromol L(-1)). Inhibition did not affect the mitochondrial aspartate-aminotransferase.

  11. Computational analyses of mammalian lactate dehydrogenases: human, mouse, opossum and platypus LDHs.

    PubMed

    Holmes, Roger S; Goldberg, Erwin

    2009-10-01

    Computational methods were used to predict the amino acid sequences and gene locations for mammalian lactate dehydrogenase (LDH) genes and proteins using genome sequence databanks. Human LDHA, LDHC and LDH6A genes were located in tandem on chromosome 11, while LDH6B and LDH6C genes were on chromosomes 15 and 12, respectively. Opossum LDHC and LDH6B genes were located in tandem with the opossum LDHA gene on chromosome 5 and contained 7 (LDHA and LDHC) or 8 (LDH6B) exons. An amino acid sequence prediction for the opossum LDH6B subunit gave an extended N-terminal sequence, similar to the human and mouse LDH6B sequences, which may support the export of this enzyme into mitochondria. The platypus genome contained at least 3 LDH genes encoding LDHA, LDHB and LDH6B subunits. Phylogenetic studies and sequence analyses indicated that LDHA, LDHB and LDH6B genes are present in all mammalian genomes examined, including a monotreme species (platypus), whereas the LDHC gene may have arisen more recently in marsupial mammals.

  12. Computational analyses of mammalian lactate dehydrogenases: human, mouse, opossum and platypus LDHs

    PubMed Central

    Holmes, Roger S; Goldberg, Erwin

    2009-01-01

    Computational methods were used to predict the amino acid sequences and gene locations for mammalian lactate dehydrogenase (LDH) genes and proteins using genome sequence databanks. Human LDHA, LDHC and LDH6A genes were located in tandem on chromosome 11, while LDH6B and LDH6C genes were on chromosomes 15 and 12, respectively. Opossum LDHC and LDH6B genes were located in tandem with the opossum LDHA gene on chromosome 5 and contained 7 (LDHA and LDHC) or 8 (LDH6B) exons. An amino acid sequence prediction for the opossum LDH6B subunit gave an extended N-terminal sequence, similar to the human and mouse LDH6B sequences, which may support the export of this enzyme into mitochondria. The platypus genome contained at least 3 LDH genes encoding LDHA, LDHB and LDH6B subunits. Phylogenetic studies and sequence analyses indicated that LDHA, LDHB and LDH6B genes are present in all mammalian genomes examined, including a monotreme species (platypus), whereas the LDHC gene may have arisen more recently in marsupial mammals. PMID:19679512

  13. Adaptations in lactate dehydrogenase and its isozymes in aging mammalian myocardium: interaction of exercise and temperature.

    PubMed

    Prathima, S; Devi, S A

    1999-04-01

    The responses of the left and right ventricles (LV and RV) to physical conditioning in cold (25 degrees C) and thermoneutral temperatures (35 degrees C), with special reference to lactate dehydrogenase (LDH) and its isoenzyme profile, were studied in the 2-month (young)- and 12-month (middle-aged)-old rats. Moderate hypertrophy was a common observation irrespective of age, region and swim temperature. LV, however, hypertrophied to a significantly lesser extent in the middle-aged, than the RV. Blood Lactate (La) content showed a decline in the trained rather than their untrained counterparts. LDH activity decreased with age. Swim training induced elevations in the enzyme activity. The isoenzyme profile was suitably and efficiently altered in the LV and RV of trained animals to meet the arising O2 demands. The above adaptations were best seen in the young and in the animals trained at thermoneutral temperatures. Thus it is suggested that young age is very apt for initiation of training programs although middle-age is not so late. Swimming in water near body temperature is emphasised as a more preferred environment to cold water, in order to derive maximal exercise-associated beneficial effects.

  14. Effect of chlorocamphene on the isoenzyme spectrum of lactate dehydrogenase in rat serum and liver.

    PubMed Central

    Kuz'minskaya, U A; Alekhina, S M

    1976-01-01

    Rats were used to study the general activity and the isoenzyme spectrum of lactate dehydrogenase (LDH) during single-instance and long-term introduction of polychlorocamphene. Total lactate dehydrogenase activity decreases in the liver during the single-instance introduction of half the LD50 (120 mg/kg). The isoenzyme spectrum of LDH is characterized by an increase in the quantity of LDH1, LDH2, and LDH3 and by a decrease in the amount of LDH4. The overall LDH activity does not change in blood serum. The isoform ratio changes insignificantly and LDH1 falls, but normalized 15 days after the introduction of the compound. Long-term introduction of polychlorocamphene at levels 1/100 the LD50 dose over 1.3 and 6 months causes a reduction in the overall LDH activity, both in the liver and in the serum. A decrease in the activity of the basic LDH isoenzyme of the liver (LDH5) and a sharp increase in LDH3 are characteristic for the isoenzyme spectrum of the liver. LDH1 and LDH4 decrease and LDH2 and LDH3 increase in blood serum. Beginning with the third month of polychlorocamphene introduction, LDH1 tends to return to normal levels. LDH2, LDH3, and LDH4 do return to normal levels, while LDH5 increases regularly. This results in a reduction of the number of H subunits and an increase of M subunits. This is characteristic of hypoxic states. On comparing the changes in the LDH enzymes of the liver and blood serum, it can be considered that the introduction of polychlorocamphene does not result in an increase in the permeability of the cellular membranes of the liver for LDH isoenzymes, while the observed isoenzyme spectrum shifts in blood serum are either the result of the biosynthesis of the isoforms of this enzyme changed by the compound or the result of the permeability for them of cells of other tissues. PMID:1269500

  15. Malate dehydrogenase of the cytosol. A kinetic investigation of the reaction mechanism and a comparison with lactate dehydrogenase.

    PubMed Central

    Lodola, A; Shore, J D; Parker, D M; Holbrook, J

    1978-01-01

    1. The mechanisms of the reduction of oxaloacetate and of 3-fluoro-oxaloacetate by NADH catalysed by cytoplasmic pig heart malate dehydrogenase (MDH) were investigated. 2. One mol of dimeric enzyme produces 1.7+/-0.4 mol of enzyme-bound NADH when mixed with saturating NAD+ and L-malate at a rate much higher than the subsequent turnover at pH 7.5. 3. Transient measurements of protein and nucleotide fluorescence show that the steady-state complex in the forward direction is MDH-NADH and in the reverse direction MDH-NADH-oxaloacetate. 4. The rate of dissociation of MDH-NADH was measured and is the same as Vmax. in the forward direction at pH 7.5. Both NADH-binding sites are kinetically equivalent. The rate of dissociation varies with pH, as does the equilibrium binding constant for NADH. 5. 3-Fluoro-oxaloacetate is composed of three forms (F1, F2 and S) of which F1 and F2 are immediately substrates for the enzyme. The third form, S, is not a substrate, but when the F forms are used up form S slowly and non-enzymically equilibrates to yield the active substrate forms. S is 2,2-dihydroxy-3-fluorosuccinate. 6. The steady-state compound during the reduction of form F1 is an enzyme form that does not contain NADH, probably MDH-NAD+-fluoromalate. The steady-state compound for form F2 is an enzyme form containing NADH, probably MDH-NADH-fluoro-oxaloacetate. 7. The rate-limiting reaction in the reduction of form F2 shows a deuterium isotope rate ratio of 4 when NADH is replaced by its deuterium analogue, and the rate-limiting reaction is concluded to be hydride transfer. 8. A novel titration was used to show that dimeric cytoplasmic malate dehydrogenase contains two sites that can rapidly reduce the F1 form of 3-fluoro-oxaloacetate. The enzyme shows 'all-of-the-sites' behaviour. 9. Partial mechanisms are proposed to explain the enzyme-catalysed transformations of the natural and the fluoro substrates. These mechanisms are similar to the mechanism of pig heart lactate

  16. Altered Kinetics Properties of Erythrocyte Lactate Dehydrogenase in Type II Diabetic Patients and Its Implications for Lactic Acidosis.

    PubMed

    Mali, Aniket V; Bhise, Sunita S; Katyare, Surendra S; Hegde, Mahabaleshwar V

    2018-01-01

    Recent studies have been noted that the erythrocytes from Type II diabetic patients show significantly altered structural and functional characteristics along with the changed intracellular concentrations of glycolytic intermediates. More recent studies from our laboratory have shown that the activities of enzymes of glycolytic pathway changed significantly in RBCs from Type II diabetic patients. In particular the levels of lactate dehydrogenase (LDH) increased significantly. Lactic acidosis is an established feature of diabetes and LDH plays a crucial role in conversion of pyruvate to lactate and reportedly, the levels of lactate are significantly high which is consistent with our observation on increased levels of LDH. Owing to this background, we examined the role of erythrocyte LDH in lactic acidosis by studying its kinetics properties in Type II diabetic patients. Km, Vmax and apparent catalytic efficiency were determined using pyruvate and NADH as the substrates. With pyruvate as the substrate the Km values were comparable but Vmax increased significantly in the diabetic group. With NADH as the substrate the enzyme activity of the diabetic group resolved in two components as against a single component in the controls. The Apparent Kcat and Kcat/Km values for pyruvate increased in the diabetic group. The Ki for pyruvate increased by two fold for the enzyme from diabetic group with a marginal decrease in Ki for NADH. The observed changes in catalytic attributes are conducive to enable the enzyme to carry the reaction in forward direction towards conversion of pyruvate to lactate leading to lactic acidosis.

  17. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    PubMed

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    PubMed

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  19. Specific Inhibition of Hepatic Lactate Dehydrogenase Reduces Oxalate Production in Mouse Models of Primary Hyperoxaluria.

    PubMed

    Lai, Chengjung; Pursell, Natalie; Gierut, Jessica; Saxena, Utsav; Zhou, Wei; Dills, Michael; Diwanji, Rohan; Dutta, Chaitali; Koser, Martin; Nazef, Naim; Storr, Rachel; Kim, Boyoung; Martin-Higueras, Cristina; Salido, Eduardo; Wang, Weimin; Abrams, Marc; Dudek, Henryk; Brown, Bob D

    2018-06-15

    Primary hyperoxalurias (PHs) are autosomal recessive disorders caused by the overproduction of oxalate leading to calcium oxalate precipitation in the kidney and eventually to end-stage renal disease. One promising strategy to treat PHs is to reduce the hepatic production of oxalate through substrate reduction therapy by inhibiting liver-specific glycolate oxidase (GO), which controls the conversion of glycolate to glyoxylate, the proposed main precursor to oxalate. Alternatively, diminishing the amount of hepatic lactate dehydrogenase (LDH) expression, the proposed key enzyme responsible for converting glyoxylate to oxalate, should directly prevent the accumulation of oxalate in PH patients. Using RNAi, we provide the first in vivo evidence in mammals to support LDH as the key enzyme responsible for converting glyoxylate to oxalate. In addition, we demonstrate that reduction of hepatic LDH achieves efficient oxalate reduction and prevents calcium oxalate crystal deposition in genetically engineered mouse models of PH types 1 (PH1) and 2 (PH2), as well as in chemically induced PH mouse models. Repression of hepatic LDH in mice did not cause any acute elevation of circulating liver enzymes, lactate acidosis, or exertional myopathy, suggesting further evaluation of liver-specific inhibition of LDH as a potential approach for treating PH1 and PH2 is warranted. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Threonine-Insensitive Homoserine Dehydrogenase From Soybean: Genomic Organization, Kinetic Mechanism, and In vivo Activity

    USDA-ARS?s Scientific Manuscript database

    Aspartate kinase (AK) and homoserine dehydrogenase (HSD) functions as key regulatory enzymes at branch points in the aspartate amino acid pathway and are feedback inhibited by threonine. In plants, the biochemical properties of AK and bifunctional AK-HSD enzymes have been characterized, but the mol...

  1. Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-08-01

    Optically pure d-lactic acid fermentation from arabinose was achieved by using the Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase gene was substituted with a heterologous transketolase gene. After 27 h of fermentation, 38.6 g/liter of d-lactic acid was produced from 50 g/liter of arabinose.

  2. Meta-analysis of serum lactate dehydrogenase and prognosis for osteosarcoma.

    PubMed

    Fu, Yucheng; Lan, Tao; Cai, Hongliu; Lu, Anwei; Yu, Wei

    2018-05-01

    A large number of studies have reported the relationships between serum lactate dehydrogenase (LDH) and prognosis of osteosarcoma. However, the result is still controversial and no consensus has been reached. Therefore, we performed a meta-analysis to evaluate the prognostic role of serum LDH in osteosarcoma patients. We performed the systematic computerized search for eligible articles from PubMed, Embase, and Cochrane databases until December 21, 2017. The pooled hazard ratio (HR) and 95% confidence intervals (CIs) of overall survival (OS) and event-free survival (EFS) were obtained to assess the prognostic value of serum LDH. A total of 18 studies with 2543 osteosarcoma patients were included. Overall, 15 studies assessed the elevated serum LDH level on OS and the pooled HR was 1.87 (95% CI = 1.58-2.20). Meanwhile, the pooled HR to evaluate the relationship between serum LDH and EFS in 9 studies was 1.78 (95% CI = 1.51-2.10). The same results were acquired when these studies were stratified by Enneking stage, geographic region, and sample size. No heterogeneity existed between these subgroups (P > .05). Begg's funnel plot and Egger's test (OS: P = .04; EFS: P = .34) showed that possible publication bias might exist in OS studies. Sensitivity analysis suggested the pooled HR was robust. This meta-analysis demonstrates that elevated serum LDH level is apparently associated with lower EFS rate and serum LDH could be a prognostic biomarker for osteosarcoma patients.

  3. D-Lactate transport and metabolism in rat liver mitochondria.

    PubMed

    de Bari, Lidia; Atlante, Anna; Guaragnella, Nicoletta; Principato, Giovanni; Passarella, Salvatore

    2002-07-15

    In the present study we investigated whether isolated rat liver mitochondria can take up and metabolize D-lactate. We found the following: (1) externally added D-lactate causes oxygen uptake by mitochondria [P/O ratio (the ratio of mol of ATP synthesized to mol of oxygen atoms reduced to water during oxidative phosphorylation)=2] and membrane potential (Delta(psi)) generation in processes that are rotenone-insensitive, but inhibited by antimycin A and cyanide, and proton release from coupled mitochondria inhibited by alpha-cyanocinnamate, but not by phenylsuccinate; (2) the activity of the putative flavoprotein (D-lactate dehydrogenase) was detected in inside-out submitochondrial particles, but not in mitochondria and mitoplasts, as it is localized in the matrix phase of the mitochondrial inner membrane; (3) three novel separate translocators exist to mediate D-lactate traffic across the mitochondrial inner membrane: the D-lactate/H(+) symporter, which was investigated by measuring fluorimetrically the rate of endogenous flavin reduction, the D-lactate/oxoacid antiporter (which mediates both the D-lactate/pyruvate and D-lactate/oxaloacetate exchanges) and D-lactate/malate antiporter studied by monitoring photometrically the appearance of the D-lactate counteranions outside mitochondria. The D-lactate translocators, in the light of their different inhibition profiles separate from the monocarboxylate carrier, were found to differ from each other in the V(max) values and in the inhibition and pH profiles and were shown to regulate mitochondrial D-lactate metabolism in vitro. The D-lactate translocators and the D-lactate dehydrogenase could account for the removal of the toxic methylglyoxal from cytosol, as well as for D-lactate-dependent gluconeogenesis.

  4. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dehydrogenase measurements are used in the diagnosis and treatment of liver diseases such as acute viral hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction...

  5. Estrogen-Related Receptor Alpha Modulates Lactate Dehydrogenase Activity in Thyroid Tumors

    PubMed Central

    Mirebeau-Prunier, Delphine; Le Pennec, Soazig; Jacques, Caroline; Fontaine, Jean-Fred; Gueguen, Naig; Boutet-Bouzamondo, Nathalie; Donnart, Audrey; Malthièry, Yves; Savagner, Frédérique

    2013-01-01

    Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα), a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB) and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis. PMID:23516535

  6. Secondary metabolites of Mirabilis jalapa structurally inhibit Lactate Dehydrogenase A in silico: a potential cancer treatment

    NASA Astrophysics Data System (ADS)

    Kusumawati, R.; Nasrullah, A. H.; Pesik, R. N.; Muthmainah; Indarto, D.

    2018-03-01

    Altered energy metabolism from phosphorylated oxidation to aerobic glycolysis is one of the cancer hallmarks. Lactate dehydrogenase A (LDHA) is a major enzyme that catalyses pyruvate to lactate in such condition. The aim of this study was to explore LDHA inhibitors derived from Indonesian herbal plants. In this study, LDHA and oxamate molecular structures were obtained from protein data bank. As a standard ligand inhibitor, oxamate was molecularly re-validated using Autodock Vina 1.1.2 software and showed binding energy -4.26 ± 0.006 kcal/mol and interacted with LDHA at Gln99, Arg105, Asn137, Arg168, His192, and Thr247 residues. Molecular docking was used to visualize interaction between Indonesian phytochemicals and LDHA. Indonesian phytochemicals with the lowest binding energy and similar residues with standard ligand was Miraxanthin-III (-8.53 ± 0.006 kcal/mol), Vulgaxanthin-I (-8.46 ± 0.006 kcal/mol), Miraxanthin-II (-7.9 ± 0.2 kcal/mol) and Miraxanthin-V (-7.96 ± kcal/mol). Lower energy binding to LDHA and binding site at these residues was predicted to inhibit LDHA activity better than standard ligand. All phytochemicals were found in Mirabilis jalapa plant. Secondary metabolites in Mirabilis jalapa have LDHA inhibitor property in silico. Further in vitro study should be performed to confirm this result.

  7. Trehalose Mediated Inhibition of Lactate Dehydrogenase from Rabbit Muscle. The Application of Kramers' Theory in Enzyme Catalysis.

    PubMed

    Hernández-Meza, Juan M; Sampedro, José G

    2018-04-19

    Lactate dehydrogenase (LDH) catalyzes the reduction of pyruvate to lactate by using NADH. LDH kinetics has been proposed to be dependent on the dynamics of a loop over the active site. Kramers' theory has been useful in the study of enzyme catalysis dependent on large structural dynamics. In this work, LDH kinetics was studied in the presence of trehalose and at different temperatures. In the absence of trehalose, temperature increase raised exponentially the LDH V max and revealed a sigmoid transition of K m toward a low-affinity state similar to protein unfolding. Notably, LDH V max diminished when in the presence of trehalose, while pyruvate affinity increased and the temperature-mediated binding site transition was hindered. The effect of trehalose on k cat was viscosity dependent as described by Kramers' theory since V max correlated inversely with the viscosity of the medium. As a result, activation energy ( E a ) for pyruvate reduction was dramatically increased by trehalose presence. This work provides experimental evidence that the dynamics of a structural component in LDH is essential for catalysis, i.e., the closing of the loop on the active site. While the trehalose mediated-increased of pyruvate affinity is proposed to be due to the compaction and/or increase of structural order at the binding site.

  8. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    PubMed

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Efficiency of cardioplegic solutions containing L-arginine and L-aspartic acid.

    PubMed

    Pisarenko, O I; Shul'zhenko, V S; Studneva, I M

    2006-04-01

    In experiments on rats we studied the effects of cardioplegic solutions with L-aspartic acid or L-arginine on functional recovery and metabolism of isolated working heart after 40-min normothermal global ischemia and 30-min reperfusion. After reperfusion of the hearts preventively protected with cardioplegic solution containing L-aspartic acid or L-arginine, coronary flow decreased in comparison with the initial values. As a component of cardioplegic solution, L-arginine was less efficient in recovery of contractility and cardiac output of the hearts in comparison with L-aspartic acid. In hearts protected with L-aspartic acid, the postischemic levels of ATP and phosphocreatine were significantly higher, and the level of lactate was significantly lower than in hearts protected with L-arginine. In comparison with L-arginine, L-aspartic acid is a more efficient component of cardioplegic solution in protection of the heart from metabolic and functional damages caused by global ischemia and reperfusion.

  10. Skeletal Muscle Pyruvate Dehydrogenase Phosphorylation and Lactate Accumulation During Sprint Exercise in Normoxia and Severe Acute Hypoxia: Effects of Antioxidants.

    PubMed

    Morales-Alamo, David; Guerra, Borja; Santana, Alfredo; Martin-Rincon, Marcos; Gelabert-Rebato, Miriam; Dorado, Cecilia; Calbet, José A L

    2018-01-01

    Compared to normoxia, during sprint exercise in severe acute hypoxia the glycolytic rate is increased leading to greater lactate accumulation, acidification, and oxidative stress. To determine the role played by pyruvate dehydrogenase (PDH) activation and reactive nitrogen and oxygen species (RNOS) in muscle lactate accumulation, nine volunteers performed a single 30-s sprint (Wingate test) on four occasions: two after the ingestion of placebo and another two following the intake of antioxidants, while breathing either hypoxic gas (P I O 2 = 75 mmHg) or room air (P I O 2 = 143 mmHg). Vastus lateralis muscle biopsies were obtained before, immediately after, 30 and 120 min post-sprint. Antioxidants reduced the glycolytic rate without altering performance or VO 2 . Immediately after the sprints, Ser 293 - and Ser 300 -PDH-E1α phosphorylations were reduced to similar levels in all conditions (~66 and 91%, respectively). However, 30 min into recovery Ser 293 -PDH-E1α phosphorylation reached pre-exercise values while Ser 300 -PDH-E1α was still reduced by 44%. Thirty minutes after the sprint Ser 293 -PDH-E1α phosphorylation was greater with antioxidants, resulting in 74% higher muscle lactate concentration. Changes in Ser 293 and Ser 300 -PDH-E1α phosphorylation from pre to immediately after the sprints were linearly related after placebo ( r = 0.74, P < 0.001; n = 18), but not after antioxidants ingestion ( r = 0.35, P = 0.15). In summary, lactate accumulation during sprint exercise in severe acute hypoxia is not caused by a reduced activation of the PDH. The ingestion of antioxidants is associated with increased PDH re-phosphorylation and slower elimination of muscle lactate during the recovery period. Ser 293 re-phosphorylates at a faster rate than Ser 300 -PDH-E1α during the recovery period, suggesting slightly different regulatory mechanisms.

  11. Skeletal Muscle Pyruvate Dehydrogenase Phosphorylation and Lactate Accumulation During Sprint Exercise in Normoxia and Severe Acute Hypoxia: Effects of Antioxidants

    PubMed Central

    Morales-Alamo, David; Guerra, Borja; Santana, Alfredo; Martin-Rincon, Marcos; Gelabert-Rebato, Miriam; Dorado, Cecilia; Calbet, José A. L.

    2018-01-01

    Compared to normoxia, during sprint exercise in severe acute hypoxia the glycolytic rate is increased leading to greater lactate accumulation, acidification, and oxidative stress. To determine the role played by pyruvate dehydrogenase (PDH) activation and reactive nitrogen and oxygen species (RNOS) in muscle lactate accumulation, nine volunteers performed a single 30-s sprint (Wingate test) on four occasions: two after the ingestion of placebo and another two following the intake of antioxidants, while breathing either hypoxic gas (PIO2 = 75 mmHg) or room air (PIO2 = 143 mmHg). Vastus lateralis muscle biopsies were obtained before, immediately after, 30 and 120 min post-sprint. Antioxidants reduced the glycolytic rate without altering performance or VO2. Immediately after the sprints, Ser293- and Ser300-PDH-E1α phosphorylations were reduced to similar levels in all conditions (~66 and 91%, respectively). However, 30 min into recovery Ser293-PDH-E1α phosphorylation reached pre-exercise values while Ser300-PDH-E1α was still reduced by 44%. Thirty minutes after the sprint Ser293-PDH-E1α phosphorylation was greater with antioxidants, resulting in 74% higher muscle lactate concentration. Changes in Ser293 and Ser300-PDH-E1α phosphorylation from pre to immediately after the sprints were linearly related after placebo (r = 0.74, P < 0.001; n = 18), but not after antioxidants ingestion (r = 0.35, P = 0.15). In summary, lactate accumulation during sprint exercise in severe acute hypoxia is not caused by a reduced activation of the PDH. The ingestion of antioxidants is associated with increased PDH re-phosphorylation and slower elimination of muscle lactate during the recovery period. Ser293 re-phosphorylates at a faster rate than Ser300-PDH-E1α during the recovery period, suggesting slightly different regulatory mechanisms. PMID:29615918

  12. Radiation-induced enzyme efflux from rat heart: sedentary animals. [Gamma radiation, lactate dehydrogenase, creative kinase, glutamate oxaloacetate transaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacWilliam, L.D.; Bhakthan, N.M.G.

    1976-01-01

    Serum levels of lactate dehydrogenase, creatine kinase, and glutamate oxaloacetate transaminase show initial elevations within 12 hr of exposure to 2,000 rads of ..gamma..-radiation to the thoracic region of rats. Significant decreases in heart muscle homogenate levels of these enzymes parallel initial elevations in the serum and may suggest that enhanced leakage of enzymes is a consequence of radiation injury to heart muscle. Insignificant alterations in mitochondrial glutamate oxaloacetate transaminase levels after exposure indicate that in vivo injury to the mitochondria from therapeutic levels of ..gamma..-radiation is questionable. The results support the contention that ionizing radiation instigates alterations in themore » dynamic permeability of membranes, allowing leakage of biologically active material out of the injured cell.« less

  13. Two separate pathways for d-lactate oxidation by Saccharomyces cerevisiae mitochondria which differ in energy production and carrier involvement.

    PubMed

    Pallotta, Maria Luigia; Valenti, Daniela; Iacovino, Michelina; Passarella, Salvatore

    2004-02-15

    In this work we looked at whether and how mitochondria isolated from Saccharomyces cerevisiae (SCM) oxidize d-lactate. We found that: (1). externally added d-lactate causes oxygen uptake by SCM with P/O ratio equal to 1.5; in the presence of antimycin A (AA), P/O ratio was 1.8, differently in the presence of the non-penetrant alpha-cyanocinnamate (alpha-CCN-) no P/O ratio could be measured. Consistently, mitochondrial electrical membrane potential (deltapsi) generation was found, due to externally added d-lactate in the presence of antimycin A, but not of alpha-CCN-. (2). SCM oxidize d-lactate in two different manners: (i). via inner membrane d-lactate dehydrogenase which leads to d-lactate oxidation without driving deltapsi generation and ATP synthesis and (ii). via the matrix d-lactate dehydrogenase, which drives deltapsi generation and ATP synthesis by using taken up d-lactate. (3). Pyruvate newly synthesised in the mitochondrial matrix is exported via the novel d-lactate/pyruvate antiporter. d-Lactate/pyruvate antiport proved to regulate the rate of pyruvate efflux in vitro. (4). The existence of the d-lactate/H+ symporter is also proposed as shown by mitochondrial swelling. The d-lactate carriers and d-lactate dehydrogenases could account for the removal of the toxic methylglyoxal from cytosol, as well as for the d-lactate-dependent gluconeogenesis.

  14. Regulator LdhR and d-Lactate Dehydrogenase LdhA of Burkholderia multivorans Play Roles in Carbon Overflow and in Planktonic Cellular Aggregate Formation.

    PubMed

    Silva, Inês N; Ramires, Marcelo J; Azevedo, Lisa A; Guerreiro, Ana R; Tavares, Andreia C; Becker, Jörg D; Moreira, Leonilde M

    2017-10-01

    LysR-type transcriptional regulators (LTTRs) are the most commonly found regulators in Burkholderia cepacia complex, comprising opportunistic pathogens causing chronic respiratory infections in cystic fibrosis (CF) patients. Despite LTTRs being global regulators of pathogenicity in several types of bacteria, few have been characterized in Burkholderia Here, we show that gene ldhR of B. multivorans encoding an LTTR is cotranscribed with ldhA encoding a d-lactate dehydrogenase and evaluate their implication in virulence traits such as exopolysaccharide (EPS) synthesis and biofilm formation. A comparison of the wild type (WT) and its isogenic Δ ldhR mutant grown in medium with 2% d-glucose revealed a negative impact on EPS biosynthesis and on cell viability in the presence of LdhR. The loss of viability in WT cells was caused by intracellular acidification as a consequence of the cumulative secretion of organic acids, including d-lactate, which was absent from the Δ ldhR mutant supernatant. Furthermore, LdhR is implicated in the formation of planktonic cellular aggregates. WT cell aggregates reached 1,000 μm in size after 24 h in liquid cultures, in contrast to Δ ldhR mutant aggregates that never grew more than 60 μm. The overexpression of d-lactate dehydrogenase LdhA in the Δ ldhR mutant partially restored the formed aggregate size, suggesting a role for fermentation inside aggregates. Similar results were obtained for surface-attached biofilms, with WT cells producing more biofilm. A systematic evaluation of planktonic aggregates in Burkholderia CF clinical isolates showed aggregates in 40 of 74. As CF patients' lung environments are microaerophilic and bacteria are found as free aggregates/biofilms, LdhR and LdhA might have central roles in adapting to this environment. IMPORTANCE Cystic fibrosis patients often suffer from chronic respiratory infections caused by several types of microorganisms. Among them are the Burkholderia cepacia complex bacteria, which

  15. Myasthenia gravis: long-term prognostic value of thymus lactate dehydrogenase isoenzyme pattern of hyperplastic thymus and thymoma.

    PubMed Central

    Szathmáry, I; Selmeci, L; Pósch, E; Szobor, A; Molnár, J

    1985-01-01

    Lactate dehydrogenase (LDH) isoenzyme pattern and the percent of H-subunit content were determined in the thymus of 62 patients (55 with hyperplasia, 7 with tumours) after thymectomy. An increase in LDH1 relative activity indicates that in the thymus of patients with myasthenia gravis the ratio of mature differentiated thymocytes was higher than in the thymus of control subjects. LDH isoenzyme profiles of thymus tumours were similar to those described in other neoplasms, except that thymomas with apparent predominance of epithelial cells and with minimal lymphocytic reaction exhibited a marked elevation only in LDH2 relative activity, presumably associated with the specific (secretory) function of epithelial cells. The elevation of H-subunit content, a parameter characteristic of both thymic components (lymphoid and epithelial), correlated closely with a poor clinical condition in patients several years after surgery. PMID:4031927

  16. Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation.

    PubMed

    Pardo, Beatriz; Rodrigues, Tiago B; Contreras, Laura; Garzón, Miguel; Llorente-Folch, Irene; Kobayashi, Keiko; Saheki, Takeyori; Cerdan, Sebastian; Satrústegui, Jorgina

    2011-01-01

    The glutamate-glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate-glutamate expressed in brain, results in a drastic fall in brain glutamine production but a modest decrease in brain glutamate levels, which is not due to decreases in neuronal or synaptosomal glutamate content. In vivo (13)C nuclear magnetic resonance labeling with (13)C(2)acetate or (1-(13)C) glucose showed that the drop in brain glutamine is due to a failure in glial glutamate synthesis. Aralar deficiency induces a decrease in aspartate content, an increase in lactate production, and lactate-to-pyruvate ratio in cultured neurons but not in cultured astrocytes, indicating that Aralar is only functional in neurons. We find that aspartate, but not other amino acids, increases glutamate synthesis in both control and aralar-deficient astrocytes, mainly by serving as amino donor. These findings suggest the existence of a neuron-to-astrocyte aspartate transcellular pathway required for astrocyte glutamate synthesis and subsequent glutamine formation. This pathway may provide a mechanism to transfer neuronal-born redox equivalents to mitochondria in astrocytes.

  17. Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal

    The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.

  18. Influence of Asymptomatic Pneumonia on the Response to Hemorrhage and Resuscitation in Swine

    DTIC Science & Technology

    2010-01-01

    and complete blood count (Pentra-120 Hemato- logy Analyzer, ABX Diagnostics, Irvine, CA); 3) total plasma protein, glucose, creatinine , lactate...dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK), amylase and lactate (Vitros Chemistry System...CK. Creatinine increased at 15 min in both groups and remained elevated throughout the study. Mean total protein, amylase and ALT decreased similarly

  19. [Temperature-switched high-efficiency D-lactate production from glycerol].

    PubMed

    Tian, Kangming; Zhou, Li; Chen, Xianzhong; Shen, Wei; Shi, Guiyang; Singh, Suren; Lu, Fuping; Wang, Zhengxiang

    2013-01-01

    Glycerol from oil hydrolysis industry is being considered as one of the abundent raw materials for fermentation industry. In present study, the aerobic and anaerobic metabolism and growth properties on glycerol by Esherichia coli CICIM B0013-070, a D-lactate over-producing strain constructed previously, at different temperatures were investigated, followed by a novel fermentation process, named temperature-switched process, was established for D-lactate production from glycerol. Under the optimal condition, lactate yield was increased from 64.0% to 82.6%. Subsequently, the yield of D-lactate from glycerol was reached up to 88.9% while a thermo-inducible promoter was used to regulate D-lactate dehydrogenase transcription.

  20. Cytochemical Localization of Glycolate Dehydrogenase in Mitochondria of Chlamydomonas1

    PubMed Central

    Beezley, Belinda B.; Gruber, Peter J.; Frederick, Sue Ellen

    1976-01-01

    Mildly disrupted cells of Chlamydomonas reinhardi Dangeard were incubated in a reaction medium containing glycolate, ferricyanide, and cupric ions, and then processed for electron microscopy. As a result of the cytochemical treatment, an electron opaque product was deposited specifically in the outer compartment of mitochondria; other cellular components, including microbodies, did not accumulate stain. Incubation with d-lactate yielded similar results, while treatment with l-lactate produced only a weak reaction. Oxamate, which inhibits glycolate dehydrogenase activity in cell-free extracts, also inhibited the cytochemical reaction. These findings demonstrate in situ that glycolate dehydrogenase is localized in mitochondria, and thus corroborate similar conclusions reached on the basis of enzymic studies of isolated algal organelles. Images PMID:16659670

  1. Prognostic significance of serum lactate dehydrogenase levels in Ewing's sarcoma: A meta-analysis.

    PubMed

    Li, Suoyuan; Yang, Qing; Wang, Hongsheng; Wang, Zhuoying; Zuo, Dongqing; Cai, Zhengdong; Hua, Yingqi

    2016-12-01

    A number of studies have investigated the role of serum lactate dehydrogenase (LDH) levels in patients with Ewing's sarcoma, although these have yielded inconsistent and inconclusive results. Therefore, the present study aimed to systematically review the published studies and conduct a meta-analysis to assess its prognostic value more precisely. Cohort studies assessing the prognostic role of LDH levels in patients with Ewing's sarcoma were included. A pooled hazard ratio (HR) with 95% confidence intervals (CIs) of overall survival (OS) or 5-year disease-free survival (DFS) was used to assess the prognostic role of the levels of serum LDH. Nine studies published between 1980 and 2014, with a total of 1,412 patients with Ewing's sarcoma, were included. Six studies, with a total of 644 patients, used OS as the primary endpoint and four studies, with 795 patients, used 5-year DFS. Overall, the pooled HR evaluating high LDH levels was 2.90 (95% CI: 2.09-4.04) for OS and 2.40 (95% CI: 1.93-2.98) for 5-year DFS. This meta-analysis demonstrates that high levels of serum LDH are associated with lower OS and 5-year DFS rates in patients with Ewing's sarcoma. Therefore, serum LDH levels are an effective biomarker of Ewing's sarcoma prognosis.

  2. Melanoma inhibiting activity protein (MIA), beta-2 microglobulin and lactate dehydrogenase (LDH) in metastatic melanoma.

    PubMed

    Cao, M González; Auge, J M; Molina, R; Martí, R; Carrera, C; Castel, T; Vilella, R; Conill, C; Sánchez, M; Malvehy, J; Puig, S

    2007-01-01

    Serum levels of melanoma markers may have a role in monitoring disease evolution in metastatic melanoma. Serial measurements of melanoma inhibiting activity protein (MIA), lactate dehydrogenase (LDH), S-100 and beta2-microglubulin were obtained from 42 metastatic melanoma patients during their biochemotherapy treatment. High pre-treatment serum levels of S-100, LDH, MIA and P2-microglobulin were detected in 50%, 57%, 50% and 24% of the patients, respectively. Only S-100 had prognostic significance for both disease-free (p=0.011) and overall survival (p=0.021). In patients who responded to treatment, S-100 levels decreased significantly from pre-treatment to the time of response (p = 0.050). When patients progressed, levels of MIA and P2-microglobulin increased significantly (p =0.028 and p =0.030, respectively). Correlation with disease evolution was found for S-100, MIA and P2-microglobulin levels. Despite the small sample size of the study, S-100 was a significant prognostic marker for overall survival and disease-free survival.

  3. Lactate Dehydrogenase Activity in Gingival Crevicular Fluid as a Marker in Orthodontic Tooth Movement

    PubMed Central

    Alfaqeeh, Sarah A; Anil, Sukumaran

    2011-01-01

    Objectives: This study aims at analyzing the changes in gingival crevicular fluid (GCF) lactate dehydrogenase (LDH) activity during orthodontic movement. Methods: Twenty patients all requiring first premolar extractions were selected and treated with conventional straight wire mechanotherapy. Canine retraction was done using 125 g Nitinol closed coil springs. The maxillary canine on one side served as the experimental site while the contralateral canine served as the control. GCF was collected from the canines before initiation of retraction, then 1 hour after initiating canine retraction, followed by 1 day, 7 days, 14 days and 21 days. GCF LDH levels were estimated and compared with the control site. Results The results revealed significantly higher LDH levels on the 7th, 14th and 21st day at the sites where orthodontic force had been applied. The levels also showed a significant increase from 0 hour to the 21st day. Peak levels were seen on 14th and 21st day following initiation of retraction. Conclusions: The study showed that LDH could be successfully estimated in the GCF and its increased levels could indicate active tooth movement, which could aid the clinician in monitoring active orthodontic tooth movement. PMID:21760863

  4. Maternal Exposure to Ethanol During Pregnancy and Lactation Affects Glutamatergic System and Induces Oxidative Stress in Offspring Hippocampus.

    PubMed

    Cesconetto, Patricia A; Andrade, Camila M; Cattani, Daiane; Domingues, Juliana T; Parisotto, Eduardo B; Filho, Danilo W; Zamoner, Ariane

    2016-01-01

    Alcohol abuse during pregnancy leads to intellectual disability and morphological defects in the offspring. The aim of this study was to determine the effect of chronic maternal ethanol (EtOH) consumption during pregnancy and lactation on glutamatergic transmission regulation, energy deficit, and oxidative stress in the hippocampus of the offspring. EtOH was administered to dams in drinking water at increasing doses (2 to 20%) from the gestation day 5 to lactation day 21. EtOH and tap water intake by treated and control groups, respectively, were measured daily. Results showed that EtOH exposure does not affect fluid intake over the course of pregnancy and lactation. The toxicity of maternal exposure to EtOH was demonstrated by decreased offspring body weight at experimental age, on postnatal day 21. Moreover, maternal EtOH exposure decreased (45) Ca(2+) influx in the offspring's hippocampus. Corroborating this finding, EtOH increased both Na(+) -dependent and Na(+) -independent glial [(14) C]-glutamate uptake in hippocampus of immature rats. Also, maternal EtOH exposure decreased glutamine synthetase activity and induced aspartate aminotransferase enzymatic activity, suggesting that in EtOH-exposed offspring hippocampus, glutamate is preferentially used as a fuel in tricarboxylic acid cycle instead of being converted into glutamine. In addition, EtOH exposure decreased [U-14C]-2-deoxy-D-glucose uptake in offspring hippocampus. The decline in glucose transport coincided with increased lactate dehydrogenase activity, suggesting an adaptative response in EtOH-exposed offspring hippocampus, using lactate as an alternative fuel. These events were associated with oxidative damage, as demonstrated by changes in the enzymatic antioxidant defense system and lipid peroxidation. Taken together, the results demonstrate that maternal exposure to EtOH during pregnancy and lactation impairs glutamatergic transmission, as well as inducing oxidative stress and energy deficit in

  5. Influence of disposable, concentric needle electrodes on muscle enzyme and lactate serum levels.

    PubMed

    Finsterer, Josef; Mittendorfer, Bettina; Neuhuber, Werner; Löscher, Wolfgang N

    2002-08-01

    Several studies addressed the question whether needle-EMG causes elevation of muscle enzymes [aspartate-aminotransferase, alanine-aminotransferase, lactate-dehydrogenase, creatine-phosphokinase (CPK), isoenzyme-MB, aldolase] and lactate with conflicting results. However, these studies used sterilizable needle electrodes and different protocols and methods to record EMGs and determine muscle enzymes. This study examined if muscle enzymes are elevated immediately after or 24 h following EMGs with disposable, concentric needle-electrodes, and if they are dependent on age, sex, muscle, number of investigated sites and previous CPK-elevation. In 53 subjects, 24 woman, 29 men, aged 17-88 years, muscle enzymes were determined before, immediately after and 24 h following EMG with disposable, concentric needle-electrodes. Muscle enzymes were not different before, immediately after and 24 h following the EMG. Muscle enzymes were not different between patients 60 years of age. Apart from higher CPK in men than women, muscle enzymes were not different between the genders. Apart from CPK, muscle enzymes were not different between the brachial biceps and anterior tibial muscle. Muscle enzymes were not different if 20 sites were investigated and were independent on pre-EMG CPK-levels. In conclusion this study shows that muscle enzymes do not increase immediately or 24 h following EMG with disposable, concentric needle-electrodes, irrespective of age, gender, muscle, number of investigated sites and pre-EMG CK-levels.

  6. A membrane-associated adenylate cyclase modulates lactate dehydrogenase and creatine kinase activities required for bull sperm capacitation induced by hyaluronic acid.

    PubMed

    Fernández, Silvina; Córdoba, Mariana

    2017-04-01

    Hyaluronic acid, as well as heparin, is a glycosaminoglycan present in the female genital tract of cattle. The aim of this study was to evaluate oxidative metabolism and intracellular signals mediated by a membrane-associated adenylate cyclase (mAC), in sperm capacitation with hyaluronic acid and heparin, in cryopreserved bull sperm. The mAC inhibitor, 2',5'-dideoxyadenosine, was used in the present study. Lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration were determined spectrophotometrically in the incubation medium. Capacitation and acrosome reaction were evaluated by chlortetracycline technique, while plasma membrane and acrosome integrity were determined by trypan blue stain/differential interference contrast microscopy. Heparin capacitated samples had a significant decrease in LDH and CK activities, while in hyaluronic acid capacitated samples LDH and CK activities both increased compared to control samples, in heparin and hyaluronic acid capacitation conditions, respectively. A significant increase in lactate concentration in the incubation medium occurred in hyaluronic acid-treated sperm samples compared to heparin treatment, indicating this energetic metabolite is produced during capacitation. The LDH and CK enzyme activities and lactate concentrations in the incubation medium were decreased with 2',5'-dideoxyadenosine treatment in hyaluronic acid samples. The mAC inhibitor significantly inhibited heparin-induced capacitation of sperm cells, but did not completely inhibit hyaluronic acid capacitation. Therefore, hyaluronic acid and heparin are physiological glycosaminoglycans capable of inducing in vitro capacitation in cryopreserved bull sperm, stimulating different enzymatic pathways and intracellular signals modulated by a mAC. Hyaluronic acid induces sperm capacitation involving LDH and CK activities, thereby reducing oxidative metabolism, and this process is mediated by mAC. Copyright © 2017 Elsevier B.V. All

  7. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    DOEpatents

    Miller, Matthew [Boston, MA; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Hause, Benjamin Matthew [Currie, MN; Van Hoek, Pim [Camarillo, CA; Dundon, Catherine Asleson [Minneapolis, MN

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  8. Lactate shuttles in nature.

    PubMed

    Brooks, G A

    2002-04-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilized continuously under fully aerobic conditions. "Cell-cell" and "intracellular lactate shuttle" concepts describe the roles of lactate in the delivery of oxidative and gluconeogenic substrates, as well as in cell signalling. Examples of cell-cell shuttles include lactate exchanges between white-glycolytic and red-oxidative fibres within a working muscle bed, between working skeletal muscle and heart, and between tissues of net lactate release and gluconeogenesis. Lactate exchange between astrocytes and neurons that is linked to glutamatergic signalling in the brain is an example of a lactate shuttle supporting cell-cell signalling. Lactate uptake by mitochondria and pyruvate-lactate exchange in peroxisomes are examples of intracellular lactate shuttles. Lactate exchange between sites of production and removal is facilitated by monocarboxylate transport proteins, of which there are several isoforms, and, probably, also by scaffolding proteins. The mitochondrial lactate-pyruvate transporter appears to work in conjunction with mitochondrial lactate dehydrogenase, which permits lactate to be oxidized within actively respiring cells. Hence mitochondria function to establish the concentration and proton gradients necessary for cells with high mitochondrial densities (e.g. cardiocytes) to take up and oxidize lactate. Arteriovenous difference measurements on working cardiac and skeletal muscle beds as well as NMR spectral analyses of these tissues show that lactate is formed and oxidized within the cells of formation in vivo. Glycolysis and lactate oxidation within cells permits high flux rates and the maintenance of redox balance in the cytosol and mitochondria. Other examples of intracellular lactate shuttles include lactate uptake and oxidation in sperm mitochondria and the facilitation of beta-oxidation in peroxisomes by pyruvate-lactate

  9. Stability and activity of lactate dehydrogenase on biofunctional layers deposited by activated vapor silanization (AVS) and immersion silanization (IS)

    NASA Astrophysics Data System (ADS)

    Calvo, Jorge Nieto-Márquez; Elices, Manuel; Guinea, Gustavo V.; Pérez-Rigueiro, José; Arroyo-Hernández, María

    2017-09-01

    The interaction between surfaces and biological elements, in particular, proteins is critical for the performance of biomaterials and biosensors. This interaction can be controlled by modifying the surface in a process known as biofunctionalization. In this work, the enzyme lactate dehydrogenase (LDH) is used to study the stability of the interaction between a functional protein and amine-functionalized surfaces. Two different functionalization procedures were compared: Activated Vapor Silanization (AVS) and Immersion Silanization (IS). Adsorption kinetics is shown to follow the Langmuir model for AVS-functionalized samples, while IS-functionalized samples show a certain instability if immersed in an aqueous medium for several hours. In turn, the enzymatic activity of LDH is preserved for longer times by using glutaraldehyde as crosslinker between the AVS biofunctional surface and the enzyme.

  10. Distribution of lactate dehydrogenase in healthy and degenerative canine stifle joint cartilage.

    PubMed

    Walter, Eveline L C; Spreng, David; Schmöckel, Hugo; Schawalder, Peter; Tschudi, Peter; Friess, Armin E; Stoffel, Michael H

    2007-07-01

    In dogs, degenerative joint diseases (DJD) have been shown to be associated with increased lactate dehydrogenase (LDH) activity in the synovial fluid. The goal of this study was to examine healthy and degenerative stifle joints in order to clarify the origin of LDH in synovial fluid. In order to assess the distribution of LDH, cartilage samples from healthy and degenerative knee joints were investigated by means of light and transmission electron microscopy in conjunction with immunolabeling and enzyme cytochemistry. Morphological analysis confirmed DJD. All techniques used corroborated the presence of LDH in chondrocytes and in the interterritorial matrix of healthy and degenerative stifle joints. Although enzymatic activity of LDH was clearly demonstrated in the territorial matrix by means of the tetrazolium-formazan reaction, immunolabeling for LDH was missing in this region. With respect to the distribution of LDH in the interterritorial matrix, a striking decrease from superficial to deeper layers was present in healthy dogs but was missing in affected joints. These results support the contention that LDH in synovial fluid of degenerative joints originates from cartilage. Therefore, we suggest that (1) LDH is transferred from chondrocytes to ECM in both healthy dogs and dogs with degenerative joint disease and that (2) in degenerative joints, LDH is released from chondrocytes and the ECM into synovial fluid through abrasion of cartilage as well as through enhanced diffusion as a result of increased water content and degradation of collagen.

  11. Inhibiting Sperm Pyruvate Dehydrogenase Complex and Its E3 Subunit, Dihydrolipoamide Dehydrogenase Affects Fertilization in Syrian Hamsters

    PubMed Central

    Sailasree, Purnima; Singh, Durgesh K.; Kameshwari, Duvurri B.; Shivaji, Sisinthy

    2014-01-01

    Background/Aims The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium. Methodology and Principal Findings Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization. Conclusions This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the

  12. The unique kinetic behavior of the very large NAD-dependent glutamate dehydrogenase from Janthinobacterium lividum.

    PubMed

    Kawakami, Ryushi; Oyama, Masaki; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2010-01-01

    The kinetics of a very large NAD-dependent glutamate dehydrogenase from Janthinobacterium lividum showed positive cooperativity toward alpha-ketoglutarate and NADH, and the Michaelis-Menten type toward ammonium chloride in the absence of the catalytic activator, L-aspartate. An increase in the maximum activity accompanied the decrease in the S(0.5) values for alpha-ketoglutarate and NADH with the addition of L-aspartate, and the kinetic response for alpha-ketoglutarate changed completely to a typical Michaelis-Menten type in the presence of 10 mM L-aspartate.

  13. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.

    PubMed

    Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J

    2018-03-01

    Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Lactate Dehydrogenase Undergoes a Substantial Structural Change to Bind its Substrate

    PubMed Central

    Qiu, Linlin; Gulotta, Miriam; Callender, Robert

    2007-01-01

    Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH·substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 ± 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior. PMID:17483169

  15. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.

    PubMed

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-11-25

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.

  16. The determination and arrangement of a combination of enzyme lactate dehydrogenase of bacteria Acinetobacter sp. as a device the identity important bacteria agent composts

    NASA Astrophysics Data System (ADS)

    Sukmawati, D.; Puspitaningrum, R.; Muzajjanah

    2017-07-01

    The number of garbage generated by the industry or society is a usual problem encountered by almost all urban centers, especially large cities such as Jakarta. Waste prevention strategy required quickly and accurately. One strategy for tackling the Junk was getting lactic acid-producing bacteria. It has been shown that lactic acid can increase the acceleration of organic matter such as an overhaul of lignin and cellulose as well as out causing toxic compounds arising from decay. This research will be conducted on the determination and characterization of the enzyme-producing compost bacteria LDH lactate dehydrogenase LDH - which in isolation from the garbage Landfill Rawasari. Methodology: Research carried out consists: isolation of lactic acid-producing bacteria; identification of microscopic, macroscopic and staining Gram; cellulose assay, and optimization of PCR conditions LDH enzymes producing bacteria. Isolation is performed by dilution method and the direct method. As many as 5-point sampling. Each stage is conducted from 10 grams of soil from the top surface of the compost. Isolation results obtained 100 isolate the bacteria. Base on the characteristic of macroscopic and microscopic observations retrieved 14 isolates of bacteria have shaped rods and brought forth a negative kind of Gram positive staining. Bacterial isolates with codes (BK1; BK3; BK4; BK5; BK6; BK7; BK8; BK9; BK10; BK11: BK12; BK 13). The potential bacteria with ability produce lactate dehydrogenase was BK1 and BK3. Base for analysis phylogenetic there was identification bacteria bak1 and bak3 where Acinetobacter sp.

  17. Relationships between certain metabolic diseases and selected serum biochemical parameters in seropositive dairy cows against Neospora caninum infection in different stages of lactation

    PubMed

    Alekish, Myassar O.; Talafha, Abdelsalam Q; Alshehabat, Musa A; Ismail, Zuhair A Bani

    Neospora caninum is an important cause of abortion in dairy cattle. The general health of affected cows has not been investigated before. Therefore, the main objective of this study was to identify possible relationships between certain metabolic diseases and selected serum biochemical parameters in seropositive dairy cows against N. caninum antibodies in different stages of lactation. The study was carried out using 72 N. caninum seropositive cows and 61 seronegative dairy cows (control). Serum from all cows was tested to determine their N. caninum status (seropositive vs seronegative) using commercially available indirect enzyme-linked immunosorbent assay test kit (iELISA). In addition, serum biochemical parameters including beta-hydroxybutyrate (BHB), glucose, creatinine, blood urea nitrogen, total protein, albumin, alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) and gamma-glutamyltranspeptidase (GGT) were determined using routine laboratory methods. The stage of lactation was obtained at the time of sampling from farm records. Student independent t-test showed that there was a significant difference in the serum concentrations of BHB, AST, ALT, and LDH between seropositive and seronegative cows. There was no significant association between seropositivity and the stage of lactation. However, multivariable logistic regression analysis showed that there was a strong association between seropositivity and BHB concentrations. Results of this study indicate a possible relationship between N. caninum seropositivity and certain metabolic diseases such as ketosis and fatty liver syndrome in dairy cows.

  18. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.

    PubMed

    Jantama, Kaemwich; Polyiam, Pattharasedthi; Khunnonkwao, Panwana; Chan, Sitha; Sangproo, Maytawadee; Khor, Kirin; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2015-07-01

    Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Carbon Flux Trapping: Highly Efficient Production of Polymer-Grade d-Lactic Acid with a Thermophilic d-Lactate Dehydrogenase.

    PubMed

    Li, Chao; Tao, Fei; Xu, Ping

    2016-08-17

    High production of polymer-grade d-lactic acid is urgently required, particularly for the synthesis of polylactic acid. High-temperature fermentation has multiple advantages, such as lower equipment requirement and energy consumption, which are essential for lowering operating costs. We identified and introduced a unique d-lactate dehydrogenase into a thermotolerant butane-2,3-diol-producing strain. Carbon flux "trapping" was achieved by a "trapping point" created by combination of the introduced enzyme and the host efflux pump, which afforded irreversible transport of d-lactic acid. The overall carbon flux of the engineered strain was significantly enhanced and was redistributed predominantly to d-lactic acid. Under optimized conditions at 50 °C, d-lactic acid reached the highest titer (226.6 g L(-1) ) reported to date. This discovery allows us to extend the carbon flux trapping strategy to engineering complex metabolic networks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum.

    PubMed

    Simpalipan, Phumin; Pattaradilokrat, Sittiporn; Harnyuttanakorn, Pongchai

    2018-01-09

    Antigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide. The ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships. Nucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites. This study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of

  1. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of L-lactate dehydrogenase and its H171C mutant from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Gao, Xiaoli

    2012-08-31

    L-Lactate dehydrogenase (LDH) is an important enzyme involved in the last step of glycolysis that catalyzes the reversible conversion of pyruvate to L-lactate with the simultaneous oxidation of NADH to NAD{sup +}. In this study, wild-type LDH from Bacillus subtilis (BsLDH-WT) and the H171C mutant (BsLDH-H171C) were expressed in Escherichia coli and purified to near-homogeneity. BsLDH-WT was crystallized in the presence of fructose 1,6-bisphosphate (FBP) and NAD{sup +} and the crystal diffracted to 2.38 {angstrom} resolution. The crystal belonged to space group P3, with unit-cell parameters a = b = 171.04, c = 96.27 {angstrom}. BsLDH-H171C was also crystallized asmore » the apoenzyme and in complex with NAD{sup +}, and data sets were collected to 2.20 and 2.49 {angstrom} resolution, respectively. Both BsLDH-H171C crystals belonged to space group P3, with unit-cell parameters a = b = 133.41, c = 99.34 {angstrom} and a = b = 133.43, c = 99.09 {angstrom}, respectively. Tetramers were observed in the asymmetric units of all three crystals.« less

  2. INACTIVATION OF LACTATE DEHYDROGENASE BY SEVERAL CHEMICALS: IMPLICATIONS FOR IN VITRO TOXICOLOGY STUDIES

    PubMed Central

    Kendig, Derek M.; Tarloff, Joan B.

    2007-01-01

    Lactate dehydrogenase (LDH) release is frequently used as an end-point for cytotoxicity studies. We have been unable to measure LDH release during studies using para-aminophenol (PAP) in LLC-PK1 cells. When LLC-PK1 cells were incubated with either PAP (0–10 mM) or menadione (0–1000 μM), viability was markedly reduced when assessed by alamar Blue or total LDH activity but not by release of LDH into the incubation medium. In addition, we incubated cells with PAP or menadione and compared LDH activity using two different assays. Both assays confirmed our observation of decreased LDH activity in cell lysates without corresponding increases in LDH activity in incubation media. Using purified LDH and 10 mM PAP, we that PAP produced loss of LDH activity that was inversely proportional to the amount of LDH initially added. In additional experiments, we incubated 0.5 units of LDH for 1 h with varying concentrations of PAP, menadione, hydrogen peroxide (H2O2) or cisplatin. All four chemicals produced concentration-dependent decreases in LDH activity. In previous experiments, inclusion of antioxidants such as reduced glutathione (GSH) and ascorbate protected cells from PAP toxicity. GSH (1 mM) preserved LDH activity in the presence of toxicants while ascorbate (1 mM) only prevented LDH loss induced by PAP. These studies suggest that LDH that is released into the incubation medium is susceptible to degradation when reactive chemicals are present. PMID:17079110

  3. The Effects of Direct Oxygen Supply During Static Cold Preservation of Rat Livers: An Experimental Study.

    PubMed

    Zumrutdal, Emin; Karateke, Faruk; Eser, Pınar Eylem; Turan, Umit; Ozyazici, Sefa; Sozutek, Alper; Gulkaya, Mustafa; Kunt, Mevlut

    2016-12-01

    We aimed to determine the biochemical and histopathologic effects of direct oxygen supply to the preservation fluid of static cold storage system with a simple method on rat livers. Sixteen rats were randomly divided into 2 groups: the control group, which contained Ringer's lactate as preservation fluid; and the oxygen group, which contained oxygen and Ringer's lactate for preservation. Each liver was placed in a bag containing 50 mL Ringer's lactate and placed in ice-filled storage containers. One hundred percent oxygen supplies were given via a simple, inexpensive system created in our laboratory, to the livers in oxygen group. We obtained samples for histopathologic evaluation in the 12th hour. In addition, 3 mL of preservation fluid was subjected to biochemical analysis at 0, sixth, and twelfth hours. Aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and pH levels were measured from the preservation fluid. In oxygen-supplemented group, the acceleration speed of increase in alanine aminotransferase and lactate dehydrogenase levels at sixth hour and lactate dehydrogenase, alanine aminotransferase, and lactate dehydrogenase levels at 12th hour were statistically significantly reduced. In histopathologic examination, all parameters except ballooning were statistically significantly better in the oxygen-supplemented group. This simple system for oxygenation of liver tissues during static cold storage was shown to be effective with good results in biochemical and histopathologic assessments. Because this is a simple, inexpensive, and easily available method, larger studies are warranted to evaluate its effects (especially in humans).

  4. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans

    PubMed Central

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian

    2014-01-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production—NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)—were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. PMID:25217009

  5. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    PubMed

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Activity of select dehydrogenases with sepharose-immobilized N(6)-carboxymethyl-NAD.

    PubMed

    Beauchamp, Justin; Vieille, Claire

    2015-01-01

    N(6)-carboxymethyl-NAD (N(6)-CM-NAD) can be used to immobilize NAD onto a substrate containing terminal primary amines. We previously immobilized N(6)-CM-NAD onto sepharose beads and showed that Thermotoga maritima glycerol dehydrogenase could use the immobilized cofactor with cofactor recycling. We now show that Saccharomyces cerevisiae alcohol dehydrogenase, rabbit muscle L-lactate dehydrogenase (type XI), bovine liver L-glutamic dehydrogenase (type III), Leuconostoc mesenteroides glucose-6-phosphate dehydro-genase, and Thermotoga maritima mannitol dehydrogenase are active with soluble N(6)-CM-NAD. The products of all enzymes but 6-phospho-D-glucono-1,5-lactone were formed when sepharose-immobilized N(6)-CM-NAD was recycled by T. maritima glycerol dehydrogenase, indicating that N(6)-immobilized NAD is suitable for use by a variety of different dehydrogenases. Observations of the enzyme active sites suggest that steric hindrance plays a greater role in limiting or allowing activity with the modified cofactor than do polarity and charge of the residues surrounding the N(6)-amine group on NAD.

  7. Highly elevated serum lactate dehydrogenase is associated with central nervous system relapse in patients with diffuse large B-cell lymphoma: Results of a multicenter prospective cohort study.

    PubMed

    Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Lee, Soon Il; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon

    2016-11-01

    Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4-29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448.

  8. Highly elevated serum lactate dehydrogenase is associated with central nervous system relapse in patients with diffuse large B-cell lymphoma: Results of a multicenter prospective cohort study

    PubMed Central

    Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Il Lee, Soon; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon

    2016-01-01

    Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4–29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448. PMID:27713132

  9. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans

    PubMed Central

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-01-01

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer. PMID:27885267

  10. Lactate dehydrogenase isoenzyme patterns upon chronic exposure to cigarette smoke: Protective effect of bacoside A.

    PubMed

    Anbarasi, Kothandapani; Sabitha, Kuruvimalai Ekambaram; Devi, Chennam Srinivasulu Shyamala

    2005-09-01

    Despite a strong association between cigarette smoking and alarming increase in mortality rate from smoking-related diseases, around 35-40% of the world's population continues to smoke and many more are being exposed to environmental tobacco smoke. Since the role of free radicals and oxidative damage in the pathogenesis of smoking-related diseases has been suggested, bacoside A, a potent antioxidant was tested for its ability to protect against cigarette smoking-induced toxicity in terms of lactate dehydrogenase (LDH) and its isoenzymes. Rats were exposed to cigarette smoke and simultaneously administered with bacoside A, for a period of 12 weeks. Total LDH activity was assayed in serum, lung, heart, brain, liver and kidney, and serum LDH isoforms were separated electrophoretically. Cigarette smoke exposure resulted in significant increase in serum LDH and its isoenzymes with a concomitant decrease in these organs. These alterations were prevented by administration of bacoside A. Excessive oxidants from cigarette smoke is known to cause peroxidation of membrane lipids leading to cellular damage, thereby resulting in the leakage of LDH into the circulation. Bacoside A could have rendered protection to the organs by stabilizing their cell membranes and prevented the release of LDH, probably through its free radical scavenging and anti-lipid peroxidative effect.

  11. Metabolic Engineering of Escherichia coli K12 for Homofermentative Production of L-Lactate from Xylose.

    PubMed

    Jiang, Ting; Zhang, Chen; He, Qin; Zheng, Zhaojuan; Ouyang, Jia

    2018-02-01

    The efficient utilization of xylose is regarded as a technical barrier to the commercial production of bulk chemicals from biomass. Due to the desirable mechanical properties of polylactic acid (PLA) depending on the isomeric composition of lactate, biotechnological production of lactate with high optical pure has been increasingly focused in recent years. The main objective of this work was to construct an engineered Escherichia coli for the optically pure L-lactate production from xylose. Six chromosomal deletions (pflB, ldhA, ackA, pta, frdA, adhE) and a chromosomal integration of L-lactate dehydrogenase-encoding gene (ldhL) from Bacillus coagulans was involved in construction of E. coli KSJ316. The recombinant strain could produce L-lactate from xylose resulting in a yield of 0.91 g/g xylose. The chemical purity of L-lactate was 95.52%, and the optical purity was greater than 99%. Moreover, three strategies, including overexpression of L-lactate dehydrogenase, intensification of xylose catabolism, and addition of additives to medium, were designed to enhance the production. The results showed that they could increase the concentration of L-lactate by 32.90, 20.13, and 233.88% relative to the control, respectively. This was the first report that adding formate not only could increase the xylose utilization but also led to the fewer by-product levels.

  12. Regulation of the Activity of Lactate Dehydrogenases from Four Lactic Acid Bacteria*

    PubMed Central

    Feldman-Salit, Anna; Hering, Silvio; Messiha, Hanan L.; Veith, Nadine; Cojocaru, Vlad; Sieg, Antje; Westerhoff, Hans V.; Kreikemeyer, Bernd; Wade, Rebecca C.; Fiedler, Tomas

    2013-01-01

    Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs. PMID:23720742

  13. Impact of critical process and formulation parameters affecting in-process stability of lactate dehydrogenase during the secondary drying stage of lyophilization: a mini freeze dryer study.

    PubMed

    Luthra, Sumit; Obert, Jean-Philippe; Kalonia, Devendra S; Pikal, Michael J

    2007-09-01

    The stresses during the secondary-drying stage of lyophilization were investigated using a controlled humidity mini-freeze-dryer [Luthra S, Obert J-P, Kalonia DS, Pikal MJ. 2007. Investigation of drying stresses on proteins during lyophilization: Differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer. J Pharm Sci 96: 61-70.]. Lactate dehydrogenase (LDH), was formulated in: (1) Tween 80, (2) citrate buffer, and (3) both Tween 80 and citrate buffer. Protein activity recovery was measured as a function of relative humidity (RH), product temperature, and drying duration. Studies were also conducted with different concentrations of sucrose, sorbitol, and poly (vinyl pyrrolidone) (PVP). LDH stability was affected to a small extent by RH and significantly by drying temperature and duration. Complete stabilization of LDH was observed when lyophilized with sucrose and PVP but only a partial stabilization was observed with sorbitol. The mini-freeze-dryer enabled studying the process parameters independently, unlike a conventional study where these effects are generally convoluted. The results suggest that the stability of the protein is a function of the dynamics of the system during lyophilization. The origin of the stabilization effect of sucrose, which could, in principle, be attributed both to direct interaction with the protein or vitrification of the protein was elucidated using lyoprotectants that can either hydrogen bond well with the protein (sorbitol) or form a good glass (PVP). It appears both effects are required for complete stabilization of the protein. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  14. Type II flavohemoglobin of Mycobacterium smegmatis oxidizes d-lactate and mediate electron transfer.

    PubMed

    Thakur, Naveen; Kumar, Ashwani; Dikshit, Kanak L

    2018-06-01

    Two distantly related flavohemoglobins (FHbs), MsFHbI and MsFHbII, having crucial differences in their heme and reductase domains, co-exist in Mycobacterium smegmatis. Function of MsFHbI is associated with nitric-oxide detoxification but physiological relevance of MsFHbII remains unknown. This study unravels some unique spectral and functional characteristics of MsFHbII. Unlike conventional type I FHbs, MsFHbII lacks nitric-oxide dioxygenase and NADH oxidase activities but utilizes d-lactate as an electron donor to mediate electron transfer. MsFHbII carries a d-lactate dehydrogenase type FAD binding motif in its reductase domain and oxidizes d-lactate in a FAD dependent manner to reduce the heme iron, suggesting that the globin is acting as an electron acceptor. Importantly, expression of MsFHbII in Escherichia coli imparted protection under oxidative stress, suggesting its important role in stress management of its host. Since M. smegmatis lacks the gene encoding for d-lactate dehydrogenase and d-lactate is produced during aerobic metabolism and also as a by-product of lipid peroxidation, the ability of MsFHbII to metabolize d-lactate may provide it a unique ability to balance the oxidative stress generated due to accumulation of d-lactate in the cell and at the same time sequester electrons and pass it to the respiratory apparatus. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Structure and Function of Plasmodium falciparum malate dehydrogenase: Role of Critical Amino Acids in C-substrate Binding Procket

    USDA-ARS?s Scientific Manuscript database

    Malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our lab have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal g...

  16. Alterations in carbohydrates and the protein metabolism of the harmful freshwater vector snail Lymnaea acuminata induced by the Euphorbia tirucalli latex extract.

    PubMed

    Tiwari, Sudhanshu; Singh, A

    2005-11-01

    To know the short- as well as long-term effect of aqueous latex extracts of Euphorbia tirucalli on carbohydrate and protein metabolism, the snail Lymnaea acuminata was exposed to sublethal doses of 0.37 and 0.55 mg/L for a 24-h and 0.20 and 0.31 mg/L for a 96-h exposure period. Significant (P<0.05) alterations in the glycogen, pyruvate, lactate, total protein, and free amino acid level, as well as in the activity of enzyme lactic dehydrogenase, succinic dehydrogenase, cytochrome oxidase, protease, aspartate aminotransaminase, and alanine aminotransaminase were observed in the nervous, hepatopancreatic, and ovotestis tissues of the freshwater vector snail L. acuminata exposed to sublethal doses of E. tirucalli latex extract. The alterations in all biochemical parameters were significantly (P<0.05) time and dose dependent. After the 7th day of the withdrawal of treatment, there was significant (P<0.05) recovery in glycogen, pyruvate, lactate, total protein, and the free amino acid level and in the activity of the lactic dehydrogenase, succinic dehydrogenase, cytochrome oxidase, protease, aspartate aminotransaminase and alanine aminotransaminase enzymes in all three of the studied tissues of the snail, which supports the view that the plant product is safe for use as a molluscicide for the control of harmful freshwater vector snails in the aquatic environment.

  17. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload.

    PubMed

    Washington, Tyrone A; Healey, Julie M; Thompson, Raymond W; Lowe, Larry L; Carson, James A

    2014-09-01

    Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (p<0.05). Aging also reduced LDH-A mRNA abundance, however there was no age effect on LDH-B mRNA abundance. In 5-month muscle, both ND and OV decreased LDH-A and LDH-B activity. However, there was no synergistic or additive effect. In 5-month muscle, ND and OV decreased LDH-A mRNA expression with no change in LDH-B expression. In 25-month muscle, ND and OV increased LDH-A and LDH-B activity. LDH-A mRNA expression was not altered by ND or OV in aged muscle. However, there was a main effect of OV to decrease LDH-B mRNA expression. There was also an age-induced LDH isoform shift. ND and OV treatment increased the "fast" LDH isoforms in aged muscle, whereas ND and OV increased the "slow" isoforms in young muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid

  18. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-12-01

    The production of optically pure d-lactic acid via xylose fermentation was achieved by using a Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase genes were replaced with a heterologous transketolase gene. After 60 h of fermentation, 41.2 g/liter of d-lactic acid was produced from 50 g/liter of xylose.

  19. SYNAPTOSOMAL LACTATE DEHYDROGENASE ISOENZYME COMPOSITION IS SHIFTED TOWARD AEROBIC FORMS IN PRIMATE BRAIN EVOLUTION

    PubMed Central

    Duka, Tetyana; Anderson, Sarah M.; Collins, Zachary; Raghanti, Mary Ann; Ely, John J.; Hof, Patrick R.; Wildman, Derek E.; Goodman, Morris; Grossman, Lawrence I.; Sherwood, Chet C.

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e., tarsiers, monkeys, apes and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in the synaptosomal fraction from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoforms, LDHB, among haplorhines as compared to strepsirrhines (i.e., lorises and lemurs), while in total homogenate of neocortex and striatum there was no significant difference in the LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, displaying an especially remarkable elevation in the ratio of LDH-B to LDH-A in humans. The phylogenetic variation in LDH-B to LDH-A ratio was correlated with species typical brain mass, but not encephalization quotient. A significant LDHB increase in the sub-neuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  20. Molecular cloning, characterization, and immunolocalization of two lactate dehydrogenase homologous genes from Taenia solium.

    PubMed

    Du, Wuying; Hu, Fengyu; Yang, Yabo; Hu, Dong; Hu, Xuchu; Yu, Xinbing; Xu, Jin; Dai, Jialin; Liao, Xinjiang; Huang, Jiang

    2011-09-01

    Two novel genes encoding lactate dehydrogenase A (LDHA) and B (LDHB) homologues, respectively, were identified from the cDNA libraries of adult Taenia solium (T. solium). The two deduced amino acid sequences both show more than 50% identity to the homologues for Danio rerio, Xenopus laevis, Schistosoma japonicum, Sus scrofa, Homo sapiens, et al. The identity of the amino acid sequence between TsLDHA and TsLDHB is 57.4%, and that of the nucleotide sequence is 61.5%. Recombinant TsLDHA homologue (rTsLDHA) and TsLDHB homologue (rTsLDHB) were expressed in Escherichia coli BL21/DE3 and purified. Though there were some differences in the sequence, the two LDH isozyme homologues show similarity in the conserved LDH domain, topological structure, primary immunological traits, localization on the tegument of T. solium adult, and partial physicochemical properties. The linear B-cell epitope analysis of TsLDHA and TsLDHB discovered a TsLDHA specific epitope. The purified rTsLDHA and rTsLDHB could be recognized by rat immuno-sera, serum from swine, or a patient infected with T. solium, respectively, but Western blot analysis showed cross-reactions, not only between these two LDH members but also with other common human tapeworms or helminths. The results suggested that the two LDH homologues are similar in the characteristics of LDH family, and they are not specific antigens for immunodiagnosis.

  1. Stilbene Glucoside, a Putative Sleep Promoting Constituent from Polygonum multiflorum Affects Sleep Homeostasis by Affecting the Activities of Lactate Dehydrogenase and Salivary Alpha Amylase.

    PubMed

    Wei, Qian; Ta, Guang; He, Wenjing; Wang, Wei; Wu, Qiucheng

    2017-01-01

    Chinese herbal medicine (CHM) has been used for treating insomnia for centuries. The most used CHM for insomnia was Polygonum multiflorum. However, the molecular mechanism for CHM preventing insomnia is unknown. Stilbene glucoside (THSG), an important active component of P. multiflorum, may play an important role for treating insomnia. To test the hypothesis, Kunming mice were treated with different dosages of THSG. To examine the sleep duration, a computer-controlled sleep-wake detection system was implemented. Electroencephalogram (EEG) and electromyogram (EMG) electrodes were implanted to determine sleep-wake state. RT-PCR and Western blot was used to measure the levels of lactate dehydrogenase (LDH) and saliva alpha amylase. Spearman's rank correlation coefficient was used to identify the strength of correlation between the variables. The results showed that THSG significantly prolonged the sleep time of the mice (p<0.01). THSG changed sleep profile by reducing wake and rapid eye movement (REM) period, and increasing non-REM period. RT-PCR and Western blot analysis showed that THSG could down-regulate the levels of LDH and saliva alpha amylase (p<0.05). The level of lactate and glucose was positively related with the activity of LDH and saliva alpha amylase (p<0.05), respectively. On the other hand, the activities of LDH and amylase were negatively associated with sleep duration (p<0.05). The levels of lactate and glucose affect sleep homeostasis. Thus, THSG may prevent insomnia by regulating sleep duration via LDH and salivary alpha amylase.

  2. Identification of a monofunctional aspartate kinase gene of Arabidopsis thaliana with spatially and temporally regulated expression.

    PubMed

    Yoshioka, Y; Kurei, S; Machida, Y

    2001-06-01

    We screened a gene trap library of Arabidopsis thaliana and isolated a line in which a gene encoding a homologue of monofunctional aspartate kinase was trapped by the reporter gene. Aspartate kinase (AK) is a key enzyme in the biosynthsis of aspartate family amino acids such as lysine, threonine, isoleucine, and methionine. In plants, two types of AK are known: one is AK which is sensitive to feedback inhibition by threonine and carries both AK and homoserine dehydrogenase (HSD) activities. The other one is monofunctional, sensitive to lysine and synergistically S-adenosylmethionine, and has only AK activity. We concluded that the trapped gene encoded a monofunctional aspartate kinase and designated as AK-lys3, because it lacked the HSD domain and had an amino acid sequence highly similar to those of the monofunctional aspartate kinases ofA. thaliana. AK-lys3 was highly expressed in xylem of leaves and hypocotyls and stele of roots. Significant expression of this gene was also observed in trichomes after bolting. Slight expression of AK-lys3 was detected in vascular bundles and mesophyll cells of cauline leaves, inflorescence stems, sepals, petals, and stigmas. These results indicated that this aspartate kinase gene was not expressed uniformly but in a spatially specific manner.

  3. Lactate is oxidized outside of the mitochondrial matrix in rodent brain.

    PubMed

    Herbst, Eric A F; George, Mitchell A J; Brebner, Karen; Holloway, Graham P; Kane, Daniel A

    2018-05-01

    The nature and existence of mitochondrial lactate oxidation is debated in the literature. Obscuring the issue are disparate findings in isolated mitochondria, as well as relatively low rates of lactate oxidation observed in permeabilized muscle fibres. However, respiration with lactate has yet to be directly assessed in brain tissue with the mitochondrial reticulum intact. To determine if lactate is oxidized in the matrix of brain mitochondria, oxygen consumption was measured in saponin-permeabilized mouse brain cortex samples, and rat prefrontal cortex and hippocampus (dorsal) subregions. While respiration in the presence of ADP and malate increased with the addition of lactate, respiration was maximized following the addition of exogenous NAD + , suggesting maximal lactate metabolism involves extra-matrix lactate dehydrogenase. This was further supported when NAD + -dependent lactate oxidation was significantly decreased with the addition of either low-concentration α-cyano-4-hydroxycinnamate or UK-5099, inhibitors of mitochondrial pyruvate transport. Mitochondrial respiration was comparable between glutamate, pyruvate, and NAD + -dependent lactate oxidation. Results from the current study demonstrate that permeabilized brain is a feasible model for assessing lactate oxidation, and support the interpretation that lactate oxidation occurs outside the mitochondrial matrix in rodent brain.

  4. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  5. Identification of proteins interacting with lactate dehydrogenase in claw muscle of the porcelain crab Petrolisthes cinctipes

    PubMed Central

    Cayenne, Andrea P.; Gabert, Beverly; Stillman, Jonathon H.

    2011-01-01

    Biochemical adaptation of enzymes involves conservation of activity, stability and affinity across a wide range of intracellular and environmental conditions. Enzyme adaptation by alteration of primary structure is well known, but the roles of protein-protein interactions in enzyme adaptation are less well understood. Interspecific differences in thermal stability of lactate dehydrogenase (LDH) in porcelain crabs (genus Petrolisthes) are related to intrinsic differences among LDH molecules and by interactions with other stabilizing proteins. Here, we identified proteins that interact with LDH in porcelain crab claw muscle tissue using co-immunoprecipitation, and showed LDH exists in high molecular weight complexes using size exclusion chromatography and Western blot analyses. Co-immunoprecipitated proteins were separated using 2D SDS PAGE and analyzed by LC/ESI using peptide MS/MS. Peptide MS/MS ions were compared to an EST database for Petrolisthes cinctipes to identify proteins. Identified proteins included cytoskeletal elements, glycolytic enzymes, a phosphagen kinase, and the respiratory protein hemocyanin. Our results support the hypothesis that LDH interacts with glycolytic enzymes in a metabolon structured by cytoskeletal elements that may also include the enzyme for transfer of the adenylate charge in glycolytically produced ATP. Those interactions may play specific roles in biochemical adaptation of glycolytic enzymes. PMID:21968246

  6. Influence of chronic supplementation of arginine aspartate in endurance athletes on performance and substrate metabolism - a randomized, double-blind, placebo-controlled study.

    PubMed

    Abel, T; Knechtle, B; Perret, C; Eser, P; von Arx, P; Knecht, H

    2005-06-01

    The intake of arginine aspartate has been shown to increase anabolic hormones like human growth hormone (hGH) and glucagon. The aim of our study was to investigate whether daily intake of two different dosages of arginine asparate during four weeks affects selected parameters of overtraining syndrome like performance, metabolic and endocrine parameters. Thirty male endurance-trained athletes were included in a randomized, double-blind, placebo-controlled study and divided into three groups. During four weeks, they ingested either arginine aspartate with a high concentration (H) of 5.7 g arginine and 8.7 g aspartate, with a low concentration (L) of 2.8 g arginine and 2.2 g aspartate or placebo (P).VO(2)peak and time to exhaustion were determined on a cycling ergometer in an incremental exercise test before and after supplementation. Before and after each incremental exercise test, concentrations of hGH, glucagon, testosterone, cortisol, ferritine, lactate, and urea were measured. Compared to placebo, no significant differences on endurance performance (VO(2)peak, time to exhaustion), endocrine (concentration of hGH, glucagon, cortisol, and testosterone) and metabolic parameters (concentration of lactate, ferritine, and urea) were found after chronic arginine aspartate supplementation. The chronic intake of arginine asparate during four weeks by male endurance athletes showed independent of dosage no influence on performance, selected metabolic or endocrine parameters. Consequently, there seems to be no apparent reason why the supplementation of arginine aspartate should be an effective ergogenic aid. The practice of using arginine aspartate as potential ergogenics should be critically reevaluated. Further investigations with higher dosage and extended supplementation periods should be performed.

  7. Supplementation of medium with diammonium hydrogen phosphate enhanced the D-lactate dehydrogenase levels leading to increased D-lactic acid productivity.

    PubMed

    Singhvi, Mamata; Jadhav, Akanksha; Gokhale, Digambar

    2013-10-01

    The production of D-lactic acid by Lactobacillus lactis RM2-24 was investigated using modified media to increase the efficiency of the fermentation process. The results indicated that the addition of 5 g/l peptone and 1 g/l (NH4)2HPO4 enhanced D-lactic acid production by 32%, as compared to that obtained from non supplemented media, with a productivity of 3.0 g/l/h. Lactate dehydrogenase (LDH) expression profile in these different media was studied which resulted in appearance of additional LDH isoform produced by cells when they were grown in HSYE supplemented with (NH4)2HPO4. The additional LDH appears to be L-LDH contributing to production of L-lactic acid in the fermented broth. This is totally new information in the lactic acid fermentation and could be very useful to industries engaged in D-lactic acid production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Aspartic acid

    MedlinePlus

    ... we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps every cell in the body work. It ... release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of ...

  9. Analysis of Loss-of-Function Mutants in Aspartate Kinase and Homoserine Dehydrogenase Genes Points to Complexity in the Regulation of Aspartate-Derived Amino Acid Contents1[OPEN

    PubMed Central

    2015-01-01

    Biosynthesis of aspartate (Asp)-derived amino acids lysine (Lys), methionine (Met), threonine (Thr), and isoleucine involves monofunctional Asp kinases (AKs) and dual-functional Asp kinase-homoserine dehydrogenases (AK-HSDHs). Four-week-old loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in the AK-HSDH2 gene had increased amounts of Asp and Asp-derived amino acids, especially Thr, in leaves. To explore mechanisms behind this phenotype, we obtained single mutants for other AK and AK-HSDH genes, generated double mutants from ak-hsdh2 and ak mutants, and performed free and protein-bound amino acid profiling, transcript abundance, and activity assays. The increases of Asp, Lys, and Met in ak-hsdh2 were also observed in ak1-1, ak2-1, ak3-1, and ak-hsdh1-1. However, the Thr increase in ak-hsdh2 was observed in ak-hsdh1-1 but not in ak1-1, ak2-1, or ak3-1. Activity assays showed that AK2 and AK-HSDH1 are the major contributors to overall AK and HSDH activities, respectively. Pairwise correlation analysis revealed positive correlations between the amount of AK transcripts and Lys-sensitive AK activity and between the amount of AK-HSDH transcripts and both Thr-sensitive AK activity and total HSDH activity. In addition, the ratio of total AK activity to total HSDH activity negatively correlates with the ratio of Lys to the total amount of Met, Thr, and isoleucine. These data led to the hypothesis that the balance between Lys-sensitive AKs and Thr-sensitive AK-HSDHs is important for maintaining the amounts and ratios of Asp-derived amino acids. PMID:26063505

  10. Partial reconstruction of in vitro gluconeogenesis arising from mitochondrial l-lactate uptake/metabolism and oxaloacetate export via novel L-lactate translocators.

    PubMed

    De Bari, Lidia; Atlante, Anna; Valenti, Daniela; Passarella, Salvatore

    2004-05-15

    In the light of the occurrence of L-lactate dehydrogenase inside the mitochondrial matrix, we looked at whether isolated rat liver mitochondria can take up and metabolize L-lactate, and provide oxaloacetate outside mitochondria, thus contributing to a partial reconstruction of gluconeogenesis in vitro. We found that: (1) L-lactate (10 mM), added to mitochondria in the presence of a cocktail of glycolysis/gluconeogenesis enzymes and cofactors, can lead to synthesis of glyceraldehyde-3-phosphate at a rate of about 7 nmol/min per mg mitochondrial protein. (2) Three novel translocators exist to mediate L-lactate traffic across the inner mitochondrial membrane. An L-lactate/H+ symporter was identified by measuring fluorimetrically the rate of endogenous pyridine nucleotide reduction. Consistently, L-lactate oxidation was found to occur with P/O ratio=3 (where P/O ratio is the ratio of mol of ATP synthesized to mol of oxygen atoms reduced to water during oxidative phosphorylation) and with generation of membrane potential. Proton uptake, which occurred as a result of addition of L-lactate to RLM together with electron flow inhibitors, and mitochondrial swelling in ammonium L-lactate solutions were also monitored. L-Lactate/oxaloacetate and L-lactate/pyruvate anti-porters were identified by monitoring photometrically the appearance of L-lactate counter-anions outside mitochondria. These L-lactate translocators, which are distinct from the monocarboxylate carrier, were found to differ from each other in V(max) values and in inhibition and pH profiles, and proved to regulate mitochondrial L-lactate metabolism in vitro. The role of lactate/mitochondria interactions in gluconeogenesis is discussed.

  11. Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa

    PubMed Central

    Gao, Chao; Hu, Chunhui; Zheng, Zhaojuan; Jiang, Tianyi; Dou, Peipei; Zhang, Wen; Che, Bin; Wang, Yujiao; Lv, Min

    2012-01-01

    NAD-independent l-lactate dehydrogenase (l-iLDH) and NAD-independent d-lactate dehydrogenase (d-iLDH) activities are induced coordinately by either enantiomer of lactate in Pseudomonas strains. Inspection of the genomic sequences of different Pseudomonas strains revealed that the lldPDE operon comprises 3 genes, lldP (encoding a lactate permease), lldD (encoding an l-iLDH), and lldE (encoding a d-iLDH). Cotranscription of lldP, lldD, and lldE in Pseudomonas aeruginosa strain XMG starts with the base, C, that is located 138 bp upstream of the lldP ATG start codon. The lldPDE operon is located adjacent to lldR (encoding an FadR-type regulator, LldR). The gel mobility shift assays revealed that the purified His-tagged LldR binds to the upstream region of lldP. An XMG mutant strain that constitutively expresses d-iLDH and l-iLDH was found to contain a mutation in lldR that leads to an Ile23-to-serine substitution in the LldR protein. The mutated protein, LldRM, lost its DNA-binding activity. A motif with a hyphenated dyad symmetry (TGGTCTTACCA) was identified as essential for the binding of LldR to the upstream region of lldP by using site-directed mutagenesis. l-Lactate and d-lactate interfered with the DNA-binding activity of LldR. Thus, l-iLDH and d-iLDH were expressed when the operon was induced in the presence of l-lactate or d-lactate. PMID:22408166

  12. CONVERSION OF LACTATE-C14 TO PROPIONATE BY THE RUMEN MICROFLORA12

    PubMed Central

    Baldwin, R. L.; Wood, W. A.; Emery, R. S.

    1962-01-01

    Baldwin, R. L. (Michigan State University, East Lansing), W. A. Wood, and R. S. Emery. Conversion of lactate-C14 to propionate by the rumen microflora. J. Bacteriol. 83:907–913. 1962.—Rumen microflora enriched on five different diets calculated to present increasing carbohydrate or lactate availability were used to determine the contribution of the randomizing (succinate) and nonrandomizing (acrylate) routes to propionate with lactate-2-C14 and -3-C14 as substrates. Propionate was labeled as though 70 to 90% was formed via the nonrandomizing route. This percentage was highest on diets containing high levels of carbohydrate or lactate or both. Evidence for the presence of succinic dehydrogenase, acetokinase, phosphotransacetylase, and coenzyme A transphorase was obtained with cell-free extracts. Propionate-2-C14 and lactate-2-C14 were converted by extracts to the activated derivatives of acrylate, lactate, propionate, and acetate. PMID:13864343

  13. Lactate oxidation coupled to energy production in mitochondria like particles from Setaria digitata, a filarial parasite.

    PubMed

    Sivan, V M; Raj, R K

    1994-10-14

    In the filarial parasite, Setaria digitata, the mitochondria like particles (MLP) show NAD reduction with sodium lactate. The MLP also reduces dye and ferricyanide with lactate. The ferricyanide reduction by lactate is found to be sensitive to the cytochrome o inhibitor orthohydroxy diphenyl (OHD) and complex I inhibitor rotenone, modulated by ADP (+) and ATP (-) and inhibited by pyruvate and oxaloacetate. MLP shows lactate oxidation sensitive to OHD, rotenone and sodium malonate. Thus, the lactate utilizing complex system, consisting of an NADH generating MLP bound lactate dehydrogenase and a lactate flavocytochrome reductase tightly linked to complex I and cytochrome o, produces ATP in functional association with fumarate reductase complex and other enzyme systems. Hence, this study provides new dimensions to the study of metabolism in filarial parasites.

  14. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    PubMed Central

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality. One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367–557) in patients with AAS and 383 U/L (IQR 331–460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37–51) and the specificity was 73% (95% CI 69–76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH ≥ 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11–4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable

  15. [Evaluation of the increasing serum lactate dehydrogenase caused by recombinant human granulocyte-colony stimulating factor].

    PubMed

    Sawa, Toshiyuki; Yoshida, Tsutomu; Ikoma, Tetsuroh; Toyoda, Miki; Ohno, Yasushi; Fujiwara, Hisayoshi

    2003-01-01

    Increasing serum lactate dehydrogenase (LDH) is often caused by granulocyte-colony stimulating factor (G-CSF) for leukopenia following chemotherapy in patients with lung cancer. To evaluate the increase in LDH, we investigated the significance of its elevation and LDH isozyme during chemotherapy supported by recombinant human G-CSF (rhG-CSF). To exclude effects of liver diseases and chemotherapy-induced liver dysfunction, only patients in whom laboratory findings concerning liver function were within normal range were entered in this study. If leukocyte or neutrophil counts were less than grade 3, subcutaneous injection of 50 micrograms/m2 of filgrastim was given daily until leukocyte counts increased to more than 10,000/mm3. Sixty patients with unresectable lung cancer were enrolled in this study and the LDH isozyme was evaluable in 54 patients. Increasing LDH was observed in 38 patients(70.4%), and LDH isozyme was measured in these 38 patients. Increases in granulocytes and LDH isozymes were found to have a positive correlation. LDH2, LDH3, LDH4 and LDH5 increased significantly after rhG-CSF administration, although LDH 1 did not increase. It was found that a rapid increase in leukocytes by rhG-CSF induced an increase in LDH, especially LDH 3.4. Considering the results of principal component analysis and the distribution ratio of LDH isozymes in neutrophils, it is thought that elevation of LDH is reflected in the rapid production and consumption of neutrophils.

  16. DNA Sequence Polymorphism of the Lactate Dehydrogenase Genefrom Iranian Plasmodium vivax and Plasmodium falciparum Isolates.

    PubMed

    Getacher Feleke, Daniel; Nateghpour, Mehdi; Motevalli Haghi, Afsaneh; Hajjaran, Homa; Farivar, Leila; Mohebali, Mehdi; Raoofian, Reza

    2015-01-01

    Parasite lactate dehydrogenase (pLDH) is extensively employed as malaria rapid diagnostic tests (RDTs). Moreover, it is a well-known drug target candidate. However, the genetic diversity of this gene might influence performance of RDT kits and its drug target candidacy. This study aimed to determine polymorphism of pLDH gene from Iranian isolates of P. vivax and P. falciparum. Genomic DNA was extracted from whole blood of microscopically confirmed P. vivax and P. falciparum infected patients. pLDH gene of P. falciparum and P. vivax was amplified using conventional PCR from 43 symptomatic malaria patients from Sistan and Baluchistan Province, Southeast Iran from 2012 to 2013. Sequence analysis of 15 P. vivax LDH showed fourteen had 100% identity with P. vivax Sal-1 and Belem strains. Two nucleotide substitutions were detected with only one resulted in amino acid change. Analysis of P. falciparum LDH sequences showed six of the seven sequences had 100% homology with P. falciparum 3D7 and Mzr-1. Moreover, PfLDH displayed three nucleotide changes that resulted in changing only one amino acid. PvLDH and PfLDH showed 75%-76% nucleotide and 90.4%-90.76% amino acid homology. pLDH gene from Iranian P. falciparum and P. vivax isolates displayed 98.8-100% homology with 1-3 nucleotide substitutions. This indicated this gene was relatively conserved. Additional studies can be done weather this genetic variation can influence the performance of pLDH based RDTs or not.

  17. Changes in lactate dehydrogenase are associated with central gray matter lesions in newborns with hypoxic-ischemic encephalopathy.

    PubMed

    Yum, Sook Kyung; Moon, Cheong-Jun; Youn, Young-Ah; Sung, In Kyung

    2017-05-01

    Biomarkers may predict neurological prognosis in infants with hypoxic-ischemic encephalopathy (HIE). We evaluated the relationship between serum lactate dehydrogenase (LDH) and brain magnetic resonance imaging (MRI), which predicts neurodevelopmental outcomes, in order to assess whether LDH levels are similarly predictive. Medical records were reviewed for infants with HIE and LDH levels were assessed on the first (LDH 1 ) and third (LDH 3 ) days following birth. Receiver operating characteristic curves were obtained in relation to central gray matter hypoxic-ischemic lesions. Of 92 patients, 52 (56.5%) had hypoxic-ischemic lesions on brain MRI, and 21 of these infants (40.4%) had central gray matter lesions. LDH 1 and LDH 3 did not differ; however, the percentage change (ΔLDH%) was significantly higher in infants with central gray matter lesions (36.9% versus 6.6%, p = 0.006). With cutoffs of 187 (IU/L, ΔLDH) and 19.4 (%, ΔLDH%), the sensitivity, specificity, positive predictive value and negative predictive value were 71.4, 69.0, 40.5 and 89.1%, respectively. The relative risk was 5.57 (p = 0.001). Changes in serum LDH may be a useful biomarker for predicting future neurodevelopmental prognosis in infants with HIE.

  18. Physiological stress responses in big gamefish after capture: observations on plasma chemistry and blood factors.

    PubMed

    Wells, R M; McIntyre, R H; Morgan, A K; Davie, P S

    1986-01-01

    The plasma electrolytes, Na+, K+, Ca2+, Cl- and osmolarities had high values in capture-stressed big gamefish. Blood metabolites measured after stress showed glucose and lactate elevations. The activity of the plasma enzymes alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, creatine kinase and lactate dehydrogenase suggested tissue disruptions following severe capture stress. Haematocrit values and methaemoglobin were high in capture-stressed gamefish. The plasma chemistry of resting and capture-stressed snapper (Chrysophrys auratus) was studied for comparison. Specific differences in plasma biochemistry appeared to be the result of different strategies of fish behaviour during capture.

  19. Effect of ornithine and lactate on urea synthesis in isolated hepatocytes.

    PubMed Central

    Briggs, S; Freedland, R A

    1976-01-01

    1. In hepatocytes isolated from 24 h-starved rats, urea production from ammonia was stimulated by addition of lactate, in both the presence and the absence of ornithine. The relationship of lactate concentration to the rate of urea synthesis was hyperbolic. 2. Other glucose precursors also stimulated urea production to varying degrees, but none more than lactate. Added oleate and butyrate did not stimulate urea synthesis. 3. Citrulline accumulation was largely dependent on ornithine concentration. As ornithine was increased from 0 to 40 mM, the rate of citrulline accumulation increased hyperbolically, and was half-maximal when ornithine was 8-12 mM. 4. The rate of citrulline accumulation was independent of the presence of lactate, but with pyruvate the rate increased. 5. The rate of urea production continued to increase as ornithine was varied from 0 to 40 mM. 6. It was concluded that intermediates provided by both ornithine and lactate are limiting for urea production from ammonia in isolated liver cells. It was suggested that the stimulatory effect of lactate lies in increased availability of cytosolic aspartate for condensation with citrulline. PMID:1008850

  20. Evaluation of the Lactate-to-N-Acetyl-aspartate Ratio Defined With Magnetic Resonance Spectroscopic Imaging Before Radiation Therapy as a New Predictive Marker of the Site of Relapse in Patients With Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deviers, Alexandra; UMR; INP

    Purpose: Because lactate accumulation is considered a surrogate for hypoxia and tumor radiation resistance, we studied the spatial distribution of the lactate-to-N-acetyl-aspartate ratio (LNR) before radiation therapy (RT) with 3D proton magnetic resonance spectroscopic imaging (3D-{sup 1}H-MRSI) and assessed its impact on local tumor control in glioblastoma (GBM). Methods and Materials: Fourteen patients with newly diagnosed GBM included in a phase 2 chemoradiation therapy trial constituted our database. Magnetic resonance imaging (MRI) and MRSI data before RT were evaluated and correlated to MRI data at relapse. The optimal threshold for tumor-associated LNR was determined with receiver-operating-characteristic (ROC) curve analysis ofmore » the pre-RT LNR values and MRI characteristics of the tumor. This threshold was used to segment pre-RT normalized LNR maps. Two spatial analyses were performed: (1) a pre-RT volumetric comparison of abnormal LNR areas with regions of MRI-defined lesions and a choline (Cho)-to- N-acetyl-aspartate (NAA) ratio ≥2 (CNR2); and (2) a voxel-by-voxel spatial analysis of 4,186,185 voxels with the intention of evaluating whether pre-RT abnormal LNR areas were predictive of the site of local recurrence. Results: A LNR of ≥0.4 (LNR-0.4) discriminated between tumor-associated and normal LNR values with 88.8% sensitivity and 97.6% specificity. LNR-0.4 voxels were spatially different from those of MRI-defined lesions, representing 44% of contrast enhancement, 64% of central necrosis, and 26% of fluid-attenuated inversion recovery (FLAIR) abnormality volumes before RT. They extended beyond the overlap with CNR2 for most patients (median: 20 cm{sup 3}; range: 6-49 cm{sup 3}). LNR-0.4 voxels were significantly predictive of local recurrence, regarded as contrast enhancement at relapse: 71% of voxels with a LNR-0.4 before RT were contrast enhanced at relapse versus 10% of voxels with a normal LNR (P<.01). Conclusions: Pre-RT LNR-0.4 in

  1. Longitudinal study of the effects of chronic hypothyroidism on skeletal muscle in dogs.

    PubMed

    Rossmeisl, John H; Duncan, Robert B; Inzana, Karen D; Panciera, David L; Shelton, G Diane

    2009-07-01

    To study the effects of experimentally induced hypothyroidism on skeletal muscle and characterize any observed myopathic abnormalities in dogs. 9 female, adult mixed-breed dogs; 6 with hypothyroidism induced with irradiation with 131 iodine and 3 untreated control dogs. Clinical examinations were performed monthly. Electromyographic examinations; measurement of plasma creatine kinase, alanine aminotransferase, aspartate aminotransferase, lactate, and lactate dehydrogenase isoenzyme activities; and skeletal muscle morphologic-morphometric examinations were performed prior to and every 6 months for 18 months after induction of hypothyroidism. Baseline, 6-month, and 18-month assessments of plasma, urine, and skeletal muscle carnitine concentrations were also performed. Hypothyroid dogs developed electromyographic and morphologic evidence of myopathy by 6 months after treatment, which persisted throughout the study, although these changes were subclinical at all times. Hypothyroid myopathy was associated with significant increases in plasma creatine kinase, aspartate aminotransferase, and lactate dehydrogenase 5 isoenzyme activities and was characterized by nemaline rod inclusions, substantial and progressive predominance of type I myofibers, decrease in mean type II fiber area, subsarcolemmal accumulations of abnormal mitochondria, and myofiber degeneration. Chronic hypothyroidism was associated with substantial depletion in skeletal muscle free carnitine. Chronic, experimentally induced hypothyroidism resulted in substantial but subclinical phenotypic myopathic changes indicative of altered muscle energy metabolism and depletion of skeletal muscle carnitine. These abnormalities may contribute to nonspecific clinical signs, such as lethargy and exercise intolerance, often reported in hypothyroid dogs.

  2. ARALAR/AGC1 deficiency, a neurodevelopmental disorder with severe impairment of neuronal mitochondrial respiration, does not produce a primary increase in brain lactate.

    PubMed

    Juaristi, Inés; García-Martín, María L; Rodrigues, Tiago B; Satrústegui, Jorgina; Llorente-Folch, Irene; Pardo, Beatriz

    2017-07-01

    ARALAR/AGC1 (aspartate-glutamate mitochondrial carrier 1) is an important component of the NADH malate-aspartate shuttle (MAS). AGC1-deficiency is a rare disease causing global cerebral hypomyelination, developmental arrest, hypotonia, and epilepsy (OMIM ID #612949); the aralar-KO mouse recapitulates the major findings in humans. This study was aimed at understanding the impact of ARALAR-deficiency in brain lactate levels as a biomarker. We report that lactate was equally abundant in wild-type and aralar-KO mouse brain in vivo at postnatal day 17. We find that lactate production upon mitochondrial blockade depends on up-regulation of lactate formation in astrocytes rather than in neurons. However, ARALAR-deficiency decreased cell respiration in neurons, not astrocytes, which maintained unchanged respiration and lactate production. As the primary site of ARALAR-deficiency is neuronal, this explains the lack of accumulation of brain lactate in ARALAR-deficiency in humans and mice. On the other hand, we find that the cytosolic and mitochondrial components of the glycerol phosphate shuttle are present in astrocytes with similar activities. This suggests that glycerol phosphate shuttle is the main NADH shuttle in astrocytes and explains the absence of effects of ARALAR-deficiency in these cells. © 2017 International Society for Neurochemistry.

  3. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    PubMed

    Fitzgerald, R J; Adams, B O; Sandham, H J; Abhyankar, S

    1989-03-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation was slightly but not significantly (P greater than or equal to 0.2) less. Multiple oral or fecal samples plated on 2,3,5-triphenyltetrazolium indicator medium revealed no evidence of back mutation from Ldh- to Ldh+ in vivo. Both Ldh+ strain 041 and Ldh- strain 044 demonstrated bacteriocinlike activity in vitro against a number of human strains of mutans streptococci representing serotype a (S. cricetus) and serotypes c and e (S. mutans). Serotypes b (S. rattus) and f (S. mutans) and strains of S. mitior, S. sanguis, and S. salivarius were not inhibited. Thus, Ldh mutant strain 044 possesses a number of desirable traits that suggest it should be investigated further as a possible effector strain for replacement therapy of dental caries. These traits include its stability and low cariogenicity in the sensitive gnotobiotic rat caries model, its bacteriocinlike activity against certain other cariogenic S. mutans (but not against more inocuous indigenous oral streptococci), and the fact that it is a member of the most prevalent human serotype of cariogenic streptococci.

  4. A comparative proteomic analysis of Bacillus coagulans in response to lactate stress during the production of L-lactic acid.

    PubMed

    Wang, Xiuwen; Qin, Jiayang; Wang, Landong; Xu, Ping

    2014-12-01

    The growth rate and maximum biomass of Bacillus coagulans 2-6 were inhibited by lactate; inhibition by sodium lactate was stronger than by calcium lactate. The differences of protein expressions by B. coagulans 2-6 under the lactate stress were determined using two-dimensional electrophoresis coupled with mass spectrometric identification. Under the non-stress condition, calcium lactate stress and sodium lactate stress, the number of detected protein spots was 1,571 ± 117, 1,281 ± 231 and 904 ± 127, respectively. Four proteins with high expression under lactate stress were identified: lactate dehydrogenase, cysteine synthase A, aldo/keto reductase and ribosomal protein L7/L12. These proteins are thus potential targets for the reconstruction of B. coagulans to promote its resistance to lactate stress.

  5. Effect of a marathon run on serum lipoproteins, creatine kinase, and lactate dehydrogenase in recreational runners.

    PubMed

    Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A

    2005-12-01

    The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride level was significantly elevated postrace, then fell 30% below baseline 1 day after the run, and returned to baseline after 1 week. Total cholesterol responded less dramatically but with a similar pattern. High-density lipoprotein cholesterol remained significantly elevated and low-density lipoprotein cholesterol was transiently reduced for 3 days after the run. The total cholesterol/high-density cholesterol ratio was significantly lowered for 3 days. Serum lactate dehydrogenase activity significantly doubled postrace and then declined but remained elevated for 2 weeks. Serum creatine kinase activity peaked 24 hr after the run, with a 15-fold rise, and returned to baseline after 1 week. The rise of these enzymes reflects mechanically damaged muscle cells leaking contents into the interstitial fluid. It is concluded that a prolonged strenuous exercise bout in recreational runners, such as a marathon, produces beneficial changes in lipid blood profiles that are significant for only 3 days. However, muscle damage is also evident for 1 week or more from the dramatic and long-lasting effect on enzyme levels. Laboratory values for these runners were outside normal ranges for some days after the race.

  6. Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis.

    PubMed Central

    Baskakov, I; Wang, A; Bolen, D W

    1998-01-01

    Trimethylamine-N-oxide (TMAO) in the cells of sharks and rays is believed to counteract the deleterious effects of the high intracellular concentrations of urea in these animals. It has been hypothesized that TMAO has the generic ability to counteract the effects of urea on protein structure and function, regardless of whether that protein actually evolved in the presence of these two solutes. Rabbit muscle lactate dehydrogenase (LDH) did not evolve in the presence of either solute, and it is used here to test the validity of the counteraction hypothesis. With pyruvate as substrate, results show that its Km and the combined Km of pyruvate and NADH are increased by urea, decreased by TMAO, and in 1:1 and 2:1 mixtures of urea:TMAO the Km values are essentially equivalent to the Km values obtained in the absence of the two solutes. In contrast, values of k(cat) and the Km for NADH as a substrate are unperturbed by urea, TMAO, or urea:TMAO mixtures. All of these effects are consistent with TMAO counteraction of the effects of urea on LDH kinetic parameters, supporting the premise that counteraction is a property of the solvent system and is independent of the evolutionary history of the protein. PMID:9591690

  7. Total lactate dehydrogenase activity of tail muscle is not cold-adapted in nocturnal lizards from cool-temperate habitats.

    PubMed

    Hare, K M; Miller, J H; Clark, A G; Daugherty, C H

    2005-12-01

    The dependence of metabolic processes on temperature constrains the behavior, physiology and ecology of many ectothermic animals. The evolution of nocturnality in lizards, especially in temperate regions, requires adaptations for activity at low temperatures when optimal body temperatures are unlikely to be obtained. We examined whether nocturnal lizards have cold-adapted lactate dehydrogenase (LDH). LDH was chosen as a representative metabolic enzyme. We measured LDH activity of tail muscle in six lizard species (n=123: three nocturnal, two diurnal and one crepuscular) between 5 and 35 degrees C and found no differences in LDH-specific activity or thermal sensitivity among the species. Similarly, the specific activity and thermal sensitivity of LDH were similar between skinks and geckos. Similar enzyme activities among nocturnal and diurnal lizards indicate that there is no selection of temperature specific LDH enzyme activity at any temperature. As many nocturnal lizards actively thermoregulate during the day, LDH may be adapted for a broad range of temperatures rather than adapted specifically for the low temperatures encountered when the animals are active. The total activity of LDH in tropical and temperate lizards is not cold-adapted. More data are required on biochemical adaptations and whole animal thermal preferences before trends can be established.

  8. Salivary lactate dehydrogenase levels can provide early diagnosis of hypoxic-ischaemic encephalopathy in neonates with birth asphyxia.

    PubMed

    Mehta, Akshay; Chawla, Deepak; Kaur, Jasbinder; Mahajan, Vidushi; Guglani, Vishal

    2015-06-01

    Timely detection of hypoxic-ischaemic encephalopathy (HIE) is crucial for selecting neonates who are likely to benefit from neuroprotective therapy. This study evaluated the efficacy of salivary lactate dehydrogenase (LDH) in the early diagnosis of HIE among neonates with perinatal asphyxia. We prospectively enrolled 30 neonates who needed resuscitation at birth or had a history of delayed cry into the HIE group if they developed HIE within 12 h of birth. The control group comprised 30 neonates who had no evidence of HIE, but had intrapartum foetal distress or needed resuscitation at birth. LDH was measured using saliva samples collected within 12 h of birth. Salivary LDH was significantly higher in the HIE group, with a median of 2578 and an interquartile range (IQR) of 1379-3408 international units per litre (IU/L), than in the control group (median 558.5, IQR: 348-924 IU/L, p < 0.001). The test demonstrated excellent discriminating ability: the area under the curve was 0.92 and the levels of 893 IU/L showed a sensitivity of 90% and a specificity of 73.3%. Measuring salivary LDH among neonates with birth asphyxia provided an early and accurate diagnosis of HIE and could be used as a triage tool. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  9. Induction of triglyceride accumulation and mitochondrial maintenance in muscle cells by lactate

    PubMed Central

    Sun, Jingquan; Ye, Xin; Xie, Minhao; Ye, Jianping

    2016-01-01

    Muscle exercise induces intramuscular triglyceride (TG) accumulation and promotes mitochondrial maintenance in myotubes. However, the mechanism underlying exercise effects remains unknown. In this study, lactic acid was tested as a signaling molecule in C2C12 myotubes to understand the mechanism. Intracellular TG storage was induced in the cells by sodium lactate. The lactate activity was observed with an inhibition of the cAMP-PKA pathway as indicated by a reduction in the phosphorylation status of CREB (pCREB). Induction of pCREB signal by forskolin was blocked by pretreatment of cells with lactate. The impact of lactate on mitochondrial function was examined with a focus on the activities of two enzymes, MCAT (malonylCoA:ACP transferase) and PDH (pyruvate dehydrogenase). The enzyme activities were induced in the cells by lactate. Expression of the lactate receptor (GPR81) and lactate transporters (MCT1/4) were induced as well by lactate. The lactate activities were observed at concentrations between 4–64 mM, and were not dependent on the increase in intracellular pyruvate. Pyruvate treatment did not generate the same effects in the cells. Those results suggest that lactate may induce intramuscular TG storage and mitochondrial maintenance in myotubes through inhibition of the cAMP pathway by activation of GPR81 in a positive feedback manner. PMID:27645401

  10. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane.

    PubMed

    McAnulty, Michael J; Poosarla, Venkata Giridhar; Li, Jine; Soo, Valerie W C; Zhu, Fayin; Wood, Thomas K

    2017-04-01

    We previously demonstrated anaerobic conversion of the greenhouse gas methane into acetate using an engineered archaeon that produces methyl-coenzyme M reductase (Mcr) from unculturable microorganisms from a microbial mat in the Black Sea to create the first culturable prokaryote that reverses methanogenesis and grows anaerobically on methane. In this work, we further engineered the same host with the goal of converting methane into butanol. Instead, we discovered a process for converting methane to a secreted valuable product, L-lactate, with sufficient optical purity for synthesizing the biodegradable plastic poly-lactic acid. We determined that the 3-hydroxybutyryl-CoA dehydrogenase (Hbd) from Clostridium acetobutylicum is responsible for lactate production. This work demonstrates the first metabolic engineering of a methanogen with a synthetic pathway; in effect, we produce a novel product (lactate) from a novel substrate (methane) by cloning the three genes for Mcr and one for Hbd. We further demonstrate the utility of anaerobic methane conversion with an increased lactate yield compared to aerobic methane conversion to lactate. Biotechnol. Bioeng. 2017;114: 852-861. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Genetic polymorphism and isoenzyme patterns of lactate dehydrogenase in tench (Tinca tinca), crucian carp (Carassius carassius) and carp (Cyprinus carpio).

    PubMed

    Valenta, M; Slechta, V; Slechtová, V; Kálal, L

    1977-01-01

    Isoenzyme patterns and the polymorphism of lactate dehydrogenase (LDH) were investigated in 3 fish species of family Cyprinidae, i.e. tench (Tinca tinca), crucian carp (Carassius carassius) and carp (Cyprinus carpio). The isoenzyme patterns were tissue and species specific. In crucian carp subunits with different electrophoretic mobility are present, which are genetically controlled from the B1, B2, A1, A2 and C loci, while the set of loci in carp is B1, B2, A, C1 and C2 and in tench B, A, C. The locus B of LDH in tench, the locus B2 in crucian carp, and the loci B1, C1 and C2 in carp are polymorphic and have two different alleles in each case. The polymorphism did not affect the total LDH activity in the tissues. All the populations investigated were in Hardy-Weinberg equilibrium. The genetic control of the polymorphism in B1 and C1 loci in carp was proved by test matings. The polymorphism in B loci tested in erythrocytes may be utilized as genetic markers in the fish breeding.

  12. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows.

    PubMed

    González, Felix Diaz; Muiño, Rodrigo; Pereira, Víctor; Campos, Rómulo; Benedito, José Luis

    2011-09-01

    Blood indicators are used as a tool to diagnose metabolic disorders. The present work was conducted to study the relationships among blood indicators of lipomobilization and hepatic function in high-yielding dairy cows. Two groups of Holstein cows were studied: 27 early lactation cows and 14 mid lactation cows from four different herds with similar husbandry characteristics in Galicia, Spain. Blood samples were obtained to measure beta-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA), triglycerides (TG), and the activity of aspartate transaminase (AST) and gamma-glutamyl transferase. Cows in early lactation had higher levels of BHB and NEFA than mid lactation cows. High lipomobilization (NEFA > 400 µmol/L) was detected in 67% and 7% of early lactation and mid lactation cows, respectively, while subclinical ketosis (BHB > 1.2 mmol/L) was detected in 41% and 28% of the early lactation and lactation cows, respectively. TG concentrations were low in all cows suffering subclinical ketosis and in 61% of the cows with high lipomobilization. During early lactation, 30% of cows suffered hepatic lipidosis as detected by levels of AST. Compromised hepatic function was observed in early lactation cows as shown by lower concentrations of glucose, total protein, and urea.

  13. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.

    PubMed

    Lo, Jonathan; Zheng, Tianyong; Hon, Shuen; Olson, Daniel G; Lynd, Lee R

    2015-04-01

    Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are anaerobic thermophilic bacteria being investigated for their ability to produce biofuels from plant biomass. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is present in these bacteria and has been known to be important for ethanol formation in other anaerobic alcohol producers. This study explores the inactivation of the adhE gene in C. thermocellum and T. saccharolyticum. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In both adhE deletion strains, fermentation products shifted from ethanol to lactate production and resulted in lower cell density and longer time to reach maximal cell density. In T. saccharolyticum, the adhE deletion strain lost >85% of alcohol dehydrogenase (ADH) activity. Aldehyde dehydrogenase (ALDH) activity did not appear to be affected, although ALDH activity was low in cell extracts. Adding ubiquinone-0 to the ALDH assay increased activity in the T. saccharolyticum parent strain but did not increase activity in the adhE deletion strain, suggesting that ALDH activity was inhibited. In C. thermocellum, the adhE deletion strain lost >90% of ALDH and ADH activity in cell extracts. The C. thermocellum adhE deletion strain contained a point mutation in the lactate dehydrogenase gene, which appears to deregulate its activation by fructose 1,6-bisphosphate, leading to constitutive activation of lactate dehydrogenase. Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are bacteria that have been investigated for their ability to produce biofuels from plant biomass. They have been engineered to produce higher yields of ethanol, yet questions remain about the enzymes responsible for ethanol formation in these bacteria. The genomes of these bacteria encode multiple predicted aldehyde and alcohol dehydrogenases which could be

  14. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.

    PubMed

    Wang, Zei Wen; Saini, Mukesh; Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng

    2015-11-04

    Crude glycerol resulting from biodiesel production is an abundant and renewable resource. However, the impurities in crude glycerol usually make microbial fermentation problematic. This issue was addressed by systematic engineering of Escherichia coli for the production of d-lactate from crude glycerol. First, mgsA and the synthetic pathways of undesired products were eliminated in E. coli, rendering the strain capable of homofermentative production of optically pure d-lactate. To direct carbon flux toward d-lactate, the resulting strain was endowed with an enhanced expression of glpD-glpK in the glycerol catabolism and of a heterologous gene encoding d-lactate dehydrogenase. Moreover, the strain was evolved to improve its utilization of cruder glycerol and subsequently equipped with the FocA channel to export intracellular d-lactate. Finally, the fed-batch fermentation with two-phase culturing was carried out with a bioreactor. As a result, the engineered strain enabled production of 105 g/L d-lactate (99.9% optical purity) from 121 g/L crude glycerol at 40 h. The result indicates the feasibility of our approach to engineering E. coli for the crude glycerol-based fermentation.

  15. Identification of anti-filarial leads against aspartate semialdehyde dehydrogenase of Wolbachia endosymbiont of Brugia malayi: combined molecular docking and molecular dynamics approaches.

    PubMed

    Amala, Mathimaran; Rajamanikandan, Sundaraj; Prabhu, Dhamodharan; Surekha, Kanagarajan; Jeyakanthan, Jeyaraman

    2018-02-06

    Lymphatic filariasis is a debilitating vector borne parasitic disease that infects human lymphatic system by nematode Brugia malayi. Currently available anti-filarial drugs are effective only on the larval stages of parasite. So far, no effective drugs are available for humans to treat filarial infections. In this regard, aspartate semialdehyde dehydrogenase (ASDase) in lysine biosynthetic pathway from Wolbachia endosymbiont Brugia malayi represents an attractive therapeutic target for the development of novel anti-filarial agents. In this present study, molecular modeling combined with molecular dynamics simulations and structure-based virtual screening were performed to identify potent lead molecules against ASDase. Based on Glide score, toxicity profile, binding affinity and mode of interactions with the ASDase, five potent lead molecules were selected. The molecular docking and dynamics results revealed that the amino acid residues Arg103, Asn133, Cys134, Gln161, Ser164, Lys218, Arg239, His246, and Asn321 plays a crucial role in effective binding of Top leads into the active site of ASDase. The stability of the ASDase-lead complexes was confirmed by running the 30 ns molecular dynamics simulations. The pharmacokinetic properties of the identified lead molecules are in the acceptable range. Furthermore, density functional theory and binding free energy calculations were performed to rank the lead molecules. Thus, the identified lead molecules can be used for the development of anti-filarial agents to combat the pathogenecity of Brugia malayi.

  16. Allosteric monofunctional aspartate kinases from Arabidopsis.

    PubMed

    Curien, Gilles; Laurencin, Mathieu; Robert-Genthon, Mylène; Dumas, Renaud

    2007-01-01

    Plant monofunctional aspartate kinase is unique among all aspartate kinases, showing synergistic inhibition by lysine and S-adenosyl-l-methionine (SAM). The Arabidopsis genome contains three genes for monofunctional aspartate kinases. We show that aspartate kinase 2 and aspartate kinase 3 are inhibited only by lysine, and that aspartate kinase 1 is inhibited in a synergistic manner by lysine and SAM. In the absence of SAM, aspartate kinase 1 displayed low apparent affinity for lysine compared to aspartate kinase 2 and aspartate kinase 3. In the presence of SAM, the apparent affinity of aspartate kinase 1 for lysine increased considerably, with K(0.5) values for lysine inhibition similar to those of aspartate kinase 2 and aspartate kinase 3. For all three enzymes, the inhibition resulted from an increase in the apparent K(m) values for the substrates ATP and aspartate. The mechanism of aspartate kinase 1 synergistic inhibition was characterized. Inhibition by lysine alone was fast, whereas synergistic inhibition by lysine plus SAM was very slow. SAM by itself had no effect on the enzyme activity, in accordance with equilibrium binding analyses indicating that SAM binding to aspartate kinase 1 requires prior binding of lysine. The three-dimensional structure of the aspartate kinase 1-Lys-SAM complex has been solved [Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL & Dumas R (2006) Plant Cell18, 1681-1692]. Taken together, the data suggest that, upon binding to the inactive aspartate kinase 1-Lys complex, SAM promotes a slow conformational transition leading to formation of a stable aspartate kinase 1-Lys-SAM complex. The increase in aspartate kinase 1 apparent affinity for lysine in the presence of SAM thus results from the displacement of the unfavorable equilibrium between aspartate kinase 1 and aspartate kinase 1-Lys towards the inactive form.

  17. Minimizing the effects of oxygen interference on l-lactate sensors by a single amino acid mutation in Aerococcus viridansl-lactate oxidase.

    PubMed

    Hiraka, Kentaro; Kojima, Katsuhiro; Lin, Chi-En; Tsugawa, Wakako; Asano, Ryutaro; La Belle, Jeffrey T; Sode, Koji

    2018-04-30

    l-lactate biosensors employing l-lactate oxidase (LOx) have been developed mainly to measure l-lactate concentration for clinical diagnostics, sports medicine, and the food industry. Some l-lactate biosensors employ artificial electron mediators, but these can negatively impact the detection of l-lactate by competing with the primary electron acceptor: molecular oxygen. In this paper, a strategic approach to engineering an AvLOx that minimizes the effects of oxygen interference on sensor strips was reported. First, we predicted an oxygen access pathway in Aerococcus viridans LOx (AvLOx) based on its crystal structure. This was subsequently blocked by a bulky amino acid substitution. The resulting Ala96Leu mutant showed a drastic reduction in oxidase activity using molecular oxygen as the electron acceptor and a small increase in dehydrogenase activity employing an artificial electron acceptor. Secondly, the Ala96Leu mutant was immobilized on a screen-printed carbon electrode using glutaraldehyde cross-linking method. Amperometric analysis was performed with potassium ferricyanide as an electron mediator under argon or atmospheric conditions. Under argon condition, the response current increased linearly from 0.05 to 0.5mM l-lactate for both wild-type and Ala96Leu. However, under atmospheric conditions, the response of wild-type AvLOx electrode was suppressed by 9-12% due to oxygen interference. The Ala96Leu mutant maintained 56-69% of the response current at the same l-lactate level and minimized the relative bias error to -19% from -49% of wild-type. This study provided significant insight into the enzymatic reaction mechanism of AvLOx and presented a novel approach to minimize oxygen interference in sensor applications, which will enable accurate detection of l-lactate concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE PAGES

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; ...

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  19. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  20. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    PubMed Central

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  1. Antimalarial Activity of Potential Inhibitors of Plasmodium falciparum Lactate Dehydrogenase Enzyme Selected by Docking Studies

    PubMed Central

    Penna-Coutinho, Julia; Cortopassi, Wilian Augusto; Oliveira, Aline Alves; França, Tanos Celmar Costa; Krettli, Antoniana Ursine

    2011-01-01

    The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH) has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH) all exhibit ∼90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH) and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole) were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2). The IC50 values for each drug in both tests were similar, were lowest for posaconazole (<5 µM) and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use. PMID:21779323

  2. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows

    PubMed Central

    Muiño, Rodrigo; Pereira, Víctor; Campos, Rómulo; Benedito, José Luis

    2011-01-01

    Blood indicators are used as a tool to diagnose metabolic disorders. The present work was conducted to study the relationships among blood indicators of lipomobilization and hepatic function in high-yielding dairy cows. Two groups of Holstein cows were studied: 27 early lactation cows and 14 mid lactation cows from four different herds with similar husbandry characteristics in Galicia, Spain. Blood samples were obtained to measure beta-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA), triglycerides (TG), and the activity of aspartate transaminase (AST) and gamma-glutamyl transferase. Cows in early lactation had higher levels of BHB and NEFA than mid lactation cows. High lipomobilization (NEFA > 400 µmol/L) was detected in 67% and 7% of early lactation and mid lactation cows, respectively, while subclinical ketosis (BHB > 1.2 mmol/L) was detected in 41% and 28% of the early lactation and lactation cows, respectively. TG concentrations were low in all cows suffering subclinical ketosis and in 61% of the cows with high lipomobilization. During early lactation, 30% of cows suffered hepatic lipidosis as detected by levels of AST. Compromised hepatic function was observed in early lactation cows as shown by lower concentrations of glucose, total protein, and urea. PMID:21897097

  3. Transport of pyruvate and lactate in yeast mitochondria.

    PubMed

    Briquet, M

    1977-02-07

    Evidence for the existence of mediated transport of pyruvate and lactate in isolated mitochondria of Saccharomyces cerevisiae is presented. 1. The mitochondrial oxidation of pyruvate is specifically inhibited by the monocarboxylic oxoacids alpha-ketoisocaproate and by alpha-cyano-3-hydroxycinnamate, while pyruvate and malate dehydrogenases activities are not inhibited. 2. The stimulation of the mitochondrial oxidations of succinate, alpha-ketoglutarate and citrate by pyruvate are also inhibited by alpha-cyano-3-hydroxycinnamate. 3. The [14C]pyruvate uptake by yeast mitochondria follows saturation kinetics and is completely inhibited by alpha-cyano-3-hydroxycinnamate. 4. Large amplitude passive swellings of mitochondria of the wild type and of cytoplasmic rho- and rho-n mutants are induced by isoosmotic ammonium pyruvate and lactate. These pH-dependent swellings are inhibited by alpha-cyano-3-hydroxycinnamate suggesting that the carrier system is not coded by mitochondrial DNA.

  4. Lactate dehydrogenase downregulation mediates the inhibitory effect of diallyl trisulfide on proliferation, metastasis, and invasion in triple-negative breast cancer.

    PubMed

    Cheng, Shi-Yann; Yang, Yao-Chih; Ting, Kuan-Lun; Wen, Su-Ying; Viswanadha, Vijaya Padma; Huang, Chih-Yang; Kuo, Wei-Wen

    2017-04-01

    The Warburg effect plays a critical role in tumorigenesis, suggesting that specific agents targeting Warburg effect key proteins may be a promising strategy for cancer therapy. Previous studies have shown that diallyl trisulfide (DATS) inhibits proliferation of breast cancer cells by inducing apoptosis in vitro and in vivo. However, whether the Warburg effect is involved with the apoptosis-promoting action of DATS is unclear. Here, we show that the action of DATS is associated with downregulation of lactate dehydrogenase A (LDHA), an essential protein of the Warburg effect whose upregulation is closely related to tumorigenesis. Interestingly, inhibition of the Warburg effect by DATS in breast cancer cells did not greatly affect normal cells. Furthermore, DATS inhibited growth of breast cancer cells, particularly in MDA-MB-231, a triple-negative breast cancer (TNBC) cell, and reduced proliferation and migration; invasion was reversed by over-expression of LDHA. These data suggest that DATS inhibits breast cancer growth and aggressiveness through a novel pathway targeting the key enzyme of the Warburg effect. Our study shows that LDHA downregulation is involved in the apoptotic effect of DATS on TNBC. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1390-1398, 2017. © 2016 Wiley Periodicals, Inc.

  5. Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis

    PubMed Central

    Doherty, Joanne R.; Yang, Chunying; Scott, Kristen E. N.; Cameron, Michael D.; Fallahi, Mohammad; Li, Weimin; Hall, Mark A.; Amelio, Antonio L.; Mishra, Jitendra K.; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J.; Lu, Yunqi; Dang, Chi. V.; Kumar, K. Ganesh; Butler, Andrew A.; Bannister, Thomas D.; Hooper, Andrea T.; Unsal-Kacmaz, Keziban; Roush, William R.; Cleveland, John L.

    2014-01-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1, and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, and reductions in glucose transport, and in levels of ATP, NADPH and glutathione. Reductions in glutathione then lead to increases in hydrogen peroxide, mitochondrial damage and, ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies. PMID:24285728

  6. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis.

    PubMed

    Doherty, Joanne R; Yang, Chunying; Scott, Kristen E N; Cameron, Michael D; Fallahi, Mohammad; Li, Weimin; Hall, Mark A; Amelio, Antonio L; Mishra, Jitendra K; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J; Lu, Yunqi; Dang, Chi V; Kumar, K Ganesh; Butler, Andrew A; Bannister, Thomas D; Hooper, Andrea T; Unsal-Kacmaz, Keziban; Roush, William R; Cleveland, John L

    2014-02-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here, we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1 and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, reductions in glucose transport, and in levels of ATP, NADPH, and ultimately, glutathione (GSH). Reductions in GSH then lead to increases in hydrogen peroxide, mitochondrial damage, and ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies.

  7. Characterization of Plasmodium Lactate Dehydrogenase and Histidine-Rich Protein 2 Clearance Patterns via Rapid On-Bead Detection from a Single Dried Blood Spot

    PubMed Central

    Markwalter, Christine F.; Gibson, Lauren E.; Mudenda, Lwiindi; Kimmel, Danielle W.; Mbambara, Saidon; Thuma, Philip E.; Wright, David W.

    2018-01-01

    Abstract. A rapid, on-bead enzyme-linked immunosorbent assay for Plasmodium lactate dehydrogenase (pLDH) and Plasmodium falciparum histidine-rich protein 2 (HRP2) was adapted for use with dried blood spot (DBS) samples. This assay detected both biomarkers from a single DBS sample with only 45 minutes of total incubation time and detection limits of 600 ± 500 pM (pLDH) and 69 ± 30 pM (HRP2), corresponding to 150 and 24 parasites/μL, respectively. This sensitive and reproducible on-bead detection method was used to quantify pLDH and HRP2 in patient DBS samples from rural Zambia collected at multiple time points after treatment. Biomarker clearance patterns relative to parasite clearance were determined; pLDH clearance followed closely with parasite clearance, whereas most patients maintained detectable levels of HRP2 for 35–52 days after treatment. Furthermore, weak-to-moderate correlations between biomarker concentration and parasite densities were found for both biomarkers. This work demonstrates the utility of the developed assay for epidemiological study and surveillance of malaria. PMID:29557342

  8. Effects of interaction with gene carrier polyethyleneimines on conformation and enzymatic activity of pig heart lactate dehydrogenase.

    PubMed

    Wang, Fan; Mo, Junyong; Huang, Aimin; Zhang, Min; Ma, Lin

    2018-06-15

    Polyethyleneimine (PEI) has long been considered as "golden standard" for polymeric gene delivery carrier, however also induces cytotoxicity. To make a further insight into the molecular basis of PEI cytotoxicity, fluorescence, absorption and circular dichroism spectroscopy were conducted to investigate the influence of PEI (average molecular weight 25,000 and 1800 Da) on the conformation of pig heart lactate dehydrogenase (LDH) and its catalytic efficiency. Zeta-potential measurement and isothermal titration calorimetry were used to reveal the interaction between PEI and LDH. PEI was found to bind onto the surface of LDH predominantly via hydrophobic interaction, inducing a more compact conformation and an increased surface hydrophobicity of the enzyme. The conformational change of LDH induced by PEI binding had little influence on the complex formation between LDH and reduced nicotinamide adenine dinucleotide (NADH, the co-enzyme). However, the nonspecific binding of PEI on the surface of LDH retarded the turnover of the enzyme. Meanwhile, the large quantity of amine groups on the polymer chain made PEI subject to form complexes with NADH and pyruvate (the substrate) via hydrogen bond and electrostatic interaction, which greatly reduced the binding efficient of LDH. The polymer size played an important role in PEI-LDH interaction. The smaller size of lower molecular weight PEI facilitated the close contact with LDH and consequential reduction of the turnover number of the enzyme. However, higher molecular weight PEI was more favorable for competitive binding with NADH and pyruvate and generally decreased the catalytic efficient of LDH. Copyright © 2018. Published by Elsevier B.V.

  9. Measurements of C-reactive protein in serum and lactate dehydrogenase in serum and synovial fluid of patients with osteoarthritis.

    PubMed

    Hurter, K; Spreng, D; Rytz, U; Schawalder, P; Ott-Knüsel, F; Schmökel, H

    2005-03-01

    Diagnosis of osteoarthritis (OA) is based upon the clinical orthopaedic examination and the radiographic assessment, both of which can be non-specific and insensitive in early joint disease. The aim of our study was to investigate if there is an increase in serum levels of C-reactive protein (CRP) in degenerative joint disease (DJD) and if CRP could be used to help diagnose OA. We also wished to investigate whether it was possible to distinguish a joint with clinically and radiographically confirmed OA from a healthy joint by comparing lactate dehydrogenase (LDH) levels within the synovial fluid and the serum. We have shown a difference in synovial LDH levels between diseased and healthy joints (P<0.0001). There was also a significant difference between LDH in arthritic synovial fluid and serum, with no correlation between the values. Despite the fact that the values of our clinical patients tended to be higher than the values of our control group (P=0.05) all measured values were within the normal limits of previous publications. From these data, we conclude that single measurements of serum CRP do not permit detection of OA in clinical patients and that serum LDH is not a reliable marker for osteoarthritis. LDH levels in the synovial fluid could be of diagnostic value for identifying osteoarthritis.

  10. Stable Suppression of Lactate Dehydrogenase Activity during Anoxia in the Foot Muscle of Littorina littorea and the Potential Role of Acetylation as a Novel Posttranslational Regulatory Mechanism

    PubMed Central

    Shahriari, Ali; Dawson, Neal J.; Bell, Ryan A. V.; Storey, Kenneth B.

    2013-01-01

    The intertidal marine snail, Littorina littorea, has evolved to withstand extended bouts of oxygen deprivation brought about by changing tides or other potentially harmful environmental conditions. Survival is dependent on a strong suppression of its metabolic rate and a drastic reorganization of its cellular biochemistry in order to maintain energy balance under fixed fuel reserves. Lactate dehydrogenase (LDH) is a crucial enzyme of anaerobic metabolism as it is typically responsible for the regeneration of NAD+, which allows for the continued functioning of glycolysis in the absence of oxygen. This study compared the kinetic and structural characteristics of the D-lactate specific LDH (E.C. 1.1.1.28) from foot muscle of aerobic control versus 24 h anoxia-exposed L. littorea. Anoxic LDH displayed a near 50% decrease in V max (pyruvate-reducing direction) as compared to control LDH. These kinetic differences suggest that there may be a stable modification and regulation of LDH during anoxia, and indeed, subsequent dot-blot analyses identified anoxic LDH as being significantly less acetylated than the corresponding control enzyme. Therefore, acetylation may be the regulatory mechanism that is responsible for the suppression of LDH activity during anoxia, which could allow for the production of alternative glycolytic end products that in turn would increase the ATP yield under fixed fuel reserves. PMID:24233354

  11. A novel mode of lactate metabolism in strictly anaerobic bacteria.

    PubMed

    Weghoff, Marie Charlotte; Bertsch, Johannes; Müller, Volker

    2015-03-01

    Lactate is a common substrate for major groups of strictly anaerobic bacteria, but the biochemistry and bioenergetics of lactate oxidation is obscure. The high redox potential of the pyruvate/lactate pair of E0 ' = -190 mV excludes direct NAD(+) reduction (E0 ' = -320 mV). To identify the hitherto unknown electron acceptor, we have purified the lactate dehydrogenase (LDH) from the strictly anaerobic, acetogenic bacterium Acetobacterium woodii. The LDH forms a stable complex with an electron-transferring flavoprotein (Etf) that exhibited NAD(+) reduction only when reduced ferredoxin (Fd(2-) ) was present. Biochemical analyses revealed that the LDH/Etf complex of A. woodii uses flavin-based electron confurcation to drive endergonic lactate oxidation with NAD(+) as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin (E0 ' ≈ -500 mV) to NAD(+) according to: lactate + Fd(2-)  + 2 NAD(+)  → pyruvate + Fd + 2 NADH. The reduced Fd(2-) is regenerated from NADH by a sequence of events that involves conversion of chemical (ATP) to electrochemical ( Δ μ ˜ Na + ) and finally redox energy (Fd(2-) from NADH) via reversed electron transport catalysed by the Rnf complex. Inspection of genomes revealed that this metabolic scenario for lactate oxidation may also apply to many other anaerobes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase, lactate dehydrogenase and catalase of the mosquitofish, Gambusia holbrooki.

    PubMed

    Nunes, B; Carvalho, F; Guilhermino, L

    2004-12-01

    The objective of this study was to investigate both acute and chronic effects of clofibrate and clofibric acid on the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH) and catalase (CAT) of the mosquitofish (Gambusia holbrooki). AChE, commonly used as a biomarker of neurotoxicity, was determined in the total head. LDH, an important enzyme of anaerobic metabolism, was quantified in dorsal muscle, and CAT, enzyme which has been used as indicative parameter of peroxisome proliferation, was determined in the liver. Furthermore, alterations of body and liver weight were also determined, through the calculation of the ratios final body weight/initial body weight, liver weight/final body weight, liver weight/gills weight and liver weight/head weight. Acute exposure of G. holbrooki to both clofibrate and clofibric acid induced a decrease in liver CAT activity, an increase in muscle LDH activity, while no effects were observed on AChE activity. However, chronic exposure did not alter significantly the enzymatic activities, suggesting reduced or null effects over these pathways, relative to effects reported in other species. No effects were observed for the calculated ratios, except a significant weight reduction for males chronically exposed to clofibrate.

  13. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367.

    PubMed

    Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying; Kong, Jian

    2017-11-01

    Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δ pox mutant, while those of POX increased significantly in the Δ pdh mutant. More lactate but less acetate was produced in the Δ pdh mutant than in the wild-type and Δ pox mutant strains, and more H 2 O 2 (a product of the POX pathway) was produced in the Δ pdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we

  14. Oxygen-Inducible Conversion of Lactate to Acetate in Heterofermentative Lactobacillus brevis ATCC 367

    PubMed Central

    Guo, Tingting; Zhang, Li; Xin, Yongping; Xu, ZhenShang; He, Huiying

    2017-01-01

    ABSTRACT Lactobacillus brevis is an obligatory heterofermentative lactic acid bacterium that produces high levels of acetate, which improve the aerobic stability of silages against deterioration caused by yeasts and molds. However, the mechanism involved in acetate accumulation has yet to be elucidated. Here, experimental evidence indicated that aerobiosis resulted in the conversion of lactate to acetate after glucose exhaustion in L. brevis ATCC 367 (GenBank accession number NC_008497). To elucidate the conversion pathway, in silico analysis showed that lactate was first converted to pyruvate by the reverse catalytic reaction of lactate dehydrogenase (LDH); subsequently, pyruvate conversion to acetate might be mediated by pyruvate dehydrogenase (PDH) or pyruvate oxidase (POX). Transcriptional analysis indicated that the pdh and pox genes of L. brevis ATCC 367 were upregulated 37.92- and 18.32-fold, respectively, by oxygen and glucose exhaustion, corresponding to 5.32- and 2.35-fold increases in the respective enzyme activities. Compared with the wild-type strain, the transcription and enzymatic activity of PDH remained stable in the Δpox mutant, while those of POX increased significantly in the Δpdh mutant. More lactate but less acetate was produced in the Δpdh mutant than in the wild-type and Δpox mutant strains, and more H2O2 (a product of the POX pathway) was produced in the Δpdh mutant. We speculated that the high levels of aerobic acetate accumulation in L. brevis ATCC 367 originated mainly from the reuse of lactate to produce pyruvate, which was further converted to acetate by the predominant and secondary functions of PDH and POX, respectively. IMPORTANCE PDH and POX are two possible key enzymes involved in aerobic acetate accumulation in lactic acid bacteria (LAB). It is currently thought that POX plays the major role in aerobic growth in homofermentative LAB and some heterofermentative LAB, while the impact of PDH remains unclear. In this study, we

  15. [Study of rat blood serum biochemical indicators of cardiotoxic action of novel antitumor 4-thiazolidinone derivatives and doxorubicin in complexes with polyethylene glycol-containing polymeric carrier in the rat blood serum].

    PubMed

    Kobylyns'ka, L I; Havryliuk, D Ia; Riabtseva, A O; Mitina, N Ie; Zaichenko, O S; Zimenkovskyĭ, B S; Stoĭka, R S

    2014-01-01

    The aim of this study was to measure the activity of enzymes which reflect cardiotoxic action in rats of novel synthetic 4-thiazolidone derivatives--3882, 3288 and 3833 that demonstrated antineoplastic effect in vitro towards 60 lines of human tumor cells tested in the framework of the program of screening new anticancer drugs at the National Cancer Institute (USA). Such action of these compounds was compared with the effect of well known anticancer agent doxorubicin and after conjugation of all above mentioned substances with new polyethylenglycol-containing polymeric comb-like carrier that was synthesized by the authors. Among the biochemical indicators of cardiotoxic action of anticancer agents, activity of the following enzymes in rat blood serum showed to be the most informative: creatine kinase, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransterase. Tenfold injection of doxorubicin in a dose of 5.5 mg/kg of weight caused rats' death, while 3882, 3288 and 3833 preparations had not such action. Application of the doxorubicin in combination with polymeric carrier prolonged the survival time to 20 days. Thus, the injection of anticancer agents in a complex with polymeric carrier provides a significant decrease in their cardiotoxicity that was confirmed by the corresponding changes in the activity of marker enzymes: creatine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in blood serum of treated rats.

  16. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis.

    PubMed

    Gu, Sol-A; Jun, Chanha; Joo, Jeong Chan; Kim, Seil; Lee, Seung Hwan; Kim, Yong Hwan

    2014-05-10

    Lactobacillus coryniformis is known to produce d-lactic acid as a dominant fermentation product at a cultivation temperature of approximately 30°C. However, the considerable production of l-lactic acid is observed when the fermentation temperature is greater than 40°C. Because optically pure lactates are synthesized from pyruvate by the catalysis of chiral-specific d- or l-lactate dehydrogenase, the higher thermostability of l-LDHs is assumed to be one of the key factors decreasing the optical purity of d-lactic acid produced from L. coryniformis at high temperature. To verify this hypothesis, two types of d-ldh genes and six types of l-ldh genes based on the genomic information of L. coryniformis were synthesized and expressed in Escherichia coli. Among the LDHs tested, five LDHs showed activity and were used to construct polyclonal antibodies. d-LDH1, l-LDH2, and l-LDH3 were found to be expressed in L. coryniformis by Western blotting analysis. The half-life values (t1/2) of the LDHs at 40°C were estimated to be 10.50, 41.76, and 2311min, and the T50(10) values were 39.50, 39.90, and 58.60°C, respectively. In addition, the Tm values were 36.0, 41.0, and 62.4°C, respectively, which indicates that l-LDH has greater thermostability than d-LDH. The higher thermostability of l-LDHs compared with that of d-LDH1 may be a major reason why the enantiopurity of d-lactic acid is decreased at high fermentation temperatures. The key enzymes characterized will suggest a direction for the design of genetically modified lactic acid bacteria to produce optically pure d-lactic acid. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Enhancing the light-driven production of D-lactate by engineering cyanobacterium using a combinational strategy

    NASA Astrophysics Data System (ADS)

    Li, Chao; Tao, Fei; Ni, Jun; Wang, Yu; Yao, Feng; Xu, Ping

    2015-05-01

    It is increasingly attractive to engineer cyanobacteria for bulk production of chemicals from CO2. However, cofactor bias of cyanobacteria is different from bacteria that prefer NADH, which hampers cyanobacterial strain engineering. In this study, the key enzyme D-lactate dehydrogenase (LdhD) from Lactobacillus bulgaricus ATCC11842 was engineered to reverse its favored cofactor from NADH to NADPH. Then, the engineered enzyme was introduced into Synechococcus elongatus PCC7942 to construct an efficient light-driven system that produces D-lactic acid from CO2. Mutation of LdhD drove a fundamental shift in cofactor preference towards NADPH, and increased D-lactate productivity by over 3.6-fold. We further demonstrated that introduction of a lactic acid transporter and bubbling CO2-enriched air also enhanced D-lactate productivity. Using this combinational strategy, increased D-lactate concentration and productivity were achieved. The present strategy may also be used to engineer cyanobacteria for producing other useful chemicals.

  18. (13)C MR spectroscopy study of lactate as substrate for rat brain.

    PubMed

    Qu, H; Håberg, A; Haraldseth, O; Unsgård, G; Sonnewald, U

    2000-01-01

    In order to address the question whether lactate in blood can serve as a precursor for cerebral metabolites, fully awake rats were injected intravenously with [U-(13)C]lactate or [U-(13)C]glucose followed 15 min later by decapitation. Incorporation of label from [U-(13)C]glucose was seen mainly in glutamate, GABA, glutamine, aspartate, alanine and lactate. More label was found in glutamate than glutamine, underscoring the predominantly neuronal metabolism of pyruvate from [U-(13)C]glucose. It was estimated that the neuronal metabolism of acetyl CoA from glucose accounts for at least 66% and the glial for no more than 34% of the total glucose consumption. When [U-(13)C]lactate was the precursor, label incorporation was similar to that observed from [U-(13)C]glucose, but much reduced. Plasma analysis revealed the presence of approximately equal amounts of [1,2,3-(13)C]- and [1,2-(13)C]glucose, showing gluconeogenesis from [U-(13)C]lactate. It was thus possible that the labeling seen in the cerebral amino acids originated from labeled glucose, not [U-(13)C]lactate. However, the presence of significantly more label in [U-(13)C]- than in [2,3-(13)C]alanine demonstrated that [U-(13)C]lactate did indeed cross the blood-brain barrier, and was metabolized further in the brain. Furthermore, contributions from pyruvate carboxylase (glial enzyme) were detectable in glutamine, glutamate and GABA, and were comparatively more pronounced in the glucose group. This indicated that relatively more pyruvate from lactate than glucose was metabolized in neurons. Surprisingly, the same amount of lactate was synthesized via the tricarboxylic acid cycle in both groups, indicating transfer of neurotransmitters from the neuronal to the astrocytic compartment, as previous studies have shown that this lactate is synthesized primarily in astrocytes. Taking into consideration that astrocytes take up glutamate more avidly than GABA, it is conceivable that neuronal lactate metabolism was more

  19. Macromolecular crowding effect upon in vitro enzyme kinetics: mixed activation-diffusion control of the oxidation of NADH by pyruvate catalyzed by lactate dehydrogenase.

    PubMed

    Balcells, Cristina; Pastor, Isabel; Vilaseca, Eudald; Madurga, Sergio; Cascante, Marta; Mas, Francesc

    2014-04-17

    Enzyme kinetics studies have been usually designed as dilute solution experiments, which differ substantially from in vivo conditions. However, cell cytosol is crowded with a high concentration of molecules having different shapes and sizes. The consequences of such crowding in enzymatic reactions remain unclear. The aim of the present study is to understand the effect of macromolecular crowding produced by dextran of different sizes and at diverse concentrations in the well-known reaction of oxidation of NADH by pyruvate catalyzed by L-lactate dehydrogenase (LDH). Our results indicate that the reaction rate is determined by both the occupied volume and the relative size of dextran obstacles with respect to the enzyme present in the reaction. Moreover, we analyzed the influence of macromolecular crowding on the Michaelis-Menten constants, vmax and Km. The obtained results show that only high concentrations and large sizes of dextran reduce both constants suggesting a mixed activation-diffusion control of this enzymatic reaction due to the dextran crowding action. From our knowledge, this is the first experimental study that depicts mixed activation-diffusion control in an enzymatic reaction due to the effect of crowding.

  20. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    PubMed

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy.

  1. Increased Ventricular Cerebrospinal Fluid Lactate in Depressed Adolescents

    PubMed Central

    Bradley, Kailyn A. L.; Mao, Xiangling; Case, Julia A. C.; Kang, Guoxin; Shungu, Dikoma C.; Gabbay, Vilma

    2016-01-01

    Background Mitochondrial dysfunction has been increasingly examined as a potential pathogenic event in psychiatric disorders, although its role early in the course of major depressive disorder (MDD) is unclear. Therefore, the purpose of this study was to investigate mitochondrial dysfunction in medication-free adolescents with MDD through in vivo measurements of neurometabolites using high-spatial resolution multislice/multivoxel proton magnetic resonance spectroscopy. Methods Twenty-three adolescents with MDD and 29 healthy controls, ages 12–20, were scanned at 3T and concentrations of ventricular cerebrospinal fluid lactate, as well as N-acetyl-aspartate (NAA), total creatine (tCr), and total choline (tCho) in the bilateral caudate, putamen, and thalamus were reported. Results Adolescents with MDD exhibited increased ventricular lactate compared to healthy controls [F(1, 41) = 6.98, p = .01]. However, there were no group differences in the other neurometabolites. Dimensional analyses in the depressed group showed no relation between any of the neurometabolites and symptomatology, including anhedonia and fatigue. Conclusions Increased ventricular lactate in depressed adolescents suggests mitochondrial dysfunction may be present early in the course of MDD; however it is still not known whether the presence of mitochondrial dysfunction is a trait vulnerability of individuals predisposed to psychopathology or a state feature of the disorder. Therefore, there is a need for larger multimodal studies to clarify these chemical findings in the context of network function. PMID:26802978

  2. Novel strategy for phenyllactic acid biosynthesis from phenylalanine by whole cell recombinant Escherichia coli coexpressing L-phenylalanine oxidase and L-lactate dehydrogenase.

    PubMed

    Zhang, Jianzhi; Li, Xi

    2018-01-01

    To enhance the efficiency of phenyllactic acid (PLA) production from L-phenylalanine (L-Phe) by introducing a novel artificial pathway into Escherichia coli RESULTS: The production of PLA from L-Phe by recombinant E. coli (ldh-lpox) coexpressing L-phenylalanine oxidase and L-lactate dehydrogenase was studied. The new PLA synthesis pathway was confirmed to be efficient in recombinant E. coli. Subsequently, two different biocatalyst processes were carried out and optimized for PLA production. In the whole cell biosynthesis process at high cell density using collected recombinant cells as catalyst, at optimal conditions (L-Phe 6 g/l, pH 7.5, 35 °C, CDW 24.5 g/l and 200 rpm), the recombinant E. coli (ldh-lpox) produced 1.62 g PLA/l with a conversion of 28% from L-Phe. Similarly, during the two-temperature-stage fermentation process in flasks using IPTG-induced cells, the temperature in the second stage was increased to 35 °C to benefit the biocatalyst process, and comparable phenyllactic acid production of 1.47 g/l was obtained from 12 g L-Phe/l. Recombinant E. coli (ldh-lpox) was efficient in PLA production realizing a high titer of several folds compared with studies using L-Phe as substrate.

  3. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293.

    PubMed

    Li, Ling; Eom, Hyun-Ju; Park, Jung-Mi; Seo, Eunyoung; Ahn, Ji Eun; Kim, Tae-Jip; Kim, Jeong Hwan; Han, Nam Soo

    2012-10-10

    Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 is a lactic acid bacterium that converts pyruvate mainly to d-(-)-lactic acid by using d-(-)-lactate dehydrogenase (ldhD). The aim of this study was to identify the gene responsible for d-lactic acid formation in this organism and to characterize the enzyme to facilitate the production of optically pure d-lactic acid. A genomic analysis of L. mesenteroides ATCC 8293 revealed that 7 genes encode lactate-related dehydrogenase. According to transcriptomic, proteomic, and phylogenetic analyses, LEUM_1756 was the major gene responsible for the production of d-lactic acid. The LEUM_1756 gene, of 996bp and encoding 332 amino acids (36.5kDa), was cloned and overexpressed in Escherichia coli BL21(DE3) Star from an inducible pET-21a(+) vector. The enzyme was purified by Ni-NTA column chromatography and showed a specific activity of 4450U/mg, significantly higher than those of other previously reported ldhDs. The gel permeation chromatography analysis showed that the purified enzyme exists as tetramers in solution and this was the first report among lactic acid bacteria. The pH and temperature optima were pH 8.0 and 30°C, respectively, for the pyruvate reduction reaction, and pH 11.0 and 20°C, respectively, for the lactate oxidation reaction. The K(m) kinetic parameters for pyruvate and lactate were 0.58mM and 260mM, respectively. In addition, the k(cat) values for pyruvate and lactate were 2900s(-1) and 2280s(-1), respectively. The enzyme was not inhibited by Ca(2+), Co(2+), Cu(2+), Mg(2+), Mn(2+), Na(+), or urea, but was inhibited by 1mM Zn(2+) and 1mM SDS. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.

    PubMed

    Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I

    2009-07-01

    In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.

  5. Crystallization and preliminary X-ray analysis of binary and ternary complexes of Haloferax mediterranei glucose dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esclapez, Julia; Britton, K. Linda; Baker, Patrick J.

    2005-08-01

    Single crystals of binary and ternary complexes of wild-type and D38C mutant H. mediterranei glucose dehydrogenase have been obtained by the hanging-drop vapour-diffusion method. Haloferax mediterranei glucose dehydrogenase (EC 1.1.1.47) belongs to the medium-chain alcohol dehydrogenase superfamily and requires zinc for catalysis. In the majority of these family members, the catalytic zinc is tetrahedrally coordinated by the side chains of a cysteine, a histidine, a cysteine or glutamate and a water molecule. In H. mediterranei glucose dehydrogenase, sequence analysis indicates that the zinc coordination is different, with the invariant cysteine replaced by an aspartate residue. In order to analyse themore » significance of this replacement and to contribute to an understanding of the role of the metal ion in catalysis, a range of binary and ternary complexes of the wild-type and a D38C mutant protein have been crystallized. For most of the complexes, crystals belonging to space group I222 were obtained using sodium/potassium citrate as a precipitant. However, for the binary and non-productive ternary complexes with NADPH/Zn, it was necessary to replace the citrate with 2-methyl-2,4-pentanediol. Despite the radical change in conditions, the crystals thus formed were isomorphous.« less

  6. Oligosaccharide-based Surfactant/Citric Acid Buffer System Stabilizes Lactate Dehydrogenase during Freeze-drying and Storage without the Addition of Natural Sugar.

    PubMed

    Ogawa, Shigesaburo; Kawai, Ryuichiro; Koga, Maito; Asakura, Kouichi; Takahashi, Isao; Osanai, Shuichi

    2016-06-01

    Experiments were conducted to assess the maintenance effects of oligosaccharide-based surfactants on the enzymatic activity of a model protein, lactate dehydrogenase (LDH), during freeze-drying and room temperature storage using the citric acid buffer system. Oligosaccharide-based surfactants, which exhibit a high glass transition temperature (Tg), promoted the eminent retention of enzymatic activity during these protocols, whereas monosaccharide-based surfactants with a low Tg displayed poor performance at high concentration, albeit much better than that of Tween 80 at middle concentration. The increase in the alkyl chain length did not exert positive effects as observed for the maintenance effect during freeze-thawing, but an amphiphilic nature and a glass forming ability were crucial for the effective stabilization at a low excipient concentration during freeze-drying. Even a low oligosaccharide-based surfactant content (0.1 mg mL(-1)) could maintain LDH activity during freeze-drying, but a high surfactant content (1.0 mg mL(-1)) was required to prevent buffer precipitation and retain high LDH activity on storage. Regarding storage, glass formation restricted molecular mobility in the lyophilized matrix, and LDH activity was effectively retained. The present results describe a strategy based on the glass-forming ability of surfactant-type excipients that affords a natural sugar-free formulation or an alternative use for polysorbate-type surfactants.

  7. Aspartate protects Lactobacillus casei against acid stress.

    PubMed

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics.

  8. Characterization of lactate utilization and its implication on the physiology of Haemophilus influenzae.

    PubMed

    Lichtenegger, Sabine; Bina, Isabelle; Roier, Sandro; Bauernfeind, Stilla; Keidel, Kristina; Schild, Stefan; Anthony, Mark; Reidl, Joachim

    2014-05-01

    Haemophilus influenzae is a Gram-negative bacillus and a frequent commensal of the human nasopharynx. Earlier work demonstrated that in H. influenzae type b, l-lactate metabolism is associated with serum resistance and in vivo survival of the organism. To further gain insight into lactate utilization of the non-typeable (NTHi) isolate 2019 and laboratory prototype strain Rd KW20, deletion mutants of the l-lactate dehydrogenase (lctD) and permease (lctP) were generated and characterized. It is shown, that the apparent KM of l-lactate uptake is 20.1μM as determined for strain Rd KW20. Comparison of the COPD isolate NTHi 2019-R with the corresponding lctP knockout strain for survival in human serum revealed no lactate dependent serum resistance. In contrast, we observed a 4-fold attenuation of the mutant strain in a murine model of nasopharyngeal colonization. Characterization of lctP transcriptional control shows that the lactate utilization system in H. influenzae is not an inductor inducible system. Rather negative feedback regulation was observed in the presence of l-lactate and this is dependent on the ArcAB regulatory system. Additionally, for 2019 it was found that lactate may have signaling function leading to increased cell growth in late log phase under conditions where no l-lactate is metabolized. This effect seems to be ArcA independent and was not observed in strain Rd KW20. We conclude that l-lactate is an important carbon-source and may act as host specific signal substrate which fine tunes the globally acting ArcAB regulon and may additionally affect a yet unknown signaling system and thus may contribute to enhanced in vivo survival. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    PubMed

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of different dosages of propylene glycol in dry cows and cows in early lactation.

    PubMed

    Maurer, Michaela; Peinhopf, Walter; Gottschalk, Jutta; Einspanier, Almut; Koeller, Gabor; Wittek, Thomas

    2017-11-01

    In this Research Paper we hypothesised that the temporary insulin resistance seen during the transition period in dairy cows may cause significant differences in the efficacy of PG at different sampling periods and that in some cases this effect will be dose dependent. Eighty four sampling sets were generated by studying 7 multiparous Holstein cows repeatedly at 4 sampling periods of 3 d length (dry cows: days 40, 39 and 38 antepartum; close up cows: days 10, 9 and 8 antepartum; fresh cows: days 3, 4 and 5 post-partum; lactating cows: days 38, 39 and 40 post-partum). On each of these days 3 h after morning feeding propylene glycol was drenched in different dosages of 100, 300 or 500 ml once per day (cross over study). The different doses were applied in an alternating order (Latin square). Blood samples were taken before, every 30 min up to 4 h, after 6 and 12 h after PG application. Following parameters have been measured: insulin, non-esterified fatty acids (NEFA), betahydroxybutyrate (BHB), bilirubin, cholesterol, potassium, aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH). Revised Quantitative Insulin Sensitivity Check Index (RQUICKI) was calculated. It was found that glucose, insulin, NEFA, BHB, bilirubin and potassium concentrations were influenced differently by the three defined dosages of propylene glycol at four different sampling periods. Whereas RQUICKI, cholesterol, AST and GLDH did not differ between the sampling periods and treatments. The major results of the study are that the effect of PG is dose-dependent and that the effect of PG is depending on the time of application according to calving. It can be concluded that in fresh cows higher dosages are necessary to provoke similar effects in comparison to dry, close up and lactating cows. Although the study did not compare to topdressing of PG from the results it is reasonable to believe that bolus application of a specific PG volume is necessary to provoke the effect.

  11. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming

    PubMed Central

    Civini, Sara; Pacelli, Consiglia; Dieng, Mame Massar; Lemieux, William; Jin, Ping; Bazin, Renée; Patey, Natacha; Marincola, Francesco M.; Moldovan, Florina; Zaouter, Charlotte; Trudeau, Louis-Eric; Benabdhalla, Basma; Louis, Isabelle; Beauséjour, Christian; Stroncek, David; Le Deist, Françoise; Haddad, Elie

    2016-01-01

    Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naïve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to-DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation. PMID:27070086

  12. Multiple e-pharmacophore modelling pooled with high-throughput virtual screening, docking and molecular dynamics simulations to discover potential inhibitors of Plasmodium falciparum lactate dehydrogenase (PfLDH).

    PubMed

    Saxena, Shalini; Durgam, Laxman; Guruprasad, Lalitha

    2018-05-14

    Development of new antimalarial drugs continues to be of huge importance because of the resistance of malarial parasite towards currently used drugs. Due to the reliance of parasite on glycolysis for energy generation, glycolytic enzymes have played important role as potential targets for the development of new drugs. Plasmodium falciparum lactate dehydrogenase (PfLDH) is a key enzyme for energy generation of malarial parasites and is considered to be a potential antimalarial target. Presently, there are nearly 15 crystal structures bound with inhibitors and substrate that are available in the protein data bank (PDB). In the present work, we attempted to consider multiple crystal structures with bound inhibitors showing affinity in the range of 1.4 × 10 2 -1.3 × 10 6  nM efficacy and optimized the pharmacophore based on the energy involved in binding termed as e-pharmacophore mapping. A high throughput virtual screening (HTVS) combined with molecular docking, ADME predictions and molecular dynamics simulation led to the identification of 20 potential compounds which could be further developed as novel inhibitors for PfLDH.

  13. Metabolic organization and effects of feeding on enzyme activities of the dogfish shark (Squalus acanthias) rectal gland.

    PubMed

    Walsh, Patrick J; Kajimura, Makiko; Mommsen, Thomas P; Wood, Chris M

    2006-08-01

    In order to investigate the metabolic poise of the elasmobranch rectal gland, we conducted two lines of experimentation. First, we examined the effects of feeding on plasma metabolites and enzyme activities from several metabolic pathways in several tissues of the dogfish shark, Squalus acanthias, after starvation and at 6, 20, 30 and 48 h post-feeding. We found a rapid and sustained ten-fold decrease in plasma beta-hydroxybutyrate at 6 h and beyond compared with starved dogfish, suggesting an upregulation in the use of this substrate, a decrease in production, or both. Plasma acetoacetate levels remain unchanged, whereas there was a slight and transient decrease in plasma glucose levels at 6 h. Several enzymes showed a large increase in activity post-feeding, including beta-hydroxybutyrate dehydrogenase in rectal gland and liver, and in rectal gland, isocitrate dehydrogenase, citrate synthase, lactate dehydrogenase, aspartate amino transferase, alanine amino transferase, glutamine synthetase and Na(+)/K(+) ATPase. Also notable in these enzyme measurements was the overall high level of activity in the rectal gland in general. For example, activity of the Krebs' TCA cycle enzyme citrate synthase (over 30 U g(-1)) was similar to activities in muscle from other species of highly active fish. Surprisingly, lactate dehydrogenase activity in the gland was also high (over 150 U g(-1)), suggesting either an ability to produce lactate anaerobically or use lactate as an aerobic fuel. Given these interesting observations, in the second aspect of the study we examined the ability of several metabolic substrates (alone and in combination) to support chloride secretion by the rectal gland. Among the substrates tested at physiological concentrations (glucose, beta-hydroxybutyrate, lactate, alanine, acetoacetate, and glutamate), only glucose could consistently maintain a viable preparation. Whereas beta-hydroxybutyrate could enhance gland activity when presented in combination

  14. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons.

    PubMed

    Halim, Nader D; Mcfate, Thomas; Mohyeldin, Ahmed; Okagaki, Peter; Korotchkina, Lioubov G; Patel, Mulchand S; Jeoung, Nam Ho; Harris, Robert A; Schell, Michael J; Verma, Ajay

    2010-08-01

    Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH alpha). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorylated PDH alpha. Dephosphorylation of astrocytic PDH alpha restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. (c) 2010 Wiley-Liss, Inc.

  15. Impact of sickle cell anaemia on cardiac chamber size in the paediatric population.

    PubMed

    Adjagba, Philippe M; Habib, Gaston; Robitaille, Nancy; Pastore, Yves; Raboisson, Marie-Josée; Curnier, Daniel; Dahdah, Nagib

    2017-07-01

    Purpose Sickle cell disease is known to cause various degrees of vasculopathy, including impact on heart function. The aims of this single-centre, retrospective study were to assess cardiac chamber size and function and the relationship with haematological indices such as haemoglobin, aspartate aminotransferase, reticulocytosis and bilirubin, lactate dehydrogenase in sickle cell disease. Right ventricle and left ventricle diastolic diameters, left ventricle mass estimate, left ventricle shortening fraction, myocardial performance index, and an index of myocardial relaxation (E/E') were calculated and correlated with haematological parameters. A total of 110 patients (65% haemoglobin SS, 29% haemoglobin SC) were studied at a mean age of 12.14±5.26 years. Right ventricle dilatation and left ventricle dilatation were present in 61.5 and 42.9%, respectively. Left ventricle mass was abnormal in 21.9%; all patients had normal myocardial performance index, 31.4% had abnormal E/E', and left ventricle shortening fraction was low in 38.1%. Cardiac dilatation was best correlated with haemoglobin, aspartate aminotransferase, reticulocytosis and bilirubin. Best subset regression analysis yielded significant additional prediction for right ventricle or left ventricle dilatation with haemoglobin, bilirubin, and lactate dehydrogenase. Abnormal E/E' was solely predictable with haemoglobin level. Hydroxyurea-treated patients had improved diastolic function. Right ventricle dilatation was more prevalent than left ventricle dilatation. The long-term consequences of right ventricular dilatation, clinical consequences, and association with pulmonary vasculopathy need to be further determined.

  16. Effects of Urtica dioica on hepatic ischemia-reperfusion injury in rats.

    PubMed

    Kandis, Hayati; Karapolat, Sami; Yildirim, Umran; Saritas, Ayhan; Gezer, Suat; Memisogullari, Ramazan

    2010-01-01

    To evaluate the effects of Urtica dioica on hepatic ischemia-reperfusion injury. Thirty adult male Wistar albino rats were divided into three groups: sham group (group 1), control group (group 2), and Urtica dioica group (group 3). All the rats were exposed to hepatic ischemia for 60 min, followed by 60 min of reperfusion. In group 2, a total of 2 ml/kg 0.9% saline solution was given intraperitoneally. In group 3, a total of 2 ml/kg Urtica dioica was given intraperitoneally. At the end of the procedure, liver tissue and blood samples were taken from all rats. Serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, ceruloplasmin, catalase, paraoxonase, arylesterase, and lipid hydroperoxide levels were measured. Liver tissue histopathologies were also evaluated by light microscopy. Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase levels were significantly higher in group 2 than in group 1, and significantly lower in group 3 than in group 2. Also, group 2 had higher serum lipid hydroperoxides and ceruloplasmin levels but lower catalase, paraoxonase, and arylesterase levels than group 1. In group 3, serum lipid hydroperoxides and ceruloplasmin levels were significantly lower, and catalase, paraoxonase, and arylesterase levels were higher than those in group 2. Histopathological examination showed that liver tissue damage was significantly decreased in group 3 compared with group 2. Urtica dioica has a protective effect on the liver in hepatic ischemia-reperfusion-injured rats.

  17. Effects of Urtica dioica on hepatic ischemia‐reperfusion injury in rats

    PubMed Central

    Kandis, Hayati; Karapolat, Sami; Yildirim, Umran; Saritas, Ayhan; Gezer, Suat; Memisogullari, Ramazan

    2010-01-01

    OBJECTIVES: To evaluate the effects of Urtica dioica on hepatic ischemia‐reperfusion injury. METHODS: Thirty adult male Wistar albino rats were divided into three groups: sham group (group 1), control group (group 2), and Urtica dioica group (group 3). All the rats were exposed to hepatic ischemia for 60 min, followed by 60 min of reperfusion. In group 2, a total of 2 ml/kg 0.9% saline solution was given intraperitoneally. In group 3, a total of 2 ml/kg Urtica dioica was given intraperitoneally. At the end of the procedure, liver tissue and blood samples were taken from all rats. Serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, ceruloplasmin, catalase, paraoxonase, arylesterase, and lipid hydroperoxide levels were measured. Liver tissue histopathologies were also evaluated by light microscopy. RESULTS: Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase levels were significantly higher in group 2 than in group 1, and significantly lower in group 3 than in group 2. Also, group 2 had higher serum lipid hydroperoxides and ceruloplasmin levels but lower catalase, paraoxonase, and arylesterase levels than group 1. In group 3, serum lipid hydroperoxides and ceruloplasmin levels were significantly lower, and catalase, paraoxonase, and arylesterase levels were higher than those in group 2. Histopathological examination showed that liver tissue damage was significantly decreased in group 3 compared with group 2. CONCLUSIONS: Urtica dioica has a protective effect on the liver in hepatic ischemia‐reperfusion‐injured rats. PMID:21340227

  18. Use of biochemical markers to evaluate the quality of fresh and cryopreserved semen from the arctic fox (Vulpes lagopus).

    PubMed

    Stasiak, K; Glogowski, J; Demianowicz, W; Kowalski, R; Nowak-Tkaczyk, A; Janicki, B

    2014-01-01

    The aim of this study was to use biochemical markers to evaluate the quality of fresh and cryopreserved semen from the arctic fox (Vulpes lagopus). Twenty-three manually collected ejaculates were analysed for the main indicators of semen quality (sperm concentration and ejaculate volume). Sperm motility and percentage of morphologically normal and abnormal spermatozoa were determined according to the stage of cryopreservation (fresh--measurement A; equilibrated--measurement B; frozen/thawed--measurement C). Furthermore, the seminal plasma and supernatants were analysed after equilibration and freeze/thawing for the activity of the enzymes alkaline phosphatase (ALP), acid phosphatase (AcP), lactate dehydrogenase (LDH) and aspartate aminotransferase (AspAT), and for the activity of acrosin inhibitors (AP). The mean concentration of sperm was 625.1 million/cm3, and ejaculate volume averaged 1.6 cm3. Seminal plasma was characterized by the highest activity of alkaline phosphatase (3.43 x 10(3) U/l) and lowest activity of acrosin inhibitors (4.55 x 10(3) U/l). After equilibration, the supernatants showed the highest activity of acid phosphatase (94.9 U/l) and after freeze-thawing, they showed a high activity of lactate dehydrogenase (535.8 U/l) and aspartate aminotransferase (577.1 U/l), which indicates that these proteins had leaked from spermatozoa into the extracellular medium during the biotechnique of semen cryopreservation. In addition, several significant relationships were found between some indicators of semen quality and plasma and/or supernatant enzyme activity.

  19. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.

    PubMed

    Abbrescia, Daniela Isabel; La Piana, Gianluigi; Lofrumento, Nicola Elio

    2012-02-15

    In mammalian cells aerobic oxidation of glucose requires reducing equivalents produced in glycolytic phase to be channelled into the phosphorylating respiratory chain for the reduction of molecular oxygen. Data never presented before show that the oxidation rate of exogenous NADH supported by the malate-aspartate shuttle system (reconstituted in vitro with isolated liver mitochondria) is comparable to the rate obtained on activation of the cytosolic NADH/cytochrome c electron transport pathway. The activities of these two reducing equivalent transport systems are independent of each other and additive. NADH oxidation induced by the malate-aspartate shuttle is inhibited by aminooxyacetate and by rotenone and/or antimycin A, two inhibitors of the respiratory chain, while the NADH/cytochrome c system remains insensitive to all of them. The two systems may simultaneously or mutually operate in the transfer of reducing equivalents from the cytosol to inside the mitochondria. In previous reports we suggested that the NADH/cytochrome c system is expected to be functioning in apoptotic cells characterized by the presence of cytochrome c in the cytosol. As additional new finding the activity of reconstituted shuttle system is linked to the amount of α-ketoglutarate generated inside the mitochondria by glutamate dehydrogenase rather than by aspartate aminotransferase. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 9: reference procedure for the measurement of catalytic concentration of alkaline phosphatase International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Scientific Division, Committee on Reference Systems of Enzymes (C-RSE) (1)).

    PubMed

    Schumann, Gerhard; Klauke, Rainer; Canalias, Francesca; Bossert-Reuther, Steffen; Franck, Paul F H; Gella, F-Javier; Jørgensen, Poul J; Kang, Dongchon; Lessinger, Jean-Marc; Panteghini, Mauro; Ceriotti, Ferruccio

    2011-09-01

    Abstract This paper is the ninth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase; Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase; Part 6. Reference procedure for the measurement of catalytic concentration of γ-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37 °C; Part 8. Reference procedure for the measurement of catalytic concentration of α-amylase. The procedure described here is derived from the previously described 30 °C IFCC reference method. Differences are tabulated and commented on in Appendix 1.

  1. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain.

    PubMed

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch.

  2. Efficient Production of Optically Pure d-Lactic Acid from Raw Corn Starch by Using a Genetically Modified l-Lactate Dehydrogenase Gene-Deficient and α-Amylase-Secreting Lactobacillus plantarum Strain▿

    PubMed Central

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure d-lactic acid from raw corn starch, we constructed l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 α-amylase (AmyA). The resulting strain produced only d-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct d-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct d-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct d-lactic acid fermentation from raw starch. PMID:19011066

  3. Elevated levels of liver methylglyoxal and d-lactate in early-stage hepatitis in rats.

    PubMed

    Wang, Wen-Chuang; Chou, Chu-Kuang; Chuang, Ming-Cheng; Li, Yi-Chieh; Lee, Jen-Ai

    2018-02-01

    Methylglyoxal (MGO) is highly cytotoxic and its levels are elevated in diabetes, nephropathy and atherosclerosis. However, it has never been studied in liver disease. For this reason, we aimed to assess the levels of MGO and its metabolite d-lactate in an early hepatitis model. Wistar rats were administered CCl 4 (0.75 mL/kg, i.p.) to induce hepatitis. In either CCl 4 -treated or untreated rats, alanine transaminase and aspartate transaminase levels did not change over the course of the study, indicating that significant liver damage did not occur following CCl 4 treatment. However, the levels of MGO and d-lactate were higher in the livers of CCl 4 -treated animals than in untreated animals (MGO: 128.2 ± 18.8 and 248.1 ± 64.9 μg/g protein, p < 0.01; d-lactate: 0.860 ± 0.040 and 1.293 ± 0.078 μmol/g protein, respectively p < 0.01). Furthermore, in untreated and treated animals, serum d-lactate levels were 57.65 ± 2.59 and 92.16 ± 16.69 μm and urine d-lactate levels were 1.060 ± 0.007 and 1.555 ± 0.366 μmol/mg UCr, respectively (p < 0.01). These data show that in this model of early-stage liver damage, the levels of MGO and its metabolite d-lactate are elevated and that d-lactate could be useful as a reference marker for the early stage of hepatitis. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Procalcitonin, C-reactive protein and serum lactate dehydrogenase in the diagnosis of bacterial sepsis, SIRS and systemic candidiasis.

    PubMed

    Miglietta, Fabio; Faneschi, Maria Letizia; Lobreglio, Giambattista; Palumbo, Claudio; Rizzo, Adriana; Cucurachi, Marco; Portaccio, Gerolamo; Guerra, Francesco; Pizzolante, Maria

    2015-09-01

    The aim of this study was to evaluate procalcitonin (PCT), C-reactive protein (CRP), platelet count (PLT) and serum lactate dehydrogenase (LDH) as early markers for diagnosis of SIRS, bacterial sepsis and systemic candidiasis in intensive care unit (ICU) patients. Based on blood culture results, the patients were divided into a sepsis group (70 patients), a SIRS group (42 patients) and a systemic candidiasis group (33 patients). PCT, CRP, LDH and PLT levels were measured on day 0 and on day 2 from the sepsis symptom onset. PCT levels were higher in Gram negative sepsis than those in Gram positive sepsis, although the P value between the two subgroups is not significant (P=0.095). Bacterial sepsis group had higher PCT and CRP levels compared with the systemic candidiasis group, whereas PLT and LDH levels showed similar levels in these two subgroups. The AUC for PCT (AUC: 0.892, P <0.001) was larger than for CRP (AUC: 0.738, P <0.001). The best cut-off values for PCT and CRP were 0.99 ng/mL and 76.2 mg/L, respectively. Diagnostic sensitivity and specificity for PCT were 84.3% and 81.8% whereas CRP showed a sensitivity of 77.2% and a specificity of 63.6%. However, PCT was unable to discriminate between SIRS and systemic candidiasis groups (P=0.093 N.S.). In conclusion, PCT can be used as a preliminary marker in the event of clinical suspicion of systemic candidiasis; however, low PCT levels (<0.99 ng/mL) necessarily require the use of other specific markers of candidaemia to confirm the diagnosis, due to great uniformity of PCT levels in systemic candidiasis and SIRS groups.

  5. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition

    PubMed Central

    HAN, NING; YU, LI; SONG, ZHIDU; LUO, LIFU; WU, YAZHEN

    2015-01-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy. PMID:25816073

  6. Interaction of difluoro-oxaloacetate with aspartate transaminase.

    PubMed Central

    Briley, P A; Eisenthal, R; Harrison, R; Smith, G D

    1977-01-01

    Diffluoro-oxaloacetate behaves as a competitive inhibitor of 2-oxoglutarate and as an uncompetitive inhibitor with respect to aspartate in steady-state kinetic experiments with cytoplasmic aspartate transaminase. In the presence of high concentrations of aspartate transaminase, difluoro-oxaloacetate is slowly transaminated to difluoro-aspartate, suggesting its use as a kinetic probe to study the reactions of the aminic form of the enzyme. PMID:849267

  7. [Experience in using the latent activity of leukocytic lactate dehydrogenase isoenzymes for the integral estimate of the level of free radical oxidation in patients with neurotic disorders].

    PubMed

    Kuskov, M V

    2006-06-01

    The aggregatory properties of a leukocytic homogenate were studied by analyzing the activity of its lactate dehydrogenase (LDH) isoenzymes from patients with neurotic disorders on admission and during treatment. As a parameter reflecting the aggregatory properties of the leukocytic homogenate, the latent activity of LDH isoenzymes was studied. On admission, the patients were shown to have a lower latent activity, which restored during treatment to the control values, than in the control group. There was also a synchronous pattern of a change in the osmotic stability of red blood cells with the latent activity of leukocytic LDH isoenzymes in the treated patients. It is obvious that latent activity values reflect the level of free radical oxidation in the body. For detailed testing of the aggregatory properties of a cellular lysate, the trends in the latent activity of LDH isoenzymes were examined, which failed to reveal an unambiguous recovery of the observed parameters during therapy. Based on the findings, the author discusses whether this method can be used to analyze the time course of changes in a psychopathological process and to predict its outcome.

  8. Plasma chemistry references values in psittaciformes.

    PubMed

    Lumeij, J T; Overduin, L M

    1990-04-01

    Reference values for 17 plasma chemical variables in African greys. Amazons, cockatoos and macaws were established for use in avian clinical practice. The inner limits are given for the percentiles P(2.5) and P(97.5) with a probability of 90%. The following variables were studied: urea, creatinine, uric acid, urea/uric acid ratio, osmolality, sodium, potassium, calcium, glucose, aspartate aminotransferase, alanine aminotransferase, gamma glutamyltransferase, lactate dehydrogenase, creatine kinase, bile acids, total protein, albumin/globulin ratio. Differences between methods used and values found in this study and those reported previously are discussed.

  9. Saccharomyces cerevisiae Forms d-2-Hydroxyglutarate and Couples Its Degradation to d-Lactate Formation via a Cytosolic Transhydrogenase*♦

    PubMed Central

    Becker-Kettern, Julia; Paczia, Nicole; Conrotte, Jean-François; Kay, Daniel P.; Guignard, Cédric; Jung, Paul P.; Linster, Carole L.

    2016-01-01

    The d or l form of 2-hydroxyglutarate (2HG) accumulates in certain rare neurometabolic disorders, and high d-2-hydroxyglutarate (d-2HG) levels are also found in several types of cancer. Although 2HG has been detected in Saccharomyces cerevisiae, its metabolism in yeast has remained largely unexplored. Here, we show that S. cerevisiae actively forms the d enantiomer of 2HG. Accordingly, the S. cerevisiae genome encodes two homologs of the human d-2HG dehydrogenase: Dld2, which, as its human homolog, is a mitochondrial protein, and the cytosolic protein Dld3. Intriguingly, we found that a dld3Δ knock-out strain accumulates millimolar levels of d-2HG, whereas a dld2Δ knock-out strain displayed only very moderate increases in d-2HG. Recombinant Dld2 and Dld3, both currently annotated as d-lactate dehydrogenases, efficiently oxidized d-2HG to α-ketoglutarate. Depletion of d-lactate levels in the dld3Δ, but not in the dld2Δ mutant, led to the discovery of a new type of enzymatic activity, carried by Dld3, to convert d-2HG to α-ketoglutarate, namely an FAD-dependent transhydrogenase activity using pyruvate as a hydrogen acceptor. We also provide evidence that Ser3 and Ser33, which are primarily known for oxidizing 3-phosphoglycerate in the main serine biosynthesis pathway, in addition reduce α-ketoglutarate to d-2HG using NADH and represent major intracellular sources of d-2HG in yeast. Based on our observations, we propose that d-2HG is mainly formed and degraded in the cytosol of S. cerevisiae cells in a process that couples d-2HG metabolism to the shuttling of reducing equivalents from cytosolic NADH to the mitochondrial respiratory chain via the d-lactate dehydrogenase Dld1. PMID:26774271

  10. Lead and PCB's in canvasback ducks: Relationship between enzyme levels and residues in blood

    USGS Publications Warehouse

    Dieter, M.P.; Perry, M.C.; Mulhern, B.M.

    1976-01-01

    Blood samples were taken for two successive years from canvasback ducks trapped in the Chesapeake Bay. The first winter (1972?1973) five plasma enzymes known to respond to organochlorine poisoning were examined. Abnormal enzyme elevations suggested that 20% of the population sampled (23/115 ducks) might contain organochlorine contaminants, but no residue analyses were performed. The second winter (1974) two of the same enzymes, aspartate aminotransferase and lactate dehydrogenase, and a third enzyme known to be specifically inhibited by lead, delta-aminolevulinic acid dehydratase, were assayed in 95 blood samples. Blood residues of organochlorine compounds and of lead were determined in representative samples, and the correlations between residue levels and enzyme changes were examined. The enzyme bioassays in 1974 indicated that lead was a more prevalent environmental contaminant than organochlorine compounds in canvasback ducks; 17% of the blood samples had less than one-half of the normal delta-aminolevulinic acid dehydratase activity, but only 11% exhibited abnormal aspartate aminotransferase or lactate dehydrogenase activities. These findings were confirmed by residue analyses that demonstrated lead concentrations four times higher than background levels, but only relatively low organochlorine concentrations. There was a highly significant inverse correlation between delta-aminolevulinic acid dehydratase activity and blood lead concentrations (P<0.01), and a weaker but significant correlation between plasma aspartate aminotransferase activity and blood PCB concentrations (P<0.05). It was apparent that delta-aminolevulinic acid dehydratase activity in the blood provided a sensitive and precise estimate of lead contamination in waterfowl. In canvasback ducks 200 ppb of lead in the blood caused a 75% decrease in delta-aminolevulinic acid dehydratase activity, a magnitude of enzyme inhibition that disturbs heme synthesis and is regarded as detrimental in humans.

  11. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus.

    PubMed

    Carlson Scholz, Jodi A; Garg, Rohit; Compton, Susan R; Allore, Heather G; Zeiss, Caroline J; Uchio, Edward M

    2011-10-01

    The arterivirus lactate dehydrogenase-elevating virus (LDV) causes life-long viremia in mice. Although LDV infection generally does not cause disease, infected mice that are homozygous for the Fv1(n) allele are prone to develop poliomyelitis when immunosuppressed, a condition known as age-dependent poliomyelitis. The development of age-dependent poliomyelitis requires coinfection with endogenous murine leukemia virus. Even though LDV is a common contaminant of transplantable tumors, clinical signs of poliomyelitis after inadvertent exposure to LDV have not been described in recent literature. In addition, LDV-induced poliomyelitis has not been reported in SCID or ICR mice. Here we describe the occurrence of poliomyelitis in ICR-SCID mice resulting from injection of LDV-contaminated basement membrane matrix. After exposure to LDV, a subset of mice presented with clinical signs including paresis, which was associated with atrophy of the hindlimb musculature, and tachypnea; in addition, some mice died suddenly with or without premonitory signs. Mice presenting within the first 6 mo after infection had regions of spongiosis, neuronal necrosis and astrocytosis of the ventral spinal cord, and less commonly, brainstem. Axonal degeneration of ventral roots prevailed in more chronically infected mice. LDV was identified by RT-PCR in 12 of 15 mice with typical neuropathology; positive antiLDV immunolabeling was identified in all PCR-positive animals (n = 7) tested. Three of 8 mice with neuropathology but no clinical signs were LDV negative by RT-PCR. RT-PCR yielded murine leukemia virus in spinal cords of all mice tested, regardless of clinical presentation or neuropathology.

  12. Decreased free d-aspartate levels are linked to enhanced d-aspartate oxidase activity in the dorsolateral prefrontal cortex of schizophrenia patients.

    PubMed

    Nuzzo, Tommaso; Sacchi, Silvia; Errico, Francesco; Keller, Simona; Palumbo, Orazio; Florio, Ermanno; Punzo, Daniela; Napolitano, Francesco; Copetti, Massimiliano; Carella, Massimo; Chiariotti, Lorenzo; Bertolino, Alessandro; Pollegioni, Loredano; Usiello, Alessandro

    2017-01-01

    It is long acknowledged that the N -methyl d-aspartate receptor co-agonist, d-serine, plays a crucial role in several N -methyl d-aspartate receptor-mediated physiological and pathological processes, including schizophrenia. Besides d-serine, another free d-amino acid, d-aspartate, is involved in the activation of N -methyl d-aspartate receptors acting as an agonist of this receptor subclass, and is abundantly detected in the developing human brain. Based on the hypothesis of N -methyl d-aspartate receptor hypofunction in the pathophysiology of schizophrenia and considering the ability of d-aspartate and d-serine to stimulate N -methyl d-aspartate receptor-dependent transmission, in the present work we assessed the concentration of these two d-amino acids in the post-mortem dorsolateral prefrontal cortex and hippocampus of patients with schizophrenia and healthy subjects. Moreover, in this cohort of post-mortem brain samples we investigated the spatiotemporal variations of d-aspartate and d-serine. Consistent with previous work, we found that d-aspartate content was selectively decreased by around 30% in the dorsolateral prefrontal cortex, but not in the hippocampus, of schizophrenia-affected patients, compared to healthy subjects. Interestingly, such selective reduction was associated to greater (around 25%) cortical activity of the enzyme responsible for d-aspartate catabolism, d-aspartate oxidase. Conversely, no significant changes were found in the methylation state and transcription of DDO gene in patients with schizophrenia, compared to control individuals, as well as in the expression levels of serine racemase, the major enzyme responsible for d-serine biosynthesis, which also catalyzes aspartate racemization. These results reveal the potential involvement of altered d-aspartate metabolism in the dorsolateral prefrontal cortex as a factor contributing to dysfunctional N -methyl d-aspartate receptor-mediated transmission in schizophrenia.

  13. Choline-to-N-acetyl aspartate and lipids-lactate-to-creatine ratios together with age assemble a significant Cox's proportional-hazards regression model for prediction of survival in high-grade gliomas.

    PubMed

    Roldan-Valadez, Ernesto; Rios, Camilo; Motola-Kuba, Daniel; Matus-Santos, Juan; Villa, Antonio R; Moreno-Jimenez, Sergio

    2016-11-01

    A long-lasting concern has prevailed for the identification of predictive biomarkers for high-grade gliomas (HGGs) using MRI. However, a consensus of which imaging parameters assemble a significant survival model is still missing in the literature; we investigated the significant positive or negative contribution of several MR biomarkers in this tumour prognosis. A retrospective cohort of supratentorial HGGs [11 glioblastoma multiforme (GBM) and 17 anaplastic astrocytomas] included 28 patients (9 females and 19 males, respectively, with a mean age of 50.4 years, standard deviation: 16.28 years; range: 13-85 years). Oedema and viable tumour measurements were acquired using regions of interest in T 1 weighted, T 2 weighted, fluid-attenuated inversion recovery, apparent diffusion coefficient (ADC) and MR spectroscopy (MRS). We calculated Kaplan-Meier curves and obtained Cox's proportional hazards. During the follow-up period (3-98 months), 17 deaths were recorded. The median survival time was 1.73 years (range, 0.287-8.947 years). Only 3 out of 20 covariates (choline-to-N-acetyl aspartate and lipids-lactate-to-creatine ratios and age) showed significance in explaining the variability in the survival hazards model; score test: χ 2 (3) = 9.098, p = 0.028. MRS metabolites overcome volumetric parameters of peritumoral oedema and viable tumour, as well as tumour region ADC measurements. Specific MRS ratios (Cho/Naa, L-L/Cr) might be considered in a regular follow-up for these tumours. Advances in knowledge: Cho/Naa ratio is the strongest survival predictor with a log-hazard function of 2.672 in GBM. Low levels of lipids-lactate/Cr ratio represent up to a 41.6% reduction in the risk of death in GBM.

  14. Choline-to-N-acetyl aspartate and lipids-lactate-to-creatine ratios together with age assemble a significant Cox's proportional-hazards regression model for prediction of survival in high-grade gliomas

    PubMed Central

    Rios, Camilo; Motola-Kuba, Daniel; Matus-Santos, Juan; Villa, Antonio R; Moreno-Jimenez, Sergio

    2016-01-01

    Objective: A long-lasting concern has prevailed for the identification of predictive biomarkers for high-grade gliomas (HGGs) using MRI. However, a consensus of which imaging parameters assemble a significant survival model is still missing in the literature; we investigated the significant positive or negative contribution of several MR biomarkers in this tumour prognosis. Methods: A retrospective cohort of supratentorial HGGs [11 glioblastoma multiforme (GBM) and 17 anaplastic astrocytomas] included 28 patients (9 females and 19 males, respectively, with a mean age of 50.4 years, standard deviation: 16.28 years; range: 13–85 years). Oedema and viable tumour measurements were acquired using regions of interest in T1 weighted, T2 weighted, fluid-attenuated inversion recovery, apparent diffusion coefficient (ADC) and MR spectroscopy (MRS). We calculated Kaplan–Meier curves and obtained Cox's proportional hazards. Results: During the follow-up period (3–98 months), 17 deaths were recorded. The median survival time was 1.73 years (range, 0.287–8.947 years). Only 3 out of 20 covariates (choline-to-N-acetyl aspartate and lipids-lactate-to-creatine ratios and age) showed significance in explaining the variability in the survival hazards model; score test: χ2 (3) = 9.098, p = 0.028. Conclusion: MRS metabolites overcome volumetric parameters of peritumoral oedema and viable tumour, as well as tumour region ADC measurements. Specific MRS ratios (Cho/Naa, L-L/Cr) might be considered in a regular follow-up for these tumours. Advances in knowledge: Cho/Naa ratio is the strongest survival predictor with a log-hazard function of 2.672 in GBM. Low levels of lipids–lactate/Cr ratio represent up to a 41.6% reduction in the risk of death in GBM. PMID:27626830

  15. Analysis and Manipulation of Aspartate Pathway Genes for l-Lysine Overproduction from Methanol by Bacillus methanolicus▿

    PubMed Central

    Nærdal, Ingemar; Netzer, Roman; Ellingsen, Trond E.; Brautaset, Trygve

    2011-01-01

    We investigated the regulation and roles of six aspartate pathway genes in l-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by l-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the l-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has—in addition to a hom-1 mutation—chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for l-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased l-lysine production levels. PMID:21724876

  16. Analysis and manipulation of aspartate pathway genes for L-lysine overproduction from methanol by Bacillus methanolicus.

    PubMed

    Nærdal, Ingemar; Netzer, Roman; Ellingsen, Trond E; Brautaset, Trygve

    2011-09-01

    We investigated the regulation and roles of six aspartate pathway genes in L-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by L-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the L-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has-in addition to a hom-1 mutation-chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for L-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased L-lysine production levels.

  17. Rapamycin (mTORC1 inhibitor) reduces the production of lactate and 2-hydroxyglutarate oncometabolites in IDH1 mutant fibrosarcoma cells.

    PubMed

    Hujber, Zoltán; Petővári, Gábor; Szoboszlai, Norbert; Dankó, Titanilla; Nagy, Noémi; Kriston, Csilla; Krencz, Ildikó; Paku, Sándor; Ozohanics, Olivér; Drahos, László; Jeney, András; Sebestyén, Anna

    2017-06-02

    Multiple studies concluded that oncometabolites (e.g. D-2-hydroxyglutarate (2-HG) related to mutant isocitrate dehydrogenase 1/2 (IDH1/2) and lactate) have tumour promoting potential. Regulatory mechanisms implicated in the maintenance of oncometabolite production have great interest. mTOR (mammalian target of rapamycin) orchestrates different pathways, influences cellular growth and metabolism. Considering hyperactivation of mTOR in several malignancies, the question has been addressed whether mTOR operates through controlling of oncometabolite accumulation in metabolic reprogramming. HT-1080 cells - carrying originally endogenous IDH1 mutation - were used in vitro and in vivo. Anti-tumour effects of rapamycin were studied using different assays. The main sources and productions of the oncometabolites (2-HG and lactate) were analysed by 13 C-labeled substrates. Alterations at protein and metabolite levels were followed by Western blot, flow cytometry, immunohistochemistry and liquid chromatography mass spectrometry using rapamycin, PP242 and different glutaminase inhibitors, as well. Rapamycin (mTORC1 inhibitor) inhibited proliferation, migration and altered the metabolic activity of IDH1 mutant HT-1080 cells. Rapamycin reduced the level of 2-HG sourced mainly from glutamine and glucose derived lactate which correlated to the decreased incorporation of 13 C atoms from 13 C-substrates. Additionally, decreased expressions of lactate dehydrogenase A and glutaminase were also observed both in vitro and in vivo. Considering the role of lactate and 2-HG in regulatory network and in metabolic symbiosis it could be assumed that mTOR inhibitors have additional effects besides their anti-proliferative effects in tumours with glycolytic phenotype, especially in case of IDH1 mutation (e.g. acute myeloid leukemias, gliomas, chondrosarcomas). Based on our new results, we suggest targeting mTOR activity depending on the metabolic and besides molecular genetic phenotype of

  18. Alcohol Dehydrogenase and Ethanol in the Stems of Trees 1

    PubMed Central

    Kimmerer, Thomas W.; Stringer, Mary A.

    1988-01-01

    Anaerobic fermentation in plants is usually thought to be a transient phenomenon, brought about by environmental limitations to oxygen availability, or by structural constraints to oxygen transport. The vascular cambium of trees is separated from the air by the outer bark and secondary phloem, and we hypothesized that the cambium may experience sufficient hypoxia to induce anaerobic fermentation. We found high alcohol dehydrogenase activity in the cambium of several tree species. Mean activity of alcohol dehydrogenase in Populus deltoides was 165 micromoles NADH oxidized per minute per gram fresh weight in May. Pyruvate decarboxylase activity was also present in the cambium of P. deltoides, with mean activity of 26 micromoles NADH oxidized per minute per gram fresh weight in May. Lactate dehydrogenase activity was not present in any tree species we examined. Contrary to our expectation, alcohol dehydrogenase activity was inversely related to bark thickness in Acer saccharum and unrelated to bark thickness in two Populus species. Bark thickness may be less important in limiting oxygen availability to the cambium than is oxygen consumption by rapidly respiring phloem and cambium in actively growing trees. Ethanol was present in the vascular cambium of all species examined, with mean concentrations of 35 to 143 nanomoles per gram fresh weight, depending on species. Ethanol was also present in xylem sap and may have been released from the cambium into the transpiration stream. The presence in the cambium of the enzymes necessary for fermentation as well as the products of fermentation is evidence that respiration in the vascular cambium of trees may be oxygen-limited, but other biosynthetic origins of ethanol have not been ruled out. PMID:16666209

  19. Temporal relationship of serum markers and tissue damage during acute intestinal ischemia/reperfusion

    PubMed Central

    la Garza, Francisco Javier Guzmán-de; Ibarra-Hernández, Juan Manuel; Cordero-Pérez, Paula; Villegas-Quintero, Pablo; Villarreal-Ovalle, Claudia Ivette; Torres-González, Liliana; Oliva-Sosa, Norma Edith; Alarcón-Galván, Gabriela; Fernández-Garza, Nancy Esthela; Muñoz-Espinosa, Linda Elsa; Cámara-Lemarroy, Carlos Rodrigo; Carrillo-Arriaga, José Gerardo

    2013-01-01

    OBJECTIVE: It is essential to identify a serological marker of injury in order to study the pathophysiology of intestinal ischemia reperfusion. In this work, we studied the evolution of several serological markers after intestinal ischemia reperfusion injury in rats. The markers of non-specific cell damage were aspartate aminotransferase, alanine aminotransaminase, and lactic dehydrogenase, the markers of inflammation were tumor necrosis factor alpha, interleukin-6, and interleukin-1 beta, and the markers of intestinal mucosal damage were intestinal fatty acid binding protein and D-lactate. We used Chiús classification to grade the histopathological damage. METHODS: We studied 35 Wistar rats divided into groups according to reperfusion time. The superior mesenteric artery was clamped for 30 minutes, and blood and biopsies were collected at 1, 3, 6, 12, 24, and 48 hours after reperfusion. We plotted the mean ± standard deviation and compared the baseline and maximum values for each marker using Student's t-test. RESULTS: The maximum values of interleukin-1 beta and lactic dehydrogenase were present before the maximal histopathological damage. The maximum tumor necrosis factor alpha and D-lactate expressions coincided with histopathological damage. Alanine aminotransaminase and aspartate aminotransferase had a maximum expression level that increased following the histopathological damage. The maximum expressions of interluken-6 and intestinal fatty acid binding protein were not significantly different from the Sham treated group. CONCLUSION: For the evaluation of injury secondary to acute intestinal ischemia reperfusion with a 30 minute ischemia period, we recommend performing histopathological grading, quantification of D-lactate, which is synthesized by intestinal bacteria and is considered an indicator of mucosal injury, and quantification of tumor necrosis factor alpha as indicators of acute inflammation three hours after reperfusion. PMID:23917671

  20. Essential Tremor with Aspartic Acidemia.

    PubMed

    Miura, Shiroh; Fujioka, Ryuta; Taniwaki, Takayuki

    2017-05-08

    We describe two cases of typical essential tremor with aspartic acidemia and mildly increased concentrations of plasma glutamic acid. Although this is a preliminary report, we emphasize the possibility of using amino acids, including aspartic acid, as biomarkers for the detection of essential tremor.

  1. [Bone histomorphometry of lactating and no lactating hyperthyroid rats].

    PubMed

    Serakides, Rogéria; Ocarino, Natália de Melo; Magalhães, Fernanda do Carmo; Souza, Cíntia de Almeida; Leite, Eveline Dias; Freitas, Edmilson Santos de

    2008-06-01

    The objective of this study was to verify if hyperthyroidism potentiates the osteopenia lactational. 24 adult female rats were distributed in four groups: euthyroid no lactating (control), euthyroid lactating, hyperthyroid no lactating and hyperthyroid lactating. 20 days after gestation, all the animals were necropsied. The thoracic and lumbar vertebrae, the femur and tibia were decalcified and processed for histomorphometric analysis. The euthyroid lactating group presented intense osteopenia in the studied bones. In the hyperthyroid no lactating group, there was not any change in trabecular bone percentage in none of the analyzed bone. In the hyperthyroid lactating group, there was osteopenia in the tibia and femur, similar to the one in the euthyroid lactating group. But the trabecular bone percentage in all the vertebral bodies was significantly larger in comparison with the euthyroid lactating group. It was concluded that the hyperthyroidism does not potentiate the osteopenia lactational in female rats, but it minimizes the vertebral osteopenia once it stimulates the osteoblastic activity.

  2. The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code

    PubMed Central

    Hofhuis, Julia; Schueren, Fabian; Nötzel, Christopher; Lingner, Thomas; Gärtner, Jutta; Jahn, Olaf

    2016-01-01

    Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by translational readthrough and the actual ratio of MDH1x (extended protein) to ‘normal' MDH1 is dependent on the cell type. In human cells, arginine and tryptophan are co-encoded by the MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide high-readthrough stop codon context without contribution of the subsequent 50 nucleotides encoding the extension. All vertebrate MDH1x is directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in the readthrough extension, which is more highly conserved than the extension of lactate dehydrogenase B. The hidden PTS of non-mammalian MDH1x evolved to be more efficient than the PTS of mammalian MDH1x. These results provide insight into the genetic and functional co-evolution of these dually localized dehydrogenases. PMID:27881739

  3. Comparative performance of aldolase and lactate dehydrogenase rapid diagnostic tests in Plasmodium vivax detection

    PubMed Central

    2014-01-01

    Background Misdiagnosis of malaria by commercial rapid diagnostic tests (RDTs) is a major cause of concern in the diagnosis of malaria. This retrospective study was aimed at assessing the relative performance of four RDTs with emphasis on the detection of two Plasmodium vivax antigens: aldolase and lactate dehydrogenase (LDH). Methods Three commercially available Plasmodium LDH or aldolase antigen detection kits (One Step Malaria P.f/P.v, ParaHit Total ver. 1.0, SD Bioline Malaria) and an anti-P. vivax aldolase-specific monoclonal antibody (mAb) pair 1C3-12 F10 were evaluated with P. vivax positive as well as non-P. vivax samples and healthy samples using blood smear examination as standard. Each test was read according to the manufacturer’s instructions. Results MAb 1C3-12 F10 pair targeting P. vivax-specific aldolase exhibited very good specificity and sensitivity of 100 and 97.4%, respectively. Positive predictive value (PPV) and negative predictive value (NPV) of 100 and 99.5%, respectively, were also observed. The anti-P. vivax LDH in the One-Step Malaria P.f/P.v test showed sensitivity, specificity, PPV and NPV of 93.5, 98.0, 88.9 and 98.8%, respectively. ParaHit Total ver. 1.0 targeting the pan-aldolase antigen showed sensitivity, specificity of 97.4 and 99.6%, respectively. PPV and NPV were both 99.5%. SD Bioline had sensitivity, specificity, PPV and NPV of 93.5, 100, 100 and 98.8%, respectively. The overall sensitivity and specificity of all four RDTs were acceptable, especially for the aldolase detection tests. Five (6.5%) of the P. vivax-positive samples (n = 77) that were confirmed by microscopic examination as well as the two aldolase detection RDTs (mAb 1C3-12 F10 and ParaHit Total ver.1.0) were undetected by the two LDH detection RDTs (One Step Malaria P.f/P.v and SD Bioline). Similarly, two positive samples (2.6%) that were positively confirmed by the LDH detection RDTs were also undetected by the aldolase detection test kits. Conclusion

  4. Function of muscle-type lactate dehydrogenase and citrate synthase of the Galápagos marine iguana, Amblyrhynchus cristatus, in relation to temperature.

    PubMed

    Fields, Peter A; Strothers, Chad M; Mitchell, Mark A

    2008-05-01

    The Galápagos marine iguana, Amblyrhynchus cristatus, is unique among lizards in foraging subtidally, leading to activity across a broad range of ambient temperatures ( approximately 14-40 degrees C). To determine whether the marine iguana shows any biochemical changes consistent with maintaining enzyme function at both warm and cold body temperatures, we examined the function of the aerobic enzyme citrate synthase (CS) and the muscle isoform of the anaerobic enzyme lactate dehydrogenase (A(4)-LDH) in A. cristatus and a confamilial species, Iguana iguana, from 14 to 46 degrees C. We also deduced amino acid sequences from cDNA of each enzyme. In CS, despite two amino acid substitutions, we found no difference in the apparent Michaelis-Menten constant K(m) of oxaloacetate at any temperature, indicating that the substrate affinity of CS in A. cristatus has not adapted to changes in thermal environment. In A(4)-LDH, we used site-directed mutagenesis to show that the substitutions T9A and I283V (A. cristatus --> I. iguana) individually have no effect on kinetics, but together significantly decrease the K(m) of pyruvate and catalytic rate constant (k(cat)) of the A. cristatus ortholog. Thus, our data show that A. cristatus A(4)-LDH has not become cold adapted in response to this species' aquatic foraging behavior, and instead may be consistent with moderate warm adaptation with respect to the I. iguana ortholog.

  5. Magnetic resonance lactate and lipid signals in rat brain after middle cerebral artery occlusion model

    PubMed Central

    Harada, Kuniaki; Honmou, Osamu; Liu, He; Bando, Michio; Houkin, Kiyohiro; Kocsis, Jeffery D.

    2008-01-01

    Proton magnetic resonance spectroscopy (1-H MRS) has revealed changes of metabolites in acute cerebral infarction. Although the drastic changes of lactate and N-acetyl-aspartate have been reported to be useful indicators of the ischemic damage in both humans and experimental animals, lipid signals are also detected by the short echo time sequence 1–5 days after ischemia. The objective of this study was to find a novel technique to isolate lactate signals from lipid signals in the ischemic brain. First, MRS was used to study the lipid and lactate components of a spherical phantom in vitro, and parameters were established to separate these components in vitro. Then, MR measurements were obtained from the brains of middle cerebral artery occlusion rats. All MR measurements were performed using a 7-T (300 MHz), 18.3-cm-bore superconducting magnet (Oxford Magnet Technologies) interfaced to a Unity INOVA Imaging System (Varian Technologies). T2-weighted images were obtained from a 1.0-mm-thick coronal section using a 3-cm field of view. It is well known that lipid has a shorter and lactate a longer T2 relaxation time. These distinct magnetic characteristics allowed us to separate the lactate signal from the lipid signal. Thus, adjustment of the echo time is essential to analyze the metabolites in acute cerebral infarction, which may be useful in both the clinic and laboratory. PMID:17196558

  6. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    PubMed

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  7. Tungsten and Molybdenum Regulation of Formate Dehydrogenase Expression in Desulfovibrio vulgaris Hildenborough ▿

    PubMed Central

    da Silva, Sofia M.; Pimentel, Catarina; Valente, Filipa M. A.; Rodrigues-Pousada, Claudina; Pereira, Inês A. C.

    2011-01-01

    Formate is an important energy substrate for sulfate-reducing bacteria in natural environments, and both molybdenum- and tungsten-containing formate dehydrogenases have been reported in these organisms. In this work, we studied the effect of both metals on the levels of the three formate dehydrogenases encoded in the genome of Desulfovibrio vulgaris Hildenborough, with lactate, formate, or hydrogen as electron donors. Using Western blot analysis, quantitative real-time PCR, activity-stained gels, and protein purification, we show that a metal-dependent regulatory mechanism is present, resulting in the dimeric FdhAB protein being the main enzyme present in cells grown in the presence of tungsten and the trimeric FdhABC3 protein being the main enzyme in cells grown in the presence of molybdenum. The putatively membrane-associated formate dehydrogenase is detected only at low levels after growth with tungsten. Purification of the three enzymes and metal analysis shows that FdhABC3 specifically incorporates Mo, whereas FdhAB can incorporate both metals. The FdhAB enzyme has a much higher catalytic efficiency than the other two. Since sulfate reducers are likely to experience high sulfide concentrations that may result in low Mo bioavailability, the ability to use W is likely to constitute a selective advantage. PMID:21498650

  8. Saccharomyces cerevisiae Forms D-2-Hydroxyglutarate and Couples Its Degradation to D-Lactate Formation via a Cytosolic Transhydrogenase.

    PubMed

    Becker-Kettern, Julia; Paczia, Nicole; Conrotte, Jean-François; Kay, Daniel P; Guignard, Cédric; Jung, Paul P; Linster, Carole L

    2016-03-18

    The D or L form of 2-hydroxyglutarate (2HG) accumulates in certain rare neurometabolic disorders, and high D-2-hydroxyglutarate (D-2HG) levels are also found in several types of cancer. Although 2HG has been detected in Saccharomyces cerevisiae, its metabolism in yeast has remained largely unexplored. Here, we show that S. cerevisiae actively forms the D enantiomer of 2HG. Accordingly, the S. cerevisiae genome encodes two homologs of the human D-2HG dehydrogenase: Dld2, which, as its human homolog, is a mitochondrial protein, and the cytosolic protein Dld3. Intriguingly, we found that a dld3Δ knock-out strain accumulates millimolar levels of D-2HG, whereas a dld2Δ knock-out strain displayed only very moderate increases in D-2HG. Recombinant Dld2 and Dld3, both currently annotated as D-lactate dehydrogenases, efficiently oxidized D-2HG to α-ketoglutarate. Depletion of D-lactate levels in the dld3Δ, but not in the dld2Δ mutant, led to the discovery of a new type of enzymatic activity, carried by Dld3, to convert D-2HG to α-ketoglutarate, namely an FAD-dependent transhydrogenase activity using pyruvate as a hydrogen acceptor. We also provide evidence that Ser3 and Ser33, which are primarily known for oxidizing 3-phosphoglycerate in the main serine biosynthesis pathway, in addition reduce α-ketoglutarate to D-2HG using NADH and represent major intracellular sources of D-2HG in yeast. Based on our observations, we propose that D-2HG is mainly formed and degraded in the cytosol of S. cerevisiae cells in a process that couples D-2HG metabolism to the shuttling of reducing equivalents from cytosolic NADH to the mitochondrial respiratory chain via the D-lactate dehydrogenase Dld1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring.

    PubMed

    Mizuno, Genki; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Murase, Yuri; Kondo, Kanako; Ishikawa, Hiroaki; Teradaira, Ryoji; Suzuki, Koji; Ohashi, Koji

    2017-02-01

    Neurosteroids, steroidal hormones synthesized de novo from cholesterol within the brain, stimulate hippocampal functions such as neuron protection and synapse formation. Previously, we examined the effect of maternal fructose on the transcriptional regulation of neurosteroidogenic enzymes. We found that the mRNA expression level of the steroidogenic acute regulatory protein (StAR), peripheral benzodiazepine receptor (PBR), cytochrome P450(11β), 11β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD was altered. However, we could not determine whether maternal fructose intake played a role in the gestation or lactation period because the dam rats were fed fructose solution during both periods. Thus, in this study, we analyzed the hippocampi of the offspring of dams fed fructose during the gestation or lactation period. Maternal fructose consumption during either the gestation or lactation period did not affect the mRNA levels of StAR, P450(17α), 11β-HSD-2, and 17β-HSD-1. PBR expression was down-regulated, even when rats consumed fructose during the lactation period only, while fructose consumption during gestation tended to activate the expression of P450(11β)-2. We found that maternal fructose intake during gestation and lactation differentially affected the expression of hippocampal neurosteroidogenic enzymes in the offspring.

  10. Mitochondrial Respiratory Defect Causes Dysfunctional Lactate Turnover via AMP-activated Protein Kinase Activation in Human-induced Pluripotent Stem Cell-derived Hepatocytes*

    PubMed Central

    Im, Ilkyun; Jang, Mi-jin; Park, Seung Ju; Lee, Sang-Hee; Choi, Jin-Ho; Yoo, Han-Wook; Kim, Seyun; Han, Yong-Mahn

    2015-01-01

    A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD+/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver. PMID:26491018

  11. Ectoparasite Caligus rogercresseyi modifies the lactate response in Atlantic salmon (Salmo salar) and Coho salmon (Oncorhynchus kisutch).

    PubMed

    Vargas-Chacoff, L; Muñoz, J L P; Hawes, C; Oyarzún, R; Pontigo, J P; Saravia, J; González, M P; Mardones, O; Labbé, B S; Morera, F J; Bertrán, C; Pino, J; Wadsworth, S; Yáñez, A

    2017-08-30

    Although Caligus rogercresseyi negatively impacts Chilean salmon farming, the metabolic effects of infection by this sea louse have never been completely characterized. Therefore, this study analyzed lactate responses in the plasma, as well as the liver/muscle lactate dehydrogenase (LDH) activity and gene expression, in Salmo salar and Oncorhynchus kisutch infested by C. rogercresseyi. The lactate responses of Atlantic and Coho salmon were modified by the ectoparasite. Both salmon species showed increasing in plasma levels, whereas enzymatic activity increased in the muscle but decreased in the liver. Gene expression was overexpressed in both Coho salmon tissues but only in the liver for Atlantic salmon. These results suggest that salmonids need more energy to adapt to infection, resulting in increased gene expression, plasma levels, and enzyme activity in the muscles. The responses differed between both salmon species and over the course of infection, suggesting potential species-specific responses to sea-lice infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enzyme activities in plasma, liver, and kidney of black ducks and mallards

    USGS Publications Warehouse

    Franson, J. Christian

    1982-01-01

    Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine phosphokinase (CPK), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were measured in plasma, liver, and kidney, and gamma-glutamyl transferase (GGT) was measured in liver and kidney of black ducks (Anas rubripes). Activities of ALT, AST, GGT, and ornithine carbamyl transferase (OCT) were assayed in plasma, liver, and kidney of game-farm mallards (Anas platyrhynchos). Appreciable OCT and AST activity occurred in both liver and kidney. Activities of ALT, CPK, ALP and GGT were higher in kidney, while LDH was higher in liver, GGT was detected in plasma from one of four mallards.

  13. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass

    PubMed Central

    Spinelli, Jessica B.; Yoon, Haejin; Ringel, Alison E.; Jeanfavre, Sarah; Clish, Clary B.; Haigis, Marcia C.

    2017-01-01

    Ammonia is a ubiquitous by-product of cellular metabolism, however the biological consequences of ammonia production are not fully understood, especially in cancer. We find that ammonia is not merely a toxic waste product, but is recycled into central amino acid metabolism to maximize nitrogen utilization. Cancer cells primarily assimilated ammonia through reductive amination catalyzed by glutamate dehydrogenase (GDH), and secondary reactions enabled other amino acids, such as proline and aspartate, to directly acquire this nitrogen. Metabolic recycling of ammonia accelerated proliferation of breast cancer. In mice, ammonia accumulated in the tumor microenvironment, and was used directly to generate amino acids through GDH activity. These data show that ammonia not only is a secreted waste product, but a fundamental nitrogen source that can support tumor biomass. PMID:29025995

  14. DB Dehydrogenase: an online integrated structural database on enzyme dehydrogenase.

    PubMed

    Nandy, Suman Kumar; Bhuyan, Rajabrata; Seal, Alpana

    2012-01-01

    Dehydrogenase enzymes are almost inevitable for metabolic processes. Shortage or malfunctioning of dehydrogenases often leads to several acute diseases like cancers, retinal diseases, diabetes mellitus, Alzheimer, hepatitis B & C etc. With advancement in modern-day research, huge amount of sequential, structural and functional data are generated everyday and widens the gap between structural attributes and its functional understanding. DB Dehydrogenase is an effort to relate the functionalities of dehydrogenase with its structures. It is a completely web-based structural database, covering almost all dehydrogenases [~150 enzyme classes, ~1200 entries from ~160 organisms] whose structures are known. It is created by extracting and integrating various online resources to provide the true and reliable data and implemented by MySQL relational database through user friendly web interfaces using CGI Perl. Flexible search options are there for data extraction and exploration. To summarize, sequence, structure, function of all dehydrogenases in one place along with the necessary option of cross-referencing; this database will be utile for researchers to carry out further work in this field. The database is available for free at http://www.bifku.in/DBD/

  15. Functional and structural characterization of the pentapeptide insertion of Theileria annulata lactate dehydrogenase by site-directed mutagenesis, comparative modeling and molecular dynamics simulations.

    PubMed

    Erdemir, Aysegul; Mutlu, Ozal

    2017-06-01

    Lactate dehydrogenase (LDH) is an important metabolic enzyme in glycolysis and it has been considered as the main energy source in many organisms including apicomplexan parasites. Differences at the active site loop of the host and parasite LDH's makes this enzyme an attractive target for drug inhibitors. In this study, five amino acid insertions in the active site pocket of Theileria annulata LDH (TaLDH) were deleted by PCR-based site-directed mutagenesis, expression and activity analysis of mutant and wild type TaLDH enzymes were performed. Removal of the insertion at the active site loop caused production of an inactive enzyme. Furthermore, structures of wild and mutant enzymes were predicted by comparative modeling and the importance of the insertions at the active site loop were also assigned by molecular docking and dynamics simulations in order to evaluate essential role of this loop for the enzymatic activity. Pentapeptide insertion removal resulted in loss of LDH activity due to deletion of Trp96 and conformational change of Arg98 because of loop instability. Analysis of wild type and mutant enzymes with comparative molecular dynamics simulations showed that the fluctuations of the loop residues increase in mutant enzyme. Together with in silico studies, in vitro results revealed that active site loop has a vital role in the enzyme activity and our findings promise hope for the further drug design studies against theileriosis and other apicomplexan parasite diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Bioactivity-Guided Identification and Cell Signaling Technology to Delineate the Lactate Dehydrogenase A Inhibition Effects of Spatholobus suberectus on Breast Cancer

    PubMed Central

    Wang, Zhiyu; Wang, Dongmei; Han, Shouwei; Wang, Neng; Mo, Feizhi; Loo, Tjing Yung; Shen, Jiangang; Huang, Hui; Chen, Jianping

    2013-01-01

    Aerobic glycolysis is an important feature of cancer cells. In recent years, lactate dehydrogenase A (LDH-A) is emerging as a novel therapeutic target for cancer treatment. Seeking LDH-A inhibitors from natural resources has been paid much attention for drug discovery. Spatholobus suberectus (SS) is a common herbal medicine used in China for treating blood-stasis related diseases such as cancer. This study aims to explore the potential medicinal application of SS for LDH-A inhibition on breast cancer and to determine its bioactive compounds. We found that SS manifested apoptosis-inducing, cell cycle arresting and anti-LDH-A activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cell. Oral herbal extracts (1 g/kg/d) administration attenuated tumor growth and LDH-A expression in both breast cancer xenografts. Bioactivity-guided fractionation finally identified epigallocatechin as a key compound in SS inhibiting LDH-A activity. Further studies revealed that LDH-A plays a critical role in mediating the apoptosis-induction effects of epigallocatechin. The inhibited LDH-A activities by epigallocatechin is attributed to disassociation of Hsp90 from HIF-1α and subsequent accelerated HIF-1α proteasome degradation. In vivo study also demonstrated that epigallocatechin could significantly inhibit breast cancer growth, HIF-1α/LDH-A expression and trigger apoptosis without bringing toxic effects. The preclinical study thus suggests that the potential medicinal application of SS for inhibiting cancer LDH-A activity and the possibility to consider epigallocatechin as a lead compound to develop LDH-A inhibitors. Future studies of SS for chemoprevention or chemosensitization against breast cancer are thus warranted. PMID:23457597

  17. Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds.

    PubMed

    Wisselink, H Wouter; Mars, Astrid E; van der Meer, Pieter; Eggink, Gerrit; Hugenholtz, Jeroen

    2004-07-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.

  18. A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker.

    PubMed

    Azzouzi, Sawsen; Rotariu, Lucian; Benito, Ana M; Maser, Wolfgang K; Ben Ali, Mounir; Bala, Camelia

    2015-07-15

    In this work, a novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide (RGO-AuNPs) and l-lactate dehydrogenase (LDH) was developed for the sensing of l-lactate. Firstly, the RGO-AuNPs modified screen printed electrodes were tested for NADH detection showing a wide dynamic range and a low detection limit. Next, the biosensor was constructed by incorporating both enzyme and RGO-AuNPs in a sol gel matrix derived from tetrametoxysilane and methyltrimetoxysilane. The enzyme loading, working pH, and coenzyme concentration were optimized. The biosensor linearly responded to l-lactate in the range of 10µM-5mM and showed a good specific sensitivity of 154µA/mMcm(2) with a detection limit of 0.13µM. This was accompanied by good reproducibility and operational stability. Tests on artificial serum proved that l-lactate can be determined practically without interferences from commonly interfering compounds such as urate, paracetamol and l-ascorbate. Our LDH/RGO-AuNPs/SPCE based biosensor thus performs as electrochemical device for the detection of l-lactate as a viable early cancer bio-marker. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.

    PubMed

    Luthra, Sumit; Obert, Jean-Philippe; Kalonia, Devendra S; Pikal, Michael J

    2007-01-01

    This article describes the design, performance testing, and application of a controlled humidity mini-freeze-dryer in studying the physical stability of lactate dehydrogenase during lyophilization. Performance evaluation of the mini-freeze-dryer was conducted with tests, namely water sublimation, radiation heat exchange, lowest achievable temperature, and leak testing. Protein stability studies were conducted by comparing protein activity at various stages of lyophilization with the initial activity. The shelf and condenser temperature were stable at <-40 degrees C, wall temperature was within 2 degrees C of the shelf temperature, and the leak rate was small. The chamber pressure was controlled by the ice on the condenser and the product temperature during sublimation was equal to the shelf temperature. Addition of Tween 80 prevented activity loss in solution and after freeze-thaw. No activity loss was observed after primary-drying even in absence of lyoprotectants and with collapse of cake structure. Five percent (w/w) sucrose concentration was required to achieve full stabilization. In conclusion, performance testing established that the mini-freeze-dryer was suitable for mechanistic freeze-drying studies. Secondary-drying was the critical step for protein stability. The concentration of sucrose required to stabilize the protein completely was several orders of magnitude higher than that required to satisfy the direct interaction requirement of the protein. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  20. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    PubMed

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  1. Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo.

    PubMed

    Itoh, Yoshiaki; Esaki, Takanori; Shimoji, Kazuaki; Cook, Michelle; Law, Mona J; Kaufman, Elaine; Sokoloff, Louis

    2003-04-15

    Neuronal cultures in vitro readily oxidized both D-[(14)C]glucose and l-[(14)C]lactate to (14)CO(2), whereas astroglial cultures oxidized both substrates sparingly and metabolized glucose predominantly to lactate and released it into the medium. [(14)C]Glucose oxidation to (14)CO(2) varied inversely with unlabeled lactate concentration in the medium, particularly in neurons, and increased progressively with decreasing lactate concentration. Adding unlabeled glucose to the medium inhibited [(14)C]lactate oxidation to (14)CO(2) only in astroglia but not in neurons, indicating a kinetic preference in neurons for oxidation of extracellular lactate over intracellular pyruvatelactate produced by glycolysis. Protein kinase-catalyzed phosphorylation inactivates pyruvate dehydrogenase (PDH), which regulates pyruvate entry into the tricarboxylic acid cycle. Dichloroacetate inhibits this kinase, thus enhancing PDH activity. In vitro dichloroacetate stimulated glucose and lactate oxidation to CO(2) and reduced lactate release mainly in astroglia, indicating that limitations in glucose and lactate oxidation by astroglia may be due to a greater balance of PDH toward the inactive form. To assess the significance of astroglial export of lactate to neurons in vivo, we attempted to diminish this traffic in rats by administering dichloroacetate (50 mgkg) intravenously to stimulate astroglial lactate oxidation and then examined the effects on baseline and functionally activated local cerebral glucose utilization (lCMR(glc)). Dichloroacetate raised baseline lCMR(glc) throughout the brain and decreased the percent increases in lCMR(glc) evoked by functional activation. These studies provide evidence in support of the compartmentalization of glucose metabolism between astroglia and neurons but indicate that the compartmentalization may be neither complete nor entirely obligatory.

  2. Development of an Amperometric Biosensor Platform for the Combined Determination of L-Malic, Fumaric, and L-Aspartic Acid.

    PubMed

    Röhlen, Désirée L; Pilas, Johanna; Schöning, Michael J; Selmer, Thorsten

    2017-10-01

    Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD + ) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM -1 (L-malate biosensor) and 0.4 μA mM -1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0-10.0 mM with a sensitivity of 0.09 μA mM -1 . The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates.

  3. Capacitive malaria aptasensor using Plasmodium falciparum glutamate dehydrogenase as target antigen in undiluted human serum.

    PubMed

    Singh, Naveen K; Arya, Sunil K; Estrela, Pedro; Goswami, Pranab

    2018-06-08

    A capacitive aptasensor for detecting the malaria biomarker, Plasmodium falciparum glutamate dehydrogenase (PfGDH), directly in human serum samples developed. A thiolated ssDNA aptamer (NG3) that binds specifically to PfGDH antigen with high affinity (K d = 79 nM) was used to develop the aptasensor. The aptasensor produced capacitance response at an optimized frequency of 2 Hz in a non-Faradaic electrochemical impedance based signal transduction platform. The aptasensor exhibited a wide dynamic range of 100 fM-100 nM with a limits of detection of 0.77 pM in serum samples. The interference from other predominant malarial biomarkers, namely, Plasmodium falciparum -lactate dehydrogenase and -histidine rich protein-II on the aptasensor was negligible. This PfGDH aptasensor with highly sensitive and label free detection capability has great application potential for diagnosis of asymptotic malaria and monitoring the regression of malaria during treatment regime with antimalarial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass.

    PubMed

    Spinelli, Jessica B; Yoon, Haejin; Ringel, Alison E; Jeanfavre, Sarah; Clish, Clary B; Haigis, Marcia C

    2017-11-17

    Ammonia is a ubiquitous by-product of cellular metabolism; however, the biological consequences of ammonia production are not fully understood, especially in cancer. We found that ammonia is not merely a toxic waste product but is recycled into central amino acid metabolism to maximize nitrogen utilization. In our experiments, human breast cancer cells primarily assimilated ammonia through reductive amination catalyzed by glutamate dehydrogenase (GDH); secondary reactions enabled other amino acids, such as proline and aspartate, to directly acquire this nitrogen. Metabolic recycling of ammonia accelerated proliferation of breast cancer. In mice, ammonia accumulated in the tumor microenvironment and was used directly to generate amino acids through GDH activity. These data show that ammonia is not only a secreted waste product but also a fundamental nitrogen source that can support tumor biomass. Copyright © 2017, American Association for the Advancement of Science.

  5. Exogenous lactate supply affects lactate kinetics of rainbow trout, not swimming performance

    PubMed Central

    Omlin, Teye; Langevin, Karolanne

    2014-01-01

    Intense swimming causes circulatory lactate accumulation in rainbow trout because lactate disposal (Rd) is not stimulated as strongly as lactate appearance (Ra). This mismatch suggests that maximal Rd is limited by tissue capacity to metabolize lactate. This study uses exogenous lactate to investigate what constrains maximal Rd and minimal Ra. Our goals were to determine how exogenous lactate affects: 1) Ra and Rd of lactate under baseline conditions or during graded swimming, and 2) exercise performance (critical swimming speed, Ucrit) and energetics (cost of transport, COT). Results show that exogenous lactate allows swimming trout to boost maximal Rd lactate by 40% and reach impressive rates of 56 μmol·kg−1·min−1. This shows that the metabolic capacity of tissues for lactate disposal is not responsible for setting the highest Rd normally observed after intense swimming. Baseline endogenous Ra (resting in normoxic water) is not significantly reduced by exogenous lactate supply. Therefore, trout have an obligatory need to produce lactate, either as a fuel for oxidative tissues and/or from organs relying on glycolysis. Exogenous lactate does not affect Ucrit or COT, probably because it acts as a substitute for glucose and lipids rather than extra fuel. We conclude that the observed 40% increase in Rd lactate is made possible by accelerating lactate entry into oxidative tissues via monocarboxylate transporters (MCTs). This observation together with the weak expression of MCTs and the phenomenon of white muscle lactate retention show that lactate metabolism of rainbow trout is significantly constrained by transmembrane transport. PMID:25121611

  6. A lactate dehydrogenase ELISA-based assay for the in vitro determination of Plasmodium berghei sensitivity to anti-malarial drugs.

    PubMed

    Orjuela-Sánchez, Pamela; Duggan, Erika; Nolan, John; Frangos, John A; Carvalho, Leonardo Jm

    2012-11-05

    Plasmodium berghei rodent malaria is a well-known model for the investigation of anti-malarial drug efficacy in vivo. However, the availability of drug in vitro assays in P. berghei is reduced when compared with the spectrum of techniques existing for Plasmodium falciparum. New alternatives to the current manual or automated methods described for P. berghei are attractive. The present study reports a new ELISA drug in vitro assay for P. berghei using two monoclonal antibodies against the parasite lactate dehydrogenase (pLDH). This procedure includes a short-in vitro culture, the purification of schizonts and the further generation of synchronized mice infections. Early stages of the parasite are then incubated against different concentrations of anti-malarial drugs using micro-plates. The novelty of this procedure in P. berghei relies on the quantification of the drug activity derived from the amount of pLDH estimated by an ELISA assay using two monoclonal antibodies: 14C1 and 19G7. The IC₅₀s obtained through the ELISA assay were compared with those from the micro-test. The initial parameters of the synchronized samples used in the in vitro assays were a parasitaemia of 0.5% and haematocrit of 1%, with an incubation period of 22 hours at 36.5°C. pLDH detection using a 14C1 coating at 10 μg/ml and 19G7 at 2.5 × 10⁻³ μg/ml provided good readouts of optical densities with low background in negative controls and specific detection levels for all parasite stages. IC₅₀s values derived from the ELISA assay for artesunate, chloroquine, amodiaquine and quinine were: 15, 7, 2, and 144 nM, respectively. When artesunate and chloroquine IC₅₀s were evaluated using the micro-test similar values were obtained. This ELISA-based in vitro drug assay is easy to implement, fast, and avoids the use radioisotopes or expensive equipment. The utility of this simple assay for screening anti-malarial drug activity against P. berghei in vitro is demonstrated.

  7. Plasmodium glyceraldehyde-3-phosphate dehydrogenase: A potential malaria diagnostic target.

    PubMed

    Krause, Robert G E; Hurdayal, Ramona; Choveaux, David; Przyborski, Jude M; Coetzer, Theresa H T; Goldring, J P Dean

    2017-08-01

    Malaria rapid diagnostic tests (RDTs) are immunochromatographic tests detecting Plasmodial histidine-rich protein 2 (HRP2), lactate dehydrogenase (LDH) and aldolase. HRP2 is only expressed by Plasmodium falciparum parasites and the protein is not expressed in several geographic isolates. LDH-based tests lack sensitivity compared to HRP2 tests. This study explored the potential of the Plasmodial glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a new malaria diagnostic biomarker. The P. falciparum and P. yoelii proteins were recombinantly expressed in BL21(DE3) Escherischia coli host cells and affinity purified. Two epitopes (CADGFLLIGEKKVSVFA and CAEKDPSQIPWGKCQV) specific to P. falciparum GAPDH and one common to all mammalian malaria species (CKDDTPIYVMGINH) were identified. Antibodies were raised in chickens against the two recombinant proteins and the three epitopes and affinity purified. The antibodies detected the native protein in parasite lysates as a 38 kDa protein and immunofluorescence verified a parasite cytosolic localization for the native protein. The antibodies suggested a 4-6 fold higher concentration of native PfGAPDH compared to PfLDH in immunoprecipitation and ELISA formats, consistent with published proteomic data. PfGAPDH shows interesting potential as a malaria diagnostic biomarker. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Lactation and reproduction*

    PubMed Central

    Thomson, A. M.; Hytten, F. E.; Black, A. E.

    1975-01-01

    The authors review the literature on the effect of lactation on fertility in the absence of contraception and on the effects of contraceptive measures on lactation. They examine data from several countries on the intervals between births and on the return of menstruation and ovulation after childbirth, comparing lactating with nonlactating women. They conclude that lactation is an inefficient contraceptive for the individual, but that in populations sustained lactation is associated with reduced fertility. Possible physiological mechanisms causing lactation amenorrhoea are discussed. Though much of the literature on the effect of contraceptives on lactation is inadequate, there is general agreement that the estrogen component of hormonal preparations has an adverse effect on lactation, but that progestins alone do not. Many questions remain. Is this effect seen in established lactation, or only in the puerperal period? Is it a direct pharmacological effect, or are pill-users the mothers least motivated to maintain breast-feeding? Does a close relationship exist between hormones given and lactation performance? The authors comment on some of the technical deficiencies of previous studies in this field and discuss practical possibilities of, and limitations to, obtaining adequate scientific information in the future. PMID:1084804

  9. Prognostic significance of blood lactate and lactate clearance in trauma patients.

    PubMed

    Régnier, Marie-Alix; Raux, Mathieu; Le Manach, Yannick; Asencio, Yves; Gaillard, Johann; Devilliers, Catherine; Langeron, Olivier; Riou, Bruno

    2012-12-01

    Lactate has been shown to be a prognostic biomarker in trauma. Although lactate clearance has already been proposed as an intermediate endpoint in randomized trials, its precise role in trauma patients remains to be determined. Blood lactate levels and lactate clearance (LC) were calculated at admission and 2 and 4 h later in trauma patients. The association of initial blood lactate level and lactate clearance with mortality was tested using receiver-operating characteristics curve, logistic regression using triage scores, Trauma Related Injury Severity Score as a reference standard, and reclassification method. The authors evaluated 586 trauma patients (mean age 38±16 yr, 84% blunt and 16% penetrating, mortality 13%). Blood lactate levels at admission were elevated in 327 (56%) patients. The lactate clearance should be calculated within the first 2 h after admission as LC0-2 h was correlated with LC0-4 h (R=0.55, P<0.001) but not with LC2-4 h (R=0.04, not significant). The lactate clearance provides additional predictive information to initial blood lactate levels and triage scores and the reference score. This additional information may be summarized using a categorical approach (i.e., less than or equal to -20 %/h) in contrast to initial blood lactate. The results were comparable in patients with high (5 mM/l or more) initial blood lactate. Early (0-2 h) lactate clearance is an important and independent prognostic variable that should probably be incorporated in future decision schemes for the resuscitation of trauma patients.

  10. Oligodendrocytes Do Not Export NAA-Derived Aspartate In Vitro.

    PubMed

    I Amaral, Ana; Hadera, Mussie Ghezu; Kotter, Mark; Sonnewald, Ursula

    2017-03-01

    Oligodendroglial cells are known to de-acetylate the N-acetylaspartate (NAA) synthesized and released by neurons and use it for lipid synthesis. However, the role of NAA regarding their intermediary metabolism remains poorly understood. Two hypotheses were proposed regarding the fate of aspartate after being released by de-acetylation: (1) aspartate is metabolized in the mitochondria of oligodendrocyte lineage cells; (2) aspartate is released to the medium. We report here that aspartoacylase mRNA expression increases when primary rat oligodendrocyte progenitor cells (OPCs) differentiate into mature cells in culture. Moreover, characterising metabolic functions of acetyl coenzyme A and aspartate from NAA catabolism in mature oligodendrocyte cultures after 5 days using isotope-labelled glucose after 5-days of differentiation we found evidence of extensive NAA metabolism. Incubation with [1,6- 13 C]glucose followed by gas chromatography-mass spectrometry and high performance liquid chromatography analyses of cell extracts and media in the presence and absence of NAA established that the acetate moiety produced by hydrolysis of NAA does not enter mitochondrial metabolism in the form of acetyl coenzyme A. We also resolved the controversy concerning the possible release of aspartate to the medium: aspartate is not released to the medium by oligodendrocytes in amounts detectable by our methods. Therefore we propose that: aspartate released from NAA joins the cytosolic aspartate pool rapidly and takes part in the malate-aspartate shuttle, which transports reducing equivalents from glycolysis into the mitochondria for ATP production and enters the tricarboxylic acid cycle at a slow rate.

  11. In vitro effects of bicarbonate and bicarbonate-lactate buffered peritoneal dialysis solutions on mesothelial and neutrophil function.

    PubMed

    Topley, N; Kaur, D; Petersen, M M; Jörres, A; Williams, J D; Faict, D; Holmes, C J

    1996-02-01

    The inclusion of bicarbonate in the formulation of peritoneal dialysis solutions may avoid the in vitro impairment of certain cell functions seen with acidic lactate-based fluids. The supranormal physiological levels of HCO3- and PCO2 inherent in such formulations may, however, not be biocompatible. This study compared the in vitro biocompatibility of a pH 5.2 lactate-based formulation with formulations containing either 40 mM lactate at pH 7.4, 38 mM HCO3- at pH 6.8 (PCO2 at approximately 240 mm Hg) or 7.4 (PCO2 at approximately 60 mm Hg), and 25 mM HCO3- plus 15 mM lactate at pH 6.8 (PCO2 at approximately 160 mm Hg) or 7.4 (PCO2 at approximately 40 mm Hg). Significant release of lactate dehydrogenase or decreases in ATP content by human peritoneal mesothelial cells (HPMC) and human peripheral polymorphonuclear leukocytes (PMN) after a 30-min exposure to each test solution was only seen with the pH 5.2 lactate-based fluid. The ATP content of HPMC exposed to this fluid returned to control levels after 30 min of recovery in M199 control medium but showed a trend toward decreasing ATP content at 240 min. Similarly, interleukin (IL)-1 beta-induced IL-6 synthesis by HPMC was also only significantly reduced by the pH 5.2 lactate solution. PMN chemiluminescence was unaffected by 30-min exposure to all test solutions except for the pH 5.2 lactate formulation. Staphylococcus epidermidis phagocytosis was reduced to between 46 to 57% of control with all test solutions except the pH 5.2 lactate solution, which further suppressed the chemiluminescence response to 17% of control. These data suggest that short exposure to supranormal physiological levels of HCO3- and PCO2 does not impair HPMC or PMN viability and function. Furthermore, neutral pH lactate-containing solutions show equivalent biocompatibility to bicarbonate-based ones.

  12. Successful treatment of capture myopathy in three wild greater sandhill cranes (Grus canadensis tabida).

    PubMed

    Businga, Nancy K; Langenberg, Julie; Carlson, LaVinda

    2007-12-01

    Two adult and 1 juvenile free-flying greater sandhill cranes (Grus canadensis tabida) were diagnosed with capture myopathy after alpha-chloralose baiting and physical capture during a banding and feeding ecologic study. Blood samples were collected for serum biochemical analysis at the time of capture for the 2 adults, and at 24 hours postcapture, at various intervals during treatment, and at the time of release for all 3 birds. Concentrations of creatine kinase, aspartate transaminase, and lactate dehydrogenase were high within 1 hour of capture and peaked approximately 3 days after capture. By days 10-17 after capture, creatine kinase and lactate dehydrogenase concentrations both decreased to within the reference range measured for cranes at capture, but aspartate transaminase concentrations remained 2-5 times higher than the measured reference range. Treatment consisted of corticosteroids, selenium/vitamin E, parenteral fluids, and gavage feedings. Physical therapy consisted of assisting the cranes to stand and walk 2-8 times a day, massaging leg muscles, and moving limbs manually through the range of motion. The adults were released when they were able to stand up independently and were pacing in the pen. The juvenile was released 12 hours after it was able to stand independently but was returned to the pen when it fell and could not rise. It was treated supportively for an additional 3 days and then successfully released. Both adult cranes were observed on their territories with their original mates after release and returned to their territories for the subsequent 8 years, raising chicks most years. After release, the juvenile was observed in a flock of cranes near its natal territory for the next 2 days.

  13. Inhibition of lactation.

    PubMed

    Llewellyn-Jones, D

    1975-01-01

    The mechanism and hormonal regulation of lactation is explained and illustrated with a schematic representation. Circulating estrogen above a critical amount seems to be the inhibitory factor controlling lactation during pregnancy. Once delivery occurs, the level of estrogen falls, that of prolactin rises, and lactation begins. Nonsuckling can be used to inhibit lactation. Estrogens can also be used to inhibit lactation more quickly and with less pain. The reported association between estrogens and puerperal thromboembolism cannot be considered conclusive due to defects in the reporting studies. There is no reason not to use estrogens in lactation inhibition except for women over 35 who experienced a surgical delivery. Alternative therapy is available for these women. The recently-developed drug, brom-ergocryptine, may replace other methods of lactation inhibition.

  14. [1-13C]Glucose entry in neuronal and astrocytic intermediary metabolism of aged rats. A study of the effects of nicergoline treatment by 13C NMR spectroscopy.

    PubMed

    Miccheli, Alfredo; Puccetti, Caterina; Capuani, Giorgio; Di Cocco, Maria Enrica; Giardino, Luciana; Calzà, Laura; Battaglia, Angelo; Battistin, Leontino; Conti, Filippo

    2003-03-14

    Age-related changes in glucose utilization through the TCA cycle were studied using [1-13C]glucose and 13C, 1H NMR spectroscopy on rat brain extracts. Significant increases in lactate levels, as well as in creatine/phosphocreatine ratios (Cr/PCr), and a decrease in N-acetyl-aspartate (NAA) and aspartate levels were observed in aged rat brains as compared to adult animals following glucose administration. The total amount of 13C from [1-13C]glucose incorporated in glutamate, glutamine, aspartate and GABA was significantly decreased in control aged rat brains as compared to adult brains. The results showed a decrease in oxidative glucose utilization of control aged rat brains. The long-term nicergoline treatment increased NAA and glutamate levels, and decreased the lactate levels as well as the Cr/PCr ratios in aged rat brains as compared to adult rats. The total amount of 13C incorporated in glutamate, glutamine, aspartate, NAA and GABA was increased by nicergoline treatment, showing an improvement in oxidative glucose metabolism in aged brains. A significant increase in pyruvate carboxylase/pyruvate dehydrogenase activity (PC/PDH) in the synthesis of glutamate in nicergoline-treated aged rats is consistent with an increase in the transport of glutamine from glia to neurons for conversion into glutamate. In adult rat brains, no effect of nicergoline on glutamate PC/PDH activity was observed, although an increase in PC/PDH activity in glutamine was, suggesting that nicergoline affects the glutamate/glutamine cycle between neurons and glia in different ways depending on the age of animals. These results provide new insights into the effects of nicergoline on the CNS.

  15. Short-Chain 3-Hydroxyacyl-Coenzyme A Dehydrogenase Associates with a Protein Super-Complex Integrating Multiple Metabolic Pathways

    PubMed Central

    Narayan, Srinivas B.; Master, Stephen R.; Sireci, Anthony N.; Bierl, Charlene; Stanley, Paige E.; Li, Changhong; Stanley, Charles A.; Bennett, Michael J.

    2012-01-01

    Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein. PMID:22496890

  16. Lactate dehydrogenase test

    MedlinePlus

    Normal value range is 105 to 333 international units per liter (IU/L). Normal value ranges may vary slightly among different laboratories. Some labs use different measurements or test different samples. Talk to your provider about ...

  17. (1-3)-beta-D-glucan in association with lactate dehydrogenase as biomarkers of Pneumocystis pneumonia (PcP) in HIV-infected patients.

    PubMed

    Esteves, F; Lee, C-H; de Sousa, B; Badura, R; Seringa, M; Fernandes, C; Gaspar, J F; Antunes, F; Matos, O

    2014-07-01

    Pneumocystis pneumonia (PcP) is a major HIV-related illness caused by Pneumocystis jirovecii. Definitive diagnosis of PcP requires microscopic detection of P. jirovecii in pulmonary specimens. The objective of this study was to evaluate the usefulness of two serum markers in the diagnosis of PcP. Serum levels of (1-3)-beta-d-glucan (BG) and lactate dehydrogenase (LDH) were investigated in 100 HIV-positive adult patients and 50 healthy blood donors. PcP cases were confirmed using indirect immunofluorescence with monoclonal anti-Pneumocystis antibodies and nested-PCR to amplify the large subunit mitochondrial rRNA gene of P. jirovecii in pulmonary specimens. BG and LDH levels in serum were measured using quantitative microplate-based assays. BG and LDH positive sera were statistically associated with PcP cases (P ≤ 0.001). Sensitivity, specificity, positive/negative predictive values (PPV/NPV), and positive/negative likelihood ratios (PLR/NLR) were 91.3 %, 61.3 %, 85.1 %, 79.2 %, 2.359, and 0.142, respectively, for the BG kit assay, and 91.3 %, 35.5 %, 75.9 %, 64.7 %, 1.415 and 0.245, respectively, for the LDH test. Serologic markers levels combined with the clinical diagnostic criteria for PcP were evaluated for their usefulness in diagnosis of PcP. The most promising cutoff levels for diagnosis of PcP were determined to be 400 pg/ml of BG and 350 U/l of LDH, which combined with clinical data presented 92.8 % sensitivity, 83.9 % specificity, 92.8 % PPV, 83.9 % NPV, 5.764 PLR and 0.086 NLR (P < 0.001). This study confirmed that BG is a reliable indicator for detecting P. jirovecii infection. The combination between BG/LDH levels and clinical data is a promising alternative approach for PcP diagnosis.

  18. Lactate dehydrogenase predicts combined progression-free survival after sequential therapy with abiraterone and enzalutamide for patients with castration-resistant prostate cancer.

    PubMed

    Mori, Keiichiro; Kimura, Takahiro; Onuma, Hajime; Kimura, Shoji; Yamamoto, Toshihiro; Sasaki, Hiroshi; Miki, Jun; Miki, Kenta; Egawa, Shin

    2017-07-01

    An array of clinical issues remains to be resolved for castration-resistant prostate cancer (CRPC), including the sequence of drug use and drug cross-resistance. At present, no clear guidelines are available for the optimal sequence of use of novel agents like androgen-receptor axis-targeted (ARAT) agents, particularly enzalutamide, and abiraterone. This study retrospectively analyzed a total of 69 patients with CRPC treated with sequential therapy using enzalutamide followed by abiraterone or vice versa. The primary outcome measure was the comparative combined progression-free survival (PFS) comprising symptomatic and/or radiographic PFS. Patients were also compared for total prostate-specific antigen (PSA)-PFS, overall survival (OS), and PSA response. The predictors of combined PFS and OS were analyzed with a backward-stepwise multivariate Cox model. Of the 69 patients, 46 received enzalutamide first, followed by abiraterone (E-A group), and 23 received abiraterone, followed by enzalutamide (A-E group). The two groups were not significantly different with regard to basic data, except for hemoglobin values. In a comparison with the E-A group, the A-E group was shown to be associated with better combined PFS in Kaplan-Meier analysis (P = 0.043). Similar results were obtained for total PSA-PFS (P = 0.049), while OS did not differ between groups (P = 0.62). Multivariate analysis demonstrated that pretreatment lactate dehydrogenase (LDH) values and age were significant predictors of longer combined PFS (P < 0.05). Likewise, multivariate analysis demonstrated that pretreatment hemoglobin values and performance status were significant predictors of longer OS (P < 0.05). The results of this study suggested the A-E sequence had longer combined PSA and total PSA-PFS compared to the E-A sequence in patients with CRPC. LDH values in sequential therapy may serve as a predictor of longer combined PFS. © 2017 Wiley Periodicals, Inc.

  19. Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation.

    PubMed

    Aubert, Agnès; Costalat, Robert; Magistretti, Pierre J; Pellerin, Luc

    2005-11-08

    A critical issue in brain energy metabolism is whether lactate produced within the brain by astrocytes is taken up and metabolized by neurons upon activation. Although there is ample evidence that neurons can efficiently use lactate as an energy substrate, at least in vitro, few experimental data exist to indicate that it is indeed the case in vivo. To address this question, we used a modeling approach to determine which mechanisms are necessary to explain typical brain lactate kinetics observed upon activation. On the basis of a previously validated model that takes into account the compartmentalization of energy metabolism, we developed a mathematical model of brain lactate kinetics, which was applied to published data describing the changes in extracellular lactate levels upon activation. Results show that the initial dip in the extracellular lactate concentration observed at the onset of stimulation can only be satisfactorily explained by a rapid uptake within an intraparenchymal cellular compartment. In contrast, neither blood flow increase, nor extracellular pH variation can be major causes of the lactate initial dip, whereas tissue lactate diffusion only tends to reduce its amplitude. The kinetic properties of monocarboxylate transporter isoforms strongly suggest that neurons represent the most likely compartment for activation-induced lactate uptake and that neuronal lactate utilization occurring early after activation onset is responsible for the initial dip in brain lactate levels observed in both animals and humans.

  20. Analyses of plasma for metabolic and hormonal changes in rats flown aboard Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Merrill, Alfred H., Jr.; Wang, Elaine; Mullins, Richard E.; Grindeland, Richard E.; Popova, Irina A.

    1992-01-01

    Plasmas samples from rats flown aboard Cosmos 2044 were analyzed for the levels of key metabolites, electrolytes, enzymes, and hormones. The major differences between the flight group and the synchronous control were elevations in glucose, cholesterol, phosphate, creatinine, blood urea nitrogen, lactate dehydrogenase, and aspartate aminotransferase and decreased levels of thyroxine. Most of these differences were not mimicked by tail suspension of ground-based rats; however, both flight and suspended rats exhibited inhibited testosterone secretion. Corticosterone, immunoreactive growth hormone, and prolactin showed inconsistent differences from the various control groups, suggesting that the levels of these hormones were not due to actual or simulated microgravity.

  1. The Deletion of the Succinate Dehydrogenase Gene KlSDH1 in Kluyveromyces lactis Does Not Lead to Respiratory Deficiency

    PubMed Central

    Saliola, Michele; Bartoccioni, Paola Chiara; De Maria, Ilaria; Lodi, Tiziana; Falcone, Claudio

    2004-01-01

    We have isolated a Kluyveromyces lactis mutant unable to grow on all respiratory carbon sources with the exception of lactate. Functional complementation of this mutant led to the isolation of KlSDH1, the gene encoding the flavoprotein subunit of the succinate dehydrogenase (SDH) complex, which is essential for the aerobic utilization of carbon sources. Despite the high sequence conservation of the SDH genes in Saccharomyces cerevisiae and K. lactis, they do not have the same relevance in the metabolism of the two yeasts. In fact, unlike SDH1, KlSDH1 was highly expressed under both fermentative and nonfermentative conditions. In addition to this, but in contrast with S. cerevisiae, K. lactis strains lacking KlSDH1 were still able to grow in the presence of lactate. In these mutants, oxygen consumption was one-eighth that of the wild type in the presence of lactate and was normal with glucose and ethanol, indicating that the respiratory chain was fully functional. Northern analysis suggested that alternative pathway(s), which involves pyruvate decarboxylase and the glyoxylate cycle, could overcome the absence of SDH and allow (i) lactate utilization and (ii) the accumulation of succinate instead of ethanol during growth on glucose. PMID:15189981

  2. Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation

    PubMed Central

    Aubert, Agnès; Costalat, Robert; Magistretti, Pierre J.; Pellerin, Luc

    2005-01-01

    A critical issue in brain energy metabolism is whether lactate produced within the brain by astrocytes is taken up and metabolized by neurons upon activation. Although there is ample evidence that neurons can efficiently use lactate as an energy substrate, at least in vitro, few experimental data exist to indicate that it is indeed the case in vivo. To address this question, we used a modeling approach to determine which mechanisms are necessary to explain typical brain lactate kinetics observed upon activation. On the basis of a previously validated model that takes into account the compartmentalization of energy metabolism, we developed a mathematical model of brain lactate kinetics, which was applied to published data describing the changes in extracellular lactate levels upon activation. Results show that the initial dip in the extracellular lactate concentration observed at the onset of stimulation can only be satisfactorily explained by a rapid uptake within an intraparenchymal cellular compartment. In contrast, neither blood flow increase, nor extracellular pH variation can be major causes of the lactate initial dip, whereas tissue lactate diffusion only tends to reduce its amplitude. The kinetic properties of monocarboxylate transporter isoforms strongly suggest that neurons represent the most likely compartment for activation-induced lactate uptake and that neuronal lactate utilization occurring early after activation onset is responsible for the initial dip in brain lactate levels observed in both animals and humans. PMID:16260743

  3. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes: A Diagnostic Accuracy and Observational Outcome Study.

    PubMed

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-02-01

    In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far.This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality.One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367-557) in patients with AAS and 383 U/L (IQR 331-460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37-51) and the specificity was 73% (95% CI 69-76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH ≥ 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11-4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable and in nonsurgically

  4. Bioproduction of L-Aspartic Acid and Cinnamic Acid by L-Aspartate Ammonia Lyase from Pseudomonas aeruginosa PAO1.

    PubMed

    Patel, Arti T; Akhani, Rekha C; Patel, Manisha J; Dedania, Samir R; Patel, Darshan H

    2017-06-01

    Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) catalyses the reversible amination and deamination of L-aspartic acid to fumaric acid which can be used to produce important biochemical. In this study, we have explored the characteristics of aspartase from Pseudomonas aeruginosa PAO1 (PA-AspA). To overproduce PA-AspA, the 1425-bp gene was introduced in Escherichia coli BL21 and purified. A 51.0-kDa protein was observed as a homogenous purified protein on SDS-PAGE. The enzyme was optimally active at pH 8.0 and 35 °C. PA-AspA has retained 56% activity after 7 days of incubation at 35 °C, which displays the hyperthermostablility characteristics of the enzyme. PA-AspA is activated in the presence of metal ions and Mg2+ is found to be most effective. Among the substrates tested for specificity of PA-AspA, L-phenylalanine (38.35 ± 2.68) showed the highest specific activity followed by L-aspartic acid (31.21 ± 3.31) and fumarate (5.42 ± 2.94). K m values for L-phenylalanine, L-aspartic acid and fumarate were 1.71 mM, 0.346 μM and 2 M, respectively. The catalytic efficiency (k cat /K m ) for L-aspartic acid (14.18 s -1  mM -1 ) was higher than that for L-phenylalanine (4.65 s -1  mM -1 ). For bioconversion, from an initial concentration of 1000 mM of fumarate and 30 mM of L-phenylalanine, PA-AspA was found to convert 395.31 μM L-aspartic acid and 3.47 mM cinnamic acid, respectively.

  5. Serum lactate dehydrogenase with a systemic inflammation score is useful for predicting response and survival in patients with newly diagnosed diffuse large B-cell lymphoma.

    PubMed

    Jung, Sung-Hoon; Yang, Deok-Hwan; Ahn, Jae-Sook; Kim, Yeo-Kyeoung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2015-01-01

    We evaluated the relationship between serum lactate dehydrogenase (LDH) level with systemic inflammation score and survival in 213 patients with diffuse large B-cell lymphoma (DLBCL) receiving R-CHOP chemotherapy. The patients were classified into 3 groups based on LDH with the Glasgow Prognostic Score (L-GPS). A score of 2 was assigned to patients with elevated C-reactive protein, hypoalbuminemia and elevated LDH, a score of 1 to those with one or two abnormalities and a score of 0 to those with no abnormality. In multivariate analysis, independent poor prognostic factors for progression-free survival were L-GPS 2 [hazard ratio (HR) 5.415, p = 0.001], Eastern Cooperative Oncology Group performance status (ECOG PS) ≥2 (HR 3.504, p = 0.001) and bulky lesion (HR 2.030, p = 0.039). Independent poor prognostic factors for overall survival were L-GPS 2 (HR 5.898, p = 0.001) and ECOG PS ≥2 (HR 3.525, p = 0.001). The overall response rate for the R-CHOP chemotherapy decreased according to the L-GPS; it was 96.7% at L-GPS 0, 87% at L-GPS 1 and 75% at L-GPS 2 (p = 0.009). L-GPS based on systemic inflammatory indicators may be a useful clinical prognostic indicator for survival, and predicts the response for R-CHOP chemotherapy in patients with newly diagnosed DLBCL. © 2014 S. Karger AG, Basel.

  6. Secreted fungal aspartic proteases: A review.

    PubMed

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. Copyright © 2016 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  7. Effects of high and low blood lactate concentrations on sweat lactate response.

    PubMed

    Green, J M; Bishop, P A; Muir, I H; McLester, J R; Heath, H E

    2000-11-01

    Sweat lactate results from eccrine gland metabolism, however, the possible clearance of blood lactate through sweat has not been resolved. On separate days in an environmental chamber (32 +/- 1 C) 12 subjects completed a constant load (CON) (30 min at 40% VO2 max) and an interval cycling trial (INT) (15 one-min intervals at 80% VO2 max, each separated by one min rest) each designed to elicit different blood lactate responses. Each 30 min cycling trial was preceded by 15 min warm-up (30 watts) and followed by 15 min passive rest. Sweat and blood were analyzed for lactate concentration at 15, 25, 35, 45, and 60 min during CON and INT. Total body water loss was used to calculate sweat rate (ml/hr). Blood lactate was significantly greater (p < or = 0.05) at 25, 35, 45, and 60 min during INT compared to CON (approximately 5 mmol/L vs 1.5 mmol/L). Sweat lactate was not significantly different (p>0.05) between trials at any time (approximately 10 mmol/L). Sweat rates (approximately 600ml/hr) and estimated total lactate secretion were not significantly different (CON vs. INT) (p > 0.05). Elevated blood lactate was not associated with changes in sweat lactate concentration. Sweat lactate seems to originate in eccrine glands independent of blood lactate.

  8. Improvement of L(+)-Lactic Acid Production of Rhizopus Oryzae by Low-Energy Ions and Analysis of Its Mechanism

    NASA Astrophysics Data System (ADS)

    Ge, Chunmei; Yang, Yingge; Fan, Yonghong; Li, Wen; Pan, Renrui; Zheng, Zhiming; Yu, Zengliang

    2008-02-01

    The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 1014 ~ 2.08 × 1015 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

  9. Bifunctional isocitrate-homoisocitrate dehydrogenase: a missing link in the evolution of beta-decarboxylating dehydrogenase.

    PubMed

    Miyazaki, Kentaro

    2005-05-27

    Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway of the three has been identified in the genomic sequence, and PH1722 is the sole beta-decarboxylating dehydrogenase gene. The organism does not require leucine, glutamate, or lysine for growth; the single pathway might play multiple (i.e., ancestral) roles in amino acid biosynthesis. The PH1722 gene was cloned and expressed in Escherichia coli and the substrate specificity of the recombinant enzyme was investigated. It exhibited activities on isocitrate and homoisocitrate at near equal efficiency, but not on 3-isopropylmalate. PH1722 is thus a novel, bifunctional beta-decarboxylating dehydrogenase, which likely plays a dual role in glutamate and lysine biosynthesis in vivo.

  10. Effects of Sesame (Sesamum indicum L.) Supplementation on Creatine Kinase, Lactate Dehydrogenase, Oxidative Stress Markers, and Aerobic Capacity in Semi-Professional Soccer Players

    PubMed Central

    Barbosa, Carlos V. da Silva; Silva, Alexandre S.; de Oliveira, Caio V. C.; Massa, Nayara M. L.; de Sousa, Yasmim R. F.; da Costa, Whyara K. A.; Silva, Ayice C.; Delatorre, Plínio; Carvalho, Rhayane; Braga, Valdir de Andrade; Magnani, Marciane

    2017-01-01

    Nutritional intervention with antioxidants rich foods has been considered a strategy to minimize the effects of overtraining in athletes. This experimental, randomized, and placebo-controlled study evaluated the effects of consumption of sesame (Sesamum indicum L.) on muscle damage markers, oxidative stress, systemic inflammation, and aerobic performance in male semi-professional soccer players. Twenty athletes were randomly assigned to groups that received 40 g (two tablespoons) per day of sesame or a placebo during 28 days of regular training (exposed to routine training that includes loads of heavy training in the final half of the season). Before and after intervention, creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), C-reactive protein (hs-CRP), and aerobic capacity were evaluated. Before intervention, a physiologic imbalance was noted in both groups related to CK and LDH levels. Sesame intake caused a reduction of CK (19%, p < 0.05), LDH (37%, p < 0.05), MDA (55%, p < 0.05) and hs-CRP (53%, p < 0.05) and increased SOD (14%, p < 0.05), vitamin A (25%, p < 0.05), and vitamin E (65%, p < 0.05) in the experimental group. These phenomena were accompanied by increased aerobic capacity (17%, p < 0.05). The placebo group showed an increase in CK (5%, p < 0.05) and no significant change in LDH, SOD or vitamin A. MDA levels decreased (21%, p < 0.05) and vitamin E increased (14%, p < 0.05) in the placebo group, but to a much lesser extent than in the experimental group. These results show that sesame consumption may reduce muscle damage and oxidative stress while improving the aerobic capacity in soccer players. PMID:28408889

  11. Basal levels of metabolic activity are elevated in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): measurement of regional activity of cytochrome oxidase and lactate dehydrogenase by histochemistry.

    PubMed

    Dufour, Franck; Koning, Estelle; Nehlig, Astrid

    2003-08-01

    The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are considered an isomorphic, predictive, and homologous model of human generalized absence epilepsy. It is characterized by the expression of spike-and-wave discharges in the thalamus and cortex. In this strain, basal regional rates of cerebral glucose utilization measured by the quantitative autoradiographic [(14)C]2-deoxyglucose technique display a widespread consistent increase compared to a selected strain of genetically nonepileptic rats (NE). In order to verify whether these high rates of glucose metabolism are paralleled by elevated activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histochemistry the regional activity of the two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation. CO and LDH activities were significantly higher in GAERS than in NE rats in 24 and 28 of the 30 brain regions studied, respectively. The differences in CO and LDH activity between both strains were widespread, affected all brain systems studied, and ranged from 12 to 63%. The data of the present study confirm the generalized increase in cerebral glucose metabolism in GAERS, occurring both at the glycolytic and at the oxidative step. However, they still do not allow us to understand why the ubiquitous mutation(s) generates spike-and-wave discharges only in the thalamocortical circuit.

  12. Testicular lactate content is compromised in men with Klinefelter Syndrome.

    PubMed

    Alves, Marco G; Martins, Ana D; Jarak, Ivana; Barros, Alberto; Silva, Joaquina; Sousa, Mário; Oliveira, Pedro F

    2016-03-01

    Klinefelter syndrome (KS) is the most common genetic cause of human infertility, but the mechanism(s) responsible for its phenotype remain largely unknown. KS is associated with alterations in body composition and with a higher risk of developing metabolic diseases. We therefore hypothesized that KS men seeking fertility treatment possess an altered testicular metabolism profile that may hamper the nutritional support of spermatogenesis. Testicular biopsies from control (46, XY) (n = 6) and KS (47, XXY) (n = 6) individuals were collected and analyzed by proton high-resolution magic-angle spinning nuclear magnetic resonance spectroscopy. The mRNA and protein expression of crucial glycolysis-associated enzymes and transporters were evaluated in parallel by quantitative PCR and Western blot, respectively. Our data revealed altered regulation of glucose transporters (GLUT1 and GLUT3); phosphofructokinase 1, liver isoform (PFKL); and lactate dehydrogenase A (LDHA) expression in the testis of KS patients. Moreover, we detected a severe reduction in lactate and creatine accumulation within testicular tissue from KS men. The aberrant levels of the biomarkers detected in testicular biopsies of KS men may therefore be associated with the infertility phenotypes presented by these men. Mol. Reprod. Dev. 83: 208-216, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Proteomic analysis of physiological function response to hot summer in liver from lactating dairy cows.

    PubMed

    Wang, Qiangjun; Zhao, Xiaowei; Zhang, Zijun; Zhao, Huiling; Huang, Dongwei; Cheng, Guanglong; Yang, Yongxin

    2017-04-01

    Lactation performance of dairy cattle is susceptible to heat stress. The liver is one of the most crucial organs affected by high temperature in dairy cows. However, the physiological adaption by the liver to hot summer conditions has not been well elucidated in lactating dairy cows. In the present study, proteomic analysis of the liver in dairy cows in spring and hot summer was performed using a label-free method. In total, 127 differentially expressed proteins were identified; most of the upregulated proteins were involved in protein metabolic processes and responses to stimuli, whereas most of the downregulated proteins were related to oxidation-reduction. Pathway analysis indicated that 3 upregulated heat stress proteins (HSP90α, HSP90β, and endoplasmin) were enriched in the NOD-like receptor signaling pathway, whereas several downregulated NADH dehydrogenase proteins were involved in the oxidative phosphorylation pathway. The protein-protein interaction network indicated that several upregulated HSPs (HSP90α, HSP90β, and GRP78) were involved in more interactions than other proteins and were thus considered as central hub nodes. Our findings provide novel insights into the physiological adaption of liver function in lactating dairy cows to natural high temperature. Copyright © 2017. Published by Elsevier Ltd.

  14. Increased titer and reduced lactate accumulation in recombinant retrovirus production through the down-regulation of HIF1 and PDK.

    PubMed

    Rodrigues, A F; Guerreiro, M R; Formas-Oliveira, A S; Fernandes, P; Blechert, A-K; Genzel, Y; Alves, P M; Hu, W S; Coroadinha, A S

    2016-01-01

    Many mammalian cell lines used in the manufacturing of biopharmaceuticals exhibit high glycolytic flux predominantly channeled to the production of lactate. The accumulation of lactate in culture reduces cell viability and may also decrease product quality. In this work, we engineered a HEK 293 derived cell line producing a recombinant gene therapy retroviral vector, by down-regulating hypoxia inducible factor 1 (HIF1) and pyruvate dehydrogenase kinase (PDK). Specific productivity of infectious viral titers could be increased more than 20-fold for single gene knock-down (HIF1 or PDK) and more than 30-fold under combined down-regulation. Lactate production was reduced up to 4-fold. However, the reduction in lactate production, alone, was not sufficient to enhance the titer: high-titer clones also showed significant enrollment of metabolic routes not related to lactate production. Transcriptome analysis indicated activation of biological amines metabolism, detoxification routes, including glutathione metabolism, pentose phosphate pathway, glycogen biosynthesis and amino acid catabolism. The latter were validated by enzyme activity assays and metabolite profiling, respectively. High-titer clones also presented substantially increased transcript levels of the viral genes expression cassettes. The results herein presented demonstrate the impact of HIF1 and PDK down-regulation on the production performance of a mammalian cell line, reporting one of the highest fold-increase in specific productivity of infectious virus titers achieved by metabolic engineering. They additionally highlight the contribution of secondary pathways, beyond those related to lactate production, that can be also explored to pursue improved metabolic status favoring a high-producing phenotype. © 2015 Wiley Periodicals, Inc.

  15. Origins of hydration differences in homochiral and racemic crystals of aspartic acid.

    PubMed

    Juliano, Thomas R; Korter, Timothy M

    2015-02-26

    The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.

  16. Single mutation in Shine-Dalgarno-like sequence present in the amino terminal of lactate dehydrogenase of Plasmodium effects the production of an eukaryotic protein expressed in a prokaryotic system.

    PubMed

    Cicek, Mustafa; Mutlu, Ozal; Erdemir, Aysegul; Ozkan, Ebru; Saricay, Yunus; Turgut-Balik, Dilek

    2013-06-01

    One of the most important step in structure-based drug design studies is obtaining the protein in active form after cloning the target gene. In one of our previous study, it was determined that an internal Shine-Dalgarno-like sequence present just before the third methionine at N-terminus of wild type lactate dehydrogenase enzyme of Plasmodium falciparum prevent the translation of full length protein. Inspection of the same region in P. vivax LDH, which was overproduced as an active enzyme, indicated that the codon preference in the same region was slightly different than the codon preference of wild type PfLDH. In this study, 5'-GGAGGC-3' sequence of P. vivax that codes for two glycine residues just before the third methionine was exchanged to 5'-GGAGGA-3', by mimicking P. falciparum LDH, to prove the possible effects of having an internal SD-like sequence when expressing an eukaryotic protein in a prokaryotic system. Exchange was made by site-directed mutagenesis. Results indicated that having two glycine residues with an internal SD-like sequence (GGAGGA) just before the third methionine abolishes the enzyme activity due to the preference of the prokaryotic system used for the expression. This study emphasizes the awareness of use of a prokaryotic system to overproduce an eukaryotic protein.

  17. Aspartate Biosynthesis Is Essential for the Growth of Streptococcus thermophilus in Milk, and Aspartate Availability Modulates the Level of Urease Activity▿

    PubMed Central

    Arioli, Stefania; Monnet, Christophe; Guglielmetti, Simone; Parini, Carlo; De Noni, Ivano; Hogenboom, Johannes; Halami, Prakash M.; Mora, Diego

    2007-01-01

    We investigated the carbon dioxide metabolism of Streptococcus thermophilus, evaluating the phenotype of a phosphoenolpyruvate carboxylase-negative mutant obtained by replacement of a functional ppc gene with a deleted and inactive version, Δppc. The growth of the mutant was compared to that of the parent strain in a chemically defined medium and in milk, supplemented or not with l-aspartic acid, the final product of the metabolic pathway governed by phosphoenolpyruvate carboxylase. It was concluded that aspartate present in milk is not sufficient for the growth of S. thermophilus. As a consequence, phosphoenolpyruvate carboxylase activity was considered fundamental for the biosynthesis of l-aspartic acid in S. thermophilus metabolism. This enzymatic activity is therefore essential for growth of S. thermophilus in milk even if S. thermophilus was cultured in association with proteinase-positive Lactobacillus delbrueckii subsp. bulgaricus. It was furthermore observed that the supplementation of milk with aspartate significantly affected the level of urease activity. Further experiments, carried out with a pureI-gusA recombinant strain, revealed that expression of the urease operon was sensitive to the aspartate concentration in milk and to the cell availability of glutamate, glutamine, and ammonium ions. PMID:17660309

  18. Effects of L-malate on physical stamina and activities of enzymes related to the malate-aspartate shuttle in liver of mice.

    PubMed

    Wu, J L; Wu, Q P; Huang, J M; Chen, R; Cai, M; Tan, J B

    2007-01-01

    L-malate, a tricarboxylic acid cycle (TCA) intermediate, plays an important role in transporting NADH from cytosol to mitochondria for energy production and may be involved in the beneficial effects of improving physical stamina. In the present study, we investigated the effects of L-malate on the performance of forced swimming time and blood biochemical parameters related to fatigue - blood urea nitrogen (BUN), glucose (Glc), creatine kinase (CK),total protein (TP) and lactic acid (LA). To investigate the effects of L-malate on the malate-aspartate shuttle and energy metabolism in mice, the activities of enzymes related to the malate-aspartate shuttle were measured. L-malate was orally administered to mice continuously for 30 days using a feeding atraumatic needle. The swimming time was increased by 26.1 % and 28.5 %, respectively, in the 0.210 g/kg and 0.630 g/kg L-malate-treated group compared with the control group. There were no differences in the concentrations of Glc, BUN and TP between the L-malate-treated groups and the control groups. However, the levels of CK were significantly decreased in the L-malate-treated groups. The results predict a potential benefit of L-malate for improving physical stamina and minimizing muscle damage during swimming exercise. The activities of cytosolic and mitochondrial malate dehydrogenase were significantly elevated in the L-malate-treated group compared with the control group. These enzymatic activities may be useful indicators for evaluating changes affecting the malate-aspartate shuttle and energy metabolism in the liver of mice.

  19. Inhibition of Growth by Combined Treatment with Inhibitors of Lactate Dehydrogenase and either Phenformin or Inhibitors of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 3.

    PubMed

    Lea, Michael A; Guzman, Yolanda; Desbordes, Charles

    2016-04-01

    Enhanced glycolysis in cancer cells presents a target for chemotherapy. Previous studies have indicated that proliferation of cancer cells can be inhibited by treatment with phenformin and with an inhibitor of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB) namely 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). In the present work, the action of two inhibitors that are effective at lower concentrations than 3PO, namely 1-(3-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PQP) and 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) were investigated. The inhibitors of lactate dehydrogenase (LDHA) studied in order of half-maximal inhibitory concentrations were methyl 1-hydroxy-6-phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (NHI-2) < isosafrole < oxamate. In colonic and bladder cancer cells, additive growth inhibitory effects were seen with the LDHA inhibitors, of which NHI-2 was effective at the lowest concentrations. Growth inhibition was generally greater with PFK15 than with PQP. The increased acidification of the culture medium and glucose uptake caused by phenformin was blocked by combined treatment with PFKFB3 or LDHA inhibitors. The results suggest that combined treatment with phenformin and inhibitors of glycolysis can cause additive inhibition of cell proliferation and may mitigate lactic acidosis caused by phenformin when used as a single agent. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. A systematic and mechanistic evaluation of aspartic acid as filler for directly compressed tablets containing trimethoprim and trimethoprim aspartate.

    PubMed

    ElShaer, Amr; Hanson, Peter; Mohammed, Afzal R

    2013-04-01

    The generally accepted paradigm of 'inert' and 'mono functional' excipient in dosage form has been recently challenged with the development of individual excipients capable of exhibiting multiple functions (e.g. binder-disintegrants, surfactant which affect P-gp function). The proposed study has been designed within the realm of multifunctionality and is the first and novel investigation towards evaluation of aspartic acid as a filler and disintegration enhancing agent for the delivery of biopharmaceutical class IV model drug trimethoprim. The study investigated powder characteristics using angle of repose, laser diffractometry and scanning electron microscopy (SEM). The prepared tablets were characterised using Heckel analysis, disintegration time and tensile strength measurements. Although Heckel analysis revealed that both TMP and TMP aspartate salt have high elasticity, the salt form produced a stronger compact which was attributed to the formation of agglomerates. Aspartic acid was found to have high plasticity, but its incorporation into the formulations was found to have a negative impact on the compaction properties of TMP and its salt. Surface morphology investigations showed that mechanical interlocking plays a vital role in binding TMP crystals together during compaction, while the small particle size of TMP aspartate agglomerates was found to have significant impact on the tensile strength of the tablets. The study concluded that aspartic acid can be employed as filler and disintegrant and that compactability within tablets was independent of the surface charge of the excipients. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate

    PubMed Central

    Gouzy, Alexandre; Larrouy-Maumus, Gérald; Wu, Ting-Di; Peixoto, Antonio; Levillain, Florence; Lugo-Villarino, Geanncarlo; Gerquin-Kern, Jean-Luc; de Carvalho, Luiz Pedro Sório; Poquet, Yannick; Neyrolles, Olivier

    2013-01-01

    Here we identify the amino acid transporter AnsP1 as the unique aspartate importer in the human pathogen Mycobacterium tuberculosis. Metabolomic analysis of a mutant inactivated in AnsP1 revealed the transporter is essential for M. tuberculosis to assimilate nitrogen from aspartate. Virulence of the AnsP1 mutant is impaired in vivo, revealing aspartate is a primary nitrogen source required for host colonization by the tuberculosis bacillus. PMID:24077180

  2. Identification of a dehydrogenase acting on D-2-hydroxyglutarate

    PubMed Central

    2004-01-01

    Extracts of frozen rat liver were found to catalyse the formation of 3H2O from DL-2-hydroxy[2-3H]glutarate. Three peaks of enzyme activities were observed on separation by chromatography on DEAE-Sepharose. The first and second peaks corresponded to an enzyme acting on L-2-hydroxyglutarate and the third peak corresponded to an enzyme acting on D-2-hydroxyglutarate, as indicated by competitive inhibition of the detritiation of the racemic radioactive compound by the unlabelled L- and D-isomers respectively. The enzyme acting on the D-form was further characterized. It was independent of NAD or NADP and it converted D-2-hydroxyglutarate into α-ketoglutarate, transferring electrons to artificial electron acceptors. It also oxidized D-lactate, D-malate and meso-tartrate and was stimulated by Zn2+, Co2+ and Mn2+, but not by Mg2+ or Ca2+. Subcellular fractionation indicated that it was present in the mitochondrial fraction. The enzyme was further purified by chromatography on Blue Trisacryl and phenyl-Sepharose, up to a stage where only a few bands were still visible by SDS/ PAGE. Among the four candidate polypeptides that were identified by MS, one corresponded to a predicted mitochondrial protein homologous with FAD-dependent D-lactate dehydrogenase. The corresponding human protein was expressed in HEK-293 cells and it was shown to catalyse the detritiation of DL-2-hydroxy[2-3H]glutarate with similar properties as the purified rat enzyme. PMID:15070399

  3. Identification of a dehydrogenase acting on D-2-hydroxyglutarate.

    PubMed

    Achouri, Younes; Noël, Gaëtane; Vertommen, Didier; Rider, Mark H; Veiga-Da-Cunha, Maria; Van Schaftingen, Emile

    2004-07-01

    Extracts of frozen rat liver were found to catalyse the formation of 3H2O from DL-2-hydroxy[2-3H]glutarate. Three peaks of enzyme activities were observed on separation by chromatography on DEAE-Sepharose. The first and second peaks corresponded to an enzyme acting on L-2-hydroxyglutarate and the third peak corresponded to an enzyme acting on D-2-hydroxyglutarate, as indicated by competitive inhibition of the detritiation of the racemic radioactive compound by the unlabelled L- and D-isomers respectively. The enzyme acting on the D-form was further characterized. It was independent of NAD or NADP and it converted D-2-hydroxyglutarate into a-ketoglutarate, transferring electrons to artificial electron acceptors. It also oxidized D-lactate, D-malate and meso-tartrate and was stimulated by Zn2+, Co2+ and Mn2+, but not by Mg2+ or Ca2+. Subcellular fractionation indicated that it was present in the mitochondrial fraction. The enzyme was further purified by chromatography on Blue Trisacryl and phenyl-Sepharose, up to a stage where only a few bands were still visible by SDS/PAGE. Among the four candidate polypeptides that were identified by MS, one corresponded to a predicted mitochondrial protein homologous with FAD-dependent D-lactate dehydrogenase. The corresponding human protein was expressed in HEK-293 cells and it was shown to catalyse the detritiation of DL-2-hydroxy[2-3H]glutarate with similar properties as the purified rat enzyme.

  4. Directed modification of L-LcLDH1, an L-lactate dehydrogenase from Lactobacillus casei, to improve its specific activity and catalytic efficiency towards phenylpyruvic acid.

    PubMed

    Li, Jian-Fang; Li, Xue-Qing; Liu, Yan; Yuan, Feng-Jiao; Zhang, Ting; Wu, Min-Chen; Zhang, Ji-Ru

    2018-05-22

    To improve the specific activity and catalytic efficiency of L-LcLDH1, an NADH-dependent allosteric L-lactate dehydrogenase from L. casei, towards phenylpyruvic acid (PPA), its directed modification was conducted based on the semi-rational design. The three variant genes, Lcldh1 Q88R , Lcldh1 I229A and Lcldh1 T235G , were constructed by whole-plasmid PCR as designed theoretically, and expressed in E. coli BL21(DE3), respectively. The purified mutant, L-LcLDH1 Q88R or L-LcLDH1 I229A , displayed the specific activity of 451.5 or 512.4 U/mg towards PPA, by which the asymmetric reduction of PPA afforded L-phenyllactic acid (PLA) with an enantiomeric excess (ee p ) more than 99%. Their catalytic efficiencies (k cat /K m ) without D-fructose-1,6-diphosphate (D-FDP) were 4.8- and 5.2-fold that of L-LcLDH1. Additionally, the k cat /K m values of L-LcLDH1 Q88R and L-LcLDH1 I229A with D-FDP were 168.4- and 8.5-fold higher than those of the same enzymes without D-FDP, respectively. The analysis of catalytic mechanisms by molecular docking (MD) simulation indicated that substituting I229 in L-LcLDH1 with Ala enlarges the space of substrate-binding pocket, and that the replacement of Q88 with Arg makes the inlet of pocket larger than that of L-LcLDH1. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Karnofsky Performance Status and Lactate Dehydrogenase Predict the Benefit of Palliative Whole-Brain Irradiation in Patients With Advanced Intra- and Extracranial Metastases From Malignant Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partl, Richard, E-mail: richard.partl@medunigraz.at; Richtig, Erika; Avian, Alexander

    2013-03-01

    Purpose: To determine prognostic factors that allow the selection of melanoma patients with advanced intra- and extracerebral metastatic disease for palliative whole-brain radiation therapy (WBRT) or best supportive care. Methods and Materials: This was a retrospective study of 87 patients who underwent palliative WBRT between 1988 and 2009 for progressive or multiple cerebral metastases at presentation. Uni- and multivariate analysis took into account the following patient- and tumor-associated factors: gender and age, Karnofsky performance status (KPS), neurologic symptoms, serum lactate dehydrogenase (LDH) level, number of intracranial metastases, previous resection or stereotactic radiosurgery of brain metastases, number of extracranial metastasis sites,more » and local recurrences as well as regional lymph node metastases at the time of WBRT. Results: In univariate analysis, KPS, LDH, number of intracranial metastases, and neurologic symptoms had a significant influence on overall survival. In multivariate survival analysis, KPS and LDH remained as significant prognostic factors, with hazard ratios of 3.3 (95% confidence interval [CI] 1.6-6.5) and 2.8 (95% CI 1.6-4.9), respectively. Patients with KPS ≥70 and LDH ≤240 U/L had a median survival of 191 days; patients with KPS ≥70 and LDH >240 U/L, 96 days; patients with KPS <70 and LDH ≤240 U/L, 47 days; and patients with KPS <70 and LDH >240 U/L, only 34 days. Conclusions: Karnofsky performance status and serum LDH values indicate whether patients with advanced intra- and extracranial tumor manifestations are candidates for palliative WBRT or best supportive care.« less

  6. Molecular-Scale Study of Aspartate Adsorption on Goethite and Competition with Phosphate.

    PubMed

    Yang, Yanli; Wang, Shengrui; Xu, Yisheng; Zheng, Binghui; Liu, Jingyang

    2016-03-15

    Knowledge of the interfacial interactions between aspartate and minerals, especially its competition with phosphate, is critical to understanding the fate and transport of amino acids in the environment. Adsorption reactions play important roles in the mobility, bioavailability, and degradation of aspartate and phosphate. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements and density functional theory (DFT) calculations were used to investigate the interfacial structures and their relative contributions in single-adsorbate and competition systems. Our results suggest three dominant mechanisms for aspartate: bidentate inner-sphere coordination involving both α- and γ-COO(-), outer-sphere complexation via electrostatic attraction and H-bonding between aspartate NH2 and goethite surface hydroxyls. The interfacial aspartate is mainly governed by pH and is less sensitive to changes of ionic strength and aspartate concentration. The phosphate competition significantly reduces the adsorption capacity of aspartate on goethite. Whereas phosphate adsorption is less affected by the presence of aspartate, including the relative contributions of diprotonated monodentate, monoprotonated bidentate, and nonprotonated bidentate structures. The adsorption process facilitates the removal of bioavailable aspartate and phosphate from the soil solution as well as from the sediment pore water and the overlying water.

  7. 1H-NMR and Hyperpolarized 13C-NMR Assays of Pyruvate-Lactate Exhange: a comparative study

    PubMed Central

    Orton, Matthew R.; Tardif, Nicolas; Parkes, Harold G.; Robinson, Simon P.; Leach, Martin O.; Chung, Yuen-Li; Eykyn, Thomas R.

    2015-01-01

    Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. Measurement of exchange kinetics using hyperpolarized 13C NMR has provided a biomarker of response to novel therapeutics. In this study we investigated an alternative in vitro 1H assay, using [3-13C]pyruvate, and compared the measured kinetics with a hyperpolarized 13C-NMR assay, using [1-13C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL = 0.506 ± 0.054 and kPL = 0.441 ± 0.090 nmol/s/106 cells, (mean ± standard deviation, n = 3); 1H, 13C assays respectively). The apparent backward reaction rate constant (kLP) could only be measured with good reproducibility using the 1H-NMR assay (kLP = 0.376 ± 0.091 nmol/s/106 cells, (mean ± standard deviation, n = 3)). The 1H-NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity. PMID:23712817

  8. Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations

    PubMed Central

    Dienel, Gerald A

    2014-01-01

    Lactate is proposed to be generated by astrocytes during glutamatergic neurotransmission and shuttled to neurons as ‘preferred' oxidative fuel. However, a large body of evidence demonstrates that metabolic changes during activation of living brain disprove essential components of the astrocyte–neuron lactate shuttle model. For example, some glutamate is oxidized to generate ATP after its uptake into astrocytes and neuronal glucose phosphorylation rises during activation and provides pyruvate for oxidation. Extension of the notion that lactate is a preferential fuel into the traumatic brain injury (TBI) field has important clinical implications, and the concept must, therefore, be carefully evaluated before implementation into patient care. Microdialysis studies in TBI patients demonstrate that lactate and pyruvate levels and lactate/pyruvate ratios, along with other data, have important diagnostic value to distinguish between ischemia and mitochondrial dysfunction. Results show that lactate release from human brain to blood predominates over its uptake after TBI, and strong evidence for lactate metabolism is lacking; mitochondrial dysfunction may inhibit lactate oxidation. Claims that exogenous lactate infusion is energetically beneficial for TBI patients are not based on metabolic assays and data are incorrectly interpreted. PMID:25204393

  9. Effect of Tridax procumbens (Linn.) on bile duct ligation-induced liver fibrosis in rats.

    PubMed

    Joshi, P P; Patil, S D; Silawat, N; Deshmukh, P T

    2011-12-01

    The present study was undertaken to clarify whether methanolic extract of Tridax procumbens prevents liver fibrosis in rat. The hepatic fibrosis was induced by 28 days of bile duct ligation in rats. The 4-week treatment with Tridex procumbens reduced the serum aspartate aminotransferase (U L⁻¹), glutamate pyruvate transaminase (U L⁻¹), alkaline phosphatase (IU L⁻¹), lactate dehydrogenase (IU L⁻¹), total bilirubin (mg dL⁻¹), direct bilirubin (mg dL⁻¹) and hydroxyproline (mg gm⁻¹) content in liver and improved the histological appearance of liver section. The results of this study led us to conclude that T. procumbens can reduce the degree of hepatocellular damage and may become antifibrotic agent for liver fibrosis.

  10. Blood serum chemistry of wild Alaskan Black-capped Chickadees (Poecile atricapillus) with avian keratin disorder

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.

    2016-01-01

    We measured serum chemistries in wild Black-capped Chickadees (Poecile atricapillus) from Alaska to test for potential differences associated with beak deformities characteristic of avian keratin disorder. Lower uric acid in affected birds was the only difference detected between groups, although sample sizes were small. This difference could be associated with fasting or malnutrition in birds with beak deformities, but it is challenging to interpret its biologic significance without reference values. Black-capped Chickadees had high levels of aspartate aminotransferase, lactate dehydrogenase, and creatine kinase relative to reference values for companion birds. However, all serum chemistry parameters from our study were within the range of values reported from other apparently healthy wild-caught birds.

  11. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps ...

  12. Fabrication of Flexible Arrayed Lactate Biosensor Based on Immobilizing LDH-NAD+ on NiO Film Modified by GO and MBs

    PubMed Central

    Yan, Siao-Jie; Liao, Yi-Hung; Lai, Chih-Hsien; Wu, You-Xiang; Wu, Cian-Yi; Chen, Hsiang-Yi; Huang, Hong-Yu; Wu, Tong-Yu

    2017-01-01

    We proposed the flexible arrayed lactate biosensor based on immobilizing l-lactate dehydrogenase (LDH) and nicotinamide adenine dinucleotide (NAD+) on nickel oxide (NiO) film, and which the average sensitivity could be enhanced by using graphene oxide (GO) and magnetic beads (MBs). By using GO and MBs, it exhibits excellent sensitivity (45.397 mV/mM) with a linearity of 0.992 in a range of 0.2 mM to 3 mM. According to the results of electrochemical impedance spectroscopy (EIS), the electron transfer resistance of LDH-NAD+-MBs/GPTS/GO/NiO film was smaller than those of LDH-NAD+/GPTS/GO/NiO film and LDH-NAD+/GPTS/NiO film, and it presented the outstanding electron transfer ability. After that, the limit of detection, anti-interference effect and bending test were also investigated. PMID:28704960

  13. Effect of HX108-CS supplementation on exercise capacity and lactate accumulation after high-intensity exercise.

    PubMed

    Oh, Seung-Lyul; Chang, Hyukki; Kim, Hee-Jae; Kim, Yong-An; Kim, Dong-Sik; Ho, Seong-Hyun; Kim, Seon-Hee; Song, Wook

    2013-04-15

    In the present study, we determined the effects of HX108-CS (mixed extract of Schisandra chinensis and Chaenomeles sinensis) supplementation on lactate accumulation and endurance capacity. Furthermore, we examined CK (creatine kinase), LDH (lactate dehydrogenase) activity to determine whether the HX108-CS affected markers of skeletal muscle injury in vivo and in vitro. Exercise capacity was measured by an exhaustive swimming test using ICR mice divided into four groups; one group received distilled water (DW) (Control group, n = 10), and the other groups received three different dosages of HX108-CS (10, 50 and 100 mg/kg, n = 10 per group) solution in water orally. Then, for the time-dependent measurements of blood lactate, CK, and LDH, Sprague-Dawley rats were divided into two groups; one received DW (Control group, n = 10), and the other group received HX108-CS (100 mg/kg, n = 10) solution in the same way as mice. Before the exercise test, the animals were given either DW or HX108-CS for 2 weeks. High-intensity treadmill exercise was performed for 30 minutes. Blood samples were collected and analyzed during and after exercise. For the in vitro experiment, C2C12 cells were treated with HX108-CS to examine its effect on lactate production, CK, and LDH activity. Blood lactate concentration was significantly lowered immediately after treadmill exercise in HX108-CS group; however, there were no significant differences in activities of CK and LDH between HX108-CS and control during treadmill exercise and recovery phase. Furthermore, treatment with 100 mg/kg of HX108-CS led to a significant increase in the time to exhaustion in swimming test, and concurrently blood lactate concentration was significantly decreased in 50 and 100 mg/kg treated group. Moreover, our results of in vitro experiment showed that HX108-CS suppressed lactate production, CK, and LDH activity in a dose-dependent manner. These results suggest that supplementation with HX

  14. Effect of HX108-CS supplementation on exercise capacity and lactate accumulation after high-intensity exercise

    PubMed Central

    2013-01-01

    Background In the present study, we determined the effects of HX108-CS (mixed extract of Schisandra chinensis and Chaenomeles sinensis) supplementation on lactate accumulation and endurance capacity. Furthermore, we examined CK (creatine kinase), LDH (lactate dehydrogenase) activity to determine whether the HX108-CS affected markers of skeletal muscle injury in vivo and in vitro. Methods Exercise capacity was measured by an exhaustive swimming test using ICR mice divided into four groups; one group received distilled water (DW) (Control group, n = 10), and the other groups received three different dosages of HX108-CS (10, 50 and 100 mg/kg, n = 10 per group) solution in water orally. Then, for the time-dependent measurements of blood lactate, CK, and LDH, Sprague–Dawley rats were divided into two groups; one received DW (Control group, n = 10), and the other group received HX108-CS (100 mg/kg, n = 10) solution in the same way as mice. Before the exercise test, the animals were given either DW or HX108-CS for 2 weeks. High-intensity treadmill exercise was performed for 30 minutes. Blood samples were collected and analyzed during and after exercise. For the in vitro experiment, C2C12 cells were treated with HX108-CS to examine its effect on lactate production, CK, and LDH activity. Results Blood lactate concentration was significantly lowered immediately after treadmill exercise in HX108-CS group; however, there were no significant differences in activities of CK and LDH between HX108-CS and control during treadmill exercise and recovery phase. Furthermore, treatment with 100 mg/kg of HX108-CS led to a significant increase in the time to exhaustion in swimming test, and concurrently blood lactate concentration was significantly decreased in 50 and 100 mg/kg treated group. Moreover, our results of in vitro experiment showed that HX108-CS suppressed lactate production, CK, and LDH activity in a dose-dependent manner. Conclusions These

  15. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons.

    PubMed

    Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula

    2006-02-15

    Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.

  16. Propagation of biochirality: crossovers and nonclassical crystallization kinetics of aspartic acid in water.

    PubMed

    Lee, Tu; Lin, Yu Kun; Tsai, Ya Chung; Lee, Hung Lin

    2013-11-01

    All experimental procedures discussed could be treated as a screening tool for probing the existence of molecular association among the chiral molecules and the solvent system. The molecular association phases of a racemic conglomerate solution (CS) and a racemic compound solution (RCS), and the templating effect of aspartic acid solid surface were observed to minimize the chance of redissolving racemic conglomerate and racemic compound aspartic acid in water and reforming an RCS in crossovers experiments. Only 1 %wt% of l-aspartic acid was adequate enough to induce a transformation from a racemic compound aspartic acid to a racemic conglomerate aspartic acid. This would make the propagation of biochirality more feasible and sound. However, tetrapeptide, (l-aspartic acid)4 , failed to induce enantioseparation as templates purely by crystallization. Nonclassical crystallization theory was needed to take into account the existence of a CS. Fundamental parameters of the crystallization kinetics such as the induction time, interfacial energy, Gibbs energetic barrier, nucleation rate, and critical size of stable nuclei of: (i) racemic compound aspartic acid, (ii) racemic compound aspartic acid seeded with 1 %wt% l-aspartic acid, (iii) racemic conglomerate aspartic acid, and (iv) l-aspartic acid were evaluated and compared with different initial supersaturation ratios. Morphological studies of crystals grown from the crystallization kinetics were also carried out. © 2013 Wiley Periodicals, Inc.

  17. Red cell aspartate aminotransferase saturation with oral pyridoxine intake.

    PubMed

    Oshiro, Marilena; Nonoyama, Kimiyo; Oliveira, Raimundo Antônio Gomes; Barretto, Orlando Cesar de Oliveira

    2005-03-02

    The coenzyme of aspartate aminotransferase is pyridoxal phosphate, generated from fresh vegetables containing pyridoxine. Vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronies syndrome respond to high pyridoxine doses. The objective was to investigate the oral pyridoxine oral dose that would lead to maximized pyridoxal phosphate saturation of red cell aspartate aminotransferase. Controlled trial, in Hematology Division of Instituto Adolfo Lutz. Red cell aspartate aminotransferase activity was assayed (before and after) in normal volunteers who were given oral pyridoxine for 15-18 days (30 mg, 100 mg and 200 mg daily). In vitro study of blood from seven normal volunteers was also performed, with before and after assaying of aspartate aminotransferase activity. The in vivo study showed increasing aspartate aminotransferase saturation with increasing pyridoxine doses. 83% saturation was reached with 30 mg daily, 88% with 100 mg, and 93% with 200 mg after 20 days of oral supplementation. The in vitro study did not reach 100% saturation. Neither in vivo nor in vitro study demonstrated thorough aspartate aminotransferase saturation with its coenzyme pyridoxal phosphate in red cells, from increasing pyridoxine supplementation. However, the 200-mg dose could be employed safely in vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronies syndrome treatment. Although maximum saturation in circulating red cells is not achieved, erythroblasts and other nucleated and cytoplasmic organelles containing cells certainly will reach thorough saturation, which possibly explains the results obtained in these diseases.

  18. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Se Jeong; Gu, Dong Ryun; Center for Metabolic Function Regulation

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reducedmore » following the activation of adenosine 5′ monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression.« less

  19. Identification of potential markers in blood for the development of subclinical and clinical mastitis in dairy cattle at parturition and during early lactation.

    PubMed

    Moyes, K M; Larsen, T; Friggens, N C; Drackley, J K; Ingvartsen, K L

    2009-11-01

    Our objective was to identify specific blood markers as risk factors for the development of mastitis during early lactation. We used a subset of cows from a larger experiment that consisted of a total of 634 lactations from 317 cows. Cows were of 3 breeds and ranged from parity 1 to 4. Blood samples were collected weekly from 56 d before expected calving date through 90 d in milk (DIM). Blood was analyzed for several hormones, metabolites, and enzymes, and energy intake and energy balance were calculated. Veterinary treatment records and daily composite milk somatic cell counts were analyzed and used to determine incidence and severity of mastitis in early lactation. Cows were separated into 2 groups: 1) WK0, consisting of cows that developed clinical mastitis (CM), cows that developed subclinical mastitis (SM), or cows that were healthy (H) during the first 7 DIM; and 2) EL, consisting of CM, SM, or H cows during wk 2 through 13 of lactation. Data were adjusted for numerous fixed effects (e.g., parity, breed, season, and DIM) before statistical analysis. The time of mastitis (TOM) was recorded as the DIM in which the first rise in somatic cell count was observed and was recorded as TOM = 0. The time before and after TOM was distinguished as +/- n wk relative to TOM = 0. Healthy cows were paired with either a SM or CM cow and the TOM for each H cow was equal to the TOM for its paired SM or CM cow. Data from wk -1 and -2 relative to TOM were analyzed for group WK0 and EL, respectively. For all parameters, SM cows did not differ from H cows from either group. The CM cows had higher nonesterified fatty acid levels and a tendency toward higher beta-hydroxybutyrate levels than H cows before mastitis for both groups. For group WK0, glucose was higher -1 wk relative to calving in CM than H cows. For group EL, aspartate aminotransferase was higher -2 wk relative to mastitis in CM than H cows during 8 to 90 DIM. All other variables were similar among CM, SM, and H cows for

  20. L-ornithine-L-aspartate infusion efficacy in hepatic encephalopathy.

    PubMed

    Ahmad, Irfan; Khan, Anwaar A; Alam, Altaf; Dilshad, Akif; Butt, Arshad Kamal; Shafqat, Farzana; Malik, Kashif; Sarwar, Shahid

    2008-11-01

    To determine the efficacy of L-ornithine-L-aspartate in treatment of hepatic encephalopathy. Randomized, placebo-controlled trial. Department of Gastroenterology and Hepatology, Sheikh Zayed Hospital, Lahore, from February to August 2005. Cirrhotic patients with hyperammonemia and overt hepatic encephalopathy were enrolled. Eighty patients were randomized to two treatment groups, L-ornithine-L-aspartate (20 g/d) or placebo, both dissolved in 250 mL of 5% dextrose water and infused intravenously for four hours a day for five consecutive days with 0.5 g/kg dietary protein intake at the end of daily treatment period. Outcome variables were postprandial blood ammonia and mental state grade. Adverse reactions and mortality were also determined. Both treatment groups were comparable regarding age, gender, etiology of cirrhosis, Child-Pugh class, mental state grade and blood ammonia at baseline. Although, improvement occurred in both groups, there was a greater improvement in L-ornithine-L-aspartate group with regard to both variables. Four patients in the placebo group and 2 in L-ornithine-L-aspartate group died. L-ornithine-L-aspartate infusions were found to be effective in cirrhotic patients with hepatic encephalopathy.

  1. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  2. Development of an enzymatic assay to measure lactate in perchloric acid-precipitated cerebrospinal fluid.

    PubMed

    Lu, Jun; Genzen, Jonathan R; Grenache, David G

    2018-04-27

    Individuals with inherited deficiencies of the pyruvate dehydrogenase complex or the respiratory chain complex can have increased concentrations of cerebrospinal fluid (CSF) lactate. Such measurements are clinical useful when measured in conjunction with pyruvate in order to calculate the lactate:pyruvate (L:P) ratio, a useful surrogate of cytosolic redox status. CSF pyruvate is measured in a protein-free supernatant prepared by the addition of CSF to perchloric acid while lactate is measured in untreated CSF. Utilizing the same sample for both lactate and pyruvate measurements is desirable. To develop a method to measure lactate in perchloric-acid precipitated CSF and validate the L:P ratio as calculated from the analysis of both analytes in the same sample. Samples were prepared by the addition of 1 mL CSF to 2 mL 8% (w/v) cold perchloric acid, incubated on ice for 10 min, then centrifuged to obtain a protein-free supernatant. Lactate was measured by its oxidation to pyruvate and hydrogen peroxide using lactate oxidase and the absorbance of the resulting chromogen determined at 540 nm on a Roche cobas c501 chemistry analyzer. Method accuracy, linearity, imprecision and sensitivity were determined and a reference interval was verified. To assess accuracy, this method was compared to lactate determined in unaltered CSF at another laboratory using 41 specimens with lactate concentrations from 0.6-11.9 mmol/L. Linear regression produced a slope of 1.09 and y-intercept of 0.26 (R 2  = 1.00). Recovery was performed by ad-mixes of a high lactate standard and a CSF pool in different ratios to create a set of 19 samples prior to preparing protein-free supernatants. Recovery was 94.6-100% (mean ± SD was 97.4 ± 1.4%) at lactate concentrations of 2.68 to 12.63 mmol/L. Linearity was determined by combining two supernatants with low and high lactate concentrations in different ratios to create a set of six samples (0.15-12.70 mmol/L) that were

  3. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  4. Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes.

    PubMed

    Zhao, Hongxin; Lu, Yuan; Wang, Liyan; Zhang, Chong; Yang, Cheng; Xing, Xinhui

    2015-10-01

    Hydrogen production by Enterobacter aerogenes from glucose was enhanced by deleting the targeted ldhA and adh genes responsible for two NADH-consuming pathways which consume most NADH generated from glycolysis. Compared with the wild-type, the hydrogen yield of IAM1183-ΔldhA increased 1.5 fold. Metabolic flux analysis showed both IAM1183-ΔldhA and IAM1183-Δadh exhibited significant changes in flux, including enhanced flux towards the hydrogen generation. The lactate production of IAM1183-ΔldhA significantly decreased by 91.42%, while the alcohol yield of IAM1183-Δadh decreased to 30%. The mutant IAM1183-ΔldhA with better hydrogen-producing performance was selected for further investigation in a 5-L fermentor. The hydrogen production of IAM1183-ΔldhA was 2.3 times higher than the wild-type. Further results from the fermentation process showed that the pH decreased to 5.39 levels, then gradually increased to 5.96, indicating that some acidic metabolites might be degraded or uptaken by cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    PubMed

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  6. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci

    PubMed Central

    Pavlova, Sylvia I.; Jin, Ling; Gasparovich, Stephen R.

    2013-01-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci. PMID:23637459

  7. Growth and characterization of KDP crystals doped with L-aspartic acid.

    PubMed

    Krishnamurthy, R; Rajasekaran, R; Samuel, Bincy Susan

    2013-03-01

    Potassium Dihydrogen Phosphate (KDP) doped with L-aspartic acid has been grown by solvent slow evaporation technique from a mixture of aqueous solution of KDP and 0.7% of L-aspartic acid at room temperature. The grown crystals were characterized by powder X-ray diffraction, UV-visible, FTIR analysis. The doping of aspartic acid was confirmed by FTIR spectrum. The Nonlinear optical property (SHG) of L-aspartic acid doped KDP has been confirmed. Microhardness studies were carried out on the grown crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Fabrication of Flexible Arrayed Lactate Biosensor Based on Immobilizing LDH-NAD⁺ on NiO Film Modified by GO and MBs.

    PubMed

    Chou, Jung-Chuan; Yan, Siao-Jie; Liao, Yi-Hung; Lai, Chih-Hsien; Wu, You-Xiang; Wu, Cian-Yi; Chen, Hsiang-Yi; Huang, Hong-Yu; Wu, Tong-Yu

    2017-07-12

    We proposed the flexible arrayed lactate biosensor based on immobilizing l-lactate dehydrogenase (LDH) and nicotinamide adenine dinucleotide ( NAD + ) on nickel oxide (NiO) film, and which the average sensitivity could be enhanced by using graphene oxide (GO) and magnetic beads (MBs). By using GO and MBs, it exhibits excellent sensitivity (45.397 mV/mM) with a linearity of 0.992 in a range of 0.2 mM to 3 mM. According to the results of electrochemical impedance spectroscopy (EIS), the electron transfer resistance of LDH- NAD + -MBs/GPTS/GO/NiO film was smaller than those of LDH-NAD⁺/GPTS/GO/NiO film and LDH- NAD + /GPTS/NiO film, and it presented the outstanding electron transfer ability. After that, the limit of detection, anti-interference effect and bending test were also investigated.

  9. Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome

    PubMed Central

    Mella, Olav; Bruland, Ove; Risa, Kristin; Dyrstad, Sissel E.; Alme, Kine; Rekeland, Ingrid G.; Sapkota, Dipak; Røsland, Gro V.; Fosså, Alexander; Ktoridou-Valen, Irini; Lunde, Sigrid; Sørland, Kari; Lien, Katarina; Herder, Ingrid; Thürmer, Hanne; Gotaas, Merete E.; Baranowska, Katarzyna A.; Bohnen, Louis M.L.J.; Schäfer, Christoph; McCann, Adrian; Sommerfelt, Kristian; Helgeland, Lars; Ueland, Per M.; Dahl, Olav

    2016-01-01

    Myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is a debilitating disease of unknown etiology, with hallmark symptoms including postexertional malaise and poor recovery. Metabolic dysfunction is a plausible contributing factor. We hypothesized that changes in serum amino acids may disclose specific defects in energy metabolism in ME/CFS. Analysis in 200 ME/CFS patients and 102 healthy individuals showed a specific reduction of amino acids that fuel oxidative metabolism via the TCA cycle, mainly in female ME/CFS patients. Serum 3-methylhistidine, a marker of endogenous protein catabolism, was significantly increased in male patients. The amino acid pattern suggested functional impairment of pyruvate dehydrogenase (PDH), supported by increased mRNA expression of the inhibitory PDH kinases 1, 2, and 4; sirtuin 4; and PPARδ in peripheral blood mononuclear cells from both sexes. Myoblasts grown in presence of serum from patients with severe ME/CFS showed metabolic adaptations, including increased mitochondrial respiration and excessive lactate secretion. The amino acid changes could not be explained by symptom severity, disease duration, age, BMI, or physical activity level among patients. These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion. PMID:28018972

  10. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    PubMed Central

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  11. Chlapsin, a chloroplastidial aspartic proteinase from the green algae Chlamydomonas reinhardtii.

    PubMed

    Almeida, Carla Malaquias; Pereira, Cláudia; da Costa, Diana Soares; Pereira, Susana; Pissarra, José; Simões, Isaura; Faro, Carlos

    2012-07-01

    Aspartic proteinases have been extensively characterized in land plants but up to now no evidences for their presence in green algae group have yet been reported in literature. Here we report on the identification of the first (and only) typical aspartic proteinase from Chlamydomonas reinhardtii. This enzyme, named chlapsin, was shown to maintain the primary structure organization of typical plant aspartic proteinases but comprising distinct features, such as similar catalytic motifs DTG/DTG resembling those from animal and microbial counterparts, and an unprecedentedly longer plant specific insert domain with an extra segment of 80 amino acids, rich in alanine residues. Our results also demonstrated that chlapsin accumulates in Chlamydomonas chloroplast bringing this new enzyme to a level of uniqueness among typical plant aspartic proteinases. Chlapsin was successfully expressed in Escherichia coli and it displayed the characteristic enzymatic properties of typical aspartic proteinases, like optimum activity at acidic pH and complete inhibition by pepstatin A. Another difference to plant aspartic proteinases emerged as chlapsin was produced in an active form without its putative prosegment domain. Moreover, recombinant chlapsin showed a restricted enzymatic specificity and a proteolytic activity influenced by the presence of redox agents and nucleotides, further differentiating it from typical plant aspartic proteinases and anticipating a more specialized/regulated function for this Chlamydomonas enzyme. Taken together, our results revealed a pattern of complexity for typical plant aspartic proteinases in what concerns sequence features, localization and biochemical properties, raising new questions on the evolution and function of this vast group of plant enzymes.

  12. Free-Energy Landscape and Proton Transfer Pathways in Oxidative Deamination by Methylamine Dehydrogenase.

    PubMed

    Zelleke, Theodros; Marx, Dominik

    2017-01-18

    The rate-determining step in the reductive half-reaction of the bacterial enzyme methylamine dehydrogenase, which is proton abstraction from the native substrate methylamine, is investigated using accelerated QM/MM molecular dynamics simulations at room temperature. Generation of the multidimensional thermal free-energy landscape without restriction of the degrees of freedom beyond a multidimensional reaction subspace maps two rather similar pathways for the underlying proton transfer to one of two aspartate carboxyl oxygen atoms, termed OD1 and OD2, which hydrogen bond with Thr122 and Trp108, respectively. Despite significant large-amplitude motion perpendicular to the one-dimensional proton transfer coordinate, due to fluctuations of the donor-acceptor distance of about 3 Å, it is found that the one-dimensional proton transfer free-energy profiles are essentially identical to the minimum free-energy pathways on the multidimensional free-energy landscapes for both proton transfer channels. Proton transfer to one of the acceptor oxygen atoms-the OD2 site-is slightly favored in methylamine dehydrogenase by approximately 2 kcal mol -1 , both kinetically and thermodynamically. Mechanistic analyses reveal that the hydrogen bond between Thr122β and OD1 is always present in the transition state independently of the proton transfer channel. Population analysis confirms that the electronic charge gained upon oxidation of the substrate is delocalized within the ring systems of the tryptophan tryptophylquinone cofactor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus.

    PubMed

    Fields, Peter A; Houseman, Daniel E

    2004-12-01

    Enzyme function is strongly affected by temperature, and orthologs from species adapted to different thermal environments often show temperature compensation in kinetic properties. Antarctic notothenioid fishes live in a habitat of constant, extreme cold (-1.86 +/- 2 degrees C), and orthologs of the enzyme A4-lactate dehydrogenase (A4-LDH) in these species have adapted to this environment through higher catalytic rates, lower Arrhenius activation energies (Ea), and increases in the apparent Michaelis constant for the substrate pyruvate (Km(PYR)). Here, site-directed mutagenesis was used to determine which amino acid substitutions found in A4-LDH of the notothenioid Chaenocephalus aceratus, with respect to orthologs from warm-adapted teleosts, are responsible for these adaptive changes in enzyme function. Km(PYR) was measured in eight single and two double mutants, and Ea was tested in five single and two double mutants in the temperature range 0 degrees C-20 degrees C. Of the four mutants that had an effect on these parameters, two increased Ea but did not affect Km(PYR) (Gly224Ser, Ala310Pro), and two increased both Ea and Km(PYR) (Glu233Met, Gln317Val). The double mutants Glu233Met/Ala310Pro and Glu233Met/Gln317Val increased Km(PYR) and Ea to levels not significantly different from the A4-LDH of a warm temperate fish (Gillichthys mirabilis, habitat temperature 10 degrees C-35 degrees C). The four single mutants are associated with two alpha-helices that move during the catalytic cycle; those that affect Ea but not Km(PYR) are further from the active site than those that affect both parameters. These results provide evidence that (1) cold adaptation in A4-LDH involves changes in mobility of catalytically important molecular structures; (2) these changes may alter activation energy alone or activation energy and substrate affinity together; and (3) the extent to which these parameters are affected may depend on the location of the substitutions within the mobile

  14. [The cancer tumor: a metabolic parasite?].

    PubMed

    Icard, Philippe; Lincet, Hubert

    2013-05-01

    Cancer cells activate glycolysis, glutaminolysis and β-oxidation to promote their biosynthesis. The low activity of pyruvate kinase, reexpressed in its embryonic isoform PKM2, generates a bottleneck at the end of glycolysis, which reorients glucose catabolism towards formation of molecules implied in numerous synthesis: ribose for nucleic acids, glycerol for lipid synthesis, etc. However, a part of glucose is transformed in pyruvate, which also comes from aminoacids catabolism. Due to the inhibition of pyruvate dehydrogenase, pyruvate is preferentially transformed into lactate, either in the presence of oxygen (Warburg effect). Lactate dehydrogenase reaction furnishes lactic acid, which acidifies the tumoral microenvironment, a process which favors the cellular growth and regenerates NAD(+), a crucial cofactor for the functioning of various metabolic pathways (glycolysis, DNA synthesis and repair…). Cancer cells consume a lot of glutamine, which replenish Krebs cycle (coupled with ATP production), and/or furnishes aspartate for nucleotides synthesis. This particular metabolism is sustained by activation of oncogenes (Myc, AKT, etc.) and suppressors inactivation (P53, PTEN…). Like a parasite, cells draw on reserves of the host to supply their own biosynthesis, while they secrete waste products (NO, polyamines, ammonia, lactate…) that promote cellular growth. A "symbiotic" cooperation could be established between tumor cells themselves, and/or with environmental cells, to maximize ATP production in relation with resources and oxygen concentration.

  15. Clinical value of jointly detection serum lactate dehydrogenase/pleural fluid adenosine deaminase and pleural fluid carcinoembryonic antigen in the identification of malignant pleural effusion.

    PubMed

    Zhang, Fan; Hu, Lijuan; Wang, Junjun; Chen, Jian; Chen, Jie; Wang, Yumin

    2017-09-01

    Limited data are available for the diagnostic value, and for the diagnostic sensitivity and specificity of joint detection of serum lactate dehydrogenase (sLDH)/pleural fluid adenosine deaminase (pADA) and pleural fluid carcinoembryonic antigen (pCEA) in malignant pleural effusion (MPE). We collected 987 pleural effusion specimens (of which 318 were malignant pleural effusion, 374 were tubercular pleural effusion, and 295 were parapneumonic effusion specimens) from the First Affiliated Hospital of Wenzhou Medical University from July 2012 to March 2016. The pADA, sLDH, pleural fluid LDH (pLDH), serum C-reactive protein (sCRP), pleural fluid protein, pCEA, white blood cell (WBC), and red blood cell (RBC) were analyzed, and the clinical data of each group were collected for statistical analysis. The level of sLDH/pADA, pCEA, and RBC from the MPE group was markedly higher than the tuberculosis pleural effusion (TB) group (Mann-Whitney U=28422.000, 9278.000, 30518, P=.000, .000, .000) and the parapneumonic pleural fluid group (Mann-Whitney U=5972.500, 7113.000, 36750.500, P=.000, .000, .000). The receiver operating characteristic curve ROC showed that the area under the ROC curve (AUC) (=0.924, 0.841) of pCEA and sLDH/pADA (cutoff=4.9, 10.6) were significantly higher than other markers for the diagnosis of MPE. Thus, joint detection of pCEA and sLDH/pADA suggested that the sensitivity, specificity, and AUC was 0.94, 81.70, and 94.32 at the cutoff 0.16 and diagnostic performance was higher than pCEA or sLDH/pADA. Joint detection of sLDH/pADA and pCEA can be used as a good indicator for the identification of benign and MPE with higher sensitivity and specificity than pCEA or sLDH/pADA. © 2016 Wiley Periodicals, Inc.

  16. From gene to structure: Lactobacillus bulgaricus D-lactate dehydrogenase from yogurt as an integrated curriculum model for undergraduate molecular biology and biochemistry laboratory courses.

    PubMed

    Lawton, Jeffrey A; Prescott, Noelle A; Lawton, Ping X

    2018-05-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the ldhA gene from the yogurt-fermenting bacterium Lactobacillus bulgaricus, which encodes the enzyme d-lactate dehydrogenase. The molecular biology module, which consists of nine experiments carried out over eleven sessions, begins with the isolation of genomic DNA from L. bulgaricus in yogurt and guides students through the process of cloning the ldhA gene into a prokaryotic expression vector, followed by mRNA isolation and characterization of recombinant gene expression levels using RT-PCR. The biochemistry module, which consists of nine experiments carried out over eight sessions, begins with overexpression of the cloned ldhA gene and guides students through the process of affinity purification, biochemical characterization of the purified LdhA protein, and analysis of enzyme kinetics using various substrates and an inhibitor, concluding with a guided inquiry investigation of structure-function relationships in the three-dimensional structure of LdhA using molecular visualization software. Students conclude by writing a paper describing their work on the project, formatted as a manuscript to be submitted for publication in a scientific journal. Overall, this curriculum, with its emphasis on experiential learning, provides hands-on training with a variety of common laboratory techniques in molecular biology and biochemistry and builds experience with the process of scientific reasoning, along with reinforcement of essential transferrable skills such as critical thinking, information literacy, and written communication, all within the framework of an extended project having the look and feel of a research experience. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):270-278, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  17. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    PubMed

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Conformational heterogeneity within the Michaelis complex of lactate dehydrogenase†

    PubMed Central

    Deng, Hua; Vu, Dung V.; Clinch, Keith; Desamero, Ruel; Dyer, R. Brian; Callender, Robert

    2011-01-01

    A series of isotope edited IR measurements, both static as well as temperature jump relaxation spectroscopy, are performed on lactate dehydrogenase (LDH) to determine the ensemble of structures available to its Michaelis complex. There clearly has been a substantial reduction in the number of states available to the pyruvate substrate (as modeled by the substrate mimic, oxamate) and NADH when bound to protein compared to dissolved in solution, as determined by the bandwidths and positions of the critical C2=O band of bound substrate mimic and the C4-H stretch of NADH reduced nicotinamide group. Moreover, it is found that a strong ionic bond (characterized by a signature IR band discovered in this study) is formed between the carboxyl group of bound pyruvate with (presumably) Arg171, forming a strong ‘anchor’ within the protein matrix. However, conformational heterogeneity within the Michaelis complex is found that has an impact on both catalytic efficiency and thermodynamics of the enzyme. PMID:21568287

  19. Guinea-pig liver testosterone 17 beta-dehydrogenase (NADP+) and aldehyde reductase exhibit benzene dihydrodiol dehydrogenase activity.

    PubMed Central

    Hara, A; Hayashibara, M; Nakayama, T; Hasebe, K; Usui, S; Sawada, H

    1985-01-01

    We have kinetically and immunologically demonstrated that testosterone 17 beta-dehydrogenase (NADP+) isoenzymes (EC 1.1.1.64) and aldehyde reductase (EC 1.1.1.2) from guinea-pig liver catalyse the oxidation of benzene dihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene) to catechol. One isoenzyme of testosterone 17 beta-dehydrogenase, which has specificity for 5 beta-androstanes, oxidized benzene dihydrodiol at a 3-fold higher rate than 5 beta-dihydrotestosterone, and showed a more than 4-fold higher affinity for benzene dihydrodiol and Vmax. value than did another isoenzyme, which exhibits specificity for 5 alpha-androstanes, and aldehyde reductase. Immunoprecipitation of guinea-pig liver cytosol with antisera against the testosterone 17 beta-dehydrogenase isoenzymes and aldehyde reductase indicated that most of the benzene dihydrodiol dehydrogenase activity in the tissue is due to testosterone 17 beta-dehydrogenase. PMID:2983661

  20. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants.

    PubMed

    de la Torre, Fernando; Cañas, Rafael A; Pascual, M Belén; Avila, Concepción; Cánovas, Francisco M

    2014-10-01

    In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Serum lactate dehydrogenase profile as a retrospective indicator of uterine preparedness for labor: a prospective, observational study

    PubMed Central

    2013-01-01

    Background Lactate dehydrogenase (LDH) isoenzymes are required for adenosine triphosphate production, with each of five different isoenzymes having varying proficiencies in anaerobic versus aerobic environments. With advancing pregnancy, the isoenzyme profile in uterine muscle shifts toward a more anaerobic profile, speculatively to facilitate uterine efficiency during periods of low oxygen that accompany labor contractions. Profile shifting may even occur throughout labor. Maternal serum LDH levels between 24–48 hours following delivery predominantly originate from uterine muscle, reflecting the enzymatic state of the myometrium during labor. Our purpose was to describe serum LDH isoenzymes 24–30 hours post-delivery to determine if cervical dilation rates following labor admission were associated with a particular LDH profile. We also compared differences in post-delivery LDH isoenzyme profiles between women admitted in pre-active versus established active labor. Methods Low-risk, nulliparous women with spontaneous labor onset were sampled (n = 91). Maternal serum LDH was measured at labor admission and 24–30 hours post-vaginal delivery. Rates of cervical dilation during the first four hours after admission were also measured. Spearman’s rho coefficients were used for association testing and t tests evaluated for group and paired-sample differences. Results More efficient dilation following admission was associated with decreased LDH1 (p = 0.029) and increased LDH3 and LDH4 (p = 0.017 and p = 0.017, respectively) in the post-delivery period. Women admitted in established active labor had higher relative serum levels of LDH3 (t = 2.373; p = 0.023) and LDH4 (t = 2.268; p = 0.029) and lower levels of LDH1 (t = 2.073; p = 0.045) and LDH5 (t = 2.041; p = 0.048) when compared to women admitted in pre-active labor. Despite having similar dilatations at admission (3.4 ± 0.5 and 3.7 ± 0.6 cm, respectively

  2. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria

    PubMed Central

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J

    2009-01-01

    Background In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). Methods In Dawei, southern Myanmar, three pLDH based RDTs (CareStart™ Malaria pLDH (Pan), CareStart™ Malaria pLDH (Pan, Pf) and OptiMAL-IT®)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Results Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria™ pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4] OptiMal-IT®: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7] CareStart Malaria™ pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI9585.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI9571.1-84.4], spec 97.8% [CI95 96.3-98.7] Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart™ Malaria tests and seven days for OptiMAL-IT®. Tests were heat stable up to 90 days except for OptiMAL-IT® (Pf specific pLDH stable to day 20 at 35°C). Conclusion None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low

  3. Evaluation of three parasite lactate dehydrogenase-based rapid diagnostic tests for the diagnosis of falciparum and vivax malaria.

    PubMed

    Ashley, Elizabeth A; Touabi, Malek; Ahrer, Margareta; Hutagalung, Robert; Htun, Khayae; Luchavez, Jennifer; Dureza, Christine; Proux, Stephane; Leimanis, Mara; Lwin, Myo Min; Koscalova, Alena; Comte, Eric; Hamade, Prudence; Page, Anne-Laure; Nosten, François; Guerin, Philippe J

    2009-10-27

    In areas where non-falciparum malaria is common rapid diagnostic tests (RDTs) capable of distinguishing malaria species reliably are needed. Such tests are often based on the detection of parasite lactate dehydrogenase (pLDH). In Dawei, southern Myanmar, three pLDH based RDTs (CareStart Malaria pLDH (Pan), CareStart Malaria pLDH (Pan, Pf) and OptiMAL-IT)were evaluated in patients presenting with clinically suspected malaria. Each RDT was read independently by two readers. A subset of patients with microscopically confirmed malaria had their RDTs repeated on days 2, 7 and then weekly until negative. At the end of the study, samples of study batches were sent for heat stability testing. Between August and November 2007, 1004 patients aged between 1 and 93 years were enrolled in the study. Slide microscopy (the reference standard) diagnosed 213 Plasmodium vivax (Pv) monoinfections, 98 Plasmodium falciparum (Pf) mono-infections and no malaria in 650 cases. The sensitivities (sens) and specificities (spec), of the RDTs for the detection of malaria were- CareStart Malaria pLDH (Pan) test: sens 89.1% [CI95 84.2-92.6], spec 97.6% [CI95 96.5-98.4]. OptiMal-IT: Pf+/- other species detection: sens 95.2% [CI95 87.5-98.2], spec 94.7% [CI95 93.3-95.8]; non-Pf detection alone: sens 89.6% [CI95 83.6-93.6], spec 96.5% [CI95 94.8-97.7]. CareStart Malaria pLDH (Pan, Pf): Pf+/- other species: sens 93.5% [CI95 85.4-97.3], spec 97.4% [95.9-98.3]; non-Pf: sens 78.5% [CI95 71.1-84.4], spec 97.8% [CI95 96.3-98.7]. Inter-observer agreement was excellent for all tests (kappa > 0.9). The median time for the RDTs to become negative was two days for the CareStart Malaria tests and seven days for OptiMAL-IT. Tests were heat stable up to 90 days except for OptiMAL-IT (Pf specific pLDH stable to day 20 at 35 degrees C). None of the pLDH-based RDTs evaluated was able to detect non-falciparum malaria with high sensitivity, particularly at low parasitaemias. OptiMAL-IT performed best overall and

  4. Dinosaur lactation?

    PubMed

    Else, Paul L

    2013-02-01

    Lactation is a process associated with mammals, yet a number of birds feed their newly hatched young on secretions analogous to the milk of mammals. These secretions are produced from various sections (crop organ, oesophageal lining and proventriculus) of the upper digestive tract and possess similar levels of fat and protein, as well as added carotenoids, antibodies and, in the case of pigeons and doves, epidermal growth factor. Parental care in avian species has been proposed to originate from dinosaurs. This study examines the possibility that some dinosaurs used secretory feeding to increase the rate of growth of their young, estimated to be similar to that of present day birds and mammals. Dinosaur 'lactation' could also have facilitated immune responses as well as extending parental protection as a result of feeding newly hatched young in nest environments. While the arguments for dinosaur lactation are somewhat generic, a case study for lactation in herbivorous site-nesting dinosaurs is presented. It is proposes that secretory feeding could have been used to bridge the gap between hatching and establishment of the normal diet in some dinosaurs.

  5. Efficacy and safety of fast-acting insulin aspart in comparison with insulin aspart in type 1 diabetes (onset 1): A 52-week, randomized, treat-to-target, phase III trial.

    PubMed

    Mathieu, Chantal; Bode, Bruce W; Franek, Edward; Philis-Tsimikas, Athena; Rose, Ludger; Graungaard, Tina; Birk Østerskov, Anne; Russell-Jones, David

    2018-05-01

    To compare the safety and efficacy of fast-acting insulin aspart (faster aspart) with conventional insulin aspart (IAsp) in adults with type 1 diabetes (T1D). onset 1 was a randomized, multicentre, treat-to-target, phase III, 52-week (initial 26 weeks + additional 26 weeks) trial conducted at 165 sites across 9 countries. Adults with T1D were randomly allocated to double-blind mealtime faster aspart or IAsp, each with once- or twice-daily insulin detemir. The primary endpoint, change in glycated haemoglobin (HbA1c) from baseline after the initial 26 weeks, has been reported previously. In the present paper, we report data from the full 52-week study period. Between August 2013 and June 2015, 381 participants were assigned to double-blind faster aspart and 380 participants to IAsp. After 52 weeks, estimated mean changes from baseline in HbA1c levels were -0.08% (faster aspart) and +0.01% (IAsp); estimated treatment difference significantly favoured faster aspart (-0.10% [95% confidence interval {CI} -0.19;-0.00]; P = .0424). Changes from baseline in 1-hour postprandial plasma glucose (PPG) increment (meal test; faster aspart -1.05 mmol/L; IAsp -0.14 mmol/L) also significantly favoured faster aspart (estimated treatment difference -0.91 mmol/L [95% CI -1.40;-0.43]; -16.48 mg/dL [95% CI -25.17;-7.80]; P = .0002). There was no difference in overall severe or blood glucose-confirmed hypoglycaemic episodes or treatment-emergent adverse events between treatments. At 52 weeks, overall glycaemic control had significantly improved with faster aspart vs IAsp, consistent with the 26-week study findings. Achieving an insulin profile closer to physiological insulin secretion with faster aspart translates into lower PPG and HbA1c levels compared with those achieved with IAsp in people with T1D. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  6. Overcoming cetuximab resistance in Ewing's sarcoma by inhibiting lactate dehydrogenase-A.

    PubMed

    Fu, Jiaxin; Jiang, Han; Wu, Chenxuan; Jiang, Yi; Xiao, Lianping; Tian, Yonggang

    2016-07-01

    Ewing's sarcoma, the second most common type of malignant bone tumor, generally occurs in children and young adults. The current treatment of Ewing's sarcoma comprises systemic anti‑cancer chemotherapy with complete surgical resection. However, the majority of patients with Ewing's sarcoma develop resistance to chemotherapy. The present study revealed an oncogenic role of lactate dehydrogenase‑A (LDHA) in the resistance of Ewing's sarcoma to cetuximab. LDHA was shown to be upregulated at the protein and mRNA level in cetuximab‑resistant Ewing's sarcoma tissues and a cell line. In addition, a link between LDHA‑induced glycolysis and cetuximab resistance in Ewing's sarcoma cells was revealed. Of note, inhibition of LDHA by either small interfering RNA or LDHA inhibitor oxamate significantly re‑sensitized cetuximab‑resistant cells to cetuximab. Combined treatment with LDHA inhibitor and cetuximab synergistically reduced the viability of cetuximab-resistant cells through the suppression of LDHA. The present study revealed a novel mechanism of cetuximab resistance from the perspective of cancer‑cell metabolism and provided a sensitization approach, which may aid in the development of anti-chemoresistance strategies for the treatment of cetuximab-resistant Ewing's sarcoma.

  7. Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise.

    PubMed

    Marquezi, Marcelo Luis; Roschel, Hamilton Augusto; dos Santa Costa, André; Sawada, Letícia Aiko; Lancha, Antonio Herbert

    2003-03-01

    This study evaluated the effect of aspartate (ASP) and asparagine (ASG) supplementation on fatigue determinants in Wistar rats exercised to exhaustion by swimming. The animals were tested for anaerobic threshold (AT) determination and then supplemented with 350 mM ASP + 400 mM ASG x day(-1) (AA group, n = 16) or 2 ml x day(-1) of distillated water (PLC group, n = 16) for 7 days. On the 7th day of supplementation, the animals were divided into 4 new groups and killed at rest (RAA, n = 8; RPLC, n = 8), or immediately after the swimming exercise to exhaustion (EAA, n = 8; EPLC, n = 8). R: No significant differences were observed between amino acids and placebo rest groups for muscle and liver glycogen, blood glucose, lactate, alanine, and glutamine concentrations. However, in the exhaustion groups, the EAA group showed higher exercise time (68.37 +/- 25.42 x 41.12 +/- 13.82 min, p <.05) and lower blood lactate concentration (8.57 +/- 1.92 x 11.28 +/- 2.61 mmol x L(-1), p <.05) than the EPLC group. Moreover, the ASP+ASG supplementation decreased the rate of glycogen degradation of gastrocnemius (1.00 +/- 0.51 x 3.43 +/- 0.99 microg x 100 mg of tissue sample(-1) x min(-1), extensor digitorius longus (5.70 +/- 2.35 x 8.11 +/- 3.97 microg. 100 mg of tissue sample(-1) x min(-1) and liver (0.51 +/- 0.34 x 3.37 +/- 2.31 microg x 100 mg of tissue sample(-1) x min(-1) for EAA. These results suggest that ASP+ASG supplementation may increase the contribution of oxidative metabolism in energy production and delay fatigue during exercise performed above the AT.

  8. Glucose uptake and lactate production in cells exposed to CoCl(2) and in cells overexpressing the Glut-1 glucose transporter.

    PubMed

    Hwang, Daw-Yang; Ismail-Beigi, Faramarz

    2002-03-15

    Glut-1-mediated glucose transport is augmented in response to a variety of conditions and stimuli. In this study we examined the metabolic fate of glucose in cells in which glucose transport is stimulated by exposure to CoCl(2), an agent that stimulates the expression of a set of hypoxia-responsive genes including several glycolytic enzymes and the Glut-1 glucose transporter. Similarly, we determined the metabolic fate of glucose in stably transfected cells overexpressing Glut-1. Exposure of Clone 9 liver cell line, 3T3-L1 fibroblasts, and C(2)C(12) myoblasts to CoCl(2) resulted in an increase glucose uptake and in the activity of glucose phosphorylation ("hexokinase") and lactate dehydrogenase. In cells treated with CoCl(2), the net increase in glucose taken up was accounted for by its near-complete conversion to lactate. Cells stably transfected to overexpress Glut-1 also exhibited enhanced net uptake of glucose with the near-complete conversion of the increased glucose taken up to lactate; however, the effect in these cells was observed in the absence of any change in the activity of two glycolytic enzymes examined. These findings suggest that in cells in which glucose transport is rate-limiting for glucose metabolism, enhancement of the glucose entry step per se results in a near-complete conversion of the extra glucose to lactate.

  9. CYTOCHEMICAL LOCALIZATION OF TWO GLYCOLYTIC DEHYDROGENASES IN WHITE SKELETAL MUSCLE

    PubMed Central

    Fahimi, H. Dariush; Karnovsky, Morris J.

    1966-01-01

    The cytochemical localization, by conventional methods, of lactate and glyceraldehyde-3-phosphate dehydrogenases is limited, firstly, by the solubility of these enzymes in aqueous media and, secondly, by the dependence of the final electron flow from reduced nicotinamide-adenine dinucleotide (NADH) to the tetrazolium on tissue diaphorase activity: localization is therefore that of the diaphorase, which in rabbit adductor magnus is mitochondrial. NADH has been found to have great affinity to bind in the sarcoplasmic reticulum, and, therefore, if it is generated freely in the incubation media containing 2,2',5,5'-tetra-p-nitrophenyl-3,3'-(3,3'-dimethoxy-4,4'-phenylene)-ditetrazolium chloride (TNBT) and N-methyl phenazonium methyl sulfate (PMS), it can bind there and cause a false staining. Since such a production of NADH can readily occur in the incubation media for glycolytic dehydrogenases due to diffusion of these soluble enzymes from tissue sections, the prevention of enzyme solubilization is extremely important. Fixation in formaldehyde prevented such enzyme diffusion, while at the same time sufficient activity persisted to allow for adequate staining. The incubation media contained PMS, so that the staining system was largely independent of tissue diaphorase activity. Application of these methods to adductor magnus of rabbit revealed by light microscopy, for both enzymes, a fine network which was shown by electron microscopy to represent staining of the sarcoplasmic reticulum. Mitochondria also reacted. These findings add further support for the notion that the sarcoplasmic reticulum is probably involved in glycolytic activity. PMID:4288329

  10. Early lactation production, health, and welfare characteristics of cows selected for extended lactation.

    PubMed

    Lehmann, J O; Mogensen, L; Kristensen, T

    2017-02-01

    Some cows are able to achieve relatively high milk yields during extended lactations beyond 305 d in milk, and farmers may be able to use this potential by selecting the most suitable cows for an extended lactation. However, the decision to postpone insemination has to rely on information available in early lactation. The main objectives of this study were, therefore, to assess the association between the information available in early lactation and the relative milk production of cows on extended lactation, and to investigate if this information can be used to differentiate time of first insemination between cows. Data came from 4 Danish private herds practicing extended lactation in which some cows are selected to have a delayed time of planned first insemination. Average herd size varied from 93 to 157 cows, and milk yield varied from 7,842 to 12,315 kg of energy-corrected milk (ECM) per cow per year across herds. The analysis was based on 422 completed extended lactations (427 ± 87 d), and each lactation was assigned to 1 of 3 (low, medium, and high) milk performance groups (MPG) within parity group within herd based on a standardized lactation yield. For cows in the high MPG, peak ECM yield, and ECM yield at dry off were significantly greater, the relative reduction in milk yield between 60 and 305 d in milk was significantly smaller, and a smaller proportion had a body condition score (scale: 1-5) at dry off of 3.5 or greater compared with cows in low MPG. Previous lactation days in milk at peak ECM yield and ECM yield at dry off were higher, the relative reduction in milk yield between 60 and 305 d in milk was smaller, and the number of inseminations per conception was higher for multiparous cows in high MPG compared with low. Current lactation ECM yield at second and third milk recording were greater for cows in high MPG compared with low. A principal component analysis indicated that variables related to fertility, diseases, and milk yield explained most

  11. The effect of extracellular alkalinization on lactate metabolism of breast cancer stem cells: Overview of LDH-A, LDH-B, MCT1 and MCT4 gene expression

    NASA Astrophysics Data System (ADS)

    Neolaka, G. M. G.; Yustisia, I.; Sadikin, M.; Wanandi, S. I.

    2017-08-01

    Changes in the metabolic status of cancer cells are presumed to be correlated with the adjustment of these cells to extracellular changes. Cell glycolysis increases the production of intracellular lactate catalyzed by the lactate dehydrogenases, both LDH-A and LDH-B. An increase in intracellular lactate can affect extracellular pH balance through monocarboxylate transporters, particularly MCT1 and MCT4. This study aimed to analyze the effects of extracellular alkalinization on the lactate metabolism of human breast cancer stem cells (BCSCs). In this study, human primary BCSCs (CD24-/CD44+ cells) were treated with 100 mM sodium bicarbonate for 0.5, 24, and 48 h in DMEM F12/HEPES. After incubation, extracellular pH was measured and cells were harvested to extract the total RNA and protein. The expression of LDH-A, LDH-B, MCT1, and MCT4 mRNA genes were analyzed using qRT-PCR method. Our study shows that administration of sodium bicarbonate in the BCSC culture medium could increase extracellular pH. To balance the increase of extracellular pH, BCSCs regulated the expression of LDH-A, LDH-B, MCT1, and MCT4 genes. As the extracellular pH increases, the expression of LDH-A that converts pyruvate to lactate increased along with the increase of MCT 4 and MCT 1 expression, which act as lactate transporters. As the incubation time increases, the pH decreases, leading to the suppression of LDH-A and increase of LDH-B expression that converts lactate into pyruvate. Therefore, we suggest that the extracellular alkalinization by sodium bicarbonate in BCSCs affected the genes that regulate lactate metabolism.

  12. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  13. Blood plasma chemistries from wild mourning doves held in captivity.

    PubMed

    Schulz, J H; Bermudez, A J; Tomlinson, J L; Firman, J D; He, Z

    2000-07-01

    Despite the extensive amount of research conducted on mourning doves (Zenaida macroura), no biochemical reference values exist for this species. Our objective, therefore, was to establish base line clinical chemistry reference values for mourning doves to assist with establishing clinical diagnoses. Wild mourning doves were captured 19 March 1996 to 8 August 1996, and 6 February 1998 to 12 May 1998; blood samples were collected from 382 mourning doves. Plasma biochemical values were established for glucose, sodium, potassium, chloride, enzymatic CO2, albumin, total protein, globulin, calcium, phosphorus, cholesterol, magnesium, aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), lactate dehydrogenase (LDH), and uric acid. These reference values are invaluable for determining diagnosis of diseases of the gastrointestinal, hepatic, renal, cardiovascular, musculoskeletal, and endocrine systems.

  14. Comparison of blood chemistry values for samples collected from juvenile chinook salmon by three methods

    USGS Publications Warehouse

    Congleton, J.L.; LaVoie, W.J.

    2001-01-01

    Thirteen blood chemistry indices were compared for samples collected by three commonly used methods: caudal transection, heart puncture, and caudal vessel puncture. Apparent biases in blood chemistry values for samples obtained by caudal transection were consistent with dilution with tissue fluids: alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK), triglyceride, and K+ were increased and Na+ and Cl- were decreased relative to values for samples obtained by caudal vessel puncture. Some enzyme activities (ALT, AST, LDH) and K+ concentrations were also greater in samples taken by heart puncture than in samples taken by caudal vessel puncture. Of the methods tested, caudal vessel puncture had the least effect on blood chemistry values and should be preferred for blood chemistry studies on juvenile salmonids.

  15. Molecular characterization of 45 kDa aspartic protease of Trichinella spiralis.

    PubMed

    Park, Jong Nam; Park, Sang Kyun; Cho, Min Kyoung; Park, Mi-Kyung; Kang, Shin Ae; Kim, Dong-Hee; Yu, Hak Sun

    2012-12-21

    In a previous study, we identified an aspartic protease gene (Ts-Asp) from the Trichinella spiralis muscle stage larva cDNA library. The gene sequence of Ts-Asp was 1281 bp long and was found to encode a protein consisting of 405 amino acids, with a molecular mass of 45.248 kD and a pI of 5.95. The deduced Ts-Asp has a conserved catalytic motif with catalytic aspartic acid residues in the active site, a common characteristic of aspartic proteases. In addition, the deduced amino acid sequence of Ts-Asp was found to possess significant homology (above 50%) with aspartic proteases from nematode parasites. Results of phylogenetic analysis indicated a close relationship of Ts-Asp with cathepsin D aspartic proteases. For production of recombinant Ts-Asp (rTs-Asp), the pGEX4T expression system was used. Like other proteases, the purified rTs-Asp was able to digest collagen matrix in vitro. Abundant expression of Ts-Asp was observed in muscle stage larva. Ts-Asp was detected in ES proteins, and was able to elicit the production of specific antibodies. It is the first report of molecular characterization of aspartic protease isolated from T. spiralis. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Reconstitution of the Escherichia coli pyruvate dehydrogenase complex.

    PubMed Central

    Reed, L J; Pettit, F H; Eley, M H; Hamilton, L; Collins, J H; Oliver, R M

    1975-01-01

    The binding of pyruvate dehydrogenase and dihydrolipoyl dehydrogenase (flavoprotein) to dihydrolipoyl transacetylase, the core enzyme of the E. coli pyruvate dehydrogenase complex [EC 1.2.4.1:pyruvate:lipoate oxidoreductase (decaryboxylating and acceptor-acetylating)], has been studied using sedimentation equilibrium analysis and radioactive enzymes in conjunction with gel filtration chromatography. The results show that the transacetylase, which consists of 24 apparently identical polypeptide chains organized into a cube-like structure, has the potential to bind 24 pyruvate dehydrogenase dimers in the absence of flavoprotein and 24 flavoprotein dimers in the absence of pyruvate dehydrogenase. The results of reconstitution experiments, utilizing binding and activity measurements, indicate that the transacetylase can accommodate a total of only about 12 pyruvate dehydrogenase dimers and six flavoprotein dimers and that this stoichiometry, which is the same as that of the native pyruvate dehydrogenase complex, produces maximum activity. It appears that steric hindrance between the relatively bulky pyruvate dehydrogenase and flavoprotein molecules prevents the transacetylase from binding 24 molecules of each ligand. A structural model for the native and reconstituted pyruvate dehydrogenase complexes is proposed in which the 12 pyruvate dehydrogenase dimers are distributed symmetrically on the 12 edges of the transacetylase cube and the six flavoprotein dimers are distributed in the six faces of the cube. Images PMID:1103138

  17. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    PubMed

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Impaired hippocampal glucose metabolism during and after flurothyl-induced seizures in mice: Reduced phosphorylation coincides with reduced activity of pyruvate dehydrogenase.

    PubMed

    McDonald, Tanya S; Borges, Karin

    2017-07-01

    To determine changes in glucose metabolism and the enzymes involved in the hippocampus ictally and postictally in the acute mouse flurothyl seizure model. [U- 13 C]-Glucose was injected (i.p.) prior to, or following a 5 min flurothyl-induced seizure. Fifteen minutes later, mice were killed and the total metabolite levels and % 13 C enrichment were analyzed in the hippocampal formation using gas chromatography-mass spectrometry. Activities of key metabolic and antioxidant enzymes and the phosphorylation status of pyruvate dehydrogenase were measured, along with lipid peroxidation. During seizures, total lactate levels increased 1.7-fold; however, [M + 3] enrichment of both lactate and alanine were reduced by 30% and 43%, respectively, along with a 28% decrease in phosphofructokinase activity. Postictally the % 13 C enrichments of all measured tricarboxylic acid (TCA) cycle intermediates and the amino acids were reduced by 46-93%. At this time, pyruvate dehydrogenase (PDH) activity was 56% of that measured in controls, and there was a 1.9-fold increase in the phosphorylation of PDH at ser232. Phosphorylation of PDH is known to decrease its activity. Here, we show that the increase of lactate levels during flurothyl seizures is from a source other than [U- 13 C]-glucose, such as glycogen. Surprisingly, although we saw a reduction in phosphofructokinase activity during the seizure, metabolism of [U- 13 C]-glucose into the TCA cycle seemed unaffected. Similar to our recent findings in the chronic phase of the pilocarpine model, postictally the metabolism of glucose by glycolysis and the TCA cycle was impaired along with reduced PDH activity. Although this decrease in activity may be a protective mechanism to reduce oxidative stress, which is observed in the flurothyl model, ATP is critical to the recovery of ion and neurotransmitter balance and return to normal brain function. Thus we identified promising novel strategies to enhance energy metabolism and recovery from

  19. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  20. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  1. [Enzyme activity in the subcellular fractions of the liver of rats following a flight on board the Kosmos-1129 biosatellite].

    PubMed

    Tigranian, R A; Vetrova, E G; Abraham, S; Lin, C; Klein, H

    1983-01-01

    The activities of malate, isocitrate, and lactate dehydrogenases were measured in the liver mitochondrial and cytoplasmatic fractions of rats flown for 18.5 days onboard Cosmos-1129. The activities of the oxidative enzymes, malate and isocitrate dehydrogenases, in the mitochondrial fraction and those of the glycolytic enzyme, lactate dehydrogenase, in the cytoplasmatic fraction were found to decrease.

  2. A Review of Worksite Lactation Accommodations.

    PubMed

    Hilliard, Elizabeth Dianne

    2017-01-01

    The purpose of this review was to examine workplace lactation accommodations, and their association with breastfeeding duration, and identify strategies occupational health professionals can use to promote lactation improvements. This study included literature published from 1985 through 2015 and listed in PubMed and CINAHL. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), 11 articles were identified for review. Presence of a corporate lactation program, on-site child care, and return to work/telephone lactation consultation were consistently associated with breastfeeding at 6 months. Other breastfeeding accommodations (i.e., lactation spaces, lactation breaks, worksite lactation policies, and supervisor/coworker support) were not consistently associated with breastfeeding duration. Occupational health professionals can play key roles in improving the effectiveness of lactation accommodations. Assuring adequate implementation of accommodations, increasing communication and marketing of accommodations, and promoting supervisor and coworker support are areas that occupational health professionals should explore for improving lactation duration.

  3. d-Aspartate oxidase influences glutamatergic system homeostasis in mammalian brain.

    PubMed

    Cristino, Luigia; Luongo, Livio; Squillace, Marta; Paolone, Giovanna; Mango, Dalila; Piccinin, Sonia; Zianni, Elisa; Imperatore, Roberta; Iannotta, Monica; Longo, Francesco; Errico, Francesco; Vescovi, Angelo Luigi; Morari, Michele; Maione, Sabatino; Gardoni, Fabrizio; Nisticò, Robert; Usiello, Alessandro

    2015-05-01

    We have investigated the relevance of d-aspartate oxidase, the only enzyme known to selectively degrade d-aspartate (d-Asp), in modulating glutamatergic system homeostasis. Interestingly, the lack of the Ddo gene, by raising d-Asp content, induces a substantial increase in extracellular glutamate (Glu) levels in Ddo-mutant brains. Consistent with an exaggerated and persistent N-methyl-d-aspartate receptor (NMDAR) stimulation, we documented in Ddo knockouts severe age-dependent structural and functional alterations mirrored by expression of active caspases 3 and 7 along with appearance of dystrophic microglia and reactive astrocytes. In addition, prolonged elevation of d-Asp triggered in mutants alterations of NMDAR-dependent synaptic plasticity associated to reduction of hippocampal GluN1 and GluN2B subunits selectively located at synaptic sites and to increase in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-to-N-methyl-d-aspartate ratio. These effects, all of which converged on a progressive hyporesponsiveness at NMDAR sites, functionally resulted in a greater vulnerability to phencyclidine-induced prepulse inhibition deficits in mutants. In conclusion, our results indicate that d-aspartate oxidase, by strictly regulating d-Asp levels, impacts on the homeostasis of glutamatergic system, thus preventing accelerated neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.

    PubMed

    Michielssens, Servaas; Tien Trung, Nguyen; Froeyen, Matheus; Herdewijn, Piet; Tho Nguyen, Minh; Ceulemans, Arnout

    2009-09-07

    L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.

  5. Concordance of Collagen-Based Radiocarbon and Aspartic-Acid Racemization Ages

    PubMed Central

    Bada, Jeffrey L.; Schroeder, Roy A.; Protsch, Reiner; Berger, Rainer

    1974-01-01

    By determining the extent of racemization of aspartic acid in a well-dated bone, it is possible to calculate the in situ first-order rate constant for the interconversion of the L and D enantiomers of aspartic acid. Collagen-based radiocarbon-dated bones are shown to be suitable samples for use in “calibrating” the racemization reaction. Once the aspartic-acid racemization reaction has been “calibrated” for a site, the reaction can be used to date other bones from the deposit. Ages deduced by this method are in good agreement with radiocarbon ages. These results provide evidence that the aspartic-acid racemization reaction is an important chronological tool for dating bones either too old or too small for radiocarbon dating. As an example of the potential application of the technique for dating fossil man, a piece of Rhodesian Man from Broken Hill, Zambia, was analyzed and tentatively assigned an age of about 110,000 years. PMID:4522802

  6. Radiochemical microassay for aspartate aminotransferase activity in the nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, D.; Beattie, J.; Namboodiri, M.A.

    1988-07-01

    A radiochemical procedure for measuring aspartate aminotransferase activity in the nervous system is described. The method is based on the exchange of tritium atoms at positions 2 and 3 of L-2,3-(/sup 3/H)aspartate with water when this amino acid is transaminated in the presence of alpha-ketoglutarate to form oxaloacetate. The tritiated water is separated from the radiolabeled aspartate by passing the reaction mixture over a cation exchange column. Confirmation that the radioactivity in the product is associated with water was obtained by separating it by anion exchange HPLC and by evaporation. The product formation is linear with time up to 120more » min and with tissue in the 0.05- to 10-micrograms range. The apparent Km for aspartate in the rat brain homogenate is found to be 0.83 mM and that for alpha-ketoglutarate to be 0.12 mM. Methods that further improve the sensitivity of the assay are also discussed.« less

  7. Enzymatic characterization of a novel bovine liver dihydrodiol dehydrogenase--reaction mechanism and bile acid dehydrogenase activity.

    PubMed

    Nanjo, H; Adachi, H; Morihana, S; Mizoguchi, T; Nishihara, T; Terada, T

    1995-05-11

    Bovine liver cytosolic dihydrodiol dehydrogenase (DD3) has been characterized by its unique dihydrodiol dehydrogenase activity for trans-benzenedihydrodiol (trans-1,2-dihydrobenzene-1,2-diol) with the highest affinity and the greatest velocity among three multiple forms of dihydrodiol dehydrogenases (DD1-DD3). It is the first time that DD3 has shown a significant dehydrogenase activity for (S)-(+)-1-indanol with low Km value (0.33 +/- 0.022 mM) and high K(cat) value (25 +/- 0.79 min-1). The investigation of the product inhibition of (S)-(+)-1-indanol with NADP+ versus 1-indanone and NADPH clearly showed that the enzymatic reaction of DD3 may follow a typical ordered Bi Bi mechanism similar to many aldo/keto reductases. Additionally, DD3 was shown to catalyze the dehydrogenation of bile acids (lithocholic acid, taurolithocholic acid and taurochenodeoxycholic acid) having no 12-hydroxy groups with low Km values (17 +/- 0.65, 33 +/- 1.9 and 890 +/- 73 microM, respectively). In contrast, DD1, 3 alpha-hydroxysteroid dehydrogenase, shows a broad substrate specificity for many bile acids with higher affinity than those of DD3. Competitive inhibition of DD3 with androsterone against dehydrogenase activity for (S)-(+)-1-indanol, trans-benzenedihydrodiol or lithocholic acid suggests that these three substrates bind to the same substrate binding site of DD3, different from the case of human liver bile acid binder/dihydrodiol dehydrogenase (Takikawa, H., Stolz, A., Sugiyama, Y., Yoshida, H., Yamamoto, M. and Kaplowitz, N. (1990) J. Biol. Chem. 265, 2132-2136). Considering the reaction mechanism, DD3 may also play an important role in bile acids metabolism as well as the detoxication of aromatic hydrocarbons.

  8. Experimental evidence for a chiral symmetry-breaking mechanism in aspartic acid: Lattice and sub-lattice matching

    NASA Astrophysics Data System (ADS)

    Teschke, Omar; Soares, David Mendez

    2017-10-01

    A mother crystal formed from a transient molecular structure of (D+L) aspartic acid in solution is reported. Hexagonal structures with a lattice constant of 1.04 nm were crystallized from a solution in which three aspartic acid species coexist: right- and left-handed enantiomorphs, denoted D-aspartic and L-aspartic, respectively, and transitory (D+L) aspartic acid specie. Atomic force microscopy images of the crystalline deposits reveal domains of the transitory (D+L) aspartic acid crystal forming the substrate deposit on silicon wafers, and on top of this hexagonal lattice only L-aspartic acid is observed to conform and crystallize. A preferential crystallization mechanism is then observed for (D+L) aspartic acid crystals that seed only L-aspartic deposits by the geometrical matching of their multiple hexagonal lattice structures with periodicities of 1.04 nm and 0.52 nm, respectively.

  9. Differences in the ribosomes prepared from lactating and non-lactating bovine mammary gland

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1971-01-01

    1. Ribosomes prepared from bovine lactating mammary gland are able to synthesize protein, whereas similar preparations from non-lactating glands are not. Washing the ribosome suspensions through a medium containing 0.5m-ammonium chloride enhanced their ability to incorporate phenylalanine into polyphenylalanine. 2. Ribosomes isolated from non-lactating bovine mammary gland, in contrast with those from rat liver and lactating mammary gland, contained significant amounts of extraneous nucleases. These enzymes could be removed by washing with a medium A buffer containing 0.5m-ammonium chloride. 3. Only those ribosomes from functionally active tissues were able to bind polyuridylic acid and phenylalanyl-tRNA. PMID:5165653

  10. A Lactate Kinetics Method for Assessing the Maximal Lactate Steady State Workload

    PubMed Central

    Hering, Gernot O.; Hennig, Ewald M.; Riehle, Hartmut J.; Stepan, Jens

    2018-01-01

    During a continuously increasing exercise workload (WL) a point will be reached at which arterial lactate accumulates rapidly. This so-called lactate threshold (LT) is associated with the maximal lactate steady state workload (MLSSW), the highest WL, at which arterial lactate concentration [LA] does not change. However, the physiological range in which the LT and the MLSSW occur has not been demonstrated directly. We used minor WL variations in the MLSSW range to assess arterial lactate kinetics in 278 treadmill and 148 bicycle ergometer exercise tests. At a certain workload, minimal further increment of running speed (0.1–0.15 m/s) or cycling power (7–10 W) caused a steep elevation of [LA] (0.9 ± 0.43 mM, maximum increase 2.4 mM), indicating LT achievement. This sharp [LA] increase was more pronounced when higher WL increments were used (0.1 vs. 0.30 m/s, P = 0.02; 0.15 vs. 0.30 m/s, P < 0.001; 7 vs. 15 W, P = 0.002; 10 vs. 15 W, P = 0.001). A subsequent workload reduction (0.1 m/s/7 W) stopped the [LA] increase indicating MLSSW realization. LT based determination of running speed (MLSSW) was highly reproducible on a day-to-day basis (r = 0.996, P < 0.001), valid in a 10 km constant velocity setting (r = 0.981, P < 0.001) and a half marathon race (r = 0.969, P < 0.001). These results demonstrate a fine-tuned regulation of exercise-related lactate metabolism, which can be reliably captured by assessing lactate kinetics at the MLSSW. PMID:29651253

  11. Influence of lactation and pregnancy + lactation on mechanical properties and mineral content of the rat femur.

    PubMed

    Peng, T C; Kusy, R P; Garner, S C; Hirsch, P F; De Blanco, M C

    1987-06-01

    The quality of bone was assessed from femurs of rats both during lactation and after pregnancy + lactation. Mechanical properties of stiffness, strength, toughness, and ductility were measured, along with standard measurements of dry weight, ash weight, and total bone mineral. No changes occurred during the first week of lactation. During the second and third weeks of lactation all bone parameters except ductility decreased significantly. These data are consistent with bone losing mineral in order to supplement the dietary calcium intake necessary for milk production. In other experiments, femurs were collected from nulliparous rats and from rats that had previously undergone 1-3 pregnancy + lactations. The largest changes in bone mineral and mechanical properties occurred after a single pregnancy + lactation period, although significant further decreases in stiffness and strength occurred after the second pregnancy + lactation. No additional losses occurred following the third pregnancy + lactation. Even 5 months after only one pregnancy + lactation period, the bone quality was still impaired as all bone properties were lower than in nulliparous controls. Because the changes, especially stiffness and strength, were relatively larger than the changes in dry and ash weights of bone, measurements of these mechanical properties provide a more sensitive method to evaluate the quality of bone.

  12. Elevated lactate during psychogenic hyperventilation.

    PubMed

    ter Avest, E; Patist, F M; Ter Maaten, J C; Nijsten, M W N

    2011-04-01

    Elevated arterial lactate levels are closely related to morbidity and mortality in various patient categories. In the present retrospective study, the relation between arterial lactate, partial pressure of carbon dioxide (Pco(2)) and pH was systematically investigated in patients who visited the emergency department (ED) with psychogenic hyperventilation. Over a 5-month period, all the patients who visited the ED of a university hospital with presumed psychogenic hyperventilation were evaluated. Psychogenic hyperventilation was presumed to be present when an increased respiratory rate (>20 min) was documented at or before the ED visit and when somatic causes explaining the hyperventilation were absent. Arterial blood gas and lactate levels (reference values 0.5-1.5 mmol/l) were immediately measured by a point-of-care analyser that was managed and calibrated by the central laboratory. During the study period, 46 patients were diagnosed as having psychogenic hyperventilation. The median (range) Pco(2) for this group was 4.3 (2.0-5.5) kPa, the pH was 7.47 (7.40-7.68) and the lactate level was 1.2 (0.5-4.4) mmol/l. 14 participants (30%) had a lactate level above the reference value of 1.5 mmol/l. Pco(2) was the most important predictor of lactate in multivariate analysis. None of the participants underwent any medical treatment other than observation at the ED or had been hospitalised after their ED visit. In patients with psychogenic hyperventilation, lactate levels are frequently elevated. Whereas high lactates are usually associated with acidosis and an increased risk of poor outcome, in patients with psychogenic hyperventilation, high lactates are associated with hypocapnia and alkalosis. In this context, elevated arterial lactate levels should not be regarded as an adverse sign.

  13. Lactate: link between glycolytic and oxidative metabolism.

    PubMed

    Brooks, George A

    2007-01-01

    Once thought to be the consequence of oxygen lack in contracting skeletal muscle, the glycolytic product lactate is formed and utilised continuously under fully aerobic conditions. 'Cell-cell' and 'intracellular lactate shuttle' concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signalling. Examples of cell-cell shuttles include lactate exchanges (i) between white-glycolytic and red-oxidative fibres within a working muscle bed; (ii) between working skeletal muscle and heart; and (iii) between tissues of net lactate release and gluconeogenesis. Lactate shuttles exist in diverse tissues including in the brain, where a shuttle between astrocytes and neurons is linked to glutamatergic signalling. Because lactate, the product of glycogenolysis and glycolysis, is disposed of by oxidative metabolism, lactate shuttling unites the two major processes of cellular energy transduction. Lactate disposal is mainly through oxidation, especially during exercise when oxidation accounts for 70-75% of removal and gluconeogenesis the remainder. Lactate flux occurs down proton and concentration gradients that are established by the mitochondrial lactate oxidation complex. Marathon running is a power activity requiring high glycolytic and oxidative fluxes; such activities require lactate shuttling. Knowledge of the lactate shuttle is yet to be imparted to the sport.

  14. Crosslinked Aspartic Acids as Helix-Nucleating Templates.

    PubMed

    Zhao, Hui; Liu, Qi-Song; Geng, Hao; Tian, Yuan; Cheng, Min; Jiang, Yan-Hong; Xie, Ming-Sheng; Niu, Xiao-Gang; Jiang, Fan; Zhang, Ya-Ou; Lao, Yuan-Zhi; Wu, Yun-Dong; Xu, Nai-Han; Li, Zi-Gang

    2016-09-19

    Described is a facile helix-nucleating template based on a tethered aspartic acid at the N-terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side-chain-end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N-terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix-stabilizing methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pretreatment Serum Lactate Dehydrogenase and N Classification Predict Long-Term Survival and Distant Metastasis in Patients With Nasopharyngeal Carcinoma Who Have A Positive Family History of Cancer

    PubMed Central

    Zhang, Wenna; Chen, Yupei; Zhou, Guanqun; Liu, Xu; Chen, Lei; Tang, Linglong; Mao, Yanping; Sun, Ying; Ma, Jun

    2015-01-01

    Abstract The purpose of the present study was to evaluate prognostic factors in patients with nasopharyngeal carcinoma (NPC) from the endemic area of southern China who have a positive family history (FH) of cancer. Retrospective analysis of 600 patients with nondisseminated NPC and a positive FH was conducted. The prognostic value of different factors for overall survival (OS), distant metastasis-free survival (DMFS), disease-free survival (DFS), and local relapse-free survival (LRFS) were assessed using Cox regression models. The 3-year OS, DMFS, DFS, and LRFS rates were 93.8%, 91.3%, 86.3%, and 93.8%, respectively. The FH tumor type was NPC for 226/600 (37.7%) patients and other cancers for 374/600 (62.3%) patients. The 3-year OS and DMFS rates for patients with an FH of NPC were 91.2% and 89.8%, respectively. Thirty of 600 (5.0%) patients had elevated pretreatment serum lactate dehydrogenase (LDH >245.0 IU/L). In multivariate analysis, N classification (HR 4.56, 95% CI 2.13–9.74, P < 0.0001) and elevated pretreatment serum LDH (HR 2.87, 95% CI 1.08–7.62, P = 0.034) were independent prognosticators for OS. Female patients (HR 0.42, 95% CI 0.19–0.95, P = 0.037) and patients with normal pretreatment serum LDH (HR 2.42, 95% CI 1.02–5.78, P = 0.046) had better DMFS. Elevated pretreatment serum LDH and N classification are independent prognostic factors for poorer survival in patients with NPC who have a positive FH of cancer. PMID:26376394

  16. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    PubMed

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  17. The BRAF inhibitor vemurafenib activates mitochondrial metabolism and inhibits hyperpolarized pyruvate-lactate exchange in BRAF mutant human melanoma cells

    PubMed Central

    Delgado-Goni, Teresa; Falck Miniotis, Maria; Wantuch, Slawomir; Parkes, Harold G.; Marais, Richard; Workman, Paul; Leach, Martin O.; Beloueche-Babari, Mounia

    2016-01-01

    Understanding the impact of BRAF signaling inhibition in human melanoma on key disease mechanisms is important for developing biomarkers of therapeutic response and combination strategies to improve long term disease control. This work investigates the downstream metabolic consequences of BRAF inhibition with vemurafenib, the molecular and biochemical processes that underpin them, their significance for antineoplastic activity and potential as non-invasive imaging response biomarkers.1H NMR spectroscopy showed that vemurafenib decreases the glycolytic activity of BRAF mutant (WM266.4 and SKMEL28) but not BRAFWT (CHL-1 and D04) human melanoma cells. In WM266.4 cells, this was associated with increased acetate, glycine and myo-inositol levels and decreased fatty acyl signals, while the bioenergetic status was maintained. 13C NMR metabolic flux analysis of treated WM266.4 cells revealed inhibition of de novo lactate synthesis and glucose utilization, associated with increased oxidative and anaplerotic pyruvate carboxylase mitochondrial metabolism and decreased lipid synthesis. This metabolic shift was associated with depletion of HKII, acyl-CoA dehydrogenase 9, 3-phosphoglycerate dehydrogenase and monocarboxylate transporter (MCT) 1 and 4 in BRAF mutant but not BRAFWT cells and, interestingly, decreased BRAF mutant cell dependency on glucose and glutamine for growth. Further, the reduction in MCT1 expression observed led to inhibition of hyperpolarized 13C-pyruvate-lactate exchange, a parameter that is translatable to in vivo imaging studies, in live WM266.4 cells. In conclusion, our data provide new insights into the molecular and metabolic consequences of BRAF inhibition in BRAF-driven human melanoma cells that may have potential for combinatorial therapeutic targeting as well as non-invasive imaging of response. PMID:27765851

  18. An exploratory analysis of alkaline phosphatase, lactate dehydrogenase, and prostate-specific antigen dynamics in the phase 3 ALSYMPCA trial with radium-223

    PubMed Central

    Sartor, O.; Coleman, R. E.; Nilsson, S.; Heinrich, D.; Helle, S. I.; O’Sullivan, J. M.; Vogelzang, N. J.; Bruland, Ø.; Kobina, S.; Wilhelm, S.; Xu, L.; Shan, M.; Kattan, M. W.; Parker, C.

    2017-01-01

    Background Baseline clinical variables are prognostic for overall survival (OS) in patients with castration-resistant prostate cancer (CRPC). Their prognostic and predictive value with agents targeting bone metastases, such as radium-223, is not established. Patients and methods The radium-223 ALSYMPCA trial enrolled patients with CRPC and symptomatic bone metastases. Prognostic potential of baseline variables was assessed using Cox models. Percentage changes in biomarker levels from baseline were evaluated during the trial period; changes from baseline to week 12 were evaluated for association with OS and surrogacy. Results Eastern Cooperative Oncology Group performance status, total alkaline phosphatase (tALP), lactate dehydrogenase (LDH), and prostate-specific antigen (PSA) at baseline were associated with OS (P ≤ 0.0003) in the intent-to-treat population (radium-223, N = 614; placebo, N = 307). tALP declined from baseline within 4 weeks after beginning radium-223, by week 12 declining in 87% of radium-223 and 23% of placebo patients (P < 0.001). LDH declined in 51% and 34% (P = 0.003), whereas PSA declined in 27% and 14% (P = 0.160). Mean tALP change from baseline was 32.2% decrease with radium-223 and 37.2% increase with placebo. Radium-223 patients with tALP decline from baseline to week 12 (confirmed ≥3 weeks from week 12) had 55% lower risk of death (hazard ratio = 0.45; 95% CI 0.34–0.61) versus those with no confirmed tALP decline. Proportional treatment effect (PTE) values for tALP, LDH, and PSA changes from baseline at week 12 as OS surrogate markers were 0.34 (95% CI: 0–0.746), 0.07 (95% CI: 0–0.211), and 0 (95% CI: 0–0.082), respectively. Conclusions Significant tALP declines (versus placebo) occurred as early as 4 weeks after beginning radium-223 therapy. tALP or LDH declines at 12 weeks correlated with longer OS, but did not meet statistical surrogacy requirements. Dynamic changes in tALP and LDH during

  19. Redox Specificity of 2-Hydroxyacid-Coupled NAD+/NADH Dehydrogenases: A Study Exploiting “Reactive” Arginine as a Reporter of Protein Electrostatics

    PubMed Central

    Durani, Susheel

    2013-01-01

    With “reactive” arginine as a kinetic reporter, 2-hydroxyacid dehydrogenases are assessed in basis of their specialization as NAD+-reducing or NADH-oxidizing enzymes. Specifically, M4 and H4 lactate dehydrogenases (LDHs) and cytoplasmic and mitochondrial malate dehydrogenases (MDHs) are compared to assess if their coenzyme specificity may involve electrostatics of cationic or neutral nicotinamide structure as the basis. The enzymes from diverse eukaryote and prokaryote sources thus are assessed in “reactivity” of functionally-critical arginine as a function of salt concentration and pH. Electrostatic calculations were performed on “reactive” arginines and found good correspondence with experiment. The reductive and oxidative LDHs and MDHs are assessed in their count over ionizable residues and in placement details of the residues in their structures as proteins. The variants found to be high or low in ΔpKa of “reactive” arginine are found to be also strong or weak cations that preferentially oxidize NADH (neutral nicotinamide structure) or reduce NAD+ (cationic nicotinamide structure). The ionized groups of protein structure may thus be important to redox specificity of the enzyme on basis of electrostatic preference for the oxidized (cationic nicotinamide) or reduced (neutral nicotinamide) coenzyme. Detailed comparisons of isozymes establish that the residues contributing in their redox specificity are scrambled in structure of the reductive enzyme. PMID:24391777

  20. Diminution in energy expenditure during lactation.

    PubMed Central

    Illingworth, P J; Jung, R T; Howie, P W; Leslie, P; Isles, T E

    1986-01-01

    Energy expenditure at rest and in response to a meal and to an infusion of noradrenaline was measured in 12 lactating women and compared with that in seven bottle feeding women and seven non-pregnant, non-lactating controls. The energy response of the lactating women was remeasured after lactation stopped. During lactation the resting metabolic rate was unaltered but there was a reduced response to infusion of noradrenaline and to a meal, which increased to normal control values after lactation stopped. Such reductions in expenditure were not found in women who had been bottle feeding and were tested at a similar six to eight weeks post partum. These findings suggest that metabolic efficiency is enhanced in lactating women, who may not need to increase energy intake to the extent suggested by current recommended dietary allowances. PMID:3081114

  1. Zoledronate prevents lactation induced bone loss and results in additional post-lactation bone mass in mice.

    PubMed

    Wendelboe, Mette Høegh; Thomsen, Jesper Skovhus; Henriksen, Kim; Vegger, Jens Bay; Brüel, Annemarie

    2016-06-01

    In rodents, lactation is associated with a considerable and very rapid bone loss, which almost completely recovers after weaning. The aim of the present study was to investigate whether the bisphosphonate Zoledronate (Zln) can inhibit lactation induced bone loss, and if Zln interferes with recovery of bone mass after lactation has ceased. Seventy-six 10-weeks-old NMRI mice were divided into the following groups: Baseline, Pregnant, Lactation, Lactation+Zln, Recovery, Recovery+Zln, and Virgin Control (age-matched). The lactation period was 12days, then the pups were removed, and thereafter recovery took place for 28days. Zln, 100μg/kg, was given s.c. on the day of delivery, and again 4 and 8days later. Mechanical testing, μCT, and dynamic histomorphometry were performed. At L4, lactation resulted in a substantial loss of bone strength (-55% vs. Pregnant, p<0.01), BV/TV (-40% vs. Pregnant, p<0.01), and trabecular thickness (Tb.Th) (-29% vs. Pregnant, p<0.001). Treatment with Zln completely prevented lactation induced loss of bone strength, BV/TV, and Tb.Th at L4. Full recovery of micro-architectural and mechanical properties was found 28days after weaning in vehicle-treated mice. Interestingly, the recovery group treated with Zln during the lactation period had higher BV/TV (+45%, p<0.01) and Tb.Th (+16%, p<0.05) compared with virgin controls. Similar results were found at the proximal tibia and femur. This indicates that Zln did not interfere with the bone formation taking place after weaning. On this background, we conclude that post-lactation bone formation is not dependent on a preceding lactation induced bone loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Dacarbazine with or without oblimersen (a Bcl-2 antisense oligonucleotide) in chemotherapy-naive patients with advanced melanoma and low-normal serum lactate dehydrogenase: 'The AGENDA trial'.

    PubMed

    Bedikian, Agop Y; Garbe, Claus; Conry, Robert; Lebbe, Celeste; Grob, Jean J

    2014-06-01

    In a previous large randomized, open-label study, retrospective subset analysis revealed that the addition of the Bcl-2 antisense oligonucleotide oblimersen to dacarbazine (Dac) significantly improved overall survival, progression-free survival, and the response rate in chemotherapy-naive patients with advanced melanoma and normal baseline serum lactate dehydrogenase (LDH) levels. To confirm and expand on this observation, we conducted a prospective double-blind, placebo-controlled study to determine whether oblimersen augmented the efficacy of Dac in advanced melanoma patients with low-normal baseline LDH levels. A total of 314 chemotherapy-naive patients were randomly assigned to receive Dac (1000 mg/m(2)) preceded by a 5-day continuous intravenous infusion of either oblimersen sodium (7 mg/kg/day) or placebo every 21 days for less than eight cycles. Co-primary efficacy endpoints were overall survival and progression-free survival. Response and progression of the disease were assessed by independent blinded review of computed tomography scan images. No difference in overall nor progression-free survival was observed between the Dac-oblimersen and Dac-placebo groups. Although the overall (17.2 vs. 12.1%) and durable (10.8 vs. 7.6%) response rates numerically favored Dac-oblimersen over Dac-placebo, they did not differ significantly (P=0.19 and 0.32, respectively). The incidence of hematologic adverse events, particularly thrombocytopenia and neutropenia, was higher in the Dac-oblimersen group than in the Dac-placebo group. Withdrawals from the study because of treatment-related adverse events were low (i.e. <2.5%) in both groups. The addition of oblimersen to Dac did not significantly improve overall survival nor progression-free survival in patients with advanced melanoma and low-normal levels of LDH at baseline.

  3. Stimulation of d- and l-lactate dehydrogenases transcriptional levels in presence of diammonium hydrogen phosphate resulting to enhanced lactic acid production by Lactobacillus strain.

    PubMed

    Singhvi, Mamata; Zendo, Takeshi; Iida, Hiroshi; Gokhale, Digambar; Sonomoto, Kenji

    2017-12-01

    The present study revealed the effect of nitrogen sources on lactic acid production and stimulation of d- and l-lactate dehydrogenases (LDH) of parent Lactobacillus lactis NCIM 2368 and its mutant RM2-24 generated after UV mutagenesis. Both the parent and mutant strains were evaluated for d-lactic acid production in control and modified media. The modified media did not show remarkable effect on lactic acid production in case of parent whereas mutant exhibited significant enhancement in d-lactic acid production along with the appearance of l-lactic acid in the broth. Both LDH activities and specific activities were found to be higher in mutant than the parent strain. These results suggested that the diammonium hydrogen phosphate in modified media triggered the expression of LDH genes leading to enhanced lactic acid production. This observation has been proved by studying the expression levels of d- and l-LDH genes of parent and mutant in control and modified media using quantitative RT-PCR technique. In case of mutant, the transcriptional levels of d-LDH and l-LDH increased ∼17 fold and ∼1.38 fold respectively in modified medium compared to the values obtained with control medium. In case of parent, no significant change in transcriptional levels of d- and l-LDH was found when the cells were grown in either control medium or modified medium. This study suggested that the mutant, RM2-24 has l-LDH gene which is expressed in presence of (NH 4 ) 2 HPO 4 resulting in l-lactic acid production. Co-production of l-lactic acid in d-lactic acid fermentation may be detrimental in the PLA production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Demonstration of 3 alpha(17 beta)-hydroxysteroid dehydrogenase distinct from 3 alpha-hydroxysteroid dehydrogenase in hamster liver.

    PubMed Central

    Ohmura, M; Hara, A; Nakagawa, M; Sawada, H

    1990-01-01

    NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase. Images Fig. 1. Fig. 2. PMID:2317205

  5. Subfield-specific loss of hippocampal N-acetyl aspartate in temporal lobe epilepsy.

    PubMed

    Vielhaber, Stefan; Niessen, Heiko G; Debska-Vielhaber, Grazyna; Kudin, Alexei P; Wellmer, Jörg; Kaufmann, Jörn; Schönfeld, Mircea Ariel; Fendrich, Robert; Willker, Wieland; Leibfritz, Dieter; Schramm, Johannes; Elger, Christian E; Heinze, Hans-Jochen; Kunz, Wolfram S

    2008-01-01

    In patients with mesial temporal lobe epilepsy (MTLE) it remains an unresolved issue whether the interictal decrease in N-acetyl aspartate (NAA) detected by proton magnetic resonance spectroscopy ((1)H-MRS) reflects the epilepsy-associated loss of hippocampal pyramidal neurons or metabolic dysfunction. To address this problem, we applied high-resolution (1)H-MRS at 14.1 Tesla to measure metabolite concentrations in ex vivo tissue slices from three hippocampal subfields (CA1, CA3, dentate gyrus) as well as from the parahippocampal region of 12 patients with MTLE. In contrast to four patients with lesion-caused MTLE, we found a large variance of NAA concentrations in the individual hippocampal regions of patients with Ammon's horn sclerosis (AHS). Specifically, in subfield CA3 of AHS patients despite of a moderate preservation of neuronal cell densities the concentration of NAA was significantly lowered, while the concentrations of lactate, glucose, and succinate were elevated. We suggest that these subfield-specific alterations of metabolite concentrations in AHS are very likely caused by impairment of mitochondrial function and not related to neuronal cell loss. A subfield-specific impairment of energy metabolism is the probable cause for lowered NAA concentrations in sclerotic hippocampi of MTLE patients.

  6. Insulin Aspart in the Management of Diabetes Mellitus: 15 Years of Clinical Experience.

    PubMed

    Hermansen, Kjeld; Bohl, Mette; Schioldan, Anne Grethe

    2016-01-01

    Limiting excessive postprandial glucose excursions is an important component of good overall glycemic control in diabetes mellitus. Pharmacokinetic studies have shown that insulin aspart, which is structurally identical to regular human insulin except for the replacement of a single proline amino acid with an aspartic acid residue, has a more physiologic time-action profile (i.e., reaches a higher peak and reaches that peak sooner) than regular human insulin. As expected with this improved pharmacokinetic profile, insulin aspart demonstrates a greater glucose-lowering effect compared with regular human insulin. Numerous randomized controlled trials and a meta-analysis have also demonstrated improved postprandial control with insulin aspart compared with regular human insulin in patients with type 1 or type 2 diabetes, as well as efficacy and safety in children, pregnant patients, hospitalized patients, and patients using continuous subcutaneous insulin infusion. Studies have demonstrated that step-wise addition of insulin aspart is a viable intensification option for patients with type 2 diabetes failing on basal insulin. Insulin aspart has shown a good safety profile, with no evidence of increased receptor binding, mitogenicity, stimulation of anti-insulin antibodies, or hypoglycemia compared with regular human insulin. In one meta-analysis, there was evidence of a lower rate of nocturnal hypoglycemia compared with regular human insulin and, in a trial that specifically included patients with a history of recurrent hypoglycemia, a significantly lower rate of severe hypoglycemic episodes. The next generation of insulin aspart (faster-acting insulin aspart) is being developed with a view to further improving on these pharmacokinetic/pharmacodynamic properties.

  7. Proton Resonance Spectroscopy Study of the Effects of L-Ornithine-L-Aspartate on the Development of Encephalopathy, Using Localization Pulses with Reduced Specific Absorption Rate

    NASA Astrophysics Data System (ADS)

    Slotboom, J.; Vogels, B. A. P. M.; Dehaan, J. G.; Creyghton, J. H. N.; Quack, G.; Chamuleau, R. A. F. M.; Bovee, W. M. M. J.

    Using the SADLOVE ( single-shot adiabatic localized volume excitation) localization technique with reduced specific absorption rate phase-compensated 2π pulses for localization, in vivo rat brain spectra were obtained in order to study the possible beneficial effects of L-ornithine-L-aspartate (OA) on the development of encephalopathy induced by hyperammonemia in portacaval shunted rats, an experimental model for subacute hepatic encephalopathy. The in vivo1H spectra were quantified using a conjugate-gradient-based frequency-domain fitting procedure. OA treatment resulted in an about threefold lower increase in train lactate ( P < 0.0001) and a slower increase of brain glutamine ( P = 0.022) concentration. However, these changes in brain metabolism, including a significantly lower ammonia concentration during OA treatment, were not associated with a sig significant improvement in clinical symptoms of encephalopathy, suggesting either insufficient decrease in brain ammonia concentration or another effect of OA treatment counteracting the lowering effect on blood and brain ammonia and on brain glutamine and lactate. It is concluded that localized in vivo1H MRS of the brain in combination with other analytical techniques, such as in vivo microdialysis, is helpful in explaining pathophysiological changes during hyperammonemia-induced encephalopathy.

  8. Base compositions of genes encoding alpha-actin and lactate dehydrogenase-A from differently adapted vertebrates show no temperature-adaptive variation in G + C content.

    PubMed

    Ream, Rachael A; Johns, Glenn C; Somero, George N

    2003-01-01

    There is a long-standing debate in molecular evolution concerning the putative importance of GC content in adapting the thermal stabilities of DNA and RNA. Most studies of this relationship have examined broad-scale compositional patterns, for example, total GC percentages in genomes and occurrence of GC-rich isochores. Few studies have systematically examined the GC contents of individual orthologous genes from differently thermally adapted species. When this has been done, the emphasis has been on comparing large numbers of genes in only a few species. We have approached the GC-adaptation temperature hypothesis in a different manner by examining patterns of base composition of genes encoding lactate dehydrogenase-A (ldh-a) and alpha-actin (alpha-actin) from 51 species of vertebrates whose adaptation temperatures ranged from -1.86 degrees C (Antarctic fishes) to approximately 45 degrees C (desert reptile). No significant positive correlation was found between any index of GC content (GC content of the entire sequence, GC content of the third codon position [GC(3)], and GC content at fourfold degenerate sites [GC(4)]) and any index of adaptation temperature (maximal, mean, or minimal body temperature). For alpha-actin, slopes of regression lines for all comparisons did not differ significantly from zero. For ldh-a, negative correlations between adaptation temperature and total GC content, GC(3), and GC(4) were observed but were shown to be due entirely to phylogenetic influences (as revealed by independent contrast analyses). This comparison of GC content across a wide range of ectothermic ("cold-blooded") and endothermic ("warm-blooded") vertebrates revealed that frogs of the genus Xenopus, which have commonly been used as a representative cold-blooded species, in fact are outliers among ectotherms for the alpha-actin analyses, raising concern about the appropriateness of choosing these amphibians as representative of ectothermic vertebrates in general. Our study

  9. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of dietary milk thistle on blood parameters, liver pathology, and hepatobiliary scintigraphy in white carneaux pigeons (Columba livia) challenged with B1 aflatoxin.

    PubMed

    Grizzle, Judith; Hadley, Tarah L; Rotstein, David S; Perrin, Shannon L; Gerhardt, Lillian E; Beam, James D; Saxton, Arnold M; Jones, Michael P; Daniel, Gregory B

    2009-06-01

    Milk thistle (Silybum marianum) has been used in humans for the treatment of liver disease because of its antioxidant properties and its ability to stabilize cell membranes and regulate cell permeability. To investigate possible hepatoprotective effects in birds, standardized extracts (80%) of silymarin from milk thistle were tested in white Carneaux pigeons (Columba livia). Pigeons were separated into 3 groups and fed diets formulated to provide milk thistle at a level of 0, 10, or 100 mg/kg body weight per day. After acclimation, the birds were challenged with B1 aflatoxin (3 mg/kg body weight for 2 consecutive days) by oral gavage. Liver function then was assessed by hematologic testing and plasma biochemical analysis, liver histopathology, and hepatobiliary scintigraphy. Results of histopathology and hepatobiliary scintigraphy showed no protective effects from milk-thistle administration. Aflatoxin challenge resulted in hepatic inflammation and necrosis, biliary-duct hyperplasia, and lymphocyte infiltration. All hepatobiliary scintigraphy elements increased significantly after aflatoxin challenge. Bile acid levels and plasma enzyme concentrations of aspartate aminotransferase, lactate dehydrogenase, alanine aminotransferase, and creatine phosphokinase all increased after aflatoxin exposure and were mostly unchanged with consumption of milk thistle. Only birds fed 10 mg/kg body weight milk thistle showed significant reductions in lactate dehydrogenase, alanine aminotransferase, and creatine phosphokinase concentrations after aflatoxin exposure. Our results show that consumption of milk thistle is not associated with hepatoprotective effects against acute B1 aflatoxin exposure in pigeons.

  11. Synthesis of 6-phosphofructose aspartic acid and some related Amadori compounds.

    PubMed

    Hansen, Alexandar L; Behrman, Edward J

    2016-08-05

    We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dietary verbascoside supplementation in donkeys: effects on milk fatty acid profile during lactation, and serum biochemical parameters and oxidative markers.

    PubMed

    D'Alessandro, A G; Vizzarri, F; Palazzo, M; Martemucci, G

    2017-09-01

    Various uses of donkeys' milk have been recently proposed for human consumption on the basis of its nutritional characteristics. Improvements in milk fatty acid profile and animal oxidative status can be induced through dietary supplementation of phenolic compounds. The study aimed to evaluate in donkeys the effects of dietary supplementation with verbascoside (VB) on: (i) the fatty acid profile and vitamins A and E contents of milk during a whole lactation, and (ii) blood biochemical parameters and markers of oxidative status of the animals. At foaling, 12 lactating jennies were subdivided into two groups (n 6): control, without VB supplement; VB, receiving a lipid-encapsulated VB supplement. Gross composition, fatty acid profile and vitamins A and E contents in milk were assessed monthly over the 6 months of lactation. Serum total cholesterol, high-density lipoproteins cholesterol and low-density lipoproteins cholesterol, tryglicerides, non-esterified fatty acid, bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase, reactive oxygen metabolites, thiobarbituric acid reactive substances (TBARs), vitamin A and vitamin E were evaluated at 8 days after foaling (D0) and then at D90, D105 and D120 of lactation. In milk, the VB supplementation decreased the saturated fatty acids (P<0.05) and increased the monounsaturated fatty acids (P<0.05), and vitamins A and E (P<0.01) values. On the serum parameters, the VB supplementation decreased total cholesterol (P<0.01), tryglicerides, bilirubin, ALT and TBARs, and increased (P<0.01) vitamin E. In conclusion, the VB dietary supplementation affects the nutritional quality of donkey's milk with a benefit on the oxidative status and serum lipidic profile of the animals.

  13. Aspartate-90 and arginine-269 of hamster aspartate transcarbamylase affect the oligomeric state of a chimaeric protein with an Escherichia coli maltose-binding domain.

    PubMed Central

    Qiu, Y; Davidson, J N

    1998-01-01

    Residues Asp-90 and Arg-269 of Escherichia coli aspartate transcarbamylase seem to interact at the interface of adjacent catalytic subunits. Alanine substitutions at the analogous positions in the hamster aspartate transcarbamylase of a chimaeric protein carrying an E. coli maltose-binding domain lead to changes in both the kinetics of the enzyme and the quaternary structure of the protein. The Vmax for the Asp-90-->Ala and Arg-269-->Ala substitutions is decreased to 1/21 and 1/50 respectively, the [S]0.5 for aspartate is increased 540-fold and 826-fold respectively, and the [S]0.5 for carbamoyl phosphate is increased 60-fold for both. These substitutions decrease the oligomeric size of the protein. Whereas the native chimaeric protein behaves as a pentamer, the Asp-90 variant is a trimer and the Arg-269 variant is a dimer. The altered enzymes also exhibit marked decreases in thermal stability and are inactivated at much lower concentrations of urea than is the unaltered enzyme. Taken together, these results are consistent with the hypothesis that both Asp-90 and Arg-269 have a role in the enzymic function and structural integrity of hamster aspartate transcarbamylase. PMID:9425105

  14. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous sulfate...

  15. Malate and Aspartate Increase L-Arginine and Nitric Oxide and Attenuate Hypertension.

    PubMed

    Hou, Entai; Sun, Na; Zhang, Fuchang; Zhao, Chenyang; Usa, Kristie; Liang, Mingyu; Tian, Zhongmin

    2017-05-23

    Fumarase catalyzes the interconversion of fumarate and L-malate in the tricarboxylic acid cycle. The Dahl salt-sensitive (SS) rat, a model of salt-sensitive hypertension, exhibits fumarase insufficiencies. To investigate the mechanism mediating the effect of fumarase-related metabolites on hypertension, we considered the pathway in which L-malate can be converted to oxaloacetate, aspartate, argininosuccinate, and L-arginine, the substrate of nitric oxide (NO) synthase. The levels of aspartate, citrulline, L-arginine, and NO were significantly decreased in the kidneys of SS rats compared to salt-insensitive consomic SS.13 BN rats. Knockdown of fumarase in human kidney cells and vascular endothelial cells resulted in decreased levels of malate, aspartate, L-arginine, and NO. Supplementation of aspartate or malate increased renal levels of L-arginine and NO and attenuated hypertension in SS rats. These findings reveal a multi-step metabolic pathway important for hypertension in which malate and aspartate may modulate blood pressure by altering levels of L-arginine and NO. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. 21 CFR 184.1311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... It is prepared by reacting calcium lactate or sodium lactate with ferrous sulfate, direct reaction of lactic acid with iron filings, reaction of ferrous chloride with sodium lactate, or reaction of ferrous...

  17. Hepatoprotective activity of Tridax procumbens against d-galactosamine/lipopolysaccharide-induced hepatitis in rats.

    PubMed

    Ravikumar, Vilwanathan; Shivashangari, Kanchi Subramanian; Devaki, Thiruvengadam

    2005-10-03

    The hepatoprotective activity of aerial parts of Tridax procumbens was investigated against d-Galactosamine/Lipopolysaccharide (d-GalN/LPS) induced hepatitis in rats. d-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight)-induced hepatic damage was manifested by a significant increase in the activities of marker enzymes (aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase and gamma glutamyl transferase) and bilirubin level in serum and lipids both in serum and liver. Pretreatment of rats with a chloroform insoluble fraction from ethanolic extract of Tridax procumbens reversed these altered parameters to normal values. The biochemical observations were supplemented by histopathological examination of liver sections. Results of this study revealed that Tridax procumbens could afford a significant protection in the alleviation of d-GalN/LPS-induced hepatocellular injury.

  18. Rhabdomyolysis and Artifactual Increase in Plasma Bicarbonate Concentration in an Amazon Parrot (Amazona species).

    PubMed

    Leissinger, Mary K; Johnson, James G; Tully, Thomas N; Gaunt, Stephen D

    2017-09-01

    A 7-year-old male Amazon parrot housed outdoors presented with acute collapse, marked lethargy, and open-mouth breathing. The patient had stiffness of the pectoral muscles, and petechiation and ecchymosis noted around the eyes and beneath the mandible. Laboratory data revealed markedly increased aspartate aminotransferase, creatine kinase, and lactate dehydrogenase activity consistent with rhabdomyolysis, as well as markedly increased plasma bicarbonate concentration. Marked clinical improvement and resolution of laboratory abnormalities occurred with fluid therapy, administration of a nonsteroidal anti-inflammatory medication, and husbandry modifications, including indoor housing and dietary alteration. A spurious increase in bicarbonate measurement as documented in equine and bovine cases of rhabdomyolysis also occurred in this avian patient and must be considered for accurate interpretation of acid-base status in exotic species presenting with consistent clinical signs.

  19. Exertional myopathy in whooping cranes (Grus americana) with prognostic guidelines.

    PubMed

    Hanley, Christopher S; Thomas, Nancy J; Paul-Murphy, Joanne; Hartup, Barry K

    2005-09-01

    Exertional myopathy developed in three whooping cranes (Grus americana) secondary to routine capture, handling, and trauma. Presumptive diagnosis of exertional myopathy was based on history of recent capture or trauma, clinical signs, and elevation of aspartate aminotransferase, alanine aminotransferase, creatine kinase, lactate dehydrogenase, and serum potassium. Treatments were attempted in each case, but ultimately were not successful. Gross and microscopic lesions at necropsy confirmed the diagnosis in each case, with the leg musculature most severely affected. Guidelines for determining prognosis of exertional myopathy in cranes have been included based on the analysis of these cases and others in the literature. As treatment is largely unrewarding, prevention remains the key in controlling exertional myopathy. Identification of predisposing factors and proper handling, immobilization, and transportation techniques can help prevent development of exertional myopathy in cranes.

  20. Exertional myopathy in whooping cranes (Grus americana) with prognostic guidlelines

    USGS Publications Warehouse

    Hanley, C.S.; Thomas, N.J.; Paul-Murphy, P.; Hartup, B.K.

    2005-01-01

    Exertional myopathy developed in three whooping cranes (Grus americana) secondary to routine capture, handling, and trauma. Presumptive diagnosis of exertional myopathy was based on history of recent capture or trauma, clinical signs, and elevation of aspartate aminotransferase, alanine aminotransferase, creatine kinase, lactate dehydrogenase, and serum potassium. Treatments were attempted in each case, but ultimately were not successful. Gross and microscopic lesions at necropsy confirmed the diagnosis in each case, with the leg musculature most severely affected. Guidelines for determining prognosis of exertional myopathy in cranes have been included based on the analysis of these cases and others in the literature. As treatment is largely unrewarding, prevention remains the key in controlling exertional myopathy. Identification of predisposing factors and proper handling, immobilization, and transportation techniques can help prevent development of exertional myopathy in cranes.

  1. N-acetyl Aspartate Levels in Adolescents With Bipolar and/or Cannabis Use Disorders

    PubMed Central

    Bitter, Samantha M.; Weber, Wade A.; Chu, Wen-Jang; Adler, Caleb M.; Eliassen, James C.; Strakowski, Stephen M.; DelBello, Melissa P.

    2014-01-01

    Objective Bipolar and cannabis use disorders commonly co-occur during adolescence, and neurochemical studies may help clarify the pathophysiology underlying this co-occurrence. This study compared metabolite concentrations in the left ventral lateral prefrontal cortex among: adolescents with bipolar disorder (bipolar group; n=14), adolescents with a cannabis use disorder (cannabis use group, n=13), adolescents with cannabis use and bipolar disorders (bipolar and cannabis group, n=25), and healthy adolescents (healthy controls, n=15). We hypothesized that adolescents with bipolar disorder (with or without cannabis use disorder) would have decreased N-acetyl aspartate levels in the ventral lateral prefrontal cortex compared to the other groups, and that the bipolar and cannabis group would have the lowest N-acetyl aspartate levels of all groups. Methods N-acetyl aspartate concentrations in the left ventral lateral prefrontal cortex were obtained using Proton Magnetic Resonance Spectroscopy. Results Adolescents with bipolar disorder showed significantly lower left ventral lateral prefrontal cortex N-acetyl aspartate levels, but post-hoc analyses indicated that this was primarily due to increased N-acetyl aspartate levels in the cannabis group. The cannabis use disorder group had significantly higher N-acetyl aspartate levels compared to the bipolar disorder and the bipolar and cannabis groups (p=0.0002 and p=0.0002, respectively). Pearson correlations revealed a significant positive correlation between amount of cannabis used and N-acetyl aspartate concentrations. Conclusions Adolescents with cannabis use disorder showed higher levels of N-acetyl aspartate concentrations that were significantly positively associated with the amount of cannabis used; however, this finding was not present in adolescents with comorbid bipolar disorder. PMID:24729763

  2. Lactating Mother and Psychotropic Drugs

    PubMed Central

    Tripathi, B. M.; Majumder, Pradipta

    2010-01-01

    Usage of psychotropics during pregnancy and lactation has always been a topic of debate and controversy. The debate stems from the potential adverse effects on the growing fetus or infants due to the transfer of psychotropic drugs through placenta or breast milk of mothers receiving them; and the problem of discontinuing psychotropics in lactating mother considering chances of relapse. However, most of the psychotropics are found to be relatively safe when used cautiously during the lactation phase. This article describes available data on the use of psychotropics in lactating mothers, in particular, in relation to the safety profile of infants. PMID:21327172

  3. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1420 Isocitric dehydrogenase test system. (a) Identification. An isocitric dehydrogenase test system is a device intended to measure the activity of the enzyme isocitric dehydrogenase in serum... disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary disease...

  4. Aspartic acid in the hippocampus: a biomarker for postoperative cognitive dysfunction

    PubMed Central

    Hu, Rong; Huang, Dong; Tong, Jianbin; Liao, Qin; Hu, Zhonghua; Ouyang, Wen

    2014-01-01

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2% isoflurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethylacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction. PMID:25206795

  5. Aspartic acid in the hippocampus: a biomarker for postoperative cognitive dysfunction.

    PubMed

    Hu, Rong; Huang, Dong; Tong, Jianbin; Liao, Qin; Hu, Zhonghua; Ouyang, Wen

    2014-01-15

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2% isoflurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethylacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction.

  6. Diaphorase Coupling Protocols for Red-Shifting Dehydrogenase Assays

    PubMed Central

    Davis, Mindy I.; Shen, Min; Simeonov, Anton

    2016-01-01

    Abstract Dehydrogenases are an important target for the development of cancer therapeutics. Dehydrogenases either produce or consume NAD(P)H, which is fluorescent but at a wavelength where many compounds found in chemical libraries are also fluorescent. By coupling dehydrogenases to diaphorase, which utilizes NAD(P)H to produce the fluorescent molecule resorufin from resazurin, the assay can be red-shifted into a spectral region that reduces interference from compound libraries. Dehydrogenases that produce NAD(P)H, such as isocitrate dehydrogenase 1 (IDH1), can be read in kinetic mode. Dehydrogenases that consume NAD(P)H, such as mutant IDH1 R132H, can be read in endpoint mode. Here, we report protocols for robust and miniaturized 1,536-well assays for WT IDH1 and IDH1 R132H coupled to diaphorase, and the counterassays used to further detect compound interference with the coupling reagents. This coupling technique is applicable to dehydrogenases that either produce or consume NAD(P)H, and the examples provided here can act as guidelines for the development of high-throughput screens against this enzyme class. PMID:27078681

  7. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum... cirrhosis or acute hepatitis. (b) Classification. Class I (general controls). The device is exempt from the...

  8. Cumulative lactate and hospital mortality in ICU patients

    PubMed Central

    2013-01-01

    Background Both hyperlactatemia and persistence of hyperlactatemia have been associated with bad outcome. We compared lactate and lactate-derived variables in outcome prediction. Methods Retrospective observational study. Case records from 2,251 consecutive intensive care unit (ICU) patients admitted between 2001 and 2007 were analyzed. Baseline characteristics, all lactate measurements, and in-hospital mortality were recorded. The time integral of arterial blood lactate levels above the upper normal threshold of 2.2 mmol/L (lactate-time-integral), maximum lactate (max-lactate), and time-to-first-normalization were calculated. Survivors and nonsurvivors were compared and receiver operating characteristic (ROC) analysis were applied. Results A total of 20,755 lactate measurements were analyzed. Data are srpehown as median [interquartile range]. In nonsurvivors (n = 405) lactate-time-integral (192 [0–1881] min·mmol/L) and time-to-first normalization (44.0 [0–427] min) were higher than in hospital survivors (n = 1846; 0 [0–134] min·mmol/L and 0 [0–75] min, respectively; all p < 0.001). Normalization of lactate <6 hours after ICU admission revealed better survival compared with normalization of lactate >6 hours (mortality 16.6% vs. 24.4%; p < 0.001). AUC of ROC curves to predict in-hospital mortality was the largest for max-lactate, whereas it was not different among all other lactate derived variables (all p > 0.05). The area under the ROC curves for admission lactate and lactate-time-integral was not different (p = 0.36). Conclusions Hyperlactatemia is associated with in-hospital mortality in a heterogeneous ICU population. In our patients, lactate peak values predicted in-hospital mortality equally well as lactate-time-integral of arterial blood lactate levels above the upper normal threshold. PMID:23446002

  9. Reliability of the Lactate Scout point-of-care instrument for the determination of blood L-lactate concentration in sheep.

    PubMed

    Kaynar, Ozgur; Karapinar, Tolga; Hayirli, Armagan; Baydar, Ersoy

    2015-12-01

    Data on accuracy and precision of the Lactate Scout point-of-care (POC) analyzer in ovine medicine are lacking. The purpose of the study was to assess the reliability of the Lactate Scout in sheep. Fifty-seven sheep at varying ages with various diseases were included. Blood lactate concentration in samples collected from the jugular vein was measured immediately on the Lactate Scout. Plasma L-lactate concentration was measured by the Cobas autoanalyzer as the reference method. Data were subjected to Student's t-test, Passing-Bablok regression, and Bland-Altman plot analyses for comparison and assessment of accuracy, precision, and reliability. Plasma l-lactate concentration was consistently lower than blood L-lactate concentration (3.06 ± 0.24 vs 3.3 ± 0.3 mmol/L, P < .0001). There was a positive correlation between plasma and blood L-lactate concentrations (r = .98, P < .0001). The Lactate Scout had 99% accuracy and 98% precision with the reference method. Blood (Y) and plasma (X) L-lactate concentrations were fitted to Y = 0.28 + 1.00 · X, with a residual standard deviation of 0.31 and a negligible deviation from the identity line (P = .93). The bias was fitted to Y = 0.10 + 0.05 · X, with Sy.x of 0.44 (P < .07). The Lactate Scout has high accuracy and precision, with a negligible bias. It is a reliable POC analyzer to assess L-lactate concentration in ovine medicine. © 2015 American Society for Veterinary Clinical Pathology.

  10. Resonant electron capture by aspartame and aspartic acid molecules.

    PubMed

    Muftakhov, M V; Shchukin, P V

    2016-12-30

    The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Effect of ethylenediamine on chemical degradation of insulin aspart in pharmaceutical solutions.

    PubMed

    Poulsen, Christian; Jacobsen, Dorte; Palm, Lisbeth

    2008-11-01

    To examine the effect of different amine compounds on the chemical degradation of insulin aspart at pharmaceutical formulation conditions. Insulin aspart preparations containing amine compounds or phosphate (reference) were prepared and the chemical degradation was assessed following storage at 37 degrees C using chromatographic techniques. Ethylenediamine was examined at multiple concentrations and the resulting insulin-ethylenediamine derivates were structurally characterized using matrix assisted laser desorption ionization time-of-flight mass spectroscopy. The effects on ethylenediamine when omitting glycerol or phenolic compounds from the formulations were investigated. Ethylenediamine was superior in terms of reducing formation of high molecular weight protein and insulin aspart related impurities compared to the other amine compounds and phosphate. Monotransamidation of insulin aspart in the presence of ethylenediamine was observed at all of the six possible Asn/Gln residues with Asn(A21) having the highest propensity to react with ethylenediamine. Data from formulations studies suggests a dual mechanism of ethylenediamine and a mandatory presence of phenolic compounds to obtain the effect. The formation of high molecular weight protein and insulin aspart related impurities was reduced by ethylenediamine in a concentration dependant manner.

  12. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Mumbai cohort of the A1chieve study.

    PubMed

    Talwalkar, P G; Gupta, Vishal; Kovil, Rajiv

    2013-11-01

    The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Mumbai, India. A total of 2112 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1561), insulin detemir (n = 313), insulin aspart (n = 144), basal insulin plus insulin aspart (n = 53) and other insulin combinations (n = 41). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 8.7%) and insulin user (mean HbA1c: 9.2%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: -1.4%, insulin users: -1.8%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  13. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis

    PubMed Central

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M.

    2015-01-01

    Summary The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. PMID:26232224

  14. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis.

    PubMed

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter W; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M

    2015-07-30

    The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Are arterial, muscle and working limb lactate exchange data obtained on men at altitude consistent with the hypothesis of an intracellular lactate shuttle?

    PubMed

    Brooks, G A

    1999-01-01

    The "Lactate Shuttle" Hypothesis posits that lactate removal requires exchange among producing and consuming cells. The "Intra-cellular Lactate Shuttle" hypothesis posits that lactate exchange occurs among compartments within cells, and that mitochondria are the major sites of cellular lactate disposal. Thus, cells with high mitochondrial densities (cardiocytes, myocytes, hepatocytes) are those which participate in lactate clearance. The model of an Intracellular Lactate Shuttle recognizes that the Keq for LDH is 3.6 x 10(4) M-1; thus, glycolysis results in cytosolic lactate production regardless of the intracellular PO2. The model also requires presence of a mitochondrial monocarboxylate transporter (MCT) that allows uptake of lactate as well as pyruvate, and intra-mitochondrial LDH whose function is linked to the ETC, and which permits lactate-->pyruvate conversion and oxidation. Recently, we have shown that liver, heart and muscle mitochondria readily oxidize lactate and contain LDH and MCT1. Accordingly, we have concluded that lactate is the predominant monocarboxylate oxidized by mitochondria in vivo. The model of an "Intra-cellular Lactate Shuttle" is consistent with many of the observations on men at sea level and altitude. The observations include: oxidation is the primary fate of lactate disposal during rest and exercise; lactate production and oxidation occur simultaneously within resting and working muscle; increasing [lactate]a increases muscle lactate extraction, and that by increasing SaO2 acclimatization reduces blood [lactate].

  16. Metabolic Profile and Inflammatory Responses in Dairy Cows with Left Displaced Abomasum Kept under Small-Scaled Farm Conditions

    PubMed Central

    Klevenhusen, Fenja; Humer, Elke; Metzler-Zebeli, Barbara; Podstatzky-Lichtenstein, Leopold; Wittek, Thomas; Zebeli, Qendrim

    2015-01-01

    Simple Summary This research established an association between lactation number and milk production and metabolic and inflammatory responses in high-producing dairy cows affected by left abomasal displacement in small-scaled dairy farms. The study showed metabolic alterations, liver damage, and inflammation in the sick cows, which were further exacerbated with increasing lactation number and milk yield of the cows. Abstract Left displaced abomasum (LDA) is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1) evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2) establish an association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca), but greater concentrations of non-esterified fatty acids (NEFA) and beta-hydroxy-butyrate (BHBA), in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA), regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA. PMID:26479481

  17. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  18. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  19. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  20. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  1. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  2. 21 CFR 866.5560 - Lactic dehydrogenase immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5560 Lactic dehydrogenase immunological test system. (a) Identification. A lactic dehydrogenase... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic dehydrogenase immunological test system...

  3. Characterization of an aldolase-dehydrogenase complex from the cholesterol degradation pathway of Mycobacterium tuberculosis.

    PubMed

    Carere, Jason; McKenna, Sarah E; Kimber, Matthew S; Seah, Stephen Y K

    2013-05-21

    HsaF and HsaG are an aldolase and dehydrogenase from the cholesterol degradation pathway of Mycobacterium tuberculosis. HsaF could be heterologously expressed and purified as a soluble dimer, but the enzyme was inactive in the absence of HsaG. HsaF catalyzes the aldol cleavage of 4-hydroxy-2-oxoacids to produce pyruvate and an aldehyde. The enzyme requires divalent metals for activity, with a preference for Mn(2+). The Km values for 4-hydroxy-2-oxoacids were about 20-fold lower than observed for the aldolase homologue, BphI from the polychlorinated biphenyl degradation pathway. Acetaldehyde and propionaldehyde were channeled directly to the dehydrogenase, HsaG, without export to the bulk solvent where they were transformed to acyl-CoA in an NAD(+) and coenzyme A dependent reaction. HsaG is able to utilize aldehydes up to five carbons in length as substrates, with similar catalytic efficiencies. The HsaF-HsaG complex was crystallized and its structure was determined to a resolution of 1.93 Å. Substitution of serine 41 in HsaG with isoleucine or aspartate resulted in about 35-fold increase in Km for CoA but only 4-fold increase in Km dephospho-CoA, suggesting that this residue interacts with the 3'-ribose phosphate of CoA. A second protein annotated as a 4-hydroxy-2-oxopentanoic acid aldolase in M. tuberculosis (MhpE, Rv3469c) was expressed and purified, but was found to lack aldolase activity. Instead this enzyme was found to possess oxaloacetate decarboxylase activity, consistent with the conservation (with the 4-hydroxy-2-oxoacid aldolases) of residues involved in pyruvate enolate stabilization.

  4. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium lactate. 582.1207 Section 582.1207 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is...

  6. GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-S, A SPERM-SPECIFIC GLYCOLYTIC ENZYME, IS REQUIRED FOR SPERM MOTILITY AND MALE FERTILITY

    EPA Science Inventory

    While glycolysis is highly conserved, it is remarkable that several novel isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like it...

  7. Bisphenol S Alters the Lactating Mammary Gland and Nursing Behaviors in Mice Exposed During Pregnancy and Lactation.

    PubMed

    LaPlante, Charlotte D; Catanese, Mary C; Bansal, Ruby; Vandenberg, Laura N

    2017-10-01

    High doses of estrogenic pharmaceuticals were once prescribed to women to halt lactation. Yet, the effects of low-level xenoestrogens on lactation remain poorly studied. We investigated the effects of bisphenol S (BPS), an estrogen receptor (ER) agonist, on the lactating mammary gland; the arcuate nucleus, a region of the hypothalamus important for neuroendocrine control of lactational behaviors; and nursing behavior in CD-1 mice. Female mice were exposed to vehicle, 2 or 200 µg BPS/kg/d from pregnancy day 9 until lactational day (LD) 20, and tissues were collected on LD21. Tissues were also collected from a second group at LD2. BPS exposure significantly reduced the fraction of the mammary gland comprised of lobules, the milk-producing units, on LD21, but not LD2. BPS also altered expression of Esr1 and ERα in the mammary gland at LD21, consistent with early involution. In the arcuate nucleus, no changes were observed in expression of signal transducer and activator of transcription 5, a marker of prolactin signaling, or ERα, suggesting that BPS may act directly on the mammary gland. However, observations of nursing behavior collected during the lactational period revealed stage-specific effects on both pup and maternal nursing behaviors; BPS-treated dams spent significantly more time nursing later in the lactational period, and BPS-treated pups were less likely to initiate nursing. Pup growth and development were also stunted. These data indicate that low doses of BPS can alter lactational behaviors and the maternal mammary gland. Together, they support the hypothesis that pregnancy and lactation are sensitive to low-dose xenoestrogen exposures. Copyright © 2017 Endocrine Society.

  8. Lactation and changes in maternal metabolic risk factors.

    PubMed

    Gunderson, Erica P; Lewis, Cora E; Wei, Gina S; Whitmer, Rachel A; Quesenberry, Charles P; Sidney, Steve

    2007-03-01

    To examine the relationship between duration of lactation and changes in maternal metabolic risk factors. This 3-year prospective study examined changes in metabolic risk factors among lactating women from preconception to postweaning and among nonlactating women from preconception to postdelivery, in comparison with nongravid women. Of 1,051 (490 black, 561 white) women who attended two consecutive study visits in years 7 (1992-1993) and 10 (1995-1996), 942 were nongravid and 109 had one interim birth. Of parous women, 48 (45%) did not lactate, and 61 (55%) lactated and weaned before year 10. The lactated and weaned women were subdivided by duration of lactation into less than 3 months and 3 months or more. Multiple linear regression models estimated mean 3-year changes in metabolic risk factors adjusted for age, race, parity, education, and behavioral covariates. Both parous women who did not lactate and parous women who lactated and weaned gained more weight (+5.6, +4.4 kg) and waist girth (+5.3, +4.9 cm) than nongravid women over the 3-year interval; P<.001. Low-density lipoprotein cholesterol (+6.7 mg/dL, P<.05) and fasting insulin (+2.6 microunits, P=.06) increased more for parous women who did not lactate than for nongravid and parous women who lactated and weaned. High-density lipoprotein cholesterol decrements for both parous women who did not lactate and parous women who lactated and weaned were 4.0 mg/dL greater than for nongravid women (P<.001). Among parous, lactated and weaned women, lactation for 3 months or longer was associated with a smaller decrement in high-density lipoprotein cholesterol (-1.3 mg/dL versus -7.3 mg/dL for less than 3 months; P<.01). Lactation may attenuate unfavorable metabolic risk factor changes that occur with pregnancy, with effects apparent after weaning. As a modifiable behavior, lactation may affect women's future risk of cardiovascular and metabolic diseases. II.

  9. Relationship between season, lactation number and incidence of clinical mastitis in different stages of lactation in a Holstein dairy farm.

    PubMed

    Moosavi, Maede; Mirzaei, Abdolah; Ghavami, Mohsen; Tamadon, Amin

    2014-01-01

    The aim of the present study was to compare the occurrence and duration of clinical mastitis in different seasons, stages of lactation period and parities in a Holstein dairy farm in Iran. A retrospective epidemiological survey from April 2005 to March 2008 was conducted on 884 clinical mastitis cases of 7437 lactations. Data of each case including calendar-date of mastitis onset, days in milk (DIM) of mastitis onset (early: 0-74 DIM; middle: 75-150 DIM, and late ≥ 150 DIM), duration of mastitis, and parity (1, 2, and ≥ 3) were recorded. Based on date of mastitis onset, cases were classified into stages of lactation. Moreover, beginning of mastitis was seasonally categorized. Duration of clinical mastitis after treatment in early lactation was less than late lactation in the first-parity cows (p = 0.005). In early lactation period, the first-parity cows suffered clinical mastitis in days earlier than two other parity groups (p < 0.001). Moreover, in late lactation period, the first-parity cows had clinical mastitis in days later than cows in the third and more parities (p = 0.002). Occurrence of clinical mastitis in summer increased in late lactation period but in winter increased in early lactation period (p = 0.001). In addition, occurrence time of clinical mastitis in summer were in days later than in spring (p = 0.02) and winter (p = 0.03) in early lactation period. In conclusion, occurrence of mastitis in winter and spring during early lactation and in summer during late lactation period were more prevalent especially in lower parities.

  10. Relationship between season, lactation number and incidence of clinical mastitis in different stages of lactation in a Holstein dairy farm

    PubMed Central

    Moosavi, Maede; Mirzaei, Abdolah; Ghavami, Mohsen; Tamadon, Amin

    2014-01-01

    The aim of the present study was to compare the occurrence and duration of clinical mastitis in different seasons, stages of lactation period and parities in a Holstein dairy farm in Iran. A retrospective epidemiological survey from April 2005 to March 2008 was conducted on 884 clinical mastitis cases of 7437 lactations. Data of each case including calendar-date of mastitis onset, days in milk (DIM) of mastitis onset (early: 0-74 DIM; middle: 75-150 DIM, and late ≥ 150 DIM), duration of mastitis, and parity (1, 2, and ≥ 3) were recorded. Based on date of mastitis onset, cases were classified into stages of lactation. Moreover, beginning of mastitis was seasonally categorized. Duration of clinical mastitis after treatment in early lactation was less than late lactation in the first-parity cows (p = 0.005). In early lactation period, the first-parity cows suffered clinical mastitis in days earlier than two other parity groups (p < 0.001). Moreover, in late lactation period, the first-parity cows had clinical mastitis in days later than cows in the third and more parities (p = 0.002). Occurrence of clinical mastitis in summer increased in late lactation period but in winter increased in early lactation period (p = 0.001). In addition, occurrence time of clinical mastitis in summer were in days later than in spring (p = 0.02) and winter (p = 0.03) in early lactation period. In conclusion, occurrence of mastitis in winter and spring during early lactation and in summer during late lactation period were more prevalent especially in lower parities. PMID:25568687

  11. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells

    PubMed Central

    Sullivan, Lucas B.; Gui, Dan Y.; Hosios, Aaron M.; Bush, Lauren N.; Freinkman, Elizaveta; Vander Heiden, Matthew G.

    2015-01-01

    Summary Mitochondrial respiration is important for cell proliferation, however the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. PMID:26232225

  12. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    PubMed

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Higher Accuracy of the Lactate Minimum Test Compared to Established Threshold Concepts to Determine Maximal Lactate Steady State in Running.

    PubMed

    Wahl, Patrick; Zwingmann, Lukas; Manunzio, Christian; Wolf, Jacob; Bloch, Wilhelm

    2018-05-18

    This study evaluated the accuracy of the lactate minimum test, in comparison to a graded-exercise test and established threshold concepts (OBLA and mDmax) to determine running speed at maximal lactate steady state. Eighteen subjects performed a lactate minimum test, a graded-exercise test (2.4 m·s -1 start,+0.4 m·s -1 every 5 min) and 2 or more constant-speed tests of 30 min to determine running speed at maximal lactate steady state. The lactate minimum test consisted of an initial lactate priming segment, followed by a short recovery phase. Afterwards, the initial load of the subsequent incremental segment was individually determined and was increased by 0.1 m·s -1 every 120 s. Lactate minimum was determined by the lowest measured value (LM abs ) and by a third-order polynomial (LM pol ). The mean difference to maximal lactate steady state was+0.01±0.14 m·s -1 (LM abs ), 0.04±0.15 m·s -1 (LM pol ), -0.06±0.31 m·s 1 (OBLA) and -0.08±0.21 m·s 1 (mDmax). The intraclass correlation coefficient (ICC) between running velocity at maximal lactate steady state and LM abs was highest (ICC=0.964), followed by LM pol (ICC=0.956), mDmax (ICC=0.916) and OBLA (ICC=0.885). Due to the higher accuracy of the lactate minimum test to determine maximal lactate steady state compared to OBLA and mDmax, we suggest the lactate minimum test as a valid and meaningful concept to estimate running velocity at maximal lactate steady state in a single session for moderately up to well-trained athletes. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Transmammary transfer of toxicity to nursing kids from Isocoma pluriflora (rayless goldenrod) dosed to lactating goats.

    PubMed

    Pfister, James A; Stegelmeier, Bryan L; Lee, Stephen T; Davis, T Zane; Green, Ben T

    2018-05-01

    Rayless goldenrod (RG; Isocoma pluriflora) poisons livestock in the southwestern U.S., west Texas, and northern Mexico. The putative toxin(s) have historically been thought to be benzofuran ketones. Goats have been used successfully as a model of RG poisoning. The transmammary transfer of toxicity to offspring from lactating goats has not been studied, thus the objective of this study was to determine if nursing kids would become poisoned via mother's milk when the dams were dosed with RG. Twelve lactating goats (6 controls and 6 treated; all with twin kids) were dosed via oral gavage with alfalfa or rayless goldenrod at 2% of BW per day for 14 days. Two kids showed overt clinical signs near the end of the study; however, no dams showed clinical signs, and none developed exercise intolerance or muscle weakness. After day 11 of treatment, the RG kids showed increased (P < 0.05) serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatinine kinase (CK) activities until exposure to the plant via mothers' milk ended. Serum CK activity of kids declined rapidly over 7 days after transmammary exposure ended. Histopathology revealed that one kid had extensive myonecrosis that involved both myocardium and skeletal muscles. The other kids from RG-treated does had minimal myocyte degeneration and necrosis characterized by individual myofiber swelling, hypereosinophilia and loss of striation. Benzofuran ketones were not detected in the milk of lactating goats; further, dosing with RG did not alter milk composition. In summary, milk ingestion from does dosed with >300 mg/kg BW of benzofuran ketones from RG over 14 days increased mean CK concentrations in treated kids compared to controls; however kids rapidly recovered when exposure ended. Additional work is needed to better define benzofuran ketone metabolism, toxicity, and animal susceptibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Structural analyses to identify selective inhibitors of glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme

    PubMed Central

    Danshina, Polina V.; Qu, Weidong; Temple, Brenda R.; Rojas, Rafael J.; Miley, Michael J.; Machius, Mischa; Betts, Laurie; O'Brien, Deborah A.

    2016-01-01

    STUDY HYPOTHESIS Detailed structural comparisons of sperm-specific glyceraldehyde 3-phosphate dehydrogenase, spermatogenic (GAPDHS) and the somatic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) isozyme should facilitate the identification of selective GAPDHS inhibitors for contraceptive development. STUDY FINDING This study identified a small-molecule GAPDHS inhibitor with micromolar potency and >10-fold selectivity that exerts the expected inhibitory effects on sperm glycolysis and motility. WHAT IS KNOWN ALREADY Glycolytic ATP production is required for sperm motility and male fertility in many mammalian species. Selective inhibition of GAPDHS, one of the glycolytic isozymes with restricted expression during spermatogenesis, is a potential strategy for the development of a non-hormonal contraceptive that directly blocks sperm function. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Homology modeling and x-ray crystallography were used to identify structural features that are conserved in GAPDHS orthologs in mouse and human sperm, but distinct from the GAPDH orthologs present in somatic tissues. We identified three binding pockets surrounding the substrate and cofactor in these isozymes and conducted a virtual screen to identify small-molecule compounds predicted to bind more tightly to GAPDHS than to GAPDH. Following the production of recombinant human and mouse GAPDHS, candidate compounds were tested in dose–response enzyme assays to identify inhibitors that blocked the activity of GAPDHS more effectively than GAPDH. The effects of a selective inhibitor on the motility of mouse and human sperm were monitored by computer-assisted sperm analysis, and sperm lactate production was measured to assess inhibition of glycolysis in the target cell. MAIN RESULTS AND THE ROLE OF CHANCE Our studies produced the first apoenzyme crystal structures for human and mouse GAPDHS and a 1.73 Å crystal structure for NAD+-bound human GAPDHS, facilitating the identification of unique

  16. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.

    PubMed

    de Lima, Pollyne Borborema Almeida; Mulder, Kelly Cristina Leite; Melo, Nadiele Tamires Moreira; Carvalho, Lucas Silva; Menino, Gisele Soares; Mulinari, Eduardo; de Castro, Virgilio H; Dos Reis, Thaila F; Goldman, Gustavo Henrique; Magalhães, Beatriz Simas; Parachin, Nádia Skorupa

    2016-09-15

    Crude glycerol is the main byproduct of the biodiesel industry. Although it can have different applications, its purification is costly. Therefore, in this study a biotechnological route has been proposed for further utilization of crude glycerol in the fermentative production of lactic acid. This acid is largely utilized in food, pharmaceutical, textile, and chemical industries, making it the hydroxycarboxylic acid with the highest market potential worldwide. Currently, industrial production of lactic acid is done mainly using sugar as the substrate. Thus here, for the first time, Pichia pastoris has been engineered for heterologous L-lactic acid production using glycerol as a single carbon source. For that, the Bos taurus lactate dehydrogenase gene was introduced into P. pastoris. Moreover, a heterologous and a novel homologous lactate transporter have been evaluated for L-lactic acid production. Batch fermentation of the P. pastoris X-33 strain producing LDHb allowed for lactic acid production in this yeast. Although P. pastoris is known for its respiratory metabolism, batch fermentations were performed with different oxygenation levels, indicating that lower oxygen availability increased lactic acid production by 20 %, pushing the yeast towards a fermentative metabolism. Furthermore, a newly putative lactate transporter from P. pastoris named PAS has been identified by search similarity with the lactate transporter from Saccharomyces cerevisiae Jen1p. Both heterologous and homologous transporters, Jen1p and PAS, were evaluated in one strain already containing LDH activity. Fed-batch experiments of P. pastoris strains carrying the lactate transporter were performed with the batch phase at aerobic conditions followed by an aerobic oxygen-limited phase where production of lactic acid was favored. The results showed that the strain containing PAS presented the highest lactic acid titer, reaching a yield of approximately 0.7 g/g. We showed that P. pastoris has a

  17. Three and six grams supplementation of d-aspartic acid in resistance trained men.

    PubMed

    Melville, Geoffrey W; Siegler, Jason C; Marshall, Paul Wm

    2015-01-01

    Although abundant research has investigated the hormonal effects of d-aspartic acid in rat models, to date there is limited research on humans. Previous research has demonstrated increased total testosterone levels in sedentary men and no significant changes in hormonal levels in resistance trained men. It was hypothesised that a higher dosage may be required for experienced lifters, thus this study investigated the effects of two different dosages of d-aspartic acid on basal hormonal levels in resistance trained men and explored responsiveness to d-aspartic acid based on initial testosterone levels. Twenty-four males, with a minimum of two years' experience in resistance training, (age, 24.5 ± 3.2 y; training experience, 3.4 ± 1.4 y; height, 178.5 ± 6.5 cm; weight, 84.7 ± 7.2 kg; bench press 1-RM, 105.3 ± 15.2 kg) were randomised into one of three groups: 6 g.d(-1) plain flour (D0); 3 g.d(-1) of d-aspartic acid (D3); and 6 g.d(-1) of d-aspartic acid (D6). Participants performed a two-week washout period, training four days per week. This continued through the experimental period (14 days), with participants consuming the supplement in the morning. Serum was analysed for levels of testosterone, estradiol, sex hormone binding globulin, albumin and free testosterone was determined by calculation. D-aspartic acid supplementation revealed no main effect for group in: estradiol; sex-hormone-binding-globulin; and albumin. Total testosterone was significantly reduced in D6 (P = 0.03). Analysis of free testosterone showed that D6 was significantly reduced as compared to D0 (P = 0.005), but not significantly different to D3. Analysis did not reveal any significant differences between D3 and D0. No significant correlation between initial total testosterone levels and responsiveness to d-aspartic acid was observed (r = 0.10, P = 0.70). The present study demonstrated that a daily dose of six grams of d-aspartic acid decreased

  18. Variation in metabolic enzymatic activity in white muscle and liver of blue tilapia, Oreochromis aureus, in response to long-term thermal acclimatization

    NASA Astrophysics Data System (ADS)

    Younis, Elsayed M.

    2015-05-01

    The effects of rearing temperature on white muscle and hepatic phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were examined in fingerlings of blue tilapia, Oreochromis aureus. The experiment was conducted for 14 weeks at temperatures of 18, 22, 26, 30, and 34°C. The activity of the glycolytic enzymes PFK, PK, and LDH in white muscle increased significantly with increase in water temperature. A reverse trend was observed for these enzymes in the liver, except for LDH, which behaved in the same manner as in white muscle. Cytosolic AST and ALT activity increased in both white muscle and liver in response to warm thermal acclimatization, while a reduction in mitochondrial AST and ALT activity was noticed at high temperatures in comparison with those at a lower temperature.

  19. [Pannus Formation Six-years after Aortic and Mitral Valve Replacement with Tissue Valves;Report of a Case].

    PubMed

    Nakamura, Makoto; Muraoka, Arata; Aizawa, Kei; Akutsu, Hirohiko; Kurumisawa, Soki; Misawa, Yoshio

    2015-07-01

    A 77-year-old man presented with exertional dyspnea. He had undergone aortic and mitral valve replacement with tissue valves 6-years earlier. The patient's hemoglobin level was 9.8 g/dl and serum aspartate aminotransferase (70 mU/ml) and lactate dehydrogenase (1,112 mU/ml) were elevated. Echocardiography revealed stenosis of the prosthetic valve in the aortic position with peak flow velocity of 3.8 m/second and massive mitral regurgitation. The patient underwent repeat valve replacement. Pannus formation around both implanted valves was observed. The aortic valve orifice was narrowed by the pannus, and one cusp of the prosthesis in the mitral position was fixed and caused the regurgitation, but they were free from cusp laceration or calcification. The patient's postoperative course was uneventful, and he continues to do well 14 months after surgery.

  20. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    PubMed

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  1. Comparative Transcriptome Analysis Reveals Different Molecular Mechanisms of Bacillus coagulans 2-6 Response to Sodium Lactate and Calcium Lactate during Lactic Acid Production

    PubMed Central

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592

  2. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  3. Brain lactate metabolism: the discoveries and the controversies

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Potential roles for lactate in the energetics of brain activation have changed radically during the past three decades, shifting from waste product to supplemental fuel and signaling molecule. Current models for lactate transport and metabolism involving cellular responses to excitatory neurotransmission are highly debated, owing, in part, to discordant results obtained in different experimental systems and conditions. Major conclusions drawn from tabular data summarizing results obtained in many laboratories are as follows: Glutamate-stimulated glycolysis is not an inherent property of all astrocyte cultures. Synaptosomes from the adult brain and many preparations of cultured neurons have high capacities to increase glucose transport, glycolysis, and glucose-supported respiration, and pathway rates are stimulated by glutamate and compounds that enhance metabolic demand. Lactate accumulation in activated tissue is a minor fraction of glucose metabolized and does not reflect pathway fluxes. Brain activation in subjects with low plasma lactate causes outward, brain-to-blood lactate gradients, and lactate is quickly released in substantial amounts. Lactate utilization by the adult brain increases during lactate infusions and strenuous exercise that markedly increase blood lactate levels. Lactate can be an ‘opportunistic', glucose-sparing substrate when present in high amounts, but most evidence supports glucose as the major fuel for normal, activated brain. PMID:22186669

  4. Request of laboratory liver tests in primary care in Spain: potential savings if appropriateness indicator targets were achieved.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Uris, Joaquín; Leiva-Salinas, Carlos

    2015-10-01

    Liver laboratory tests are used to screen for liver disease, suggest the underlying cause, estimate the severity, assess prognosis, and monitor the efficacy of therapy. The aim of this study was to compare the liver laboratory tests requesting patterns by GPs in Spain, according to geographic and hospital characteristics, to investigate the degree of requesting appropriateness. One hundred and forty-one clinical laboratories were invited to participate from diverse regions across Spain. They filed out the number of laboratory liver tests requested by GPs for the year 2012. Two types of appropriateness indicators were calculated: every test request per 1000 inhabitants or ratios of related tests requests. The indicator results obtained were compared between the different hospitals, according to their setting, location, and management. The savings generated, if each area would have achieved indicator targets, were calculated. We recruited 76 laboratories covering a population of 17,679,195 inhabitants. GPs requested 20,916,780 laboratory liver tests in the year 2012. No differences were obtained according to their setting. Lactate dehydrogenase and direct bilirubin per 1000 inhabitants were significantly higher in institutions with private management. Largest differences were observed between communities. Nine, 31, 0, and 13 laboratories, respectively, achieved the aspartate aminotransferase, lactate dehydrogenase, γ-glutamyl transpeptidase, and total bilirubin-related alanine aminotransferase indicator targets. Reaching ratios would have resulted in savings of €1,028,468. There was a high variability in the request of liver tests. This emphasizes the need to implement interventions to improve appropriate use of liver tests.

  5. The investigation of plasma glucose-6-phosphate dehydrogenase, 6-phoshogluconate dehydrogenase, glutathione reductase in premenauposal patients with iron deficiency anemia.

    PubMed

    Ozcicek, Fatih; Aktas, Mehmet; Türkmen, Kultigin; Coban, T Abdulkadir; Cankaya, Murat

    2014-07-01

    Iron is an essential element that is necessary for all cells in the body. Iron deficiency anemia (IDA) is one of the most common nutritional disorders in both developed and developing countries. The glutathione pathway is paramount to antioxidant defense and glucose-6-phosphate dehydrogenase (G6PD)-deficient cells do not cope well with oxidative damage. The goal of this study was to check the activities of G6PD, 6-phosphogluconate dehydrogenase, glutathione reductase in patients with IDA. We analyzed the plasma samples of 102 premenopausal women with IDA and 88 healthy control subjects. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activity as compared to the reduction of NADP +, glutathione reductase activity was performed based on the oxidation of NADPH. 2 ml of plasma were used in all analyzes. SPSS program was used for all of the statistical analysis. Diagnosis of iron deficiency in patients belonging to the analysis of blood were ferritin 3.60 ± 2.7 ng / mL, hemoglobin 9.4 ± 1.5 mg / dl and hematocrit 30.7 ± 4.1% ratio; in healthy subjects ferritin 53.5 ± 41.7 ng/ml, hemoglobin level 13.9 ± 1.3 mg / dl and hematocrit ratio 42 ± 3.53%. When compared to healthy subjects the glutathione reductase level (P<0.001) was found to be significantly higher in patients with IDA. IDA patients with moderate and severe anemia had lower GR activity when compared to IDA patients with mild anemia. But the plasma levels of glucose-6-phosphate dehydrogenase (P<0,600) and 6-phosphogluconate dehydrogenase (P<0,671) did not show any differences between healthy subjects and in patients with IDA. It was shown that Glucose-6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase have no effect on iron-deficiency anemia in patients. The plasma GR levels of premenopausal women with IDA were found to be higher compared to healthy subjects, which could be secondary to erythrocyte protection against oxidative stress being commonly seen in IDA.

  6. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Northern Tunisia cohort of the A1chieve study

    PubMed Central

    Blouza, Samira; Jamoussi, Henda

    2013-01-01

    Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Northern Tunisia. Results: A total of 443 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 137), insulin detemir (n = 243), insulin aspart (n = 11), basal insulin plus insulin aspart (n = 39) and other insulin combinations (n = 13). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 10.2%) and insulin user (mean HbA1c: 9.8%) groups. After 24 weeks of treatment, both the study groups showed improvement in HbA1c (insulin naïve: −2.1%, insulin users: −0.9%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia. PMID:24404473

  7. Digitalis metabolism and human liver alcohol dehydrogenase.

    PubMed Central

    Frey, W A; Vallee, B L

    1980-01-01

    Human liver alcohol dehydrogenase (alcohol: NAD" oxidoreductase, EC 1.1.1.1) catalyzes the oxidation of the 3 beta-OH group of digitoxigenin, digoxigenin, and gitoxigenin to their 3-keto derivatives, which have been characterized by high performance liquid chromatography and mass spectrometry. These studies have identified human liver alcohol dehydrogenase as the unknown NAD(H)-dependent liver enzyme specific for the free hydroxyl group at C3 of the cardiac genins; this hydroxyl is the critical site of the genins' enzymatic oxidation and concomitant pharmacological inactivation in humans. Several kinetic approaches have demonstrated that ethanol and the pharmacologically active components of the digitalis glycosides are oxidized with closely similar kcat/Km values at the same site on human liver alcohol dehydrogenase, for which they compete. Human liver alcohol dehydrogenase thereby becomes an important biochemical link in the metabolism, pharmacology, and toxicology of ethanol and these glycosides, structurally unrelated agents that are both used widely. Both the competition of ethanol with these cardiac sterols and the narrow margin of safety in the therapeutic use of digitalis derivatives would seem to place at increased risk those individuals who receive digitalis and simultaneously consume large amounts of ethanol or whose alcohol dehydrogenase function is impaired. PMID:6987673

  8. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition.

    PubMed

    Heng, Sabrina; Stieglitz, Kimberly A; Eldo, Joby; Xia, Jiarong; Cardia, James P; Kantrowitz, Evan R

    2006-08-22

    Escherichia coli aspartate transcarbamoylase (ATCase) catalyzes the committed step in pyrimidine nucleotide biosynthesis, the reaction between carbamoyl phosphate (CP) and l-aspartate to form N-carbamoyl-l-aspartate and inorganic phosphate. The enzyme exhibits homotropic cooperativity and is allosterically regulated. Upon binding l-aspartate in the presence of a saturating concentration of CP, the enzyme is converted from the low-activity low-affinity T state to the high-activity high-affinity R state. The potent inhibitor N-phosphonacetyl-l-aspartate (PALA), which combines the binding features of Asp and CP into one molecule, has been shown to induce the allosteric transition to the R state. In the presence of only CP, the enzyme is the T structure with the active site primed for the binding of aspartate. In a structure of the enzyme-CP complex (T(CP)), two CP molecules were observed in the active site approximately 7A apart, one with high occupancy and one with low occupancy. The high occupancy site corresponds to the position for CP observed in the structure of the enzyme with CP and the aspartate analogue succinate bound. The position of the second CP is in a unique site and does not overlap with the aspartate binding site. As a means to generate a new class of inhibitors for ATCase, the domain-open T state of the enzyme was targeted. We designed, synthesized, and characterized three inhibitors that were composed of two phosphonacetamide groups linked together. These two phosphonacetamide groups mimic the positions of the two CP molecules in the T(CP) structure. X-ray crystal structures of ATCase-inhibitor complexes revealed that each of these inhibitors bind to the T state of the enzyme and occupy the active site area. As opposed to the binding of Asp in the presence of CP or PALA, these inhibitors are unable to initiate the global T to R conformational change. Although the best of these T-state inhibitors only has a K(i) value in the micromolar range, the

  9. Genetics Home Reference: isobutyryl-CoA dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase deficiency Orphanet: Isobutyryl-CoA dehydrogenase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (3 links) Children's Cardiomyopathy Foundation CLIMB (Children Living with Inherited Metabolic ...

  10. Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase.

    PubMed

    Van Noorden, C J

    1984-01-01

    Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity

  11. The effect of trinitrobenzene sulfonic acid (TNB) on colonocyte arachidonic acid metabolism.

    PubMed

    Stratton, M D; Sexe, R; Peterson, B; Kaminski, D L; Li, A P; Longo, W E

    1996-02-01

    In previous studies we found that luminal perfusion of the isolated left colon of the rabbit with the hapten, trinitrobenzene, resulted in the production of an acute inflammatory process associated with alterations in eicosanoid metabolism. As the colitis was attenuated by cyclooxygenase inhibitors it is possible that the inflammation was mediated by arachidonic acid metabolites. In the present study it was intended to evaluate the effect of trinitrobenzene on eicosanoid metabolism in transformed human colonic cells by exposing Caco-2++ cells to various doses of trinitrobenzene. Cell injury was evaluated by measuring lactate dehydrogenase levels and cyclooxygenase and lipoxygenase activity was evaluated by measuring prostanoid and leukotriene production. In separate experiments resting and trinitrobenzene stimulated cells were treated with indomethacin and dexamethasone. Trinitrobenzene produced increased prostaglandin E2 and 6-keto prostaglandin F1alpha++ and increased lactate dehydrogenase levels. Leukotriene B4 was significantly increased compared to control values at the highest TNB concentration administered. Indomethacin inhibited the lactate dehydrogenase and prostanoid changes, suggesting that the inflammatory changes produced were mediated by the prostanoids. Dexamethasone administered for 1 hr prior to trinitrobenzene decreased the 6-keto prostaglandin F1alpha but did not alter trinitrobenzene produced changes in lactate dehydrogenase concentrations. Exposure of Caco-2 cells to dexamethasone for 24 hr decreased the trinitrobenzene produced lactate dehydrogenase and eicosanoid changes. The results suggest that trinitrobenzene produces an acute injury to Caco-2 cells that may be mediated by the cyclooxygenase enzymes.

  12. Adaptive Activation of a Stress Response Pathway Improves Learning and Memory Through Gs and β-Arrestin-1-Regulated Lactate Metabolism.

    PubMed

    Dong, Jun-Hong; Wang, Yi-Jing; Cui, Min; Wang, Xiao-Jing; Zheng, Wen-Shuai; Ma, Ming-Liang; Yang, Fan; He, Dong-Fang; Hu, Qiao-Xia; Zhang, Dao-Lai; Ning, Shang-Lei; Liu, Chun-Hua; Wang, Chuan; Wang, Yue; Li, Xiang-Yao; Yi, Fan; Lin, Amy; Kahsai, Alem W; Cahill, Thomas Joseph; Chen, Zhe-Yu; Yu, Xiao; Sun, Jin-Peng

    2017-04-15

    Stress is a conserved physiological response in mammals. Whereas moderate stress strengthens memory to improve reactions to previously experienced difficult situations, too much stress is harmful. We used specific β-adrenergic agonists, as well as β 2 -adrenergic receptor (β2AR) and arrestin knockout models, to study the effects of adaptive β2AR activation on cognitive function using Morris water maze and object recognition experiments. We used molecular and cell biological approaches to elucidate the signaling subnetworks. We observed that the duration of the adaptive β2AR activation determines its consequences on learning and memory. Short-term formoterol treatment, for 3 to 5 days, improved cognitive function; however, prolonged β2AR activation, for more than 6 days, produced harmful effects. We identified the activation of several signaling networks downstream of β2AR, as well as an essential role for arrestin and lactate metabolism in promoting cognitive ability. Whereas Gs-protein kinase A-cyclic adenosine monophosphate response element binding protein signaling modulated monocarboxylate transporter 1 expression, β-arrestin-1 controlled expression levels of monocarboxylate transporter 4 and lactate dehydrogenase A through the formation of a β-arrestin-1/phospho-mitogen-activated protein kinase/hypoxia-inducible factor-1α ternary complex to upregulate lactate metabolism in astrocyte-derived U251 cells. Conversely, long-term treatment with formoterol led to the desensitization of β2ARs, which was responsible for its decreased beneficial effects. Our results not only revealed that β-arrestin-1 regulated lactate metabolism to contribute to β2AR functions in improved memory formation, but also indicated that the appropriate management of one specific stress pathway, such as through the clinical drug formoterol, may exert beneficial effects on cognitive abilities. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  13. A thermostable L-aspartate oxidase: a new tool for biotechnological applications.

    PubMed

    Bifulco, Davide; Pollegioni, Loredano; Tessaro, Davide; Servi, Stefano; Molla, Gianluca

    2013-08-01

    L-Amino acid oxidases (LAAOs) are homodimeric flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids, ammonia, and hydrogen peroxide. Unlike the D-selective counterpart, the biotechnological application of LAAOs has not been thoroughly advanced because of the difficulties in their expression as recombinant protein in prokaryotic hosts. In this work, L-aspartate oxidase from the thermophilic archea Sulfolobus tokodaii (StLASPO, specific for L-aspartate and L-asparagine only) was efficiently produced as recombinant protein in E. coli in the active form as holoenzyme. This recombinant flavoenzyme shows the classical properties of FAD-containing oxidases. Indeed, StLASPO shows distinctive features that makes it attractive for biotechnological applications: high thermal stability (it is fully stable up to 80 °C) and high temperature optimum, stable activity in a broad range of pH (7.0-10.0), weak inhibition by the product oxaloacetate and by D-aspartate, and tight binding of the FAD cofactor. This latter property significantly distinguishes StLASPO from the E. coli counterpart. StLASPO represents an appropriate novel biocatalyst for the production of D-aspartate and a well-suited protein scaffold to evolve a LAAO activity by protein engineering.

  14. Crystal Structure of an Iron-Dependent Group III Dehydrogenase That Interconverts l-Lactaldehyde and l-1,2-Propanediol in Escherichia coli†

    PubMed Central

    Montella, Cristina; Bellsolell, Lluis; Pérez-Luque, Rosa; Badía, Josefa; Baldoma, Laura; Coll, Miquel; Aguilar, Juan

    2005-01-01

    The FucO protein, a member of the group III “iron-activated” dehydrogenases, catalyzes the interconversion between l-lactaldehyde and l-1,2-propanediol in Escherichia coli. The three-dimensional structure of FucO in a complex with NAD+ was solved, and the presence of iron in the crystals was confirmed by X-ray fluorescence. The FucO structure presented here is the first structure for a member of the group III bacterial dehydrogenases shown experimentally to contain iron. FucO forms a dimer, in which each monomer folds into an α/β dinucleotide-binding N-terminal domain and an all-α-helix C-terminal domain that are separated by a deep cleft. The dimer is formed by the swapping (between monomers) of the first chain of the β-sheet. The binding site for Fe2+ is located at the face of the cleft formed by the C-terminal domain, where the metal ion is tetrahedrally coordinated by three histidine residues (His200, His263, and His277) and an aspartate residue (Asp196). The glycine-rich turn formed by residues 96 to 98 and the following α-helix is part of the NAD+ recognition locus common in dehydrogenases. Site-directed mutagenesis and enzyme kinetic assays were performed to assess the role of different residues in metal, cofactor, and substrate binding. In contrast to previous assumptions, the essential His267 residue does not interact with the metal ion. Asp39 appears to be the key residue for discriminating against NADP+. Modeling l-1,2-propanediol in the active center resulted in a close approach of the C-1 hydroxyl of the substrate to C-4 of the nicotinamide ring, implying that there is a typical metal-dependent dehydrogenation catalytic mechanism. PMID:15995211

  15. A role for D-aspartate oxidase in schizophrenia and in schizophrenia-related symptoms induced by phencyclidine in mice

    PubMed Central

    Errico, F; D'Argenio, V; Sforazzini, F; Iasevoli, F; Squillace, M; Guerri, G; Napolitano, F; Angrisano, T; Di Maio, A; Keller, S; Vitucci, D; Galbusera, A; Chiariotti, L; Bertolino, A; de Bartolomeis, A; Salvatore, F; Gozzi, A; Usiello, A

    2015-01-01

    Increasing evidence points to a role for dysfunctional glutamate N-methyl-D-aspartate receptor (NMDAR) neurotransmission in schizophrenia. D-aspartate is an atypical amino acid that activates NMDARs through binding to the glutamate site on GluN2 subunits. D-aspartate is present in high amounts in the embryonic brain of mammals and rapidly decreases after birth, due to the activity of the enzyme D-aspartate oxidase (DDO). The agonistic activity exerted by D-aspartate on NMDARs and its neurodevelopmental occurrence make this D-amino acid a potential mediator for some of the NMDAR-related alterations observed in schizophrenia. Consistently, substantial reductions of D-aspartate and NMDA were recently observed in the postmortem prefrontal cortex of schizophrenic patients. Here we show that DDO mRNA expression is increased in prefrontal samples of schizophrenic patients, thus suggesting a plausible molecular event responsible for the D-aspartate imbalance previously described. To investigate whether altered D-aspartate levels can modulate schizophrenia-relevant circuits and behaviors, we also measured the psychotomimetic effects produced by the NMDAR antagonist, phencyclidine, in Ddo knockout mice (Ddo−/−), an animal model characterized by tonically increased D-aspartate levels since perinatal life. We show that Ddo−/− mice display a significant reduction in motor hyperactivity and prepulse inhibition deficit induced by phencyclidine, compared with controls. Furthermore, we reveal that increased levels of D-aspartate in Ddo−/− animals can significantly inhibit functional circuits activated by phencyclidine, and affect the development of cortico–hippocampal connectivity networks potentially involved in schizophrenia. Collectively, the present results suggest that altered D-aspartate levels can influence neurodevelopmental brain processes relevant to schizophrenia. PMID:25689573

  16. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase.

    PubMed

    Lipscomb, William N; Kantrowitz, Evan R

    2012-03-20

    Enzymes catalyze a particular reaction in cells, but only a few control the rate of this reaction and the metabolic pathway that follows. One specific mechanism for such enzymatic control of a metabolic pathway involves molecular feedback, whereby a metabolite further down the pathway acts at a unique site on the control enzyme to alter its activity allosterically. This regulation may be positive or negative (or both), depending upon the particular system. Another method of enzymatic control involves the cooperative binding of the substrate, which allows a large change in enzyme activity to emanate from only a small change in substrate concentration. Allosteric regulation and homotropic cooperativity are often known to involve significant conformational changes in the structure of the protein. Escherichia coli aspartate transcarbamoylase (ATCase) is the textbook example of an enzyme that regulates a metabolic pathway, namely, pyrimidine nucleotide biosynthesis, by feedback control and by the cooperative binding of the substrate, L-aspartate. The catalytic and regulatory mechanisms of this enzyme have been extensively studied. A series of X-ray crystal structures of the enzyme in the presence and absence of substrates, products, and analogues have provided details, at the molecular level, of the conformational changes that the enzyme undergoes as it shifts between its low-activity, low-affinity form (T state) to its high-activity, high-affinity form (R state). These structural data provide insights into not only how this enzyme catalyzes the reaction between l-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate, but also how the allosteric effectors modulate this activity. In this Account, we summarize studies on the structure of the enzyme and describe how these structural data provide insights into the catalytic and regulatory mechanisms of the enzyme. The ATCase-catalyzed reaction is regulated by nucleotide binding some 60

  17. Some enzymes of carbohydrate metabolism in Mesocestoides corti and Heterakis spumosa.

    PubMed

    Dubinský, P; Ruscinová, B; Hetmanski, S L; Arme, C; Turceková, L; Rybos, M

    1991-09-01

    The activities of selected enzymes of carbohydrate metabolism were measured in tetrathyridia of Mesocestoides corti and in adult females and males of Heterakis spumosa. When the species were compared, only lactate dehydrogenase and phosphoenolpyruvate carboxykinase activities were considerably higher in M. corti. Activities of other enzymes were higher in H. spumosa, with malate dehydrogenase activity being considerably so. In H. spumosa, enzyme activity was higher, and succinate dehydrogenase markedly so in males, when compared with females. Tetrathyridia aged 170 and 210 days show relatively stable malate and lactate dehydrogenase activities, and mice of ICR and BALB/c strains are suitable for the maintenance of tetrathyridia.

  18. Effects of low dietary cation-anion difference induced by ruminal ammonium chloride infusion on performance, serum, and urine metabolites of lactating dairy cows.

    PubMed

    Wang, Kun; Nan, Xuemei; Zhao, Puyi; Liu, Wei; Drackley, James K; Liu, Shijie; Zhang, Kaizhan; Bu, Dengpan

    2018-05-01

    The objective of the present study was to determine ammonium chloride tolerance of lactating dairy cows, by examining effects of negative dietary cation anion difference (DCAD) induced by ruminal ammonium chloride infusion on performance, serum and urine minerals, serum metabolites and enzymes of lactating dairy cows. Four primiparous lactating Chinese Holstein cows fitted with ruminal cannulas were infused with increasing amounts (0, 150, 300, or 450 g/d) of ammonium chloride in a crossover design. The DCAD of the base diet was 279 mEq/kg dry matter (DM) using the DCAD formula (Na + K - Cl - S)/kg of DM. Ammonium chloride infusion added the equivalent of 0, 128, 330, and 536 mEq/kg DM of Cl in treatments. According to the different dry matter intakes (DMI), the resulting actual DCAD of the four treatments was 279, 151, -51, and -257 mEq/kg DM, respectively. DMI decreased linearly as DCAD decreased. Yields of milk, 4% fat-corrected milk, energy-corrected milk, milk fat, and milk protein decreased linearly as DCAD decreased. Concentrations of milk protein and milk urea nitrogen increased linearly with decreasing DCAD. Concentration of Cl- in serum increased linearly and concentration of PO43- in serum increased quadratically as DCAD decreased. Urine pH decreased linearly and calculated urine volume increased linearly with decreasing DCAD. Linear increases in daily urinary excretion of Cl - , Ca 2+ , PO 4 3- , urea N, and ammonium were observed as DCAD decreased. Activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transferase in serum and urea N concentration in serum increased linearly as DCAD decreased. In conclusion, negative DCAD induced by ruminal ammonium chloride infusion resulted in a metabolic acidosis, had a negative influence on performance, and increased serum enzymes indicating potential liver and kidney damage in lactating dairy cows. Daily ammonium chloride intake by lactating dairy cows should not exceed 300 g, and 150

  19. Alcohol consumption decreases lactate clearance in acutely injured patients☆

    PubMed Central

    Dezman, Zachary D.W.; Comer, Angela C.; Narayan, Mayur; Scalea, Thomas M.; Hirshon, Jon Mark; Smith, Gordon S.

    2017-01-01

    Introduction Alcohol, a common risk factor for injury, has direct toxic effects on the liver. The use of lactate clearance has been well described as an indicator of the adequacy of resuscitation in injured patients. We investigated whether acutely injured patients with positive blood alcohol content (+BAC) had less lactate clearance than sober patients. Methods We conducted a retrospective cohort study of acutely injured patients treated at an urban Level 1 trauma centre between January 2010 and December 2012. Blood alcohol and venous lactate levels were measured on all patients at the time of arrival. Study subjects were patients transported directly from the scene of injury, who had an elevated lactate concentration on arrival (≥3.0 mmol/L) and at least one subsequent lactate measurement within 24 h after admission. Lactate clearance ([Lactate1 − Lactate2]/Lactate1) was calculated for all patients. Chi-squared tests were used to compare values from sober and intoxicated subjects. Lactate clearance was plotted against alcohol levels and stratified by age and Injury Severity Score (ISS). Results Serial lactate concentration measurements were obtained in 3910 patients; 1674 of them had +BAC. Patients with +BAC were younger (mean age: 36.6 [SD 14.7] vs 41.0 [SD 19.9] years [p = 0.0001]), were more often male (83.4% vs 75.9% [p = 0.0001]), had more minor injuries (ISS < 9) (33.8% vs 27.1% [p = 0.0001]), had a lower in-hospital mortality rate (1.4% vs 3.9% [p = 0.0001]), but also had lower average lactate clearance (37.8% vs 47.6% [p = 0.0001]). The lactate clearance of the sober patients (47.6 [SD 33.5]) was twice that of those with +BAC >400 (23.5 [SD 6.5]). Lactate clearance decreased with increasing BAC irrespective of age and ISS. Conclusions In a large group of acutely injured patients, a dose-dependent decrease in lactate clearance was seen in those with elevated BAC. This relationship will cause a falsely elevated lactate reading or prolong lactate

  20. A fluorescent probe-labeled Escherichia coli aspartate transcarbamoylase that monitors the allosteric conformational state.

    PubMed

    West, Jay M; Tsuruta, Hiro; Kantrowitz, Evan R

    2004-01-09

    A new system has been developed capable of monitoring conformational changes of the 240s loop of aspartate transcarbamoylase, which are tightly correlated with the quaternary structural transition, with high sensitivity in solution. Pyrene, a fluorescent probe, was conjugated to residue 241 in the 240s loop of aspartate transcarbamoylase to monitor changes in conformation by fluorescence spectroscopy. Pyrene maleimide was conjugated to a cysteine residue on the 240s loop of a previously constructed double catalytic chain mutant version of the enzyme, C47A/A241C. The pyrene-labeled enzyme undergoes the normal T to R structural transition, as demonstrated by small-angle x-ray scattering. Like the wild-type enzyme, the pyrene-labeled enzyme exhibits cooperativity toward aspartate, and is activated by ATP and inhibited by CTP at subsaturating concentrations of aspartate. The binding of the bisubstrate analogue N-(phosphonoacetyl)-l-aspartate (PALA), or the aspartate analogue succinate, in the presence of saturating carbamoyl phosphate, to the pyrenelabeled enzyme caused a sigmoidal change in the fluorescence emission. Saturation with ATP and CTP (in the presence of either subsaturating amounts of PALA or succinate and carbamoyl phosphate) caused a hyperbolic increase and decrease, respectively, in the fluorescence emission. The half-saturation values from the fluorescence saturation curves and kinetic saturation curves were, within error, identical. Fluorescence and small-angle x-ray scattering stopped-flow experiments, using aspartate and carbamoyl phosphate, confirm that the change in excimer fluorescence and the quaternary structure change correlate. These results in conjunction with previous studies suggest that the allosteric transition involves both global and local conformational changes and that the heterotropic effect of the nucleotides may be exerted through local conformational changes in the active site by directly influencing the conformation of the 240s

  1. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This substance...

  2. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This substance...

  3. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This substance...

  4. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This substance...

  5. 21 CFR 582.5311 - Ferrous lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5311 Ferrous lactate. (a) Product. Ferrous lactate. (b) Conditions of use. This substance...

  6. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  7. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  8. 21 CFR 582.1207 - Calcium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1207 Calcium lactate. (a) Product. Calcium lactate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  9. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    PubMed

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  10. The agreement between abnormal venous lactate and arterial lactate in the ED: a retrospective chart review.

    PubMed

    Bloom, B; Pott, J; Freund, Y; Grundlingh, J; Harris, T

    2014-06-01

    The evidence for prognostication using lactate is often based on arterial lactate (AL). Arterial sampling is painful and difficult, and carries risks. Studies comparing peripheral venous lactate (PVL) with AL showed little difference but predominantly included patients with normal lactate. The objective of this study was to measure agreement between PVL and AL in patients with elevated venous lactate. This is a retrospective cross-sectional study. ED patients age≥16, attending from October 2010 to June 2011 inclusive, with PVL≥2.0 mmol/L and AL taken within 1 hour. intravenous fluid prior to or between initial venous and arterial sampling. Primary endpoint: agreement between PVL and AL defined as mean difference±95% limits of agreement (LOA). The misclassification rate was assessed. N=232. VL median 3.50 mmol/L, range 2.00 to 15.00 mmol/L. AL median 2.45 mmol/L, range 1.0 to 13.2 mmol/L. The mean difference±SD between PVL and AL for all patients was 1.06±1.30 mmol/L (95%LOA -1.53 to 3.66 mmol/L). Using a cut-off of 2 mmol/L and 4 mmol/L, 36.2% and 17.9% of patients respectively were incorrectly classified as having elevated lactate. We report greater bias between VL and AL with broader LOA than previously documented. This may partly be due to the fact that we studied only patients with abnormal venous values, for whom close agreement would confer greatest clinical significance. The agreement between abnormal PVL and AL is poor and the high rate of misclassification may suggest that PVL is not a good substitute for AL if the venous lactate is abnormal. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Aspartate aminotransferase is potently inhibited by copper complexes: Exploring copper complex-binding proteome.

    PubMed

    Jia, Yuqi; Lu, Liping; Yuan, Caixia; Feng, Sisi; Zhu, Miaoli

    2017-05-01

    Recent researches indicated that a copper complex-binding proteome that potently interacted with copper complexes and then influenced cellular metabolism might exist in organism. In order to explore the copper complex-binding proteome, a copper chelating ion-immobilized affinity chromatography (Cu-IMAC) column and mass spectrometry were used to separate and identify putative Cu-binding proteins in primary rat hepatocytes. A total of 97 putative Cu-binding proteins were isolated and identified. Five higher abundance proteins, aspartate aminotransferase (AST), malate dehydrogenase (MDH), catalase (CAT), calreticulin (CRT) and albumin (Alb) were further purified using a SP-, and (or) Q-Sepharose Fast Flow column. The interaction between the purified proteins and selected 11 copper complexes and CuCl 2 was investigated. The enzymes inhibition tests demonstrated that AST was potently inhibited by copper complexes while MDH and CAT were weakly inhibited. Schiff-based copper complexes 6 and 7 potently inhibited AST with the IC 50 value of 3.6 and 7.2μM, respectively and exhibited better selectivity over MDH and CAT. Fluorescence titration results showed the two complexes tightly bound to AST with binding constant of 3.89×10 6 and 3.73×10 6 M -1 , respectively and a stoichiometry ratio of 1:1. Copper complex 6 was able to enter into HepG2 cells and further inhibit intracellular AST activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Analysis of lactate concentrations in canine synovial fluid.

    PubMed

    Proot, J L J; de Vicente, F; Sheahan, D E

    2015-01-01

    To report synovial fluid lactate concentrations in normal and pathological canine joints. Controlled, prospective study. Lactate was measured in synovial fluid using a hand-held meter and the rest of the fluid was sent to a commercial laboratory for analysis. Samples were divided into four groups; group 1: control, group 2: osteoarthritis, group 3: immune-mediated inflammatory arthritis, and group 4: septic arthritis. Statistical analysis was performed to compare lactate concentrations between the four groups and to examine the predictive value of lactate in the diagnosis of septic arthritis. A correlation was sought between synovial fluid lactate and synovial fluid total nucleated cell count and total protein. Seventy-four samples were investigated from 55 dogs. Statistical analysis found that lactate concentrations were significantly higher in the septic arthritis group than in each of the other three groups. No significant correlation could be found between synovial fluid lactate concentrations and synovial fluid total nucleated cell count or synovial fluid total protein. Lactate concentration was found to be a useful predictor of septic arthritis, with a low concentration pointing towards exclusion rather than a high concentration to the diagnosis of septic arthritis. Synovial fluid lactate concentration is not a good marker for osteoarthritis or immune-mediated inflammatory arthritis, but it is significantly increased in septic arthritis and could help the clinician in ruling out this condition in a quick and cost-effective way.

  13. Lactate Test

    MedlinePlus

    ... by cells as the body turns food into energy (cell metabolism). Depending on pH , it is sometimes ... level or when the primary way of producing energy in the body's cells is disrupted. Excess lactate ...

  14. Safety of single low-dose primaquine in glucose-6-phosphate dehydrogenase deficient falciparum-infected African males: Two open-label, randomized, safety trials.

    PubMed

    Bastiaens, Guido J H; Tiono, Alfred B; Okebe, Joseph; Pett, Helmi E; Coulibaly, Sam A; Gonçalves, Bronner P; Affara, Muna; Ouédraogo, Alphonse; Bougouma, Edith C; Sanou, Guillaume S; Nébié, Issa; Bradley, John; Lanke, Kjerstin H W; Niemi, Mikko; Sirima, Sodiomon B; d'Alessandro, Umberto; Bousema, Teun; Drakeley, Chris

    2018-01-01

    Primaquine (PQ) actively clears mature Plasmodium falciparum gametocytes but in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals can cause hemolysis. We assessed the safety of low-dose PQ in combination with artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP) in G6PDd African males with asymptomatic P. falciparum malaria. In Burkina Faso, G6PDd adult males were randomized to treatment with AL alone (n = 10) or with PQ at 0.25 (n = 20) or 0.40 mg/kg (n = 20) dosage; G6PD-normal males received AL plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. In The Gambia, G6PDd adult males and boys received DP alone (n = 10) or with 0.25 mg/kg PQ (n = 20); G6PD-normal males received DP plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. The primary study endpoint was change in hemoglobin concentration during the 28-day follow-up. Cytochrome P-450 isoenzyme 2D6 (CYP2D6) metabolizer status, gametocyte carriage, haptoglobin, lactate dehydrogenase levels and reticulocyte counts were also determined. In Burkina Faso, the mean maximum absolute change in hemoglobin was -2.13 g/dL (95% confidence interval [CI], -2.78, -1.49) in G6PDd individuals randomized to 0.25 PQ mg/kg and -2.29 g/dL (95% CI, -2.79, -1.79) in those receiving 0.40 PQ mg/kg. In The Gambia, the mean maximum absolute change in hemoglobin concentration was -1.83 g/dL (95% CI, -2.19, -1.47) in G6PDd individuals receiving 0.25 PQ mg/kg. After adjustment for baseline concentrations, hemoglobin reductions in G6PDd individuals in Burkina Faso were more pronounced compared to those in G6PD-normal individuals receiving the same PQ doses (P = 0.062 and P = 0.022, respectively). Hemoglobin levels normalized during follow-up. Abnormal haptoglobin and lactate dehydrogenase levels provided additional evidence of mild transient hemolysis post-PQ. Single low-dose PQ in combination with AL and DP was associated with mild and transient reductions in hemoglobin. None of the study participants developed moderate or

  15. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Seminotti, Bianca; Ribeiro, César Augusto; Lagranha, Valeska Lizzi; Pereira, Carolina Coffi; de Oliveira, Francine Hehn; de Souza, Diogo Gomes; Goodman, Stephen; Woontner, Michael; Wajner, Moacir

    2015-09-16

    Bioenergetics dysfunction has been postulated as an important pathomechanism of brain damage in glutaric aciduria type I, but this is still under debate. We investigated activities of citric acid cycle (CAC) enzymes, lactate release, respiration and membrane potential (ΔΨm) in mitochondrial preparations from cerebral cortex and striatum of 30-day-old glutaryl-CoA dehydrogenase deficient (Gcdh-/-) and wild type mice fed a baseline or a high lysine (Lys, 4.7%) chow for 60 or 96h. Brain histological analyses were performed in these animals, as well as in 90-day-old animals fed a baseline or a high Lys chow during 30 days starting at 60-day-old. A moderate reduction of citrate synthase and isocitrate dehydrogenase activities was observed only in the striatum from 30-day-old Gcdh-/- animals submitted to a high Lys chow. In contrast, the other CAC enzyme activities, lactate release, the respiratory parameters state 3, state 4, the respiratory control ratio and CCCP-stimulated (uncoupled) state, as well as ΔΨm were not altered in the striatum. Similarly, none of the evaluated parameters were changed in the cerebral cortex from these animals under baseline or Lys overload. On the other hand, histological analyses revealed the presence of intense vacuolation in the cerebral cortex of 60 and 90-day-old Gcdh-/- mice fed a baseline chow and in the striatum of 90-day-old Gcdh-/- mice submitted to Lys overload for 30 days. Taken together, the present data demonstrate mild impairment of bioenergetics homeostasis and marked histological alterations in striatum from Gcdh-/- mice under a high Lys chow, suggesting that disruption of energy metabolism is not mainly involved in the brain injury of these animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons.

    PubMed

    Bak, Lasse K; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S

    2006-10-01

    Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis was investigated. Cultured cerebellar (primarily glutamatergic) neurons were superfused in medium containing [U-13C]glucose (2.5 mmol/L) and lactate (1 or 5 mmol/L) or glucose (2.5 mmol/L) and [U-13C]lactate (1 mmol/L), and exposed to pulses of N-methyl-D-aspartate (300 micromol/L), leading to synaptic activity including vesicular release. The incorporation of 13C label into intracellular lactate, alanine, succinate, glutamate, and aspartate was determined by mass spectrometry. The metabolism of [U-13C]lactate under non-depolarizing conditions was high compared with that of [U-13C]glucose; however, it decreased significantly during induced depolarization. In contrast, at both concentrations of extracellular lactate, the metabolism of [U-13C]glucose was increased during neuronal depolarization. The role of glucose and lactate as energy substrates during vesicular release as well as transporter-mediated influx and efflux of glutamate was examined using preloaded D-[3H]aspartate as a glutamate tracer and DL-threo-beta-benzyloxyaspartate to inhibit glutamate transporters. The results suggest that glucose is essential to prevent depolarization-induced reversal of the transporter (efflux), whereas vesicular release was unaffected by the choice of substrate. In conclusion, the present study shows that glucose is a necessary substrate to maintain neurotransmitter homeostasis during synaptic activity and that synaptic activity does not induce an upregulation of lactate metabolism in glutamatergic neurons.

  17. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    PubMed

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  18. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus*

    PubMed Central

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Background Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. Objective This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Method Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. Results The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. Limitations of the study This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. Conclusions The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further

  19. Evaluation of a point-of-care electrochemical meter to detect subclinical ketosis and hypoglycaemia in lactating dairy cows.

    PubMed

    Zakian, A; Tehrani-Sharif, M; Mokhber-Dezfouli, M R; Nouri, M; Constable, P D

    2017-04-01

    To evaluate and validate a hand-held electrochemical meter (Precision Xtra®) as a screening test for subclinical ketosis and hypoglycaemia in lactating dairy cattle. Method comparison study using a convenience sample. Blood samples were collected into plain tubes from the coccygeal vessels of 181 Holstein cows at 2-4 weeks of lactation during summer in Iran. Blood β-hydroxybutyrate concentration (BHB) and glucose concentration were immediately measured by the electrochemical meter after applying 20 μL of blood to the reagent strip. Passing-Bablok regression and Bland-Altman plots were used to determine the accuracy of the meter against laboratory reference methods (BHB dehydrogenase and glucose oxidase). Serum BHB ranged from 0.1 to 7.3 mmol/L and serum glucose ranged from 0.9 to 5.1 mmol/L. Passing-Bablok regression analysis indicated that the electrochemical meter and reference methods were linearly related for BHB and glucose, with a slope estimate that was not significantly different from 1.00. Clinically minor, but statistically significant, differences were present for the intercept value for Passing-Bablok regression analysis for BHB and glucose, and bias estimates in the Bland-Altman plots for BHB and glucose. The electrochemical meter provided a clinically useful method to detect subclinical ketosis and hypoglycaemia in lactating dairy cows. Compared with other method validation studies using the meter, we attributed the improved performance of the electrochemical meter to application of a fixed volume of blood (20 μL) to the reagent strip, use of the meter in hot ambient conditions and use of glucose oxidase as the reference method for glucose analysis. © 2017 Australian Veterinary Association.

  20. l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum▿

    PubMed Central

    Blombach, Bastian; Schreiner, Mark E.; Holátko, Jiří; Bartek, Tobias; Oldiges, Marco; Eikmanns, Bernhard J.

    2007-01-01

    Corynebacterium glutamicum was engineered for the production of l-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the l-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum ΔaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, l-alanine, and l-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum ΔaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and l-alanine towards l-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum ΔaceE(pJC4ilvBNCE) produced up to 210 mM l-valine with a volumetric productivity of 10.0 mM h−1 (1.17 g l−1 h−1) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose. PMID:17293513