Sample records for lactating rats retain

  1. Comparative studies on fatty acid synthesis, glycogen metabolism, and gluconeogenesis by hepatocytes isolated from lean and obese Zucker rats.

    PubMed

    McCune, S A; Durant, P J; Jenkins, P A; Harris, R A

    1981-12-01

    Hepatocytes isolated from genetically obese female Zucker rats and lean female Zucker rats were compared. Hepatocytes from fed obese rats exhibited greater rates of fatty acid synthesis, more extensive accumulation of lactate and pyruvate from their glycogen stores, increased rates of net glucose utilization but produced less ketone bodies from exogenous fatty acids and had lower citrate levels than hepatocytes from lean rats. Lipogenesis was not as sensitive to dibutyryl cyclic AMP (DBcAMP) inhibition in hepatocytes from obese rats but glycogenolysis was stimulated to the same extent by this nucleotide in both preparations. Ketogenesis was less sensitive to stimulation by DBcAMP in hepatocytes from obese rats. A difference in sensitivity of lipogenesis to DBcAMP was not found when lactate plus pyruvate was added to the incubation medium, suggesting that a greater rate of glycolysis by hepatocytes from obese rats accounts for their relative insensitivity to DBcAMP. Citrate levels were elevated by DBcAMP to a greater extent in hepatocytes from obese rats. Hepatocytes prepared from lean rats starved for 48 hr were glycogen depleted and lacked significant capacity for lipogenesis and glycogen synthesis. In contrast, hepatocytes isolated from starved obese rats retained considerable amounts of liver glycogen and exhibited detectable rates of lipogenesis and glycogen synthesis. Hepatocytes prepared from starved lean rats gave faster apparent rates of lactate gluconeogenesis than hepatocytes prepared from starved obese rats. Thus, hepatocytes prepared from obese Zucker rats are more glycogenic, glycolytic, and lipogenic but less ketogenic and glucogenic than hepatocytes prepared from lean rats.

  2. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain.

    PubMed

    Dienel, Gerald A

    2017-11-01

    Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMR glc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMR O2 /CMR glc ) fell during activation in human brain, and the small rise in CMR O2 could not fully support oxidation of lactate produced by disproportionate increases in CMR glc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMR glc -CMR O2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Prolactin regulation of oxytocin neurone activity in pregnancy and lactation.

    PubMed

    Augustine, Rachael A; Ladyman, Sharon R; Bouwer, Gregory T; Alyousif, Yousif; Sapsford, Tony J; Scott, Victoria; Kokay, Ilona C; Grattan, David R; Brown, Colin H

    2017-06-01

    During lactation, prolactin promotes milk synthesis and oxytocin stimulates milk ejection. In virgin rats, prolactin inhibits the activity of oxytocin-secreting neurones. We found that prolactin inhibition of oxytocin neurone activity is lost in lactation, and that some oxytocin neurones were excited by prolactin in lactating rats. The change in prolactin regulation of oxytocin neurone activity was not associated with a change in activation of intracellular signalling pathways known to couple to prolactin receptors. The change in prolactin regulation of oxytocin neurone activity in lactation might allow coordinated activation of both populations of neurones when required for successful lactation. Secretion of prolactin for milk synthesis and oxytocin for milk secretion is required for successful lactation. In virgin rats, prolactin inhibits oxytocin neurones but this effect would be counterproductive during lactation when secretion of both hormones is required for synthesis and delivery of milk to the newborn. Hence, we determined the effects of intracerebroventricular (i.c.v.) prolactin on oxytocin neurones in urethane-anaesthetised virgin, pregnant and lactating rats. Prolactin (2 μg) consistently inhibited oxytocin neurones in virgin and pregnant rats (by 1.9 ± 0.4 and 1.8 ± 0.5 spikes s -1 , respectively), but not in lactating rats; indeed, prolactin excited six of 27 oxytocin neurones by >1 spike s -1 in lactating rats but excited none in virgin or pregnant rats (χ 2 2  = 7.2, P = 0.03). Vasopressin neurones were unaffected by prolactin (2 μg) in virgin rats but were inhibited by 1.1 ± 0.2 spikes s -1 in lactating rats. Immunohistochemistry showed that i.c.v. prolactin increased oxytocin expression in virgin and lactating rats and increased signal transducer and activator of transcription 5 phosphorylation to a similar extent in oxytocin neurones of virgin and lactating rats. Western blotting showed that i.c.v. prolactin did not affect phosphorylation of extracellular regulated kinase 1 or 2, or of Akt in the supraoptic or paraventricular nuclei of virgin or lactating rats. Hence, prolactin inhibition of oxytocin neurones is lost in lactation, which might allow concurrent elevation of prolactin secretion from the pituitary gland and activation of oxytocin neurones for synthesis and delivery of milk to the newborn. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  4. [Effect of pregnancy and lactation on the nutritional status of essential fatty acids in rat].

    PubMed

    Araya, J; Barriga, C

    1996-08-01

    Pregnancy and lactation could be high risk situations for the development of essential fatty acid deficiencies. To study the effect of pregnancy and lactation on red blood cell phospholipids percentual fatty acid composition of virgin, pregnant and lactating rats. Twenty four pregnant rats of 50 +/- 1 days of age were supplement with soy and 24 with fish oil during 21 days. Twelve rats of each group were sacrificed after 18 days of lactation, twenty four non pregnant rats received soy oil and acted as controls of pregnant and lactating rats. Red blood cell phospholipid fatty acid composition was analyzed by gas chromatography. The percentage of total omega-6 fatty acids of red blood cell phospholipid was 37.8 +/- 5.9, 32.6 +/- 0.6 and 38.3 +/- 3.5% in non pregnant, pregnant and lactating rats respectively (p < 0.001). The figures for total omega-3 fatty acids were 6.33 +/- 1.52, 4.31 +/- 0.39 and 2.7 +/- 0.46 respectively (p < 0.001). There was no change in eicosatrienoic fatty acid percentage. Supplementation with fish oil reverted the decrease in omega-6 and omega-3 fatty acid percentage of pregnant and lactating rats. Pregnancy and lactation decrease the capacity to transform precursors of essential fatty acids in long chain polyunsaturated fatty acids.

  5. Maternal protein reserves and their influence on lactational performance in rats.

    PubMed

    Pine, A P; Jessop, N S; Oldham, J D

    1994-01-01

    To determine the contribution of tissue protein reserves to lactational performance, multiparous female Sprague-Dawley rats were mated, caged individually and offered a diet high in protein (215 g crude protein (N x 6.25; CP)/kg dry matter (DM); H) ad lib. until day 12 of gestation. Subsequently half the rats continued to receive diet H while the remainder were offered a diet low in protein (65 g CP/kg DM; L) until parturition. This treatment aimed to produce a difference in carcass protein at parturition. On day 1 of lactation females were allocated to either diet H or a low-protein diet (90 g CP/kg DM; L2) offered until day 13 of lactation, giving four lactation treatment groups HH, HL2, LH and LL2. Groups of females were slaughtered on days 2 and 12 of gestation and days 1 and 13 of lactation and carcass and major organs were analysed. Weight gain of standardized litters was used as an indicator of lactational performance. Maternal carcass protein contents at parturition were 43.5 (SE 1.2) and 38.7 (SE 0.8) g (P < 0.01) for diets H and L respectively. During lactation there was little change in carcass protein content of HH rats while LH rats appeared to replenish their depleted reserves. Food intake or lactational performance did not differ between these two groups. HL2 and LL2 rats lost carcass protein with HL2 rats losing more than LL2 rats (P < 0.05). Intake and lactational performance were reduced compared with that on diet H (P < 0.05) but for the first 6 d of lactation were both greater (P < 0.05) for diet HL2 than for diet LL2. All four groups showed a considerable loss of body fat during lactation which was not affected by diet. The ability of HL2 rats to catabolize more protein and consume more food allowed them to sustain a greater lactational performance. Previous maternal protein depletion had no influence on lactational performance as long as an adequate supply of dietary protein was provided.

  6. Acute mercury exposition of virgin, pregnant, and lactating rats: Histopathological kidney and liver evaluations.

    PubMed

    Oliveira, Vitor Antunes; Favero, Gaia; Stacchiotti, Alessandra; Giugno, Lorena; Buffoli, Barbara; de Oliveira, Claudia Sirlene; Lavazza, Antonio; Albanese, Massimo; Rodella, Luigi Fabrizio; Pereira, Maria Ester; Rezzani, Rita

    2017-05-01

    This work investigated the effects of mercury chloride (HgCl 2 ) acute exposure on virgin, pregnant and lactating rats by determination of renal and hepatic morphological and ultrastructural parameters and the expression of oxidative stress and stress tolerance markers, due to kidney and liver are the organs that more accumulate inorganic mercury. Adult Wistar rats virgin (90 days old), pregnant (18 th gestation day) and lactating (7 th lactation day) were injected once with HgCl 2 (5 mg/kg) or saline (controls). We observed that HgCl 2 exposure of virgin rats caused significant inflammatory infiltration and severe morphological variations, like glomeruli atrophy, dilatation of Bowman's capsule, tubular degeneration and hepatocytes alteration. Moreover, virgin rats presented mitochondrial modification, important oxidative stress and increase in stress tolerance proteins at both kidney and liver level, compared with virgin controls. In detail, virgin rats exposed to HgCl 2 presented significantly elevated level of inducible nitric oxide synthase, heat shock protein 27 and glucose regulated proteins 75 expressions at both renal tubular and hepatocytes level, respect untreated virgin rats. Interestingly, pregnant and lactating rats exposed to HgCl 2 presented weak renal and liver morphological alterations, showing weak inflammatory infiltration and no significant difference in structural mitochondrial transmembrane protein, oxidative stress markers and stress tolerance proteins expressions respect controls (virgin, pregnant and lactating rats). Although, both control and HgCl 2 -exposed pregnant and lactating rats showed renal glomeruli greater in diameter respect virgin rats. In conclusion, we believe that virgin rats are more sensitive to HgCl 2 toxicity respect pregnant and lactating rats. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1500-1512, 2017. © 2016 Wiley Periodicals, Inc.

  7. Performance during a strenuous swimming session is associated with high blood lactate: pyruvate ratio and hypoglycemia in fasted rats

    PubMed Central

    Travassos, P.B.; Godoy, G.; De Souza, H.M.; Curi, R.; Bazotte, R.B.

    2018-01-01

    The aim of this study was to investigate the effect of lactatemia elevation and glycemia reduction on strenuous swimming performance in fasted rats. Three rats were placed in a swimming tank at the same time. The first rat was removed immediately (control group) and the remaining ones were submitted to a strenuous swimming session. After the second rat was exhausted (Exh group), the third one was immediately removed from the water (Exe group). According to the period of time required for exhaustion, the rats were divided into four groups: low performance (3–7 min), low-intermediary performance (8–12 min), high-intermediary performance (13–17 min), and high performance (18–22 min). All rats were removed from the swimming tanks and immediately killed by decapitation for blood collection or anesthetized for liver perfusion experiments. Blood glucose, lactate, and pyruvate concentrations, blood lactate/pyruvate ratio, and liver lactate uptake and its conversion to glucose were evaluated. Exhaustion in low and low-intermediary performance were better associated with higher lactate/pyruvate ratio. On the other hand, exhaustion in high-intermediary and high performance was better associated with hypoglycemia. Lactate uptake and glucose production from lactate in livers from the Exe and Exh groups were maintained. We concluded that there is a time sequence in the participation of lactate/pyruvate ratio and hypoglycemia in performance during an acute strenuous swimming section in fasted rats. The liver had an important participation in preventing hyperlactatemia and hypoglycemia during swimming through lactate uptake and its conversion to glucose. PMID:29590261

  8. Performance during a strenuous swimming session is associated with high blood lactate: pyruvate ratio and hypoglycemia in fasted rats.

    PubMed

    Travassos, P B; Godoy, G; De Souza, H M; Curi, R; Bazotte, R B

    2018-03-26

    The aim of this study was to investigate the effect of lactatemia elevation and glycemia reduction on strenuous swimming performance in fasted rats. Three rats were placed in a swimming tank at the same time. The first rat was removed immediately (control group) and the remaining ones were submitted to a strenuous swimming session. After the second rat was exhausted (Exh group), the third one was immediately removed from the water (Exe group). According to the period of time required for exhaustion, the rats were divided into four groups: low performance (3-7 min), low-intermediary performance (8-12 min), high-intermediary performance (13-17 min), and high performance (18-22 min). All rats were removed from the swimming tanks and immediately killed by decapitation for blood collection or anesthetized for liver perfusion experiments. Blood glucose, lactate, and pyruvate concentrations, blood lactate/pyruvate ratio, and liver lactate uptake and its conversion to glucose were evaluated. Exhaustion in low and low-intermediary performance were better associated with higher lactate/pyruvate ratio. On the other hand, exhaustion in high-intermediary and high performance was better associated with hypoglycemia. Lactate uptake and glucose production from lactate in livers from the Exe and Exh groups were maintained. We concluded that there is a time sequence in the participation of lactate/pyruvate ratio and hypoglycemia in performance during an acute strenuous swimming section in fasted rats. The liver had an important participation in preventing hyperlactatemia and hypoglycemia during swimming through lactate uptake and its conversion to glucose.

  9. Keratinocyte growth factor is a growth factor for mammary epithelium in vivo. The mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor.

    PubMed Central

    Ulich, T. R.; Yi, E. S.; Cardiff, R.; Yin, S.; Bikhazi, N.; Biltz, R.; Morris, C. F.; Pierce, G. F.

    1994-01-01

    Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. KGF is secreted by stromal cells and affects epithelial but not mesenchymal cell proliferation. KGF injected intravenously was found to cause dramatic proliferation of mammary epithelium in the mammary glands of rats. KGF causes ductal neogenesis and intraductal epithelial hyperplasia but not lobular differentiation in nulliparous female rats. KGF causes ductal and lobular epithelial hyperplasia in male rats. KGF causes proliferation of ductal and acinar cells in the mammary glands of pregnant rats. On the other hand, the ductal epithelium of lactating postpartum rats is resistant to the proliferative action of KGF. The mammary glands of lactating rats did not express less KGF receptor mRNA than the glands of pregnant rats, suggesting that the resistance of the ductal epithelium to KGF during lactation is not related to KGF receptor mRNA down-regulation. The mammary glands of both pregnant and postpartum lactating rats express KGF mRNA with more KGF present in the glands of lactating rats. In conclusion, the KGF and KGF receptor genes are expressed in rat mammary glands and recombinant KGF is a potent growth factor for mammary epithelium. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8178937

  10. Inhibition of metastin (kisspeptin-54)-GPR54 signaling in the arcuate nucleus-median eminence region during lactation in rats.

    PubMed

    Yamada, S; Uenoyama, Y; Kinoshita, M; Iwata, K; Takase, K; Matsui, H; Adachi, S; Inoue, K; Maeda, K-I; Tsukamura, H

    2007-05-01

    Follicular development and ovulation are suppressed during lactation in various mammalian species, mainly due to the suppression of pulsatile GnRH/LH secretion. Metastin (kisspeptin-54), a KiSS-1 gene product, is an endogenous ligand for GPR54, a G-protein-coupled receptor, and suggested to play a critical role in regulating the gonadal axis. The present study therefore aims to determine whether metastin (kisspeptin-54)-GPR54 signaling in discrete brain areas is inhibited by the suckling stimulus that causes suppression of LH secretion in lactating rats. Quantitative RT-PCR revealed that the KiSS-1 mRNA level was significantly lower in the arcuate nucleus (ARC)-median eminence region in lactating ovariectomized (OVX) and estrogen-treated OVX rats than in nonlactating controls. KiSS-1 mRNA in the anteroventral periventricular nucleus was kept at a low level in both lactating and nonlactating rats despite estrogen treatment. GPR54 mRNA levels were significantly lower in lactating than nonlactating rats in the anteroventral periventricular nucleus, but the levels in lactating mothers of the preoptic area and ARC-median eminence were comparable with nonlactating controls. Although KiSS-1 mRNA-expressing cells or metastin (kisspeptin-54) immunoreactivities were densely located in the ARC of nonlactating controls, few were found in the ARC of lactating OVX animals. Various doses of metastin (kisspeptin-54) (0.02, 0.2, and 2 nmol) injected into the third ventricle caused a significant increase in LH secretion in both lactating and nonlactating OVX rats, suggesting that lactating rats are responsive to metastin (kisspeptin-54) stimulus. Thus, the present study demonstrated that KiSS-1 mRNA/metastin (kisspeptin-54) expression is inhibited in the ARC by the suckling stimulus, suggesting that the inhibition is most probably involved in suppressing LH secretion in lactating rats.

  11. [Bone histomorphometry of lactating and no lactating hyperthyroid rats].

    PubMed

    Serakides, Rogéria; Ocarino, Natália de Melo; Magalhães, Fernanda do Carmo; Souza, Cíntia de Almeida; Leite, Eveline Dias; Freitas, Edmilson Santos de

    2008-06-01

    The objective of this study was to verify if hyperthyroidism potentiates the osteopenia lactational. 24 adult female rats were distributed in four groups: euthyroid no lactating (control), euthyroid lactating, hyperthyroid no lactating and hyperthyroid lactating. 20 days after gestation, all the animals were necropsied. The thoracic and lumbar vertebrae, the femur and tibia were decalcified and processed for histomorphometric analysis. The euthyroid lactating group presented intense osteopenia in the studied bones. In the hyperthyroid no lactating group, there was not any change in trabecular bone percentage in none of the analyzed bone. In the hyperthyroid lactating group, there was osteopenia in the tibia and femur, similar to the one in the euthyroid lactating group. But the trabecular bone percentage in all the vertebral bodies was significantly larger in comparison with the euthyroid lactating group. It was concluded that the hyperthyroidism does not potentiate the osteopenia lactational in female rats, but it minimizes the vertebral osteopenia once it stimulates the osteoblastic activity.

  12. A BBDR-HPT Axis Model for the Lactating Rat and Nursing Pup: Evaluation of Iodide Deficiency

    EPA Science Inventory

    A biologically based dose response (BBDR) model for the lactating rat and pup hypothalamic-pituitary-thyroid (HPT) axis is being developed to advance understanding of thyroid hormone disruptions and developmental neurotoxicity (DNT). The model for the lactating rat and pup quanti...

  13. Increased brain lactate is central to the development of brain edema in rats with chronic liver disease.

    PubMed

    Bosoi, Cristina R; Zwingmann, Claudia; Marin, Helen; Parent-Robitaille, Christian; Huynh, Jimmy; Tremblay, Mélanie; Rose, Christopher F

    2014-03-01

    The pathogenesis of brain edema in patients with chronic liver disease (CLD) and minimal hepatic encephalopathy (HE) remains undefined. This study evaluated the role of brain lactate, glutamine and organic osmolytes, including myo-inositol and taurine, in the development of brain edema in a rat model of cirrhosis. Six-week bile-duct ligated (BDL) rats were injected with (13)C-glucose and de novo synthesis of lactate, and glutamine in the brain was quantified using (13)C nuclear magnetic resonance spectroscopy (NMR). Total brain lactate, glutamine, and osmolytes were measured using (1)H NMR or high performance liquid chromatography. To further define the interplay between lactate, glutamine and brain edema, BDL rats were treated with AST-120 (engineered activated carbon microspheres) and dichloroacetate (DCA: lactate synthesis inhibitor). Significant increases in de novo synthesis of lactate (1.6-fold, p<0.001) and glutamine (2.2-fold, p<0.01) were demonstrated in the brains of BDL rats vs. SHAM-operated controls. Moreover, a decrease in cerebral myo-inositol (p<0.001), with no change in taurine, was found in the presence of brain edema in BDL rats vs. controls. BDL rats treated with either AST-120 or DCA showed attenuation in brain edema and brain lactate. These two treatments did not lead to similar reductions in brain glutamine. Increased brain lactate, and not glutamine, is a primary player in the pathogenesis of brain edema in CLD. In addition, alterations in the osmoregulatory response may also be contributing factors. Our results suggest that inhibiting lactate synthesis is a new potential target for the treatment of HE. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. Upregulation of GH, but not IGF1, in the hippocampus of the lactating dam after kainic acid injury

    PubMed Central

    Arellanes-Licea, Elvira C; Ávila-Mendoza, José; Ramírez-Martínez, Elizabeth C; Ramos, Eugenia; Uribe-González, Nancy; Arámburo, Carlos

    2018-01-01

    Lactation embodies a natural model of morphological, neurochemical, and functional brain plasticity. In this reproductive stage, the hippocampus of the female is less sensitive to excitotoxins in contrast to nulliparity. Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are known to be neuroprotective in several experimental models of brain lesion. Here, activation of the GH–IGF1 pituitary–brain axis following kainic acid (7.5 mg/kg i.p. KA) lesion was studied in lactating and nulliparous rats. Serum concentrations of GH and IGF1 were uncoupled in lactation. Compared to virgin rats, the basal concentration of GH increased up to 40% but IGF1 decreased 58% in dams, and only GH increased further after KA treatment. In the hippocampus, basal expression of GH mRNA was higher (2.8-fold) in lactating rats than in virgin rats. GH mRNA expression in lactating rats increased further after KA administration in the hippocampus and in the hypothalamus, in parallel to GH protein concentration in the hippocampus of KA-treated lactating rats (43% vs lactating control), as detected by Western blot and immunofluorescence. Except for the significantly lower mRNA concentration in the liver of lactating rats, IGF1 expression was not altered by the reproductive condition or by KA treatment in the hippocampus and hypothalamus. Present results indicate upregulation of GH expression in the hippocampus after an excitotoxic lesion, suggesting paracrine/autocrine actions of GH as a factor underlying neuroprotection in the brain of the lactating dam. Since no induction of IGF1 was detected, present data suggest a direct action of GH. PMID:29321175

  15. Microbiota Is Involved in Post-resection Adaptation in Humans with Short Bowel Syndrome.

    PubMed

    Gillard, Laura; Mayeur, Camille; Robert, Véronique; Pingenot, Isabelle; Le Beyec, Johanne; Bado, André; Lepage, Patricia; Thomas, Muriel; Joly, Francisca

    2017-01-01

    Short bowel syndrome (SBS) is characterized by severe intestinal malabsorption following restrictive surgery. The objective of this study was to determine the functional contribution of SBS-microbiota after resection. It is well-known that SBS-microbiota displayed specific features with a prevalence of Lactobacillus, a low amount of some anaerobic microbes ( Clostridium leptum ) and an accumulation of fecal lactate in some patients. Patients with jejuno-colonic anastomosis were stratified according to the presence of lactate in their feces and, we observe that the lactate-producing bacteria were predominant in the sub-group of patients accumulating fecal lactate. One case of D-encephalopathy crisis occurred when the D-lactate isoform accumulated in the feces and plasma bicarbonate levels decreased. The fecal sample at the time of the encephalopathy was transferred to germ free rats (SBS-H rats). The SBS-H microbiota conserved some characteristics of the SBS donnor, predominated by lactate-producing bacteria (mainly Lactobacillus ), a low level of lactate-consuming bacteria and undetectable C. leptum . However, lactate did not accumulate in feces of recipient rats and the D-encephalopathy was not reproduced in SBS-H rats. This suggests that the intact small bowel of the recipient rats protected them from lactate accumulation and that D-lactate encephalopathy can occur only in the absence of small intestine. After fecal transfer, we also show that gnotobiotic rats exhibited high levels of circulating GLP-1 and ghrelin, two hormones that are known to be induced in SBS patients. Therefore, the microbiota of SBS is a reservoir of biological signals involved in post-resection adaptation.

  16. Microbiota Is Involved in Post-resection Adaptation in Humans with Short Bowel Syndrome

    PubMed Central

    Gillard, Laura; Mayeur, Camille; Robert, Véronique; Pingenot, Isabelle; Le Beyec, Johanne; Bado, André; Lepage, Patricia; Thomas, Muriel; Joly, Francisca

    2017-01-01

    Short bowel syndrome (SBS) is characterized by severe intestinal malabsorption following restrictive surgery. The objective of this study was to determine the functional contribution of SBS-microbiota after resection. It is well-known that SBS-microbiota displayed specific features with a prevalence of Lactobacillus, a low amount of some anaerobic microbes (Clostridium leptum) and an accumulation of fecal lactate in some patients. Patients with jejuno-colonic anastomosis were stratified according to the presence of lactate in their feces and, we observe that the lactate-producing bacteria were predominant in the sub-group of patients accumulating fecal lactate. One case of D-encephalopathy crisis occurred when the D-lactate isoform accumulated in the feces and plasma bicarbonate levels decreased. The fecal sample at the time of the encephalopathy was transferred to germ free rats (SBS-H rats). The SBS-H microbiota conserved some characteristics of the SBS donnor, predominated by lactate-producing bacteria (mainly Lactobacillus), a low level of lactate-consuming bacteria and undetectable C. leptum. However, lactate did not accumulate in feces of recipient rats and the D-encephalopathy was not reproduced in SBS-H rats. This suggests that the intact small bowel of the recipient rats protected them from lactate accumulation and that D-lactate encephalopathy can occur only in the absence of small intestine. After fecal transfer, we also show that gnotobiotic rats exhibited high levels of circulating GLP-1 and ghrelin, two hormones that are known to be induced in SBS patients. Therefore, the microbiota of SBS is a reservoir of biological signals involved in post-resection adaptation. PMID:28469580

  17. Influence of lactation and pregnancy + lactation on mechanical properties and mineral content of the rat femur.

    PubMed

    Peng, T C; Kusy, R P; Garner, S C; Hirsch, P F; De Blanco, M C

    1987-06-01

    The quality of bone was assessed from femurs of rats both during lactation and after pregnancy + lactation. Mechanical properties of stiffness, strength, toughness, and ductility were measured, along with standard measurements of dry weight, ash weight, and total bone mineral. No changes occurred during the first week of lactation. During the second and third weeks of lactation all bone parameters except ductility decreased significantly. These data are consistent with bone losing mineral in order to supplement the dietary calcium intake necessary for milk production. In other experiments, femurs were collected from nulliparous rats and from rats that had previously undergone 1-3 pregnancy + lactations. The largest changes in bone mineral and mechanical properties occurred after a single pregnancy + lactation period, although significant further decreases in stiffness and strength occurred after the second pregnancy + lactation. No additional losses occurred following the third pregnancy + lactation. Even 5 months after only one pregnancy + lactation period, the bone quality was still impaired as all bone properties were lower than in nulliparous controls. Because the changes, especially stiffness and strength, were relatively larger than the changes in dry and ash weights of bone, measurements of these mechanical properties provide a more sensitive method to evaluate the quality of bone.

  18. The effect of zinc supplementation of lactating rats on short-term and long-term memory of their male offspring.

    PubMed

    Karami, Mohammad; Ehsanivostacolaee, Simin; Moazedi, Ali Ahmad; Nosrati, Anahita

    2013-01-01

    In this study the effect of zinc chloride (ZnCl2) administration on the short-term and long-term memory of rats were assessed. We enrolled six groups of adult female and control group of eight Wistar rats in each group. One group was control group with free access to food and water, and five groups drunk zinc chloride in different doses (20, 30, 50, 70 and 100 mg/kg/day) in drinking water for two weeks during lactation .One month after birth, a shuttle box used to short- term and long-term memory and the latency in entering the dark chamber as well. This experiment showed that maternal 70 mg/kg dietary zinc during lactation influenced the working memory of rats' offspring in all groups. Rats received 100 mg/kg/day zinc during lactation so they had significant impairment in working memory (short-term) of their offspring (P<0.05). There was no significant difference in reference (long-term) memory of all groups. Drug consumption below70 mg/kg/day zinc chloride during lactation had no effect. While enhanced 100 mg/ kg/ day zinc in lactating rats could cause short-term memory impairment.

  19. The intrauterine environment affects learning ability of Tokai high avoider rat offspring derived using cryopreservation and embryo transfer-mediated reproduction.

    PubMed

    Endo, Hitoshi; Eto, Tomoo; Yoshii, Fumihito; Owada, Satoshi; Watanabe, Tetsu; Tatemichi, Masayuki; Kimura, Minoru

    2017-07-22

    Embryo transfer (ET) to recipient female animals is a useful technique in biological and experimental animal studies. While cryopreservation of two-cell stage rat embryos and ET to recipient rats are currently well-defined, it is unknown whether these artificial reproductive techniques and maternal factors affect offspring phenotype, particularly higher brain functions. Therefore, we assessed the effects of cryopreservation, ET, and maternal care on learning behaviour of the offspring, using Tokai high avoider (THA) rats that have a high learning ability phenotype. We found that the high learning ability of THA rat offspring was not replicated following ET to surrogate Wistar rats with a low-avoidance phenotype. Additionally, the characteristic phenotype of offspring obtained through mating of ET-derived rats was similar to that of THA rats. A postnatal cross-fostering investigation with the offspring of Wistar and THA rats showed that maternal behaviour, including postnatal care and lactation traits, did not differ between the dams of low-avoidance Wistar rats and THA rats; therefore, learning behaviour was retained in both Wistar and THA rat offspring. We conclude that the offspring phenotype, although unchanged, has an imperceptible effect on the learning ability of ET-derived THA rats through the intrauterine environment of the recipient. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Offspring predisposition to obesity due to maternal-diet-induced obesity in rats is preventable by dietary normalization before mating.

    PubMed

    Castro, Heriberto; Pomar, Catalina Amadora; Palou, Andreu; Picó, Catalina; Sánchez, Juana

    2017-03-01

    We studied in rats whether the expected detrimental effects in offspring associated to maternal dietary obesity may be reverted by obesogenic diet removal 1 month before mating. Female rats were fed a cafeteria diet (CD) from days 10 to 100 and then a standard diet (SD) (postcafeteria rats). One month after CD removal, postcafeteria rats and a group of SD-fed female rats (controls) were mated with males. At weaning, offspring were fed SD and followed until 4 months old. CD was effective at inducing obesity in dams. Its removal led to a reduction in body weight, although, after 30 days, rats retained excess body weight and fat than controls. During lactation, postcafeteria dams showed greater body fat, and higher leptin and adiponectin levels in milk than controls. From 2 months of life, offspring of postcafeteria dams displayed lower body weight than controls, with no differences in the percentage of fat, homeostatic model assessment for insulin resistance, or circulating parameters. Removal of CD in obese rats before gestation, although without complete reversion of body weight excess, may prevent the expected detrimental effects in offspring associated to an excess fat accumulation in adulthood and the related metabolic disturbances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The effect of pregnancy and lactation on bone mineral density in fluoride-exposed rats.

    PubMed

    Yildiz, Mustafa; Oral, Baha

    2006-06-01

    Fluoride increases metabolic turnover of the bone in favour of bone formation. Excessive intake of fluoride may lead to pathological changes in teeth and bones: dental and skeletal fluorosis. In this study, we investigated the effect of pregnancy and lactation on bone mineral density (BMD) in fluoride-exposed rats. Female Wistar rats were given commercially available spring water with 100 ppm fluoride (N = 8), or without addition (N = 8) for 18 weeks. At 16 weeks of age, four female rats and one male rat were kept in a cage for 5 days; all females were successfully impregnated. BMD was measured at 16 weeks of age, on the first day postpartum, and at the end of lactation. Spinal BMD was significantly higher in fluoride-exposed rats than control (P < 0.05), but there were no differences in femoral BMD (P = 0.670). During pregnancy, spinal BMD and femoral BMD were not significantly changed in fluoride-exposed rats, whereas BMD of the spine was significantly decreased in the control rats (P = 0.013), but not in the femur. During lactation, BMD was significantly decreased at the two regions compared to initial values (P < 0.05) in both groups. This study shows that pregnancy has no effect on bone, but lactation has a decreasing effect on BMD in fluoride-exposed rats.

  2. Effect of Lactation on myocardial vulnerability to ischemic insult in rats

    PubMed Central

    Askari, Sahar; Imani, Alireza; Sadeghipour, Hamidreza; Faghihi, Mahdieh; Edalatyzadeh, Zohreh; Choopani, Samira; Karimi, Nasser; Fatima, Sulail

    2017-01-01

    Background Cardiovascular diseases are the leading cause of mortality and long-term disability worldwide. Various studies have suggested a protective effect of lactation in reducing the risk of cardiovascular diseases. Objective This study was designed to assess the effects of pregnancy and lactation on the vulnerability of the myocardium to an ischemic insult. Methods Eighteen female rats were randomly divided into three groups: ischemia-reperfusion (IR), in which the hearts of virgin rats underwent IR (n = 6); lactating, in which the rats nursed their pups for 3 weeks and the maternal hearts were then submitted to IR (n = 6); and non-lactating, in which the pups were separated after birth and the maternal hearts were submitted to IR (n = 6). Outcome measures included heart rate (HR), left ventricular developed pressure (LVDP), rate pressure product (RPP), ratio of the infarct size to the area at risk (IS/AAR %), and ventricular arrhythmias - premature ventricular contraction (PVC) and ventricular tachycardia (VT). Results The IS/AAR was markedly decreased in the lactating group when compared with the non-lactating group (13.2 ± 2.5 versus 39.7 ± 3.5, p < 0.001) and the IR group (13.2 ± 2.5 versus 34.0 ± 4.7, p < 0.05). The evaluation of IR-induced ventricular arrhythmias indicated that the number of compound PVCs during ischemia, and the number and duration of VTs during ischemia and in the first 5 minutes of reperfusion in the non-lactating group were significantly (p < 0.05) higher than those in the lactating and IR groups. Conclusion Lactation induced early-onset cardioprotective effects, while rats that were not allowed to nurse their pups were more susceptible to myocardial IR injury. PMID:28444063

  3. Evaluation of passive avoidance learning and spatial memory in rats exposed to low levels of lead during specific periods of early brain development.

    PubMed

    Rao Barkur, Rajashekar; Bairy, Laxminarayana K

    2015-01-01

    Widespread use of heavy metal lead (Pb) for various commercial purposes has resulted in the environmental contamination caused by this metal. The studies have shown a definite relationship between low level lead exposure during early brain development and deficit in children's cognitive functions. This study investigated the passive avoidance learning and spatial learning in male rat pups exposed to lead through their mothers during specific periods of early brain development. Experimental male rats were divided into 5 groups: i) the normal control group (NC) (N = 12) consisted of rat offspring born to mothers who were given normal drinking water throughout gestation and lactation, ii) the pre-gestation lead exposed group (PG) (N = 12) consisted of rat offspring, mothers of these rats had been exposed to 0.2% lead acetate in the drinking water for 1 month before conception, iii) the gestation lead exposed group (G) (N = 12) contained rat offspring born to mothers who had been exposed to 0.2% lead acetate in the drinking water throughout gestation, iv) the lactation lead exposed group (L) (N = 12) had rat offspring, mothers of these rats exposed to 0.2% lead acetate in the drinking water throughout lactation and v) the gestation and lactation lead exposed group (GL) (N = 12) contained rat offspring, mothers of these rats were exposed to 0.2% lead acetate throughout gestation and lactation. The study found deficit in passive avoidance learning in the G, L and GL groups of rats. Impairment in spatial learning was found in the PG, G, L and GL groups of rats. Interestingly, the study found that gestation period only and lactation period only lead exposure was sufficient to cause deficit in learning and memory in rats. The extent of memory impairment in the L group of rats was comparable with the GL group of rats. So it can be said that postnatal period of brain development is more sensitive to neurotoxicity compared to prenatal exposure. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  4. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao

    Preconditioning against myocardial ischemia–reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct sizemore » and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. - Highlights: • Morphine and ischemic preconditioning are cardioprotective in normal rat hearts. • Ischemic preconditioning fails to confer cardioprotection in rats with heart failure. • Morphine retains cardioprotection in doxorubicin-induced heart failure. • Morphine exerts cardioprotection via the ERK/GSK-β pathway independent of PI3K/Akt.« less

  5. Maternal consumption of a cafeteria diet during lactation in rats leads the offspring to a thin-outside-fat-inside phenotype.

    PubMed

    Pomar, C A; van Nes, R; Sánchez, J; Picó, C; Keijer, J; Palou, A

    2017-08-01

    The suckling period is a critical phase of development, in which maternal overnutrition may program the susceptibility of developing chronic diseases and disorders, such as obesity and metabolic alterations, in adult life. Here, we questioned whether the consumption of a cafeteria diet throughout lactation in rats affects the macronutrient composition of milk and whether it results in permanent metabolic effects in the offspring. Nursing rats were fed a control diet or a cafeteria diet during lactation. Milk was obtained at different time points of lactation. Offspring (males and females) were weaned onto a control diet until the age of 6 months. Circulating parameters were measured under ad libitum feeding and under 12-h fasting conditions at weaning and at 3 and 6 months of age. An oral glucose tolerance test (OGTT) was performed at 3 and 6 months of age. Rats fed a cafeteria diet during lactation consumed an unbalanced diet, with lower protein and higher fat content versus controls, which was reflected in the composition of the milk. The offspring of rats fed a cafeteria diet during lactation showed lower body weight and lower lean mass, but greater fat accumulation, compared with controls. They also displayed hyperleptinaemia, altered lipid profile and impaired response to an OGTT. Maternal consumption of a cafeteria diet throughout lactation in rats produces lasting effects in the metabolic health of their offspring, which are not associated with a higher body weight but with a greater fat accumulation, similarly to the thin-outside-fat-inside phenotype.

  6. Pulmonary effects of inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, T.; Chen, L.C.; Fine, J.M.

    1992-08-01

    Occupational exposure to freshly formed zinc oxide (ZnO) particles (less than 1.0 micron aerodynamic diameter) produces a well-characterized response known as metal fume fever. An 8-hr threshold limit value (TLV) of 5 mg/m3 has been established to prevent adverse health effects because of exposure to ZnO fumes. Because animal toxicity studies have demonstrated pulmonary effects near the current TLV, the present study examined the time course and dose-response of the pulmonary injury produced by inhaled ZnO in guinea pigs, rats, rabbits, and human volunteers. The test animals were exposed to 0, 2.5, or 5.0 mg/m3 ZnO for up to 3more » hr and their lungs lavaged. Both the lavage fluid and recovered cells were examined for evidence of inflammation or altered cell function. The lavage fluid from guinea pigs and rats exposed to 5 mg/m3 had significant increases in total cells, lactate dehydrogenase, beta-glucuronidase, and protein content. These changes were greatest 24 hr after exposure. Guinea pig alveolar macrophage function was depressed as evidenced by in vitro phagocytosis of opsonized latex beads. Significant changes in lavage fluid parameters were also observed in guinea pigs and rats exposed to 2.5 mg/m3 ZnO. In contrast, rabbits showed no increase in biochemical or cellular parameters following a 2-hr exposure to 5 mg/m3 ZnO. Differences in total lung burden of ZnO, as determined in additional animals by atomic absorption spectroscopy, appeared to account for the observed differences in species responses. Although the lungs of guinea pigs and rats retained approximately 20% and 12% of the inhaled dose, respectively, rabbits retained only 5%.« less

  7. Histological study on hippocampus, amygdala and cerebellum following low lead exposure during prenatal and postnatal brain development in rats.

    PubMed

    Barkur, Rajashekar Rao; Bairy, Laxminarayana K

    2016-06-01

    Neuropsychological studies in children who are exposed to lead during their early brain development have shown to develop behavioural and cognitive deficit. The aim of the present study was to assess the cellular damage in hippocampus, amygdala and cerebellum of rat pups exposed to lead during different periods of early brain development. Five groups of rat pups were investigated. (a) Control group (n = 8) (mothers of these rats were given normal drinking water throughout gestation and lactation), (b) pregestation lead-exposed group (n = 8) (mothers of these rats were exposed to 0.2% lead acetate in the drinking water for one month before conception), (c) gestation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout gestation [gestation day 01 to day 21]), (d) lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout lactation [postnatal day 01 to day 21]) and (e) gestation and lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate throughout gestation and lactation). On postnatal day 30, rat pups of all the groups were killed. Numbers of surviving neurons in the hippocampus, amygdala and cerebellum regions were counted using cresyl violet staining technique. Histological data indicate that lead exposure caused significant damage to neurons of hippocampus, amygdala and cerebellum regions in all lead-exposed groups except lactation lead-exposed group. The extent of damage to neurons of hippocampus, amygdala and cerebellum regions in lactation lead-exposed group was comparable to gestation and lactation groups even though the duration of lead exposure was much less in lactation lead-exposed group. To conclude, the postnatal period of brain development seems to be more vulnerable to lead neurotoxicity compared to prenatal period of brain development. © The Author(s) 2014.

  8. Regulation of bone mineral loss during lactation

    NASA Technical Reports Server (NTRS)

    Brommage, R.; Deluca, H. F.

    1985-01-01

    The effects of varyng dietary calcium and phosphorous levels, vitamin D deficiency, oophorectomy, adrenalectomy, and simultaneous pregnancy on bone mineral loss during lactation in rats are studied. The experimental procedures and evaluations are described. The femur ash weight of lactating and nonlactating rats are calculated. The data reveals that a decrease in dietary calcium of 0.02 percent results in an increased loss of bone mineral, an increase in calcium to 1.4 percent does not lessen bone mineral loss, and bone mineral loss in vitamin D deficient rats is independent of calcium levels. It is observed that changes in dietary phosphorous level, oophorectomy, adrenalectomy, and simultaneous pragnancy do not reduce bone mineral loss during lactation. The analysis of various hormones to determine the mechanism that triggers bone mineral loss during lactation is presented.

  9. Physiologically Based Pharmacokinetic Modeling of the Lactating Rat and Nursing Pup: a Multiroute Exposure Model for Trichloroethylene and its Metabolite, Trichloroacetic Acid

    DTIC Science & Technology

    1990-01-01

    cumulated during pregnancy was described as a linear animal (allometrically scaled), was estimated by comput- process changing from 12.0% of body weight of...biochemical effects of TCE in neonatal pregnancy (Fisher et al., 1989) were used for repeated- rats born to dams exposed to TCE via drink- exposure...studies during lactation. Female cesarean-de- rived Fischer-344 rats, obtained from Charles Rivering water during pregnancy and lactation. Breeding

  10. Electro-acupuncture up-regulates astrocytic MCT1 expression to improve neurological deficit in middle cerebral artery occlusion rats.

    PubMed

    Lu, Yan; Zhao, Haijun; Wang, Yuan; Han, Bingbing; Wang, Tong; Zhao, Hong; Cui, Kemi; Wang, Shijun

    2015-08-01

    Cerebral ischemia is one of the common diseases treated by electro-acupuncture (EA). Although the clinical efficacy has been widely affirmed, the mechanisms of action leading to the health benefits are not understood. In this study, the role of EA in modulating the lactate energy metabolism and lactate transportation was explored on the middle cerebral artery occlusion (MCAO) ischemic rat model. Repeated EA treatments once daily for 7 days were applied to the MCAO rats and neurological function evaluation was performed. Brain tissues were harvested for lactate concentration examination, immunohistochemical staining, Western blot and qRT-PCR analyses for the expressions of lactate transporter (monocarboxylate transporter 1, MCT1) and glial fibrillary acidic protein (GFAP). The animal behavioral tests showed that the 7-day EA treatments significantly promoted the recovery of neurological deficits in the MCAO rats, which correlated with the enhanced lactate energy metabolism in the ischemic brain. In the cortical ischemic area of the MCAO rats, EA treatments led to the activation of astrocytes, and induced a further increase of lactate transporter (monocarboxylate transporter 1, MCT1) expression in astrocytes at both protein and mRNA levels. Our results suggest that the EA treatments activated lactate metabolism in the resident astrocytes around the ischemic area and up-regulated the expression of MCT1 in these astrocytes which facilitated the transfer of intracellular lactate to extracellular domain to be utilized by injured neurons to improve the neurological deficit. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Maternal Nicotine Exposure During Late Gestation and Lactation Increases Anxiety-Like and Impulsive Decision-Making Behavior in Adolescent Offspring of Rat.

    PubMed

    Lee, Hyunchan; Chung, Sooyeon; Noh, Jihyun

    2016-10-01

    Prenatal nicotine exposure over an entire pregnancy has been associated with an increased prevalence of hyperactivity, anxiety-like behavior and depression-like behavior in mature rats. However, the effects of maternal nicotine exposure in late gestation and lactation on the psychology and behavior of adolescent rat offspring are unclear. Thus, we investigated the effect of nicotine exposure during late gestation and lactation on anxiety-like and impulsive decision-making behavior in adolescent offspring of rat. Female rats were orally exposed to nicotine which is within range of plasma level of human chronic smokers during the period of third last period of gestation and lactation. When the offspring were weaned, we observed alterations in the anxiety-like behavior and decision-making ability of adolescent rat offspring using light/dark box test and T-maze delay-based cost-benefit decision-making task. The maternal consumption of nicotine reduced both the time spent in the light compartment and the number of transitions compared to nicotine-free rats. Moreover, such nicotine exposed adolescent offspring rats showed impulsive decision making which chose the instant reward in a decision-making situation. We found that nicotine exposure during late gestation and lactation induces an increase in anxiety-like and impulsive decision-making behavior at this developmental stage. These findings suggest that maternal nicotine-exposed offspring are at an increased risk of developing anxious and impulsive behavior.

  12. The metabolism of [3-(13)C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment.

    PubMed

    Bouzier, A K; Thiaudiere, E; Biran, M; Rouland, R; Canioni, P; Merle, M

    2000-08-01

    Lactate metabolism in the adult rat brain was investigated in relation with the concept of lactate trafficking between astrocytes and neurons. Wistar rats were infused intravenously with a solution containing either [3-(13)C]lactate (534 mM) or both glucose (750 mM) and [3-(13)C]lactate (534 mM). The time courses of both the concentration and (13)C enrichment of blood glucose and lactate were determined. The data indicated the occurrence of [3-(13)C]lactate recycling through liver gluconeogenesis. The yield of glucose labeling was, however, reduced when using the glucose-containing infusate. After a 20-min or 1-h infusion, perchloric acid extracts of the brain tissue were prepared and subsequently analyzed by (13)C- and (1)H-observed/(13)C-edited NMR spectroscopy. The (13)C labeling of amino acids indicated that [3-(13)C]lactate was metabolized in the brain. Based on the alanine C3 enrichment, lactate contribution to brain metabolism amounted to 35% under the most favorable conditions used. By contrast with what happens with [1-(13)C]glucose metabolism, no difference in glutamine C2 and C3 labeling was evidenced, indicating that lactate was metabolized in a compartment deprived of pyruvate carboxylase activity. This result confirms, for the first time from an in vivo study, that lactate is more specifically a neuronal substrate.

  13. Changing patterns of daily rhythmicity across reproductive states in diurnal female Nile grass rats (Arvicanthis niloticus)

    PubMed Central

    Schradera, Jessica A.; Walaszczykb, Erin J.; Smalea, Laura

    2009-01-01

    SCHRADER, J.A., E. J. WALASZCZYK, AND L. SMALE. Changing patterns of daily rhythmicity across reproductive states in diurnal female Nile grass rats (Arvicanthis niloticus). PHYSIOL BEHAV XX(X) XXX-XXX, XXXX. -- A suite of changes in circadian rhythms have been described in nocturnal rodents as females go through pregnancy and lactation, but there is no information on such patterns in diurnal species. As the challenges faced by these two groups of animals are somewhat different, we characterized changes in activity and core body temperature (Tb) in female diurnal Nile grass rats (Arvicanthis niloticus) as they went through a series of reproductive states: virgin, pregnant, pregnant and lactating, lactating only, and post-weaning. The phase of neither rhythm varied, but the amplitude did. Females increased their overall levels of daily activity from early to late pregnancy, regardless of whether they were also lactating. The pattern of activity was less rhythmic during early than mid-lactation, in both non-pregnant and pregnant females, as a consequence of a decrease in daytime relative to nighttime activity. The Tb rhythm amplitude dropped from mid-pregnancy through mid-lactation, and there were rises in Tb troughs during the mid-light and mid-dark phases of the day, though pregnancy and lactation affected Tb at these times in somewhat different ways. This study demonstrates that rhythms in diurnal grass rats change during pregnancy and lactation in different ways than those of nocturnal species that have been studied to date and that the effects of pregnancy and lactation are not additive in any simple way. PMID:19744504

  14. Carbohydrate metabolism of the perfused rat liver

    PubMed Central

    Ross, B. D.; Hems, R.; Freedland, R. A.; Krebs, H. A.

    1967-01-01

    1. The rates of gluconeogenesis from most substrates tested in the perfused livers of well-fed rats were about half of those obtained in the livers of starved rats. There was no difference for glycerol. 2. A diet low in carbohydrate increased the rates of gluconeogenesis from some substrates but not from all. In general the effects of a low-carbohydrate diet on rat liver are less marked than those on rat kidney cortex. 3. Glycogen was deposited in the livers of starved rats when the perfusion medium contained about 10mm-glucose. The shedding of glucose from the glycogen stores by the well-fed liver was greatly diminished by 10mm-glucose and stopped by 13·3mm-glucose. Livers of well-fed rats that were depleted of their glycogen stores by treatment with phlorrhizin and glucagon synthesized glycogen from glucose. 4. When two gluconeogenic substrates were added to the perfusion medium additive effects occurred only when glycerol was one of the substrates. Lactate and glycerol gave more than additive effects owing to an increased rate of glucose formation from glycerol. 5. Pyruvate also accelerated the conversion of glycerol into glucose, and the accelerating effect of lactate can be attributed to a rapid formation of pyruvate from lactate. 6. Butyrate and oleate at 2mm, which alone are not gluconeogenic, increased the rate of gluconeogenesis from lactate. 7. The acceleration of gluconeogenesis from lactate by glucagon was also found when gluconeogenesis from lactate was stimulated by butyrate and oleate. This finding is not compatible with the view that the primary action of glucagon in promoting gluconeogenesis is an acceleration of lipolysis. 8. The rate of gluconeogenesis from pyruvate at 10mm was only 70% of that at 5mm. This `inhibition' was abolished by oleate or glucagon. PMID:5584023

  15. Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex.

    PubMed

    Angamo, Eskedar Ayele; ul Haq, Rizwan; Rösner, Jörg; Gabriel, Siegrun; Gerevich, Zoltán; Heinemann, Uwe; Kovács, Richard

    2017-08-23

    Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K⁺] O ) were recorded in parallel with tissue pO₂ and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO₂ following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K⁺] O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism.

  16. Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex

    PubMed Central

    Angamo, Eskedar Ayele; Haq, Rizwan ul; Rösner, Jörg; Gabriel, Siegrun; Gerevich, Zoltán; Heinemann, Uwe

    2017-01-01

    Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K+]O) were recorded in parallel with tissue pO2 and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO2 following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K+]O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism. PMID:28832554

  17. Bromocriptine modulates the expression of PTHrP receptor, Indian hedgehog, and Runx2 proteins in the growth plate of lactating rats.

    PubMed

    Wongdee, Kannikar; Thonapan, Natchayaporn; Saengamnart, Wasana; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2013-09-01

    In lactating rats, the endochondral bone growth is markedly enhanced, leading to the lengthening of long bone. This lactation-induced bone elongation could be abolished by a dopaminergic D2 receptor agonist bromocriptine, but how bromocriptine altered the expression of major chondroregulatory proteins in the growth plate cartilage was elusive. Here, we performed a quantitative immunohistochemical analysis to determine the expression of various peptides and transcription factors known to control the growth plate chondrocyte proliferation and differentiation [i.e., parathyroid hormone-related protein (PTHrP), PTHrP receptor, Indian hedgehog (Ihh), and runt-related transcription factor 2 (Runx2)], in bromocriptine-treated lactating rats. The results showed that bromocriptine markedly increased Ihh expression in hypertrophic chondrocytes during early and mid-lactation, while the expression of PTHrP receptor, but not its ligand PTHrP, was upregulated in the proliferative and hypertrophic zones during mid and late lactation. In contrast, the expression of Runx2, an important transcription factor for chondrocyte differentiation, was suppressed in the hypertrophic chondrocytes of bromocriptine-treated rats. In conclusion, bromocriptine increased Ihh and PTHrP receptor expressions and decreased Runx2 expression, which might, in turn, enhance chondrocyte proliferation and delay chondrocyte hypertrophy, thereby slowing down endochondral bone growth. This finding could explain how bromocriptine compromised the lactation-induced bone elongation.

  18. Growth advantage of Streptococcus thermophilus over Lactobacillus bulgaricus in vitro and in the gastrointestinal tract of gnotobiotic rats.

    PubMed

    Ben-Yahia, L; Mayeur, C; Rul, F; Thomas, M

    2012-09-01

    The yoghurt bacteria, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, are alleged to have beneficial effects on human health. The objective of this study was to characterise growth, biochemical activity and competitive behaviour of these two bacteria in vitro and in vivo. S. thermophilus LMD-9 and L. bulgaricus ATCC 11842 growth and lactate production were monitored in different media and in the gastrointestinal tract (GIT) of germ-free rats. In vitro, particularly in milk, S. thermophilus had a selective growth advantage over L. bulgaricus. The GIT of germ-free rats not supplemented with lactose was colonised by S. thermophilus but not by L. bulgaricus. Both bacteria were able to colonise the GIT of germ-free rats supplemented with 45 g/l lactose in their drinking water. However, if germ-free rats were inoculated with a mixture of the two bacteria and were supplemented with lactose, S. thermophilus rapidly and extensively colonised the GIT (1010 cfu/g faeces) at the expense of L. bulgaricus, which remained in most cases at levels <102 cfu/g faeces. S. thermophilus specifically produced L-lactate, while L. bulgaricus produced only D-lactate, both in vitro and in vivo. S. thermophilus showed competitive and growth advantage over L. bulgaricus in vitro as well as in vivo in the GIT of germ-free rats and, accordingly, L-lactate was the main lactate isomer produced.

  19. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, R.F.; Lear, J.L.

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost frommore » the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.« less

  20. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids.

    PubMed

    Gilchrist, Samuel E; Alcorn, Jane

    2010-04-01

    Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland.

  1. Metabolic biomarkers for non-alcoholic fatty liver disease induced by high-fat diet: In vivo magnetic resonance spectroscopy of hyperpolarized [1-{sup 13}C] pyruvate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chung-Man; Oh, Chang-Hyun; Ahn, Kyu-Youn

    Hyperpolarized {sup 13}C magnetic resonance spectroscopy (MRS) to assess hepatic metabolism in non-alcoholic fatty liver disease (NAFLD) has not been reported. This study searched for cellular metabolism-based biomarkers for NAFLD induced by a high-fat diet (HFD) in rats. Also, correlations of the biomarkers with enzyme levels and histopathology were identified during a 6-week follow-up. Six rats were fed a control diet (CD) and seven rats were fed the HFD for 6 weeks. Hyperpolarized {sup 13}C dynamic MRS was performed on rat liver following an injection of hyperpolarized [1-{sup 13}C] pyruvate. Compared with CD-fed rats, HFD-fed rats showed significant increases inmore » the levels of serum alanine aminotransferase and low-density lipoprotein cholesterol at weeks 4 and 6 of follow-up. After the 6-week HFD, the ratios of [1-{sup 13}C] alanine/pyruvate and [1-{sup 13}C] lactate/pyruvate were significantly increased, as were the levels of alanine aminotransferase and lactate dehydrogenase, which are potentially associated with hepatosteatosis. The results implicate [1-{sup 13}C] alanine and [1-{sup 13}C] lactate as potentially useful noninvasive biomarkers of hepatosteatosis occurring in NAFLD. - Highlights: • Hyperpolarized {sup 13}C-alanine and lactate are noninvasive biomarkers on hepatosteatosis. • During the course of HFD feeding, {sup 13}C-alanine and lactate were increased in HFD-rats. • Hyperpolarized {sup 13}C dynamic MRS will be helpful to monitor the progression of NAFLD.« less

  2. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats.

    PubMed

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2017-01-27

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.

  3. Post-natal growth in the rat pineal gland: a stereological study.

    PubMed

    Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E

    2012-10-01

    The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies. © 2012 Blackwell Verlag GmbH.

  4. Physiology of Breastfeeding

    USDA-ARS?s Scientific Manuscript database

    This powerpoint presentation summaries physiology of lactation and the impact of a variety of clinical practices on lactation from delivery through weaning. Factors that inhibit lactogenesis stage II are explained, including retained placenta, excess blood loss during delivery, and hypoplastic brea...

  5. Evidence for structural plasticity in the supraoptic nucleus of the rat hypothalamus in relation to gestation and lactation.

    PubMed

    Theodosis, D T; Poulain, D A

    1984-01-01

    Supraoptic nuclei of lactating rats present a particular anatomical organization that could serve to facilitate the synchronization of neuronal firing observed during suckling-induced reflex milk ejections. Although magnocellular neurones are usually separated by neuropil elements, particularly glial fibers, in lactating rats, numerous neurosecretory soma and dendritic profiles are in direct apposition, without glial interposition. Concomitantly, there is also a higher incidence of presynaptic terminals contacting two neurosecretory elements in the same plane of section ("double" synapses). In the present study, a quantitative ultrastructural analysis was used to trace the evolution of the structural reorganization of the nucleus at different stages of the reproductive cycle. The percentage of neurosecretory soma and dendritic profiles in direct apposition was low two weeks after the beginning of pregnancy, but the day prior to parturition, as during lactation, over 40% of all neurosecretory profiles were directly in contact and involved about 10% of the total neuronal surface membrane measured (a 5-fold increase over the corresponding frequencies recorded in virgin rats at oestrus). The contiguous neuronal membranes and associated intercellular space appeared unmodified, except for the presence of attachment plaques, that also increased in frequency at late gestation and lactation. The incidence of "double" synapses also increased by late gestation, so that at lactation, they bridged 8% of all the recorded neurosecretory somata and dendrites, (as compared to 1% in the virgin rats). Similar changes were observed during a first and second gestation and lactation. The incidence of direct appositions and "double" synapses then diminished gradually after weaning: 2 months after the end of lactation, the ultrastructure of the nucleus resembled that of virgin animals. These observations demonstrate a plasticity in the structural organization of the supraoptic nucleus that appears closely related to changing physiological states of the animal and that involves both neurone-glial relationships and the neurones' synaptic configuration.

  6. Dopamine-regulated adrenocorticotropic hormone secretion in lactating rats: functional plasticity of melanotropes.

    PubMed

    Oláh, Márk; Fehér, Pálma; Ihm, Zsófia; Bácskay, Ildikó; Kiss, Timea; Freeman, Marc E; Nagy, Gyorgy M; Vecsernyés, Miklós

    2009-01-01

    Pro-opiomelanocortin (POMC) is processed to adrenocorticotropic hormone (ACTH) and beta-lipotropin in corticotropes of the anterior lobe, and to alpha-melanocyte-stimulating hormone (alpha-MSH) and beta-endorphin in melanotropes of the intermediate lobe (IL) of the pituitary gland. While ACTH secretion is predominantly under the stimulatory influence of the hypothalamic factors, hormone secretion of the IL is tonically inhibited by neuroendocrine dopamine (NEDA) neurons. Lobe-specific POMC processing is not absolute. For example, D(2) type DA receptor (D2R)-deficient mice have elevated plasma ACTH levels, although it is known that corticotropes do not express D2R(s). Moreover, observations that suckling does not influence alpha-MSH release, while it induces an increase in plasma ACTH is unexplained. The aim of the present study was to investigate the involvement of the NEDA system in the regulation of ACTH secretion and the participation of the IL in ACTH production in lactating rats. Untreated and estradiol (E(2))-substituted ovariectomized (OVX) females were also studied. The concentration of ACTH in the IL was higher in lactating rats than in OVX rats, while the opposite change in alpha-MSH level of the IL was observed. DA levels in the IL and the neural lobe were lower in lactating rats than in OVX rats. Suckling-induced ACTH response was eliminated by pretreatment with the DA receptor agonist, bromocriptine (BRC). Inhibition of DA biosynthesis by alpha-methyl-p-tyrosine (alphaMpT) and blockade of D2R by domperidone (DOM) elevated plasma ACTH levels, but did not influence plasma alpha-MSH levels in lactating rats. The same drugs had opposite effects in OVX and OVX + E(2) animals. In lactating mothers, BRC was able to block ACTH responses induced by both alphaMpT and DOM. Surgical denervation of the IL elevated basal plasma levels of ACTH. Taken together, these data indicate that melanotropes synthesize ACTH during lactation and its release from these cells is regulated by NEDA neurons. Copyright 2009 S. Karger AG, Basel.

  7. Dopamine-Regulated Adrenocorticotropic Hormone Secretion in Lactating Rats: Functional Plasticity of Melanotropes

    PubMed Central

    Oláh, Márk; Fehér, Pálma; Ihm, Zsófia; Bácskay, Ildikó; Kiss, Timea; Freeman, Marc E.; Nagy, György M.; Vecsernyés, Miklós

    2009-01-01

    Pro-opiomelanocortin (POMC) is processed to adrenocorticotropic hormone (ACTH) and β-lipotropin in corticotropes of the anterior lobe, and to α-melanocyte-stimulating hormone (α-MSH) and β-endorphin in melanotropes of the intermediate lobe (IL) of the pituitary gland. While ACTH secretion is predominantly under the stimulatory influence of the hypothalamic factors, hormone secretion of the IL is tonically inhibited by neuroendocrine dopamine (NEDA) neurons. Lobe-specific POMC processing is not absolute. For example, D2 type DA receptor (D2R)-deficient mice have elevated plasma ACTH levels, although it is known that corticotropes do not express D2R(s). Moreover, observations that suckling does not influence α-MSH release, while it induces an increase in plasma ACTH is unexplained. The aim of the present study was to investigate the involvement of the NEDA system in the regulation of ACTH secretion and the participation of the IL in ACTH production in lactating rats. Untreated and estradiol (E2)-substituted ovariectomized (OVX) females were also studied. The concentration of ACTH in the IL was higher in lactating rats than in OVX rats, while the opposite change in α-MSH level of the IL was observed. DA levels in the IL and the neural lobe were lower in lactating rats than in OVX rats. Suckling-induced ACTH response was eliminated by pretreatment with the DA receptor agonist, bromocriptine (BRC). Inhibition of DA biosynthesis by α-methyl-p-tyrosine (αMpT) and blockade of D2R by domperidone (DOM) elevated plasma ACTH levels, but did not influence plasma α-MSH levels in lactating rats. The same drugs had opposite effects in OVX and OVX + E2 animals. In lactating mothers, BRC was able to block ACTH responses induced by both αMpT and DOM. Surgical denervation of the IL elevated basal plasma levels of ACTH. Taken together, these data indicate that melanotropes synthesize ACTH during lactation and its release from these cells is regulated by NEDA neurons. PMID:19641299

  8. Adaptative decrease in expression of the mRNA for uncoupling protein and subunit II of cytochrome c oxidase in rat brown adipose tissue during pregnancy and lactation.

    PubMed Central

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1989-01-01

    Uncoupling-protein (UCP) mRNA expression is decreased to 15% of virgin control levels between days 10 and 15 of pregnancy, and remains at these low values during late pregnancy and lactation. Abrupt weaning of mid-lactating rats causes a slight but significant increase in UCP mRNA. Expression of mRNA for subunit II of cytochrome c oxidase (COII) decreased to half that of virgin control in late pregnancy and during lactation. Whereas COII mRNA expression is in step with the known modifications of brown-fat mitochondria content during the breeding cycle of the rat, UCP mRNA expression appears to be diminished much earlier than the mitochondrial proton-conductance-pathway activity. On the other hand, the reactivity of brown fat to increase expression of UCP and COII mRNAs in response to acute cold or noradrenaline treatment is not impaired during lactation. Images Fig. 1. Fig. 2. Fig. 3. PMID:2557014

  9. Disposition of styrene-acrylonitrile (SAN) trimer in female rats: single dose intravenous and gavage studies.

    PubMed

    Gargas, Michael L; Collins, Brad; Fennell, Timothy R; Gaudette, Norman F; Sweeney, Lisa M

    2008-04-21

    Styrene-acrylonitrile trimer (SAN Trimer), a mixture of six isomers (four isomers of 4-cyano-1,2,3,4-tetrahydro-alpha-methyl-1-naphthaleneacetonitrile [THAN] and two isomers of 4-cyano-1,2,3,4-tetrahydro-1-naphthaleneproprionitrile [THNP]), is a by-product of a specific production process of styrene-acrylonitrile polymer. Disposition studies in female rats were conducted to evaluate the pharmacokinetic behavior of [3H]SAN Trimer following a single intravenous administration (26 mg/kg) to nonpregnant rats; a single gavage administration (nominal doses of 25 mg/kg, 75 mg/kg, or 200 mg/kg in corn oil) to nonpregnant rats; and a single gavage administration (nominal dose of 200 mg/kg in corn oil) to pregnant and lactating rats. SAN Trimer was rapidly eliminated from blood (T1/2 approximately 1h) following a single intravenous dose and following single oral doses (T1/2 approximately 3-4h). SAN Trimer was also rapidly excreted in the urine and feces following single oral doses, while total radioactivity was cleared more slowly. In pregnant rats, the concentrations of both radioactivity and SAN Trimer 2h after dosing were highest in the blood, followed by the placenta, with the lowest levels in the fetus. In lactating rats, the concentrations of both radioactivity and SAN Trimer were higher in milk than in maternal blood. Total radioactivity and SAN Trimer blood concentrations in nonpregnant, pregnant, and lactating rats were both higher in lactating rats compared to nonpregnant and pregnant rats.

  10. Bioavailability of seleno-compounds in the lactating rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.M.; Picciano, M.F.

    Previously the authors reported an increased selenium (Se) requirement for lactating rats of at least 0.2 ppm dietary Se if provided as selenite (SEL). In the present study bioavailability of selenomethionine (SEM), Se yeast (SEY) and SEL was assessed. A casein-based diet (0.025 ppm Se) was fed to 9 groups of 8 rats each during pregnancy to produce a marginal Se deficiency. During lactation each group was fed the same diet containing either 0.1, 0.25, or 0.5 ppm Se as SEL, SEM, or SEY. On day 18 of lactation dams and pups were sacrificed and tissue Se and glutathione peroxidasemore » activities (GPx) determined. Although food intake of the dams and growth of the pups did not vary, selenium and GPx activities were dependent upon quantity and form of Se consumed. Using slope-ratio analysis linear increases in blood, tissue and milk Se content the bioavailabilities were SEM>SEY>SEL. Maximal GPx depended on the form of dietary Se with SEM>SEY>SEL. Maximal GPx occurred at 0.25 ppm dietary Se as SEM and SEY, but did not reach this activity when fed at 0.5 ppm Se as SEL. These results indicate that regardless of form, the NRC requirement for growing rats of 0.1 ppm Se, is not adequate during lactation to maintain maximum tissue GSH-Px in nursing pups. Based on higher tissue Se in dams and GPx in nursing pups the bioavailability of dietary Se to the lactating rat is greater when fed as SEM and SEY than as SEL.« less

  11. Distribution Dynamics of Recombinant Lactobacillus in the Gastrointestinal Tract of Neonatal Rats

    PubMed Central

    Bao, Sujin; Zhu, Libin; Zhuang, Qiang; Wang, Lucia; Xu, Pin-Xian; Itoh, Keiji; Holzman, Ian R.; Lin, Jing

    2013-01-01

    One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates. PMID:23544119

  12. Training-induced elevations in extracellular lactate in hippocampus and striatum: Dissociations by cognitive strategy and type of reward.

    PubMed

    Newman, Lori A; Scavuzzo, Claire J; Gold, Paul E; Korol, Donna L

    2017-01-01

    Recent evidence suggests that astrocytes convert glucose to lactate, which is released from the astrocytes and supports learning and memory. This report takes a multiple memory perspective to test the role of astrocytes in cognition using real-time lactate measurements during learning and memory. Extracellular lactate levels in the hippocampus or striatum were determined with lactate biosensors while rats were learning place (hippocampus-sensitive) or response (striatum-sensitive) versions of T-mazes. In the first experiment, rats were trained on the place and response tasks to locate a food reward. Extracellular lactate levels in the hippocampus increased beyond those of feeding controls during place training but not during response training. However, striatal lactate levels did not increase beyond those of controls when rats were trained on either the place or the response version of the maze. Because food ingestion itself increased blood glucose and brain lactate levels, the contribution of feeding may have confounded the brain lactate measures. Therefore, we conducted a second similar experiment using water as the reward. A very different pattern of lactate responses to training emerged when water was used as the task reward. First, provision of water itself did not result in large increases in either brain or blood lactate levels. Moreover, extracellular lactate levels increased in the striatum during response but not place learning, whereas extracellular lactate levels in the hippocampus did not differ across tasks. The findings from the two experiments suggest that the relative engagement of the hippocampus and striatum dissociates not only by task but also by reward type. The divergent lactate responses of the hippocampus and striatum in place and response tasks under different reward conditions may reflect ethological constraints tied to foraging for food and water. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effects of genistein in the maternal diet on reproductive development and spatial learning in male rats.

    PubMed

    Ball, Evan R; Caniglia, Mary Kay; Wilcox, Jenna L; Overton, Karla A; Burr, Marra J; Wolfe, Brady D; Sanders, Brian J; Wisniewski, Amy B; Wrenn, Craige C

    2010-03-01

    Endocrine disruptors, chemicals that disturb the actions of endogenous hormones, have been implicated in birth defects associated with hormone-dependent development. Phytoestrogens are a class of endocrine disruptors found in plants. In the current study we examined the effects of exposure at various perinatal time periods to genistein, a soy phytoestrogen, on reproductive development and learning in male rats. Dams were fed genistein-containing (5 mg/kg feed) food during both gestation and lactation, during gestation only, during lactation only, or during neither period. Measures of reproductive development and body mass were taken in the male offspring during postnatal development, and learning and memory performance was assessed in adulthood. Genistein exposure via the maternal diet decreased body mass in the male offspring of dams fed genistein during both gestation and lactation, during lactation only, but not during gestation only. Genistein decreased anogenital distance when exposure was during both gestation and lactation, but there was no effect when exposure was limited to one of these time periods. Similarly, spatial learning in the Morris water maze was impaired in male rats exposed to genistein during both gestation and lactation, but not in rats exposed during only one of these time periods. There was no effect of genistein on cued or contextual fear conditioning. In summary, the data indicate that exposure to genistein through the maternal diet significantly impacts growth in male offspring if exposure is during lactation. The effects of genistein on reproductive development and spatial learning required exposure throughout the pre- and postnatal periods. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model

    EPA Science Inventory

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (BPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model p...

  15. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose response (BBDR) Model***

    EPA Science Inventory

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the 1-IPT axis. Model calibrations, carried out by adjusting key model...

  16. Effect of Swimming on the Production of Aldosterone in Rats

    PubMed Central

    Wang, Paulus S.; Jian, Cai-Yun; Yeh, Yung-Hsing; Chen, Yi-An; Wang, Kai-Lee; Lin, Yi-Chun; Chang, Ling-Ling; Wang, Guei-Jane; Wang, Shyi-Wu

    2014-01-01

    It has been demonstrated that exercise is one of the stresses known to increase the aldosterone secretion. Both potassium and angiotensin II (Ang II) levels are shown to be correlated with aldosterone production during exercise, but the mechanism is still unclear. In an in vivo study, male rats were catheterized via right jugular vein (RJV), and divided into four groups namely water immersion, swimming, lactate infusion (13 mg/kg/min) and pyruvate infusion (13 mg/kg/min) groups. Each group was treated for 10 min. Blood samples were collected at 0, 10, 15, 30, 60 and 120 min from RJV after administration. In an in vitro study, rat zona glomerulosa (ZG) cells were challenged by lactate (1–10 mM) in the presence or absence of Ang II (10−8 M) for 60 min. The levels of aldosterone in plasma and medium were measured by radioimmunoassay. Cell lysates were analyzed by immunoblotting assay. After exercise and lactate infusion, plasma levels of aldosterone and lactate were significantly higher than those in the control group. Swimming for 10 min significantly increased the plasma Ang II levels in male rats. Administration of lactate plus Ang II significantly increased aldosterone production and enhanced protein expression of steroidogenic acute regulatory protein (StAR) in ZG cells. These results demonstrated that acute exercise led to the increase of both aldosterone and Ang II secretion, which is associated with lactate action on ZG cells and might be dependent on the activity of renin-angiotensin system. PMID:25289701

  17. Insulin secretion and GLUT-2 expression in undernourished neonate rats.

    PubMed

    Lopes Da Costa, Célia; Sampaio De Freitas, Marta; Sanchez Moura, Anibal

    2004-04-01

    In previous studies, we verified increased insulin sensitivity in adult male offspring of lactating rats readjusting to lack of insulin secretion reduction brought about by protein restriction during lactation. The present study aims to evaluate the effects of maternal protein undernutrition during lactation on glucose-induced insulin secretion and GLUT-2 expression in beta-cells of neonate male and female rats. Lactating Wistar rats were given a protein-free diet during the first 10 days and a normal diet (22% of protein) until weaning. The neonates were separated at birth by sex and diet and studied at 4, 8 and 21 days of lactation. Glucose-induced insulin secretion by pancreatic islets was analyzed by radioimmunoassay and GLUT-2 expression in beta-cells by Western blot. Glucose-induced insulin secretion of the undernourished groups was higher than in the control groups except among females. When comparing the male and female groups and the control and undernourished groups, female neonates showed significantly greater insulin secretion than the male group. Also it was noted that undernutrition induced greater GLUT-2 expression. For instance, comparing the undernourished male and female neonates there was an increase in female GLUT-2 expression on day 4. On the other hand, in undernourished male neonates a GLUT-2 expression increased later in lactation. In conclusion, during a short term, maternal undernutrition induces an increase of the glucose-induced insulin secretion only in male neonates and is associated with an increase in GLUT-2 expression in the beta-cell.

  18. Conjugated linoleic acid influences the metabolism of tocopherol in lactating rats but has little effect on tissue tocopherol concentrations in pups.

    PubMed

    Zeitz, Johanna O; Most, Erika; Eder, Klaus

    2016-05-31

    Conjugated linoleic acid (CLA) is known to affect the lipid metabolism in growing and lactating animals. However, potential effects on the metabolism of fat-soluble vitamins in lactating animals and co-occurring effects on their offspring are unknown. We aimed to investigate the effects of dietary CLA on concentrations of tocopherol in various tissues of lactating rats and their offspring and expression of genes involved in tocopherol metabolism. Twenty-eight Wistar Han rats were allocated to 2 groups and fed either a control diet (control group) or a diet containing 0.9 % of cis-9, trans-11 and trans-10, cis-12 (1:1) CLA (CLA group) during pregnancy and lactation. Feed intake of dams and body weight of dams and their pups were recorded weekly. Tocopherol concentrations in various body tissues were determined at day 14 of lactation in dams and 1, 7 and 14 days after birth in pups. Expression of selected genes involved in metabolism of tocopherol was determined in dams and pups. The data were statistically analysed by analysis of variance. Feed intake and body weight development of nursing rats and their pups was similar in both groups. In livers of CLA-fed dams, tocopherol concentrations decreased by 24 % but expression of TTPA and CYP3A1, involved in tocopherol transport and metabolism, were not influenced. In the dams' adipose tissue, gene expression of receptors involved in tissue tocopherol uptake, LDLR and SCARB1, but not of LPL, increased by 30 to 50 % and tocopherol concentrations increased by 47 % in CLA-fed compared to control dams. Expression of LPL, LDLR and SCARB1 in mammary gland was not influenced by CLA-feeding. Tocopherol concentrations in the pup's livers and lungs were similar in both groups, but at 14 days of age, adipose tissue tocopherol concentrations, and LDLR and SCARB1 expression, were higher in the CLA-exposed pups. We show that dietary CLA affects tissue concentrations of tocopherol in lactating rats and tocopherol metabolism in rats and pups, but hardly influences tissue tocopherol concentrations in their offspring. This indicates that supplementation of CLA in pregnant and lactating animals is uncritical considering the tocopherol status of new-borns.

  19. Distribution and biomarker of carbon-14 labeled fullerene C60 ([(14) C(U)]C60 ) in pregnant and lactating rats and their offspring after maternal intravenous exposure.

    PubMed

    Snyder, Rodney W; Fennell, Timothy R; Wingard, Christopher J; Mortensen, Ninell P; Holland, Nathan A; Shannahan, Jonathan H; Pathmasiri, Wimal; Lewin, Anita H; Sumner, Susan C J

    2015-12-01

    A comprehensive distribution study was conducted in pregnant and lactating rats exposed to a suspension of uniformly carbon-14 labeled C60 ([(14) C(U)]C60 ). Rats were administered [(14) C(U)]C60 (~0.2 mg [(14) C(U)]C60 kg(-1) body weight) or 5% polyvinylpyrrolidone (PVP)-saline vehicle via a single tail vein injection. Pregnant rats were injected on gestation day (GD) 11 (terminated with fetuses after either 24 h or 8 days), GD15 (terminated after 24 h or 4 days), or GD18 (terminated after 24 h). Lactating rats were injected on postnatal day 8 and terminated after 24 h, 3 or 11 days. The distribution of radioactivity in pregnant dams was influenced by both the state of pregnancy and time of termination after exposure. The percentage of recovered radioactivity in pregnant and lactating rats was highest in the liver and lungs. Radioactivity was quantitated in over 20 tissues. Radioactivity was found in the placenta and in fetuses of pregnant dams, and in the milk of lactating rats and in pups. Elimination of radioactivity was < 2% in urine and feces at each time point. Radioactivity remained in blood circulation up to 11 days after [(14) C(U)]C60 exposure. Biomarkers of inflammation, cardiovascular injury and oxidative stress were measured to study the biological impacts of [(14) C(U)]C60 exposure. Oxidative stress was elevated in female pups of exposed dams. Metabolomics analysis of urine showed that [(14) C(U)]C60 exposure to pregnant rats impacted the pathways of vitamin B, regulation of lipid and sugar metabolism and aminoacyl-tRNA biosynthesis. This study demonstrated that [(14) C(U)]C60 crosses the placenta at all stages of pregnancy examined, and is transferred to pups via milk. Copyright © 2015 John Wiley & Sons, Ltd.

  20. BIOCHEMICAL EFFECTS IN NORMAL AND STONE FORMING RATS TREATED WITH THE RIPE KERNEL JUICE OF PLANTAIN (MUSA PARADISIACA)

    PubMed Central

    Devi, V. Kalpana; Baskar, R.; Varalakshmi, P.

    1993-01-01

    The effect of Musa paradisiaca stem kernel juice was investigated in experimental urolithiatic rats. Stone forming rats exhibited a significant elevation in the activities of two oxalate synthesizing enzymes - Glycollic acid oxidase and Lactate dehydrogenase. Deposition and excretion of stone forming constituents in kidney and urine were also increased in these rats. The enzyme activities and the level of crystalline components were lowered with the extract treatment. The extract also reduced the activities of urinary alkaline phosphatase, lactate dehydrogenase, r-glutamyl transferase, inorganic pyrophosphatase and β-glucuronidase in calculogenic rats. No appreciable changes were noticed with leucine amino peptidase activity in treated rats. PMID:22556626

  1. Continuous Aerobic Training in Individualized Intensity Avoids Spontaneous Physical Activity Decline and Improves MCT1 Expression in Oxidative Muscle of Swimming Rats.

    PubMed

    Scariot, Pedro P M; Manchado-Gobatto, Fúlvia de Barros; Torsoni, Adriana S; Dos Reis, Ivan G M; Beck, Wladimir R; Gobatto, Claudio A

    2016-01-01

    Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA). Because every movement in daily life (i.e., SPA) is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT) 1 and 4 in soleus (oxidative) and white gastrocnemius (glycolytic) muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT). Sixty-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co) in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr) in which rats swam for 40 min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT). We propose an approach to combat the decline of SPA of rats in their home cages. This new finding is worth for scientists who work with animal models to study the protective effects of exercise.

  2. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes.

    PubMed Central

    Edlund, G L; Halestrap, A P

    1988-01-01

    Time courses of L-lactate and pyruvate uptake into isolated rat hepatocytes were measured in a citrate-based medium to generate a pH gradient (alkaline inside), by using the silicone-oil-filtration technique at 0 degrees C to minimize metabolism. At low concentrations of lactate and pyruvate (0.5 mM), transport was inhibited by over 95% by 5 mM-alpha-cyano-4-hydroxycinnamate, whereas at higher concentrations (greater than 10 mM) a significant proportion of transport could not be inhibited. The rate of this non-inhibitable transport was linearly related to the substrate concentration, was less with pyruvate than with L-lactate, and appeared to be due to diffusion of undissociated acid. Uptake of D-lactate was not inhibited by alpha-cyano-4-hydroxycinnamate and occurred only by diffusion. Kinetic parameters for the carrier-mediated transport process were obtained after correction of the initial rates of uptake of lactate and pyruvate in the absence of 5 mM-alpha-cyano-4-hydroxycinnamate by that in the presence of inhibitor. Under the conditions used, the Km values for L-lactate and pyruvate were 2.4 and 0.6 mM respectively and the Ki for alpha-cyano-4-hydroxycinnamate as a competitive inhibitor was 0.11 mM. Km values for the transport of L-lactate and pyruvate into rat erythrocytes under similar conditions were 3.0 and 0.96 mM. The Vmax. of lactate and pyruvate transport into hepatocytes at 0 degrees C was 3 nmol/min per mg of protein. Carrier-mediated transport of 0.5 mM-L-lactate was inhibited by 0.2 mM-p-chloromercuribenzenesulphonate (greater than 90%), 0.5 mM-quercetin (80%), 0.6 mM-isobutylcarbonyl-lactyl anhydride (70%) and 0.5 mM-4,4'-di-isothiocyanostilbene-2,2'-disulphonate (50%). A similar pattern of inhibition of lactate transport is seen in erythrocytes. It is suggested that the same or a similar carrier protein exists in both tissues. The results also show that L-lactate transport into rat hepatocytes is very rapid at physiological temperatures and is unlikely to restrict the rate of its metabolism. Differences between our results and those of Fafournoux, Demigne & Remesy [(1985) J. Biol. Chem. 260, 292-299] are discussed. PMID:3342001

  3. Renal structure and function evaluation of rats from dams that received increased sodium intake during pregnancy and lactation submitted or not to 5/6 nephrectomy.

    PubMed

    Marin, Evelyn Cristina Santana; Balbi, Ana Paula Coelho; Francescato, Heloísa Della Coletta; Alves da Silva, Cleonice Giovanini; Costa, Roberto Silva; Coimbra, Terezila M

    2008-01-01

    Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.

  4. Effects of an overload of animal protein on the rat: brain DNA alterations and tissue morphological modifications during fetal and post-natal stage.

    PubMed

    Greco, A M; Sticchi, R; Boschi, G; Vetrani, A; Salvatore, G

    1985-01-01

    On account of many literature reports about the definite correlation between high animal protein intake and cardiovascular diseases, we have studied the effect of a hyperproteic purified diet (casein 40%, lactalbumin 20%) on fetal and post-natal (not further than 40th day) stage of the rat, when cell subdivision process is faster and therefore damage by nutritional imbalance is certainly more serious. Litters of rats were grouped according to mother's (either hyperproteic or common basic) and rat's (after lactation) diet. Brain DNA and histology of various organs were studied. Hyperproteic diet during fetal stage and lactation would inhibit brain cell subdivision since overall content of brain DNA would be decreased on autoptic finding. Structural changes were also shown in liver, heart, kidney and adrenal cortex, especially when hyperproteic diet was continued even after lactation.

  5. The hypothalamic paraventricular nucleus has a pivotal role in regulation of prolactin release in lactating rats.

    PubMed

    Kiss, J Z; Kanyicska, B; Nagy, G Y

    1986-08-01

    The affect of paraventricular nucleus (PVN) lesions on PRL secretory response to suckling was studied in adult female rats. Basal levels of PRL were similar in the control and lesioned groups. Substantial decreases in PRL levels occurred after separation of pups from their mothers in the control as well as lesioned animals. When mothers and pups were reunited, the circulating PRL concentrations of the control groups rose immediately from basal values of 50-100 micrograms/liter to reach peaks of 450-550 micrograms/liter. PVN lesions significantly decreased the suckling-induced rise of PRL levels. Furthermore, PVN lesions abolished the high amplitude, episodic pattern of PRL release in continuously lactating rats. These findings are consistent with the view that PVN neurons produce PRL releasing factor(s), which is (are) required for normal secretory patterns of PRL in lactating rats.

  6. Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring.

    PubMed

    Mizuno, Genki; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Murase, Yuri; Kondo, Kanako; Ishikawa, Hiroaki; Teradaira, Ryoji; Suzuki, Koji; Ohashi, Koji

    2017-02-01

    Neurosteroids, steroidal hormones synthesized de novo from cholesterol within the brain, stimulate hippocampal functions such as neuron protection and synapse formation. Previously, we examined the effect of maternal fructose on the transcriptional regulation of neurosteroidogenic enzymes. We found that the mRNA expression level of the steroidogenic acute regulatory protein (StAR), peripheral benzodiazepine receptor (PBR), cytochrome P450(11β), 11β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD was altered. However, we could not determine whether maternal fructose intake played a role in the gestation or lactation period because the dam rats were fed fructose solution during both periods. Thus, in this study, we analyzed the hippocampi of the offspring of dams fed fructose during the gestation or lactation period. Maternal fructose consumption during either the gestation or lactation period did not affect the mRNA levels of StAR, P450(17α), 11β-HSD-2, and 17β-HSD-1. PBR expression was down-regulated, even when rats consumed fructose during the lactation period only, while fructose consumption during gestation tended to activate the expression of P450(11β)-2. We found that maternal fructose intake during gestation and lactation differentially affected the expression of hippocampal neurosteroidogenic enzymes in the offspring.

  7. Effects of PEG-PLA-nano Artificial Cells Containing Hemoglobin on Kidney Function and Renal Histology in Rats

    PubMed Central

    Liu, Zun Chang; Chang, Thomas M.S.

    2012-01-01

    This study is to investigate the long-term effects of PEG-PLA nano artificial cells containing hemoglobin (NanoRBC) on renal function and renal histology after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: NanoRBC in Ringer lactate, Ringer lactate, stroma-free hemoglobin (SFHB), polyhemoglobin (PolyHb), autologous rat whole blood (rat RBC). Blood samples were taken before infusions and on days 1, 7 and 21 after infusions for biochemistry analysis. Rats were sacrificed on day 21 after infusions and kidneys were excised for histology examination. Infusion of SFHB induced significant decrease in renal function damage evidenced by elevated serum urea, creatinine and uric acid throughout the 21 days. Kidney histology in SFHb infusion group revealed focal tubular necrosis and intraluminal cellular debris in the proximal tubules, whereas the glomeruli were not observed damaged. In all the other groups, NanoRBC, PolyHb, Ringer lactate and rat RBC, there were no abnormalities in renal biochemistry or histology. In conclusion, injection of NanoRBC did not have adverse effects on renal function nor renal histology. PMID:18979292

  8. D-Lactate transport and metabolism in rat liver mitochondria.

    PubMed

    de Bari, Lidia; Atlante, Anna; Guaragnella, Nicoletta; Principato, Giovanni; Passarella, Salvatore

    2002-07-15

    In the present study we investigated whether isolated rat liver mitochondria can take up and metabolize D-lactate. We found the following: (1) externally added D-lactate causes oxygen uptake by mitochondria [P/O ratio (the ratio of mol of ATP synthesized to mol of oxygen atoms reduced to water during oxidative phosphorylation)=2] and membrane potential (Delta(psi)) generation in processes that are rotenone-insensitive, but inhibited by antimycin A and cyanide, and proton release from coupled mitochondria inhibited by alpha-cyanocinnamate, but not by phenylsuccinate; (2) the activity of the putative flavoprotein (D-lactate dehydrogenase) was detected in inside-out submitochondrial particles, but not in mitochondria and mitoplasts, as it is localized in the matrix phase of the mitochondrial inner membrane; (3) three novel separate translocators exist to mediate D-lactate traffic across the mitochondrial inner membrane: the D-lactate/H(+) symporter, which was investigated by measuring fluorimetrically the rate of endogenous flavin reduction, the D-lactate/oxoacid antiporter (which mediates both the D-lactate/pyruvate and D-lactate/oxaloacetate exchanges) and D-lactate/malate antiporter studied by monitoring photometrically the appearance of the D-lactate counteranions outside mitochondria. The D-lactate translocators, in the light of their different inhibition profiles separate from the monocarboxylate carrier, were found to differ from each other in the V(max) values and in the inhibition and pH profiles and were shown to regulate mitochondrial D-lactate metabolism in vitro. The D-lactate translocators and the D-lactate dehydrogenase could account for the removal of the toxic methylglyoxal from cytosol, as well as for D-lactate-dependent gluconeogenesis.

  9. Increased male offspring's risk of metabolic-neuroendocrine dysfunction and overweight after fructose-rich diet intake by the lactating mother.

    PubMed

    Alzamendi, Ana; Castrogiovanni, Daniel; Gaillard, Rolf C; Spinedi, Eduardo; Giovambattista, Andrés

    2010-09-01

    An adverse endogenous environment during early life predisposes the organism to develop metabolic disorders. We evaluated the impact of intake of an iso-caloric fructose rich diet (FRD) by lactating mothers (LM) on several metabolic functions of their male offspring. On postnatal d 1, ad libitum eating, lactating Sprague-Dawley rats received either 10% F (wt/vol; FRD-LM) or tap water (controls, CTR-LM) to drink throughout lactation. Weaned male offspring were fed ad libitum a normal diet, and body weight (BW) and food intake were registered until experimentation (60 d of age). Basal circulating levels of metabolic markers were evaluated. Both iv glucose tolerance and hypothalamic leptin sensitivity tests were performed. The hypothalamus was dissected for isolation of total RNA and Western blot analysis. Retroperitoneal (RP) adipose tissue was dissected and either kept frozen for gene analysis or digested to isolate adipocytes or for histological studies. FRD rats showed increased BW and decreased hypothalamic sensitivity to exogenous leptin, enhanced food intake (between 49-60 d), and decreased hypothalamic expression of several anorexigenic signals. FRD rats developed increased insulin and leptin peripheral levels and decreased adiponectinemia; although FRD rats normally tolerated glucose excess, it was associated with enhanced insulin secretion. FRD RP adipocytes were enlarged and spontaneously released high leptin, although they were less sensitive to insulin-induced leptin release. Accordingly, RP fat leptin gene expression was high in FRD rats. Excessive fructose consumption by lactating mothers resulted in deep neuroendocrine-metabolic disorders of their male offspring, probably enhancing the susceptibility to develop overweight/obesity during adult life.

  10. Transplacental passage of 26Al from pregnant rats to fetuses and 26Al transfer through maternal milk to suckling rats

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Nagai, H.; Matsuzaki, H.; Kobayashi, T.; Tada, W.; Ohki, Y.; Kakimi, S.; Kobayashi, K.

    2000-10-01

    Aluminium (Al) is toxic to the growth of fetuses and sucklings. However, the incorporation of Al into fetuses and sucklings in the periods of gestation and lactation has not been well clarified because Al lacks a suitable isotope for a tracer experiment. In this study, we used 26Al (a radioisotope of Al with half-life of 716,000 yr) as a tracer, and measured 26Al incorporation into fetuses and sucklings by accelerator mass spectrometry (AMS). To investigate Al incorporation into fetuses through transplacental passage, 26Al ( 26AlCl 3) was subcutaneously injected into pregnant rats on day 15 of gestation. 26Al was also subcutaneoulsy injected into lactating rats from day 1 to day 20 postpartum. By day 20 of gestation, 0.2% of the 26Al injected into a pregnant rat had been transferred to the fetuses, and 26Al was detected in the brain and liver of the fetuses. On day 9 postpartum, high levels of 26Al were demonstrated in the brain, liver, kidneys and blood of suckling rats. It is concluded that 26Al subcutaneously injected into pregnant rats and/or lactating rats is incorporated into their offspring through transplacental passage and/or maternal milk.

  11. Iodothyronine 5'-deiodinase activity and thyroid hormone content in brown adipose tissue during the breeding cycle of the rat.

    PubMed Central

    Viñas, O; Giralt, M; Obregón, M J; Iglesias, R; Villarroya, F; Mampel, T

    1988-01-01

    Brown adipose tissue iodothyronine 5'-deiodinase activity is significantly lower in 17-day pregnant rats compared with virgin controls and remains low during late pregnancy and lactation. It fully recovers with abrupt weaning, but only partially with spontaneous weaning. Even though this profile of changes is remarkably in step with the known pattern of modifications in brown fat thermogenesis during the breeding cycle, the lowered iodothyronine 5'-deiodinase activity appearing between days 15 and 17 of pregnancy occurs earlier than the reduction in brown adipose tissue thermogenesis. Brown fat 3,3',5-tri-iodothyronine content is also reduced in late pregnant, early and mid-lactating rats, most probably as a consequence of the lowered 5'-deiodination of thyroxine in situ. Acute insulin treatment increases brown fat iodothyronine 5'-deiodinase activity in virgin animals as well as in late-pregnant and lactating rats, despite the lowered basal enzyme activity levels in the latter groups. Thus an impaired response to insulin in brown fat does not appear to be a factor leading to the lowered iodothyronine 5'-deiodinase activity during late pregnancy and lactation. PMID:3060112

  12. Long-term Effects on the Histology and Function of Livers and Spleens in Rats after 33% Toploading of PEG-PLA-nano Artificial Red Blood Cells

    PubMed Central

    Liu, Zun Chang; Chang, Thomas M.S.

    2012-01-01

    This study is to investigate the long-term effects of nanodimension PEG-PLA artificial red blood cells containing hemoglobin and red blood cell enzymes on the liver and spleen after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: Nano artificial red blood cells in Ringer lactate, Ringer lactate, stroma-free hemoglobin, polyhemoglobin, and autologous rat whole blood. Blood samples were taken before infusions and on days 1, 7, and 21 after infusions for analysis. Nano artificial red blood cells, polyhemoglobin, Ringer lactate and rat red blood cells did not have any significant adverse effects on alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatine kinase, amylase and creatine kinase. On the other hand, stroma-free hemoglobin induced significant adverse effects on liver as shown by elevation in alanine aminotransferase and aspartate aminotransferase throughout the 21 days. On day 21 after infusions rats were sacrificed and livers and spleens were excised for histological examination. Nano artificial red blood cells, polyhemoglobin, Ringer lactate and rat red blood cells did not cause any abnormalities in the microscopic histology of the livers and spleens. In the stroma-free hemoglobin group the livers showed accumulation of hemoglobin in central veins and sinusoids, and hepatic steatosis. In conclusion, injected nano artificial red blood cells can be efficiently metabolized and removed by the reticuloendothelial system, and do not have any biochemical or histological adverse effects on the livers or the spleens. PMID:19043818

  13. Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood.

    PubMed

    Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda

    2018-04-03

    Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Swimming training prevents metabolic imprinting induced by hypernutrition during lactation.

    PubMed

    Fischer, Stefani Valeria; Capriglioni Cancian, Cláudia Regina; Montes, Elisangela Gueiber; de Carvalho Leite, Nayara; Grassiolli, Sabrina

    2015-02-01

    Reduction in litter size during lactation induces hypernutrition of the offspring culminating with altered metabolic programming during adult life. Overnourished rats present alterations in the endocrine pancreas and major predisposition to the development of type 2 diabetes. Our study evaluated the impact of swimming training on insulin secretion control in overnourished rats. At postnatal day 3 male rat pup litters were redistributed randomly into Small Litters (SL, 3 pups) or Normal Litters (NL, 9 pups) to induce early overfeeding during lactation. Both groups were subjected to swimming training (3 times/week/30 min) post-weaning (21 days) for 72 days. At 92 days of life pancreatic islets were isolated using collagenase technique and incubated with glucose in the presence or absence of acetylcholine (Ach, 0.1-1000 μM) or glucagon-like peptide 1 (GLP1, 10 nM). Adipose tissue depots (white and brown) and endocrine pancreas samples were examined by histological analysis. Food intake and body weight were measured. Blood biochemical parameters were also evaluated. Swimming training prevented metabolic program alteration by hypernutrition during lactation. Exercise reduced obesity and hyperglycemia in overnourished rats. Pancreatic islets isolated from overnourished rats showed a reduction in glucose-induced insulin secretion and cholinergic responses while the insulinotropic action of GLP1 was increased. Physical training effectively restored glucose-induced insulin secretion and GLP1-stimulated action in pancreatic islets from overnourished rats. However, swimming training did not correct the weak cholinergic response in pancreatic islets isolated from overnourished rats. Swimming training avoids obesity development, corrects glucose-induced insulin secretion, as well as, GLP1 insulinotropic response in overnourished rats. Copyright © 2014 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  15. A maternal 'junk food' diet in pregnancy and lactation promotes an exacerbated taste for 'junk food' and a greater propensity for obesity in rat offspring.

    PubMed

    Bayol, Stéphanie A; Farrington, Samantha J; Stickland, Neil C

    2007-10-01

    Obesity is generally associated with high intake of junk foods rich in energy, fat, sugar and salt combined with a dysfunctional control of appetite and lack of exercise. There is some evidence to suggest that appetite and body mass can be influenced by maternal food intake during the fetal and suckling life of an individual. However, the influence of a maternal junk food diet during pregnancy and lactation on the feeding behaviour and weight gain of the offspring remains largely uncharacterised. In this study, six groups of rats were fed either rodent chow alone or with a junk food diet during gestation, lactation and/or post-weaning. The daily food intakes and body mass were measured in forty-two pregnant and lactating mothers as well as in 216 offspring from weaning up to 10 weeks of age. Results showed that 10 week-old rats born to mothers fed the junk food diet during gestation and lactation developed an exacerbated preference for fatty, sugary and salty foods at the expense of protein-rich foods when compared with offspring fed a balanced chow diet prior to weaning or during lactation alone. Male and female offspring exposed to the junk food diet throughout the study also exhibited increased body weight and BMI compared with all other offspring. This study shows that a maternal junk food diet during pregnancy and lactation may be an important contributing factor in the development of obesity.

  16. The Effects of Direct Oxygen Supply During Static Cold Preservation of Rat Livers: An Experimental Study.

    PubMed

    Zumrutdal, Emin; Karateke, Faruk; Eser, Pınar Eylem; Turan, Umit; Ozyazici, Sefa; Sozutek, Alper; Gulkaya, Mustafa; Kunt, Mevlut

    2016-12-01

    We aimed to determine the biochemical and histopathologic effects of direct oxygen supply to the preservation fluid of static cold storage system with a simple method on rat livers. Sixteen rats were randomly divided into 2 groups: the control group, which contained Ringer's lactate as preservation fluid; and the oxygen group, which contained oxygen and Ringer's lactate for preservation. Each liver was placed in a bag containing 50 mL Ringer's lactate and placed in ice-filled storage containers. One hundred percent oxygen supplies were given via a simple, inexpensive system created in our laboratory, to the livers in oxygen group. We obtained samples for histopathologic evaluation in the 12th hour. In addition, 3 mL of preservation fluid was subjected to biochemical analysis at 0, sixth, and twelfth hours. Aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and pH levels were measured from the preservation fluid. In oxygen-supplemented group, the acceleration speed of increase in alanine aminotransferase and lactate dehydrogenase levels at sixth hour and lactate dehydrogenase, alanine aminotransferase, and lactate dehydrogenase levels at 12th hour were statistically significantly reduced. In histopathologic examination, all parameters except ballooning were statistically significantly better in the oxygen-supplemented group. This simple system for oxygenation of liver tissues during static cold storage was shown to be effective with good results in biochemical and histopathologic assessments. Because this is a simple, inexpensive, and easily available method, larger studies are warranted to evaluate its effects (especially in humans).

  17. A wire-based dual-analyte sensor for glucose and lactate: in vitro and in vivo evaluation.

    PubMed

    Ward, W Kenneth; House, Jody L; Birck, Jonathan; Anderson, Ellen M; Jansen, Lawrence B

    2004-06-01

    Continuous measurement of lactate is potentially useful for detecting physical exhaustion and for monitoring critical care conditions characterized by hypoperfusion, such as heart failure. In some conditions, it may be desirable to monitor more than one metabolic parameter concurrently. For this reason, we designed and fabricated twisted wire-based microelectrodes that can measure both lactate and glucose. These dual-analyte sensors were characterized in vitro by measuring their response to the analyte of interest and to assess whether they were susceptible to interference from the other analyte. When measured in stirred aqueous buffer, lactate sensors detected a very small amount of crosstalk from glucose in vitro, although this signal was less than 3% of the response to lactate. Glucose sensors did not detect crosstalk from lactate. Sensors were implanted subcutaneously in rats and tested during infusions of lactate and glucose. Each sensing electrode responded rapidly to changes in its analyte concentration, and there was no evidence of in vivo crosstalk. This study constitutes proof of the concept that oxidase-based, amperometric wire microsensors can detect changes in glucose and lactate during subcutaneous implantation in rats.

  18. Changes in dietary intake and body weight in lactating and non-lactating women: prospective study in northern coastal Croatia.

    PubMed

    Dujmović, Mihela; Kresić, Greta; Mandić, Milena L; Kenjerić, Daniela; Cvijanović, Olga

    2014-03-01

    Postpartum weight retention is a risk factor for the development of midlife obesity. Since dietary intake and breastfeeding practice could be promoters of weight loss during postpartum, the objective of this study was to investigate their influence on weight retention during six months postpartum. The study sample consisted of 83 lactating and 76 non-lactating Croatian women who were examined at three measurement waves: at 1 month +/- 1 week, 3 months +/- 1 week and 6 months +/- 1 week postpartum. At each measurement wave, two consecutive 24-hour dietary recalls were collected, and body weight measurements were made. Both groups had a daily energy intake lower by about 25% than recommended. Although both groups continuously decreased energy and macronutrient intake, lactating women had energy intake higher by 205 kcal (p = 0.048) and 370 kcal (p < 0.001) after one and three months, respectively. At six months postpartum lactating women had a higher intake of fat (p = 0.036) but a lower intake of protein (p = 0.009) compared with non-lactating mothers. After six months, lactating women retained 101.9% of pre-pregnancy weight, which was significantly less than the percentage of weight retained among non-lactating women (p = 0.014). Multiple regression analysis showed that weight retention were predicted by: type of feeding (beta = -0.281; p <0.001), and time since parturition (beta = -0.151; p < 0.001), while gestational weight gain (P = 0.491; p < 0.001), energy intake (b = 0.157; p < 0.001) and energy derived from fat (beta = 0.122; p = 0.035) were positive predictors. We concluded that the dietary intake of Croatian women and breastfeeding practice over six months significantly influence their weight loss.

  19. Do Lactation-Induced Changes in Ghrelin, Glucagon-Like Peptide-1, and Peptide YY Influence Appetite and Body Weight Regulation during the First Postpartum Year?

    PubMed Central

    Larson-Meyer, D. Enette; Schueler, Jessica; Kyle, Erin; Austin, Kathleen J.; Hart, Ann Marie; Alexander, Brenda M.

    2016-01-01

    To determine whether fasting and meal-induced appetite-regulating hormones are altered during lactation and associated with body weight retention after childbearing, we studied 24 exclusively breastfeeding women (BMI = 25.2 ± 3.6 kg/m2) at 4-5 weeks postpartum and 20 never-pregnant controls (BMI = 24.0 ± 3.1 kg/m2). Ghrelin, PYY, GLP-1, and appetite ratings were measured before/and 150 minutes after a standardized breakfast and 60 minutes after an ad libitum lunch. Body weight/composition were measured at 6 and 12 months. Fasting and area under-the-curve responses for appetite-regulating hormones did not differ between lactating and control groups; ghrelinacyl, however, tended to track higher after the standardized breakfast in lactating women and was higher (p < 0.05) after the ad libitum lunch despite a 24% higher energy intake (p < 0.05). By 12 months, lactating women lost 5.3 ± 2.2 kg (n = 18), whereas control women (n = 15) remained weight stable (p = 0.019); fifteen of the lactating women returned to within ±2.0 kg of prepregnancy weight but three retained >6.0 kg. The retainers had greater (p < 0.05) postmeal ghrelin rebound responses following breakfast. Overall these studies do not support the hypothesis that appetite-regulating hormones are altered during lactation and associated with postpartum weight retention. Altered ghrelin responses, however, deserve further exploration. PMID:27313876

  20. Nutritional Recovery with a Soybean Diet after Weaning Reduces Lipogenesis but Induces Inflammation in the Liver in Adult Rats Exposed to Protein Restriction during Intrauterine Life and Lactation

    PubMed Central

    Reis, Sílvia Regina de Lima; Feres, Naoel Hassan; Ignacio-Souza, Leticia Martins; Veloso, Roberto Vilela; Arantes, Vanessa Cristina; Kawashita, Nair Honda; Colodel, Edson Moleta; Botosso, Bárbara Laet; Reis, Marise Auxiliadora de Barros; Latorraca, Márcia Queiroz

    2015-01-01

    We evaluated the effects of postweaning nutritional recovery with a soybean flour diet on de novo hepatic lipogenesis and inflammation in adult rats exposed to protein restriction during intrauterine life and lactation. Rats from mothers fed with protein (casein) in a percentage of 17% (control, C) or 6% (low, L) during pregnancy and lactation were fed with diet that contained 17% casein (CC and LC groups, resp.) or soybean (CS and LS groups, resp.) after weaning until 90 days of age. LS and CS rats had low body weight, normal basal serum triglyceride levels, increased ALT concentrations, and high HOMA-IR indices compared with LC and CC rats. The soybean diet reduced PPARγ as well as malic enzyme and citrate lyase contents and activities. The lipogenesis rate and liver fat content were lower in LS and CS rats relative to LC and CC rats. TNFα mRNA and protein levels were higher in LS and CS rats than in LC and CC rats. NF-κB mRNA levels were lower in the LC and LS groups compared with the CC and LC groups. Thus, the soybean diet prevented hepatic steatosis at least in part through reduced lipogenesis but resulted in TNFα-mediated inflammation. PMID:25892856

  1. Hypoglycemia Prevents Increase in Lactic Acidosis During Reperfusion After Temporary Cerebral Ischemia in Rats

    PubMed Central

    Sappey-Marinier, Dominique; Chileuitt, Laureano; Weiner, Michael W.; Faden, Alan I.; Weinstein, Philip R.

    2009-01-01

    Sequential 31P and 1H MRS was used to measure cerebral phosphate metabolites, intracellular pH, and lactate in normoglycemic and hypoglycemic rats during 30 min of complete cerebral ischemia and 5.5 h of reperfusion. These results were correlated with brain levels of free fatty acids (FFAs), excitatory amino acids, cations, and water content at death. The lactate/N-acetyl aspartate ratio was not significantly different between groups before or during occlusion. During reperfusion, the ratio was higher in normoglycemic rats from 3 to 85 min (p≤ 0.05), and recovery time was faster in hypoglycemic rats (29 vs 45 min; p = 0.04), suggesting reduced lactate production and faster recovery of aerobic metabolism. During occlusion, significant but comparable decrease of intracellular pH occurred in each group. Intracellular pH was higher in hypoglycemic rats at 140 min and 260 min of reperfusion. Water content, Na and K+ concentrations, and FFA and excitatory amino acid levels were not significantly different between groups, but hypoglycemic rats had less depletion of levels of Mg2+ (p=0.011). These results show that hypoglycemia has a limited but potentially beneficial effect on postischemic lactic acidosis. PMID:8771092

  2. Calcium deprivation increases the palatability of calcium solutions in rats.

    PubMed

    McCaughey, Stuart A; Forestell, Catherine A; Tordoff, Michael G

    2005-02-15

    Calcium-deprived rats have elevated intakes of CaCl2, other calcium salts, and some non-calcium compounds. We used taste reactivity to examine the effects of calcium deprivation on the palatability of CaCl2 and other solutions. Nine male Sprague-Dawley rats were calcium-deprived by maintenance on a low-calcium diet, and eight replete rats were used as controls. All rats were videotaped during intraoral infusion of the following solutions: 30 and 300 mM CaCl2, 30 mM calcium lactate, 100 and 600 mM NaCl, 30 mM MgCl2, 1 mM quinine.HCl, 2.5 mM sodium saccharin, and deionized water. We counted individual orofacial and somatic movements elicited by the infusions and used them to calculate total ingestive and aversive scores. Relative to controls, calcium-deprived rats gave a significantly larger number of tongue protrusions and had higher total ingestive scores for CaCl2, calcium lactate, NaCl, and MgCl2. Our results suggest that CaCl2, calcium lactate, NaCl, and MgCl2 taste more palatable to rats when they are calcium-deprived than replete, and this may be responsible for the increased intake of these solutions following calcium deprivation.

  3. Lactate in the brain of the freely moving rat: voltammetric monitoring of the changes related to the sleep-wake states.

    PubMed

    Shram, Nataliya; Netchiporouk, Larissa; Cespuglio, Raymond

    2002-08-01

    Cortical lactate was monitored voltammetrically in freely moving rats equipped with polygraphic electrodes. Differential normal pulse voltammetric measurements were carried out using a lactate biosensor coated with lactate oxidase and cellulose acetate. Changes occurring in lactate level were in keeping with sleep-wake states. During slow wave sleep (SWS), the lactate level decreased significantly (-16.2%) vs. the spontaneous waking state (W) referenced to as 100%. During paradoxical sleep (PS), and still vs. W, it remained low (-9.0%) but this variation was not statistically significant. However, when this PS change was compared to the SWS variation, a significant increase in lactate level was then revealed (+8.5%). Finally, during the active waking (aW) triggered by a water puff stress, lactate level rose significantly in accordance with the animal activity (+53% compared to W). Long-term monitoring also allowed the determination of a circadian component in lactate production, the lowest and highest values being monitored during light and dark periods, respectively. The acrophasis of the circadian change occurred during the dark period, about 3 h after the light-off (+89%). It is suggested that during wakefulness astrocyte metabolism allows the transformation of the blood-borne glucose into lactate. The increase in this substrate observed during PS may fulfil the oxidative phosphorylation in order to supply the important ATP need of PS.

  4. Differential effects of habitual chow-based and semi-purified diets on lipid metabolism in lactating rats and their offspring.

    PubMed

    Del Bas, Josep Maria; Caimari, Antoni; Ceresi, Enzo; Arola-Arnal, Anna; Palou, Andreu; Arola, Lluís; Crescenti, Anna

    2015-03-14

    Diet during pregnancy and lactation is a critical factor in relation to the health of dams and their offspring. Currently, control diets used in metabolic imprinting studies differ in composition and type, i.e. semi-purified diets (SD) or chow-based diets (ND). The aim of the present study was to determine whether two widely used control diets, a SD and a ND, that mainly differ in fat content (5·08 and 3·26 %, respectively) and its sources (soyabean oil for the SD and cereals and fish for the ND), fibre (6 and 15 %, respectively), and cholesterol (26 and 69 mg/kg diet, respectively) can influence the lipid metabolism of dams and their offspring. Wistar rats were fed either the SD or the ND during pregnancy and lactation. At weaning, SD-fed dams presented severe hepatic steatosis and increased levels of circulating TAG, NEFA and insulin. Importantly, the offspring presented an altered plasma lipid profile. In contrast, the ND allowed for a normal gestation and lactation process, and did not affect the metabolism of offspring. In parallel, virgin rats fed the SD showed no metabolic alterations. A higher intake of SFA and MUFA and a lower consumption of PUFA observed in SD-fed dams during the lactation period could contribute to explaining the observed effects. In conclusion, two different control diets produced very different outcomes in the lipid metabolism of lactating rats and their offspring. The present results highlight the importance of the assessment of the metabolic state of dams when interpreting the results of metabolic programming studies.

  5. Effects of the neurotoxin MPTP and pargyline protection on extracellular energy metabolites and dopamine levels in the striatum of freely moving rats.

    PubMed

    Bazzu, Gianfranco; Rocchitta, Gaia; Migheli, Rossana; Alvau, Maria Domenica; Zinellu, Manuel; Puggioni, Giulia; Calia, Giammario; Mercanti, Giulia; Giusti, Pietro; Desole, Maria Speranza; Serra, Pier Andrea

    2013-11-13

    The neurotoxin MPTP is known to induce dopamine release and depletion of ATP in the striatum of rats. Therefore, we studied the changes induced by MPTP and pargyline protection both on striatal dopamine release and on extracellular energy metabolites in freely moving rats, using dual asymmetric-flow microdialysis. A dual microdialysis probe was inserted in the right striatum of rats. MPTP (25mg/kg, 15mg/kg, 10mg/kg) was intraperitoneally administered for three consecutive days. MAO-B inhibitor pargyline (15mg/kg) was systemically administered before neurotoxin administration. The first MPTP dose induced an increase in dialysate dopamine and a decrease of DOPAC levels in striatal dialysate. After the first neurotoxin administration, increases in striatal glucose, lactate, pyruvate, lactate/pyruvate (L/P) and lactate/glucose (L/G) ratios were observed. Subsequent MPTP administrations showed a progressive reduction of dopamine, glucose and pyruvate levels with a concomitant further increase in lactate levels and L/P and L/G ratios. At day 1, pargyline pre-treatment attenuated the MPTP-induced changes in all studied analytes. Starting from day 2, pargyline prevented the depletion of dopamine, glucose and pyruvate while reduced the increase of lactate, L/P ratio and L/G ratio. These in vivo results suggest a pargyline neuroprotection role against the MPTP-induced energetic impairment consequent to mitochondrial damage. This neuroprotective effect was confirmed by TH immunostaining of the substantia nigra. © 2013 Elsevier B.V. All rights reserved.

  6. Elevated levels of liver methylglyoxal and d-lactate in early-stage hepatitis in rats.

    PubMed

    Wang, Wen-Chuang; Chou, Chu-Kuang; Chuang, Ming-Cheng; Li, Yi-Chieh; Lee, Jen-Ai

    2018-02-01

    Methylglyoxal (MGO) is highly cytotoxic and its levels are elevated in diabetes, nephropathy and atherosclerosis. However, it has never been studied in liver disease. For this reason, we aimed to assess the levels of MGO and its metabolite d-lactate in an early hepatitis model. Wistar rats were administered CCl 4 (0.75 mL/kg, i.p.) to induce hepatitis. In either CCl 4 -treated or untreated rats, alanine transaminase and aspartate transaminase levels did not change over the course of the study, indicating that significant liver damage did not occur following CCl 4 treatment. However, the levels of MGO and d-lactate were higher in the livers of CCl 4 -treated animals than in untreated animals (MGO: 128.2 ± 18.8 and 248.1 ± 64.9 μg/g protein, p < 0.01; d-lactate: 0.860 ± 0.040 and 1.293 ± 0.078 μmol/g protein, respectively p < 0.01). Furthermore, in untreated and treated animals, serum d-lactate levels were 57.65 ± 2.59 and 92.16 ± 16.69 μm and urine d-lactate levels were 1.060 ± 0.007 and 1.555 ± 0.366 μmol/mg UCr, respectively (p < 0.01). These data show that in this model of early-stage liver damage, the levels of MGO and its metabolite d-lactate are elevated and that d-lactate could be useful as a reference marker for the early stage of hepatitis. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    PubMed

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampson, D.A.; Jansen, G.R.

    1985-04-01

    Protein synthesis was studied in mammary tissue of rats fed diets deficient in protein quality and/or restricted in food intake throughout gestation and lactation. Diets containing 25% wheat gluten (WG), wheat gluten plus lysine and threonine (WGLT), or casein (C) were pair-fed from conception until day 15 of lactation at 100% or 85% of WG ad libitum consumption (PF100 and PF85, respectively). A seventh group was fed C ad libitum. Rates of protein synthesis were measured in vivo at day 15 of lactation from incorporation of (3-/sup 3/H)phenylalanine. At both PF100 and PF85, fractional and absolute rates of mammary glandmore » protein synthesis were two- to three-fold higher in rats fed C than in those fed WG. Pup weights showed similar treatment effects. Both mammary protein synthesis rates and pup weights were significantly higher in rats fed C at PF85 than rats fed WG ad libitum. Food restriction from PF100 to PF85 depressed pup weights and mammary protein synthesis rates in rats fed WGLT, but had no effect in rats fed WG. These results demonstrate that when food intake is restricted, improvement of protein quality of the maternal diet increases milk output in the rat in association with increased rates of mammary protein synthesis.« less

  9. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  10. Reproductive Experience Alters Prolactin Receptor Expression in Mammary and Hepatic Tissues in Female Rats1

    PubMed Central

    Bridges, Robert S.; Scanlan, Victoria F.; Lee, Jong-O; Byrnes, Elizabeth M.

    2011-01-01

    Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer. PMID:21508351

  11. Reproductive experience alters prolactin receptor expression in mammary and hepatic tissues in female rats.

    PubMed

    Bridges, Robert S; Scanlan, Victoria F; Lee, Jong-O; Byrnes, Elizabeth M

    2011-08-01

    Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer.

  12. Effect of variation of trans-fatty acid in lactating rats' diet on lipoprotein lipase activity in mammary gland, liver, and adipose tissue.

    PubMed

    Assumpção, Renata Pereira; dos Santos, Flávia Duarte; de Mattos Machado Andrade, Priscila; Barreto, Giselle Freire; das Graças Tavares do Carmo, Maria

    2004-09-01

    Lactation is associated with an increase in lipoprotein lipase (LPL) activity in the mammary gland (MG) and a decrease in adipose tissue because lactation redirects circulating substrates to the MG for milk synthesis. We investigated the effects of different dietary contents of trans-fatty acid (TFA) on LPL activity in maternal tissues and fatty acid composition in milk. Lactating rats were fed semisynthetic isocaloric diets containing 7% soy oil (control), 7% partially hydrogenated vegetable oil (7%-PHVO), 5% PHVO plus 2% soy oil (5%-PHVO), or 3.5% PHVO plus 3.5% soy oil (3.5%-PHVO). On lactation day 14, animals were decapitated and MG, liver, and parametrial adipose tissue were extracted to determine total lipid contents, percentages of TFA, and LPL activity. Milk lipid composition was examined by gas chromatographic analysis of the gastric content of 14-d-old suckling pups. Maternal consumption of TFA increased dietary TFA incorporation in MG and liver and decreased it in parametrial adipose tissue. Diets with higher trans concentrations (7%-PHVO) significantly increased lipid content in the MG, and all groups fed trans-based diets showed significant increases in LPL activity in the MG. Although LPL increased in the MG, milk of rats fed TFA-based diets had significant decreases in the percentage of essential fatty acids. TFA intake during lactation alters maternal lipid metabolism and the percentage of essential fatty acids in milk; therefore, it is important to alert the population to avoid excessive intake of TFAs during lactation.

  13. [Enzyme activity in the subcellular fractions of the liver of rats following a flight on board the Kosmos-1129 biosatellite].

    PubMed

    Tigranian, R A; Vetrova, E G; Abraham, S; Lin, C; Klein, H

    1983-01-01

    The activities of malate, isocitrate, and lactate dehydrogenases were measured in the liver mitochondrial and cytoplasmatic fractions of rats flown for 18.5 days onboard Cosmos-1129. The activities of the oxidative enzymes, malate and isocitrate dehydrogenases, in the mitochondrial fraction and those of the glycolytic enzyme, lactate dehydrogenase, in the cytoplasmatic fraction were found to decrease.

  14. Effects of in utero and lactational exposure to triphenyltin chloride on pregnancy outcome and postnatal development in rat offspring.

    PubMed

    Grote, Konstanze; Hobler, Carolin; Andrade, Anderson J M; Grande, Simone Wichert; Gericke, Christine; Talsness, Chris E; Appel, Klaus E; Chahoud, Ibrahim

    2007-09-05

    The organotin compound (OTC) triphenyltin (TPT) is used extensively as a herbicide, pesticide and fungicide in agriculture as well as, together with tributyltin (TBT), in marine antifouling paints. We studied the effects of in utero exposure to 2 or 6 mg triphenyltinchloride (TPTCl)/kgb.w. on pregnancy outcome and postnatal development in rat offspring. Gravid Wistar rats were treated per gavage from gestational day 6 until the end of lactation. In the 6 mg TPTCl dose group gestational mortality in dams as well as an increased incidence of anticipated and delayed parturition was observed. Furthermore, treatment resulted in a significant increase in perinatal mortality, a decrease in lactational body weight gain as well as in delayed physical maturation of offspring. Similarily, exposure to 2mg TPTCl/kgb.w. resulted in a significant increase in perinatal mortality and in delayed eye opening. Lactational body weight gain and other landmarks of physical maturation were unaffected in the low dose group. We conclude, that in utero exposure to TPTCl at the described dose levels severely affected pregnancy outcome and perinatal survival of offspring. These results were unexpected, as in two earlier studies with pubertal rats TPTCl at the same dose levels no signs of general toxicity were observed.

  15. Improvement of exercise capacity of rats with chronic heart failure by long-term treatment with trandolapril

    PubMed Central

    Yamaguchi, Fuminari; Kawana, Ken-ichiro; Tanonaka, Kouichi; Kamano, Isamu; Igarashi, Takahiro; Gen, Eigyoku; Fujimoto, Yoko; Maki, Toshiyuki; Sanbe, Atsushi; Nasa, Yoshihisa; Takeo, Satoshi

    1999-01-01

    The effects of long-term treatment with trandolapril, an angiotensin I-converting enzyme inhibitor, on exercise capacity of rats with chronic heart failure (CHF) following coronary artery ligation were examined. CHF was developed by 8 weeks after the coronary artery ligation. The running time of rats with CHF in the treadmill test was shortened to approximately 65% of that of sham-operated rats (16.3±1.2 vs 25.1±1.6 min, n=7; P<0.05). ATP, creatine phosphate (CP), and lactate contents of the gracilis muscle of rats with CHF were similar to those of sham-operated rats before running. After running, ATP and CP were decreased and lactate was increased in both rats with CHF and sham-operated rats. There were no significant differences in the levels of energy metabolites between rats with CHF and sham-operated rats. The rates of decrease in ATP and CP and rate of increase in lactate in the gracilis muscle of rats with CHF during exercise were greater than those of sham operated rats (2.5, 2.0 and 1.5 fold high, respectively), suggesting wastage of energy during exercise in the animals with CHF. Myofibrillar Ca2+-stimulated ATPase (Ca-ATPase) activity of skeletal muscle of rats with CHF was increased over that of the sham-operated control (62.03±1.88 vs 52.34±1.19 μmol Pi mg−1 protein h−1 n=7; P<0.05). The compositions of myosin heavy chain (MHC) isoforms of gracilis muscle were altered by CHF; decreases in MHC types I and IIb and an increase in MHC type IIa were found (P<0.05). Rats with CHF were treated with 1 mg kg−1 day−1 trandolapril from the 2nd to 8th week after surgery. Treatment with trandolapril prolonged the running time, reversed the rates of decrease in ATP and CP and the rate of increase in lactate, and restored the Ca-ATPase activity (51.11±0.56 μmol Pi mg−1 protein h−1, n=7; P<0.05) and composition ratio of MHC isoforms in the gracilis muscle. The results suggest that long-term trandolapril treatment of rats with CHF may restore their ability to utilize energy without wastage and thus improve exercise capacity. PMID:10323590

  16. The distribution of atrazine (ATR) and ATR metabolites in the Wistar rat following gestational/lactational exposures

    EPA Science Inventory

    Gestational/lactational exposure to ATR is reported to alter reproductive/developmental function, yet our understanding of the transfer of ATR and/or its metabolites from the dam to the fetus/offspring is limited. Previously we examined the lactational transfer of CI4-ATR, but sp...

  17. Effective Treatment of Traumatic Brain Injury in Rowett Nude Rats with Stromal Vascular Fraction Transplantation.

    PubMed

    Berman, Sean; Uhlendorf, Toni L; Berman, Mark; Lander, Elliot B

    2018-06-18

    Traumatic brain injury (TBI) affects 1.9 million Americans, including blast TBI that is the signature injury of the Iraq and Afghanistan wars. Our project investigated whether stromal vascular fraction (SVF) can assist in post-TBI recovery. We utilized strong acoustic waves (5.0 bar) to induce TBI in the cortex of adult Rowett Nude (RNU) rats. One hour post-TBI, harvested human SVF (500,000 cells suspended in 0.5 mL lactated Ringers) was incubated with Q-Tracker cell label and administered into tail veins of RNU rats. For comparison, we utilized rats that received SVF 72 h post-TBI, and a control group that received lactated Ringers solution. Rotarod and water maze assays were used to monitor motor coordination and spatial memories. Rats treated immediately after TBI showed no signs of motor skills and memory regression. SVF treatment 72 h post-TBI enabled the rats maintain their motor skills, while controls treated with lactated Ringers were 25% worse statistically in both assays. Histological analysis showed the presence of Q-dot labeled human cells near the infarct in both SVF treatment groups; however, labeled cells were twice as numerous in the one hour group. Our study suggests that immediate treatment with SVF would serve as potential therapeutic agents in TBI.

  18. Transgenerational Effects of Di (2-Ethylhexyl) Phthalate in the Male CRL:CD(SD) Rat: Added Value of Assessing Multiple Offspring per Litter

    PubMed Central

    Gray, Leon Earl; Barlow, Norman J.; Howdeshell, Kembra L.; Ostby, Joseph S.; Furr, Johnathan R.; Gray, Clark L.

    2009-01-01

    In the rat, some phthalates alter sexual differentiation at relatively low dosage levels by altering fetal Leydig cell development and hormone synthesis, thereby inducing abnormalities of the testis, gubernacular ligaments, epididymis, and other androgen-dependent tissues. In order to define the dose-response relationship between di(2-ethylhexyl) phthalate (DEHP) and the Phthalate Syndrome of reproductive alterations in F1 male rats, Sprague-Dawley (SD) rat dams were dosed by gavage from gestational day 8 to day 17 of lactation with 0, 11, 33, 100, or 300 mg/kg/day DEHP (71–93 males per dose from 12 to 14 litters per dose). Some of the male offspring continued to be exposed to DEHP via gavage from 18 days of age to necropsy at 63–65 days of age (PUB cohort; 16–20/dose). Remaining males were not exposed after postnatal day 17 (in utero-lactational [IUL] cohort) and were necropsied after reaching full maturity. Anogenital distance, sperm counts and reproductive organ weights were reduced in F1 males in the 300 mg/kg/day group and they displayed retained nipples. In the IUL cohort, seminal vesicle weight also was reduced at 100 mg/kg/day. In contrast, serum testosterone and estradiol levels were unaffected in either the PUB or IUL cohorts at necropsy. A significant percentage of F1 males displayed one or more Phthalate Syndrome lesions at 11 mg/kg/day DEHP and above. We were able to detect effects in the lower dose groups only because we examined all the males in each litter rather than only one male per litter. Power calculations demonstrate how using multiple males versus one male/litter enhances the detection of the effects of DEHP. The results at 11 mg/kg/day confirm those reported from a National Toxicology Program multigenerational study which reported no observed adverse effect levels-lowest observed adverse effect levels of 5 and 10 mg/kg/day DEHP, respectively, via the diet. PMID:19482887

  19. The “metabolic sensor” function of rat supraoptic oxytocin and vasopressin neurons is attenuated during lactation but not in diet-induced obesity

    PubMed Central

    Stevens, Wanida; Song, Zhilin; Johnson, Ginger C.; MacLean, Paul S.

    2015-01-01

    The oxytocin (OT) and vasopressin (VP) neurons of the supraoptic nucleus (SON) demonstrate characteristics of “metabolic sensors”. They express insulin receptors and glucokinase (GK). They respond to an increase in glucose and insulin with an increase in intracellular [Ca2+] and increased OT and VP release that is GK dependent. Although this is consistent with the established role of OT as an anorectic agent, how these molecules function relative to the important role of OT during lactation and whether deficits in this metabolic sensor function contribute to obesity remain to be examined. Thus, we evaluated whether insulin and glucose-induced OT and VP secretion from perifused explants of the hypothalamo-neurohypophyseal system are altered during lactation and by diet-induced obesity (DIO). In explants from female day 8 lactating rats, increasing glucose (Glu, 5 mM) did not alter OT or VP release. However, insulin (Ins; 3 ng/ml) increased OT release, and increasing the glucose concentration in the presence of insulin (Ins+Glu) resulted in a sustained elevation in both OT and VP release that was not prevented by alloxan, a GK inhibitor. Explants from male DIO rats also responded to Ins+Glu with an increase in OT and VP regardless of whether obesity had been induced by feeding a high-fat diet (HFD). The HFD-DIO rats had elevated body weight, plasma Ins, Glu, leptin, and triglycerides. These findings suggest that the role of SON neurons as metabolic sensors is diminished during lactation, but not in this animal model of obesity. PMID:26661099

  20. Evaluation of the effects of treating dairy cows with meloxicam at calving on retained fetal membranes risk

    PubMed Central

    Newby, Nathalie C.; Renaud, David; Tremblay, Robert; Duffield, Todd F.

    2014-01-01

    Some non-steroidal anti-inflammatory drugs increase the risk of retained fetal membranes. This is the first study to investigate the effects of meloxicam on the risk of retained fetal membranes. Administration of meloxicam to dairy cattle immediately following calving revealed no differences in the incidence of retained fetal membranes between meloxicam-treated and untreated animals. There was no difference between the 2 groups in the incidence of periparturient diseases following calving. Meloxicam can be used on the day of calving in lactating cows without increasing the risk of retained fetal membranes. PMID:25477550

  1. Transient gestational and neonatal hypothyroidism-induced specific changes in androgen receptor expression in skeletal and cardiac muscles of adult rat.

    PubMed

    Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M

    2013-03-01

    The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Fructose consumption during pregnancy and lactation induces fatty liver and glucose intolerance in rats

    PubMed Central

    Zou, Mi; Arentson, Emily J.; Teegarden, Dorothy; Koser, Stephanie L.; Onyskow, Laurie; Donkin, Shawn S.

    2015-01-01

    Nutritional insults during pregnancy and lactation are health risks for mother and offspring. Both fructose and low protein diets are linked to hepatic steatosis and insulin resistance in non-pregnant animals. We hypothesized that dietary fructose or low protein intake during pregnancy may exacerbate the already compromised glucose homeostasis to induce gestational diabetes and fatty liver. Therefore, we investigated and compared the effects of low protein or fructose intake on hepatic steatosis and insulin resistance in unmated controls and pregnant and lactating rats. Sprague-Dawley rats were fed either a control (CT), a 63% fructose (FR) or an 8% protein (LP) diet. Glucose tolerance test at day 17 of the study revealed greater (P < 0.05) blood glucose at 10 (75.6 vs. 64.0 ± 4.8 mg/dl) and 20 (72.4 vs. 58.6 ± 4.0 mg/dl) min after glucose dose and greater area under the curve (4302.3 vs. 3763.4 ± 263.6 mg·dl−1·min−1) for FR-fed dams compared with CT-fed dams. The rats were euthanized at 21 days postpartum. Both the FR- and LP-fed dams had enlarged (P < 0.05) livers (9.3, 7.1 vs. 4.8 ± 0.2 % body weight) and elevated (P < 0.05) liver triacylglycerol (216.0, 130.0 vs. 19.9 ± 12.6 mg/g liver weight) compared with CT-fed dams. FR induced fatty liver and glucose intolerance in pregnant and lactating rats, but not unmated control rats. The data demonstrate a unique physiological status response to diet resulting in the development of gestational diabetes coupled with hepatic steatosis in FR-fed dams, which is more severe than a LP diet. PMID:22935342

  3. Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats

    PubMed Central

    de Bakker, Chantal M. J.; Altman-Singles, Allison R.; Li, Yihan; Tseng, Wei-Ju; Li, Connie; Liu, X. Sherry

    2017-01-01

    Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on post-menopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, while other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that while rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. PMID:28109138

  4. myo-Inositol metabolism during lactation and development in the rat. The prevention of lactation-induced fatty liver by dietary myo-inositol.

    PubMed

    Burton, L E; Wells, W W

    1976-11-01

    Effects of dietary myo-inositol deprivation were examined during prenatal and postnatal development and during lactation in the rat. The deficient diet contained no detectable myo-inositol while the supplemented diet contained 0.5% (w/w) myo-inositol while the supplemented diet ct contained 0.5% (w/w) myo-inositol at the expense of sucrose. Both diets contained 25% casein, adequate amounts of all known vitamins, choline, and essential fatty acids as well as 0.5% (w/w) phthalylsulfathiazole to depress myo-inositol contribution to the diet by microorganisms. Pregnant rats of the Holtzman strain were fed the respective diets during gestation and lactation, and pups were fed the corresponding diet after weaning until 3 months of age. There were no significant differen-es in body weight between experimental groups. Supplementation of the diet with myo-inositol significanly increased the levels of myo-inositol in plasma, liver, kidney, and intestine of pups at all ages examined, and significantly increased the levels of myo-inositol in the milk and mammary tissue during lactation. During lactation, the myo-inositol deprived dams developed severe fatty livers (31% w/w) characterized by diminished phosphatidyl-inositol (50%) and total phospholipid phosphorus (57%) levels as compared with controls. After weaning, the liver lipid content of the myo-inositol deprived dams returned to normal (4.5%). The data suggest that a possible threshold level of free myo-inositol (approximately 0.15 mumoles/g lipid-free tissue) was required to prevent fatty liver in lactating dams under these dietary conditions. Effects of the deficient diet on fertility were also examined. Based on sperm count and production of offspring, there were no differnences between the experimental and control males. Females of both groups showed equal ability to produce offspring.

  5. Energy and glucose pathways in thiamine deficient primary rat brain microvascular endothelial cells.

    PubMed

    Ham, D; Karska-Wysocki, B

    2005-12-01

    Thiamine deficiency (TD) results in lactate acidosis, which is associated with neurodegeneration. The aim of this study was to investigate this alteration in primary rat brain endothelia. Spectrophotometric analysis of culture media revealed that only a higher concentration of pyrithiamine, which accelerates the intracellular blocking of thiamine, significantly elevated the lactate level and lactate dehydrogenase activity within 7 days. The medium without pyrithiamine and with a thiamine concentration comparable to pathophysiological plasma levels mildly reduced only the activity of transketolase. This suggests that significant metabolic changes may not occur at the early phase of TD in cerebral capillary cells, while anaerobic glycolysis in capillaries may be mediated during late stage/chronic TD.

  6. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1970-01-01

    1. tRNA isolated from non-lactating bovine mammary gland competitively inhibits the formation of aminoacyl-tRNA in the rat liver system. 2. Non-lactating bovine mammary gland tRNA and twice-pyrophosphorolysed rat liver tRNA are unable to accept amino acids in a reaction catalysed by aminoacyl-tRNA synthetases from either rat liver or bovine mammary gland. Deacylated rat liver tRNA can however be aminoacylated in the presence of either enzyme. 3. Bovine mammary gland tRNA lacks the terminal adenine nucleotide at the 3′-terminus amino acid acceptor end, which can be replaced by incubation in the presence of rat liver nucleotide-incorporating enzyme, ATP and CTP. 4. The enzymically modified bovine tRNA (tRNApCpCpA) can bind labelled amino acids to form aminoacyl-tRNA, which can then transfer its labelled amino acids to growing polypeptide chains on ribosomes. 5. Molecules of rat liver tRNA or bovine mammary gland tRNA that lack the terminal adenine nucleotide or the terminal cytosine and adenine nucleotides inhibit the aminoacylation of normal rat liver tRNA to varying degrees. tRNA molecules lacking the terminal −pCpCpA nucleotide sequence exhibit the major inhibitory effect. 6. The enzyme fraction from bovine mammary gland corresponding to that containing the nucleotide-incorporating enzyme in rat liver is unable to catalyse the incorporation of cytosine and adenine nucleotides in pyrophosphorolysed rat liver tRNA and deacylated bovine tRNA. This fraction also markedly inhibits the action of the rat liver nucleotide-incorporating enzyme. PMID:5435687

  7. Acidosis mediates recurrent hypoglycemia-induced increase in ischemic brain injury in treated diabetic rats.

    PubMed

    Rehni, Ashish K; Shukla, Vibha; Perez-Pinzon, Miguel A; Dave, Kunjan R

    2018-03-15

    Cerebral ischemia is a serious possible manifestation of diabetic vascular disease. Recurrent hypoglycemia (RH) enhances ischemic brain injury in insulin-treated diabetic (ITD) rats. In the present study, we determined the role of ischemic acidosis in enhanced ischemic brain damage in RH-exposed ITD rats. Diabetic rats were treated with insulin and mild/moderate RH was induced for 5 days. Three sets of experiments were performed. The first set evaluated the effects of RH exposure on global cerebral ischemia-induced acidosis in ITD rats. The second set evaluated the effect of an alkalizing agent (Tris-(hydroxymethyl)-aminomethane: THAM) on ischemic acidosis-induced brain injury in RH-exposed ITD rats. The third experiment evaluated the effect of the glucose transporter (GLUT) inhibitor on ischemic acidosis-induced brain injury in RH-exposed ITD rats. Hippocampal pH and lactate were measured during ischemia and early reperfusion for all three experiments. Neuronal survival in Cornu Ammonis 1 (CA1) hippocampus served as a measure of ischemic brain injury. Prior RH exposure increases lactate concentration and decreases pH during ischemia and early reperfusion when compared to controls. THAM and GLUT inhibitor treatments attenuated RH-induced increase in ischemic acidosis. GLUT inhibitor treatment reduced the RH-induced increase in lactate levels. Both THAM and GLUT inhibitor treatments significantly decreased ischemic damage in RH-exposed ITD rats. Ischemia causes increased acidosis in RH-exposed ITD rats via a GLUT-sensitive mechanism. Exploring downstream pathways may help understand mechanisms by which prior exposure to RH increases cerebral ischemic damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. MCT Expression and Lactate Influx/Efflux in Tanycytes Involved in Glia-Neuron Metabolic Interaction

    PubMed Central

    Cortés-Campos, Christian; Elizondo, Roberto; Llanos, Paula; Uranga, Romina María; Nualart, Francisco; García, María Angeles

    2011-01-01

    Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes to their activation. Because destruction of third ventricle (III-V) tanycytes is sufficient to alter blood glucose levels and food intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we demonstrate the presence and function of monocarboxylate transporters (MCTs) in tanycytes. Specifically, MCT1 and MCT4 expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and MCT4-expressing tanycytes. PMID:21297988

  9. Minimally invasive monitoring of skeletal muscle hypermetabolism induced by the phosphodiesterase-III-inhibitor milrinone and sodium fluoride.

    PubMed

    Schuster, Frank; Johannsen, Stephan; Roewer, Norbert; Anetseder, Martin

    2013-04-01

    We hypothesized that the phosphodiesterase-III-inhibitor milrinone and the non-specific G-protein activator sodium fluoride increase the skeletal muscular lactate levels as a sign of a hypermetabolic response. With approval of the local animal care committee Sprague-Dawley rats were killed and artificially perfused either with Ringer's solution or sodium fluoride 110 mM, while milrinone 1.32 mM or Ringer's solution at 1 μl/min was applied via microdialysis probes in both hind limbs. Lactate was measured spectrophotometrically in the dialysate. Baseline lactate levels before drug application did not differ between hind limbs. Local infusion of milrinone via microdialysis did not significantly increase intramuscular lactate concentrations compared with the Ringer control group. Muscular perfusion with sodium fluoride resulted in a significant increase of lactate and was potentiated by combination with local milrinone. Phosphodiesterase-III-inhibition alone does not significantly influence the lactate levels in skeletal muscle of sacrificed rats. Sodium fluoride infusion leads to an intramuscular lactate increase, which was further potentiated by local inhibition of phosphodiesterase-III. The fluoride-mediated hypermetabolic response following sodium fluoride could be a possible explanation for the observed myotoxic adverse effects in individuals treated by fluoride-containing agents. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.

  10. Body adiposity and bone parameters of male rats from mothers fed diet containing flaxseed flour during lactation.

    PubMed

    da Costa, C A S; da Silva, P C A; Ribeiro, D C; Pereira, A D D; Santos, A D S D; Maia, L D A; Ruffoni, L D G; de Santana, F C; de Abreu, M D C; Boueri, B F D C; Pessanha, C R; Nonaka, K O; Mancini-Filho, J; do Nascimento-Saba, C C A; Boaventura, G T

    2015-12-07

    Obesity and osteoporosis may have their origins in early postnatal life. This study was designed to evaluate whether flaxseed flour use during lactation period bears effect on body adiposity and skeletal structure of male rat pups at weaning. At birth, male Wistar rats were randomly assigned to control and experimental (FF) groups, whose dams were treated with control or flaxseed flour diet, respectively, during lactation. At 21 days of age, pups were weaned to assess body mass, length and composition by dual-energy X-ray absorptiometry. The animals were then sacrificed to carry out analysis of serum profile, intra-abdominal adipocyte morphology and femur characteristics. Differences were considered significant when P<0.05. The FF group displayed the following characteristics (P<0.05): higher body mass, length, bone mineral content, bone area and concentrations of osteoprotegerin, osteocalcin and high-density lipoprotein cholesterol; higher levels of stearic, α-linolenic, eicosapentaenoic and docosapentaenoic acids and lower levels of arachidonic acid and cholesterol; smaller adipocyte area; and higher mass, epiphysis distance, diaphysis width, maximal load, break load, resilience and stiffness of femur. Flaxseed flour intake during lactation period promoted adipocyte hypertrophy down-regulation and contributed to pup bone quality at weaning.

  11. Mechanisms involved in the adaptations of the adipocyte adrenergic signal-transduction system and their modulation by growth hormone during the lactation cycle in the rat.

    PubMed Central

    Vernon, R G; Piperova, L; Watt, P W; Finley, E; Lindsay-Watt, S

    1993-01-01

    The mechanisms responsible for the diminished lipolytic response of adipocytes to catecholamines after litter removal from lactating rats and their modulation by growth hormone have been investigated. Lactation, litter removal and growth-hormone treatment did not alter the ability of noradrenaline to activate protein kinase A (A-kinase), showing that the defect in signal transduction in rats after litter removal is after A-kinase. Litter removal had no effect on hormone-sensitive lipase activity itself, but the proportion of the lipase associated with the fat droplet was decreased; growth-hormone treatment increased hormone-sensitive lipase activity and the proportion associated with the fat droplet. In addition, a number of other adaptations in the beta-adrenergic signal-transduction system occur during the lactation cycle and in response to growth hormone treatment, including changes in receptor number, adenylate cyclase activity and cyclic AMP phosphodiesterase activity, but a defect in the ability of hormone-sensitive lipase to associate with the lipid droplet appears to be the major reason for the diminished response to catecholamines on litter removal. PMID:8382054

  12. Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jenny R.; Young, Shih-Houng; Castranova, Vincent

    2007-06-15

    The soluble metals of the pollutant, residual oil fly ash (ROFA), have been shown to alter pulmonary bacterial clearance in rats. The goal of this study was to determine the potential effects on both the innate and adaptive lung immune responses after bacterial infection in rats pre-exposed to the soluble metals in ROFA. Sprague-Dawley rats were intratracheally dosed (i.t.) at day 0 with ROFA (R-Total) (1.0 mg/100 g body weight), the soluble fraction of ROFA (R-Soluble), the soluble sample subject to a chelator (R-Chelex), or phosphate-buffered saline (Saline). On day 3, rats were administered an i.t. dose of 5 xmore » 10{sup 4} Listeria monocytogenes. On days 6, 8, and 10, bacterial pulmonary clearance was monitored and bronchoalveolar lavage (BAL) was performed on days 3 (pre-infection), 6, 8, and 10. A concentrated first fraction of lavage fluid was retained for analysis of lactate dehydrogenase and albumin to assess lung injury. BAL cell number, phenotype, and production of reactive oxygen (ROS) and nitrogen species (RNS) were assessed, and a variety of cytokines were measured in the BAL fluid. Rats pre-treated with R-Soluble showed elevated lung injury/cytotoxicity and increased cellular influx into the lungs. R-Soluble-treatment also altered ROS, RNS, and cytokine levels, and caused a degree of macrophage and T cell inhibition. These effects of R-Soluble result in increased pulmonary bacterial burden after infection. The results suggest that soluble metals in ROFA increase lung injury and inflammation, and alter both innate and adaptive pulmonary immune responses.« less

  13. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt.

    PubMed

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao; Wang, Bin; Wu, Yun-Xiang; Zhang, Shu-Jie; Irwin, Michael G; Wong, Tak-Ming; Zhang, Ye

    2015-11-01

    Preconditioning against myocardial ischemia-reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct size and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The effect of methamphetamine exposure during pregnancy and lactation on hippocampal doublecortin expression, learning and memory of rat offspring.

    PubMed

    Jalayeri-Darbandi, Zahra; Rajabzadeh, Aliakbar; Hosseini, Mahmoud; Beheshti, Farimah; Ebrahimzadeh-Bideskan, Alireza

    2018-06-01

    The aim of this study was to evaluate the effect of methamphetamine (MA) exposure during pregnancy and lactation on doublecortin (DCX) expression in the hippocampus of rat offspring and also on learning/memory. Thirty-five pregnant Wistar rats were randomly divided into seven groups of 5 rats each: three experimental groups, each receiving 5 mg/kg body weight (BW) intraperitoneal (i.p.) injections of MA during pregnancy or/and lactation; three sham groups, each receiving saline injections; one control group, receiving no injection. After the interventions, two male pups (1 and 22 days old) were randomly selected from each mother, sacrificed and their brains subjected to DCX immunohistochemistry. One additional male pup from each mother was randomly selected and maintained for 60 days for testing in the Morris water maze and passive avoidance tests. MA administration during pregnancy was found to have significantly decreased the number of DCX-positive cells in the CA1, CA3 and DG regions of the hippocampus in the 1-day pups (P ≤ 0.05) and to have significantly decreased the number of DCX-positive cells in only two regions of the hippocampus, the CA1 and DG regions, in 22-day old pups. In comparison, exposure to MA during lactation was only associated with a significant decrease in the number of DCX-positive cells in the DG. Exposure to MA during pregnancy had significant impact on the intensity of DCX expression in the hippocampus of 1- and 22-day pups (P ≤ 0.05). There was no significant difference in memory/learning among the study groups. Our results indicate the administration of MA during pregnancy had a greater effect that during the lactation period on DCX expression in the hippocampus of rat offspring.

  15. Effects of Hypergravity Exposure on Prolactin Levels in Pre-parturient , Parturient and Lactating Rat Dams

    NASA Technical Reports Server (NTRS)

    Baer. Lisa A.; Wade, Charles E.; Ronca, April E.; Sun, Sid (Technical Monitor)

    2001-01-01

    We analyzed the effects of 2.0-g, 1.75-g and 1.5-g hypergravity exposure on plasma concentrations of the lactotrophic hormone, prolactin (PRL), in female rats on pre-parturient (Gestation Day 20), parturient (Post-natal day 0) and lactating (P10) days. PRL levels have been found to be reduced in rat dams around the time of birth following exposure to gravitational loads varying from 2.16 to 3.14-g (Megory et. al., Aviation, Space and Environs 1129-1135, 1984). It has also been reported that at these high gravitational loads, neonatal mortality has been extremely high, suggesting a possible interaction between dam PRL concentration and neonatal outcome. We have previously reported no significant differences in PRL levels of parturient (PO) and lactating (P6 & P 15) dams when exposed to 1.5-g hypergravity, but did observe a slight elevation of PRL on PO and P 15, with a decrease on P6. In the present study, time-bred pregnant dams were exposed to either continuous 2.0-g, 1.75-g or 1.5-g centrifugation, beginning on Gestational day (G) 11 of the rats' 22-day pregnancy. We observed no significant differences in PRL concentrations between SC and any of the HG conditions. On G20 and PO, PRL concentrations of the 2.0-g and 1.5-g groups were slightly elevated as compared to SC. Similar to what we previously reported. PRL secretion was elevated in both HG and SC conditions on the day of birth relative to later during lactation, but on P10 it appeared to be reduced in HG relative to SC dams. These findings suggests that hypergravity slightly elevates plasma concentration of PRL in pre-parturient and lactating rat dams, with effects most pronounced during the periparturitional period and in a direction opposite to that observed following microgravity exposure.

  16. Effect of nutritional status on oxidative stress in an ex vivo perfused rat liver.

    PubMed

    Stadler, Michaela; Nuyens, Vincent; Seidel, Laurence; Albert, Adelin; Boogaerts, Jean G

    2005-11-01

    Normothermic ischemia-reperfusion is a determinant in liver injury occurring during surgical procedures, ischemic state, and multiple organ failure. The preexisting nutritional status of the liver might contribute to the extent of tissue injury and primary nonfunction. The aim of this study was to determine the role of starvation on hepatic ischemia-reperfusion injury in normal rat livers. Rats were randomly divided into two groups: one had free access to food, the other was fasted for 16 h. The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Two modes of perfusion were applied in each series of rats, fed and fasting. In the ischemia-reperfusion mode, the experiment consisted of perfusion for 15 min, warm ischemia for 60 min, and reperfusion during 60 min. In the nonischemia mode, perfusion was maintained during the 135-min study period. Five rats were included in each experimental condition, yielding a total of 20 rats. Liver enzymes, potassium, glucose, lactate, free radicals, i.e., dienes and trienes, and cytochrome c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in tissue biopsies. Transaminases, lactate dehydrogenase, potassium, and free radical concentrations were systematically higher in fasting rats in both conditions, with and without ischemia. Cytochrome c was higher after reperfusion in the fasting rats. Glucose and lactate concentrations were greater in the fed group. The glycogen content decreased in both groups during the experiment but was markedly lower in the fasting rats. In fed rats, liver injury was moderate, whereas hepatocytes integrity was notably impaired both after continuous perfusion and warm ischemia in fasting animals. Reduced glycogen store in hepatocytes may explain reduced tolerance.

  17. A Comparison of Vasopressin, Terlipressin, and Lactated Ringers for Resuscitation of Uncontrolled Hemorrhagic Shock in an Animal Model

    PubMed Central

    Lee, Chien-Chang; Lee, Meng-Tse Gabriel; Chang, Shy-Shin; Lee, Si-Huei; Huang, Yu-Chi; Yo, Chia-Hung; Lee, Shih-Hao; Chen, Shyr-Chyr

    2014-01-01

    Aim The aim of this study is to compare the effect of lactated ringer (LR), vasopressin (Vaso) or terlipressin (Terli) on uncontrolled hemorrhagic shock (UHS) in rats. Methods 48 rats were divided into four treatment groups for UHS study. Vaso group was given bolus vasopressin (0.8 U/kg); the Terli group was given bolus terlipressin (15 mcg/kg); LR group was given LR and the sham group was not given anything. Mean arterial pressure (MAP), serum lactate level, plasma cytokine levels, lung injury and mortality are investigated for these different treatment groups. Results Compared with LR group, vasopressin and terlipressin-treated groups were associated with higher MAP, lowered mortality rates, less lung injury, lowered serum lactate level, less proinflammatory and more anti-inflammatory cytokine production at certain time points. Comparing between vasopressin and terlipressin treated groups, there is no statistical difference in mortality rates, lung injury, serum lactate level and cytokine level. However, there is a difference in the length of time in maintaining a restored level of MAP (80 to 110 mmHg). The terlipressin treated rats can maintain this restored level of MAP for 45 minutes, but the vasopressin treated rats can only maintain this restored level of MAP for 5 minutes before decreasing gradually to the MAP observed in LR group (40 mmHg). Conclusion Early optimization of hemodynamics with terlipressin or vasopressin in an animal model of UHS was associated with improved hemodynamics and inflammatory cytokine profile than the LR control. Compared with vasopressin, terlipressin has the advantage of ease of use and sustained effects. PMID:24759799

  18. Characterization of sustained BOLD activation in the rat barrel cortex and neurochemical consequences.

    PubMed

    Just, Nathalie; Xin, Lijing; Frenkel, Hanne; Gruetter, Rolf

    2013-07-01

    To date, only a couple of functional MR spectroscopy (fMRS) studies were conducted in rats. Due to the low temporal resolution of (1)H MRS techniques, prolonged stimulation paradigms are necessary for investigating the metabolic outcome in the rat brain during functional challenge. However, sustained activation of cortical areas is usually difficult to obtain due to neural adaptation. Anesthesia, habituation, high variability of the basal state metabolite concentrations as well as low concentrations of the metabolites of interest such as lactate (Lac), glucose (Glc) or γ-aminobutyric acid (GABA) and small expected changes of metabolite concentrations need to be addressed. In the present study, the rat barrel cortex was reliably and reproducibly activated through sustained trigeminal nerve (TGN) stimulation. In addition, TGN stimulation induced significant positive changes in lactate (+1.01 μmol/g, p<0.008) and glutamate (+0.92 μmol/g, p<0.02) and significant negative aspartate changes (-0.63 μmol/g, p<0.004) using functional (1)H MRS at 9.4 T in agreement with previous changes observed in human fMRS studies. Finally, for the first time, the dynamics of lactate, glucose, aspartate and glutamate concentrations during sustained somatosensory activation in rats using fMRS were assessed. These results allow demonstrating the feasibility of fMRS measurements during prolonged barrel cortex activation in rats. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Neuroendocrine, Metabolic and Cardiovascular Responses to Exercise Differ Among Healthy Men

    DTIC Science & Technology

    1995-12-20

    Dose Response in AtT-20 Cells ...... 104 2. Acute and Long Term Effects of Lactate on AtT-20 Cells ...106 3. Secretory Effects of Lactate and Secretogogues, in Combination, on AtT-20 Cells . ......... ............. 106 a. CRH and Lactate...whereas, corticosterone serves the same function in rats. The actions of glucocorticoids are primarily permissive allowing 7 cells to achieve a higher

  20. Behavioral effects of bidirectional selection for behavior towards human in virgin and lactate Norway rats.

    PubMed

    Konoshenko, Maria Yu; Plyusnina, Irina Z

    2012-06-01

    Although numerous studies have demonstrated strong differences in behavioral, hormonal and neurobiological characteristics between male rats selected for elimination (tame) and enhancement (aggressive) of aggressiveness towards humans, few studies have examined changes in female behavior under this selection. The objective of the current work was to evaluate the effects of bidirectional selection for aggressiveness towards humans on behavioral profiles of virgin and lactating rats compared with the behavior in tame, aggressive and unselected (wild-type) females. The behavior of virgin females was studied using the light-dark box, the startle response test and the modified glove test. Tame females were less anxious and more tolerant towards humans than unselected and aggressive rats. Principal component analysis of all behavioral parameters produced three independent factors, explaining 66.37% of the total variability. The measures of behavior towards humans and the measures of anxiety mainly loaded on PC1 (first principal component) which separated the tame females from the unselected and aggressive ones. These data suggest the genetic correlation between the selected behavior towards humans and anxiety-related behavior in virgin rats. No significant effect of line was found for PC2 scores, associated with risk assessment behavior. Measurements of freezing behavior mainly loaded on PC3, and this component separated rats of different genetic groups from each other. The behavior of lactating rats was studied in maternal defense and pup retrieval tests. Females of selected lines did not significantly differ in behavioral measurements of these tests and were characterized by higher maternal motivation than unselected rats. It is suggested that long-term breeding of tame and aggressive rats in captivity has reduced the threshold for maternal behavior. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Differences in the ribosomes prepared from lactating and non-lactating bovine mammary gland

    PubMed Central

    Herrington, M. D.; Hawtrey, A. O.

    1971-01-01

    1. Ribosomes prepared from bovine lactating mammary gland are able to synthesize protein, whereas similar preparations from non-lactating glands are not. Washing the ribosome suspensions through a medium containing 0.5m-ammonium chloride enhanced their ability to incorporate phenylalanine into polyphenylalanine. 2. Ribosomes isolated from non-lactating bovine mammary gland, in contrast with those from rat liver and lactating mammary gland, contained significant amounts of extraneous nucleases. These enzymes could be removed by washing with a medium A buffer containing 0.5m-ammonium chloride. 3. Only those ribosomes from functionally active tissues were able to bind polyuridylic acid and phenylalanyl-tRNA. PMID:5165653

  2. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor.

    PubMed

    Hu, Y; Wilson, G S

    1997-10-01

    A successfully developed enzyme-based lactate microsensor with rapid response time allows the direct and continuous in vivo measurement of lactic acid concentration with high temporal resolution in brain extracellular fluid. The fluctuations coupled to neuronal activity in extracellular lactate concentration were explored in the dentate gyrus of the hippocampus of the rat brain after electrical stimulation of the perforant pathway. Extracellular glucose and oxygen levels were also detected simultaneously by coimplantation of a fast-response glucose sensor and an oxygen electrode, to provide novel information of trafficking of energy substances in real time related to local neuronal activity. The results first give a comprehensive picture of complementary energy supply and use of lactate and glucose in the intact brain tissue. In response to acute neuronal activation, the brain tissue shifts immediately to significant energy supply by lactate. A local temporary fuel "reservoir" is established behind the blood-brain barrier, evidenced by increased extracellular lactate concentration. The pool can be depleted rapidly, up to 28% in 10-12 s, by massive, acute neuronal use after stimulation and can be replenished in approximately 20 s. Glutamate-stimulated astrocytic glycolysis and the increase of regional blood flow may regulate the lactate concentration of the pool in different time scales to maintain local energy homeostasis.

  3. Isoenzymes of protein kinase C in rat mammary tissue: changes in properties and relative amounts during pregnancy and lactation.

    PubMed

    Connor, K; Clegg, R A

    1993-05-01

    Protein kinase isoenzymes belonging to the protein kinase C (PK-C) family present in rat mammary tissue have been resolved from one another by chromatography on hydroxyapatite, and characterized. PK-C alpha is the predominant isoenzyme and is present at a constant level of activity throughout mammary-gland development and differentiation. In contrast, marked changes in the relative abundance of other mammary PK-C isoenzymes accompany the transition from pregnancy to lactation. The sensitivity of mammary PK-C alpha to Ca2+ is greater in tissue from pregnant than from lactating rats. This isoenzyme has other atypical properties consistent with its being more highly phosphorylated than PK-C alpha in rat brain and spleen. One of the protein kinase isoenzymes resolved from mammary tissue recognizes the peptide substrate used to assay AMP-activated kinase and may thus interfere in the determination of this activity. Another is fully active in the absence of Ca2+ and is more than 80% active in the absence of added lipid effectors. A 'housekeeping' role is proposed for PK-C alpha in mammary tissue, whereas the less abundant PK-C isoenzymes may be involved in mammary cell proliferation and differentiation.

  4. A maternal high-fat diet during pregnancy and lactation, in addition to a postnatal high-fat diet, leads to metabolic syndrome with spatial learning and memory deficits: beneficial effects of resveratrol

    PubMed Central

    Li, Shih-Wen; Yu, Hong-Ren; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Tain, You-Lin; Lin, I-Chun; Lin, Yu-Ju; Chang, Kow-Aung; Tsai, Ching-Chou; Huang, Li-Tung

    2017-01-01

    We tested the hypothesis that high-fat diet consumption during pregnancy, lactation, and/or post weaning, altered the expression of molecular mediators involved in hippocampal synaptic efficacy and impaired spatial learning and memory in adulthood. The beneficial effect of resveratrol was assessed. Dams were fed a rat chow diet or a high-fat diet before mating, during pregnancy, and throughout lactation. Offspring were weaned onto either a rat chow or a high-fat diet. Four experimental groups were generated, namely CC, HC, CH, and HH (maternal chow diet or high-fat diet; postnatal chow diet or high-fat diet). A fifth group fed with HH plus resveratrol (HHR) was generated. Morris water maze test was used to evaluate spatial learning and memory. Blood pressure and IPGTT was measured to assess insulin resistance. Dorsal hippocampal expression of certain biochemical molecules, including sirtuin 1, ERK, PPARγ, adiponectin, and BDNF were measured. Rats in HH group showed impaired spatial memory, which was partly restored by the administration of resveratrol. Rats in HH group also showed impaired glucose tolerance and increased blood pressure, all of which was rescued by resveratrol administration. Additionally, SIRT1, phospho-ERK1/2, and phospho-PPARγ, adiponectin and BDNF were all dysregulated in rats placed in HH group; administration of resveratrol restored the expression and regulation of these molecules. Overall, our results suggest that maternal high-fat diet during pregnancy and/or lactation sensitizes the offspring to the adverse effects of a subsequent high-fat diet on hippocampal function; however, administration of resveratrol is demonstrated to be beneficial in rescuing these effects. PMID:29340106

  5. Exercise prevents the increased anxiety-like behavior in lactational di-(2-ethylhexyl) phthalate-exposed female rats in late adolescence by improving the regulation of hypothalamus-pituitary-adrenal axis.

    PubMed

    Wang, Dean-Chuan; Chen, Tsan-Ju; Lin, Ming-Lu; Jhong, Yue-Cih; Chen, Shih-Chieh

    2014-09-01

    Both the detrimental effects of early life adversity and the beneficial effects of exercise on the hypothalamic-pituitary-adrenal (HPA) axis have been reported. Early life exposure to di-(2-ethylhexyl)-phthalate (DEHP) may impair the development of endocrine system. In this study, we investigated the effects of lactational DEHP exposure on stress responses in late adolescent female rats and examined the protective role of treadmill running. Sprague-Dawley dams were fed with DEHP (10mg/kg per day) or vehicle during lactation. After weaning, the female offspring rats were trained to exercise on a treadmill for 5 weeks and then stressed by exploring on an elevated plus maze. The activities of HPA axis were evaluated by measuring the plasma levels of ACTH and corticosterone, the expressions of adrenal enzymes cholesterol side-chain cleavage enzyme (CYP11A1) and cytochrome P-450 11β-hydroxylase (CYP11B1), and the expression of hypothalamic glucocorticoid receptors (GR). The results demonstrate that DEHP-exposed rats exhibited enhanced anxiety-like behaviors. Increased hypothalamic GR and plasma ACTH levels, but decreased adrenal CYP11A1 and corticosterone levels, were observed in DEHP-exposed animals under stressed condition. Importantly, in DEHP-exposed animals, exercise during childhood-adolescence reduced anxiety-like behaviors by normalizing stress-induced alterations in ACTH level and adrenal CYP11A1 expression. The findings of this study suggest that treadmill running may provide beneficial effects on ameliorating the dysregulation of HPA axis in lactational DEHP-exposed adolescent female rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Maternal protein restriction during lactation induces early and lasting plasma metabolomic and hepatic lipidomic signatures of the offspring in a rodent programming model.

    PubMed

    Martin Agnoux, Aurore; El Ghaziri, Angélina; Moyon, Thomas; Pagniez, Anthony; David, Agnès; Simard, Gilles; Parnet, Patricia; Qannari, El Mostafa; Darmaun, Dominique; Antignac, Jean-Philippe; Alexandre-Gouabau, Marie-Cécile

    2018-05-01

    Perinatal undernutrition affects not only fetal and neonatal growth but also adult health outcome, as suggested by the metabolic imprinting concept. However, the exact mechanisms underlying offspring metabolic adaptations are not yet fully understood. Specifically, it remains unclear whether the gestation or the lactation is the more vulnerable period to modify offspring metabolic flexibility. We investigated in a rodent model of intrauterine growth restriction (IUGR) induced by maternal protein restriction (R) during gestation which time window of maternal undernutrition (gestation, lactation or gestation-lactation) has more impact on the male offspring metabolomics phenotype. Plasma metabolome and hepatic lipidome of offspring were characterized through suckling period and at adulthood using liquid chromatography-high-resolution mass spectrometry. Multivariate analysis of these fingerprints highlighted a persistent metabolomics signature in rats suckled by R dams, with a clear-cut discrimination from offspring fed by control (C) dams. Pups submitted to a nutritional switch at birth presented a metabolomics signature clearly distinct from that of pups nursed by dams maintained on a consistent perinatal diet. Control rats suckled by R dams presented transiently higher branched-chain amino acid (BCAA) oxidation during lactation besides increased fatty acid (FA) β-oxidation, associated with preserved insulin sensitivity and lesser fat accretion that persisted throughout their life. In contrast, IUGR rats displayed permanently impaired β-oxidation, associated to increased glucose or BCAA oxidation at adulthood, depending on the fact that pups experienced slow postnatal or catch-up growth, as suckled by R or C dams, respectively. Taken together, these findings provide evidence for a significant contribution of the lactation period in metabolic programming. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. MCT2 Expression and Lactate Influx in Anorexigenic and Orexigenic Neurons of the Arcuate Nucleus

    PubMed Central

    Cortes-Campos, Christian; Elizondo, Roberto; Carril, Claudio; Martínez, Fernando; Boric, Katica; Nualart, Francisco; Garcia-Robles, Maria Angeles

    2013-01-01

    Hypothalamic neurons of the arcuate nucleus control food intake, releasing orexigenic and anorexigenic neuropeptides in response to changes in glucose concentration. Several studies have suggested that the glucosensing mechanism is governed by a metabolic interaction between neurons and glial cells via lactate flux through monocarboxylate transporters (MCTs). Hypothalamic glial cells (tanycytes) release lactate through MCT1 and MCT4; however, similar analyses in neuroendocrine neurons have yet to be undertaken. Using primary rat hypothalamic cell cultures and fluorimetric assays, lactate incorporation was detected. Furthermore, the expression and function of MCT2 was demonstrated in the hypothalamic neuronal cell line, GT1-7, using kinetic and inhibition assays. Moreover, MCT2 expression and localization in the Sprague Dawley rat hypothalamus was analyzed using RT-PCR, in situ hybridization and Western blot analyses. Confocal immunohistochemistry analyses revealed MCT2 localization in neuronal but not glial cells. Moreover, MCT2 was localized to ∼90% of orexigenic and ∼60% of anorexigenic neurons as determined by immunolocalization analysis of AgRP and POMC with MCT2-positives neurons. Thus, MCT2 distribution coupled with lactate uptake by hypothalamic neurons suggests that hypothalamic neurons control food intake using lactate to reflect changes in glucose levels. PMID:23638108

  8. Flaxseed oil during lactation changes milk and body composition in male and female suckling pups rats.

    PubMed

    Guarda, Deysla Sabino; Lisboa, Patricia Cristina; de Oliveira, Elaine; Nogueira-Neto, José Firmino; de Moura, Egberto Gaspar; Figueiredo, Mariana Sarto

    2014-07-01

    We have reported several changes in neonate or adult offspring after the maternal use of whole flaxseed or its components. However, it is unknown the use of higher oil intake in the neonatal period. Here we evaluated the effects of high maternal intake of flaxseed oil during lactation upon milk and body composition in male and female offspring. Lactating rats were divided into: (1) control (C, n=10), 7% soybean oil; (2) hyper 19% soybean oil (HS, n=10); and (3) hyper 17% flaxseed oil+2% soybean oil (HF, n=10). Dams and offspring were killed at weaning. HS and HF dams, male and female offspring presented lower body weight during lactation. HF mothers presented lower body and visceral fat masses. HF male offspring presented lower body and subcutaneous fat masses. HS and HF milk presented lower triglycerides (TG) and cholesterol. HF male and female offspring showed lower triglyceridemia and insulinemia, but no changes in glycemia and leptinemia. The higher intake of flaxseed oil during lactation reduced the body weight of mothers and offspring, decreases milk lipids and apparently increases insulin sensitivity in this critical period of life. Those changes may explain the previously reported programming effect of maternal flaxseed intake during lactation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Voluntary exercise in pregnant rats improves post-lactation maternal bone parameters but does not affect offspring outcomes in early life.

    PubMed

    Rosa, B V; Blair, H T; Vickers, M H; Morel, P C; Cockrem, J F; Firth, E C

    2012-12-01

    The objectives of this study were to examine the effects of voluntary exercise during pregnancy on maternal post-lactation bone parameters and offspring growth. Pregnant Wistar rats were housed in conventional cages (control), or were housed in raised cages requiring them to rise to an erect, bipedal stance to obtain food/water, throughout pregnancy. Dual energy X-ray absorptiometry and peripheral quantitative computed tomography scans were performed pre-mating and post-weaning. Maternal stress was assessed by fecal corticosterone measurement. Offspring weights were assessed at postnatal days 1 and 25 (weaning). Changes in bone mineral over the pregnancy/lactation period were site-specific. Exercise did not affect loss of bone mineral from the lumbar spine, but did attenuate the loss of trabecular bone mineral from the tibial metaphysis and enhance the strength strain index and cross-sectional moment of inertia at the tibial diaphysis (P≤0.05) in dams in the exercised group. Fecal corticosterone did not differ between dam groups. There were no significant differences in offspring weight between the exercised and control group at either time point. Voluntary exercise in the pregnant rat can improve some post-lactation bone parameters and does not adversely affect early postnatal outcomes of the offspring.

  10. Effect of hyperthyroidism on circulating prolactin and hypothalamic expression of tyrosine hydroxylase, prolactin signaling cascade members and estrogen and progesterone receptors during late pregnancy and lactation in the rat.

    PubMed

    Pennacchio, Gisela E; Neira, Flavia J; Soaje, Marta; Jahn, Graciela A; Valdez, Susana R

    2017-02-15

    Hyperthyroidism (HyperT) compromises pregnancy and lactation, hindering suckling-induced PRL release. We studied the effect of HyperT on hypothalamic mRNA (RT-qPCR) and protein (Western blot) expression of tyrosine hydroxylase (TH), PRL receptor (PRLR) and signaling pathway members, estrogen-α (ERα) and progesterone (PR) receptors on late pregnancy (days G19, 20 and 21) and early lactation (L2) in rats. HyperT advanced pre-partum PRL release, reduced circulating PRL on L2 and increased TH mRNA (G21 and L2), p-TH, PRLR mRNA, STAT5 protein (G19 and L2), PRLR protein (G21) and CIS protein (G19). PRs mRNAs and protein decreased on G19 but afterwards PRA mRNA (G20), PRB mRNA (G21) and PRA mRNA and protein (L2) increased. ERα protein increased on G19 and decreased on G20. Thus, the altered hypothalamic PRLR, STAT5, PR and ERα expression in hyperthyroid rats may induce elevated TH expression and activation, that consequently, elevate dopaminergic tone during lactation, blunting suckling-induced PRL release and litter growth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. (13)C MR spectroscopy study of lactate as substrate for rat brain.

    PubMed

    Qu, H; Håberg, A; Haraldseth, O; Unsgård, G; Sonnewald, U

    2000-01-01

    In order to address the question whether lactate in blood can serve as a precursor for cerebral metabolites, fully awake rats were injected intravenously with [U-(13)C]lactate or [U-(13)C]glucose followed 15 min later by decapitation. Incorporation of label from [U-(13)C]glucose was seen mainly in glutamate, GABA, glutamine, aspartate, alanine and lactate. More label was found in glutamate than glutamine, underscoring the predominantly neuronal metabolism of pyruvate from [U-(13)C]glucose. It was estimated that the neuronal metabolism of acetyl CoA from glucose accounts for at least 66% and the glial for no more than 34% of the total glucose consumption. When [U-(13)C]lactate was the precursor, label incorporation was similar to that observed from [U-(13)C]glucose, but much reduced. Plasma analysis revealed the presence of approximately equal amounts of [1,2,3-(13)C]- and [1,2-(13)C]glucose, showing gluconeogenesis from [U-(13)C]lactate. It was thus possible that the labeling seen in the cerebral amino acids originated from labeled glucose, not [U-(13)C]lactate. However, the presence of significantly more label in [U-(13)C]- than in [2,3-(13)C]alanine demonstrated that [U-(13)C]lactate did indeed cross the blood-brain barrier, and was metabolized further in the brain. Furthermore, contributions from pyruvate carboxylase (glial enzyme) were detectable in glutamine, glutamate and GABA, and were comparatively more pronounced in the glucose group. This indicated that relatively more pyruvate from lactate than glucose was metabolized in neurons. Surprisingly, the same amount of lactate was synthesized via the tricarboxylic acid cycle in both groups, indicating transfer of neurotransmitters from the neuronal to the astrocytic compartment, as previous studies have shown that this lactate is synthesized primarily in astrocytes. Taking into consideration that astrocytes take up glutamate more avidly than GABA, it is conceivable that neuronal lactate metabolism was more prominent in glutamatergic neurons. Copyright 2000 S. Karger AG, Basel

  12. Pulmonary cellular effects in rats following aerosol exposures to ultrafine Kevlar aramid fibrils: evidence for biodegradability of inhaled fibrils.

    PubMed

    Warheit, D B; Kellar, K A; Hartsky, M A

    1992-10-01

    Previous chronic inhalation studies have shown that high concentrations of Kevlar fibrils produced fibrosis and cystic keratinizing tumors in rats following 2-year inhalation exposures. The current studies were undertaken to evaluate mechanisms and to assess the toxicity of inhaled Kevlar fibrils relative to other reference materials. Rats were exposed to ultrafine Kevlar fibers (fibrils) for 3 or 5 days at concentrations ranging from 600-1300 fibers/cc (gravimetric concentrations ranging from 2-13 mg/m3). A complete characterization of the fiber aerosol and dose was carried out. These measurements included gravimetric concentrations, mass median aerodynamic diameter, fiber number, and count median lengths and diameters of the aerosol. Following exposures, cells and fluids from groups of sham- and fiber-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, lactate dehydrogenase (LDH), protein, and N-acetyl glucosaminidase (NAG) values were measured in BAL fluids at several time points postexposure. Alveolar macrophages were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy. The lungs of additional exposed animals were processed for deposition, cell labeling, retained dose, and lung clearance studies, as well as fiber dimensions (from digested lung tissue), histopathology, and transmission electron microscopy. Five-day exposures to Kevlar fibrils elicited a transient granulocytic inflammatory response with concomitant increases in BAL fluid levels of alkaline phosphatase, NAG, LDH, and protein. Unlike the data from silica and asbestos exposures where inflammation persisted, biochemical parameters returned to control levels at time intervals between 1 week and 1 month postexposure. Macrophage function in Kevlar-exposed alveolar macrophages was not significantly different from sham controls at any time period. Cell labeling studies were carried out immediately after exposure, as well as 1 week and 1 month postexposure. Increased pulmonary cell labeling was measured in terminal bronchiolar cells immediately after exposure but returned to control values 1 week later. Fiber clearance studies demonstrated a transient increase in the numbers of retained fibers at 1 week postexposure, with rapid clearance of fibers thereafter. The transient increase in the number of fibers could be due to transverse cleaving of the fibers, since the average lengths of retained fibers continued to decrease over time. In this regard, a progressive decrease in the mean lengths and diameters of inhaled fibers was measured over a 6-month postexposure period.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Therapeutic mild hypothermia improves early outcomes in rats subjected to severe sepsis.

    PubMed

    Ding, Wu; Shen, Yuehong; Li, Qiang; Jiang, Shouyin; Shen, Huahao

    2018-04-15

    Therapeutic hypothermia has shown beneficial effects in sepsis. This study focused on its mechanism. Sixteen male Sprague-Dawley rats underwent cecal ligation and perforation and subsequently were treated with either hypothermia (HT; body temperature cooled and maintained at 34 °C by ice pad for 10 h; n = 8) or normothermia (NT; n = 8). Three additional rats underwent sham surgery. The body temperatures of the sham-operated and NT groups were maintained at 38 °C with a thermal pad. After the hypothermia treatment, the HT rats were rewarmed for 2 h. The groups were compared for circulating cytokines (IL-6, IL-10), lactate, high mobility group box-1 protein (HMGB1), and lung and intestinal lesions. Animals were observed for 24 h. Compared with the sham-operated group, the 2 sepsis group rats had significantly higher circulating IL-6, HMGB1, and lactate levels, and tissue injury. In the HT rats, the levels of IL-6, HMGB1, and lactate, the lung wet-to-dry ratio, and lung and intestinal damage were significantly lower than that of the NT group. Circulating IL-10 levels increased significantly after 12 h in the sepsis groups compared with sham animals, while that of the NT and HT groups were comparable. The survival rates of the NT and HT rats were also comparable. Therapeutic hypothermia in a rat model of sepsis was associated with lower levels of circulating IL-6 and HMGB1, and less capillary leakage and tissue edema. These results suggest that mild hypothermia has potential as a therapy in sepsis. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Effects of maternal chronic alcohol administration in the rat: lactation performance and pup's growth.

    PubMed

    Murillo-Fuentes, L; Artillo, R; Carreras, O; Murillo, L

    2001-08-01

    A fostering/crossfostering analysis of the effects of maternal ethanol exposure on lactation performance and offspring growth was performed. Wistar rats were kept under one of the three experimental nutritional treatments: alcohol-treated (EG), pair-fed-treated (PFG) (as a nutritional control of alcohol-associated malnutrition), and control or normal diet (CG). Rats from the EG group were accustomed to increased amounts of ethanol (5% during the first week to 20% in the fourth week). The 20% ethanol level was maintained throughout three additional weeks and during gestational and lactational period. Daily food intake, fluid consumption, body weight and gestational parameters were studied in control (CG), pair-fed (PFG) and ethanol dams (EG). At birth, half the litters were fostered to other dams of the same treatment (GLG) and half were cross-fostered to dams of the opposite treatment (GG, LG). No cross-fostering analyses were performed on the pair-fed group. Offspring body weight was controlled throughout lactation. Liver, kidney and spleen weights as well as milk consumption were also studied at the end of lactation period. In dams, a significant reduction of body weight was described throughout the suckling period. No ethanol detrimental effects were observed on body weight at birth, but in spite of a normal birth weight, alcohol during lactation was responsible for a growth deficit. Milk consumption was significantly reduced in offspring exposed to ethanol during gestation and/or lactation. Curiously, prenatal alcohol exposure affects adversely the suckling behaviour in pups at the time of weaning. In our study, alcohol treatment and malnutrition affects liver and spleen weights. However, malnutrition decreases spleen weights more than alcohol treatment. In the case of the kidney weights the alcohol decreases kidney weight more than malnutrition. Collectively, the data from the present study show similar effects following pre/postnatal and postnatal alcohol exposure. The findings suggest that chronic alcohol administration during gestation and/or lactation adversely affects pup growth at weaning as indicated by its effect on milk consumption, pup and organ weight.

  15. [The effect of bemithyl in rats with experimental pneumonia].

    PubMed

    Solov'ev, M V; Krivoruchko, B I; Zarubina, I V; Mironova, O P

    2002-01-01

    The tests on rats with experimental pneumonia showed that bemithyl (50 mg/kg, i.p.) reduces lethal outcome frequency, decreases the accumulation of lactate in lung tissues, and impedes activation of lipid peroxidation.

  16. Astrocyte-neuron lactate transport is required for long-term memory formation

    PubMed Central

    Suzuki, Akinobu; Stern, Sarah A.; Bozdagi, Ozlem; Huntley, George W.; Walker, Ruth H.; Magistretti, Pierre J.; Alberini, Cristina M.

    2011-01-01

    SUMMARY We report that in the rat hippocampus learning leads to a significant increase in extracellular lactate levels, which derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in-vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation. PMID:21376239

  17. Caudal hindbrain lactate infusion alters glucokinase, SUR1, and neuronal substrate fuel transporter gene expression in the dorsal vagal complex, lateral hypothalamic area, and ventromedial nucleus hypothalamus of hypoglycemic male rats.

    PubMed

    Vavaiya, Kamlesh V; Briski, Karen P

    2007-10-24

    While in vitro studies show that the oxidizable energy substrate, lactate, is a preferred fuel for CNS neurons during states of energy crisis, and that lactate may regulate neuronal glucose uptake under those conditions, its role in neuronal function in vivo remains controversial. Glucose-excited neurons in hindbrain dorsal vagal complex (DVC) monitor both glucose and lactate, and express both the glucose sensor, glucokinase (GK), and the SUR1 subunit of the plasma membrane energy transducer, K(ATP). Fourth ventricular lactate infusion exacerbates insulin-induced hypoglycemia (IIH) and IIH-associated patterns of DVC neuronal activation. We investigated the hypothesis that during glucoprivation, lactate regulates neuronal monocarboxylate and glucose transporter gene transcription in the DVC, and adjustments in these gene profiles are correlated with altered GK and SUR1 mRNA expression. We also examined whether caudal hindbrain lactate repletion alters the impact of hypoglycemia on substrate fuel uptake and metabolic sensing functions in other characterized metabolic monitoring sites, e.g., the ventromedial hypothalamic nucleus (VMH) and lateral hypothalamic area (LHA). qPCR was used to measure MCT2, GLUT3, GLUT4, GK, and SUR1 transcripts in the microdissected DVC, VMH, and LHA from groups of male rats treated by continuous infusion of aCSF or lactate into the caudal fourth ventricle (CV4), initiated prior to injection of Humulin R or saline. Blood glucose was decreased in response to insulin, a response that was significantly augmented by CV4 lactate infusion. IIH alone did not alter mean DVC MCT2, GLUT3, GLUT4, GK, or SUR1 mRNA levels, but these transcripts were increased in the lactate plus insulin group, relative to both euglycemic and aCSF-infused hypoglycemic rats. IIH decreased MCT2, GLUT3, and SUR1 gene profiles in the VMH; CV4 lactate infusion during IIH further diminished these transcripts, and suppressed GLUT4 and GK mRNA levels in this site. In LHA, IIH increased GLUT3 and SUR1 gene expression to an equal extent, with or without lactate, while GLUT4, MCT2, and GK mRNA levels were elevated only in response to lactate plus insulin. These studies show that caudal hindbrain-targeted delivery of exogenous lactate during IIH upregulates neuronal monocarboxylate and glucose transporter, GK, and SUR1 gene profiles in the DVC, and results in increased or decreased GLUT4 and GK mRNA in LHA and VMH, respectively. These data suggest that lactate and glucose utilization by DVC neurons may be enhanced in response to local lactate surfeit, alone or relative to glucose deficiency, and that increases in intracellular glucose and net energy yield may be correlated with elevated GK and SUR1 gene transcription, respectively, in local glucose sensing neurons. The results also imply that GLUT4- and GK-mediated glucose uptake and glucose sensing functions in the VMH and LHA may be reactive to DVC signaling of relative lactate abundance within the caudal hindbrain, and/or to physiological sequelae of this fuel augmentation, including amplified hypoglycemia.

  18. Early metabolic responses to lithium/pilocarpine-induced status epilepticus in rat brain.

    PubMed

    Imran, Imran; Hillert, Markus H; Klein, Jochen

    2015-12-01

    The lithium-pilocarpine model of status epilepticus is a well-known animal model of temporal lobe epilepsy. We combined this model with in vivo microdialysis to investigate energy metabolites and acute cellular membrane damage during seizure development. Rats were implanted with dialysis probes and pretreated with lithium chloride (127 mg/kg i.p.). Twenty-four hours later, they received pilocarpine (30 mg/kg s.c.) which initiated seizures within 30 min. In the dialysate from rat hippocampus, we observed a transient increase in glucose and a prominent, five-fold increase in lactate during seizures. Lactate release was because of neuronal activation as it was strongly reduced by infusion of tetrodotoxin, administration of atropine or when seizures were terminated by diazepam or ketamine. In ex vivo assays, mitochondrial function as measured by respirometry was not affected by 90 min of seizures. Extracellular levels of choline, however, increased two-fold and glycerol levels 10-fold, which indicate cellular phospholipid breakdown during seizures. Within 60 min of pilocarpine administration, hydroxylation of salicylate increased two-fold and formation of isoprostanes 20-fold, revealing significant oxidative stress in hippocampal tissue. Increases in lactate, glycerol and isoprostanes were abrogated, and increases in choline were completely prevented, when hippocampal probes were perfused with calcium-free solution. Similarly, administration of pregabalin (100 mg/kg i.p.), a calcium channel ligand, 15 min prior to pilocarpine strongly attenuated parameters of membrane damage and oxidative stress. We conclude that seizure development in a rat model of status epilepticus is accompanied by increases in extracellular lactate, choline and glycerol, and by oxidative stress, while mitochondrial function remains intact for at least 90 min. Membrane damage depends on calcium influx and can be prevented by treatment with pregabalin. Status epilepticus (SE) was induced in rats by lithium-pilocarpine ('Pilo') administration, and extracellular metabolites were measured by microdialysis. Seizures caused several-fold increases in lactate levels which were attenuated by diazepam ('Diaz'), ketamine, atropine and tetrodotoxin (TTX). Indicators of oxidative stress and membrane damage were also increased during seizures. Omission of calcium and pregabalin, a calcium channel blocker, reduced cellular damage induced by SE. © 2015 International Society for Neurochemistry.

  19. Lactate metabolism and cytosolic NADH reducing equivalents in ovine adipocytes.

    PubMed

    Yang, Y T; White, L S; Muir, L A

    1982-01-01

    1. Isolated ovine adipocytes, unlike rat adipose tissue, could utilize lactate at a high rate. 2. When the rate of fatty acid synthesis was attenuated with 5-(tetradecyloxy)-2-furoic acid, a fatty acid synthesis inhibitor, there was a good positive correlation between the rates of lactate oxidation to CO2 and lactate incorporation into fatty acids. 3. Addition of 2,4-dinitrophenol enhanced lactate oxidation to CO2 independent of fatty acid synthesis. Under this condition, estimated cytosolic NADH formation from lactate dehydrogenation exceeded the need of NADH for cytosolic oxaloacetate reduction and for glyceride glycerol formation. 4. Mitochondria isolated from ovine adipocytes oxidized added NADH rapidly in a reconstituted alpha-glycerophosphate shuttle system. 5. It is possible that the ability of ovine adipocytes to utilize lactate may be related to the active alpha-glycerophosphate shuttle for cytosolic NADH reoxidation.

  20. Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    PubMed Central

    Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo

    2016-01-01

    Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490

  1. Anxiety-like behaviour in adult rats perinatally exposed to maternal calorie restriction.

    PubMed

    Levay, Elizabeth A; Paolini, Antonio G; Govic, Antonina; Hazi, Agnes; Penman, Jim; Kent, Stephen

    2008-08-22

    Environmental stimuli such as caloric availability during the perinatal period exert a profound influence on the development of an organism. Studies in this domain have focused on the effects of under- and malnutrition while the effects of more mild levels of restriction have not been delineated. Rat dams and their offspring were subjected to one of five dietary regimens: control, CR50% for 3 days preconception, CR25% during gestation, CR25% during lactation, and CR25% during gestation, lactation, and post-weaning (lifelong). The pup retrieval test and maternal observations were conducted during lactation to quantify maternal care. In the pup retrieval test, dams that were concurrently experiencing CR (i.e., from the lactation and lifelong groups) displayed shorter latencies to retrieve all pups than the control and preconception groups and the lactation group constructed better nests than all groups. Adult offspring were tested in three tests of anxiety: the elevated plus maze, open field, and emergence test. No differences were observed in the elevated plus maze; however, in the open field preconception animals made fewer entries and spent more time in the central zone than controls. In addition, preconception offspring exhibited longer latencies to full body emergence, spent less time fully emerged, and spent more time engaged in risk assessment behaviours than all other groups. Offspring from the preconception group were also on average 11% heavier than control rats throughout life and displayed 37% higher serum leptin concentrations than controls. A potential role for leptin in the anxiogenic effect of preconception CR is discussed.

  2. Flaxseed flour (Linum usitatissinum) consumption improves bone quality and decreases the adipocyte area of lactating rats in the post-weaning period.

    PubMed

    Ribeiro, Danielle Cavalcante; Pereira, Aline D'Avila; da Silva, Paula Cristina Alves; dos Santos, Aline de Sousa; de Santana, Fernanda Carvalho; Boueri, Bianca Ferolla da Camara; Pessanha, Carolina Ribeiro; de Abreu, Maíra Duque Coutinho; Mancini-Filho, Jorge; da Silva, Eduardo Moreira; do Nascimento-Saba, Celly Cristina Alves; da Costa, Carlos Alberto Soares; Boaventura, Gilson Teles

    2016-01-01

    The aim of this work was to evaluate the effects of flaxseed flour in the intake on adiposity and femur structure of the lactating rats during the post-weaning period. After weaning, the lactating rats were divided into control (C, n = 6) and experimental (F, n = 6) groups treated with a diet containing flaxseed flour. Serum hormone and fatty acids composition, morphology of intra-abdominal adipocytes, computed tomography and biomechanical analyses of femur were determined. Food intake, body mass and hormone analysis have shown similar results. The F group showed the following (p < 0.05): lower arachidonic acid (-60%), total polyunsaturated fatty acids (-30%) and retroperitoneal adipocytes (-36%) area. Higher radiodensity of femoral head region (+29%) and higher maximum force (+18%), breaking strength (+18%) and rigidity (+31%). Fatty acid composition of flaxseed flour decreased the area of adipocytes and improved the bone quality, which may be associated with lower serum levels of arachidonic acid levels, during the post-weaning period.

  3. Suppression of male reproduction in rats after exposure to sodium fluoride during early stages of development

    NASA Astrophysics Data System (ADS)

    Reddy, P. Sreedhar; Pushpalatha, T.; Reddy, P. Sreenivasula

    2007-07-01

    Sodium fluoride (NaF), a widespread natural pollutant was given to sperm-positive female rats throughout gestation and lactation at a dose of 4.5 and 9.0 ppm via drinking water. The neonates were allowed to grow up to 90 days on tap water, and then sperm parameters, testicular steroidogenic marker enzyme activity levels, and circulatory hormone levels were studied. The sperm count, sperm motility, sperm coiling (hypoosmotic swelling test), and sperm viability were decreased in experimental rats when compared with controls. The activity levels of testicular steroidogenic marker enzymes (3β hydroxysteroid dehydrogenase and 17β hydroxysteroid dehydrogenase) were significantly decreased in experimental animals indicating decreased steroidogenesis. The serum testosterone, follicle stimulating hormone and luteinizing hormone levels were also significantly altered in experimental animals. Our data indicate that exposure to NaF during gestation and lactation affects male reproduction in adult rats by decreasing spermatogenesis and steroidogenesis.

  4. Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury.

    PubMed

    Millet, A; Cuisinier, A; Bouzat, P; Batandier, C; Lemasson, B; Stupar, V; Pernet-Gallay, K; Crespy, T; Barbier, E L; Payen, J F

    2018-06-01

    The mechanisms by which hypertonic sodium lactate (HSL) solution act in injured brain are unclear. We investigated the effects of HSL on brain metabolism, oxygenation, and perfusion in a rodent model of diffuse traumatic brain injury (TBI). Thirty minutes after trauma, anaesthetised adult rats were randomly assigned to receive a 3 h infusion of either a saline solution (TBI-saline group) or HSL (TBI-HSL group). The sham-saline and sham-HSL groups received no insult. Three series of experiments were conducted up to 4 h after TBI (or equivalent) to investigate: 1) brain oedema using diffusion-weighted magnetic resonance imaging and brain metabolism using localized 1 H-magnetic resonance spectroscopy (n = 10 rats per group). The respiratory control ratio was then determined using oxygraphic analysis of extracted mitochondria, 2) brain oxygenation and perfusion using quantitative blood-oxygenation-level-dependent magnetic resonance approach (n = 10 rats per group), and 3) mitochondrial ultrastructural changes (n = 1 rat per group). Compared with the TBI-saline group, the TBI-HSL and the sham-operated groups had reduced brain oedema. Concomitantly, the TBI-HSL group had lower intracellular lactate/creatine ratio [0.049 (0.047-0.098) vs 0.097 (0.079-0.157); P < 0.05], higher mitochondrial respiratory control ratio, higher tissue oxygen saturation [77% (71-79) vs 66% (55-73); P < 0.05], and reduced mitochondrial cristae thickness in astrocytes [27.5 (22.5-38.4) nm vs 38.4 (31.0-47.5) nm; P < 0.01] compared with the TBI-saline group. Serum sodium and lactate concentrations and serum osmolality were higher in the TBI-HSL than in the TBI-saline group. These findings indicate that the hypertonic sodium lactate solution can reverse brain oxygenation and metabolism dysfunction after traumatic brain injury through vasodilatory, mitochondrial, and anti-oedema effects. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  5. Abnormal peripubertal development of the rat mammary gland following exposure in utero and during lactation to a mixture of genistein and the food contaminant vinclozolin.

    PubMed

    El Sheikh Saad, H; Meduri, G; Phrakonkham, P; Bergès, R; Vacher, S; Djallali, M; Auger, J; Canivenc-Lavier, M C; Perrot-Applanat, M

    2011-07-01

    The impact of early exposure to endocrine disruptor mixtures on mammary gland development is poorly known. Here, we identify the effects of a conception to weaning exposure of rats to the phytoestrogen genistein (G) and/or the antiandrogen vinclozolin (V) at 1mg/kg-d, alone or in association. Using several approaches, we found that G- and GV-exposed rats displayed significantly greater epithelial branching and proliferation, wider terminal end buds than controls at PND35, as well as ductal hyperplasia and periductal fibrosis. Focal branching defects were present in V-exposed rats. An increased ER and AR expression was observed in G- and GV- as compared to V-exposed rats at PND35. Surprisingly, a significant number of GV- and to a lesser extent, V-exposed animals displayed abnormal hyperplasic alveolar structures at PND50. Thus, gestational and lactational exposure to low doses of genistein plus vinclozolin may seriously affect peripubertal development of the rat mammary gland. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Early postweaning exercise improves central leptin sensitivity in offspring of rat dams fed high-fat diet during pregnancy and lactation.

    PubMed

    Sun, Bo; Liang, Nu-Chu; Ewald, Erin R; Purcell, Ryan H; Boersma, Gretha J; Yan, Jianqun; Moran, Timothy H; Tamashiro, Kellie L K

    2013-11-01

    Maternal high-fat (HF) diet has long-term consequences on the metabolic phenotype of the offspring. Here, we determined the effects of postweaning exercise in offspring of rat dams fed HF diet during gestation and lactation. Pregnant Sprague-Dawley rats were maintained on chow or HF diet throughout gestation and lactation. All pups were weaned onto chow diet on postnatal day (PND) 21. At 4 wk of age, male pups were given free access to running wheels (RW) or remained sedentary (SED) for 3 wk, after which all rats remained sedentary, resulting in four groups: CHOW-SED, CHOW-RW, HF-SED, and HF-RW. Male HF offspring gained more body weight by PND7 compared with CHOW pups and maintained this weight difference through the entire experiment. Three weeks of postweaning exercise did not affect body weight gain in either CHOW or HF offspring, but reduced adiposity in HF offspring. Plasma leptin was decreased at the end of the 3-wk running period in HF-RW rats but was not different from HF-SED 9 wk after the exercise period ended. At 14 wk of age, intracerebroventricular injection of leptin suppressed food intake in CHOW-SED, CHOW-RW, and HF-RW, while it did not affect food intake in HF-SED group. At death, HF-RW rats also had higher leptin-induced phospho-STAT3 level in the arcuate nucleus than HF-SED rats. Both maternal HF diet and postweaning exercise had effects on hypothalamic neuropeptide and receptor mRNA expression in adult offspring. Our data suggest that postweaning exercise improves central leptin sensitivity and signaling in this model.

  7. Feeding of soy protein isolate to rats during pregnancy and lactation suppresses formation of aberrant crypt foci in their progeny's colons: interaction of diet with fetal alcohol exposure

    PubMed Central

    Linz, Amanda L; Xiao, Rijin; Parker, James G; Simpson, Pippa M; Badger, Thomas M; Simmen, Frank A

    2004-01-01

    Soy protein isolate (SPI) in the diet may inhibit colon tumorigenesis. We examined azoxymethane (AOM)-induced aberrant crypt foci (ACF) in male rats in relation to lifetime, pre-weaning, or post-weaning dietary exposure to SPI and also within the context of fetal alcohol exposure. Pregnant Sprague Dawley rats were fed AIN-93G diets containing casein (20%, the control diet) or SPI (20%) as the sole protein source starting on gestation day 4 (GD 4). Progeny were weaned on postnatal day (PND) 21 to the same diet as their dams and were fed this diet until termination of the experiment at PND 138. Rats received AOM on PND 89 and 96. Lifetime (GD 4 to PND 138) feeding of SPI led to reduced frequency of ACF with 4 or more crypts in the distal colon. Progeny of dams fed SPI only during pregnancy and lactation or progeny fed SPI only after weaning exhibited similarly reduced frequency of large ACF in distal colon. Number of epithelial cells, in the distal colon, undergoing apoptosis was unaffected by diet. SPI reduced weight gain and adiposity, but these were not correlated with fewer numbers of large ACF. Lifetime SPI exposure similarly inhibited development of large ACF in Sprague Dawley rats whose dams were exposed to ethanol during pregnancy. In summary, feeding of SPI to rat dams during pregnancy and lactation suppresses numbers of large ACF in their progeny, implying a long-term or permanent change elicited by the maternal diet. Moreover, results support the use of ACF as an intermediate endpoint for elucidating effects of SPI and its biochemical constituents in colon cancer prevention in rats. PMID:15488141

  8. Metabolic differentiation and classification of abnormal Savda Munziq's pharmacodynamic role on rat models with different diseases by nuclear magnetic resonance-based metabonomics.

    PubMed

    Mamtimin, Batur; Xia, Guo; Mijit, Mahmut; Hizbulla, Mawlanjan; Kurbantay, Nazuk; You, Li; Upur, Halmurat

    2015-01-01

    Abnormal Savda Munziq (ASMq) is a traditional Uyghur herbal preparation used as a therapy for abnormal Savda-related diseases. In this study, we investigate ASMq's dynamic effects on abnormal Savda rat models under different disease conditions. Abnormal Savda rat models with hepatocellular carcinoma (HCC), type 2 diabetes mellitus (T2DM), and asthma dosed of ASMq. Serum samples of each animal tested by nuclear magnetic resonance spectroscopy and analyzed by orthogonal projection to latent structure with discriminant analysis. Compared with healthy controls, HCC rats had higher concentrations of amino acids, fat-related metabolites, lactate, myoinositol, and citrate, but lower concentrations of α-glucose, β-glucose, and glutamine. Following ASMq treatment, the serum acetone very low-density lipoprotein (VLDL), LDL, unsaturated lipids, acetylcysteine, and pyruvate concentration decreased, but α-glucose, β-glucose, and glutamine concentration increased (P < 0.05). T2DM rats had higher concentrations of α- and β-glucose, but lower concentrations of isoleucine, leucine, valine, glutamine, glycoprotein, lactate, tyrosine, creatine, alanine, carnitine, and phenylalanine. After ASMq treated T2DM groups showed reduced α- and β-glucose and increased creatine levels (P < 0.05). Asthma rats had higher acetate, carnitine, formate, and phenylalanine levels, but lower concentrations of glutamine, glycoprotein, lactate, VLDL, LDL, and unsaturated lipids. ASMq treatment showed increased glutamine and reduced carnitine, glycoprotein, formate, and phenylalanine levels (P < 0.05). Low immune function, decreased oxidative defense, liver function abnormalities, amino acid deficiencies, and energy metabolism disorders are common characteristics of abnormal Savda-related diseases. ASMq may improve the abnormal metabolism and immune function of rat models with different diseases combined abnormal Savda.

  9. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Toward the therapeutics of cognitive impairment of schizophrenia.

    PubMed

    Uehara, Takashi; Matsuoka, Tadasu; Sumiyoshi, Tomiki

    2014-01-01

    Augmentation therapy with serotonin-1A (5-HT1A) receptor partial agonists has been suggested to improve cognitive impairment in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production. The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days) of tandospirone (0.05 or 5 mg/kg) on brain energy metabolism, as represented by extracellular lactate concentration (eLAC) in the medial prefrontal cortex (mPFC) of a rat model of schizophrenia. Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot-shock stress (FS). Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment. These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism, based on brain energy metabolism, by which 5-HT1A agonism improve cognitive impairment of schizophrenia and related disorders.

  10. INVESTIGATIONS ON THE BIOLOGICAL BEHAVIOR OF RADIOACTIVE FISSION PRODUCTS IN PREGNANT ANIMALS. III. ENRICHMENT OF RADIOCESIUM IN NURSING RATS AND THE MODIFICATION OF THE Cs RETENTION IN ORGANS OF THE MOTHER DURING THE LACTATION PERIOD (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegel, H.; Weber, E.

    In a continuation of the investigation on the placental turnover of radiocesium in the rat, the changes of the postpartum cesium content in the young nursing animals caused by the amounts of cesium, which are excreted with the mother-milk, are described. The cesium content in the organs of the mother at the end of the lactation period is decreased by 50% in contrast to the un- pregnant controls. (auth)

  11. Galactagogue effects of Musa x paradisiaca flower extract on lactating rats.

    PubMed

    Mahmood, Azizah; Omar, Muhammad Nor; Ngah, Nurziana

    2012-11-01

    To investigate the potential of Musa x paradisiaca (M. x paradisiaca) flower extracts in promoting milk production of lactating rats and its effects on growth of the suckling pups. Galactagogue activity was evaluated in terms of quantity of milk produced from the rats treated with petroleum ether, ethanol or water extracts of the flower. Lactating rats (n = 5) of Spraque Dawley with six pups each were administered with the extracts in the amount of 500 mg/kg body weight, while the control rats were given an equivalent amount of distilled water. The rats were daily administered via oral feeding starting from Day 5 until Day 14 and the performance of milk production was measured along the experimental period by weight-suckle-weight method. Results were statistically analyzed using SPSS by means of ANOVA at 0.05 and was expressed as their mean?standard deviation. The rates of pups' growth were measured as the weight gain along the experimental period. The rats treated with aqueous extract produced higher milk than control and ethanol groups. Aqueous extract was identified to increase milk production by 25%, while petroleum ether extract by 18%. The mean of yields produced by the rats during suckling period for aqueous, petroleum ether, ethanol and control were 4.62±2.45, 4.37±1.93, 3.65±1.89 and 3.69±1.79, respectively. Growth rates of pups for the rats treated with control, aqueous, ethanol extract and petroleum ether were (1.85±0.49), (1.78±0.56), (1.65±0.46) and (1.56±0.42) g/pup, respectively. The present study reveals the potential of M. x paradisiaca flower to enhance milk production of nursing mothers which could be exploited for commercialization of the isolated extract. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  12. Feeding 5-hydroxy-l-tryptophan during the transition from pregnancy to lactation increases calcium mobilization from bone in rats.

    PubMed

    Laporta, J; Peters, T L; Weaver, S R; Merriman, K E; Hernandez, L L

    2013-05-01

    An increasing demand for calcium during pregnancy and lactation can result in both clinical and subclinical hypocalcemia during the early lactation period in several mammalian species, in particular the dairy cow. Serotonin (5-HT) was recently identified as a regulator of lactation and bone turnover. The purpose of this study was to determine whether supplementation of the maternal diet with a 5-HT precursor would increase maternal bone turnover and calcium mobilization to maintain appropriate circulating maternal concentrations of ionized calcium during lactation. Female Sprague-Dawley rats (n = 30) were fed either a control diet (n = 15) or a diet supplemented with the 5-HT precursor 5-hydroxytryptophan (5-HTP, 0.2%; n = 15) from day 13 of pregnancy through day 9 of lactation. Maternal serum and plasma (day 1 and day 9 of lactation), milk and pup weight (daily), mammary gland and bone tissue (day 9 of lactation) were collected for analysis. The 5-HTP diet elevated circulating maternal concentrations of 5-HT on day 1 and day 9 of lactation and parathyroid hormone related-protein (PTHrP) on day 9 of lactation (P < 0.033). In addition, 5-HTP supplementation increased total serum calcium concentrations on day 1 of lactation and total milk calcium concentration on day 9 of lactation (P < 0.032). Supplemental 5-HTP did not alter milk yield, maternal body weight, mammary gland structure, or pup litter weights (P > 0.05). Supplemental 5-HTP also resulted in increased concentrations of mammary 5-HT and PTHrP, as well as increased mRNA expression of rate-limiting enzyme in 5-HT synthesis, tryptophan hydroxylase 1, and Pthrp mRNA on day 9 of lactation (P < 0.028). In addition, supplementation of 5-HTP resulted in increased mRNA expression of maternal mammary calcium transporters and resorption of bone in the femur, indicated by increase osteoclast number and diameter as well as mRNA expression of classical markers of bone resorption on day 9 of lactation (P < 0.048). These results show that increasing 5-HT biosynthesis during the transition from pregnancy to lactation could be a potential therapeutic target to explore for prevention of subclinical and clinical hypocalcemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Testosterone and muscle hypertrophy in female rats

    NASA Technical Reports Server (NTRS)

    Kuhn, F. E.; Max, S. R.

    1985-01-01

    The effects of chronic treatment with testosterone propionate (TP) on compensatory muscle hypertropy in female rats are examined. The 48 female rats were placed in one of four test groups: (1) no overload (synergist removal), no TP, (2) overload, no TP, (3) no overload + TP, and (4) overload + TP. The technique used to administer the TP is described. The preparation of the plantaris muscle, the analysis of pyruvate oxidation and the determination of malate and lactate dehydrogenases and the noncollogen protein are explained. The results which reveal the effect of overload and TP on body weight, noncollogen protein concentration, lactate and malate dehydrogenase activities, and pyruvate oxidation are presented and discussed. It is concluded that in terms of body weight, protein content, pyruvate, glycolysis, and oxidative metabolisms chronic TP treatments do not change compensatory muscle hypertropy.

  14. Effects of Hypergravity Rearing on Growth Hormone (GH) Secretion In Preweanling Rats

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Wade, C. E.; Ronca, A. E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    We previously reported that rat pups reared at 1.5-g, 1.75 or 2.0-g hypergravity weigh 6-15% less than 1.0-g controls. To account for these findings. we measured the lactational hormones, prolaction (Prl) and oxytocin (OT), in the pups' mothers. Gravity related differences in Prl were not observed whereas OT of lactating dams was significantly reduced relative to controls. Milk transfer from dam to pup was not impaired in hypergravity-reared litters tested at 1-g. Together, these findings suggest that impaired lactation and milk transfer do not account for reduced body masses of postnatal rats reared in hypergravity. In the present study, we analyzed growth hormone (GH) secretion and maternal licking in pups reared in hypergravity and in 1.0-g controls. Recent reports using dwarfing phenotypes in mouse mutants have provided evidence for postnatal dependence on GH and insulin-like growth factors (IGFs). Beginning on Gestational day (G)11 of the rats' 22 day pregnancy, rat dams and their litters were exposed to either 1.5-g, 1.75-g or 2.0-g. On Postnatal day (P)10, we measured plasma GH using enzyme immunoassay (EIA). Contrary to our hypothesis, GH was significantly elevated in pups reared at 2.0-g relative to 1.0-g controls. Pup-oriented behaviors of the hypergravity dams were also changed, possibly accounting for the increase in pup GH. GH alone does not appear to play a role in reduced body weights of hypergravity-reared pups.

  15. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis.

    PubMed

    Rex, A; Bert, B; Fink, H; Voigt, J-P

    2009-10-19

    Neuronal activity is tightly coupled with brain energy metabolism; and glucose is an important energy substrate for neurons. The present in vivo microdialysis study was aimed at investigating changes in extracellular glucose concentrations in the rat ventral hippocampus due to exposure to the elevated plus maze. Determination of basal hippocampal glucose and lactate/pyruvate ratio in male Wistar rats was conducted in the home cage using in vivo microdialysis. Rats were exposed to the elevated plus maze, a rodent model of anxiety-related behaviour, or to unspecific stress induced by white noise (95dB) as a control condition. Basal hippocampal levels of glucose, as determined by zero-net-flux, and the basal lactate/pyruvate ratio were 1.49+/-0.05mmol/l and 13.8+/-1.1, respectively. In rats without manipulation, glucose levels remained constant throughout the experiment (120min). By contrast, exposure to the elevated plus maze led to a temporary decline in hippocampal glucose (-33.2+/-4.4%) which returned to baseline level in the home cage. White noise caused only a non-significant decrease in extracellular glucose level (-9.3+/-3.5%). In all groups, the lactate/pyruvate ratio remained unchanged by the experimental procedures. Our microdialysis study demonstrates that exposure to the elevated plus maze induces a transient decrease in extracellular hippocampal glucose concentration. In contrast, an unspecific stimulus did not change hippocampal glucose. The latter suggests that only specific behavioural stimuli increase hippocampal glucose utilization in the ventral hippocampus.

  16. Effect of aged garlic extract against methotrexate-induced damage to the small intestine in rats.

    PubMed

    Yüncü, Mehmet; Eralp, Ayhan; Celik, Ahmet

    2006-06-01

    Methotrexate (MTX) chemotherapy is often accompanied by side effects such as gastrointestinal ulceration and diarrhea. The aim of this study was to examine histologically whether an aged garlic extract (AGE) had a protective effect on the small intestine of rats with MTX-induced damage. Forty male Wistar albino rats were randomized into experimental and control groups and divided into four groups of ten animals. To the first group, MTX was applied as a single dose (20 mg/kg) intraperitoneally. To the second group, in addition to MTX application, AGE (250 mg/kg) was administered orally every day at the same time by intragastric intubation until the rats were killed. To the third group, AGE only was given. The fourth group was the control. All animals were killed 4 days after the intraperitoneal injection of MTX for histopathologic analysis and tissue MDA levels. Before killing, intracardiac blood was obtained from each animal to perform biochemical analysis (plasma lactate level). MTX was found to lead to damage in the jejunal tissues and to increase the MDA and lactate levels in the plasma. Administration of the AGE decreased the severity of jejunal damage, but increased MDA and lactate levels caused by MTX treatment on the other hand. These results suggest that AGE may protect the small intestine of rats from MTX-induced damage. Thus this study substantiated the thought that the protective effect of AGE is derived from the manner in which it interacts with crypt cells.

  17. Effect of maternal exposure to Tityus bahiensis scorpion venom during lactation on the offspring of rats.

    PubMed

    Martins, Adriana do Nascimento; Nencioni, Ana Leonor Abrahão; Dorce, Ana Leticia Coronado; Paulo, Maria Eliza F V; Frare, Eduardo Osório; Dorce, Valquíria Abrão Coronado

    2016-01-01

    Scorpion stings are a public health problem in Brazil and lactating women may be affected. We aimed to study the effects of Tityus bahiensis venom in the offspring of rats treated during lactation. Mothers received a subcutaneous injection of saline (1.0ml/kg) or venom (2.5mg/kg) or an intraperitoneal injection of LPS (lipopolysaccharide) (100μg/kg) on postnatal (PN) days 2 (PN2), 10 (PN10) or 16 (PN16). The offspring were evaluated during the childhood and adulthood. Pups showed a delay in physical and reflexological development, and a decrease in motor activity. Adults displayed low anxiety. There was an increase in the number of viable neuronal cells in hippocampal areas CA1 and CA4. The levels of IFN-γ (interferon-gamma) increased in the experimental groups. Several of the parameters analyzed showed important differences between the sexes. Thus, the scorpion venom affects the development in the offspring of mothers envenomed during the lactation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Lactate Clearance and Normalization and Prolonged Organ Dysfunction in Pediatric Sepsis.

    PubMed

    Scott, Halden F; Brou, Lina; Deakyne, Sara J; Fairclough, Diane L; Kempe, Allison; Bajaj, Lalit

    2016-03-01

    To evaluate whether lactate clearance and normalization during emergency care of pediatric sepsis is associated with lower rates of persistent organ dysfunction. This was a prospective cohort study of 77 children <18 years of age in the emergency department with infection and acute organ dysfunction per consensus definitions. In consented patients, lactate was measured 2 and/or 4 hours after an initial lactate; persistent organ dysfunction was assessed through laboratory and physician evaluation at 48 hours. A decrease of ≥ 10% from initial to final level was considered lactate clearance; a final level < 2 mmol/L was considered lactate normalization. Relative risk (RR) with 95% CIs, adjusted in a log-binomial model, was used to evaluate associations between lactate clearance/normalization and organ dysfunction. Lactate normalized in 62 (81%) patients and cleared in 70 (91%). The primary outcome, persistent 48-hour organ dysfunction, was present in 32 (42%). Lactate normalization was associated with decreased risk of persistent organ dysfunction (RR 0.46, 0.29-0.73; adjusted RR 0.47, 0.29-0.78); lactate clearance was not (RR 0.70, 0.35-1.41; adjusted RR 0.75, 0.38-1.50). The association between lactate normalization and decreased risk of persistent organ dysfunction was retained in the subgroups with initial lactate ≥ 2 mmol/L and hypotension. In children with sepsis and organ dysfunction, lactate normalization within 4 hours was associated with decreased persistent organ dysfunction. Serial lactate level measurement may provide a useful prognostic tool during the first hours of resuscitation in pediatric sepsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Astrocyte-neuron lactate transport is required for long-term memory formation.

    PubMed

    Suzuki, Akinobu; Stern, Sarah A; Bozdagi, Ozlem; Huntley, George W; Walker, Ruth H; Magistretti, Pierre J; Alberini, Cristina M

    2011-03-04

    We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Lactate is oxidized outside of the mitochondrial matrix in rodent brain.

    PubMed

    Herbst, Eric A F; George, Mitchell A J; Brebner, Karen; Holloway, Graham P; Kane, Daniel A

    2018-05-01

    The nature and existence of mitochondrial lactate oxidation is debated in the literature. Obscuring the issue are disparate findings in isolated mitochondria, as well as relatively low rates of lactate oxidation observed in permeabilized muscle fibres. However, respiration with lactate has yet to be directly assessed in brain tissue with the mitochondrial reticulum intact. To determine if lactate is oxidized in the matrix of brain mitochondria, oxygen consumption was measured in saponin-permeabilized mouse brain cortex samples, and rat prefrontal cortex and hippocampus (dorsal) subregions. While respiration in the presence of ADP and malate increased with the addition of lactate, respiration was maximized following the addition of exogenous NAD + , suggesting maximal lactate metabolism involves extra-matrix lactate dehydrogenase. This was further supported when NAD + -dependent lactate oxidation was significantly decreased with the addition of either low-concentration α-cyano-4-hydroxycinnamate or UK-5099, inhibitors of mitochondrial pyruvate transport. Mitochondrial respiration was comparable between glutamate, pyruvate, and NAD + -dependent lactate oxidation. Results from the current study demonstrate that permeabilized brain is a feasible model for assessing lactate oxidation, and support the interpretation that lactate oxidation occurs outside the mitochondrial matrix in rodent brain.

  1. Antagonism of V1b receptors promotes maternal motivation to retrieve pups in the MPOA and impairs pup-directed behavior during maternal defense in the mpBNST of lactating rats.

    PubMed

    Bayerl, Doris S; Kaczmarek, Veronika; Jurek, Benjamin; van den Burg, Erwin H; Neumann, Inga D; Gaßner, Barbara M; Klampfl, Stefanie M; Bosch, Oliver J

    2016-03-01

    Recent studies using V1b receptor (V1bR) knockout mice or central pharmacological manipulations in lactating rats highlighted the influence of this receptor for maternal behavior. However, its role in specific brain sites known to be important for maternal behavior has not been investigated to date. In the present study, we reveal that V1bR mRNA (qPCR) and protein levels (Western blot) within either the medial preoptic area (MPOA) or the medial-posterior part of the bed nucleus of the stria terminalis (mpBNST) did not differ between virgin and lactating rats. Furthermore, we characterized the effects of V1bR blockade via bilateral injections of the receptor subtype-specific antagonist SSR149415 within the MPOA or the mpBNST on maternal behavior (maternal care under non-stress and stress conditions, maternal motivation to retrieve pups in a novel environment, maternal aggression) and anxiety-related behavior in lactating rats. Blocking V1bR within the MPOA increased pup retrieval, whereas within the mpBNST it decreased pup-directed behavior, specifically licking/grooming the pups, during the maternal defense test. In addition, immediately after termination of the maternal defense test, V1bR antagonism in both brain regions reduced nursing, particularly arched back nursing. Anxiety-related behavior was not affected by V1bR antagonism in either brain region. In conclusion our data indicate that V1bR antagonism significantly modulates different aspects of maternal behavior in a brain region-dependent manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of Hypergravity Exposure On Plasma Oxytocin Concentrations In Pregnant and Lactating Rat Dams

    NASA Technical Reports Server (NTRS)

    Baer, Lisa A.; Wade, Charles E.; Ronca, April E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Rat dams and offspring were exposed to 1.5-g, 1.75-g or 2.0-g hypergravity (hg) from Gestational day (G) 11 until Postnatal day (P) 10. To ascertain the role of maternal factors in reduced postnatal body weights of offspring developed in hg, the dams' lactational hormones were measured. Oxytocin (OT), the major hormone responsible for milk ejection, was reduced in hg dams whereas prolactin (Prl), involved in milk production, was unchanged. Video analyses of nursing behavior revealed that hg dams spent more time nursing relative to 1-g controls. We hypothesized impaired milk transfer from dam to pup, however pup body weight gains following a discrete suckling episode were comparable across conditions. Changes in lactational hormones and nursing behavior by dams exposed to hg do not account for reduced body masses of their offspring.

  3. Metabolic changes in rat striatum following convulsive seizures.

    PubMed

    Darbin, Olivier; Risso, Jean Jacque; Carre, Emily; Lonjon, Michel; Naritoku, Dean K

    2005-07-19

    Generalized convulsive seizures increase glucose utilization within the brain but their impact on metabolism is not well known. The striatum receives excitatory input from widespread sources in the brain and could potentially reflect energy depletion in the brain resulting from generalized seizures. We utilized multiprobe microdialysis in freely moving rats subjected to maximal electroshock to simultaneously measure glucose, lactate, and pyruvate levels in the interstitial space within striatum and in peripheral subcutaneous tissue. A brief convulsive seizure was associated with marked changes in striatal and peripheral metabolism during the post-ictal state that lasted up to 1 h. There were significant central and peripheral elevations of glucose, pyruvate, and lactate, reflecting increased glucose metabolism. Interestingly, the lactate-to-pyruvate ratio increased significantly in the periphery but remained unchanged in the striatum. Thus, there appears to be brain mechanisms that maintain adequate energy sources and prevent anaerobic shift during the post-ictal state.

  4. The Predominant Proteins that React to the MC-20 Estrogen Receptor Alpha Antibody Differ in Molecular Weight between the Mammary Gland and Uterus in the Mouse and Rat.

    PubMed

    Bollig-Fischer, Aliccia; Thakur, Archana; Sun, Yuan; Wu, Jiusheng; Liao, D Joshua

    2012-03-01

    There are many estrogen receptor α (ERα) antibodies available but few of them target a rodent ERα. Using the MC-20 antibody raised against the C-terminus of mouse ERα, we show in this communication that in the mammary gland of female mice and rats, the wild type (wt) ERα was detected on immunoblots as a dominant protein only during lactation, and the protein was lactating specific as it migrated slightly faster than the 67-kD wt ERα in the uterus, likely due to a different phosphorylation status. In contrast, in the nulliparous, pregnant, involuting and involuted mammary glands, the dominant protein recognized by MC-20 was about 61-kD, which is dubbed herein as "MC-20 reactive protein" or MC20RP in abbreviation as its identity is unknown. Our results showed that it was not derived from proteolysis or de-phosphorylation of the 67-kD ERα and was unlikely to be translated from an ERα mRNA variant. Ovariectomy decreased the lactating specific wt ERα but increased the 61-kD MC20RP in the mammary tumors from MMTV-c-myc transgenic mice but these two proteins in the uterus were unaffected. The 61-kD MC20RP was decreased in the mammary tumors, compared with proliferating mammary glands, in estrogen-treated ACI rats. These results suggest that while the lactating specific wt ERα alone or together with the MC20RP may sustain lactation, the MC20RP may support proliferation of the mammary gland and some mammary tumors.

  5. Bromocriptine treatment at the end of lactation prevents hyperphagia, higher visceral fat and liver triglycerides in early-weaned rats at adulthood.

    PubMed

    Peixoto-Silva, Nayara; Moura, Egberto G; Carvalho, Janaine C; Nobre, Jéssica L; Quitete, Fernanda T; Pinheiro, Cintia R; Santos-Silva, Ana Paula; de Oliveira, Elaine; Lisboa, Patricia C

    2017-04-01

    Non-pharmacological early weaning (NPEW) leads offspring to obesity, higher liver oxidative stress and microsteatosis in adulthood. Pharmacological EW (PEW) by maternal treatment with bromocriptine (BRO) causes obesity in the adult progeny but precludes hepatic injury. To test the hypothesis that BRO prevents the deleterious changes of NPEW, we injected BRO into the pups from the NPEW model in late lactation. Lactating rats were divided into two groups: dams with an adhesive bandage around the body to prevent breastfeeding on the last 3 days of lactation and dams whose pups had free suckling (C). Offspring from both groups were subdivided into two groups: pups treated with BRO (intraperitoneal (i.p.) 4 mg/kg per day) on the last 3 days of lactation (NPEW/BRO and C/BRO) or pups treated with the vehicle (NPEW and C). At PN120, offspring were challenged with a high fat diet (HFD), and food intake was recorded after 30 minutes and 12 hours. Rats were killed at PN120 and PN200. At PN120, adipocyte size was greater in the NPEW group but was normal in the NPEW/BRO group. At PN200, the NPEW group presented hyperphagia, higher adiposity, adipocyte hypertrophy, hyperleptinaemia, glucose intolerance and increased hepatic triglycerides. These parameters were normalized in the NPEW/BRO group. In the feeding test, BRO groups showed lower HFD intake at 30 minutes than did their controls; however, at 12 hours, the NPEW group ate more HFD. The treatment with BRO can preclude some deleterious effects of the NPEW model, which prevented the development of overweight and its comorbidities. © 2017 John Wiley & Sons Australia, Ltd.

  6. Amino acid and glucose uptake by rat brown adipose tissue. Effect of cold-exposure and acclimation.

    PubMed Central

    López-Soriano, F J; Fernández-López, J A; Mampel, T; Villarroya, F; Iglesias, R; Alemany, M

    1988-01-01

    The net uptake/release of glucose, lactate and amino acids from the bloodstream by the interscapular brown adipose tissue of control, cold-exposed and cold-acclimated rats was estimated by measurement of arteriovenous differences in their concentrations. In the control animals amino acids contributed little to the overall energetic needs of the tissue; glucose uptake was more than compensated by lactate efflux. Cold-exposure resulted in an enhancement of amino acid utilization and of glucose uptake, with high lactate efflux. There was a net glycine and proline efflux that partly compensated the positive nitrogen balance of the tissue; amino acids accounted for about one-third of the energy supplied by glucose to the tissue. Cold-acclimation resulted in a very high increase in glucose uptake, with a parallel decrease in lactate efflux and amino acid consumption. Branched-chain amino acids, however, were more actively utilized. This was related with a much higher alanine efflux, in addition to that of glycine and proline. It is suggested that most of the glucose used during cold-exposure is returned to the bloodstream as lactate under conditions of active lipid utilization, amino acids contributing their skeletons largely in anaplerotic pathways. On the other hand, cold-acclimation resulted in an important enhancement of glucose utilization, with lowered amino acid oxidation. Amino acids are thus used as metabolic substrates by the brown adipose tissue of rats under conditions of relatively scarce substrate availability, but mainly as anaplerotic substrates, in parallel to glucose. Cold-acclimation results in a shift of the main substrates used in thermogenesis from lipid to glucose, with a much lower need for amino acids. PMID:3421924

  7. Protocols for hyperlactatemia induction in the lactate minimum test adapted to swimming rats.

    PubMed

    de Araujo, Gustavo Gomes; Papoti, Marcelo; Manchado, Fúlvia de Barros; de Mello, Maria Alice Rostom; Gobatto, Claudio Alexandre

    2007-12-01

    The lactate minimum test (LACmin) has been considered an important indicator of endurance exercise capacity and a single session protocol can predict the maximal steady state lactate (MLSS). The objective of this study was to determine the best swimming protocol to induce hyperlactatemia in order to assure the LACmin in rats (Rattus norvegicus), standardized to four different protocols (P) of lactate elevation. The protocols were P1: 6 min of intermittent jumping exercise in water (load of 50% of the body weight - bw); P2: two 13% bw load swimming bouts until exhaustion (tlim); P3: one tlim 13% bw load swimming bout; and P4: two 13% bw load swimming bouts (1st 30 s, 2nd to tlim), separated by a 30 s interval. The incremental phase of LACmin beginning with initial loads of 4% bw, increased in 0.5% at each 5 min. Peak lactate concentration was collected after 5, 7 and 9 min (mmol L(-1)) and differed among the protocols P1 (15.2+/-0.4, 14.9+/-0.7, 14.8+/-0.6) and P2 (14.0+/-0.4, 14.9+/-0.4, 15.5+/-0.5) compared to P3 (5.1+/-0.1, 5.6+/-0.3, 5.6+/-0.3) and P4 (4.7+/-0.2, 6.8+/-0.2, 7.1+/-0.2). The LACmin determination success rates were 58%, 55%, 80% and 91% in P1, P2, P3 and P4 protocols, respectively. The MLSS did not differ from LACmin in any protocol. The LACmin obtained from P4 protocol showed better assurance for the MLSS identification in most of the tested rats.

  8. Effect of L-arginine supplementation on the hepatic phosphatidylinositol 3-kinase signaling pathway and gluconeogenic enzymes in early intrauterine growth-restricted rats

    PubMed Central

    Luo, Kaiju; Chen, Pingyang; Li, Suping; Li, Wen; He, Mingfeng; Wang, Tao; Chen, Juncao

    2017-01-01

    The present study aimed to investigate the response of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and gluconeogenic enzymes in intrauterine growth-restricted rats to dietary L-arginine (L-Arg) supplementation during the lactation period early in life. Pregnant Sprague-Dawley rats were randomly divided into a control group (CON), an intrauterine growth restriction group (IUGR) and an L-Arg group (LA). The pregnant rats in the CON group were fed a 21% protein diet, and those in the IUGR and LA groups were fed a 10% low protein diet, and all rats were fed a 21% protein diet after delivery. Water was available ad libitum to the pregnant rats during the 21-day lactation period, and the water provided to the LA group included 200 mg/kg/day L-Arg. Blood glucose, serum insulin, homeostasis model of assessment for insulin resistance (HOMA-IR), PI3K and protein kinase B (PKB) protein expression, and phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) mRNA expression in the offspring rats were measured postnatally at 1, 3 and 8 weeks. No significant difference in blood glucose, serum insulin and HOMA-IR were identified at any time point among the three groups. PI3K and PKB expression was lower in the IUGR group offspring compared with that in the CON group offspring, but both were increased by dietary L-Arg supplementation. PEPCK mRNA and G-6-Pase mRNA expression levels in the offspring of the IUGR group were higher compared with those in the CON group but were downregulated following L-Arg supplementation. These results suggest that dietary L-Arg supplementation during the early lactation period promoted catch-up growth and reversed abnormalities in hepatic insulin signaling and gene expression of gluconeogenic enzymes in IUGR offspring rats. PMID:28962167

  9. Magnetic resonance lactate and lipid signals in rat brain after middle cerebral artery occlusion model

    PubMed Central

    Harada, Kuniaki; Honmou, Osamu; Liu, He; Bando, Michio; Houkin, Kiyohiro; Kocsis, Jeffery D.

    2008-01-01

    Proton magnetic resonance spectroscopy (1-H MRS) has revealed changes of metabolites in acute cerebral infarction. Although the drastic changes of lactate and N-acetyl-aspartate have been reported to be useful indicators of the ischemic damage in both humans and experimental animals, lipid signals are also detected by the short echo time sequence 1–5 days after ischemia. The objective of this study was to find a novel technique to isolate lactate signals from lipid signals in the ischemic brain. First, MRS was used to study the lipid and lactate components of a spherical phantom in vitro, and parameters were established to separate these components in vitro. Then, MR measurements were obtained from the brains of middle cerebral artery occlusion rats. All MR measurements were performed using a 7-T (300 MHz), 18.3-cm-bore superconducting magnet (Oxford Magnet Technologies) interfaced to a Unity INOVA Imaging System (Varian Technologies). T2-weighted images were obtained from a 1.0-mm-thick coronal section using a 3-cm field of view. It is well known that lipid has a shorter and lactate a longer T2 relaxation time. These distinct magnetic characteristics allowed us to separate the lactate signal from the lipid signal. Thus, adjustment of the echo time is essential to analyze the metabolites in acute cerebral infarction, which may be useful in both the clinic and laboratory. PMID:17196558

  10. High-Protein Exposure during Gestation or Lactation or after Weaning Has a Period-Specific Signature on Rat Pup Weight, Adiposity, Food Intake, and Glucose Homeostasis up to 6 Weeks of Age.

    PubMed

    Desclée de Maredsous, Caroline; Oozeer, Raish; Barbillon, Pierre; Mary-Huard, Tristan; Delteil, Corine; Blachier, François; Tomé, Daniel; van der Beek, Eline M; Davila, Anne-Marie

    2016-01-01

    Early-life nutrition has a programming effect on later metabolic health; however, the impact of exposure to a high-protein (HP) diet is still being investigated. This study evaluated the consequences on pup phenotype of an HP diet during gestation and lactation and after weaning. Wistar rat dams were separated into 2 groups fed an HP (55% protein) or normal protein (NP) (control; 20% protein) isocaloric diet during gestation, and each group subsequently was separated into 2 subgroups that were fed an HP or NP diet during lactation. After weaning, male and female pups from each mother subgroup were separated into 2 groups that were fed either an NP or HP diet until they were 6 wk old. Measurements included weight, food intake, body composition, blood glucose, insulin, glucagon, leptin, insulin-like growth factor I, and lipids. Feeding mothers the HP diet during gestation or lactation induced lower postweaning pup weight (gestation diet × time, P < 0.0001; lactation diet × time, P < 0.0001). Regardless of dams' diets, pups receiving HP compared with NP diet after weaning had 7% lower weight (NP, 135.0 ± 2.6 g; HP, 124.4 ± 2.5 g; P < 0.0001), 16% lower total energy intake (NP, 777 ± 14 kcal; HP, 649 ± 13 kcal; P < 0.0001) and 31% lower adiposity (P < 0.0001). Pups receiving HP compared with NP diet after weaning had increased blood glucose, insulin, and glucagon when food deprived (P < 0.0001 for all). The HP compared with the NP diet during gestation induced higher blood glucose in food-deprived rats (NP, 83.2 ± 2.1 mg/dL; HP, 91.2 ± 2.1 mg/dL; P = 0.046) and increased plasma insulin in fed pups receiving the postweaning NP diet (gestation diet × postweaning diet, P = 0.02). Increasing the protein concentration of the rat dams' diet during gestation, and to a lesser extent during lactation, and of the pups' diet after weaning influenced pup phenotype, including body weight, fat accumulation, food intake, and glucose tolerance at 6 wk of age. © 2016 American Society for Nutrition.

  11. Acute administration of cefepime lowers L-carnitine concentrations in early lactation stage rat milk.

    PubMed

    Ling, Binbing; Alcorn, Jane

    2008-07-01

    Our study investigated the potential for important in vivo drug-nutrient transport interactions at the lactating mammary gland using the L-carnitine transporter substrates, cefepime and L-carnitine, as proof-of-concept. On d 4 (n = 6/treatment) and d 10 (n = 6/treatment) of lactation, rats were administered cefepime (250 mg/h) or saline by continuous i.v. infusion (4 h). Serum and milk L-carnitine and cefepime concentrations were quantified by HPLC-UV. In whole mammary gland, organic cation/carnitine transporter (OCTN)1, OCTN2, OCTN3, amino acid transporter B(0,+) (ATB(0,+)), and L-carnitine transporter 2 expression were determined by quantitative RT-PCR and by western blot and immunohistochemistry when possible. Cefepime caused a 56% decrease in milk L-carnitine concentrations on lactation d 4 (P = 0.0048) but did not affect milk L-carnitine at lactation d 10 or serum L-carnitine concentrations at either time. The mean L-carnitine and cefepime milk:serum ratios (M/S) decreased from 9.1 +/- 0.4 to 4.9 +/- 0.6 (P < 0.0001) and 0.89 +/- 0.3 to 0.12 +/- 0.02 (P = 0.0473), respectively, between d 4 and d 10 of lactation. In both groups, OCTN2 (P < 0.0001), OCTN3 (P = 0.0039), and ATB(0,+) (P = 0.004) mRNA expression and OCTN2 protein (P < 0.0001) were higher in mammary glands at d 4 of lactation compared with d 10. Immunohistochemistry revealed OCTN1 and OCTN2 localization in the mammary alveolar epithelium and OCTN3 expression in the interstitial space and blood vessel endothelium. In conclusion, cefepime significantly decreased milk L-carnitine concentrations only at d 4 of lactation. Relative to d 10, enhanced expression of OCTN2 and ATB(0,+) in mammary glands at d 4 of lactation and higher M/S (L-carnitine and cefepime) suggests cefepime competes with L-carnitine for L-carnitine transporters expressed in the lactating mammary gland to adversely affect L-carnitine milk concentrations and these effects depend upon lactation stage.

  12. Pea Fiber and Wheat Bran Fiber Show Distinct Metabolic Profiles in Rats as Investigated by a 1H NMR-Based Metabolomic Approach

    PubMed Central

    Liu, Guangmang; Xiao, Liang; Fang, Tingting; Cai, Yimin; Jia, Gang; Zhao, Hua; Wang, Jing; Chen, Xiaoling; Wu, Caimei

    2014-01-01

    This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats. PMID:25541729

  13. The effects of pregnancy, lactation, and primiparity on object-in-place memory of female rats.

    PubMed

    Cost, Katherine Tombeau; Lobell, Thomas D; Williams-Yee, Zari N; Henderson, Sherryl; Dohanich, Gary

    2014-01-01

    Maternal physiology and behavior change dramatically over the course of pregnancy to nurture the fetus and prepare for motherhood. Further, the experience of motherhood itself continues to influence brain functioning well after birth, shaping behavior to promote the survival of offspring. To meet these goals, cognitive abilities, such as spatial memory and navigation, may be enhanced to facilitate foraging behavior. Existing studies on pregnant and maternal rats demonstrate enhanced cognitive function in specific spatial domains. We adopted a novel object-in-place task to assess the ability of female rats to integrate information about specific objects in specific locations, a critical element of foraging behavior. Using a longitudinal design to study changes in spatial memory across pregnancy and motherhood, an advantage in the object-in-place memory of primiparous female rats compared to nulliparous females emerged during lactation not during pregnancy, and was maintained after weaning at 42 days postpartum. This enhancement was not dependent on the non-mnemonic variables of anxiety or neophobia. Parity did not affect the type of learning strategy used by females to locate a cued escape platform on a dual-solution water maze task. Results indicate that the enhancement of object-in-place memory, a cognitive function that facilitates foraging, emerged after pregnancy during the postpartum period of lactation and persisted for several weeks after weaning of offspring. © 2013.

  14. Effects of Chronic Central Arginine Vasopressin (AVP) on Maternal Behavior in Chronically Stressed Rat Dams

    PubMed Central

    Coverdill, Alexander J.; McCarthy, Megan; Bridges, Robert S.; Nephew, Benjamin C.

    2012-01-01

    Exposure of mothers to chronic stressors during pregnancy or the postpartum period often leads to the development of depression, anxiety, or other related mood disorders. The adverse effects of mood disorders are often mediated through maternal behavior and recent work has identified arginine vasopressin (AVP) as a key neuropeptide hormone in the expression of maternal behavior in both rats and humans. Using an established rodent model that elicits behavioral and physiological responses similar to human mood disorders, this study tested the effectiveness of chronic AVP infusion as a novel treatment for the adverse effects of exposure to chronic social stress during lactation in rats. During early (day 3) and mid (day 10) lactation, AVP treatment significantly decreased the latency to initiate nursing and time spent retrieving pups, and increased pup grooming and total maternal care (sum of pup grooming and nursing). AVP treatment was also effective in decreasing maternal aggression and the average duration of aggressive bouts on day 3 of lactation. Central AVP may be an effective target for the development of treatments for enhancing maternal behavior in individuals exposed to chronic social stress. PMID:24349762

  15. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats

    PubMed Central

    Ruderman, Neil B.; Ross, Peter S.; Berger, Michael; Goodman, Michael N.

    1974-01-01

    1. The effects of starvation and diabetes on brain fuel metabolism were examined by measuring arteriovenous differences for glucose, lactate, acetoacetate and 3-hydroxybutyrate across the brains of anaesthetized fed, starved and diabetic rats. 2. In fed animals glucose represented the sole oxidative fuel of the brain. 3. After 48h of starvation, ketone-body concentrations were about 2mm and ketone-body uptake accounted for 25% of the calculated O2 consumption: the arteriovenous difference for glucose was not diminished, but lactate release was increased, suggesting inhibition of pyruvate oxidation. 4. In severe diabetic ketosis, induced by either streptozotocin or phlorrhizin (total blood ketone bodies >7mm), the uptake of ketone bodies was further increased and accounted for 45% of the brain's oxidative metabolism, and the arteriovenous difference for glucose was decreased by one-third. The arteriovenous difference for lactate was increased significantly in the phlorrhizin-treated rats. 5. Infusion of 3-hydroxybutyrate into starved rats caused marked increases in the arteriovenous differences for lactate and both ketone bodies. 6. To study the mechanisms of these changes, steady-state concentrations of intermediates and co-factors of the glycolytic pathway were determined in freeze-blown brain. 7. Starved rats had increased concentrations of acetyl-CoA. 8. Rats with diabetic ketosis had increased concentrations of fructose 6-phosphate and decreased concentrations of fructose 1,6-diphosphate, indicating an inhibition of phosphofructokinase. 9. The concentrations of acetyl-CoA, glycogen and citrate, a potent inhibitor of phosphofructokinase, were increased in the streptozotocin-treated rats. 10. The data suggest that cerebral glucose uptake is decreased in diabetic ketoacidosis owing to inhibition of phosphofructokinase as a result of the increase in brain citrate. 11. The inhibition of brain pyruvate oxidation in starvation and diabetes can be related to the accelerated rate of ketone-body metabolism; however, we found no correlation between the decrease in glucose uptake in the diabetic state and the arteriovenous difference for ketone bodies. 12. The data also suggest that the rates of acetoacetate and 3-hydroxybutyrate utilization by brain are governed by their concentrations in plasma. 13. The finding of very low concentrations of acetoacetate and 3-hydroxybutyrate in brain compared with plasma suggests that diffusion across the blood–brain barrier may be the rate-limiting step in their metabolism. PMID:4275704

  16. Influence of oxygen therapy on glucose-lactate metabolism after diffuse brain injury.

    PubMed

    Reinert, Michael; Schaller, Benoit; Widmer, Hans Rudolf; Seiler, Rolf; Bullock, Ross

    2004-08-01

    Severe traumatic brain injury (TBI) imposes a huge metabolic load on brain tissue, which can be summarized initially as a state of hypermetabolism and hyperglycolysis. In experiments O2 consumption has been shown to increase early after trauma, especially in the presence of high lactate levels and forced O2 availability. In recent clinical studies the effect of increasing O2 availability on brain metabolism has been analyzed. By their nature, however, clinical trauma models suffer from a heterogeneous injury distribution. The aim of this study was to analyze, in a standardized diffuse brain injury model, the effect of increasing the fraction of inspired O2 on brain glucose and lactate levels, and to compare this effect with the metabolism of the noninjured sham-operated brain. A diffuse severe TBI model developed by Foda and Maramarou, et al., in which a 420-g weight is dropped from a height of 2 m was used in this study. Forty-one male Wistar rats each weighing approximately 300 g were included. Anesthesized rats were monitored by placing a femoral arterial line for blood pressure and blood was drawn for a blood gas analysis. Two time periods were defined: Period A was defined as preinjury and Period B as postinjury. During Period B two levels of fraction of inspired oxygen (FiO2) were studied: air (FiO2 0.21) and oxygen (FiO2 1). Four groups were studied including sham-operated animals: air-air-sham (AAS); air-O2-sham (AOS); air-air-trauma (AAT); and air-O2-trauma (AOT). In six rats the effect of increasing the FiO2 on serum glucose and lactate was analyzed. During Period B lactate values in the brain determined using microdialysis were significantly lower (p < 0.05) in the AOT group than in the AAT group and glucose values in the brain determined using microdialysis were significantly higher (p < 0.04). No differences were demonstrated in the other groups. Increasing the FiO2 had no significant effect on the serum levels of glucose and lactate. Increasing the FiO2 influences dialysate glucose and lactate levels in injured brain tissue. Using an FiO2 of 1 influences brain metabolism in such a way that lactate is significantly reduced and glucose significantly increased. No changes in dialysate glucose and lactate values were found in the noninjured brain.

  17. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    PubMed

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  18. Iodine excess exposure during pregnancy and lactation impairs maternal thyroid function in rats

    PubMed Central

    Salgueiro, Rafael Barrera; Vitzel, Kaio Fernando; Pantaleão, Thiago; Corrêa da Costa, Vânia Maria

    2017-01-01

    Adequate maternal iodine consumption during pregnancy and lactation guarantees normal thyroid hormones (TH) production, which is crucial to the development of the fetus. Indeed, iodine deficiency is clearly related to maternal hypothyroidism and deleterious effects in the fetal development. Conversely, the effects of iodine excess (IE) consumption on maternal thyroid function are still controversial. Therefore, this study aimed to investigate the impact of IE exposure during pregnancy and lactation periods on maternal hypothalamus–pituitary–thyroid axis. IE-exposed dams presented reduced serum TH concentration and increased serum thyrotropin (TSH) levels. Moreover, maternal IE exposure increased the hypothalamic expression of Trh and the pituitary expression of Trhr, Dio2, Tsha and Tshb mRNA, while reduced the Gh mRNA content. Additionally, IE-exposed dams presented thyroid morphological alterations, increased thyroid oxidative stress and decreased expression of thyroid genes/proteins involved in TH synthesis, secretion and metabolism. Furthermore, Dio1 mRNA expression and D1 activity were reduced in the liver and the kidney of IE-treated animals. Finally, the mRNA expression of Slc5a5 and Slc26a4 were reduced in the mammary gland of IE-exposed rats. The latter results are in accordance with the reduction of prolactin expression and serum levels in IE-treated dams. In summary, our study indicates that the exposure to IE during pregnancy and lactation induces primary hypothyroidism in rat dams and impairs iodide transfer to the milk. PMID:28814477

  19. Metabolic and histologic effects of sodium pyruvate treatment in the rat after cortical contusion injury.

    PubMed

    Fukushima, Masamichi; Lee, Stefan M; Moro, Nobuhiro; Hovda, David A; Sutton, Richard L

    2009-07-01

    This study determined the effects of intraperitoneal sodium pyruvate (SP) treatment on the levels of circulating fuels and on cerebral microdialysis levels of glucose (MD(glc)), lactate (MD(lac)), and pyruvate (MD(pyr)), and the effects of SP treatment on neuropathology after left cortical contusion injury (CCI) in rats. SP injection (1000 mg/kg) 5 min after sham injury (Sham-SP) or CCI (CCI-SP) significantly increased arterial pyruvate (p < 0.005) and lactate (p < 0.001) compared to that of saline-treated rats with CCI (CCI-Sal). Serum glucose also increased significantly in CCI-SP compared to that in CCI-Sal rats (p < 0.05), but not in Sham-SP rats. MD(pyr) was not altered after CCI-Sal, whereas MD(lac) levels within the cerebral cortex significantly increased bilaterally (p < 0.05) and those for MD(glc) decreased bilaterally (p < 0.05). MD(pyr) levels increased significantly in both Sham-SP and CCI-SP rats (p < 0.05 vs. CCI-Sal) and were higher in left/injured cortex of the CCI-SP group (p < 0.05 vs. sham-SP). In CCI-SP rats the contralateral MD(lac) decreased below CCI-Sal levels (p < 0.05) and the ipsilateral MD(glc) levels exceeded those of CCI-Sal rats (p < 0.05). Rats with a single low (500 mg/kg) or high dose (1000 mg/kg) SP treatment had fewer damaged cortical cells 6 h post-CCI than did saline-treated rats (p < 0.05), but three hourly injections of SP (1000 mg/kg) were needed to significantly reduce contusion volume 2 weeks after CCI. Thus, a single intraperitoneal SP treatment increases circulating levels of three potential brain fuels, attenuates a CCI-induced reduction in extracellular glucose while increasing extracellular levels of pyruvate, but not lactate, and can attenuate cortical cell damage occurring within 6 h of injury. Enduring (2 week) neuronal protection was achieved only with multiple SP treatments within the first 2 h post-CCI, perhaps reflecting the need for additional fuel throughout the acute period of increased metabolic demands induced by CCI.

  20. Metabolic and Histologic Effects of Sodium Pyruvate Treatment in the Rat after Cortical Contusion Injury

    PubMed Central

    Fukushima, Masamichi; Lee, Stefan M.; Moro, Nobuhiro; Hovda, David A.

    2009-01-01

    Abstract This study determined the effects of intraperitoneal sodium pyruvate (SP) treatment on the levels of circulating fuels and on cerebral microdialysis levels of glucose (MDglc), lactate (MDlac), and pyruvate (MDpyr), and the effects of SP treatment on neuropathology after left cortical contusion injury (CCI) in rats. SP injection (1000 mg/kg) 5 min after sham injury (Sham-SP) or CCI (CCI-SP) significantly increased arterial pyruvate (p < 0.005) and lactate (p < 0.001) compared to that of saline-treated rats with CCI (CCI-Sal). Serum glucose also increased significantly in CCI-SP compared to that in CCI-Sal rats (p < 0.05), but not in Sham-SP rats. MDpyr was not altered after CCI-Sal, whereas MDlac levels within the cerebral cortex significantly increased bilaterally (p < 0.05) and those for MDglc decreased bilaterally (p < 0.05). MDpyr levels increased significantly in both Sham-SP and CCI-SP rats (p < 0.05 vs. CCI-Sal) and were higher in left/injured cortex of the CCI-SP group (p < 0.05 vs. sham-SP). In CCI-SP rats the contralateral MDlac decreased below CCI-Sal levels (p < 0.05) and the ipsilateral MDglc levels exceeded those of CCI-Sal rats (p < 0.05). Rats with a single low (500 mg/kg) or high dose (1000 mg/kg) SP treatment had fewer damaged cortical cells 6 h post-CCI than did saline-treated rats (p < 0.05), but three hourly injections of SP (1000 mg/kg) were needed to significantly reduce contusion volume 2 weeks after CCI. Thus, a single intraperitoneal SP treatment increases circulating levels of three potential brain fuels, attenuates a CCI-induced reduction in extracellular glucose while increasing extracellular levels of pyruvate, but not lactate, and can attenuate cortical cell damage occurring within 6 h of injury. Enduring (2 week) neuronal protection was achieved only with multiple SP treatments within the first 2 h post-CCI, perhaps reflecting the need for additional fuel throughout the acute period of increased metabolic demands induced by CCI. PMID:19594384

  1. Protective effects of vescalagin from pink wax apple [Syzygium samarangense (Blume) Merrill and Perry] fruit against methylglyoxal-induced inflammation and carbohydrate metabolic disorder in rats.

    PubMed

    Chang, Wen-Chang; Shen, Szu-Chuan; Wu, James Swi-Bea

    2013-07-24

    The unbalance of glucose metabolism in humans may cause the excessive formation of methylglyoxal (MG), which can react with various biomolecules to form the precursor of advanced glycation end products (AGEs). Vescalagin (VES) is an ellagitannin that alleviates insulin resistance in cell study. Results showed that VES reduced the value of oral glucose tolerance test, cardiovascular risk index, AGEs, and tumor necrosis factor-α contents while increasing C-peptide and d-lactate contents significantly in rats orally administered MG and VES together. The preventive effect of VES on MG-induced inflammation and carbohydrate metabolic disorder in rats was thus proved. On the basis of the experiment data, a mechanism, which involves the increase in d-lactate to retard AGE formation and the decrease in cytokine release to prevent β-cell damage, is proposed to explain the bioactivities of VES in antiglycation and in the alleviation of MG-induced carbohydrate metabolic disorder in rats.

  2. Effects of Maternal Behavior Induction and Pup Exposure on Neurogenesis in Adult, Virgin Female Rats

    PubMed Central

    Furuta, Miyako; Bridges, Robert S.

    2009-01-01

    The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure on neurogenesis in nulliparous rats were examined in order to determine whether maternal behavior itself, independent of pregnancy and lactation, might affect neurogenesis. Adult, nulliparous, Sprague-Dawley, female rats were exposed daily to foster young in order to induce maternal behavior. Following the induction of maternal behavior each maternal subject plus females that were exposed to pups for a comparable number of test days, but did not display maternal behavior, and subjects that had received no pup exposure were injected with bromodeoxyuridine (BrdU, 90 mg/kg, i.v.). Brain sections were double-labeled for BrdU and the neural marker, NeuN, to examine the proliferating cell population. Increases in the number of double-labeled cells were found in the maternal virgin brain when compared with the number of double-labeled cells present in non-maternal, pup-exposed nulliparous rats and in females not exposed to young. No changes were evident in the dentate gyrus of the hippocampus as a function of maternal behavior. These data indicate that in nulliparous female rats maternal behavior itself is associated with the stimulation of neurogenesis in the SVZ. PMID:19712726

  3. Ameliorative effects of Spirulina platensis against lead-induced nephrotoxicity in newborn rats: Modulation of oxidative stress and histopathological changes

    PubMed Central

    Gargouri, Manel; Soussi, Ahlem; Akrouti, Amel; Magné, Christian; El Feki, Abdelfattah

    2018-01-01

    Our experimental work was aimed at evaluating the safety and protective effects of dietary spirulina supplementation on the kidney of newborn rats, the offspring of lead contaminated lactating mothers. Female rats were randomly divided into four groups: group I (control) was given a normal diet, group II (positive control, S) received a diet enriched with spirulina, group III received only lead through drinking water (Pb), and group IV received both a diet enriched with spirulina and lead contaminated water (S Pb). The treatment of pregnant rats with lead administrated in drinking water, from the 5th day of pregnancy until day 14 after delivery, induced an increased level of renal lipid peroxidation, protein carbonyl, hydrogen peroxide and advanced oxidation protein product, a decreased renal content of glutathione and antioxidant enzyme activities such as superoxide dismutase, catalase and glutathione peroxidase in newborns. A statistically significant increase of renal DNA, mRNA, hematological parameters as well as in plasma urea and creatinine serum levels and lactate dehydrogenase was seen in pups, while those of uric acid declined. Interestingly, these biochemical modifications were accompanied by a significant decrease of lactate dehydrogenase in kidney, plasma alkaline phosphatase and gamma glutamyl-transpeptidase levels, urinary levels of creatinine and urea. Conversely, supplementation of lead-treated mother's with spirulina alleviated hematotoxicity induced by lead as evidenced, by restoring the biochemical markers cited above to near normal levels. Nevertheless, the distorted histoarchitecture in rat kidney attenuated following spirulina supplementation. It can be then concluded that spirulina is an important protective source against kidney impairments. PMID:29743860

  4. Metabolism and disposition of bisphenol A in female rats.

    PubMed

    Snyder, R W; Maness, S C; Gaido, K W; Welsch, F; Sumner, S C; Fennell, T R

    2000-11-01

    Bisphenol A (BPA), which is used in the manufacture of polycarbonates, elicits weak estrogenic activity in in vitro and in vivo test systems. The objectives of this study were to compare the patterns of disposition of radioactivity in adult female F-344 and CD rats after oral administration of (14)C BPA (100 mg/kg), to isolate the glucuronide of BPA and to assess its estrogenic activity in vitro, and to evaluate the transfer of radioactivity to pups from lactating dams administered (14)C BPA. Over 6 days, F-344 rats excreted more radioactivity in urine than CD rats. The major metabolite in urine was identified as bisphenol A glucuronide (BPA gluc) by incubation with beta-glucuronidase and (1)H and (13)C NMR spectroscopy. In lactating CD rats administered (14)C BPA (100 mg/kg) by gavage, only a small fraction of the label was found in milk, with 0.95 +/- 0.66, 0.63 +/- 0.13, and 0.26 +/- 0.10 microg equiv/ml (mean +/- SD) from dams collected 1, 8, and 26 h after dosing, respectively. Radioactivity in pup carcasses indicated exposure in the range of microgram equivalents per kilogram; those values ranged from 44.3 +/- 24.4 for pups separated from their lactating dams at 2 h to 78.4 +/- 10.9 at 24 h. BPA gluc was the prominent metabolite in milk and plasma. In test systems for activation of in vitro estrogen receptors alpha and beta, BPA gluc did not show appreciable efficacy at concentrations up to 0.03 mM, indicating that metabolism via glucuronidation is a detoxication reaction. Copyright 2000 Academic Press.

  5. Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes

    PubMed Central

    Neumann, I D; Johnstone, H A; Hatzinger, M; Liebsch, G; Shipston, M; Russell, J A; Landgraf, R; Douglas, A J

    1998-01-01

    The responsiveness of the rat hypothalamo-pituitary-adrenal (HPA) axis and hypothalamo-neurohypophysial system (HNS) to emotional (elevated plus-maze) and physical (forced swimming) stressors and to administration of synthetic corticotrophin-releasing hormone (CRH) was investigated during pregnancy and lactation. In addition to pregnancy-related adaptations at the adenohypophysial level, behavioural responses accompanying the neuroendocrine changes were studied. Whereas basal (a.m.) plasma corticosterone, but not corticotrophin (adrenocorticotrophic hormone; ACTH), levels were increased on the last day (i.e. on day 22) of pregnancy, the stress-induced rise in both plasma hormone concentrations was increasingly attenuated with the progression of pregnancy beginning on day 15 and reaching a minimum on day 21 compared with virgin control rats. A similar attenuation of responses to both emotional and physical stressors was found in lactating rats. Although the basal plasma oxytocin concentration was elevated in late pregnancy, the stress-induced rise in oxytocin secretion was slightly lower in day 21 pregnant rats. In contrast to vasopressin, oxytocin secretion was increased by forced swimming in virgin and early pregnant rats indicating a differential stress response of these neurohypophysial hormones. The blunted HPA response to stressful stimuli is partly due to alterations at the level of corticotrophs in the adenohypophysis, as ACTH secretion in response to CRH in vivo (40 ng kg−1, i.v.) was reduced with the progression of pregnancy and during lactation. In vitro measurement of cAMP levels in pituitary segments demonstrated reduced basal levels of cAMP and a lower increase after CRH stimulation (10 nm, 10 min) in day 21 pregnant compared with virgin rats, further indicating reduced corticotroph responsiveness to CRH in pregnancy. The reduced pituitary response to CRH in late pregnancy is likely to be a consequence of a reduction in CRH receptor binding as revealed by receptor autoradiography. [125I] CRH binding in the anterior pituitary was significantly reduced in day 11, 17 and 22 pregnant rats compared with virgin controls. Anxiety-related behaviour of the animals as revealed by the time on and entries into the open arms of the elevated plus-maze was different between virgin and pregnant rats with decreased number of entries indicating increased anxiety with the progression of pregnancy (except on pregnancy day 18). The emotional behaviour, however, was not correlated with the neuroendocrine responses. The results indicate that the reduced response of the HPA axis to stressors described previously during lactation is already manifested around day 15 of pregnancy in the rat and involves physiological adaptations at the adenohypophysial level. However, alterations in stressor perception at higher brain levels with the progression of pregnancy may also be involved. PMID:9490853

  6. Evaluation of anaerobic threshold in non-pregnant and pregnant rats.

    PubMed

    Netto, Aline Oliveira; Macedo, Nathália C D; Gallego, Franciane Q; Sinzato, Yuri K; Volpato, Gustavo T; Damasceno, Débora C

    2017-01-01

    Several studies present different methodologies and results about intensity exercise, and many of them are performed in male rats. However, the impact of different type, intensity, frequency and duration of exercise on female rats needs more investigation. From the analysis of blood lactate concentration during lactate minimum test (LacMin) in the swimming exercise, the anaerobic threshold (AT) was identified, which parameter is defined as the transition point between aerobic and anaerobic metabolism. LacMin test is considered a good indicator of aerobic conditioning and has been used in prescription of training in different exercise modalities. However, there is no evidence of LacMin test in female rats. The objective was to determine AT in non-pregnant and pregnant Wistar rats. The LacMin test was performed and AT defined for mild exercise intensity was from a load equivalent to 1% of body weight (bw), moderate exercise as carrying 4% bw and severe intensity as carrying 7% bw. In pregnant rats, the AT was reached at a lower loading from 5.0% to 5.5% bw, while in non-pregnant the load was from 5.5% to 6.0% bw. Thus, this study was effective to identify exercise intensities in pregnant and non-pregnant rats using anaerobic threshold by LacMin test.

  7. Hindbrain lactate regulates preoptic gonadotropin-releasing hormone (GnRH) neuron GnRH-I protein but not AMPK responses to hypoglycemia in the steroid-primed ovariectomized female rat.

    PubMed

    Shrestha, P K; Briski, K P

    2015-07-09

    Steroid positive-feedback activation of the gonadotropin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) neuroendocrine axis propagates the pre ovulatory LH surge, a crucial component of female reproduction. Our work shows that this key event is restrained by inhibitory metabolic input from hindbrain A2 noradrenergic neurons. GnRH neurons express the ultra-sensitive energy sensor adenosine 5'-monophosphate-activated protein kinase (AMPK); here, we investigated the hypothesis that GnRH nerve cell AMPK and peptide neurotransmitter responses to insulin-induced hypoglycemia are controlled by hindbrain lack of the oxidizable glycolytic end-product L-lactate. Data show that hypoglycemic inhibition of LH release in steroid-primed ovariectomized female rats was reversed by coincident caudal hindbrain lactate infusion. Western blot analyses of laser-microdissected A2 neurons demonstrate hypoglycemic augmentation [Fos, estrogen receptor-beta (ER-β), phosphoAMPK (pAMPK)] and inhibition (dopamine-beta-hydroxylase, GLUT3, MCT2) of protein expression in these cells, responses that were normalized by insulin plus lactate treatment. Hypoglycemia diminished rostral preoptic GnRH nerve cell GnRH-I protein and pAMPK content; the former, but not the latter response was reversed by lactate. Results implicate caudal hindbrain lactoprivic signaling in hypoglycemia-induced suppression of the LH surge, demonstrating that lactate repletion of that site reverses decrements in A2 catecholamine biosynthetic enzyme and GnRH neuropeptide precursor protein expression. Lack of effect of lactate on hypoglycemic patterns of GnRH AMPK activity suggests that this sensor is uninvolved in metabolic-inhibition of positive-feedback-stimulated hypophysiotropic signaling to pituitary gonadotropes. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats.

    PubMed

    Gregory, Nicholas S; Whitley, Phillip E; Sluka, Kathleen A

    2015-01-01

    Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X) and acid sensing ion channels (ASICs) on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive) or more than the sum of individual effects (synergistic) is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP) alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm), lactate (10mM), and acidic pH (pH 6.0) produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol), on the other hand, showed no enhanced effects when combined with lactate (10mM) or acidic pH (pH 6.0), i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception.

  9. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats

    PubMed Central

    Gregory, Nicholas S.; Whitley, Phillip E.; Sluka, Kathleen A.

    2015-01-01

    Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X) and acid sensing ion channels (ASICs) on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive) or more than the sum of individual effects (synergistic) is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP) alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm), lactate (10mM), and acidic pH (pH 6.0) produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol), on the other hand, showed no enhanced effects when combined with lactate (10mM) or acidic pH (pH 6.0), i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception. PMID:26378796

  10. DISTRIBUTION OF 14C-ATRAZINE FOLLOWING AN ACUTE LACTATIONAL EXPOSURE IN THE WISTAR RAT.

    EPA Science Inventory

    The purpose of the present study was to examine the distribution of atrazine in the lactating dam and suckling neonate following an acute exposure to either 2 or 4 mg/kg 14C-atrazine (14C-ATR) by gavage. 14C-ATR was administered to the nursing dam on postnatal day 3 by oral gavag...

  11. Choline deficiency impairs intestinal lipid metabolism in the lactating rat.

    PubMed

    da Silva, Robin P; Kelly, Karen B; Lewis, Erin D; Leonard, Kelly-Ann; Goruk, Sue; Curtis, Jonathan M; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Jacobs, René L

    2015-10-01

    Choline is a precursor to phosphatidylcholine (PC), a structural molecule in cellular membranes that is crucial for cell growth and function. PC is also required for the secretion of lipoprotein particles from liver and intestine. Choline requirements are increased during lactation when maternal choline is supplied to the offspring through breast milk. To investigate the effect of dietary choline on intestinal lipid metabolism during lactation, choline-supplemented (CS), phosphatidylcholine-supplemented (PCS) or choline-deficient (CD) diets were fed to dams during the suckling period. CD dams had lower plasma triacylglycerol, cholesterol and apoB in the fasted state and following a fat-challenge (P < .05). There was a higher content of neutral lipids and lower content of PC in the intestine of CD dams, compared with CS and PCS fed animals (P < .05). In addition, there was lower (P < .05) villus height in CD dams, which indicated a reduced absorptive surface area in the intestine. Choline is critical for the absorption of fat in lactating rats and choline deficiency alters intestinal morphology and impairs chylomicron secretion by limiting the supply of PC. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Glutamate Impairs Mitochondria Aerobic Respiration Capacity and Enhances Glycolysis in Cultured Rat Astrocytes.

    PubMed

    Yan, Xu; Shi, Zhong Fang; Xu, Li Xin; Li, Jia Xin; Wu, Min; Wang, Xiao Xuan; Jia, Mei; Dong, Li Ping; Yang, Shao Hua; Yuan, Fang

    2017-01-01

    To study the effect of glutamate on metabolism, shifts in glycolysis and lactate release in rat astrocytes. After 10 days, secondary cultured astrocytes were treated with 1 mmol/L glutamate for 1 h, and the oxygen consumption rates (OCR) and extra cellular acidification rate (ECAR) was analyzed using a Seahorse XF 24 Extracellular Flux Analyzer. Cell viability was then evaluated by MTT assay. Moreover, changes in extracellular lactate concentration induced by glutamate were tested with a lactate detection kit. Compared with the control group, treatment with 1 mmol/L glutamate decreased the astrocytes' maximal respiration and spare respiratory capacity but increased their glycolytic capacity and glycolytic reserve. Further analysis found that 1-h treatment with different concentrations of glutamate (0.1-1 mmol/L) increased lactate release from astrocytes, however the cell viability was not affected by the glutamate treatment. The current study provided direct evidence that exogenous glutamate treatment impaired the mitochondrial respiration capacity of astrocytes and enhanced aerobic glycolysis, which could be involved in glutamate injury or protection mechanisms in response to neurological disorders. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  13. Hyperbaric oxygen therapy may overcome nitric oxide blockage during cyanide intoxication.

    PubMed

    Polzik, Peter; Hansen, Marco Bo; Olsen, Niels Vidiendal; Grøndal, Olav; Hyldegaard, Ole

    2017-01-01

    To determine the effects of a blockade of nitric oxide (NO) synthesis on hyperbaric oxygen (HBO₂) therapy during cyanide (CN) intoxication. 39 anesthetized female Sprague-Dawley rats were exposed to CN intoxication (5.4 mg/kg intra-arterially) with or without previous nitric oxide synthase (NOS) inhibition by L-NG-nitroarginine methyl ester (L-NAME) injection (40 mg/kg intraperitoneally). Subsequently, either HBO₂ therapy (284 kPa/90 minutes), normobaric oxygen therapy (100% oxygen/90 minutes) or nothing was administered. Intracerebral microdialysis was used to measure the interstitial brain concentration of lactate, glucose, glycerol and lactate/pyruvate ratios. L-NAME potentiated CN intoxication by higher maximum and prolonged lactate (in mM: 0. 5 ± 0.3 vs. 0.7 ± 0.4, P ⟨ 0.005) concentrations compared with solely CN-intoxicated rats. The same trend was found for mean glucose, glycerol and lactate/pyruvate ratio levels. During HBO₂ treatment a sustained reduction occurred in mean lactate levels (in mM: 0.5 ± 0.5 vs. 0.7 ± 0.4, P ⟨ 0.01) regardless of NOS blockade by L-NAME. The same trend was found for mean glucose and glycerol levels. The results suggest that blocking NOS using L-NAME can worsen acute CN intoxication. HBO₂ treatment can partially overcome this block and continue to ameliorate CN intoxication.

  14. Effect of age and lactose on sup 67 Cu utilization in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, J.; Dowdy, R.; Michelmann, E.

    1991-03-15

    Young and old male Fischer 344 rats were fed a control diet or a lactose diet. After four weeks rats were gavaged with approximately 6.24 uCl {sup 67}Cu, placed in metabolism cages, and fed their respective diets for an additional two weeks. Daily whole body, urine and fecal radioactivity measurements were made. Rats were killed on day 42 and livers removed for radioactivity determination. Diet had no effect on whole body retention of {sup 67}Cu in the old rats; approximately 20% of the initial dose was retained by the end of the study. In the young rats, however, lactose appearedmore » to enhance initial {sup 67}Cu retention; by day three young control rats retained only 30% of the initial dose, while the young lactose rats retained about 50%. Retention of {sup 67}Cu at the end of the study was approximately 15% and 20% for young control and young lactose rats, respectively. During the first four days post dosing, cumulative fecal {sup 67}Cu excretion was approximately 83% for young control rats and 69% for young lactose rats indicating enhancement of {sup 67}Cu absorption by lactose in the young rats. For old rats cumulative {sup 67}Cu excretion in feces was about 50% regardless of diet. Cumulative urinary {sup 67}Cu excretion was approximately 6% and 8% for young control and lactose rats, respectively vs about 11% for old rats. {sup 67}Cu retention in liver was greater in old rats regardless of diet. The early increase in {sup 67}Cu absorption after a bolus dose may have therapeutic implications. In light of current concern regarding Cu-carbohydrate interactions, the apparent enhancement Cu retention by lactose in young rats deserves further attention.« less

  15. Effect of Lactation on myocardial vulnerability to ischemic insult in rats.

    PubMed

    Askari, Sahar; Imani, Alireza; Sadeghipour, Hamidreza; Faghihi, Mahdieh; Edalatyzadeh, Zohreh; Choopani, Samira; Karimi, Nasser; Fatima, Sulail

    2017-05-01

    Cardiovascular diseases are the leading cause of mortality and long-term disability worldwide. Various studies have suggested a protective effect of lactation in reducing the risk of cardiovascular diseases. This study was designed to assess the effects of pregnancy and lactation on the vulnerability of the myocardium to an ischemic insult. Eighteen female rats were randomly divided into three groups: ischemia-reperfusion (IR), in which the hearts of virgin rats underwent IR (n = 6); lactating, in which the rats nursed their pups for 3 weeks and the maternal hearts were then submitted to IR (n = 6); and non-lactating, in which the pups were separated after birth and the maternal hearts were submitted to IR (n = 6). Outcome measures included heart rate (HR), left ventricular developed pressure (LVDP), rate pressure product (RPP), ratio of the infarct size to the area at risk (IS/AAR %), and ventricular arrhythmias - premature ventricular contraction (PVC) and ventricular tachycardia (VT). The IS/AAR was markedly decreased in the lactating group when compared with the non-lactating group (13.2 ± 2.5 versus 39.7 ± 3.5, p < 0.001) and the IR group (13.2 ± 2.5 versus 34.0 ± 4.7, p < 0.05). The evaluation of IR-induced ventricular arrhythmias indicated that the number of compound PVCs during ischemia, and the number and duration of VTs during ischemia and in the first 5 minutes of reperfusion in the non-lactating group were significantly (p < 0.05) higher than those in the lactating and IR groups. Lactation induced early-onset cardioprotective effects, while rats that were not allowed to nurse their pups were more susceptible to myocardial IR injury. As doenças cardiovasculares são a principal causa de mortalidade e invalidez a longo prazo a nível mundial. Diversos estudos têm sugerido um efeito protetor da lactação na redução do risco para doenças cardiovasculares. Este estudo foi desenvolvido para avaliar os efeitos da gestação e da lactação sobre a vulnerabilidade do miocárdio ao insulto isquêmico. Dezoito ratas foram divididas aleatoriamente em três grupos: isquemia-reperfusão (IR), no qual os corações de ratas virgens foram submetidos à IR (n = 6); lactantes, no qual as ratas amamentaram seus filhotes por 3 semanas e os corações maternos foram, em seguida, submetidos à IR (n = 6); e não lactantes, no qual os filhotes foram separados após o nascimento e os corações maternos foram submetidos à IR (n = 6). As medidas de desfecho incluíram frequência cardíaca (FC), pressão desenvolvida no ventrículo esquerdo (PDVE), duplo produto (DP), razão do tamanho do infarto sobre a área sob risco (TI/ASR %) e arritmias ventriculares - contração ventricular prematura (CVP) e taquicardia ventricular (TV). O TI/ASR foi substancialmente menor no grupo de lactantes quando comparado ao grupo de não lactantes (13,2 ± 2,5 versus 39,7 ± 3,5, p < 0,001) e ao grupo IR (13,2 ± 2,5 versus 34,0 ± 4,7, p < 0,05). A avaliação das arritmias ventriculares induzidas pela IR indicou que o número de CVPs compostas na isquemia, e o número e a duração das TVs na isquemia e nos primeiros 5 minutos de reperfusão no grupo de não lactantes foram significativamente (p < 0,05) mais elevados do que os encontrados nos grupos IR e de lactantes. A lactação induziu o aparecimento precoce de efeitos cardioprotetores, enquanto ratas que não foram permitidas a amamentar seus filhotes se mostraram mais suscetíveis à lesão miocárdica por IR.

  16. ATRAZINE-INDUCED REPRODUCTIVE TRACT ALTERATIONS AFTER TRANSPLACENTAL AND LACTATIONAL EXPOSURE IN LONG-EVANS RAT PUPS

    EPA Science Inventory

    Studies have shown that early postnatal exposure to the common herbicide atrazine (ATR) will delay preputial separation (PPS) in Wistar rats and increase incidence of prostate inflammation in adults. To evaluate ATR exposure parameters required for pubertal delays (PPS), we used...

  17. ATRAZINE DISPOSITION IN PREGNANT AND LACTATING LONG-EVANS RATS

    EPA Science Inventory

    Atrazine (ATR) is a widely used herbicide shown to delay early mammary development in female offspring of gestationally exposed rats. The effects of ATR can be induced by in utero exposure and/or suckling from a dam exposed during late pregnancy, but ATR is reported to have a hal...

  18. ATRAZINE-INDUCED REPRODUCTIVE TRACT ALTERATIONS AFTER TRANSPLACENTAL AND LACTATIONAL EXPOSURE IN MALE LONG-EVANS RATS.

    EPA Science Inventory

    Studies showed that early postnatal exposure to the herbicide atrazine (ATR) delayed preputial separation (PPS) and increased incidence of prostate inflammation in adult Wistar rats. A cross-fostering paradigm was used in this study to determine if gestational exposure to ATR wou...

  19. TRANSGENERATIONAL (IN UTERO/LACTATIONAL) EXPOSURE PROTOCOL TO INVESTIGATE THE EFFECTS OF ENDOCRINE DISRUPTING COMPOUNDS (EDCS) IN RATS

    EPA Science Inventory

    This protocol is designed to evaluate the effects of Endocrine Disrupting Compounds (EDCs) through fetal (transplacental) and/or neonatal (via the dam's milk) exposure during the critical periods of reproductive organogenesis in the rat. Continued direct exposure to the F1 pups...

  20. Cytotoxic effect of fenitrothion and lambda-cyhalothrin mixture on lipid peroxidation and antioxidant defense system in rat kidney.

    PubMed

    El-Demerdash, Fatma M

    2012-01-01

    A mixture of pyrethroids plus organophosphates was assessed for their potential effects on lipid peroxidation, the antioxidant defense system and lactate dehydrogenase (LDH) in rat kidney in vitro. Various insecticide concentrations were incubated with kidney homogenate at 37°C for different incubation times. Treatment with fenitothion (FNT) plus lambda-cyhalothrin (LC) caused a significant induction (P < 0.05) in thiobarbituric acid reactive substances (TBARS), which might be associated to decreased levels of reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) activities and protein content in rat kidney. However, a significant induction of lactate dehydrogenase (LDH) activity was observed. The effect was concentration and time dependent. It can be concluded that depletion of GSH might indicate that reactive oxygen species (ROS) could be involved in the toxic effects of FNT plus LC which lead to marked perturbations in antioxidant defense system.

  1. Periconceptional Heat Stress of Holstein Dams Is Associated with Differences in Daughter Milk Production during Their First Lactation.

    PubMed

    Brown, Britni M; Stallings, Jon W; Clay, John S; Rhoads, Michelle L

    2016-01-01

    The fertility of lactating Holstein cows is severely reduced during periods of heat stress. Despite this reduction in fertility, however, some inseminations conducted during heat stress result in successful pregnancies from which heifer calves are born. Many of these heifer calves are retained and raised to enter the milking herd as replacement animals. Heat stress experienced by these females around the time they were conceived may confer long-lasting effects that alter subsequent milk production capacity. The objective of this study was to examine the relationship between periconceptional heat stress and subsequent milk production of primiparous cows. National Dairy Herd Improvement Association data was obtained from Dairy Records Management Systems. Records included Holstein cows that had completed at least one lactation in one of three states with large populations of dairy cattle and which are known for having hot, humid summers: Georgia, Florida or Texas. Dates of conception were calculated by subtracting 276 d from the recorded birth date of each individual cow. Records for cows conceived within the months of June, July, and August were retained as heat stress-conceived (HSC) cows (n = 94,440); cows conceived within the months of December, January, and February were retained as thermoneutral-conceived (TNC) contemporaries (n = 141,365). In order to account for the effects of environmental conditions on total milk production for a given lactation, cows were blocked by season of calving (winter, spring, summer or fall). Adjusted 305-day mature-equivalent milk production was evaluated with a mixed model ANOVA using SAS, in which random effects were used to account for variability between herds. Of the cows that calved in the summer, fall and winter, TNC cows had higher milk yield than the HSC cows in all states. Interestingly, the cows that calved in the spring presented a unique relationship, with HSC cows producing more milk. Overall however, heat stress at the time of conception is associated with lower milk production during the first lactation. While this association does not prove cause and effect, it does provide justification for additional investigation into whether heat stress around the time of conception results in long-term, detrimental consequences for the conceptus.

  2. Periconceptional Heat Stress of Holstein Dams Is Associated with Differences in Daughter Milk Production during Their First Lactation

    PubMed Central

    Brown, Britni M.; Stallings, Jon W.; Clay, John S.; Rhoads, Michelle L.

    2016-01-01

    The fertility of lactating Holstein cows is severely reduced during periods of heat stress. Despite this reduction in fertility, however, some inseminations conducted during heat stress result in successful pregnancies from which heifer calves are born. Many of these heifer calves are retained and raised to enter the milking herd as replacement animals. Heat stress experienced by these females around the time they were conceived may confer long-lasting effects that alter subsequent milk production capacity. The objective of this study was to examine the relationship between periconceptional heat stress and subsequent milk production of primiparous cows. National Dairy Herd Improvement Association data was obtained from Dairy Records Management Systems. Records included Holstein cows that had completed at least one lactation in one of three states with large populations of dairy cattle and which are known for having hot, humid summers: Georgia, Florida or Texas. Dates of conception were calculated by subtracting 276 d from the recorded birth date of each individual cow. Records for cows conceived within the months of June, July, and August were retained as heat stress-conceived (HSC) cows (n = 94,440); cows conceived within the months of December, January, and February were retained as thermoneutral-conceived (TNC) contemporaries (n = 141,365). In order to account for the effects of environmental conditions on total milk production for a given lactation, cows were blocked by season of calving (winter, spring, summer or fall). Adjusted 305-day mature-equivalent milk production was evaluated with a mixed model ANOVA using SAS, in which random effects were used to account for variability between herds. Of the cows that calved in the summer, fall and winter, TNC cows had higher milk yield than the HSC cows in all states. Interestingly, the cows that calved in the spring presented a unique relationship, with HSC cows producing more milk. Overall however, heat stress at the time of conception is associated with lower milk production during the first lactation. While this association does not prove cause and effect, it does provide justification for additional investigation into whether heat stress around the time of conception results in long-term, detrimental consequences for the conceptus. PMID:26840076

  3. Reproductive studies with the anti-inflammatory agent, piroxicam: modification of classical protocols.

    PubMed

    Perraud, J; Stadler, J; Kessedjian, M J; Monro, A M

    1984-02-14

    Reproductive toxicology studies were conducted in rabbits and rats given piroxicam, a non-steroidal anti-inflammatory agent (NSAI), orally at 2, 5 and 10 mg/kg/day. In teratology studies there was neither drug-related embryotoxicity nor teratogenicity. As piroxicam, like other NSAI, affects parturition in rats and leads to a progressive toxicity in lactating females, standard protocols were modified: dams of the female fertility study were treated from 2 weeks prior to mating until day 6 of gestation and females of the post-natal toxicity study were treated from parturition until day 12 of lactation. No other adverse effects on reproduction, fertility and postnatal development were observed.

  4. [NUCLEAR STRUCTURE IN THE SECRETORY CELLS OF MAMMARY GLANDS IN LACTATING AND NON-LACTATING RATS].

    PubMed

    Tyutina, K V; Skopichev, V G; Bogolyubov, D S; Bogolyubova, I O

    2016-01-01

    The features of structural and functional organization of the main nuclear compartments and distribution of their key molecular components (chromatin-remodeling protein ATRX, RNA polymerase I and II, and the splicing factor SC35) has been studied in the nuclei of mammary gland cells at different functional states. No significant differences between the nuclei of the cells in the lactating and non-lactating mammary glands have been revealed at the ultrastructural level. At the same time, photometric analysis has revealed higher intensity of nucleoplasmic immunofluorescent staining of mammary glands in the lactating animals when antibodies against the proteins ATRX and SC35 were used. Apparently, this observation reflects the changes of the structural and functional status of chromatin as well as the redistribution of splicing factors between the sites of their deposition and transcription.

  5. Blood cell transcriptomic-based early biomarkers of adverse programming effects of gestational calorie restriction and their reversibility by leptin supplementation

    PubMed Central

    Konieczna, Jadwiga; Sánchez, Juana; Palou, Mariona; Picó, Catalina; Palou, Andreu

    2015-01-01

    The challenge of preventing major chronic diseases requires reliable, early biomarkers. Gestational mild undernutrition in rats is enough to program the offspring to develop later pathologies; the intake of leptin, a breastmilk component, during lactation may reverse these programming effects. We used these models to identify, in peripheral blood mononuclear cells (PBMCs), transcriptomic-based early biomarkers of programmed susceptibility to later disorders, and explored their response to neonatal leptin intake. Microarray analysis was performed in PBMCs from the offspring of control and 20% gestational calorie-restricted dams (CR), and CR-rats supplemented with physiological doses of leptin throughout lactation. Notably, leptin supplementation normalised 218 of the 224 mRNA-levels identified in PBMCs associated to undernutrition during pregnancy. These markers may be useful for early identification and subsequent monitoring of individuals who are at risk of later diseases and would specifically benefit from the intake of appropriate amounts of leptin during lactation. PMID:25766068

  6. [Use of diet containing yeast protein (Saccharomyces cerevisiae): effects upon pregnancy, lactation and development in rats].

    PubMed

    de Oliveira, S R; Bion, F M; Lopes, S M; Metri, A C

    2001-03-01

    The nutritive value of manioc flour (Manihot esculenta) enriched with yeast protein (Saccharomyces cerevisiae) added to a food mixture most frequently consumed by low-income populations was assessed in female Wistar rats (n = 30; 100-120 days old). Animals were divided into three groups, mated and had free access to diets and water. Diets were as follows: beans, rice, yeast-enriched manioc flour (BRYMF17); beans, rice, manioc flour (BRMF13); casein (17% protein) (CAS17). Body weight gains and food consumption were recorded during pregnancy and lactation. At the parturition, the number of pups per litter was recorded and offspring were uniformly distributed (7 pups per litter). Weight gains were determined until weaning (21 days). At weaning two youngs were selected from each litter and individually housed. Weight gains, food consumption and the length of the tail were measured until rats were 70 days old. Rats had their liver and brain removed for protein determination and wet and relative weights. Liver samples were histologically examined. Blood hemoglobin, hematocrit and proteins, as well as the Food Efficiency Ratio (FER), were determined. ANOVA and Tukey's test were used. The experimental diet had not significant effect on pregnant and lactating dams. Values for the investigated parameters were higher in experimental youngs than in their controls and lower than in the standard group. This yeast protein-enriched manioc flour proved to be valid in terms of dietary supplementation.

  7. Enzyme dehydration using Microglassification™ preserves the protein's structure and function.

    PubMed

    Aniket; Gaul, David A; Bitterfield, Deborah L; Su, Jonathan T; Li, Victoria M; Singh, Ishita; Morton, Jackson; Needham, David

    2015-02-01

    Controlled enzyme dehydration using a new processing technique of Microglassification™ has been investigated. Aqueous solution microdroplets of lysozyme, α-chymotrypsin, catalase, and horseradish peroxidase were dehydrated in n-pentanol, n-octanol, n-decanol, triacetin, or butyl lactate, and changes in their structure and function were analyzed upon rehydration. Water solubility and microdroplet dissolution rate in each solvent decreased in the order: butyl lactate > n-pentanol > triacetin > n-octanol > n-decanol. Enzymes Microglassified™ in n-pentanol retained higher activity (93%-98%) than n-octanol (78%-85%) or n-decanol (75%-89%), whereas those Microglassified™ in triacetin (36%-75%) and butyl lactate (48%-79%) retained markedly lower activity. FTIR spectroscopy analyses showed α-helix to β-sheet transformation for all enzymes upon Microglassification™, reflecting a loss of bound water in the dried state; however, the enzymes reverted to native-like conformation upon rehydration. Accelerated stressed-storage tests using Microglassified™ lysozyme showed a significant (p < 0.01) decrease in enzymatic activity from 46,560 ± 2736 to 31,060 ± 4327 units/mg after 3 months of incubation; however, it was comparable to the activity of the lyophilized formulation throughout the test period. These results establish Microglassification™ as a viable technique for enzyme preservation without affecting its structure or function. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Efferent projections of NPY expressing neurons of the dorsomedial hypothalamus in chronic hyperphagic models

    PubMed Central

    Lee, Shin J.; Kirigiti, Melissa; Lindsley, Sarah R; Loche, Alberto; Madden, Christopher J.; Morrison, Shaun F.; Smith, M Susan; Grove, Kevin L.

    2013-01-01

    The dorsomedial hypothalamus (DMH) has long been implicated in feeding behavior and thermogenesis. The DMH contains orexigenic neuropeptide Y (NPY) neurons, but the role of these neurons in the control of energy homeostasis is not well understood. NPY expression in the DMH is low under normal conditions in adult rodents, but is significantly increased during chronic hyperphagic conditions such as lactation and diet-induced obesity (DIO). To better understand the role of DMH-NPY neurons, we characterized the efferent projections of DMH-NPY neurons using the anterograde tracer biotinylated dextran amine (BDA) in lactating rats and DIO mice. In both models, BDA and NPY co-labeled fibers were mainly limited to the hypothalamus including the paraventricular nucleus of the hypothalamus (PVH), lateral hypothalamus/perifornical area (LH/PFA), and anteroventral periventricular nucleus (AVPV). Specifically in lactating rats, BDA and NPY co-labeled axonal swellings were in close apposition to CART expressing neurons in the PVH and AVPV. Although the DMH neurons project to the rostral raphe pallidus (rRPa) these projections did not contain NPY immunoreactivity in either the lactating rat or DIO mouse. Instead, the majority of BDA-labeled fibers in the rRPa were orexin positive. Furthermore, DMH-NPY projections were not observed within the nucleus of the solitary tract (NTS), another brainstem site critical for the regulation of sympathetic outflow. The present data suggest that NPY expression in the DMH during chronic hyperphagic conditions plays important roles in feeding behavior and thermogenesis by modulating neuronal functions within the hypothalamus, but not in the brainstem. PMID:23172177

  9. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate.

    PubMed

    Halestrap, A P; Denton, R M

    1974-02-01

    alpha-Cyano-4-hydroxycinnamate greatly inhibits the transport of pyruvate but not that of acetate or butyrate in liver mitochondria and erythrocytes. In the latter, lactate uptake is also inhibited. It is concluded that a specific carrier is involved in membrane transport of pyruvate and that the plasma-membrane carrier may also be involved in lactate transport.

  10. Regulation of Brain Glucose Metabolic Patterns by Protein Phosphorlyation and Drug Therapy

    DTIC Science & Technology

    2007-03-30

    chlorpromazine and haloperidol revolutionized the treatment of mental illness the sedating and neuroleptic side effects produced by "typical...demonstrated in rodents chronically treated with haloperidol and clozapine. We also demonstrate significantly higher levels of lactate in the postmortem...lactate levels in the cerebellum of patients with schizophrenia (n = 35) and control subjects (n = 42) and in rats chronically treated with haloperidol

  11. Estimation of placental and lactational transfer and tissue distribution of atrazine and its main metabolites in rodent dams, fetuses, and neonates with physiologically based pharmacokinetic modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhoumeng; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602; Fisher, Jeffrey W.

    Atrazine (ATR) is a widely used chlorotriazine herbicide, a ubiquitous environmental contaminant, and a potential developmental toxicant. To quantitatively evaluate placental/lactational transfer and fetal/neonatal tissue dosimetry of ATR and its major metabolites, physiologically based pharmacokinetic models were developed for rat dams, fetuses and neonates. These models were calibrated using pharmacokinetic data from rat dams repeatedly exposed (oral gavage; 5 mg/kg) to ATR followed by model evaluation against other available rat data. Model simulations corresponded well to the majority of available experimental data and suggest that: (1) the fetus is exposed to both ATR and its major metabolite didealkylatrazine (DACT) atmore » levels similar to maternal plasma levels, (2) the neonate is exposed mostly to DACT at levels two-thirds lower than maternal plasma or fetal levels, while lactational exposure to ATR is minimal, and (3) gestational carryover of DACT greatly affects its neonatal dosimetry up until mid-lactation. To test the model's cross-species extrapolation capability, a pharmacokinetic study was conducted with pregnant C57BL/6 mice exposed (oral gavage; 5 mg/kg) to ATR from gestational day 12 to 18. By using mouse-specific parameters, the model predictions fitted well with the measured data, including placental ATR/DACT levels. However, fetal concentrations of DACT were overestimated by the model (10-fold). This overestimation suggests that only around 10% of the DACT that reaches the fetus is tissue-bound. These rodent models could be used in fetal/neonatal tissue dosimetry predictions to help design/interpret early life toxicity/pharmacokinetic studies with ATR and as a foundation for scaling to humans. - Highlights: • We developed PBPK models for atrazine in rat dams, fetuses, and neonates. • We conducted pharmacokinetic (PK) study with atrazine in pregnant mice. • Model predictions were in good agreement with experimental rat and mouse PK data. • The fetus is exposed to atrazine/its main metabolite at levels similar to the dam. • The nursing neonate is exposed primarily to atrazine's main metabolite DACT.« less

  12. Maternal low intensity physical exercise prevents obesity in offspring rats exposed to early overnutrition.

    PubMed

    Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Martins, Isabela Peixoto; Pavanello, Audrei; de Oliveira, Júlio Cezar; Prates, Kelly Valério; Miranda, Rosiane Aparecida; da Silva Franco, Claudinéia Conationi; Gomes, Rodrigo Mello; Francisco, Flávio Andrade; Alves, Vander Silva; de Almeida, Douglas Lopes; Moreira, Veridiana Mota; Palma-Rigo, Kesia; Vieira, Elaine; Fabricio, Gabriel Sergio; da Silva Rodrigues, Marcos Ricardo; Rinaldi, Wilson; Malta, Ananda; de Freitas Mathias, Paulo Cezar

    2017-08-09

    Low intensity exercise during pregnancy and lactation may create a protective effect against the development of obesity in offspring exposed to overnutrition in early life. To test these hypotheses, pregnant rats were randomly assigned into 2 groups: Sedentary and Exercised, low intensity, on a rodent treadmill at 30% VO 2Max /30-minute/session/3x/week throughout pregnancy and the lactation. Male offspring were raised in small litters (SL, 3 pups/dam) and normal litters (NL, 9 pups/dam) as models of early overnutrition and normal feed, respectively. Exercised mothers showed low mesenteric fat pad stores and fasting glucose and improved glucose-insulin tolerance, VO 2max during lactation and sympathetic activity. Moreover, the breast milk contained elevated levels of insulin. In addition, SL of sedentary mothers presented metabolic dysfunction and glucose and insulin intolerance and were hyperglycemic and hyperinsulinemic in adulthood. SL of exercised mothers showed lower fat tissue accretion and improvements in glucose tolerance, insulin sensitivity, insulinemia and glycemia. The results suggest that maternal exercise during the perinatal period can have a possible reprogramming effect to prevent metabolic dysfunction in adult rat offspring exposed to early overnutrition, which may be associated with the improvement in maternal health caused by exercise.

  13. Social preference and maternal defeat-induced social avoidance in virgin female rats: sex differences in involvement of brain oxytocin and vasopressin.

    PubMed

    Lukas, Michael; Neumann, Inga D

    2014-08-30

    Research concerning non-reproductive sociability in rodents is mainly restricted to assessing the effects of oxytocin (OXT) and arginine-vasopressin (AVP) in male rats and mice. Comparable studies on natural social preference and social avoidance in females are substantially lacking. Here, we adapted a behavioral paradigm for monitoring social preference of female rats consisting of two consecutive exposures to either non-social or social stimuli. Further, to induce stimulus-specific social avoidance, female rats were exposed to a single 10-min maternal defeat by a lactating dam. Social preference towards same-sex conspecifics in female rats was shown to be independent of the estrous cycle and even more pronounced than in male rats. Intracerebroventricular (icv) application of OXT, AVP, or their selective receptor antagonists or agonists, did not alter naturally-occurring social preference in female rats. Stimulus-specific social avoidance could be induced by prior exposure to a lactating rat: an effect that could not be reversed/overcome by icv OXT. The female social preference paradigm for rats established in this study detected subtle sex differences in social preference behavior of rats. Further, stimulus-specific social deficits could be induced in female rats using an acute exposure to social defeat - as previously observed in male rodents. Female rats show strong social preference behavior, which can be prevented by social defeat, but does not seem to be regulated by the OXT or AVP systems. Accordingly, icv application of synthetic OXT does not reverse maternal defeat-induced social avoidance in female rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. 3-Bromopyruvate reverses hypoxia-induced pulmonary arterial hypertension through inhibiting glycolysis: In vitro and in vivo studies.

    PubMed

    Chen, Fangzheng; Wang, Heng; Lai, Jiadan; Cai, Shujing; Yuan, Linbo

    2018-05-04

    Pulmonary arterial smooth muscle cell (PASMC) proliferation is vital to pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) pathogenesis, and inhibiting PASMC metabolism could serve as a new possible therapy to reverse the process. 3-Bromopyruvate (3-BrPA) is an effective glycolysis inhibitor with its effect in PAH remains unclear. Our study aims to assess the therapeutic effect of 3-BrPA in PAH rats and investigate the possible mechanism of 3-BrPA in PASMC proliferation and apoptosis. 27 healthy SD rats were grouped and treated with hypoxia/normoxia and administration of 3-BrPA/physiological saline. Mean pulmonary artery pressure (mPAP) and cardiac output (CO) were measured and pulmonary vascular resistance (PVR) was calculated. Right ventricular hypertrophy index (RVHI) was calculated to evaluate the right ventricular hypertrophy degree. The percentage of medial wall area (WA%) and medial wall thickness (WT%) were measured by image analysis. PASMCs groups received hypoxia/normoxia treatments and 3-BrPA/physiological saline. PASMC proliferation and migration were respectively detected by CCK-8 and cell wound scratch assay. Hexokinase II (HK-2) expression and lactate level were respectively measured by Western Blotting and lactate test kit to detect glycolysis. mPAP, PVR, PVHI, WA% and WT% in rats increased after the hypoxia treatment, but were lower compared to rats received 3-BrPA in hypoxia environment. HK-2 expression, lactate concentration, OD value and scratch areas in PASMCs increased after the hypoxia treatment, but were decreased after the administration of 3-BrPA. 3-BrPA can inhibit PASMC proliferation and migration by inhibiting glycolysis, and is effective in reversing the vascular remodeling in hypoxia-induced PAH rats. Copyright © 2017. Published by Elsevier B.V.

  15. Daily maternal separations during stress hyporesponsive period decrease the thresholds of panic-like behaviors to electrical stimulation of the dorsal periaqueductal gray of the adult rat.

    PubMed

    Borges-Aguiar, Ana Cristina; Schauffer, Luana Zanoni; de Kloet, Edo Ronald; Schenberg, Luiz Carlos

    2018-05-15

    The present study examined whether early life maternal separation (MS), a model of childhood separation anxiety, predisposes to panic at adulthood. For this purpose, male pups were submitted to 3-h daily maternal separations along postnatal (PN) days of either the 'stress hyporesponsive period' (SHRP) from PN4 to PN14 (MS11) or throughout lactation from PN2 to PN21 (MS20). Pups were further reunited to conscious (CM) or anesthetized (AM) mothers to assess the effect of mother-pup interaction upon reunion. Controls were subjected to brief handling (15 s) once a day throughout lactation (BH20). As adults (PN60), rats were tested for the thresholds to evoke panic-like behaviors upon electrical stimulation of dorsal periaqueductal gray matter and exposed to an elevated plus-maze, an open-field, a forced swim and a sucrose preference test. A factor analysis was also performed to gain insight into the meaning of behavioral tests. MS11-CM rather than MS20-CM rats showed enhanced panic responses and reductions in both swimming and sucrose preference. Panic facilitations were less intense in mother-neglected rats. Although MS did not affect anxiety, MS11-AM showed robust reductions of defecation in an open-field. Factor analysis singled out anxiety, hedonia, exploration, coping and gut activity. Although sucrose preference and coping loaded on separate factors, appetite (adult weight) correlated with active coping in both forced swim and open-field (central area exploration). Concluding, whereas 3h-daily maternal separations during SHRP increased rat's susceptibility to experimental panic attacks, separations throughout lactation had no effects on panic and enhanced active coping. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Cinnamic Acid Derivatives Enhance the Efficacy of Transarterial Embolization in a Rat Model of Hepatocellular Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, Luke R., E-mail: lrw6n@virginia.edu; Brautigan, David L., E-mail: db8g@virginia.edu; Wu, Hanping, E-mail: hanpingwumd@gmail.com

    IntroductionWe hypothesize that the combination of transarterial embolization (TAE) plus inhibition of lactate export will limit anaerobic metabolism and reduce tumor survival compared to TAE alone. The purpose of this study was to test this hypothesis in a rat model of hepatocellular carcinoma (HCC).MethodsRat N1-S1 hepatoma cells were assayed in vitro using the Seahorse XF analyzer to measure extracellular acidification (lactate excretion) comparing effects of the addition of caffeic acid (CA) or ferulic acid (FA) or UK-5099 with control. Monocarboxylate transporter Slc16a3 was knocked down by RNAi. N1S1 tumors were orthotopically implanted in rats and 4 groups evaluated: (1) Control,more » (2) TAE-only, (3) TAE plus CA, and (4) TAE plus FA. Tumor size was determined by ultrasound and analyzed by repeated measures statistics. Tumors harvested at 4 weeks were examined by microscopy.ResultsSeahorse assays showed that CA and FA caused a significant reduction by >90% in lactate efflux by N1S1 tumor cells (p < 0.01). Knockdown of Slc16a3 prevented inhibition by CA. In vivo tumors grew 30-fold in volume over 4 weeks in untreated controls. By comparison, TAE resulted in near cessation of growth (10% in 4-week time period). However, both TAE + CA and TAE + FA caused a significant reduction of tumor volumes (87 and 72%, respectively) compared to control and TAE (p < 0.05). Pathologic evaluation revealed residual tumor in the TAE group but no residual viable tumor cells in the TAE + CA and TAE + FA groups.ConclusionAddition of CA or FA enhances the effectiveness of TAE therapy for HCC in part by blocking lactate efflux.« less

  17. The Effect of Maternal Thyroid Disorders (Hypothyroidism and Hyperthyroidism) During Pregnancy and Lactation on Skin Development in Wistar Rat Newborns

    PubMed Central

    Amerion, Maryam; Tahajjodi, Somayye; Hushmand, Zahra; Mahdavi Shahri, Nasser; Nikravesh, Mohammad Reza; Jalali, Mahdi

    2013-01-01

    Objective(s): Previous studies have shown that thyroid hormones are necessary for normal development of many organs and because of the importance of skin as the largest and the most important organ in human body protection in spite of external environment, the study of thyroid hormones effects on skin development is considerable. In this survey we have tried to study the effects of maternal hypothyroidism on skin development in fetus during pregnancy and lactation by immunohistochemistry technique. Materials and Methods: Rats were divided into 4 groups, hypothyroids, hyperthyroids, hypothyroids are treated with levothyroxin and a control group. The rat mothers were exposed to PTU with 50 mg/lit dosage and levothyroxin with 1 mg/lit dosage and PTU and levothyroxin simultaneously and with the same dosage respectively in hypothyroid, hyperthyroid and treated hypothyroids with levothyroxin groups. After 14 days, blood sample was taken from mothers, and if thyroid hormones level had change well, mating was allowed. After pregnancy and delivery, 1th day dorsal skin (as the sample for pregnancy assay) and 10th day skin (as for lactation assay) was used for immunohystochemical and morphometric studies. Results: In this study it was observed that maternal hypothyroidism during pregnancy and lactation causes significant increase in laminin expression, in most areas of skin, and maternal hyperthyroidism during pregnancy and lactation causes significant decrease in laminin expression. Also significant decrease was observed in hair follicles number and epidermis thickness in hypothyroidism groups. Conclusion: This study showed maternal hypothyroidism causes significant decrease in epidermis thickness and hair follicles number and it causes less hair in fetus. Also maternal hypothyroidism causes large changes in laminin expression in different parts of skin. At the same time,maternal hyperthyroidism causes opposite results. In fact, thyroid hormones regulate laminin expression negatively which means increase in thyroid hormone level, decreases laminin expression. So changes in thyroid hormones level can influence skin development significantly. PMID:23826487

  18. Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats.

    PubMed

    Akhtar, Muhammad Tayyab; Bin Mohd Sarib, Mohamad Syakir; Ismail, Intan Safinar; Abas, Faridah; Ismail, Amin; Lajis, Nordin Hj; Shaari, Khozirah

    2016-08-09

    Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM). Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM). Proton Nuclear Magnetic Resonance (¹H-NMR) spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese-diabetic (obdb) rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract.

  19. Metabolism and Clearance of T-2 Mycotoxin in Perfused Rat Livers

    DTIC Science & Technology

    1986-02-10

    nucleottde system in rat liver. B5ochem. J. 117, 499-503. 4ALLACE, E. 4., PATHRE, S. V., MIROCHA, C. J., ROSISON, T. S., AND FENTON , S. W. (1977). Synthesis...lactating cow. Food Cosmet . Toxicol. 19, 31- 39. YOSHIZAWA, T., SAKAMOTO, T., AND KUWAMWA, K. (1985). Structures of Deepoxytrichothecene mecabolites

  20. COMPARATIVE TISSUE DISTRIBUTION OF MIREX AND CHLORDECONE IN FETAL AND NEONATAL RATS

    EPA Science Inventory

    The transport of mirex and chlordecone (Kepone) across the placental during late gestation and through the milk during lactation was investigated in the rat. In the placental transport study, doses of 5 mg/kg were administrered on Day 15, 18 or 20 of gestation and animals were ki...

  1. PERSISTENT ABNORMALITIES IN THE RAT MAMMARY GLAND FOLLOWING GESTATIONAL AND LACTATIONAL EXPOSURE TO 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)

    EPA Science Inventory

    SUMMARY

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure during gestation has revealed reproductive anomalies in rat offspring, including inconclusive reports of stunted mammary development in females (Brown et al., 1998, Lewis et al., 2001). The current studies wer...

  2. Effect of ornithine and lactate on urea synthesis in isolated hepatocytes.

    PubMed Central

    Briggs, S; Freedland, R A

    1976-01-01

    1. In hepatocytes isolated from 24 h-starved rats, urea production from ammonia was stimulated by addition of lactate, in both the presence and the absence of ornithine. The relationship of lactate concentration to the rate of urea synthesis was hyperbolic. 2. Other glucose precursors also stimulated urea production to varying degrees, but none more than lactate. Added oleate and butyrate did not stimulate urea synthesis. 3. Citrulline accumulation was largely dependent on ornithine concentration. As ornithine was increased from 0 to 40 mM, the rate of citrulline accumulation increased hyperbolically, and was half-maximal when ornithine was 8-12 mM. 4. The rate of citrulline accumulation was independent of the presence of lactate, but with pyruvate the rate increased. 5. The rate of urea production continued to increase as ornithine was varied from 0 to 40 mM. 6. It was concluded that intermediates provided by both ornithine and lactate are limiting for urea production from ammonia in isolated liver cells. It was suggested that the stimulatory effect of lactate lies in increased availability of cytosolic aspartate for condensation with citrulline. PMID:1008850

  3. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability

    NASA Astrophysics Data System (ADS)

    Sabater, David; Arriarán, Sofía; Romero, María Del Mar; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2014-01-01

    White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.

  4. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle

    PubMed Central

    Patel, Anant B.; Lai, James C. K.; Chowdhury, Golam M. I.; Hyder, Fahmeed; Rothman, Douglas L.; Shulman, Robert G.; Behar, Kevin L.

    2014-01-01

    Previous 13C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-d-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions. PMID:24706914

  5. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

    PubMed

    Patel, Anant B; Lai, James C K; Chowdhury, Golam M I; Hyder, Fahmeed; Rothman, Douglas L; Shulman, Robert G; Behar, Kevin L

    2014-04-08

    Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.

  6. Evidence for a Role of Proline and Hypothalamic Astrocytes in the Regulation of Glucose Metabolism in Rats

    PubMed Central

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M.; Lam, Tony K.T.; Gutiérrez-Juárez, Roger

    2013-01-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline’s action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA–mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well. PMID:23274895

  7. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats.

    PubMed

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M; Lam, Tony K T; Gutiérrez-Juárez, Roger

    2013-04-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline's action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA-mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well.

  8. Intake and hedonics of calcium and sodium during pregnancy and lactation in the rat.

    PubMed

    Leshem, M; Levin, T; Schulkin, J

    2002-03-01

    These experiments sought to distinguish whether increased calcium intake during pregnancy and lactation in the rat is due to arousal of a specific calcium appetite, with altered taste hedonics, as occurs with sodium depletion, to reduced taste sensitivity, or to the hyperdipsia of reproduction. We find that, during pregnancy and lactation, CaCl(2) intake is not increased more (in fact less) than intakes of control tastants, MgCl(2) and quinine HCl, and multiparous dams do not have a greater calcium intake than primaparous dams. Changes in taste reactivity to CaCl(2) and to NaCl do not correlate with changes in intake of these minerals during pregnancy or lactation, suggesting that alterations in hedonics or sensitivity do not explain the increased intake of these minerals. Taken together with the increased intake of all the tastants, it may be that the increased intakes of calcium and sodium during reproduction are not due to respective specific appetites or to a general mineral appetite but rather to the reproduction-increased ingestion that may meet all the dam's increased mineral and nutrient requirements. Differences in the degree of increased intakes of tastes may be due to specific alterations in their transduction during reproduction.

  9. Comparative effect of lidocaine and bupivacaine on glucose uptake and lactate production in the perfused working rat heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronau, L.H. Jr.; Merin, R.G.; Aboulish, E.

    1986-03-01

    It has been suggested that at equivalent therapeutic concentrations, lidocaine and bupivacaine may have different cardiotoxic potency. In the isolated working rat heart preparation, the effect of a range of lidocaine and bupivacaine concentrations on glucose uptake and lactate production (LP) were observed. Insulin was added, 10 ..mu../L, to Ringer's solution containing /sup 3/H-labeled glucose to measure the glycolytic flux (GF). The effect of the local anesthetics on LP at the indicated concentrations were similar. Lidocaine appears to depress the glycolytic flux from exogenous glucose to a lesser degree. Bupivacaine, 10 mg/L, depresses VO/sub 2/ to a greater degree thanmore » does lidocaine, 40 mg/L.« less

  10. Partial reconstruction of in vitro gluconeogenesis arising from mitochondrial l-lactate uptake/metabolism and oxaloacetate export via novel L-lactate translocators.

    PubMed

    De Bari, Lidia; Atlante, Anna; Valenti, Daniela; Passarella, Salvatore

    2004-05-15

    In the light of the occurrence of L-lactate dehydrogenase inside the mitochondrial matrix, we looked at whether isolated rat liver mitochondria can take up and metabolize L-lactate, and provide oxaloacetate outside mitochondria, thus contributing to a partial reconstruction of gluconeogenesis in vitro. We found that: (1) L-lactate (10 mM), added to mitochondria in the presence of a cocktail of glycolysis/gluconeogenesis enzymes and cofactors, can lead to synthesis of glyceraldehyde-3-phosphate at a rate of about 7 nmol/min per mg mitochondrial protein. (2) Three novel translocators exist to mediate L-lactate traffic across the inner mitochondrial membrane. An L-lactate/H+ symporter was identified by measuring fluorimetrically the rate of endogenous pyridine nucleotide reduction. Consistently, L-lactate oxidation was found to occur with P/O ratio=3 (where P/O ratio is the ratio of mol of ATP synthesized to mol of oxygen atoms reduced to water during oxidative phosphorylation) and with generation of membrane potential. Proton uptake, which occurred as a result of addition of L-lactate to RLM together with electron flow inhibitors, and mitochondrial swelling in ammonium L-lactate solutions were also monitored. L-Lactate/oxaloacetate and L-lactate/pyruvate anti-porters were identified by monitoring photometrically the appearance of L-lactate counter-anions outside mitochondria. These L-lactate translocators, which are distinct from the monocarboxylate carrier, were found to differ from each other in V(max) values and in inhibition and pH profiles, and proved to regulate mitochondrial L-lactate metabolism in vitro. The role of lactate/mitochondria interactions in gluconeogenesis is discussed.

  11. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring.

    PubMed

    Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra

    2016-03-01

    The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The impact of dialysis solution biocompatibility on ultrafiltration and on free water transport in rats.

    PubMed

    Aubertin, Gaëlle; Choquet, Philippe; Dheu, Céline; Constantinesco, André; Ratomponirina, Charline; Zaloszyc, Ariane; Passlick-Deetjen, Jutta; Fischbach, Michel

    2012-01-01

    This study compares different peritoneal dialysis fluids (PDF) in rats over a short contact time. For greater accuracy, net ultrafiltration (UF) and peritoneal transport indices, mass transfer area coefficient (MTAC) were scaled for the in vivo peritoneal surface area recruited (ivPSA) measured by microcomputerized tomography. Wistar rats underwent nephrectomy (5/6ths), were randomized into two groups and given 1.5% glucose PDF, either conventional acidic lactate (n = 14) or pH neutral bicarbonate (BicaVera) (n = 13); MTAC and UF were measured using a 90-min peritoneal equilibrium test (PET), fill volume (IPV) of 10 ml/100 g; small pore fluid transport was determined from sodium balance and used to calculate free water transport (FWT). Each ivPSA value was significantly correlated with the actual IPV, which varied from one rat to another. At 90 min of contact, there was no difference in recruited ivPSA in relation to PDFs. There was a difference (p < 0.01) in net UF/ivPSA 0.45 vs. 1.41 cm(2)/ml for bicarbonate versus lactate, as there was in the proportion of FWT with bicarbonate (42 ± 5% of net UF) compared to lactate (29 ± 4% of net UF). Net UF for individual values of ivPSA differs between conventional PDF and more biocompatible solutions, such as bicarbonate PDF. This observed change in UF cannot be fully explained by differences in glucose transport. The changes in FWT may be explained by the impact of the PDF biocompatibility on aquaporin function.

  13. The role of glutamine and other alternate substrates as energy sources in the fetal rat lung type II cell.

    PubMed

    Fox, R E; Hopkins, I B; Cabacungan, E T; Tildon, J T

    1996-07-01

    Glucose has been thought to be the primary substrate for energy metabolism in the developing lung; however, alternate substrates are used for energy metabolism in other organs. To examine the role of alternate substrates in the lung, we measured rates of oxidation of glutamine, glucose, lactate, and 3-hydroxybutyrate in type II pneumocytes isolated from d 19 fetal rat lungs by measuring the production of 14CO2 from labeled substrates. Glutamine had a rate of 24.36 +/- 4.51 nmol 14CO2 produced/ h/mg of protein (mean +/- SEM), whereas lactate had a significantly higher rate, 40.29 +/- 4.42. 3-Hydroxybutyrate had a rate of 14.91 +/- 1.93. The rate of glucose oxidation was 2.13 +/- 0.36, significantly lower than that of glutamine. To examine the interactions of substrates normally found in the intracellular milieu, we measured the effect of unlabeled substrates as competitors on labeled substrate. This identifies multiple metabolic compartments of energy metabolism. Glucose, but not lactate, inhibited the oxidation of glutamine, suggesting a compartmentation of tricarboxylic acid cycle activity, rather than simple dilution by glucose. Glucose and lactate had reciprocal inhibition. Our data suggest at least two separate compartments in the type II cells for substrate oxidation, one for glutamine metabolism and a second for glucose metabolism. In summary, we have documented that glutamine and other alternate substrates are oxidized preferentially over glucose for energy metabolism in the d 19 fetal rat lung type II pneumocyte. In addition, we have delineated some of the compartmentation that occurs within the developing type II cell, which may determine how these substrates are used.

  14. Lactogenic Activity of an Enzymatic Hydrolysate from Octopus vulgaris and Carica papaya in SD Rats.

    PubMed

    Cai, Bingna; Chen, Hua; Sun, Han; Sun, Huili; Wan, Peng; Chen, Deke; Pan, Jianyu

    2015-11-01

    The traditional Chinese medicine theory believes that octopus papaya soup can stimulate milk production in lactating women. The objective of this study was to determine whether dietary supplementation with an enzymatic hydrolysate of Octopus vulgaris and Carica papaya (EHOC) could increase milk production and nutritional indexes in Sprague Dawley (SD) rats. Female SD rats (n = 24) were fed a control diet (n = 8), EHOC-supplemented diet, or a positive control diet (Shengruzhi) from day 10 of pregnancy to day 10 of lactation. Maternal serum, mammary gland (day 10 of lactation), milk, and pup weight (daily) were collected for analysis. Results showed that the EHOC diet obviously elevated daily milk yield and pup weight compared to the control group (P < .05). The EHOC diet was found to increase the concentration of prolactin (PRL), progesterone (P), estradiol (E2), and growth hormone (GH) significantly in the circulation and mammary gland. Mammary glands of EHOC-treated dams showed clear lobuloalveolar development and proliferation of myoepithelial cells, but no striking variations were observed among the groups. Furthermore, the nutrition content and immune globulin concentration in the milk of EHOC-supplemented dams were higher than those of the control group, especially the cholesterol, glucose, and IgG were higher by 44.98% (P < .001), 42.76% (P < .01), and 42.23% (P < .01), respectively. In conclusion, this article demonstrates that EHOC administration has beneficial effects on milk production in the dams and on performance of the dam and pup. These results indicate that EHOC could be explored as a potentially lactogenic nutriment for lactating women.

  15. Effect of zinc supplementation on lipid peroxidation and lactate levels in rats with diabetes induced by streptozotocin and subjected to acute swimming exercise.

    PubMed

    Bicer, M; Gunay, M; Baltaci, A K; Uney, K; Mogulkoc, R; Akil, M

    2012-01-01

    The present study aims to explore the effect of zinc supplementation on lipid peroxidation and lactate levels in rats having diabetes induced by streptozotocin and subjected to acute swimming exercise. A total of 80 adult male rats of Sprague-Dawley type were equally allocated to 8 groups: Group 1, general control. Group 2, zinc-supplemented group. Group 3, zinc-supplemented, diabetic group. Group 4, swimming control group. Group 5, zinc-supplemented swimming group. Group 6, zinc-supplemented diabetic swimming group. Group 7, diabetic swimming group. Group 8, diabetic group. At the end of the 4-week study, blood samples were collected to determine MDA, GSH, GPx, SOD, lactate and zinc levels. The highest MDA values were found in group 7 and 8 (p<0.001). GSH values in groups 5 and 6 were higher (p<0.001). The highest GPx values were established in groups 2, 5 and 6 (p<0.001). SOD values were the highest in groups 5 and 6 (p<0.001) and lowest in groups 2, 3 and 8 (p<0.001). The highest plasma lactate levels were found in group 7 (p<0.001). The highest zinc levels were obtained in groups 1, 2 and 5 (p<0.001), and the lowest zinc levels were found in groups 7 and 8 (p<0.001). Results of the study reveal that zinc supplementation prevents the increase of free radical formation, suppression of antioxidant activity and muscle exhaustion, all of which result from diabetes and acute exercise. Zinc supplementation may contribute to health performance in diabetes and acute exercise (Tab. 2, Fig. 1 Ref. 47). Full Text in PDF www.elis.sk.

  16. Alterations in geometry, biomechanics, and mineral composition of juvenile rat femur induced by nonplanar PCB-155 and/or planar PCB-169.

    PubMed

    Brankovič, Jana; Jovanovski, Sašo; Jevnikar, Peter; Hofmeister, Alexander; Reininger-Gutmann, Birgit; Jan, Janja; Grošelj, Maja; Osredkar, Joško; Uršič, Matjaž; Fazarinc, Gregor; Pogačnik, Azra; Vrecl, Milka

    2017-04-01

    Exposure to widespread lipophilic and bioaccumulative polychlorinated biphenyls (PCBs) induces diverse biochemical and toxicological responses in various organs, including the bone. The aim of this study was to evaluate the changes in growth rate, geometry, serum, and bone biochemical parameters and biomechanics of juvenile rat femur induced by lactational exposure to nonplanar PCB-155 and planar PCB-169 individually and in combination. Fifteen lactating Wistar rats were divided into four groups (PCB-169, PCB-155, PCB-155+169, and control), and PCBs were administered intraperitoneally at different time points after delivery. Femurs from 22-day-old offspring were analyzed by microCT, three-point bending test and inductively coupled plasma-mass spectrometry (ICP-MS) to obtain data on bone geometry, biomechanics and mineral composition. The serum levels of calcium, phosphate and alkaline phosphatase were also determined. Lactational exposure to planar PCB-169 resulted in shorter and thinner femurs, reduced endosteal and periosteal perimeters, smaller total cross-sectional and medullary areas, and lowered serum bone marker levels and calcium levels in the bone, while femur mechanical properties were not significantly altered. The changes observed in the combination exposure (PCB-155+169) group were similar to those observed in the PCB-169 group but were less pronounced. In summary, our results demonstrate that alterations in lactationally exposed offspring were primarily induced by planar PCB-169. The milder outcome in the combined group suggested that the PCB-169-mediated toxic effects on the bone might be reduced by a nonplanar PCB-155 congener. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1135-1146, 2017. © 2016 Wiley Periodicals, Inc.

  17. Hyperthyroidism affects lipid metabolism in lactating and suckling rats.

    PubMed

    Varas, S M; Jahn, G A; Giménez, M S

    2001-08-01

    Two per thousand pregnant women have hyperthyroidism (HT), and although the symptoms are attenuated during pregnancy, they rebound after delivery, affecting infant development. To examine the effects of hyperthyroidism on lactation, we studied lipid metabolism in maternal mammary glands and livers of hyperthyroid rats and their pups. Thyroxine (10 microg/100 g body weight/d) or vehicle-treated rats were made pregnant 2 wk after commencement of treatment and sacrificed on days 7, 14, and 21 of lactation with the litters. Circulating triiodothyronine and tetraiodothyronine concentrations in the HT mothers were increased on all days. Hepatic esterified cholesterol (EC) and free cholesterol (FC) and triglyceride (TG) concentrations were diminished on days 14 and 21. Lipid synthesis, measured by incorporation of [3H]H2O into EC, FC, and TG, fatty acid synthase, and acetyl CoA carboxylase activities increased at day 14, while incorporation into FC and EC decreased at days 7 and 21, respectively. Mammary FC and TG concentrations were diminished at day 14; incorporation of [3H]H2O into TG decreased at days 7 and 21, and incorporation of [3H]H2O into FC increased at day 14. In the HT pups, growth rate was diminished, tetraiodothyronine concentration rose at days 7 and 14 of lactation, and triiodothyronine increased only at day 14. Liver TG concentrations increased at day 7 and fell at day 14, while FC increased at day 14 and only acetyl CoA carboxylase activity fell at day 14. Thus, hyperthyroidism changed maternal liver and mammary lipid metabolism, with decreased lipid concentration in spite of increased liver rate of synthesis and decreases in mammary synthesis. These changes, along with the mild hyperthyroidism of the litters, may have contributed to their reduced growth rate.

  18. Developmental Neurotoxicity Study of Dietary Bisphenol A in Sprague-Dawley Rats

    PubMed Central

    Stump, Donald G.; Beck, Melissa J.; Radovsky, Ann; Garman, Robert H.; Freshwater, Lester L.; Sheets, Larry P.; Marty, M. Sue; Waechter, John M.; Dimond, Stephen S.; Van Miller, John P.; Shiotsuka, Ronald N.; Beyer, Dieter; Chappelle, Anne H.; Hentges, Steven G.

    2010-01-01

    This study was conducted to determine the potential of bisphenol A (BPA) to induce functional and/or morphological effects to the nervous system of F1 offspring from dietary exposure during gestation and lactation according to the Organization for Economic Cooperation and Development and U.S. Environmental Protection Agency guidelines for the study of developmental neurotoxicity. BPA was offered to female Sprague-Dawley Crl:CD (SD) rats (24 per dose group) and their litters at dietary concentrations of 0 (control), 0.15, 1.5, 75, 750, and 2250 ppm daily from gestation day 0 through lactation day 21. F1 offspring were evaluated using the following tests: detailed clinical observations (postnatal days [PNDs] 4, 11, 21, 35, 45, and 60), auditory startle (PNDs 20 and 60), motor activity (PNDs 13, 17, 21, and 61), learning and memory using the Biel water maze (PNDs 22 and 62), and brain and nervous system neuropathology and brain morphometry (PNDs 21 and 72). For F1 offspring, there were no treatment-related neurobehavioral effects, nor was there evidence of neuropathology or effects on brain morphometry. Based on maternal and offspring body weight reductions, the no-observed-adverse-effect level (NOAEL) for systemic toxicity was 75 ppm (5.85 and 13.1 mg/kg/day during gestation and lactation, respectively), with no treatment-related effects at lower doses or nonmonotonic dose responses observed for any parameter. There was no evidence that BPA is a developmental neurotoxicant in rats, and the NOAEL for developmental neurotoxicity was 2250 ppm, the highest dose tested (164 and 410 mg/kg/day during gestation and lactation, respectively). PMID:20164145

  19. Maternal Exposure to Ethanol During Pregnancy and Lactation Affects Glutamatergic System and Induces Oxidative Stress in Offspring Hippocampus.

    PubMed

    Cesconetto, Patricia A; Andrade, Camila M; Cattani, Daiane; Domingues, Juliana T; Parisotto, Eduardo B; Filho, Danilo W; Zamoner, Ariane

    2016-01-01

    Alcohol abuse during pregnancy leads to intellectual disability and morphological defects in the offspring. The aim of this study was to determine the effect of chronic maternal ethanol (EtOH) consumption during pregnancy and lactation on glutamatergic transmission regulation, energy deficit, and oxidative stress in the hippocampus of the offspring. EtOH was administered to dams in drinking water at increasing doses (2 to 20%) from the gestation day 5 to lactation day 21. EtOH and tap water intake by treated and control groups, respectively, were measured daily. Results showed that EtOH exposure does not affect fluid intake over the course of pregnancy and lactation. The toxicity of maternal exposure to EtOH was demonstrated by decreased offspring body weight at experimental age, on postnatal day 21. Moreover, maternal EtOH exposure decreased (45) Ca(2+) influx in the offspring's hippocampus. Corroborating this finding, EtOH increased both Na(+) -dependent and Na(+) -independent glial [(14) C]-glutamate uptake in hippocampus of immature rats. Also, maternal EtOH exposure decreased glutamine synthetase activity and induced aspartate aminotransferase enzymatic activity, suggesting that in EtOH-exposed offspring hippocampus, glutamate is preferentially used as a fuel in tricarboxylic acid cycle instead of being converted into glutamine. In addition, EtOH exposure decreased [U-14C]-2-deoxy-D-glucose uptake in offspring hippocampus. The decline in glucose transport coincided with increased lactate dehydrogenase activity, suggesting an adaptative response in EtOH-exposed offspring hippocampus, using lactate as an alternative fuel. These events were associated with oxidative damage, as demonstrated by changes in the enzymatic antioxidant defense system and lipid peroxidation. Taken together, the results demonstrate that maternal exposure to EtOH during pregnancy and lactation impairs glutamatergic transmission, as well as inducing oxidative stress and energy deficit in immature rat hippocampus. Copyright © 2016 by the Research Society on Alcoholism.

  20. Ketone bodies effectively compete with glucose for neuronal acetyl-CoA generation in rat hippocampal slices.

    PubMed

    Valente-Silva, Paula; Lemos, Cristina; Köfalvi, Attila; Cunha, Rodrigo A; Jones, John G

    2015-09-01

    Ketone bodies can be used for cerebral energy generation in situ, when their availability is increased as during fasting or ingestion of a ketogenic diet. However, it is not known how effectively ketone bodies compete with glucose, lactate, and pyruvate for energy generation in the brain parenchyma. Hence, the contributions of exogenous 5.0 mM [1-(13)C]glucose and 1.0 mM [2-(13)C]lactate + 0.1 mM pyruvate (combined [2-(13)C]lactate + [2-(13)C]pyruvate) to acetyl-CoA production were measured both without and with 5.0 mM [U-(13)C]3-hydroxybutyrate in superfused rat hippocampal slices by (13)C NMR non-steady-state isotopomer analysis of tissue glutamate and GABA. Without [U-(13)C]3-hydroxybutyrate, glucose, combined lactate + pyruvate, and unlabeled endogenous sources contributed (mean ± SEM) 70 ± 7%, 10 ± 2%, and 20 ± 8% of acetyl-CoA, respectively. With [U-(13)C]3-hydroxybutyrate, glucose contributions significantly fell from 70 ± 7% to 21 ± 3% (p < 0.0001), combined lactate + pyruvate and endogenous contributions were unchanged, and [U-(13)C]3-hydroxybutyrate became the major acetyl-CoA contributor (68 ± 3%)--about three-times higher than glucose. A direct analysis of the GABA carbon 2 multiplet revealed that [U-(13)C]3-hydroxybutyrate contributed approximately the same acetyl-CoA fraction as glucose, indicating that it was less avidly oxidized by GABAergic than glutamatergic neurons. The appearance of superfusate lactate derived from glycolysis of [1-(13)C]glucose did not decrease significantly in the presence of 3-hydroxybutyrate, hence total glycolytic flux (Krebs cycle inflow + exogenous lactate formation) was attenuated by 3-hydroxybutyrate. This indicates that, under these conditions, 3-hydroxybutyrate inhibited glycolytic flux upstream of pyruvate kinase. Copyright © 2015 John Wiley & Sons, Ltd.

  1. The influence of maternal high fat diet on ozone-induced lung injury and inflammation in Long Evans male and female rat offspring

    EPA Science Inventory

    There is a growing interest in understanding how maternal diet can increase the sensitivity of offspring to environmental exposures. In this study, we examined the influence of high fat diet (HFD) during puberty, pregnancy and lactation in Long Evans rats on the susceptibility of...

  2. [The effect of subchronic inhalations of nitric oxide on metabolic processes in blood of experimental animals].

    PubMed

    Soloveva, A G; Peretyagin, S P

    2016-01-01

    Metabolic processes were investigated in plasma and erythrocytes of Wistar rats exposed to daily 10-min sessions of NO inhalation for 30 days. These included determination of glucose and lactate, catalase activity, and activities of aldehyde dehydrogenase (ALDH), lactate dehydrogenase (LDH), and catalase. NO inhalation in a concentration of 20 ppm, 50 ppm and 100 ppm caused an increase in glucose and lactate. Inhalation of 100 ppm NO also increased catalase activity. Inhalation of all NO concentrations resulted in a decrease of ALDH activity, while the decrease in LDH activity was observed at NO concentrations of 50-100 ppm.

  3. Effects of in utero and lactational exposure to SbV on rat neurobehavioral development and fertility.

    PubMed

    Coelho, Deise R; De-Carvalho, Rosangela R; Rocha, Rafael C C; Saint'Pierre, Tatiana D; Paumgartten, Francisco J R

    2014-12-01

    Meglumine antimoniate (MA) is a pentavalent antimony drug used to treat leishmaniases. We investigated the neurobehavioral development, sexual maturation and fertility of the offspring of MA-treated rats. Dams were administered MA (0, 75, 150, 300 mg Sb(V)/kg body wt/d, sc) from gestation day 0, throughout parturition and lactation, until weaning. At the highest dose, MA reduced the birth weight and the number of viable newborns. In the male offspring, MA did not impair development (somatic, reflex maturation, weight gain, puberty onset, open field test), sperm count, or reproductive performance. Except for a minor effect on body weight gain and vertical exploration in the open field, MA also did not affect the development of female offspring. Measurements of the Sb levels (ICP-MS) in the blood of MA-treated female rats and their offspring demonstrated that Sb is transferred to the fetuses via the placenta and to the suckling pups via milk. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Antioxidant effect of vitamin E and 5-aminosalicylic acid on acrylamide induced kidney injury in rats.

    PubMed

    Rajeh, Nisreen A; Al-Dhaheri, Najlaa M

    2017-02-01

    To explore renal toxicity caused by sub-acute exposure of acrylamide and to study the protective effect of 5-Aminosalicylic acid (5-ASA) and Vitamin E (vit-E)on Acrylamide (ACR) induced renal toxicity. Methods: This study was conducted at King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, between August and November 2015. A total of 49 adult Wistar rats (250 ± 20g) aged 60 days were kept in a controlled environment and used in the present study. The rats were divided into 7 groups (control, ACR alone, ACR+5-ASA, ACR+vit-E, ACR+ASA+vit-E, vit-E alone, and ASA alone). After 5 days of ACR oral gavage treatment, the rats were observed for 24 hours then killed. Histopathology for the kidney and lactate dehydrogenase assay were carried out.  Results: Acrylamide produced significant pathological changes in the kidney with acute tubular necrosis in the distal tubules that could be reversed by concomitant injection of rat with 5-ASA. Together with vitamin E, 5-ASA, showed maximum renal protection. No statistically significant difference was observed in either body weights or lactate dehydrogenase activity of ACR treated rats.  Conclusion: Acrylamide exposure leads to adverse clinical pathologies of renal tubules, which were reversed by a concomitant treatment with 5-ASA and vitamin-E.

  5. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation.

    PubMed

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-11-03

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1 H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.

  6. Effects of Maternal Dietary Restriction of Vitamin B-6 on Neocortex Development in Rats

    NASA Astrophysics Data System (ADS)

    Groziak, Susan Marie

    The aim of this investigation was to quantitate the effects of a dietary restriction in Vitamin B-6 during gestation or gestation and lactation on neurogenesis, neuron longevity and neuron differentiation in the neocortex of rats. Sprague Dawley female rats were fed, ad libitum, a Vitamin B-6 free diet (AIN 76) supplemented with 0.0 or 0.6 mg pyridoxine (PN)/kg diet during gestation followed by a control level of 7.0 mg PN/kg diet during lactation, or were fed the Vitamin B-6 free diet supplemented with 0.6 or 7.0 mg PN/kg diet throughout gestation and lactation. The neocortex of progeny of these animals were examined at 30 days of age employing light and electron microscopy. Analyses of neurogenesis, neuron longevity and differentiation of neurons (size of somata, dendritic arborization and spine density in Golgi Cox preparations, and synaptic density in E.M. preparations) were conducted. Each of the Vitamin B-6 restricted treatments adversely affected neurogenesis, neuron longevity and neuron differentiation. The degree of adverse effects paralleled the severity (dose or duration) of the restriction imposed. Expressed as percentage reduction from control values, the findings indicated that neuron longevity and differentiation of neurons in the neocortex were more severely affected than neurogenesis by a maternal dietary restriction in Vitamin B-6.

  7. Postictal in situ MRS brain lactate in the rat kindling model.

    PubMed

    Maton, B M; Najm, I M; Wang, Y; Lüders, H O; Ng, T C

    1999-12-10

    To determine the temporal and spatial extent of the lactate (Lact) changes as correlated with seizure characteristics and EEG changes in the rat kindling model. Prior studies using MRS have detected cerebral Lact postictally in animal models of seizures and in patients with intractable focal epilepsy. We performed MRS in sham control rats (n = 4) and in rats stimulated in the right hippocampus at two different stages of the kindling and at three time points after the seizures: <2 hours (n = 8 and 5, stage 0 and stage 5), 2 to 3 hours (n = 5 and 6), and >3 hours (n = 4 and 2). Lact/creatine (Cr) and N-acetylaspartate (NAA)/Cr ratios were measured in six contiguous voxels (three left, three right) covering the hippocampi, anterior and posterior regions, and compared with EEG and ictal behavior. Lact/Cr ratios were measured at a very low level in the sham control rats and in the >3-hour group. In the <2-hour group, Lact/Cr increase was higher in stage-5 rats as compared with stage-0 rats (p = 0.001, unpaired t-test) and sham control rats when all the voxels were considered. Lact/Cr ratios were higher in the stimulated area as compared with all other brain areas in stage-0 rats (p = 0.05, paired t-test) but not in the stage-5 rats. Similar results with more inter-animal variability were measured in the 2- to 3-hour group. NAA/Cr ratios increased significantly after stage-0 kindling in the stimulated hippocampus but not after stage-5 kindling. Postictal Lact increase as assayed by MRS correlates with EEG and behavioral seizures and suggests that it would be an additional noninvasive technique for seizure localization during the presurgical evaluation of patients with intractable focal epilepsy.

  8. Neonatal treatment with scopolamine butylbromide prevents metabolic dysfunction in male rats

    PubMed Central

    Malta, Ananda; Souza, Aline Amenencia de; Ribeiro, Tatiane Aparecida; Francisco, Flávio Andrade; Pavanello, Audrei; Prates, Kelly Valério; Tófolo, Laize Peron; Miranda, Rosiane Aparecida; Oliveira, Júlio Cezar de; Martins, Isabela Peixoto; Previate, Carina; Gomes, Rodrigo Mello; Franco, Claudinéia Conationi da Silva; Natali, Maria Raquel Marçal; Palma-Rigo, Kesia; Mathias, Paulo Cezar de Freitas

    2016-01-01

    We tested whether treatment with a cholinergic antagonist could reduce insulin levels in early postnatal life and attenuate metabolic dysfunctions induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SLs, 3 pups/dam) and normal litters (NLs, 9 pups/dam) were used in models of early overfeeding and normal feeding, respectively. During the first 12 days of lactation, animals in the SL and NL groups received scopolamine butylbromide (B), while the controls received saline (S) injections. The drug treatment decreased insulin levels in pups from both groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, vagus nerve activity, fat tissue accretion, insulinemia, leptinemia, body weight gain and food intake. Low glucose and cholinergic insulinotropic effects were observed in pancreatic islets from both groups. Low protein expression was observed for the muscarinic M3 acetylcholine receptor subtype (M3mAChR), although M2mAChR subtype expression was increased in SL-B islets. In addition, beta-cell density was reduced in drug-treated rats. These results indicate that early postnatal scopolamine butylbromide treatment inhibits early overfeeding-induced metabolic dysfunctions in adult rats, which might be caused by insulin decreases during lactation, associated with reduced parasympathetic activity and expression of M3mAChR in pancreatic islets. PMID:27561682

  9. Single oral dose toxicity test of polycalcium, a mixed composition of polycan and calcium lactate-gluconate 1:9 (G/G) in SD rat.

    PubMed

    Kim, Joo-Wan; Choi, Jae-Suk; Ha, Yu-Mi; Choi, In Soon; Kim, Ki-Young; Cho, Hyung-rae; Rha, Chae-hun; Ku, Sae-Kwang

    2013-11-01

    The object of this study was to obtain acute oral toxicity information of Polycalcium, a mixed composition of Polycan and Calcium lactate-gluconate 1:9 (g/g), in Sprague-Dawely (SD) rats. In order to investigate the toxicity and identify target organs, Polycalcium were once orally administered to female and male SD rats at dose levels of 2000, 1000, 500 and 0 (control) mg/kg body weights. The mortality, changes on body weight and clinical signs were monitored during 14 days after treatment with gross observation, changes on the organ weights and histopathology of principle organs and treatment sites based on the recommendation of KFDA Guidelines [2009-116, 2009]. As the results of single oral treatment of Polycalcium, no treatment related mortalities were observed within 14 days after end of treatment up to 2000 mg/kg, the limited dosage of rodents in the both genders. In addition, no Polycalcium treatment related changes on the body and organ weights, clinical signs, necropsy and histopathological findings were detected. The results obtained in this study suggest that the Polycalcium is non-toxic in rats. The LD50 and approximate LD in rats after single oral dose of Polycalcium were considered over 2000 mg/kg in both female and male, respectively.

  10. Effect of co-administration of cassava (Manihot esculenta Crantz) rich diet and alcohol in rats.

    PubMed

    Boby, R G; Indira, M

    2004-01-01

    The effects of co-administration of a cassava rich diet and alcohol in rats were investigated. The animals were divided into four groups (1) Control, (2) Alcohol, (3) Cassava and (4) Alcohol + Cassava. Consumption of alcohol along with cassava reduced the alcohol induced toxicity which was evidenced by the lower activities of GOT, GPT, GGT, acid phosphatase and alkaline phosphatase in the liver and serum of co-administered group. The pyruvate content in the blood increased while the lactate content, lactate/pyruvate ratio and the activity of LDH decreased in the blood due to co-administration. The blood cyanide content, serum thiocyanate content and the activities of rhodanase and beta-glucuronidase increased on co-administration. The histopathological studies also revealed that co-administration reduced the alcohol induced toxicity.

  11. Radiation-induced enzyme efflux from rat heart: sedentary animals. [Gamma radiation, lactate dehydrogenase, creative kinase, glutamate oxaloacetate transaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacWilliam, L.D.; Bhakthan, N.M.G.

    1976-01-01

    Serum levels of lactate dehydrogenase, creatine kinase, and glutamate oxaloacetate transaminase show initial elevations within 12 hr of exposure to 2,000 rads of ..gamma..-radiation to the thoracic region of rats. Significant decreases in heart muscle homogenate levels of these enzymes parallel initial elevations in the serum and may suggest that enhanced leakage of enzymes is a consequence of radiation injury to heart muscle. Insignificant alterations in mitochondrial glutamate oxaloacetate transaminase levels after exposure indicate that in vivo injury to the mitochondria from therapeutic levels of ..gamma..-radiation is questionable. The results support the contention that ionizing radiation instigates alterations in themore » dynamic permeability of membranes, allowing leakage of biologically active material out of the injured cell.« less

  12. Consumption of sucrose, but not high fructose corn syrup, leads to increased adiposity and dyslipidaemia in the pregnant and lactating rat.

    PubMed

    Toop, C R; Muhlhausler, B S; O'Dea, K; Gentili, S

    2015-02-01

    Excess consumption of added sugars, including sucrose and high fructose corn syrup (HFCS-55), have been implicated in the global epidemics of obesity and type 2 diabetes. This study aimed to investigate and compare the impact of maternal consumption of sucrose or HFCS-55 during pregnancy and lactation on the metabolic health of the dam and her offspring at birth. Female Albino Wistar rats were given access to chow and water, in addition to a sucrose or HFCS-55 beverage (10% w/v) before, and during pregnancy and lactation. Maternal glucose tolerance was determined throughout the study, and a postmortem was conducted on dams following lactation, and on offspring within 24 h of birth. Sucrose and HFCS-55 consumption resulted in increased total energy intake compared with controls, however the increase from sucrose consumption was accompanied by a compensatory decrease in chow consumption. There was no effect of sucrose or HFCS-55 consumption on body weight, however sucrose consumption resulted in increased adiposity and elevated total plasma cholesterol in the dam, while HFCS-55 consumption resulted in increased plasma insulin and decreased plasma non-esterified fatty acids (NEFA). Maternal HFCS-55 consumption was associated with decreased relative liver weight and plasma NEFA in the offspring at birth. There was no effect of either treatment on pup weight at birth. These findings suggest that both sucrose and HFCS-55 consumption during pregnancy and lactation have the potential to impact negatively on maternal metabolic health, which may have adverse consequences for the long-term health of the offspring.

  13. Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease

    PubMed Central

    Hadjihambi, Anna; De Chiara, Francesco; Hosford, Patrick S.; Habtetion, Abeba; Karagiannis, Anastassios; Davies, Nathan

    2017-01-01

    The pathogenesis of hepatic encephalopathy (HE) in cirrhosis is multifactorial and ammonia is thought to play a key role. Astroglial dysfunction is known to be present in HE. Astrocytes are extensively connected by gap junctions formed of connexins, which also exist as functional hemichannels allowing exchange of molecules between the cytoplasm and the extracellular milieu. The astrocyte‐neuron lactate shuttle hypothesis suggests that neuronal activity is fueled (at least in part) by lactate provided by neighboring astrocytes. We hypothesized that in HE, astroglial dysfunction could impair metabolic communication between astrocytes and neurons. In this study, we determined whether hyperammonemia leads to hemichannel dysfunction and impairs lactate transport in the cerebral cortex using rat models of HE (bile duct ligation [BDL] and induced hyperammonemia) and also evaluated the effect of ammonia‐lowering treatment (ornithine phenylacetate [OP]). Plasma ammonia concentration in BDL rats was significantly reduced by OP treatment. Biosensor recordings demonstrated that HE is associated with a significant reduction in both tonic and hypoxia‐induced lactate release in the cerebral cortex, which was normalized by OP treatment. Cortical dye loading experiments revealed hemichannel dysfunction in HE with improvement following OP treatment, while the expression of key connexins was unaffected. Conclusion: The results of the present study demonstrate that HE is associated with central nervous system hemichannel dysfunction, with ammonia playing a key role. The data provide evidence of a potential neuronal energy deficit due to impaired hemichannel‐mediated lactate transport between astrocytes and neurons as a possible mechanism underlying pathogenesis of HE. (Hepatology 2017;65:1306‐1318) PMID:28066916

  14. Effect of short-term ornithine alpha-ketoglutarate pretreatment on intestinal ischemia-reperfusion in rats.

    PubMed

    Gonçalves, Eduardo Silvio Gouveia; Rabelo, Camila Menezes; Prado Neto, Alberico Ximenes do; Garcia, José Huygens Parente; Guimarães, Sérgio Botelho; Vasconcelos, Paulo Roberto Leitão de

    2011-01-01

    To investigate the effects of preventive enteral administration of ornithine alpha-ketoglutarate (OKG) in an ischemia-reperfusion rat model. Sixty rats were randomized into five groups (G1-G5, n = 12). Each group was divided into two subgroups (n = 6) and treated with calcium carbonate (CaCa) or OKG by gavage. Thirty minutes later, the animals were anesthetized with xylazine 15mg + ketamine 1mg ip and subjected to laparotomy. G1-G3 rats served as controls. Rats in groups G4 and G5 were subjected to ischemia for 30 minutes. Ischemia was achieved by clamping the small intestine and its mesentery, delimiting a segment of bowel 5 cm long and 5 cm apart from the ileocecal valve. In addition, G5 rats underwent reperfusion for 30 minutes. Blood samples were collected at the end of the laparotomy (G1), after 30 minutes (G2, G4) and 60 minutes (G3, G5) to determine concentrations of metabolites (pyruvate, lactate), creatine phosphokinase (CPK), thiobarbituric acid reactive substances (TBARS) and glutathione (GSH). There was a significant decrease in tissue pyruvate and lactate and plasma CPK levels in OKG-treated rats at the end of reperfusion period. GSH levels did not change significantly in ischemia and reperfusion groups. However, TBARS levels increased significantly (p<0.05) in tissue samples in OKG-treated rats subjected to ischemia for 30 minutes. Short-term pretreatment with OKG before induction of I/R decreases tissue damage, increases pyruvate utilization for energy production in the Krebs cycle and does not attenuate the oxidative stress in this animal model.

  15. Preventive effects of Lactobacillus mixture on experimental E. coli urinary tract infection in infant rats.

    PubMed

    Lee, Jung Won; Lee, Jee Hyun; Sung, Sun Hee; Lee, Seung Joo

    2013-03-01

    Urinary tract infection (UTI) is an ascending infection of fecal uropathogens, urogenital lactobacilli are suggested to play a role in the prevention of UTI. This study was to investigate whether lactobacillus mixture (LM) could prevent the experimental infantile UTI. The LM were composed of three lactobacillus strains (L. gasseri, L. rhamnosus, and L. reuteri). Mother rats were grouped as lactobacillus (LB) group I (LB I, n=22), II (LB II, n=24) and control (n=20). LB I and LB II were fed with LM (1 mL/day) and control with phosphate-buffered saline (PBS) from late pregnancy through lactation. All newborn rats were breast-fed and their urine and stool were collected at the end of the 3rd week to compare lactobacillus colony. Then, infant rats from LB II were treated with intravesical instillation of LM. Infant rats from LB I and control were instilled with PBS. Twenty-four hours later, experimental UTI was introduced by intravesical instillation of standard E. coli strain. After 72 hours later, the infant rats were sacrificed for histologic examination. Lactobacilli colonies in urine and stool were not statistically different among the three groups. The incidence of pyelonephritis in the LB II was 16.7% (4/24), LB I 72.7% (16.22) and control 75.0% (15/20) (p=0.015). The incidence of cystitis was not significantly different among the three groups. The intravesically instilled LM significantly prevented experimental pyelonephritis in infant rats, however, LM administered orally to the pregnant and lactating mother rats did not.

  16. Preventive Effects of Lactobacillus Mixture on Experimental E. coli Urinary Tract Infection in Infant Rats

    PubMed Central

    Lee, Jung Won; Lee, Jee Hyun; Sung, Sun Hee

    2013-01-01

    Purpose Urinary tract infection (UTI) is an ascending infection of fecal uropathogens, urogenital lactobacilli are suggested to play a role in the prevention of UTI. This study was to investigate whether lactobacillus mixture (LM) could prevent the experimental infantile UTI. Materials and Methods The LM were composed of three lactobacillus strains (L. gasseri, L. rhamnosus, and L. reuteri). Mother rats were grouped as lactobacillus (LB) group I (LB I, n=22), II (LB II, n=24) and control (n=20). LB I and LB II were fed with LM (1 mL/day) and control with phosphate-buffered saline (PBS) from late pregnancy through lactation. All newborn rats were breast-fed and their urine and stool were collected at the end of the 3rd week to compare lactobacillus colony. Then, infant rats from LB II were treated with intravesical instillation of LM. Infant rats from LB I and control were instilled with PBS. Twenty-four hours later, experimental UTI was introduced by intravesical instillation of standard E. coli strain. After 72 hours later, the infant rats were sacrificed for histologic examination. Results Lactobacilli colonies in urine and stool were not statistically different among the three groups. The incidence of pyelonephritis in the LB II was 16.7% (4/24), LB I 72.7% (16.22) and control 75.0% (15/20) (p=0.015). The incidence of cystitis was not significantly different among the three groups. Conclusion The intravesically instilled LM significantly prevented experimental pyelonephritis in infant rats, however, LM administered orally to the pregnant and lactating mother rats did not. PMID:23364986

  17. Prior parity positively regulates learning and memory in young and middle-aged rats.

    PubMed

    Zimberknopf, Erica; Xavier, Gilberto F; Kinsley, Craig H; Felicio, Luciano F

    2011-08-01

    Reproductive experience in female rats modifies acquired behaviors, induces long-lasting functional neuroadaptations and can also modify spatial learning and memory. The present study supports and expands this knowledge base by employing the Morris water maze, which measures spatial memory. Age-matched young adult (YNG) nulliparous (NULL; nonmated) and primiparous (PRIM; one pregnancy and lactation) female rats were tested 15 d after the litter's weaning. In addition, corresponding middle-aged (AGD) PRIM (mated in young adulthood so that pregnancy, parturition, and lactation occurred at the same age as in YNG PRIM) and NULL female rats were tested at 18 mo of age. Behavioral evaluation included: 1) acquisition of reference memory (platform location was fixed for 14 to 19 d of testing); 2) retrieval of this information associated with extinction of the acquired response (probe test involving removal of the platform 24 h after the last training session); and 3) performance in a working memory version of the task (platform presented in a novel location every day for 13 d, and maintained in a fixed location within each day). YNG PRIM outperformed NULL rats and showed different behavioral strategies. These results may be related to changes in locomotor, mnemonic, and cognitive processes. In addition, YNG PRIM exhibited less anxiety-like behavior. Compared with YNG rats, AGD rats showed less behavioral flexibility but stronger memory consolidation. These data, which were obtained by using a well-documented spatial task, demonstrate long lasting modifications of behavioral strategies in both YNG and AGD rats associated with a single reproductive experience.

  18. Maternal high fat diet and its consequence on the gut microbiome: A rat model.

    PubMed

    Mann, Phyllis E; Huynh, Kevin; Widmer, Giovanni

    2017-11-14

    The biological changes that occur during pregnancy in the female mammal include shifts in hormonal regulation in preparation for parturition and lactation, and changes in energy metabolism. In women, studies have also shown that during pregnancy there is a reduction in bacterial species richness in the gut. In the current experiment rats were used to model the interaction of diet, reproductive status, and intestinal bacterial microbiota during pregnancy and lactation. In Experiment 1 rats were exposed to either standard chow or high-fat chow (60%) and were divided into two groups: unmated (NULL) or mated (RE). In Experiment 2, both NULL and RE rats were exposed to high-fat chow for a 30-day period. High-throughput sequencing of the 16S rRNA gene revealed that pregnancy impacted the gut microbiota in a similar manner to humans. The impact of reproductive status on microbiota composition, however, was stronger in rats fed a high-fat (HF) diet. Diet-induced changes replicated some of the changes observed in humans, such as increasing the Firmicutes/Bacteroidetes ratio. However, in contrast to humans, pregnancy in rats did not increase β-diversity between microbiota from different animals. These results indicate that during pregnancy in rats, the gut microbiota is altered in a similar manner to that which occurs in women, and that these changes are further exaggerated by exposure to a HF diet. Thus, the rat may allow modelling the effects of consumption of HF food during pregnancy and enable future studies to determine the risks of HF diets during pregnancy and its consequences on the offspring.

  19. Selective expression of neuropeptides in the rat mammary gland: somatostatin gene is expressed during lactation.

    PubMed

    Chen, A; Laskar-Levy, O; Koch, Y

    1999-12-01

    The existence of numerous neuropeptides in milk, in concentrations that exceed those in maternal plasma, is well established. It is still unclear whether these neuropeptides are produced by the mammary gland or that the gland concentrates them from the general circulation. In this study, we have examined the possibility that the genes of these neuropeptides are expressed in the rat mammary gland. RNA was extracted from the mammary glands of female rats during different stages of reproduction as well as from other tissues such as hypothalami, pancreas, pineal glands, small intestine, and ovaries. Following RT reaction, the resulting cDNA were amplified by radioactive PCR using specific oligonucleotide primers. We have used specific primers for the following neuropeptides: galanin, somatostatin, vasoactive intestinal peptide, TRH, GH-releasing hormone, cholecystokinin, neurotensin, oxytocin, and relaxin. We have also used primers for serotonin N-acetyl-transferase, the enzyme that is involved in melatonin biosynthesis. The ribosomal protein S-16 served as an internal control. Among all the neuropeptides that have been examined, somatostatin was the only one that was found to be expressed in the mammary gland. Somatostatin was expressed in the mammary gland of lactating rats, but not of virgin rats. Expression of the somatostatin gene was confirmed by Southern blot analysis and by sequencing of the PCR products. Immunohistochemical studies demonstrated somatostatin immunoreactivity in the epithelial cells that compose the secretory alveoli and in the secretory material. In addition, we have found that the mammary glands of the lactating rat express the PC-1 proteinase gene that process prosomatostatin to generate somatostatin-14, but do not express furin, the enzyme that is responsible for somatostatin-28 production. This finding substantiates previous studies that demonstrated that only somatostatin-14 is present in milk. The finding that most of the neuropeptides, examined by RT-PCR, are not expressed by the mammary gland suggest that these neuropeptides are actively concentrated by the mammary glands from the general circulation. The GnRH gene has been previously demonstrated to be expressed in the mammary gland, and in this study somatostatin was the only neuropeptide that was found to be produced by the mammary gland. The observation that only a small portion of the neuropeptides that are present in milk are being produced by the lactating mammary gland suggest that these neuropeptides have important functions in the biology of the suckling neonate and probably also in the development and function of the breast.

  20. Interaction of cytoplasmic dehydrogenases: quantitation of pathways of ethanol metabolism.

    PubMed

    Vind, C; Grunnet, N

    1983-01-01

    The interaction between xylitol, alcohol and lactate dehydrogenase has been studied in hepatocytes from rats by applying specifically tritiated substrates. A simple model, describing the metabolic fate of tritium from [2-3H] xylitol and (1R) [1-3H]ethanol is presented. The model allows calculation of the specific radioactivity of free, cytosolic NADH, based on transfer of tritium to lactate, glucose and water. From the initial labelling rate of lactate and the specific radioactivity of cytosolic NADH, we have determined the reversible flow through the lactate dehydrogenase catalyzed reaction to 1-5 mumol/min . g wet wt. The results suggest that xylitol, alcohol and lactate dehydrogenase share the same pool of NAD(H) in the cytoplasma. This finding allows estimation of the ethanol oxidation rate by the non-alcohol dehydrogenase pathways from the relative yield of tritium in water and glucose. The calculations are based on a comparison of the fate of the 1-pro-R hydrogen of ethanol and the hydrogen bound to carbon 2 of xylitol or carbon 2 of lactate under identical conditions.

  1. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats.

    PubMed

    Paul, Heather A; Bomhof, Marc R; Vogel, Hans J; Reimer, Raylene A

    2016-02-12

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy.

  2. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats

    PubMed Central

    Paul, Heather A.; Bomhof, Marc R.; Vogel, Hans J.; Reimer, Raylene A.

    2016-01-01

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy. PMID:26868870

  3. Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts

    NASA Astrophysics Data System (ADS)

    Lin, Bencheng; Zhang, Huashan; Lin, Zhiqing; Fang, Yanjun; Tian, Lei; Yang, Honglian; Yan, Jun; Liu, Huanliang; Zhang, Wei; Xi, Zhuge

    2013-05-01

    The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant changes were observed in clinical chemistry features, including alkaline phosphatase, total protein, and total cholesterol, and in liver pathology, suggesting that SWCNTs clearly have hepatotoxicity in the rat. 1H NMR spectra and pattern recognition analyses from nanomaterial-treated rats showed remarkable differences in the excretion of lactate, trimethylamine oxide, bilineurin, phosphocholine, amylaceum, and glycogen. Indications of amino acid metabolism impairment were supported by increased lactate concentrations and decreased alanine concentrations in plasma. The rise in plasma and liver tissue extract concentrations of choline and phosphocholine, together with decreased lipids and lipoproteins, after SWCNTs treatment indicated a disruption of membrane fluidity caused by lipid peroxidation. Energy, amino acid, and fat metabolism appeared to be affected by SWCNTs exposure. Clinical chemistry and metabonomic approaches clearly indicated liver injury, which might have been associated with an indirect mechanism involving nanomaterial-induced oxidative stress.

  4. Aqueous extract of pecan nut shell (Carya illinoensis [Wangenh.] K. Koch) exerts protection against oxidative damage induced by cyclophosphamide in rat testis.

    PubMed

    Benvegnu, Dalila M; Barcelos, Raquel C S; Roversi, Katiane; Boufleur, Nardelli; Pase, Camila S; Trevizol, Fabiola; Segat, Hecson J; Dias, Verônica T; Dolci, Geisa S; Antoniazzi, Caren T D; Reckziegel, Patricia; Lima, Fernanda; de Lima, Luiz A R; de Carvalho, Leandro M; da Silva Junior, Valdemiro A; Burger, Marilise E

    2013-01-01

    This study investigated the protective effect of pecan nut (Carya illinoensis) shell aqueous extract (AE) on the oxidative and morphological status of rat testis treated with cyclophosphamide (CP). Wistar rats received water or AE (5%) ad libitum for 37 days. On day 30, half of each group received a single intraperitoneal administration of vehicle or CP 200 mg/kg. After 7 days, the animals were killed and their testis removed. Rats treated with CP presented reduced levels of lactate dehydrogenase, vitamin C, and gluthatione, as well as decreased catalase activity, increased lipid peroxidation levels and superoxide dismutase activity, no alteration in carbonyl protein levels, and a loss of morphological testicular integrity. In contrast, cotreatment with pecan shell AE totally prevented the decrease of lactate dehydrogenase and vitamin C levels and catalase activity and partially prevented the depletion of gluthatione levels. Moreover, it totally prevented the increase in superoxide dismutase activity and lipid peroxidation levels and maintained testicular integrity. These findings show the protective role of pecan shell AE in CP-induced testicular toxicity. The use of this phytotherapy may be considered to minimize deleterious effects related to this chemotherapy.

  5. Chronic consumption of trans fat can facilitate the development of hyperactive behavior in rats.

    PubMed

    Pase, C S; Roversi, Kr; Trevizol, F; Kuhn, F T; Dias, V T; Roversi, K; Vey, L T; Antoniazzi, C T; Barcelos, R C S; Bürger, M E

    2015-02-01

    In recent decades, the increased consumption of processed foods, which are rich in hydrogenated vegetable fat (HVF), has led to a decreased consumption of fish and oilseed, rich in omega-3 fatty acids. This eating habit provides an increased intake of trans fatty acids (TFA), which may be related to neuropsychiatric conditions, including inattention and hyperactivity. In this study, we evaluated the potential connection between prolonged trans fat consumption and development of hyperactivity-like symptoms in rats using different behavioral paradigms. Trans fat intake for 10 months (Experiment 1), as well as during pregnancy and lactation across two sequential generations of rats, (Experiment 4) induced active coping in the forced swimming task (FST). In addition, HVF supplementation was associated with increased locomotion before and after amphetamine (AMPH) administration (Experiment 2). Similarly, HVF supplementation during pregnancy and lactation were associated with increased locomotion in both young and adult rats (Experiment 3). Furthermore, trans fat intake across two sequential generations increased locomotor and exploratory activities following stressors (Experiment 4). From these results, we suggest that chronic consumption of trans fat is able to enhance impulsiveness and reactivity to novelty, facilitating hyperactive behaviors. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Isozyme composition of lactate dehydrogenase of rat skeletal muscles after flight in Kosmos-690 biosatellite. [Effects of radiation on lactate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrova, N.V.

    1978-01-01

    Rats in a ground-based model experiment, in which all flight conditions with the exception of weightlessness and accelerations and intact animals maintained under vivarium conditions served as a control. On the 10th day of flight and of the ground-based model experiments, the rats were exposed to 800 rad radiation for 24 h. Samples of soleus and plantaris muscles were taken for examination on the 2d and 27th days after landing and termination of the ground-based model experiment. Intact animals were sacrificed on the same days as experimental ones. Samples of muscle tissue were frozen in dry ice and stored formore » several days at a temperature of -70/sup 0/ before they were studied. This investigation of isozyme spectrum of LDH of skeletal muscles of rats from the Kosmos-690 satellite indicates that the changes in proportion of isozyme fractions of LDH on the 2d day after the flight are due to the effects of weightlessness; subsequent changes (27th day) in correlation between LDH fraction activity are related to the effects of radiation.« less

  7. Effect of hyperbaric oxygenation on carbohydrate metabolism protein synthesis in the myocardium during sustained hypodynamia

    NASA Technical Reports Server (NTRS)

    Makarov, G. A.

    1980-01-01

    Glycolysis and the intensity of protein synthesis were studied in 140 white male rats in subcellular fractions of the myocardium during 45 day hypodynamia and hyperbaric oxygenation. Hypodynamia increased: (1) the amount of lactic acids; (2) the amount of pyruvic acid; (3) the lactate/pyruvate coefficient; and (4) the activities of aldolase and lactate dehydrogenase. Hyperbaric oxygenation was found to have a favorable metabolic effect on the animals with hypodynamia.

  8. Homeostatic effect of p-chloro-diphenyl diselenide on glucose metabolism and mitochondrial function alterations induced by monosodium glutamate administration to rats.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Chagas, Pietro M; da Rocha, Juliana T; Dobrachinski, Fernando; Carvalho, Nélson R; Soares, Félix A; da Luz, Sônia C Almeida; Nogueira, Cristina W

    2016-01-01

    The metabolic syndrome is a group of metabolic alterations considered a worldwide public health problem. Organic selenium compounds have been reported to have many different pharmacological actions, such as anti-hypercholesterolemic and anti-hyperglycemic. The aim of this study was to evaluate the effect of p-chloro-diphenyl diselenide (p-ClPhSe)2, an organic selenium compound, in a model of obesity induced by monosodium glutamate (MSG) administration in rats. The rats were treated during the first ten postnatal days with MSG and received (p-ClPhSe)2 (10 mg/kg, intragastrically) from 45th to 51 th postnatal day. Glucose, lipid and lactate levels were determined in plasma of rats. Glycogen levels and activities of tyrosine aminotransferase, hexokinase, citrate synthase and glucose-6-phosphatase (G-6-Pase) were determined in livers of rats. Renal G-6-Pase activity was also determined. The purine content [Adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate] and mitochondrial functionality in the liver were also investigated. p-(ClPhSe)2 did not alter the reduction in growth performance and in the body weight caused by MSG but reduced epididymal fat deposition of rats. p-(ClPhSe)2 restored glycemia, triglycerides, cholesterol and lactate levels as well as the glucose metabolism altered in rats treated with MSG. p-(ClPhSe)2 restored hepatic mitochondrial dysfunction and the decrease in citrate synthase activity and ATP and ADP levels caused by MSG in rats. In summary, (p-ClPhSe)2 had homeostatic effects on glucose metabolism and mitochondrial function alterations induced by MSG administration to rats.

  9. [1-13C]Glucose entry in neuronal and astrocytic intermediary metabolism of aged rats. A study of the effects of nicergoline treatment by 13C NMR spectroscopy.

    PubMed

    Miccheli, Alfredo; Puccetti, Caterina; Capuani, Giorgio; Di Cocco, Maria Enrica; Giardino, Luciana; Calzà, Laura; Battaglia, Angelo; Battistin, Leontino; Conti, Filippo

    2003-03-14

    Age-related changes in glucose utilization through the TCA cycle were studied using [1-13C]glucose and 13C, 1H NMR spectroscopy on rat brain extracts. Significant increases in lactate levels, as well as in creatine/phosphocreatine ratios (Cr/PCr), and a decrease in N-acetyl-aspartate (NAA) and aspartate levels were observed in aged rat brains as compared to adult animals following glucose administration. The total amount of 13C from [1-13C]glucose incorporated in glutamate, glutamine, aspartate and GABA was significantly decreased in control aged rat brains as compared to adult brains. The results showed a decrease in oxidative glucose utilization of control aged rat brains. The long-term nicergoline treatment increased NAA and glutamate levels, and decreased the lactate levels as well as the Cr/PCr ratios in aged rat brains as compared to adult rats. The total amount of 13C incorporated in glutamate, glutamine, aspartate, NAA and GABA was increased by nicergoline treatment, showing an improvement in oxidative glucose metabolism in aged brains. A significant increase in pyruvate carboxylase/pyruvate dehydrogenase activity (PC/PDH) in the synthesis of glutamate in nicergoline-treated aged rats is consistent with an increase in the transport of glutamine from glia to neurons for conversion into glutamate. In adult rat brains, no effect of nicergoline on glutamate PC/PDH activity was observed, although an increase in PC/PDH activity in glutamine was, suggesting that nicergoline affects the glutamate/glutamine cycle between neurons and glia in different ways depending on the age of animals. These results provide new insights into the effects of nicergoline on the CNS.

  10. Influence of cafeteria diet and fish oil in pregnancy and lactation on pups' body weight and fatty acid profiles in rats.

    PubMed

    Sánchez-Blanco, Clara; Amusquivar, Encarnación; Bispo, Kenia; Herrera, Emilio

    2016-06-01

    The aim was to determine the effects of cafeteria diet (CD) and fish oil supplements given to pregnant and lactating rats on the birth weight and fatty acid profiles of their offspring. Female rats were given standard diet (STD) or CD for 22 days before pregnancy. After mating, some animals remained on STD or CD; for some CD rats, the diet was supplemented with 8.78 % fish oil (CD-FO). After 12 days, half the CD-FO group returned to CD (CD-FO12) and the others remained on CD-FO. At birth, body weights of pups of the three CD groups were lower than STD, maintained until 21 days in the CD-FO group only. At the end of lactation, dams of the CD groups had increased plasma triacylglycerols (TAG), non-esterified fatty acids, and glycerol concentrations, whereas most n-6 long-chain polyunsaturated fatty acids (LCPUFA) were decreased, the effect being greatest in the CD-FO group, where most n-3 LCPUFA were increased and indices of Δ(5) and Δ(6) desaturase activities decreased. The 21-day-old pups of the CD group had increased plasma TAG, not present in the CD-FO group, which had increased 3-hydroxybutyrate concentrations. In both 2- and 21-day-old CD pups, plasma concentrations of ARA were lower than STD, and even lower in the two CD-FO groups. The effect of CD and CD-FO decreasing pups body weight could be related to decreased concentrations of ARA, caused by the inhibition of the Δ(5) and Δ(6) desaturases in the pathway of n-6 LCPUFA biosynthesis.

  11. A maternal low protein diet during pregnancy and lactation in the rat impairs male reproductive development

    PubMed Central

    Zambrano, E; Rodríguez-González, GL; Guzmán, C; García-Becerra, R; Boeck, L; Díaz, L; Menjivar, M; Larrea, F; Nathanielsz, PW

    2005-01-01

    Nutrient restriction during pregnancy and lactation impairs growth and development. Recent studies demonstrate long-term programming of function of specific organ systems resulting from suboptimal environments during fetal life and development up to weaning. We determined effects of maternal protein restriction (50% control protein intake) during fetal development and/or lactation in rats on the reproductive system of male progeny. Rats were fed either a control 20% casein diet (C) or a restricted diet (R) of 10% casein during pregnancy. After delivery mothers received either C or R diet until weaning to provide four groups: CC, RR, CR and RC. We report findings in male offspring only. Maternal protein restriction increased maternal serum corticosterone, oestradiol and testosterone (T) concentrations at 19 days gestation. Pup birth weight was unchanged but ano-genital distance was increased by maternal protein restriction (P < 0.05). Testicular descent was delayed 4.4 days in RR, 2.1 days in CR and 2.2 days in RC and was not related to body weight. Body weight and testis weight were reduced in RR and CR groups at all ages with the exception of CR testis weight at 270 days postnatal age (PN). At 70 days PN luteinizing hormone and T concentrations were reduced in RR, CR and RC. mRNA for P450 side chain cleavage (P450scc) was reduced in RR and CR at 21 days PN but was unchanged at 70 days PN. Fertility rate was reduced at 270 days PN in RC and sperm count in RR and RC. We conclude that maternal protein delays sexual maturation in male rats and that some effects only emerge in later life. PMID:15611025

  12. The production of (14C) oxalate during the metabolism of (14C) carbohydrates in isolated rat hepatocytes.

    PubMed

    Rofe, A M; James, H M; Bais, R; Edwards, J B; Conyers, R A

    1980-04-01

    Oxalate (14C) was produced during the metabolism of (U-14C) carbohydrates in hepatocytes isolated from normal rats. At 10 mM, the order of oxalate production was fructose > glycerol > xylitol > sorbitol greater than or equal to glucose in the ratio 10 : 4 : 3 : 1 : 1. This difference between oxalate production from fructose and glucose was reflected in their rates of utilisation, glucose being poorly metabolised in hepatocytes from fasted rats. Fructose was rapidly metabolised, producing glucose, lactate and pyruvate as the major metabolites. Glycerol, xylitol and sorbitol were metabolised at half the rate of fructose, the major metabolites being glucose, lactate and glycerophosphate. The marked similarity in the pattern of intermediary metabolites produced by these polyols was not, however, reflected in the rates of oxalate production. Hepatic polyol metabolism resulted in high levels of cytosolic NADH, as indicated by elevated lactate : pyruvate and glycerophosphate : dihydroxyacetone phosphate ratios. The artificial electron acceptor, phenazine methosulphate (PMS) stimulated oxalate production from the polyols, particularly xylitol. In the presence of PMS, the order of oxalate production was fructose greater than or equal to xylitol > glycerol > sorbitol in the ratio 10 : 10 : 6 : 2. The production of glucose, lactate and pyruvate from the polyols was also stimulated by PMS, whereas the general metabolism of fructose, including oxalate production, was little affected. Oxalate (14C) was produced from (1-14C), (2-14C) and (6-14C) but not (3,4-14C) glucose in hepatocytes isolated from non-fasted, pyridoxine-deficient rats. Whilst this labelling pattern is consistent with oxalate being produced by a number of pathways, it is suggested that metabolism via hydroxypyruvate is a major route for oxalate production from various carbohydrates, with perhaps the exception of xylitol, which appears to have an alternative mechanism for oxalate production. The observation that carbohydrates, particularly fructose, contribute to endogenous oxalate production lends support to the hypothesis that a high sucrose consumption contributes to the formation of renal oxalate stones in man.

  13. Lactating Rats Retain Nursing Behavior and Maternal Care in Space

    NASA Technical Reports Server (NTRS)

    Daly, Megan E.; Ronca, April E.; Dalton, Bonnie (Technical Monitor)

    2001-01-01

    In 1997, suckling mammals were flown in space for the first time as part of the NIH.R3 experiment sponsored jointly by NIH (National Institutes of Health) and NASA. Six rat dams and litters (Rattus norvegicus) were launched on an eight-day Space Shuttle mission at each of three postnatal ages (P5, P8, and P15). Dams and litters (N = 10 pups/litter) were housed within modified Animal Enclosure Modules (AEMs). Comparisons were made to ground controls. Dams and litters were videotaped daily in flight. The P8 and P15 flight litters showed excellent survival (99%) and weight gain relative to AEM ground controls, whereas P5 litters showed reduced survival (0% and 60%, respectively) and weight gain (less than 40% AEM). To examine the possibility that failures of maternal care contributed to P5 results, we analyzed the dams' in-flight nursing, licking and retrieving from four video segments ranging from twelve to fifteen minutes in length with control data derived from multiple ground segments. Video analyses revealed clear evidence of maternal care in flight. For P5 dams, frequency and duration of nursing and licking bouts fell within or above one standard deviation of control values. Retrieving was noted in the P5 and P8 groups only. The observed results suggest that factors other than maternal care contributed to the low survival rates and body weight gains of the P5 flight offspring.

  14. Physical exercise counteracts the increase in velocity of propagation of cortical spreading depression imposed by early over-nutrition in rats.

    PubMed

    Monteiro, Heloísa Mirelle Costa; de Mendonça, Débora Carneiro; Sousa, Mariana Séfora Bezerra; Amancio-Dos-Santos, Angela

    2018-06-01

    This investigation studied whether physical exercise could modulate cortical spreading depression (CSD) propagation velocity in adult rat offspring from dams that had received a high-fat (HF) diet during lactation. Wistar male rats suckled by dams fed either control (C) or HF diet ad libitum. After weaning, pups received standard laboratory chow. From 40 to 60 days of life, half of the animals exercised on a treadmill (group E); the other half remained sedentary (group S). Two additional HF groups (E and S) received fluoxetine (F; 10 mg/kg/day, orogastrically) from 40 to 60 days of life (groups HF/EF and HF/F). At 40 days of life, rats from the maternal HF diet presented higher weight, thoracic circumference, and Lee Index than C animals and remained heavier at 60 days of life. Physical exercise decreased abdominal circumference. HF diet increased CSD propagation velocity (mean ± SD; mm/min) in sedentaries (HF/S 3.47 ± 0.31 versus C/S 3.24 ± 0.26). Treadmill exercise decelerated CSD propagation in both groups C/E (2.94 ± 0.28) and HF/E (2.97 ± 0.40). Fluoxetine alone decreased CSD propagation (HF/F 2.88 ± 0.45) compared with HF/S group. The combination of fluoxetine + exercise under HF condition (2.98 ± 0.27) was similar to HF/E group. Physical exercise is able to reduce CSD propagation velocity in rat adult brains even when they have suffered over-nourishing during lactation. The effects of exercise alone or fluoxetine alone on CSD were similar to the effects of fluoxetine + exercise, under the HF condition. Data reinforce malnutrition during lactation modifies cortical electrophysiology even when the HF condition no longer exists.

  15. Maternal obesity and high-fat diet program offspring metabolic syndrome.

    PubMed

    Desai, Mina; Jellyman, Juanita K; Han, Guang; Beall, Marie; Lane, Robert H; Ross, Michael G

    2014-09-01

    We determined the potential programming effects of maternal obesity and high-fat (HF) diet during pregnancy and/or lactation on offspring metabolic syndrome. A rat model of maternal obesity was created using an HF diet prior to and throughout pregnancy and lactation. At birth, pups were cross-fostered, thereby generating 4 paradigms of maternal diets during pregnancy/lactation: (1) control (Con) diet during pregnancy and lactation (Con/Con), (2) HF during pregnancy and lactation (HF/HF), (3) HF during pregnancy alone (HF/Con), and (4) HF during lactation alone (Con/HF). Maternal phenotype during pregnancy and the end of lactation evidenced markedly elevated body fat and plasma corticosterone levels in HF dams. In the offspring, the maternal HF diet during pregnancy alone programmed increased offspring adiposity, although with normal body weight, whereas the maternal HF diet during lactation increased both body weight and adiposity. Metabolic disturbances, particularly that of hyperglycemia, were apparent in all groups exposed to the maternal HF diet (during pregnancy and/or lactation), although differences were apparent in the manifestation of insulin resistant vs insulin-deficient phenotypes. Elevated systolic blood pressure was manifest in all groups, implying that exposure to an obese/HF environment is disadvantageous for offspring health, regardless of pregnancy or lactation periods. Nonetheless, the underlying mechanism may differ because offspring that experienced in utero HF exposure had increased corticosterone levels. Maternal obesity/HF diet has a marked impact on offspring body composition and the risk of metabolic syndrome was dependent on the period of exposure during pregnancy and/or lactation. Copyright © 2014 Mosby, Inc. All rights reserved.

  16. Biochemical Effects of Aqueous Extract of Persea americana (Mill) on the Myocardium of Left Ventricle of High Salt–Fed Adult Wistar Rats

    PubMed Central

    Olushola, Ayoola I.; Aderibigbe, Komolafe O.; Stephen, Saka O.; Ayodeji, Odukoya S.

    2017-01-01

    Background. The cardioprotective effects of Persea americana extract was investigated on biochemical activities of high salt–fed adult Wistar rats in this study. Method. Forty healthy Wistar rats of both sexes weighing 120 to 150 g were randomly assigned into 8 groups of 5 rats each (groups A, B, C, D, E, F, G, and H). Rats in groups A, F, G, and H were fed with standard laboratory pellets, while groups B, C, D, and E were fed on the high-salt diet for 4 weeks. Concomitantly, daily administration of 50, 100, and 150 mg/kg of the P americana extract were given orally to groups C and F, D and G, and E and H, respectively, while rats in groups A and B were administered distilled water. Blood samples were taken by cardiac puncture; concentration of sodium ion, potassium ion, nitric oxide, and activity of lactate dehydrogenase were determined. One-way analysis of variance was used to analyze data, followed by Student-Newman-Keuls (SNK) test for multiple comparison. Results. Results revealed that concentration of potassium ion and nitric oxide was significantly lower (P < .05) in high salt–fed groups. Sodium ion concentration and activity of lactate dehydrogenase were higher in high salt–fed group while P americana prevented biochemical perturbations in other experimental groups. Conclusion. In conclusion, high salt–diet induced biochemical alterations which were significantly protected by oral administration of P americana extract. PMID:29228805

  17. [Study of rat blood serum biochemical indicators of cardiotoxic action of novel antitumor 4-thiazolidinone derivatives and doxorubicin in complexes with polyethylene glycol-containing polymeric carrier in the rat blood serum].

    PubMed

    Kobylyns'ka, L I; Havryliuk, D Ia; Riabtseva, A O; Mitina, N Ie; Zaichenko, O S; Zimenkovskyĭ, B S; Stoĭka, R S

    2014-01-01

    The aim of this study was to measure the activity of enzymes which reflect cardiotoxic action in rats of novel synthetic 4-thiazolidone derivatives--3882, 3288 and 3833 that demonstrated antineoplastic effect in vitro towards 60 lines of human tumor cells tested in the framework of the program of screening new anticancer drugs at the National Cancer Institute (USA). Such action of these compounds was compared with the effect of well known anticancer agent doxorubicin and after conjugation of all above mentioned substances with new polyethylenglycol-containing polymeric comb-like carrier that was synthesized by the authors. Among the biochemical indicators of cardiotoxic action of anticancer agents, activity of the following enzymes in rat blood serum showed to be the most informative: creatine kinase, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransterase. Tenfold injection of doxorubicin in a dose of 5.5 mg/kg of weight caused rats' death, while 3882, 3288 and 3833 preparations had not such action. Application of the doxorubicin in combination with polymeric carrier prolonged the survival time to 20 days. Thus, the injection of anticancer agents in a complex with polymeric carrier provides a significant decrease in their cardiotoxicity that was confirmed by the corresponding changes in the activity of marker enzymes: creatine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in blood serum of treated rats.

  18. Oleuropein and hydroxytyrosol protect rats' pups against bisphenol A induced hypothyroidism.

    PubMed

    Mahmoudi, Asma; Ghorbel, Hèla; Feki, Ines; Bouallagui, Zouhaier; Guermazi, Fadhel; Ayadi, Lobna; Sayadi, Sami

    2018-04-27

    Bisphenol A (BPA) can disturb the endocrine system and the organs that respond to endocrine signals in organisms, indirectly exposed during prenatal and/or early postnatal life. The present study was designed to assess the protective effect of phenolic compounds from olive leaves against BPA induced thyroid dysfunction and growth perturbation in young rats during lactation. The BPA disrupting effect on thyroid function was investigated by measuring changes in plasma levels of thyroid hormones. Free triiodothyronine (FT3) and thyroxine (FT4) were decreased in young rats breast-fed from mothers treated with bisphenol A. This effect was associated with an increase in the plasma level of thyroid-stimulating hormone (TSH). The histological and immunohistochemical study of the thyroid gland revealed a disturbance in morphological structure and thyroid cells function. Thyroid dysfunction led to a disruption in the skeletal bone growth of young rats. In fact, the infrared microspectroscopic analysis and histological examination of femoral bone showed significant changes in their histoarchitecture associated with a perturbation in the mechanism of bone tissue mineralization. The administration of oleuropein or hydroxytyrosol in BPA treated lactating mothers improved the thyroid cells function by enhancing thyroid hormone levels. Moreover, these phenolics increased the body growth characterized by an amelioration in the structure and the microstructure of femoral bone tissue. HPLC analysis of rats-breast milk indicated the presence of oleuropein and hydroxytyrosol, which could contribute to the protective effect against bisphenol A induced hypothyroidism in pups rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Biochemical Effects of Aqueous Extract of Persea americana (Mill) on the Myocardium of Left Ventricle of High Salt-Fed Adult Wistar Rats.

    PubMed

    Olushola, Ayoola I; Aderibigbe, Komolafe O; Stephen, Saka O; Ayodeji, Odukoya S

    2017-10-01

    The cardioprotective effects of Persea americana extract was investigated on biochemical activities of high salt-fed adult Wistar rats in this study. Forty healthy Wistar rats of both sexes weighing 120 to 150 g were randomly assigned into 8 groups of 5 rats each (groups A, B, C, D, E, F, G, and H). Rats in groups A, F, G, and H were fed with standard laboratory pellets, while groups B, C, D, and E were fed on the high-salt diet for 4 weeks. Concomitantly, daily administration of 50, 100, and 150 mg/kg of the P americana extract were given orally to groups C and F, D and G, and E and H, respectively, while rats in groups A and B were administered distilled water. Blood samples were taken by cardiac puncture; concentration of sodium ion, potassium ion, nitric oxide, and activity of lactate dehydrogenase were determined. One-way analysis of variance was used to analyze data, followed by Student-Newman-Keuls (SNK) test for multiple comparison. Results revealed that concentration of potassium ion and nitric oxide was significantly lower ( P < .05) in high salt-fed groups. Sodium ion concentration and activity of lactate dehydrogenase were higher in high salt-fed group while P americana prevented biochemical perturbations in other experimental groups. In conclusion, high salt-diet induced biochemical alterations which were significantly protected by oral administration of P americana extract.

  20. Interaction between glucocorticoids and glucagon in the hormonal modification of calcium retention by isolated rat liver mitochondria.

    PubMed

    Hughes, B P; Barritt, G J

    1979-05-15

    1. The administration of dexamethasone to intact fed rats by intraperitoneal injection for 3h was associated with a 6-fold increase in the time for which mitochondria subsequently isolated from the liver retain a given load of exogenous Ca2+. This effect was blocked by the co-administration of cycloheximide with dexamethasone, and partially blocked by the co-administration of puromycin. Daily administration of dexamethasone for periods of 4--7 days resulted in liver mitochondria that exhibited a decreased ability to retain exogenous Ca2+. 2. When glucagon was administered to fed adrenalectomized rats, the increase in mitochondrial Ca2+-retention time that results from the action of this hormone was reduced by 50% when compared with its effect on intact animals. The administration of dexamethasone to adrenalectomized rats partially restored the full effect of glucagon. 3. Dexamethasone did not enhance the effect of glucagon on mitochondrial Ca2+-retention time when administered to intact fed rats. 4. It is concluded that these data support the hypothesis that the hormone-induced modification of liver mitochondria, which results in an increase in the time for which exogenous Ca2+ is retained, involves a step in which new protein is synthesized.

  1. Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Chee, O.; Rosella-Dampman, L. M.; Emmert, S.; Summy-Long, J. Y.

    1984-01-01

    The effect of intracerebroventricular (ICV) pretreatment with 100 ng/5 microliter leucine(5)-enkephalin (LE) on the increase in plasma oxytocin (OT) and vasopressin (VP) caused by ICV injection of 10, 50, or 100 ng/5 microliter of angiotensin II (AII) is investigated experimentally in conscious adult male Sprague-Dawley rats; the effects of water-deprivation dehydration and lactation/suckling (in female rats) are also studied. An OT radioimmunoassay (RIA) with a sensitivity of 800 fg/ml (described in detail) and the VP RIA technique of Keil and Severs (1977) are employed. Administration of AII or dehydration for 48 or 72 h cause a significant increase in OT and VP without affecting the ratio, while lactation and suckling increase OT only. LE pretreatment inhibits significantly but does not suppress the AII-stimulated OT-VP response.

  2. Rapid neonatal weight gain in rats results in a renal ubiquinone (CoQ) deficiency associated with premature death.

    PubMed

    Shelley, Piran; Tarry-Adkins, Jane; Martin-Gronert, Malgorzata; Poston, Lucilla; Heales, Simon; Clark, John; Ozanne, Susan; McConnell, Josie

    2007-01-01

    We have recently reported that maternal dietary imbalance during pregnancy and lactation can reduce the lifespan of offspring. Rats that were growth restricted in utero by maternal protein restriction and underwent rapid weight gain when suckled by control fed dams died earlier than animals whose mothers were fed a control diet throughout pregnancy and lactation. We demonstrate here that mitochondrial abnormalities and DNA damage occur in the kidney of offspring who die prematurely. We have established by direct measurement and by in vitro supplementation that mitochondrial abnormalities occur because of a functional deficit of the mitochondrial cofactor coenzyme Q9 (CoQ9). These data provide molecular insight into the association between maternal nutrition and determination of offspring lifespan, and identify, a potential dietary intervention to prevent detrimental consequences of imbalanced maternal nutrition.

  3. Impact of cafeteria feeding during lactation in the rat on novel object discrimination in the offspring.

    PubMed

    Wright, Thomas M; King, Madeleine V; Davey, William G; Langley-Evans, Simon C; Voigt, Jörg-Peter W

    2014-12-28

    There is increasing evidence that hyperenergetic diets have an impact on memory in rodents. However, it is largely unknown how diets, such as a cafeteria diet (CD), that mimic a Western-type diet act on learning and memory, in particular when fed during early stages of development. Here, we fed lactating dams a CD and exposed both male and female offspring to a novel object discrimination (NOD) task, a two-trial test of recognition memory in which rats exposed to two identical objects during a training/familiarisation trial can discriminate a novel from a familiar object during the subsequent choice trial. The choice trial was performed following inter-trial interval (ITI) delays of up to 4 h. Maternal diet did not have an impact on exploration of the objects by either sex during the familiarisation trial. Control males discriminated the novel from the familiar object, indicating intact memory with an ITI of 1 h, but not 2 or 4 h. The CD delayed this natural forgetting in male rats such that discrimination was also evident after a 2 h ITI. In contrast, control females exhibited discrimination following both 1 and 2 h ITI, but the CD impaired performance. In summary, the present study shows that maternal exposure to the CD programmes NOD in the adult. In better-performing females, dietary programming interferes with NOD, whereas NOD was improved in males after lactational CD feeding.

  4. Different combinations of maternal and postnatal diet are reflected in changes of hepatic parenchyma and hepatic TNF-alpha expression in male rat offspring.

    PubMed

    Kačarević, Željka Perić; Grgić, Anđela; Šnajder, Darija; Bijelić, Nikola; Belovari, Tatjana; Cvijanović, Olga; Blažičević, Valerija; Radić, Radivoje

    2017-09-01

    Obesity is related to increased TNF-alpha production in different tissues. TNF-alpha is connected to mitochondrial dysfunction in the liver and also development of fatty infiltration of the liver. Also, postnatal change from normal to high-fat diet causes a significant increase in TNF-alpha serum levels. The aim of this research was to determine how maternal diet and switching male offspring to a different dietary regime after lactation influences rat liver. Ten female Sprague Dawley rats at nine weeks of age were randomly divided in two groups and fed either standard laboratory chow or high-fat diet during six weeks, and then mated with the same male subject. After birth and lactation male offspring from both groups were further divided into four subgroups depending on their subsequent diet. At 22 weeks of age, the animals were weighted, sacrificed and major organs were collected and weighted. Immunohistochemistry for TNF-alpha was performed on liver, and liver samples were analyzed for pathohistological changes. The group in which mothers were fed standard chow and offspring high-fat diet had the most pronounced changes: heaviest liver, poorest histopathological findings and strongest TNF-alpha immunohistochemical staining of liver parenchyma. High-fat diet during pregnancy and lactation and switching to high-fat diet postnatally affects liver weight, histological structure and TNF-alpha expression in male offspring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo.

    PubMed

    Itoh, Yoshiaki; Esaki, Takanori; Shimoji, Kazuaki; Cook, Michelle; Law, Mona J; Kaufman, Elaine; Sokoloff, Louis

    2003-04-15

    Neuronal cultures in vitro readily oxidized both D-[(14)C]glucose and l-[(14)C]lactate to (14)CO(2), whereas astroglial cultures oxidized both substrates sparingly and metabolized glucose predominantly to lactate and released it into the medium. [(14)C]Glucose oxidation to (14)CO(2) varied inversely with unlabeled lactate concentration in the medium, particularly in neurons, and increased progressively with decreasing lactate concentration. Adding unlabeled glucose to the medium inhibited [(14)C]lactate oxidation to (14)CO(2) only in astroglia but not in neurons, indicating a kinetic preference in neurons for oxidation of extracellular lactate over intracellular pyruvatelactate produced by glycolysis. Protein kinase-catalyzed phosphorylation inactivates pyruvate dehydrogenase (PDH), which regulates pyruvate entry into the tricarboxylic acid cycle. Dichloroacetate inhibits this kinase, thus enhancing PDH activity. In vitro dichloroacetate stimulated glucose and lactate oxidation to CO(2) and reduced lactate release mainly in astroglia, indicating that limitations in glucose and lactate oxidation by astroglia may be due to a greater balance of PDH toward the inactive form. To assess the significance of astroglial export of lactate to neurons in vivo, we attempted to diminish this traffic in rats by administering dichloroacetate (50 mgkg) intravenously to stimulate astroglial lactate oxidation and then examined the effects on baseline and functionally activated local cerebral glucose utilization (lCMR(glc)). Dichloroacetate raised baseline lCMR(glc) throughout the brain and decreased the percent increases in lCMR(glc) evoked by functional activation. These studies provide evidence in support of the compartmentalization of glucose metabolism between astroglia and neurons but indicate that the compartmentalization may be neither complete nor entirely obligatory.

  6. Effects of Urtica dioica on hepatic ischemia-reperfusion injury in rats.

    PubMed

    Kandis, Hayati; Karapolat, Sami; Yildirim, Umran; Saritas, Ayhan; Gezer, Suat; Memisogullari, Ramazan

    2010-01-01

    To evaluate the effects of Urtica dioica on hepatic ischemia-reperfusion injury. Thirty adult male Wistar albino rats were divided into three groups: sham group (group 1), control group (group 2), and Urtica dioica group (group 3). All the rats were exposed to hepatic ischemia for 60 min, followed by 60 min of reperfusion. In group 2, a total of 2 ml/kg 0.9% saline solution was given intraperitoneally. In group 3, a total of 2 ml/kg Urtica dioica was given intraperitoneally. At the end of the procedure, liver tissue and blood samples were taken from all rats. Serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, ceruloplasmin, catalase, paraoxonase, arylesterase, and lipid hydroperoxide levels were measured. Liver tissue histopathologies were also evaluated by light microscopy. Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase levels were significantly higher in group 2 than in group 1, and significantly lower in group 3 than in group 2. Also, group 2 had higher serum lipid hydroperoxides and ceruloplasmin levels but lower catalase, paraoxonase, and arylesterase levels than group 1. In group 3, serum lipid hydroperoxides and ceruloplasmin levels were significantly lower, and catalase, paraoxonase, and arylesterase levels were higher than those in group 2. Histopathological examination showed that liver tissue damage was significantly decreased in group 3 compared with group 2. Urtica dioica has a protective effect on the liver in hepatic ischemia-reperfusion-injured rats.

  7. Ambient temperature shapes reproductive output during pregnancy and lactation in the common vole (Microtus arvalis): a test of the heat dissipation limit theory.

    PubMed

    Simons, Mirre J P; Reimert, Inonge; van der Vinne, Vincent; Hambly, Catherine; Vaanholt, Lobke M; Speakman, John R; Gerkema, Menno P

    2011-01-01

    The heat dissipation limit theory suggests that heat generated during metabolism limits energy intake and, thus, reproductive output. Experiments in laboratory strains of mice and rats, and also domestic livestock generally support this theory. Selection for many generations in the laboratory and in livestock has increased litter size or productivity in these animals. To test the wider validity of the heat dissipation limit theory, we studied common voles (Microtus arvalis), which have small litter sizes by comparison with mice and rats, and regular addition of wild-caught individuals of this species to our laboratory colony ensures a natural genetic background. A crossover design of ambient temperatures (21 and 30°C) during pregnancy and lactation was used. High ambient temperature during lactation decreased milk production, slowing pup growth. The effect on pup growth was amplified when ambient temperature was also high during pregnancy. Shaving fur off dams at 30°C resulted in faster growth of pups; however, no significant increase in food intake and or milk production was detected. With increasing litter size (natural and enlarged), asymptotic food intake during lactation levelled off in the largest litters at both 21 and 30°C. Interestingly, the effects of lactation temperature on pup growth where also observed at smaller litter sizes. This suggests that vole dams trade-off costs associated with hyperthermia during lactation with the yield from investment in pup growth. Moreover, pup survival was higher at 30°C, despite lower growth, probably owing to thermoregulatory benefits. It remains to be seen how the balance is established between the negative effect of high ambient temperature on maternal milk production and pup growth (and/or future reproduction of the dam) and the positive effect of high temperatures on pup survival. This balance ultimately determines the effect of different ambient temperatures on reproductive success.

  8. The effect of low ambient temperature on the febrile responses of rats to semi-purified human endogenous pyrogen.

    PubMed

    Stitt, J T; Shimada, S G

    1985-01-01

    The febrile responses of Sprague-Dawley rats to semi-purified human endogenous pyrogen were studied at a thermoneutral ambient temperature (26 degrees C) and in the cold (3 degrees C). It was found that while rats developed typical monophasic febrile responses at thermoneutrality, febrile responses were absent in the cold-exposed rats. Experiments were conducted to determine whether this lack of febrile responses in cold-exposed rats was due to an inability of these animals to generate or retain heat in the cold. Thermogenesis and vasoconstriction were stimulated in cold-exposed rats by selectively cooling the hypothalamus, using chronically implanted thermodes. It was shown that, using this stimulus, metabolic rate could be increased by more than 50 percent and body temperature could be driven up at a rate of 5 degrees C/hour in rats exposed to the cold. Therefore, it was concluded that the lack of febrile responses of cold-exposed rats to pyrogen is in no way due to a physical or physiological inability to retain heat. Instead, it appears that in some manner cold exposure suppresses the sensitivity or responsiveness of the rat to pyrogenic stimuli.

  9. Dynamics of vascular volume and hemodilution of lactated Ringer’s solution in patients during induction of general and epidural anesthesia*

    PubMed Central

    Li, Yu-hong; Lou, Xian-feng; Bao, Fang-ping

    2006-01-01

    Objective: To investigate the dynamics of vascular volume and the plasma dilution of lactated Ringer’s solution in patients during the induction of general and epidural anesthesia. Methods: The hemodilution of i.v. infusion of 1000 ml of lactated Ringer’s solution over 60 min was studied in patients undergoing general (n=31) and epidural (n=22) anesthesia. Heart rate, arterial blood pressure and hemoglobin (Hb) concentration were measured every 5 min during the study. Surgery was not started until the study period had been completed. Results: General anesthesia caused the greater decrease of mean arterial blood pressure (MAP) (mean 15% versus 9%; P<0.01) and thereby followed by a more pronounced plasma dilution, blood volume expansion (VE) and blood volume expansion efficiency (VEE). A strong linear correlation between hemodilution and the reduction in MAP (r=−0.50; P<0.01) was found. At the end of infusion, patients undergoing general anesthesia retained 47% (SD 19%) of the infused fluid in the circulation, while epidural anesthesia retained 29% (SD 13%) (P<0.001). Correspondingly, a fewer urine output (mean 89 ml versus 156 ml; P<0.05) and extravascular expansion (454 ml versus 551 ml; P<0.05) were found during general anesthesia. Conclusion: We concluded that the induction of general anesthesia caused more hemodilution, volume expansion and volume expansion efficiency than epidural anesthesia, which was triggered only by the lower MAP. PMID:16909476

  10. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1-13 C]Alanine.

    PubMed

    Park, Jae Mo; Khemtong, Chalermchai; Liu, Shie-Chau; Hurd, Ralph E; Spielman, Daniel M

    2017-05-01

    The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD + ]. In this study, we assessed the use of hyperpolarized [1- 13 C]alanine and the subsequent detection of the intracellular products of [1- 13 C]pyruvate and [1- 13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1- 13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. In vivo rat liver spectra showed peaks from [1- 13 C] alanine and the products of [1- 13 C]lactate, [1- 13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/ 13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P < 0.001) consistent with the increased NADH produced by liver metabolism of ethanol to acetaldehyde and then acetate. A decrease in 13 C-bicarbonate production was also noted, potentially reflecting ethanol-induced mitochondrial redox changes. A method to measure in vivo tissue redox using hyperpolarized [1- 13 C]alanine is presented, with the validity of the proposed 13 C-pyruvate/ 13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters

    PubMed Central

    Nancolas, Bethany; Guo, Lili; Zhou, Rong; Nath, Kavindra; Nelson, David S.; Leeper, Dennis B.; Blair, Ian A.; Glickson, Jerry D.; Halestrap, Andrew P.

    2016-01-01

    Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitising tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, while indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). Here we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5 μM) and cooperatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill Coefficient values of 36–40 μM and 1.65–1.85. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50 ~7 μM) than other substrates including glutamate (IC50 ~20 μM). In isolated DB-1 melanoma cells 1–10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output while increasing intracellular [L-lactate] > five-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND on L-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate. PMID:26831515

  12. Creatine supplementation and oxidative stress in rat liver

    PubMed Central

    2013-01-01

    Background The objective of this study was to determine the effects of creatine supplementation on liver biomarkers of oxidative stress in exercise-trained rats. Methods Forty 90-day-old adult male Wistar rats were assigned to four groups for the eight-week experiment. Control group (C) rats received a balanced control diet; creatine control group (CCr) rats received a balanced diet supplemented with 2% creatine; trained group (T) rats received a balanced diet and intense exercise training equivalent to the maximal lactate steady state phase; and supplemented-trained (TCr) rats were given a balanced diet supplemented with 2% creatine and subjected to intense exercise training equivalent to the maximal lactate steady state phase. At the end of the experimental period, concentrations of creatine, hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS) were measured as well as the enzyme activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-GPx) and catalase (CAT). Liver tissue levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and the GSH/GSSG ratio were also determined. Results Hepatic creatine levels were highest in the CCr and TCr groups with increased concentration of H2O2 observed in the T and TCr animal groups. SOD activity was decreased in the TCr group. GSH-GPx activity was increased in the T and TCr groups while CAT was elevated in the CCr and TCr groups. GSH, GGS and the GSH/GSSG ratio did not differ between all animal subsets. Conclusions Our results demonstrate that creatine supplementation acts in an additive manner to physical training to raise antioxidant enzymes in rat liver. However, because markers of liver oxidative stress were unchanged, this finding may also indicate that training-induced oxidative stress cannot be ameliorated by creatine supplementation. PMID:24325803

  13. Monochloroacetic acid lethality in the rat in relation to lactic acid accumulation in the cerebrospinal fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitroka, J.G.

    1989-01-01

    Potential antidotes for human exposure to monochloroacetic acid (MCA) were evaluated using a rodent model. Dichloroacetic acid (DCA) and phenobarbital (PB) but not ethanol or phenytoin, were found to be effective antidotes to monochloroacetic acid (MCA) in rats. DCA (110 mg/kg, ip), administered to rats 15 minutes after a LD-80 of MCA (80 mg/kg, iv), consistently reduced mortality to 0%, while PB reduced mortality to less than 20%. Both DCA and PB were found to be similarly effective in mice. The hypothesis that PB reduces mortality in MCA treated rats by altering the metabolic disposition of MCA was evaluated andmore » rejected. Administration of PB to rats treated with a lethal dose of ({sup 14}C)MCA did not alter the concentrations of MCA or its metabolites in plasma or cerebrospinal fluid (CSF), or the extent of covalent binding between radioactivity equivalent to ({sup 14}C)MCA and brain proteins. The relationship between altered blood-brain barrier permeability and death in MCA treated rats was investigated. Treatment with MCA (80 mg/kg, iv) was associated with a significant (50%) increase in the permeability of the rat blood-brain barrier to ({sup 125}I)BSA. The effect was not altered by treatment with PB, however, suggesting that altered blood-brain barrier permeability does not have an important role in the lethal effect of MCA in rats. The effect of MCA on brain carbohydrate metabolism in vivo was investigated. CSF and blood lactic acid concentrations increased in MCA treated rats, and the increase in CSF levels was dose related. In individual MCA treated rats, CSF lactate concentrations paralleled the time course of ataxia and a discrete threshold for death (18 mmol/L) was observed. The relationship between excess brain lactate levels and death in MCA treated rats was investigated further.« less

  14. Disrupting astrocyte-neuron lactate transfer persistently reduces conditioned responses to cocaine.

    PubMed

    Boury-Jamot, B; Carrard, A; Martin, J L; Halfon, O; Magistretti, P J; Boutrel, B

    2016-08-01

    A central problem in the treatment of drug addiction is the high risk of relapse often precipitated by drug-associated cues. The transfer of glycogen-derived lactate from astrocytes to neurons is required for long-term memory. Whereas blockade of drug memory reconsolidation represents a potential therapeutic strategy, the role of astrocyte-neuron lactate transport in long-term conditioning has received little attention. By infusing an inhibitor of glycogen phosphorylase into the basolateral amygdala of rats, we report that disruption of astrocyte-derived lactate not only transiently impaired the acquisition of a cocaine-induced conditioned place preference but also persistently disrupted an established conditioning. The drug memory was rescued by L-Lactate co-administration through a mechanism requiring the synaptic plasticity-related transcription factor Zif268 and extracellular signal-regulated kinase (ERK) signalling pathway but not the brain-derived neurotrophic factor (Bdnf). The long-term amnesia induced by glycogenolysis inhibition and the concomitant decreased expression of phospho-ERK were both restored with L-Lactate co-administration. These findings reveal a critical role for astrocyte-derived lactate in positive memory formation and highlight a novel amygdala-dependent reconsolidation process, whose disruption may offer a novel therapeutic target to reduce the long-lasting conditioned responses to cocaine.

  15. Ontogenetic role of angiontensin-converting enzyme in rats: thirst and sodium appetite evaluation.

    PubMed

    Mecawi, André S; Araujo, Iracema G; Rocha, Fábio F; Coimbra, Terezila M; Antunes-Rodrigues, José; Reis, Luís C

    2010-01-12

    We investigated the influence of captopril (an angiotensin converting enzyme inhibitor) treatment during pregnancy and lactation period on hydromineral balance of the male adult offspring, particularly, concerning thirst and sodium appetite. We did not observe significant alterations in basal hydromineral (water intake, 0.3M NaCl intake, volume and sodium urinary concentration) or cardiovascular parameters in adult male rats perinatally treated with captopril compared to controls. However, male offspring rats that perinatally exposed to captopril showed a significant attenuation in water intake induced by osmotic stimulation, extracellular dehydration and beta-adrenergic stimulation. Moreover, captopril treatment during perinatal period decreased the salt appetite induced by sodium depletion. This treatment also attenuated thirst and sodium appetite aroused during inhibition of peripheral angiotensin II generation raised by low concentration of captopril in the adult offspring. Interestingly, perinatal exposure to captopril did not alter water or salt intake induced by i.c.v. administration of angiotensin I or angiotensin II. These results showed that chronic inhibition of angiotensin converting enzyme during pregnancy and lactation modifies the regulation of induced thirst and sodium appetite in adulthood.

  16. Predicting Lactational and Early Post-Weaning Exposures in Rats Using Biologically Based Pharmacokinetic Modeling

    EPA Science Inventory

    Risk and safety assessments for early life exposures to environmental chemicals or pharmaceuticals based on cross-species extrapolation would greatly benefit from information on chemical dosimetry in the young.

  17. Tavaborole, a Novel Boron-Containing Small Molecule Pharmaceutical Agent for Topical Treatment of Onychomycosis: II. Prenatal and Postnatal Developmental Toxicity and Maternal Function Study.

    PubMed

    Ciaravino, Vic; Coronado, Dina; Lanphear, Cheryl; Hoberman, Alan; Chanda, Sanjay

    2016-09-01

    Tavaborole is a topical antifungal agent approved by the US Food and Drug Administration for the treatment of toenail onychomycosis. The effects of tavaborole on gestation, parturition (delivery, labor), offspring development, and survival during the perinatal and postnatal periods were assessed in mated female rats. Females (F0 generation) were administered single daily oral (gavage) doses of 15, 60, or 100 mg/kg/d from gestation day 6 through lactation day 20. The females were allowed to deliver naturally and rear their offspring until lactation day 21, at which time the F0 females were euthanized. One male and female from each litter were selected (F1 generation) and retained for assessments, including growth, neurobehavior, fertility, and their ability to produce an F2 generation. Reproductive and offspring parameters were determined for the F1 and F2 generations, as applicable. F1 females and F2 pups were euthanized on postnatal day 7. In the F0 females, decreased activity was observed in the 100 mg/kg/d dose group. Excess salivation was observed in the 60 and 100 mg/kg/d dose groups (slight to moderate), however, this finding was not considered adverse. There were no tavaborole-related effects on the growth, viability, development, neurobehavioral assessments, or reproductive performance of the F1 generation. Survivability and mean body weight of the F2 pups were unaffected. The no observed adverse effect level (NOAEL) for maternal toxicity (F0 generation) was 60 mg/kg/d, based on the decreased activity observed in the 100 mg/kg/d dose group. The NOAEL for the offspring effects was ≥100 mg/kg/d, based on the lack of test article-related changes. © The Author(s) 2016.

  18. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning: role of protein kinase B/Akt signaling.

    PubMed

    Feng, Jianhua; Fischer, Gregor; Lucchinetti, Eliana; Zhu, Min; Bestmann, Lukas; Jegger, David; Arras, Margarete; Pasch, Thomas; Perriard, Jean-Claude; Schaub, Marcus C; Zaugg, Michael

    2006-05-01

    Postinfarct remodeled myocardium exhibits numerous structural and biochemical alterations. So far, it is unknown whether postconditioning elicited by volatile anesthetics can also provide protection in the remodeled myocardium. Myocardial infarct was induced in male Wistar rats by ligation of the left anterior descending coronary artery. Six weeks later, hearts were buffer-perfused and exposed to 40 min of ischemia followed by 90 min of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane. In some experiments, LY294002 (15 microM), a phosphatidylinositol 3-kinase inhibitor, was coadministered with isoflurane. Masson's trichrome staining, immunohistochemistry, Western blot analysis, and reverse-transcription polymerase chain reaction served to confirm remodeling. In buffer-perfused hearts, functional recovery was recorded, and acute infarct size was measured using 1% triphenyltetrazolium chloride staining and lactate dehydrogenase release during reperfusion. Western blot analysis was used to determine phosphorylation of reperfusion injury salvage kinases including protein kinase B/Akt and its downstream targets after 15 min of reperfusion. Infarct hearts exhibited typical macroscopic and molecular changes of remodeling. Isoflurane postconditioning improved functional recovery and decreased acute infarct size, as determined by triphenyltetrazolium (35 +/- 5% in unprotected hearts vs. 8 +/- 3% in anesthetic postconditioning; P < 0.05) and lactate dehydrogenase release. This protection was abolished by LY294002, which inhibited phosphorylation of protein kinase B/Akt and its downstream targets glycogen synthase kinase 3beta, endothelial nitric oxide synthase, and p70S6 kinase. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning via protein kinase B/Akt signaling. This is the first time to demonstrate that anesthetic postconditioning retains its marked protection in diseased myocardium.

  19. Immunohistochemical localization of GLUT3, MCT1, and MCT2 in the testes of mice and rats: the use of different energy sources in spermatogenesis.

    PubMed

    Kishimoto, Ayuko; Ishiguro-Oonuma, Toshina; Takahashi, Ritei; Maekawa, Mamiko; Toshimori, Kiyotaka; Watanabe, Masahiko; Iwanaga, Toshihiko

    2015-01-01

    Lactate represents a preferential energy substrate of germ cells rather than glucose. Testicular Sertoli cells are believed to produce lactate and pyruvate and to supply these to germ cells, particularly spermatocytes and spermatids. Monocarboxylate transporter (MCT), responsible for the transport of lactate and other monocarboxylates via the cell membrane, is abundant in the testes and sperm (MCT1, MCT2, and MCT4). For the uptake of glucose, germ cells within the seminiferous tubules and sperm have been known to intensely express GLUT3. The present study investigated expression profiles of MCTs and GLUTs and revealed their cellular and subcellular localization in the mouse and rat testis. An in situ hybridization analysis showed significant expressions of MCT1, MCT2, and GLUT3 mRNA in the testis. Immunohistochemically, spermatogonia, spermatocytes, and spermatids expressed MCT1 on their cell surfaces in a stage-dependent manner: in some seminiferous tubules, an intense expression of MCT1 was unique to the spermatogonia. MCT2 was restricted to the tails of elongated spermatids and sperm. An intense immunoreactivity for GLUT3 was shared by spermatocytes, spermatids, and sperm. Sertoli cells were devoid of any immunoreactivities for MCT1, MCT2, and GLUT3. The predominant energy source of germ cells may be lactate and other monocarboxylates--especially for spermatogonia, but glucose and other hexoses may be responsible for an energy supply to spermatocytes and spermatids.

  20. Multiple-trait estimates of genetic parameters for metabolic disease traits, fertility disorders, and their predictors in Canadian Holsteins.

    PubMed

    Jamrozik, J; Koeck, A; Kistemaker, G J; Miglior, F

    2016-03-01

    Producer-recorded health data for metabolic disease traits and fertility disorders on 35,575 Canadian Holstein cows were jointly analyzed with selected indicator traits. Metabolic diseases included clinical ketosis (KET) and displaced abomasum (DA); fertility disorders were metritis (MET) and retained placenta (RP); and disease indicators were fat-to-protein ratio, milk β-hydroxybutyrate, and body condition score (BCS) in the first lactation. Traits in first and later (up to fifth) lactations were treated as correlated in the multiple-trait (13 traits in total) animal linear model. Bayesian methods with Gibbs sampling were implemented for the analysis. Estimates of heritability for disease incidence were low, up to 0.06 for DA in first lactation. Among disease traits, the environmental herd-year variance constituted 4% of the total variance for KET and less for other traits. First- and later-lactation disease traits were genetically correlated (from 0.66 to 0.72) across all traits, indicating different genetic backgrounds for first and later lactations. Genetic correlations between KET and DA were relatively strong and positive (up to 0.79) in both first- and later-lactation cows. Genetic correlations between fertility disorders were slightly lower. Metritis was strongly genetically correlated with both metabolic disease traits in the first lactation only. All other genetic correlations between metabolic and fertility diseases were statistically nonsignificant. First-lactation KET and MET were strongly positively correlated with later-lactation performance for these traits due to the environmental herd-year effect. Indicator traits were moderately genetically correlated (from 0.30 to 0.63 in absolute values) with both metabolic disease traits in the first lactation. Smaller and mostly nonsignificant genetic correlations were among indicators and metabolic diseases in later lactations. The only significant genetic correlations between indicators and fertility disorders were those between BCS and MET in both first and later lactations. Results indicated a limited value of a joint genetic evaluation model for metabolic disease traits and fertility disorders in Canadian Holsteins. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. [The effect of the intratracheal administration of americium-241 on rat alveolar macrophages].

    PubMed

    Shopova, V; Sŭlovski, P; Dancheva, V

    1996-01-01

    In experiments in rats it was found that 241Am transitory decreases the total cell number and alveolar macrophage's percentage in bronchoalveolar lavage fluid (BALF): increases the macrophages size and nuclear size; and increases acid phosphatase and lactate dehydrogenase activities in BALF. It was suggested that 241Am causes and activation in the alveolar macrophages which probably appears as one of factors provoking lung injuries.

  2. [Crabtree effect caused by ketoses in isolated rat hepatocytes].

    PubMed

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1982-01-01

    Oxygen uptake and glycolytic activity were studied in hepatocytes isolated from fed rats. The addition of fructose or tagatose resulted in a 38% and 31% inhibition of cellular respiration respectively. The addition of 10 mM D-glyceraldehyde caused a slight Crabtree effect. Glucose, L-sorbose, or glycerol failed to modify oxygen consumption. Only incubation in the presence of fructose showed a high aerobic glycolysis measured by lactate production.

  3. Hypothyroxinemia induced by maternal mild iodine deficiency impairs hippocampal myelinated growth in lactational rats.

    PubMed

    Wei, Wei; Wang, Yi; Dong, Jing; Wang, Yuan; Min, Hui; Song, Binbin; Shan, Zhongyan; Teng, Weiping; Xi, Qi; Chen, Jie

    2015-11-01

    Hypothyroxinemia induced by maternal mild iodine deficiency causes neurological deficits and impairments of brain function in offspring. Hypothyroxinemia is prevalent in developing and developed countries alike. However, the mechanism underlying these deficits remains less well known. Given that the myelin plays an important role in learning and memory function, we hypothesize that hippocampal myelinated growth may be impaired in rat offspring exposed to hypothyroxinemia induced by maternal mild iodine deficiency. To test this hypothesis, the female Wistar rats were used and four experimental groups were prepared: (1) control; (2) maternal mild iodine deficiency diet inducing hypothyroxinemia; (3) hypothyroidism induced by maternal severe iodine deficiency diet; (4) hypothyroidism induced by maternal methimazole water. The rats were fed the diet from 3 months before pregnancy to the end of lactation. Our results showed that the physiological changes occuring in the hippocampal myelin were altered in the mild iodine deficiency group as indicated by the results of immunofluorescence of myelin basic proteins on postnatal day 14 and postnatal day 21. Moreover, hypothyroxinemia reduced the expressions of oligodendrocyte lineage transcription factor 2 and myelin-related proteins in the treatments on postnatal day 14 and postnatal day 21. Our data suggested that hypothyroxinemia induced by maternal mild iodine deficiency may impair myelinated growth of the offspring. © 2014 Wiley Periodicals, Inc.

  4. Analyses of plasma for metabolic and hormonal changes in rats flown aboard Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Merrill, Alfred H., Jr.; Wang, Elaine; Mullins, Richard E.; Grindeland, Richard E.; Popova, Irina A.

    1992-01-01

    Plasmas samples from rats flown aboard Cosmos 2044 were analyzed for the levels of key metabolites, electrolytes, enzymes, and hormones. The major differences between the flight group and the synchronous control were elevations in glucose, cholesterol, phosphate, creatinine, blood urea nitrogen, lactate dehydrogenase, and aspartate aminotransferase and decreased levels of thyroxine. Most of these differences were not mimicked by tail suspension of ground-based rats; however, both flight and suspended rats exhibited inhibited testosterone secretion. Corticosterone, immunoreactive growth hormone, and prolactin showed inconsistent differences from the various control groups, suggesting that the levels of these hormones were not due to actual or simulated microgravity.

  5. Influence of long-term treatment of the rat with clebopride on the morphology of the mammary gland.

    PubMed

    de Lima, T C; Morato, G S; Loch, S; Tames, D R

    1990-01-01

    The substituted benzamides or orthopramides are used to treat gastrointestinal and psychotic disorders. The orthopramide clebopride, a potent dopaminergic antagonist, blocks emesis in dogs and stereotyped behavior in rodents. Since the release of prolactin is inhibited by dopamine, antidopaminergic drugs may be useful to increase lactation in nursing mothers. The present work examines the morphological and histological alterations produced by long-term treatment of puerperal and virgin female rats with clebopride. Clebopride induced significant hyperplasia of parenchymal secretory units and stimulated milk secretion in both groups of rats. However, only in virgin rats was mammary weight significantly increased.

  6. Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung

    NASA Astrophysics Data System (ADS)

    Das, Gautom K.; Anderson, Donald S.; Wallis, Chris D.; Carratt, Sarah A.; Kennedy, Ian M.; van Winkle, Laura S.

    2016-06-01

    Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00897f

  7. Intravenous injections of soluble drag-reducing polymers reduce foreign body reaction to implants.

    PubMed

    Marascalco, Philip J; Blair, Harry C; Nieponice, Alejandro; Robinson, Lisa J; Kameneva, Marina V

    2009-01-01

    We tested whether soluble viscoelastic drag-reducing polymers (DRPs), which modify blood flow in the macro- and microcirculation, affect host response to implanted biomaterials and control biodegradation and tissue ingrowth processes. Porous poly(L-lactate) (PLLA) implants, which are naturally hydrolyzed by foreign body giant cells, were used to evaluate differences in host response. Intravenous DRPs, high-molecular weight poly(ethylene oxide) (PEO) or poly(mannose) (PMNN), were given biweekly at 0.3-0.4 nM in saline (equivalent volumes of saline in controls) to rats with subcutaneous PLLA implants. After 7 weeks, there was no difference in weight gain or behavior between control and DRP-injected groups. Implanted PLLA scaffolds in controls were almost totally degraded and replaced by giant cell granulomas. On the contrary, PEO- or PMNN-treated animals retained a significant part of the implanted scaffold (p < 0.0001 vs. controls). The foreign body reaction was markedly decreased, and there was an increase in well-oriented collagen deposition within the implanted scaffold area in the animals treated with DRPs. The DRP-mediated effects observed in this study potentially reflect alteration in inflammatory events in response to implanted bioengineered materials, and, thus, warrant further investigation.

  8. Foetal and lactational exposure to alcohol increases oxidative capacity of brown adipose tissue in the rat. A possible relationship to cot death.

    PubMed Central

    Huttunen, P.; Kortelainen, M. L.; Hirvonen, J.

    1989-01-01

    The effect was studied of chronic alcohol intake in the rat during pregnancy and lactation on the brown adipose tissue (BAT) in pups. The idea was to find a possible relationship to cot death since in some cot death victims increased amounts of BAT have been observed. Exposure to ethanol increased the relative weight of the brown adipose tissue in pups and enhanced both its total protein content and the activities of the oxidative enzymes, succinate dehydrogenase and cytochrome oxidase. In the BAT of pups sympathetic activity, as demonstrated by noradrenaline, was also increased by long-term exposure to alcohol. In theory, an increased thermogenic capacity of the BAT in the newborn together with other factors such as emotional stress and infections could lead to death from hyperthermia, in which case only non-specific morphological signs would be found in the cadaver. PMID:2605116

  9. Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung.

    PubMed

    Das, Gautom K; Anderson, Donald S; Wallis, Chris D; Carratt, Sarah A; Kennedy, Ian M; Van Winkle, Laura S

    2016-06-02

    Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m(-3) of ∼30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu(3+)) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.

  10. Butanolic fraction of Moringa oleifera Lam. (Moringaceae) attenuates isoprotrenol-induced cardiac necrosis and oxidative stress in rats: an EPR study.

    PubMed

    Panda, Sunanda

    2015-01-01

    The preventive effect of Moringa oleifera polyphenolic fraction (MOPF) on cardiac damage was evaluated in isoproterenol (ISO) induced cardiotoxicity model of Wistar rats. Male rats in different groups were treated with MOPF orally at the dose of 50, 100 and 150 mg/kg/day for 28 days and were subsequently administered (s.c.) with ISO (85 mg/kg body weight) for the last two days. At the end of the experiment levels of serum troponin-T, creatine kinase-MB, lactate dehydrogenase, content of malondialdehyde (MDA), activities/levels of different cellular antioxidants were estimated in control and experimental groups. Additionally, scavenging potential to the hydroxyl radical of the fraction was measured by electron paramagnetic resonance (EPR). ISO administered rats showed significant increase in the levels of serum troponin-I, creatine kinase, lactate dehydrogenase, and heart tissue MDA content. Furthermore, marked reduction in the activities of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione levels were observed. EPR study showed an increase in signal intensity in ISO-induced rats. Triphenyl tetrazolium chloride (TTC) staining of heart section revealed a marked increase in infarcted area in ISO-induced rats. Histological features of the heart also indicated a disruption in the structure of cardiac myofibrils in these animals. MOPF (100 mg/kg body weight) pretreatment prevented all these adverse effects of ISO. Present results show that the rich polyphenolic content of Moringa oleifera significantly reduced the myocardial damage and decreased the oxidative stress, possibly through hydroxyl radical scavenging activity as evidenced from the EPR spectra.

  11. Butanolic fraction of Moringa oleifera Lam. (Moringaceae) attenuates isoprotrenol-induced cardiac necrosis and oxidative stress in rats: an EPR study

    PubMed Central

    Panda, Sunanda

    2015-01-01

    The preventive effect of Moringa oleifera polyphenolic fraction (MOPF) on cardiac damage was evaluated in isoproterenol (ISO) induced cardiotoxicity model of Wistar rats. Male rats in different groups were treated with MOPF orally at the dose of 50, 100 and 150 mg/kg/day for 28 days and were subsequently administered (s.c.) with ISO (85 mg/kg body weight) for the last two days. At the end of the experiment levels of serum troponin-T, creatine kinase-MB, lactate dehydrogenase, content of malondialdehyde (MDA), activities/levels of different cellular antioxidants were estimated in control and experimental groups. Additionally, scavenging potential to the hydroxyl radical of the fraction was measured by electron paramagnetic resonance (EPR). ISO administered rats showed significant increase in the levels of serum troponin-I, creatine kinase, lactate dehydrogenase, and heart tissue MDA content. Furthermore, marked reduction in the activities of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione levels were observed. EPR study showed an increase in signal intensity in ISO-induced rats. Triphenyl tetrazolium chloride (TTC) staining of heart section revealed a marked increase in infarcted area in ISO-induced rats. Histological features of the heart also indicated a disruption in the structure of cardiac myofibrils in these animals. MOPF (100 mg/kg body weight) pretreatment prevented all these adverse effects of ISO. Present results show that the rich polyphenolic content of Moringa oleifera significantly reduced the myocardial damage and decreased the oxidative stress, possibly through hydroxyl radical scavenging activity as evidenced from the EPR spectra. PMID:26417351

  12. Peritoneal lavage with povidone-iodine solution in colorectal cancer-induced rats.

    PubMed

    Song, Hua-Li; Zhang, Dong-Mei; Wen, Heng; Wang, Meng; Zhao, Na; Gao, Yu-Hua; Ding, Ni

    2018-08-01

    Although peritoneal lavage with povidone-iodine (PVPI) is frequently performed after surgery on the gastrointestinal tract, the effects of PVPI on the intestinal epithelial barrier are unknown. The purpose of this study was to investigate the effects of abdominal irrigation with PVPI on the intestinal epithelial barrier in a colorectal cancer (CRC)-induced rat model. The CRC model was induced in rats with azoxymethane and dextran sodium sulfate. Next, a total of 24 male CRC-induced rats were randomly divided into three groups (n = 8): (1) a sham-operated group, (2) an NS group (peritoneal lavage 0.9% NaCl), and (3) a PVPI group (peritoneal lavage with 0.45%-0.55% PVPI). The mean arterial pressure was continuously monitored throughout the experiment. The levels of plasma endotoxin and D-lactate, blood gases, and protein concentration were measured. The ultrastructural changes of the epithelial tight junctions were observed by transmission electron microscopy. The mean arterial pressure after peritoneal lavage was lower in the PVPI group than that in the NS group. The protein concentration and levels of endotoxin and D-lactate were higher in the PVPI group than they were in the PVPI group. In addition, PVPI treatment resulted in a markedly severe metabolic acidosis and intestinal mucosal injury compared with NS rats. Peritoneal lavage with PVPI dramatically compromises the integrity of the intestinal mucosa barrier and causes endotoxin shock in CRC rats. It is unsafe for clinical applications to include peritoneal lavage with PVPI in colorectal operations. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes.

    PubMed

    Shima, Takeru; Matsui, Takashi; Jesmin, Subrina; Okamoto, Masahiro; Soya, Mariko; Inoue, Koshiro; Liu, Yu-Fan; Torres-Aleman, Ignacio; McEwen, Bruce S; Soya, Hideaki

    2017-03-01

    Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.

  14. Maternal Oxytocin Administration Before Birth Influences the Effects of Birth Anoxia on the Neonatal Rat Brain.

    PubMed

    Boksa, Patricia; Zhang, Ying; Nouel, Dominique

    2015-08-01

    Ineffective contractions and prolonged labor are common birth complications in primiparous women, and oxytocin is the most common agent given for induction or augmentation of labor. Clinical studies in humans suggest oxytocin might adversely affect the CNS response to hypoxia at birth. In this study, we used a rat model of global anoxia during Cesarean section birth to test if administering oxytocin to pregnant dams prior to birth affects the acute neonatal CNS response to birth anoxia. Anoxic pups born from dams pre-treated with intravenous injections or infusions of oxytocin before birth showed significantly increased brain lactate, a metabolic indicator of CNS hypoxia, compared to anoxic pups from dams pre-treated with saline. Anoxic pups born from dams given oxytocin before birth also showed decreased brain ATP compared to anoxic pups from saline dams. Direct injection of oxytocin to postnatal day 2 rat pups followed by exposure to anoxia also resulted in increased brain lactate and decreased brain ATP, compared to anoxia exposure alone. Oxytocin pre-treatment of the dam decreased brain malondialdehyde, a marker of lipid peroxidation, as well as protein kinase C activity, both in anoxic pups and controls, suggesting oxytocin may reduce aspects of oxidative stress. Finally, when dams were pretreated with indomethacin, a cyclooxygenase (COX) inhibitor, maternal oxytocin no longer potentiated effects of anoxia on neonatal brain lactate, suggesting this effect of oxytocin may be mediated via prostaglandin production or other COX-derived products. The results indicate that maternal oxytocin administration may have multiple acute effects on CNS metabolic responses to anoxia at birth.

  15. Simulation of the pentose cycle in lactating rat mammary gland

    PubMed Central

    Haut, Michael J.; London, Jack W.; Garfinkel, David

    1974-01-01

    A computer model representing the pentose cycle, the tricarboxylic acid cycle and glycolysis in slices of lactating rat mammary glands has been constructed. This model is based primarily on the studies, with radioactive chemicals, of Abraham & Chaikoff (1959) [although some of the discrepant data of Katz & Wals (1972) could be accommodated by changing one enzyme activity]. Data obtained by using [1-14C]-, [6-14C]- and [3,4-14C]-glucose were simulated, as well as data obtained by using unlabelled glucose (for which some new experimental data are presented). Much past work on the pentose cycle has been mainly concerned with the division of glucose flow between the pentose cycle and glycolysis, and has relied on the assumption that the system is in steady state (both labelled and unlabelled). This assumption may not apply to lactating rat mammary glands, since the model shows that the percentage flow through the shunt progressively decreased for the first 2h of a 3h experiment, and we were unable to construct a completely steady-state model. The model allows examination of many quantitative features of the system, especially the amount of material passing through key enzymes, some of which appear to be regulated by NADP+ concentrations as proposed by McLean (1960). Supplementary information for this paper has been deposited as Supplementary Publication SUP 50023 at the British Museum (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973) 131, 5. PMID:4154746

  16. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    PubMed

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  17. Effects of Urtica dioica on hepatic ischemia‐reperfusion injury in rats

    PubMed Central

    Kandis, Hayati; Karapolat, Sami; Yildirim, Umran; Saritas, Ayhan; Gezer, Suat; Memisogullari, Ramazan

    2010-01-01

    OBJECTIVES: To evaluate the effects of Urtica dioica on hepatic ischemia‐reperfusion injury. METHODS: Thirty adult male Wistar albino rats were divided into three groups: sham group (group 1), control group (group 2), and Urtica dioica group (group 3). All the rats were exposed to hepatic ischemia for 60 min, followed by 60 min of reperfusion. In group 2, a total of 2 ml/kg 0.9% saline solution was given intraperitoneally. In group 3, a total of 2 ml/kg Urtica dioica was given intraperitoneally. At the end of the procedure, liver tissue and blood samples were taken from all rats. Serum aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, ceruloplasmin, catalase, paraoxonase, arylesterase, and lipid hydroperoxide levels were measured. Liver tissue histopathologies were also evaluated by light microscopy. RESULTS: Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase levels were significantly higher in group 2 than in group 1, and significantly lower in group 3 than in group 2. Also, group 2 had higher serum lipid hydroperoxides and ceruloplasmin levels but lower catalase, paraoxonase, and arylesterase levels than group 1. In group 3, serum lipid hydroperoxides and ceruloplasmin levels were significantly lower, and catalase, paraoxonase, and arylesterase levels were higher than those in group 2. Histopathological examination showed that liver tissue damage was significantly decreased in group 3 compared with group 2. CONCLUSIONS: Urtica dioica has a protective effect on the liver in hepatic ischemia‐reperfusion‐injured rats. PMID:21340227

  18. Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: an in vivo localized (1)H MRS study.

    PubMed

    Iltis, Isabelle; Koski, Dee M; Eberly, Lynn E; Nelson, Christopher D; Deelchand, Dinesh K; Valette, Julien; Ugurbil, Kamil; Lim, Kelvin O; Henry, Pierre-Gilles

    2009-08-01

    Acute phencyclidine (PCP) administration mimics some aspects of schizophrenia in rats, such as behavioral alterations, increased dopaminergic activity and prefrontal cortex dysfunction. In this study, we used single-voxel (1)H-MRS to investigate neurochemical changes in rat prefrontal cortex in vivo before and after an acute injection of PCP. A short-echo time sequence (STEAM) was used to acquire spectra in a 32-microL voxel positioned in the prefrontal cortex area of 12 rats anesthetized with isoflurane. Data were acquired for 30 min before and for 140 min after a bolus of PCP (10 mg/kg, n = 6) or saline (n = 6). Metabolites were quantified with the LCModel. Time courses for 14 metabolites were obtained with a temporal resolution of 10 min. The glutamine/glutamate ratio was significantly increased after PCP injection (p < 0.0001, pre- vs. post-injection), while the total concentration of these two metabolites remained constant. Glucose was transiently increased (+70%) while lactate decreased after the injection (both p < 0.0001). Lactate, but not glucose and glutamine, returned to baseline levels after 140 min. These results show that an acute injection of PCP leads to changes in glutamate and glutamine concentrations, similar to what has been observed in schizophrenic patients, and after ketamine administration in humans. MRS studies of this pharmacological rat model may be useful for assessing the effects of potential anti-psychotic drugs in vivo. 2009 John Wiley & Sons, Ltd.

  19. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats – a test of the astrocyte-neuron lactate-shuttle hypothesis

    PubMed Central

    Erlichman, J.S.; Hewitt, Amy; Damon, Tracey L.; Hart, Michael; Kurascz, Jennifer; Li, A.; Leiter, J.C.

    2009-01-01

    The astrocyte-neuronal lactate shuttle hypothesis (ANLSH) posits that lactate released from astrocytes into the extracellular space is metabolized by neurons. The lactate released should alter extracellular pH (pHe), and changes in pH in central chemosensory regions of the brainstem stimulate ventilation. Therefore, we assessed the impact of disrupting the lactate shuttle by administering 100 microM α-cyano-4-hydroxy-cinnamate (4-CIN), a dose that blocks the neuronal monocarboxylate transporter (MCT2), but not the astrocytic MCTs (MCT1 and MCT4). Administration of 4-CIN focally in the retrotrapezoid nucleus (RTN), a medullary central chemosensory nucleus, increased ventilation and decreased pHe in intact animals. In medullary brain slices, 4-CIN reduced astrocytic intracellular pH (pHi) slightly, but alkalinized neuronal pHi. Nonetheless, pHi fell significantly in both cell types when they were treated with exogenous lactate, although 100 microM 4-CIN significantly reduced the magnitude of the acidosis in neurons, but not astrocytes. Finally, 4-CIN treatment increased the uptake of a fluorescent 2-deoxy-d-glucose analogue in neurons, but did not alter the uptake rate of this 2-deoxy-d-glucose analogue in astrocytes. These data confirm the existence of an astrocyte to neuron lactate shuttle in intact animals in the RTN, and lactate derived from astrocytes forms part of the central chemosensory stimulus for ventilation in this nucleus. When the lactate shuttle was disrupted by treatment with 4-CIN, neurons increased the uptake of glucose. Thus, neurons seem to metabolize a combination of glucose and lactate (and other substances such as pyruvate) depending, in part, on the availability of each of these particular substrates. PMID:18463242

  20. Maternal sodium butyrate supplement elevates the lipolysis in adipose tissue and leads to lipid accumulation in offspring liver of weaning-age rats.

    PubMed

    Zhou, Jiabin; Gao, Shixing; Chen, Jinglong; Zhao, Ruqian; Yang, Xiaojing

    2016-07-22

    Sodium butyrate (SB) is reported to regulate lipid metabolism in mammals, and the relationship between maternal nutrition and offspring growth has drawn much attention in the last several years. To elucidate the effects of maternal dietary SB supplementation on hepatic lipid metabolism in weaning rats, we fed 16 primiparous purebred female SD rats either a chow-diet or a 1 % sodium butyrate diet throughout pregnancy and lactation. At weaning age, samples of the maternal subcutaneous adipose tissue and offspring liver were taken. The serum indexes and expressions of proteins related to lipid metabolism were detected in the mother and offspring, respectively. The results showed that the maternal SB supplement increased the concentration of non-esterified fatty acid (NEFA) in the maternal and offspring serum (P < 0.05). Total cholesterol (Tch) increased significantly in the weaning-rat serum (P < 0.05). Maternal adipose tissue from the SB-supplemented rats showed higher content of protein G-coupled protein (GPR43) and protein kinase A (PKA) (P < 0.05). The expression of protein adipose triglyceride lipase (ATGL), and of total and phosphorylated hormone sensitive lipase (HSL), in the maternal adipose tissue increased significantly (P < 0.05) compared to the control group. However the proteins related to lipogenesis showed no significant changes. Moreover, the concentration of triglyceride in the offspring liver increased significantly, and this likely resulted from an increase in the levels of fatty acids binding protein (FABP) and fatty acid translocase (CD36) protein (P < 0.05). SB exposure during pregnancy and lactation increased the hepatic total cholesterol (Tch) content (P < 0.01), which was related to a significantly up-regulated offspring hepatic expression of low density lipoprotein receptor (LDLR) protein (P < 0.05). These results indicate that a maternal SB supplement during pregnancy and the lactation period promotes maternal fat mobilization, which may result in fatty acid uptake and lipid accumulation in the liver of the offspring.

  1. Ambient but not local lactate underlies neuronal tolerance to prolonged glucose deprivation

    PubMed Central

    Sobieski, Courtney; Shu, Hong-Jin

    2018-01-01

    Neurons require a nearly constant supply of ATP. Glucose is the predominant source of brain ATP, but the direct effects of prolonged glucose deprivation on neuronal viability and function remain unclear. In sparse rat hippocampal microcultures, neurons were surprisingly resilient to 16 h glucose removal in the absence of secondary excitotoxicity. Neuronal survival and synaptic transmission were unaffected by prolonged removal of exogenous glucose. Inhibition of lactate transport decreased microculture neuronal survival during concurrent glucose deprivation, suggesting that endogenously released lactate is important for tolerance to glucose deprivation. Tandem depolarization and glucose deprivation also reduced neuronal survival, and trace glucose concentrations afforded neuroprotection. Mass cultures, in contrast to microcultures, were insensitive to depolarizing glucose deprivation, a difference attributable to increased extracellular lactate levels. Removal of local astrocyte support did not reduce survival in response to glucose deprivation or alter evoked excitatory transmission, suggesting that on-demand, local lactate shuttling is not necessary for neuronal tolerance to prolonged glucose removal. Taken together, these data suggest that endogenously produced lactate available globally in the extracellular milieu sustains neurons in the absence of glucose. A better understanding of resilience mechanisms in reduced preparations could lead to therapeutic strategies aimed to bolster these mechanisms in vulnerable neuronal populations. PMID:29617444

  2. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia.

    PubMed

    Abi-Saab, Walid M; Maggs, David G; Jones, Tim; Jacob, Ralph; Srihari, Vinod; Thompson, James; Kerr, David; Leone, Paola; Krystal, John H; Spencer, Dennis D; During, Matthew J; Sherwin, Robert S

    2002-03-01

    Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.

  3. Rapid in vivo apparent diffusion coefficient mapping of hyperpolarized (13) C metabolites.

    PubMed

    Koelsch, Bertram L; Reed, Galen D; Keshari, Kayvan R; Chaumeil, Myriam M; Bok, Robert; Ronen, Sabrina M; Vigneron, Daniel B; Kurhanewicz, John; Larson, Peder E Z

    2015-09-01

    Hyperpolarized (13) C magnetic resonance allows for the study of real-time metabolism in vivo, including significant hyperpolarized (13) C lactate production in many tumors. Other studies have shown that aggressive and highly metastatic tumors rapidly transport lactate out of cells. Thus, the ability to not only measure the production of hyperpolarized (13) C lactate but also understand its compartmentalization using diffusion-weighted MR will provide unique information for improved tumor characterization. We used a bipolar, pulsed-gradient, double spin echo imaging sequence to rapidly generate diffusion-weighted images of hyperpolarized (13) C metabolites. Our methodology included a simultaneously acquired B1 map to improve apparent diffusion coefficient (ADC) accuracy and a diffusion-compensated variable flip angle scheme to improve ADC precision. We validated this sequence and methodology in hyperpolarized (13) C phantoms. Next, we generated ADC maps of several hyperpolarized (13) C metabolites in a normal rat, rat brain tumor, and prostate cancer mouse model using both preclinical and clinical trial-ready hardware. ADC maps of hyperpolarized (13) C metabolites provide information about the localization of these molecules in the tissue microenvironment. The methodology presented here allows for further studies to investigate ADC changes due to disease state that may provide unique information about cancer aggressiveness and metastatic potential. © 2014 Wiley Periodicals, Inc.

  4. [Behavioural studies during the gestational-lactation period in morphine treated rats].

    PubMed

    Sobor, Melinda; Timár, Júlia; Riba, Pál; Király, Kornél P; Al-Khrasani, Mahmoud; Gyarmati, Zsuzsanna; Fürst, Zsuzsanna

    2013-12-01

    Opioids impair the maternal behaviour of experimental animals. The effect of morphine on maternal behaviour in rat dams treated chronically with morphine during the whole pregnancy and lactation has not been yet analysed systematically. The aim of our work was to investigate the behavioural effects of moderate dose morphine administered constantly in the whole perinatal period in rats. Nulliparous female rats were treated with 10 mg/kg morphine s.c. once daily, from the day of mating. Maternal behaviour was observed, the effects of acute morphine treatment on the maternal behaviour and whether this effect could be antagonised by naloxone were also investigated. Physical and other behavioural (anxiety-like signals in elevated plus maze, changes in locomotor activity) withdrawal signs precipitated by naloxone were registered. After weaning sensitivity to the rewarding effect of morphine was measured by conditioned place preference and to the aversive effect of naloxone by conditioned place aversion tests. Antinociceptive test on tail-flick apparatus was performed to investigate the changes in morphine antinociceptive effects due to chronic morphine treatment. Maternal behaviour was significantly impaired in morphine-treated dams. This effect of morphine lasted c.a. 2-3 hours a day, it showed dose-dependency and was enhanced in MO-treated group (sensitisation). Only weak physical and no other behavioural (anxiety-like behaviour or hypolocomotion) withdrawal signs were precipitated by naloxone. The positive reinforcing effect of morphine and aversive effect of naloxone were markedly increased on conditioned place paradigm. Significant antinociceptive tolerance was not seen. Although human drug abuse can be hardly modelling under experimental circumstances, our constant, relatively moderate dose morphine treatment administered once daily during the whole pregnancy and lactation resulted in several subtle behavioural changes in dams. In perinatally opioid-exposed offspring short- and long-term behavioural disturbances can be detected which is well-known from literature. Besides direct pharmacological effects of morphine impaired maternal responsiveness and pup care could play a role in these disturbances.

  5. Short- and long-term effects of maternal nicotine exposure during lactation on body adiposity, lipid profile, and thyroid function of rat offspring.

    PubMed

    Oliveira, E; Moura, E G; Santos-Silva, A P; Fagundes, A T S; Rios, A S; Abreu-Villaça, Y; Nogueira Neto, J F; Passos, M C F; Lisboa, P C

    2009-09-01

    Epidemiological studies show a higher prevalence of obesity in children from smoking mothers and smoking may affect human thyroid function. To evaluate the mechanism of smoking as an imprinting factor for these dysfunctions, we evaluated the programming effects of maternal nicotine (NIC) exposure during lactation. Two days after birth, osmotic minipumps were implanted in lactating rats, divided into: NIC (6 mg/kg per day s.c.) for 14 days; Control - saline. All the significant data were P<0.05 or less. Body weight was increased from 165 days old onwards in NIC offspring. Both during exposure (at 15 days old) and in adulthood (180 days old), NIC group showed higher total fat (27 and 33%). In addition, NIC offspring presented increased visceral fat and total body protein. Lipid profile was not changed in adulthood. Leptinemia was higher at 15 and 180 days old (36 and 113%), with no changes in food intake. Concerning the thyroid status, the 15-days-old NIC offspring showed lower serum-free tri-iodothyronine (FT(3)) and thyroxine (FT(4)) with higher TSH. The 180-days-old NIC offspring exhibited lower TSH, FT(3), and FT(4)). In both periods, liver type 1 deiodinase was lower (26 and 55%). We evidenced that NIC imprints a neonatal thyroid dysfunction and programs for a higher adiposity, hyperleptinemia, and secondary hypothyroidism in adulthood. Our study identifies lactation as a critical period to NIC programming for obesity, with hypothyroidism being a possible contributing factor.

  6. Metabolism of 13C-enriched D-fructose in hepatocytes from Goto-Kakizaki rats.

    PubMed

    Malaisse, Willy J; Ladriere, Laurence; Verbruggen, Ingrid; Willem, Rudolph

    2004-05-01

    This study aims at assessing the conversion of exogenous D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]-fructose (10 mM) to 13C-enriched and either hydrogenated or deuterated D-glucose, L-lactate and L-alanine released by rat liver cells prepared from Goto-Kakizaki rats and incubated for 120 min in the presence of unlabelled D-glucose (also 10 mM) and D2O. The results of this study are relevant to the relative contribution of fructokinase and hexokinase isoenzyme to the phosphorylation of D-fructose, the capacity of D-glucose to confer to glucokinase positive cooperativity towards D-fructose, the circulation of D-fructose 6-phosphate in the pentose phosphate pathway, the regulation of the cytosolic NADD/NADH ratio, the respective fate of D-fructose-derived D-glyceraldehyde and dihydroxyacetone phosphate, the deuteration of fructose-derived glycolytic intermediates at the phosphoglucoisomerase, phosphomannoisomerase, enolase, pyruvate kinase and glutamate-alanine transaminase levels, and the unequal generation of L-[1-13C]lactate by cells exposed to D-[1-13C]fructose or D-[6-13C]fructose versus D-[2-13C]-fructose.

  7. A paradigm of undernourishing and neonatal rehabilitation in the newborn rat.

    PubMed

    Perez-Torrero, Esther; Torrerob, Carmen; Collado, Paloma; Salas, Manuel

    2003-04-01

    Perinatal undernutrition as a deficiency of nutrient availability, affects body and brain developmental processes and promotes recurrent health problems. Thus, altered mother-litter bonds and deficient environmental interactions may interfere with the brain pluripotential capabilities of the newborn. To gather information concerning the mechanisms underlying perinatal undernutrition we designed a paradigm of undernutrition and neonatal rehabilitation in the rat. An underfed group came from pregnant Wistar rats fed with 50% of the diet from G6 to G12 and with 60% from G13 until G21. After birth, pups were daily undernourished during 12 h daily by rotating a pair of lactating well-nourished dams which had one of their nipples subcutaneously ligated. The rehabilitated animals were undernourished pups neonatally fed by a pair of normally lactating dams. Controls received plenty of food during the pre- and neonatal periods. Pups were sacrificed at 12, 20 and 30 days of age. Perinatal underfeeding significantly reduced body and brain weights and neuronal morphometric parameters. Normal neonatal feeding in the newborn ameliorated the damages associated to food deprivation. The current undernourishing paradigm may be helpful to assess brain development alterations, as well as to study the compensatory mechanisms associated to salutary epigenetic influences.

  8. In vitro effect of adenosine agonist GR79236 on the insulin sensitivity of glucose utilisation in rat soleus and human rectus abdominus muscle.

    PubMed

    Webster, J M; Heseltine, L; Taylor, R

    1996-06-07

    The dose-response effects of a new adenosine agonist, GR79236, were examined in isolated rat soleus muscle strips and human rectus abdominus muscle strips. Effects on the insulin sensitivity of carbohydrate metabolism were examined, in particular upon insulin stimulated glycogen synthesis and glycolytic flux. In the presence of adenosine deaminase (ADA), GR79236 increased insulin sensitivity of pyruvate release from rat soleus muscle strips by 24% from 82.5 +/- 10.0 to 102.5 +/- 10.0 (P < 0.01), by 27% to 105.0 +/- 12.5 (P < 0.01) and by 24% to 102.5 +/- 10.0 (P < 0.01) nmol/25 mg per h at 0.1 and 10 microM GR79236, respectively. Rates of lactate release followed a similar but non-significant trend. Addition of GR79236 in the presence of ADA had no effect on rates of glycogen synthesis. Insulin stimulated rates of pyruvate or lactate release or of glycogen synthesis were unaffected by the addition of adenosine deaminase or GR79236 in human rectus abdominus muscle strips. Adenosine agonists may act indirectly to modulate insulin sensitivity of carbohydrate metabolism.

  9. Hemorheological and metabolic consequences of renal ischemia-reperfusion and their modulation by N,N-dimethyl-tryptamine on a rat model.

    PubMed

    Peto, Katalin; Nemeth, Norbert; Mester, Anita; Magyar, Zsuzsanna; Ghanem, Souleiman; Somogyi, Viktoria; Tanczos, Bence; Deak, Adam; Bidiga, Laszlo; Frecska, Ede; Nemes, Balazs

    2018-04-13

    Micro-rheological relations of renal ischemia-reperfusion (I/R) have not been completely elucidated yet. Concerning anti-inflammatory agents, it is supposed that sigma-1 receptor agonist N,N-dimethyl-tryptamin (DMT) can be useful to reduce I/R injury. To investigate the micro-rheological and metabolic parameters, and the effects of DMT in renal I/R in rats. In anesthetized rats from median laparotomy both kidneys were exposed. In Control group (n = 6) no other intervention happened. In I/R group (n = 10) the right renal vessels were ligated and after 60 minutes the organ was removed. The left renal vessels were clamped for 60 minutes followed by 120-minute reperfusion. In I/R+DMT group (n = 10) DMT was administered 15 minutes before the ischemia. Blood samples were taken before/after ischemia and during the reperfusion for testing hematological, metabolic parameters, erythrocyte deformability and aggregation. Lactate concentration significantly increased and accompanied with decreased blood pH. Enhanced erythrocyte aggregation and impaired deformability were observed from the 30th minute of reperfusion. In I/R+DMT group we found diminished changes compared to the I/R group (lactate, pH, electrolytes, red blood cell deformability and aggregation). Metabolic and micro-rheological parameters impair during renal I/R. DMT could reduce but not completely prevent the changes in this rat model.

  10. Long-term effects of in utero and lactational exposure to butyl paraben in female rats.

    PubMed

    Guerra, Marina Trevizan; Sanabria, Marciana; Cagliarani, Stephannie Vieira; Leite, Gabriel Adan Araújo; Borges, Cibele Dos Santos; De Grava Kempinas, Wilma

    2017-03-01

    Parabens are used as preservatives in cosmetic, pharmaceutical, and food industries, and are frequently detected as contaminants in human fluids and tissues. The endocrine disrupting effects of parabens in female rodents include uterotrophic response, steroidogenesis impairment, and ovarian disturbances. The objective of this study was to determine the effects of maternal butyl paraben (BP) exposure on female sexual development. Pregnant Wistar rats were treated subcutaneously with either corn oil or BP at doses of 10, 100, or 200 mg/kg, from gestational day (GD) 12 until GD 20 for female foetal gonad evaluation, and from GD 12 until the end of lactation to evaluate sexual parameters on the female offspring. Immature female rats were also used in the uterotrophic assay to evaluate the possible estrogenic action of parabens. Our results revealed that, in this experimental protocol, BP did not show estrogenic activity at the doses used and did not impair sexual development and fertility capacity in the female rats, but impaired sexual behavior. We conclude that brain sexual development may be more sensitive to BP effects and we speculate that doses higher than 100 mg/kg (the male lowest observed adverse effect level (LOAEL) for rodent reproductive parameters) would be necessary to promote damages in the female reproduction, regarding the same protocol of exposure. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 776-788, 2017. © 2016 Wiley Periodicals, Inc.

  11. Protective Effects of Carvedilol and Vitamin C against Azithromycin-Induced Cardiotoxicity in Rats via Decreasing ROS, IL1-β, and TNF-α Production and Inhibiting NF-κB and Caspase-3 Expression

    PubMed Central

    El-Shitany, Nagla A.; El-Desoky, Karema

    2016-01-01

    The Food and Drug Administration recently warned of the fatal cardiovascular risks of azithromycin in humans. In addition, a recently published study documented azithromycin-induced cardiotoxicity in rats. This study aimed to justify the exact cardiovascular events accompanying azithromycin administration in rats, focusing on electrocardiographic, biochemical, and histopathological changes. In addition, the underlying mechanisms were studied regarding reactive oxygen species production, cytokine release, and apoptotic cell-death. Finally, the supposed protective effects of both carvedilol and vitamin C were assessed. Four groups of rats were used: (1) control, (2) azithromycin, (3) azithromycin + carvedilol, and (4) azithromycin + vitamin C. Azithromycin resulted in marked atrophy of cardiac muscle fibers and electrocardiographic segment alteration. It increased the heart rate, lactate dehydrogenase, creatine phosphokinase, malondialdehyde, nitric oxide, interleukin-1 beta (IL1-β), tumor necrosis factor alpha (TNF-α), nuclear factor kappa beta (NF-κB), and caspase-3. It decreased reduced glutathione, glutathione peroxidase, and superoxide dismutase. Carvedilol and vitamin C prevented most of the azithromycin-induced electrocardiographic and histopathological changes. Carvedilol and vitamin C decreased lactate dehydrogenase, malondialdehyde, IL1-β, TNF-α, NF-κB, and caspase-3. Both agents increased glutathione peroxidase. This study shows that both carvedilol and vitamin C protect against azithromycin-induced cardiotoxicity through antioxidant, immunomodulatory, and antiapoptotic mechanisms. PMID:27274777

  12. The nutritive and immunoprotective quality of human milk beyond 1 year postpartum: are lactation-duration-based donor exclusions justified?

    PubMed

    Perrin, Maryanne Tigchelaar; Fogleman, April; Allen, Jonathan C

    2013-08-01

    Donor human milk is critical for the fragile preterm infant who does not have access to his or her mother's milk, improving survival rates and quality of survival and decreasing hospital stay. Despite the opening of donor milk banks around the world, shortages continue as demand for donor milk exceeds supply. One potential means of increasing supply is by reducing exclusion criteria that prohibit mothers from donating milk based on duration of lactation. Minimal research has been done on the composition of human milk during the second year of lactation, with most research focusing on the nutritive compounds and not the immunoprotective compounds. Several immunoprotective compounds, including lysozyme, lactoferrin, secretory immunoglobulin A, and oligosaccharides, are abundant in human milk compared to bovine-based infant formula and are partially or fully retained during Holder pasteurization, making them an important differentiating feature of donor milk. A PubMed search was conducted to review studies in human milk composition during the second year of lactation. Limitations of existing research include sample collection protocols, small study sizes, and use of populations that may have been at risk for nutritional deficiencies. Stable concentrations of several components were reported including protein, lactose, iron, copper, lactoferrin, and secretory immunoglobulin A. Lysozyme concentration increased during extended lactation, while zinc and calcium concentrations declined into the second year. Conflicting findings were reported on fat content, and no information was available regarding oligosaccharide content. More research is needed to create evidence-based guidelines regarding the nutritive and immunoprotective value of donor milk throughout the course of lactation.

  13. Polymyxin B Nephrotoxicity: From Organ to Cell Damage

    PubMed Central

    Pessoa, Edson Andrade

    2016-01-01

    Polymyxins have a long history of dose-limiting toxicity, but the underlying mechanism of polymyxin B-induced nephrotoxicity is unclear. This study investigated the link between the nephrotoxic effects of polymyxin B on renal metabolic functions and mitochondrial morphology in rats and on the structural integrity of LLC-PK1 cells. Fifteen Wistar rats were divided into two groups: Saline group, rats received 3 mL/kg of 0.9% NaCl intraperitoneally (i.p.) once a day for 5 days; Polymyxin B group, rats received 4 mg/kg/day of polymyxin B i.p. once a day for 5 days. Renal function, renal hemodynamics, oxidative stress, mitochondrial injury and histological characteristics were assessed. Cell membrane damage was evaluated via lactate dehydrogenase and nitric oxide levels, cell viability, and apoptosis in cells exposed to 12.5 μM, 75 μM and 375 μM polymyxin B. Polymyxin B was immunolocated using Lissamine rhodamine-polymyxin B in LLC-PK1 cells. Polymyxin B administration in rats reduced creatinine clearance and increased renal vascular resistance and oxidative damage. Mitochondrial damage was confirmed by electron microscopy and cytosolic localization of cytochrome c. Histological analysis revealed tubular dilatation and necrosis in the renal cortex. The reduction in cell viability and the increase in apoptosis, lactate dehydrogenase levels and nitric oxide levels confirmed the cytotoxicity of polymyxin B. The incubation of LLC-PK1 cells resulted in mitochondrial localization of polymyxin B. This study demonstrates that polymyxin B nephrotoxicity is characterized by mitochondrial dysfunction and free radical generation in both LLC-PK1 cells and rat kidneys. These data also provide support for clinical studies on the side effects of polymyxin B. PMID:27532263

  14. Hesperidin Produces Cardioprotective Activity via PPAR-γ Pathway in Ischemic Heart Disease Model in Diabetic Rats

    PubMed Central

    Agrawal, Yogeeta O.; Sharma, Pankaj Kumar; Shrivastava, Birendra; Ojha, Shreesh; Upadhya, Harshita M.; Arya, Dharamvir Singh; Goyal, Sameer N.

    2014-01-01

    The present study investigated the effect of hesperidin, a natural flavonoid, in cardiac ischemia and reperfusion (I/R) injury in diabetic rats. Male Wistar rats with diabetes were divided into five groups and were orally administered saline once daily (IR-sham and IR-control), Hesperidin (100 mg/kg/day; IR-Hesperidin), GW9962 (PPAR-γ receptor antagonist), or combination of both for 14 days. On the 15th day, in the IR-control and IR-treatment groups, rats were subjected to left anterior descending (LAD) coronary artery occlusion for 45 minutes followed by a one-hour reperfusion. Haemodynamic parameters were recorded and rats were sacrificed; hearts were isolated for biochemical, histopathological, ultrastructural and immunohistochemistry. In the IR-control group, significant ventricular dysfunctions were observed along with enhanced expression of pro-apoptotic protein Bax. A decline in cardiac injury markers lactate dehydrogenase activity, CK-MB and increased content of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and TNF-α were observed. Hesperidin pretreatment significantly improved mean arterial pressure, reduced left ventricular end-diastolic pressure, and improved both inotropic and lusitropic function of the heart (+LVdP/dt and –LVdP/dt) as compared to IR-control. Furthermore, hesperidin treatment significantly decreased the level of thiobarbituric acid reactive substances and reversed the activity of lactate dehydrogenase towards normal value. Hesperidin showed anti-apoptotic effects by upregulating Bcl-2 protein and decreasing Bax protein expression. Additionally, histopathological and ultrastructural studies reconfirmed the protective action of hesperidin. On the other hand, GW9662, selective PPAR-γ receptor antagonist, produced opposite effects and attenuated the hesperidin induced improvements. The study for the first time evidence the involvement of PPAR-γ pathway in the cardioprotective activity of hesperidin in I/R model in rats. PMID:25369053

  15. Cholinergic dysfunctions and enhanced oxidative stress in the neurobehavioral toxicity of lambda-cyhalothrin in developing rats.

    PubMed

    Ansari, Reyaz W; Shukla, Rajendra K; Yadav, Rajesh S; Seth, Kavita; Pant, Aditya B; Singh, Dhirendra; Agrawal, Ashok K; Islam, Fakhrul; Khanna, Vinay K

    2012-11-01

    This study is focused on understanding the mechanism of neurobehavioral toxicity of lambda-cyhalothrin, a new generation type II synthetic pyrethroid in developing rats following their exposure from post-lactational day (PLD)22 to PLD49 and investigate whether neurobehavioral alterations are transient or persistent. Post-lactational exposure to lambda-cyhalothrin (1.0 or 3.0 mg/kg body weight, p.o.) affected grip strength and learning activity in rats on PLD50 and the persistent impairment of grip strength and learning was observed at 15 days after withdrawal of exposure on PLD65. A decrease in the binding of muscarinic-cholinergic receptors in frontocortical, hippocampal, and cerebellar membranes associated with decreased expression of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in hippocampus was observed following exposure to lambda-cyhalothrin on PLD50 and PLD65. Exposure to lambda-cyhalothrin was also found to increase the expression of growth-associated protein-43 in hippocampus of rats on PLD50 and PLD65 as compared to controls. A significant increase in lipid peroxidation and protein carbonyl levels and decreased levels of reduced glutathione and activity of superoxide dismutase, catalase, and glutathione peroxidase in brain regions of lambda-cyhalothrin exposed rats were distinctly observed indicating increased oxidative stress. Inhibition of ChAT and AChE activity may cause down-regulation of muscarinic-cholinergic receptors consequently impairing learning activity in developing rats exposed to lambda-cyhalothrin. The data further indicate that long-term exposure to lambda-cyhalothrin at low doses may be detrimental and changes in selected behavioral and neurochemical end points may persist if exposure to lambda-cyhalothrin continues.

  16. Maternal high-fat diet impairs glucose metabolism, β-cell function and proliferation in the second generation of offspring rats.

    PubMed

    Huang, Yan-Hong; Ye, Ting-Ting; Liu, Chong-Xiao; Wang, Lei; Chen, Yuan-Wen; Dong, Yan

    2017-01-01

    This study aimed to assess the impact of perinatal high-fat (HF) diet in female Sprague-Dawley rats (F0) on glucose metabolism and islet function in their early life of second-generation of offspring (F2). F0 rats were fed with a standard chow (SC) or HF diet for 8 weeks before mating, up to termination of lactation for their first-generation of offspring (F1-SC and F1-HF). F1 females were mated with normal males at the age of week 11, and producing F2 offspring (F2-SC, F2-HF). All the offspring were fed SC diet after weaning for 3 weeks. The glucose level and islet function of F2 offspring were assessed at the age of week 3 and 12. The F2-HF offspring had a high birth weight and maintained a higher body mass at the age of week 3 and 12, along with an impaired glucose tolerance and lower serum insulin levels compared with the F2-SC. β-cell proliferation was also impaired in the islets of F2-HF rats at the age of week 3 and 12. The pancreatic and duodenal homeobox factor-1 (Pdx1) and Neurogenic differentiation 1 (NeuroD1) expressions were decreased in the islet of F2-HF rats at the age of week 12. Maternal HF diet during pre-gestation, gestation, and lactation in rats could result in the increased body weight and glucose intolerance in their early life of F2 offspring due to impaired β-cell function and proliferation.

  17. Neonatal tobacco smoke reduces thermogenesis capacity in brown adipose tissue in adult rats.

    PubMed

    Peixoto, T C; Moura, E G; Oliveira, E; Younes-Rapozo, V; Soares, P N; Rodrigues, V S T; Santos, T R; Peixoto-Silva, N; Carvalho, J C; Calvino, C; Conceição, E P S; Guarda, D S; Claudio-Neto, S; Manhães, A C; Lisboa, P C

    2018-01-01

    Maternal smoking is a risk factor for progeny obesity. We have previously shown, in a rat model of neonatal tobacco smoke exposure, a mild increase in food intake and a considerable increase in visceral adiposity in the adult offspring. Males also had secondary hyperthyroidism, while females had only higher T4. Since brown adipose tissue (BAT) hypofunction is related to obesity, here we tested the hypothesis that higher levels of thyroid hormones are not functional in BAT, suggesting a lower metabolic rate. We evaluated autonomic nerve activity in BAT and its function in adult rats that were exposed to tobacco smoke during lactation. At birth, litters were adjusted to 3 male and 3 female pups/litter. From postnatal day (PND) 3 to 21, Wistar lactating rats and their pups were divided into SE group, smoke-exposed in a cigarette smoking machine (4 times/day) and C group, exposed to filtered air. Offspring were sacrificed at PND180. Adult SE rats of both genders had lower interscapular BAT autonomic nervous system activity, with higher BAT mass but no change in morphology. BAT UCP1 and CPT1a protein levels were decreased in the SE groups of both genders. Male SE rats had lower β3-AR, TRα1, and TRβ1 expression while females showed lower PGC1α expression. BAT Dio2 mRNA and hypothalamic POMC and MC4R levels were similar between groups. Hypothalamic pAMPK level was higher in SE males and lower in SE females. Thus, neonatal cigarette smoke exposure induces lower BAT thermogenic capacity, which can be obesogenic at adulthood.

  18. Intrauterine and lactation exposure to fluoxetine blunted in the offspring the aortic adaptive response induced by acute restraint stress.

    PubMed

    Marques, Bruno V D; Higashi, Carolina M; da S Novi, Daniella R B; Zanluqui, Nagela G; Gregório, Thais F; Pinge-Filho, Phileno; Gerardin, Daniela C C; Pelosi, Gislaine G; Moreira, Estefânia G; Ceravolo, Graziela S

    2017-10-15

    Selective serotonin reuptake inhibitors are the most widely prescribed antidepressants to women during pregnancy. Maternal treatment with fluoxetine can expose fetuses and neonates to higher levels of serotonin that plays a role in stress response. Thus, the aim of the study was to evaluate whether maternal treatment with fluoxetine interferes with aorta reactivity of adult male offspring after acute restraint stress. Wistar rats were gavaged with fluoxetine (5mg/kg/day) or water (control) during pregnancy and lactation. The experiments were performed in adult male offspring, treated or not with reserpine (4mg/Kg, ip, 28h before the experimental protocol). Fluoxetine and control rats were submitted to a single restraint stress session (ST) for 1h. Curves to phenylephrine were performed in thoracic aorta with endothelium. Aortic nitric oxide (NOx) were evaluated by the Griess method. The aortic contraction induced by phenylephrine was similar between control and fluoxetine rats. The acute stress reduced contraction in aorta of control ST compared to control, and L-NAME equaled this response. In fluoxetine rats, ST did not change the aortic constriction. Reserpine treatment restored the vasoconstriction in control ST, but did not interfere with aortic contraction in control, fluoxetine or fluoxetine ST. The NOx concentration was higher in aortas from control ST than control rats, and reserpine reduced NOx levels of control ST. The NOx concentration was similar between fluoxetine and fluoxetine ST rats, treated or not with reserpine. In conclusion, maternal treatment with fluoxetine blunted acute restraint stress-induced NO system activation and aortic adaptation in adult offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Hindbrain medulla catecholamine cell group involvement in lactate-sensitive hypoglycemia-associated patterns of hypothalamic norepinephrine and epinephrine activity.

    PubMed

    Shrestha, P K; Tamrakar, P; Ibrahim, B A; Briski, K P

    2014-10-10

    Cell-type compartmentation of glucose metabolism in the brain involves trafficking of the oxidizable glycolytic end product, l-lactate, by astrocytes to fuel neuronal mitochondrial aerobic respiration. Lactate availability within the hindbrain medulla is a monitored function that regulates systemic glucostasis as insulin-induced hypoglycemia (IIH) is exacerbated by lactate repletion of that brain region. A2 noradrenergic neurons are a plausible source of lactoprivic input to the neural gluco-regulatory circuit as caudal fourth ventricular (CV4) lactate infusion normalizes IIH-associated activation, e.g. phosphorylation of the high-sensitivity energy sensor, adenosine 5'-monophosphate-activated protein kinase (AMPK), in these cells. Here, we investigated the hypothesis that A2 neurons are unique among medullary catecholamine cells in directly screening lactate-derived energy. Adult male rats were injected with insulin or vehicle following initiation of continuous l-lactate infusion into the CV4. Two hours after injections, A1, C1, A2, and C2 neurons were collected by laser-microdissection for Western blot analysis of AMPKα1/2 and phosphoAMPKα1/2 proteins. Results show that AMPK is expressed in each cell group, but only a subset, e.g. A1, C1, and A2 neurons, exhibit increased sensor activity in response to IIH. Moreover, hindbrain lactate repletion reversed hypoglycemic augmentation of pAMPKα1/2 content in A2 and C1 but not A1 cells, and normalized hypothalamic norepinephrine and epinephrine content in a site-specific manner. The present evidence for discriminative reactivity of AMPK-expressing medullary catecholamine neurons to the screened energy substrate lactate implies that that lactoprivation is selectively signaled to the hypothalamus by A2 noradrenergic and C1 adrenergic cells. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters.

    PubMed

    Nancolas, Bethany; Guo, Lili; Zhou, Rong; Nath, Kavindra; Nelson, David S; Leeper, Dennis B; Blair, Ian A; Glickson, Jerry D; Halestrap, Andrew P

    2016-04-01

    Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitizing tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, whereas indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). In the present study, we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki2.5 μM) and co-operatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevisoocytes with K0.5 and Hill coefficient values of 36-40 μM and 1.65-1.85 respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~ 7 μM) than other substrates including glutamate (IC50~ 20 μM). In isolated DB-1 melanoma cells 1-10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output whereas increasing intracellular [L-lactate] > 5-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND onL-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate (CHC). © 2016 Authors; published by Portland Press Limited.

  1. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation.

    PubMed

    Reis, Karina Pires; Heimfarth, Luana; Pierozan, Paula; Ferreira, Fernanda; Loureiro, Samanta Oliveira; Fernandes, Carolina Gonçalves; Carvalho, Rônan Vivian; Pessoa-Pureur, Regina

    2015-11-01

    Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity

    PubMed Central

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S.; Soya, Hideaki

    2017-01-01

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry–based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain. PMID:28515312

  3. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  4. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity.

    PubMed

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S; Soya, Hideaki

    2017-06-13

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry-based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain.

  5. Improved biocompatibility of bicarbonate/lactate-buffered PDF is not related to pH.

    PubMed

    Zareie, Mohammad; Keuning, Eelco D; ter Wee, Piet M; Schalkwijk, Casper G; Beelen, Robert H J; van den Born, Jacob

    2006-01-01

    Chronic exposure to conventional peritoneal dialysis fluid (PDF) is associated with functional and structural alterations of the peritoneal membrane. The bioincompatibility of conventional PDF can be due to hypertonicity, high glucose concentration, lactate buffering system, presence of glucose degradation products (GDPs) and/or acidic pH. Although various investigators have studied the sole effects of hyperosmolarity, high glucose, GDPs and lactate buffer in experimental PD, less attention has been paid to the chronic impact of low pH in vivo. Rats received daily 10 ml of either conventional lactate-buffered PDF (pH 5.2; n=7), a standard bicarbonate/lactate-buffered PDF with physiological pH (n=8), bicarbonate/lactate-buffered PDF with acidic pH (adjusted to pH 5.2 with 1 N hydrochloride, n=5), or bicarbonate/lactate buffer, without glucose, pH 7.4 (n=7). Fluids were instilled via peritoneal catheters connected to implanted subcutaneous mini vascular access ports for 8 weeks. Control animals with or without peritoneal catheters served as control groups (n=8/group). Various functional (2 h PET) and morphological/cellular parameters were analyzed. Compared with control groups and the buffer group, conventional lactate-buffered PDF induced a number of morphological/cellular changes, including angiogenesis and fibrosis in various peritoneal tissues (all parameters P<0.05), accompanied by increased glucose absorption and reduced ultrafiltration capacity. Daily exposure to standard or acidified bicarbonate/lactate-buffered PDF improved the performance of the peritoneal membrane, evidenced by reduced new vessel formation in omentum (P<0.02) and parietal peritoneum (P<0.008), reduced fibrosis (P<0.02) and improved ultrafiltration capacity. No significant differences were found between standard and acidified bicarbonate/lactate-buffered PDF. During PET, acidic PDF was neutralized within 15 to 20 min. The bicarbonate/lactate-buffered PDF, acidity per se did not contribute substantially to peritoneal worsening in our in vivo model for PD, which might be explained by the buffering capacity of the peritoneum.

  6. STAT3:FOXM1 and MCT1 drive uterine cervix carcinoma fitness to a lactate-rich microenvironment.

    PubMed

    Silva, Lidia Santos; Goncalves, Luis Gafeira; Silva, Fernanda; Domingues, Germana; Maximo, Valdemar; Ferreira, Joana; Lam, Eric W-F; Dias, Sergio; Felix, Ana; Serpa, Jacinta

    2016-04-01

    Uterine cervix cancer is the second most common malignancy in women worldwide with human papillomavirus (HPV) as the etiologic factor. The two main histological variants, squamous cell carcinomas (SCC) and adenocarcinomas (AC), resemble the cell morphology of exocervix and endocervix, respectively. Cancer metabolism is a cancer hallmark conditioned by the microenvironment. As uterine cervix homeostasis is dependent on lactate, we hypothesized lactate plays a role in uterine cervix cancer progression. Using in vitro (SiHa-SCC and HeLa-AC) and BALB-c/SCID models, we demonstrated that lactate metabolism is linked to histological types, with SCC predominantly consuming and AC producing lactate. MCT1 is a key factor, allowing lactate consumption and being regulated in vitro by lactate through the FOXM1:STAT3 pathway. In vivo models showed that SCC (SiHa) expresses MCT1 and is dependent on lactate to grow, whereas AC (HeLa) expresses MCT1 and MCT4, with higher growth capacities. Immunohistochemical analysis of tissue microarrays (TMA) from human cervical tumors showed that MCT1 expression associates with the SCC type and metastatic behavior of AC, whereas MCT4 expression concomitantly increases from in situ SCC to invasive SCC and is significantly associated with the AC type. Consistently, FOXM1 expression is statistically associated with MCT1 positivity in SCC, whereas the expression of FOXO3a, a FOXM1 functional antagonist, is linked to MCT1 negativity in AC. Our study reinforces the role of the microenvironment in the metabolic adaptation of cancer cells, showing that cells that retain metabolic features of their normal counterparts are positively selected by the organ's microenvironment and will survive. In particular, MCT1 was shown to be a key element in uterine cervix cancer development; however, further studies are needed to validate MCT1 as a suitable therapeutic target in uterine cervix cancer.

  7. Maternal exposure to environmental DEHP exacerbated OVA-induced asthmatic responses in rat offspring.

    PubMed

    Wang, Bohan; Liu, Fangwei; Dong, Jing; You, Mingdan; Fu, Yuanyuan; Li, Chao; Lu, Yiping; Chen, Jie

    2018-02-15

    Di (ethylhexyl) phthalate (DEHP) is a commonly used phthalates (PAEs) compound as plasticizer and becomes a severe environmental pollutant worldwide. Studies show that DEHP, as an environmental endocrine disruptor, has potential adverse effects on human. Epidemiologic studies indicate that DEHP is positively correlated to allergic diseases. Maternal exposure to DEHP may contribute to the increasing incidence of allergic diseases in offspring. However, the role of DEHP and its detailed mechanism in allergic disease of the offspring are still unclear. The aim of our study is to investigate whether DEHP maternal exposure could aggravate the allergic responses in offspring and its mechanism. Pregnant Wistar rats were randomly divided into three groups and exposed to different doses of DEHP. Half of the offspring were challenged with OVA after birth. All the pups of each group were sacrificed at postnatal day (PND)14, PND21 and PND28. The number of inflammatory cells in bronchoalveolar lavage was counted, lung pathological changes were observed, Th2 type cytokines expressions were checked, and the expression of TSLP signaling pathway were examined. Our results showed that maternal exposure to DEHP during pregnancy and lactation aggravated the eosinophils accumulation and the pathological inflammatory changes in pups' lung after OVA challenge. And maternal exposure to DEHP during pregnancy and lactation also elevated the levels of typical Th2 cytokines in OVA-challenged rats. What's more, maternal exposure to DEHP during pregnancy and lactation increased the levels of TSLP, TSLPR and IL-7R in the offspring after OVA challenge. Our study suggested that DEHP maternal exposure could aggravate the OVA-induced asthmatic responses in offspring. And this adjuvant effect of DEHP was related with the TSLP/TSLPR/IL-7R and its downstream signal pathways. Copyright © 2017. Published by Elsevier B.V.

  8. Methylglyoxal treatment in lactating mothers leads to type 2 diabetes phenotype in male rat offspring at adulthood.

    PubMed

    Francisco, Flávio Andrade; Barella, Luiz Felipe; Silveira, Sandra da Silva; Saavedra, Lucas Paulo Jacinto; Prates, Kelly Valério; Alves, Vander Silva; Franco, Claudinéia Conationi da Silva; Miranda, Rosiane Aparecida; Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Malta, Ananda; Vieira, Elaine; Palma-Rigo, Kesia; Pavanello, Audrei; Martins, Isabela Peixoto; Moreira, Veridiana Mota; de Oliveira, Júlio Cezar; Mathias, Paulo Cezar de Freitas; Gomes, Rodrigo Mello

    2018-03-01

    Environmental and nutritional disorders during perinatal period cause metabolic dysfunction in the progeny and impair human health. Advanced glycation end products (AGEs) are primarily produced during metabolism of excess blood glucose, which is observed in diabetes. Methylglyoxal (MG) is a precursor for the generation of endogenous AGEs, which disturbs the metabolism. This work aimed to investigate whether the maternal MG treatment during lactation programs the progeny to metabolic dysfunction later in life. Female Wistar rats were divided into two groups: control group (C) treated with saline and MG group treated with MG (60 mg/kg/day) by gavage throughout the lactation period. Both mothers and offspring were fed a standard chow. At weaning, breast milk composition was analyzed and mothers euthanized for blood and tissue sample collections. At 90 days of age, offspring were submitted to glucose tolerance test (ivGTT) and euthanized for blood and tissue samples collection. MG mothers showed increase in glucose and fructosamine levels; however, they showed low insulin levels and failure in β-cell function (p < 0.05). MG mothers also showed dyslipidemia (p < 0.05). Moreover, breast milk had elevated levels of glucose, triglycerides, cholesterol and fructosamine and low insulin (p < 0.05). Interestingly, MG offspring had increased body weight and adipose tissue at adulthood, and they also showed glucose intolerance and failure in β-cell function (p < 0.05). Besides, MG offspring showed dyslipidemia (p < 0.05) increasing cardiovascular diseases risk. Maternal MG treatment negatively affects the male rat offspring, leading to type 2 diabetes and dyslipidemia in later life, possibly by changes in breast milk composition.

  9. Plasma first resuscitation reduces lactate acidosis, enhances redox homeostasis, amino acid and purine catabolism in a rat model of profound hemorrhagic shock

    PubMed Central

    D’Alessandro, Angelo; Moore, Hunter B; Moore, Ernest E; Wither, Matthew J.; Nemkov, Travis; Morton, Alexander P; Gonzalez, Eduardo; Chapman, Michael P; Fragoso, Miguel; Slaughter, Anne; Sauaia, Angela; Silliman, Christopher C; Hansen, Kirk C; Banerjee, Anirban

    2016-01-01

    The use of aggressive crystalloid resuscitation to treat hypoxemia, hypovolemia and nutrient deprivation promoted by massive blood loss may lead to the development of the blood vicious cycle of acidosis, hypothermia, and coagulopathy and, utterly, death. Metabolic acidosis is one of the many metabolic derangements triggered by severe trauma/hemorrhagic shock, also including enhanced proteolysis, lipid mobilization, as well as traumatic diabetes. Appreciation of the metabolic benefit of plasma first resuscitation is an important concept. Plasma resuscitation has been shown to correct hyperfibrinolysis secondary to severe hemorrhage better than normal saline. Here we hypothesize that plasma first resuscitation corrects metabolic derangements promoted by severe hemorrhage better than resuscitation with normal saline. Ultra-high-performance liquid chromatography-mass spectrometry-based metabolomics analyses were performed to screen plasma metabolic profiles upon shock and resuscitation with either platelet-free plasma or normal saline in a rat model of severe hemorrhage. Of the 251 metabolites that were monitored, 101 were significantly different in plasma vs normal saline resuscitated rats. Plasma resuscitation corrected lactate acidosis by promoting glutamine/amino acid catabolism and purine salvage reactions. Plasma first resuscitation may benefit critically injured trauma patients by relieving the lactate burden and promoting other non-clinically measured metabolic changes. In the light of our results, we propose that plasma resuscitation may promote fueling of mitochondrial metabolism, through the enhancement of glutaminolysis/amino acid catabolism and purine salvage reactions. The treatment of trauma patients in hemorrhagic shock with plasma first resuscitation is likely not only to improve coagulation, but also to promote substrate-specific metabolic corrections. PMID:26863033

  10. Oleuropein and hydroxytyrosol protect from bisphenol A effects in livers and kidneys of lactating mother rats and their pups'.

    PubMed

    Mahmoudi, Asma; Ghorbel, Héla; Bouallegui, Zouhair; Marrekchi, Rim; Isoda, Hiroko; Sayadi, Sami

    2015-01-01

    Bisphenol A (BPA) is a chemical found in hard plastics and the coatings of food and drinks cans which can behave in a similar way to estrogen and other hormones in the human body. This study aimed to evaluate the significance of the treatment with oleuropein and hydroxytyrosol olive leaves rich extracts in reducing functional perturbations and oxidative stress arising from BPA treatment in livers and kidneys of lactating mother rats and their pups'. For this, four groups of lactating mothers were used: controls (group A), treated with bisphenol A (group B), treated with bisphenol A and oleuropein (group C) and with bisphenol A and hydroxytyrosol (group D). As results, we had found, in BPA treated group, either in mothers or in their pups', a significant decrease in morphological parameters, in catalase activity and in total antioxidant capacity associated to an increase in malondialdehyde levels in livers and kidneys. For these rats, the histological aspect showed, also, deep changes. Indeed, we had observed, in livers, hepatocellular necrosis associated to leucocytes infiltration and in kidneys tubular and glomerular necrosis. The co-treatments with BPA and oleuropein (group C) or with BPA and hydroxytyrosol (group D) ameliorate all morphological, biochemical and histological parameters as compared to BPA treated group B. The analysis of BPA and its derivatives with LC-MS/MS showed changes in their localizations between serum, livers or kidneys in all studied groups. In conclusion, the present study demonstrates the hepato-protective and reno-protective effects of oleuropein and hydroxytyrosol olive leaves extracts from BPA and its derivates toxicity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Neonatal hyperleptinaemia programmes adrenal medullary function in adult rats: effects on cardiovascular parameters

    PubMed Central

    Trevenzoli, I H; Valle, M M R; Machado, F B; Garcia, R M G; Passos, M C F; Lisboa, P C; Moura, E G

    2007-01-01

    Epidemiological studies have shown a strong correlation between stressful events (nutritional, hormonal or environmental) in early life and development of adult diseases such as obesity, diabetes and cardiovascular failure. It is known that gestation and lactation are crucial periods for healthy growth in mammals and that the sympathoadrenal system is markedly influenced by environmental conditions during these periods. We previously demonstrated that neonatal hyperleptinaemia in rats programmes higher body weight, higher food intake and hypothalamic leptin resistance in adulthood. Using this model of programming, we investigated adrenal medullary function and effects on cardiovascular parameters in male rats in adulthood. Leptin treatment during the first 10 days of lactation (8μg 100 g−1 day−1, s.c.) resulted in lower body weight (6.5%, P < 0.05), hyperleptinaemia (10-fold, P < 0.05) and higher catecholamine content in adrenal glands (18.5%, P < 0.05) on the last day of treatment. In adulthood (150 days), the rats presented higher body weight (5%, P < 0.05), adrenal catecholamine content (3-fold, P < 0.05), tyrosine hydroxylase expression (35%, P < 0.05) and basal and caffeine-stimulated catecholamine release (53% and 100%, respectively, P < 0.05). Systolic blood pressure and heart rate were also higher in adult rats (7% and 6%, respectively, P < 0.05). Our results show that hyperleptinaemia in early life increases adrenal medullary function in adulthood and that this may alter cardiovascular parameters. Thus, we suggest that imprinting factors which increase leptin and catecholamine levels during the neonatal period could be involved in development of adult chronic diseases. PMID:17218354

  12. Mild zinc deficiency in male and female rats: early postnatal alterations in renal nitric oxide system and morphology.

    PubMed

    Tomat, Analia Lorena; Veiras, Luciana Cecilia; Aguirre, Sofía; Fasoli, Héctor; Elesgaray, Rosana; Caniffi, Carolina; Costa, María Ángeles; Arranz, Cristina Teresa

    2013-03-01

    Fetal and postnatal zinc deficiencies induce an increase in arterial blood pressure and impair renal function in male adult rats. We therefore hypothesized that these renal alterations are present in early stages of life and that there are sexual differences in the adaptations to this nutritional injury. The aim was to study the effects of moderate zinc deficiency during fetal life and lactation on renal morphology, oxidative stress, apoptosis, and the nitric oxide system in male and female rats at 21 d of life. Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy to weaning. Glomerulus number, morphology, oxidative stress, apoptotic cells, nitric oxide synthase activity, and protein expression were evaluated in the kidneys of offspring at 21 d. Zinc deficiency decreased the nephron number, induced glomerular hypertrophy, increased oxidative damage, and decreased nitric oxide synthase activity in the male and female rat kidneys. Nitric oxide synthase activity was not affected by inhibitors of the neuronal or inducible isoforms, so nitric oxide was mainly generated by the endothelial isoenzyme. Gender differences were observed in glomerular areas and antioxidant enzyme activities. Zinc deficiency during fetal life and lactation induces an early decrease in renal functional units, associated with a decrease in nitric oxide activity and an increase in oxidative stress, which would contribute to increased arterial blood pressure and renal dysfunction in adulthood. The sexual differences observed in this model may explain the dissimilar development of hypertension and renal diseases in adult life. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Group II metabotropic glutamate receptor type 2 allosteric potentiators prevent sodium lactate-induced panic-like response in panic-vulnerable rats

    PubMed Central

    Johnson, Philip L; Fitz, Stephanie D; Engleman, Eric A; Svensson, Kjell A; Schkeryantz, Jeffrey M; Shekhar, Anantha

    2015-01-01

    Rats with chronic inhibition of GABA synthesis by infusion of l-allyglycine, a glutamic acid decarboxylase inhibitor, into their dorsomedial/perifornical hypothalamus are anxious and exhibit panic-like cardio-respiratory responses to treatment with intravenous (i.v.) sodium lactate (NaLac) infusions, in a manner similar to what occurs in patients with panic disorder. We previously showed that either NMDA receptor antagonists or metabotropic glutamate receptor type 2/3 receptor agonists can block such a NaLac response, suggesting that a glutamate mechanism is contributing to this panic-like state. Using this animal model of panic, we tested the efficacy of CBiPES and THIIC, which are selective group II metabotropic glutamate type 2 receptor allosteric potentiators (at 10–30mg/kg i.p.), in preventing NaLac-induced panic-like behavioral and cardiovascular responses. The positive control was alprazolam (3mg/kg i.p.), a clinically effective anti-panic benzodiazepine. As predicted, panic-prone rats given a NaLac challenge displayed NaLac-induced panic-like cardiovascular (i.e. tachycardia and hypertensive) responses and “anxiety” (i.e. decreased social interaction time) and “flight” (i.e. increased locomotion) -associated behaviors; however, systemic injection of the panic-prone rats with CBiPES, THIIC or alprazolam prior to the NaLac dose blocked all NaLac-induced panic-like behaviors and cardiovascular responses. These data suggested that in a rat animal model, selective group II metabotropic glutamate type 2 receptor allosteric potentiators show an anti-panic efficacy similar to alprazolam. PMID:22914798

  14. Lipidomic fatty acid profile and global gene expression pattern in mammary gland of rats that were exposed to lard-based high fat diet during fetal and lactation periods associated to breast cancer risk in adulthood.

    PubMed

    Andrade, Fábia de Oliveira; de Assis, Sonia; Jin, Lu; Fontelles, Camile Castilho; Barbisan, Luís Fernando; Purgatto, Eduardo; Hilakivi-Clarke, Leena; Ong, Thomas Prates

    2015-09-05

    The persistent effects of animal fat consumption during pregnancy and nursing on the programming of breast cancer risk among female offspring were studied here. We have previously found that female offspring of rat dams that consumed a lard-based high-fat (HF) diet (60% fat-derived energy) during pregnancy, or during pregnancy and lactation, were at a reduced risk of developing mammary cancer. To better understand the unexpected protective effects of early life lard exposure, we have applied lipidomics and nutrigenomics approaches to investigate the fatty acid profile and global gene expression patterns in the mammary tissue of the female offspring. Consumption of this HF diet during gestation had few effects on the mammary tissue fatty acids profile of young adult offspring, while exposure from gestation throughout nursing promoted significant alterations in the fatty acids profile. Major differences were related to decreases in saturated fatty acids (SFA) and increases in omega-6 polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs) and conjugated linolenic acid (CLA) concentrations. In addition several differences in gene expression patterns by microarray analysis between the control and in utero or in utero and during lactation HF exposed offspring were identified. Differential dependency network (DDN) analysis indicated that many of the genes exhibited unique connections to other genes only in the HF offspring. These unique connections included Hrh1-Ythdf1 and Repin1-Elavl2 in the in utero HF offspring, and Rnf213-Htr3b and Klf5-Chrna4 in the in utero and lactation HF offspring, compared with the control offspring. We conclude that an exposure to a lard-based HF diet during early life changes the fatty acid profile and transcriptional network in mammary gland in young adult rats, and these changes appear to be consistent with reduced mammary cancer risk observed in our previous study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. [The effect of bemithyl on the onthogenesis of rats].

    PubMed

    Spasov, A A; Bugaeva, L I; Denisova, T D; Smirnova, L A

    2005-01-01

    Female rats were treated with bemithyl (20 and 100 mg/kg) via a gastric tube during a 16-day period of lactation. It was found that the drug is transferred with breast milk to the organism of newborns, which leads to nonuniformities in their development. Among the early effects of bemithyl, most pronounced is the stimulating action upon maturation (muscle strength) and the development of sensor-locomotor reflexes; in the spectrum of long-term effects, the drug influence upon pubescence processes was manifested.

  16. Increased gluconeogenesis in rats exposed to hyper-G stress

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.; Hannak, K.

    1985-01-01

    The effect of glucogenesis on the plasma glucose and liver glycogen of rats exposed to hyper-G stress is investigated. Twelve male Sprague-Dawley rats are injected with C-14 lactate, alanine, of glycerol, and six of the rats are exposed to 3.1 G for 0.25, 0.50, and 1.0 hr. The plasma glucose and liver glycogen of the centrifuged and noncentrifuged rats are analyzed. A significant increase in the C-14 incorporation of the substrate into the plasma glucose and liver glycogen is observed in the centrifuged rats. The injection of 5-methoxyindole-2-carboxylic acid, a gluconeogenesis inhibitor, results in a blocked increase in plasma glucose and liver glycogen. The role of epinephrine on the hyperglycemic and liver glycogen responses of centrifuged rats is studied. It is concluded that the initial increase in plasma glucose and liver glycogen in rats exposed to hyper-G stress is the result of an increased rate of gluconeogenesis.

  17. [Effect of cadmium sulphate on the metabolism of carbohydrates in organism of rats of different ages].

    PubMed

    Shepel'ova, I A; Derkach, Ie A; Mel'nykova, N M

    2007-01-01

    The influence of cadmium sulfate on concentration of glucose, lactate, piruvate, alpha-ketoglutarate, malate, oxaloacetate in blood of 3-, 6- and 18-month-old poisoned rats was established the results of our researches. It was found, that poisoning of rats by cadmium sulfate causes the rise of concentration of glucose, metabolites of citric acid cycle and glycolysis in blood of animals of all age groups explored. The research results prove that in blood of 3-month-old poisoned rats the level of glycolysis and citric acid cycle activation is considerably higher in comparison with that of 6- and 18-month-old animals. As a result, a comparison of age-specific dynamics of changes of carbohydrate metabolism indices in the blood of rats, poisoned by cadmium showed that the organism of 3-month-old rats is more sensitive to toxic influence of cadmium.

  18. ALTERED MAMMARY GLAND DEVELOPMENT IN MALE RATS EXPOSED TO GENISTEIN AND METHOXYCHLOR

    EPA Science Inventory

    Genistein is a prevalent phytoestrogen whose presence in human and animal foods may affect biological actions of synthetic endocrine active compounds. We have previously reported that in utero and lactational exposure to genistein and the endocrine active pesticide methoxychlor c...

  19. [Degradation of prolactin 125-I in the mammary gland of lactating rats].

    PubMed

    Marinchenko, G V; Taranenko, A G

    1977-01-01

    Prolactin-125I metabolism in the mammary gland of lactating rats was studied; the hormone was injected intraperitoneally. Radioactive products accumulated by the mammary gland tissue were extracted with isotonic medium. Tissue extracts, blood serum and milk were analyzed by gel filtration on Sephadex G-200. The Blood displayed a gradual reduction of prolactin-125I content as a result of its splitting in the organs and binding with blood proteins; as to the mammary gland--there occurred accumulation of the products of prolactin-125I degradation. Some hormone was inactivated losing immunological properties without any significant changes in the molecular weight. Besides, the mammary gland displayed an intensive accumulation of the products of prolactin-125I splitting in the other organs and in the gland proper. Radioactivity accumulated in the milk was mainly referred to the products of prolactin-125I degradation. There was also shown the presence of immunologically active prolactin-125I in the milk.

  20. Depressed gluconeogenesis and ureogenesis in isolated hepatocytes after intermittent hypoxia in rats.

    PubMed

    Freminet, A; Megas, P; Puceat, M

    1990-01-01

    1. Rats were exposed to hypobaric hypoxia (equivalent altitude 4500 m), 2 x 2 hr per day, for 5 days. Isolated hepatocytes were prepared on day 6 after 18 hr of fast and also from control normoxic animals. The hepatocytes were incubated (120 min) with various substrates. 2. ATP contents were lower in hepatocytes from exposed as compared to control animals whether at the beginning (14%) or at the end (-6 to -33%) of incubation depending on the substrate. 3. Gluconeogenesis from all precursors (lactate, alanine, pyruvate, glutamine) was significantly reduced (40-50%) in exposed as compared to control animals. 4. Ureogenesis from alanine and from pyruvate + NH4Cl was also markedly depressed in exposed animals but no differences were noticed with glutamine or lactate + NH4Cl and alanine + NH4Cl. 5. Results are discussed in relation to known effects of acute and chronic hypoxia, interrelationship between gluconeogenesis and ureogenesis, taking into account the inhomogeneity of liver and the metabolic properties of periportal and perivenous hepatocytes.

  1. Energy status and oxidation reduction status in rat liver at high altitude /3.8 km/

    NASA Technical Reports Server (NTRS)

    Reed, R. D.; Pace, N.

    1980-01-01

    Adult male rats were exposed to 3.8-km altitude for intervals ranging from 1 h-60 d. Liver samples were taken under light ether anesthesia and were examined by enzymatic analyses. Within 1-6 h of hypoxic exposure, ATP levels decreased while ADP and AMP levels increased, producing a fall in calculated ATP/ADP and adenylate charge ratios. Concurrently, lactate/pyruvate and alpha-glycerophosphate/dihydroxyacetone phosphate ratios increased markedly. Direct measurements of cellular pyridine nucleotides indicated increased NADH/NAD and NADPH/NADP ratios. Levels of total adenosine phosphates and pyridine nucleotides decreased in a significant accompanying response. Many metabolite levels and calculated ratios returned to near-normal values within 1 week of exposure, indicating secondary intracellular adjustments to hypoxic stress; however, persistence of that stress is reflected in lactate concentrations and both substrate redox ratios. Results support and explore concepts that increased oxidation-reduction status and decreased energy status are primary events during hypoxia.

  2. Lactation exposure to BDE-153 damages learning and memory, disrupts spontaneous behavior and induces hippocampus neuron death in adult rats.

    PubMed

    Zhang, Hongmei; Li, Xin; Nie, Jisheng; Niu, Qiao

    2013-06-23

    To study the effects of 2,2',4,4',5,5'-hexa-brominated diphenyl ether (BDE-153) exposure during lactation on the learning and memory abilities, spontaneous behavior and brain cells of adult rats and to elicit basic information on PBDE's developmental neurotoxicity. Newborn male rat pups were randomly categorized into the following groups (15 pups per group), according to their weights and litters: a control group, and 1mg/kg, 5mg/kg and 10mg/kg BDE-153 groups. At postnatal day 10 (PND10), the pups in the BDE-153 groups were intraperitoneally injected once with BDE-153 plant oil solutions at 0.1ml/10g body weight, and the controls were injected with plant oil. Throughout the entire experiment, physiological measures were recorded, such as food and water consumption, body weight and clinical symptoms. At 1 month and 2 months after treatment, the learning and memory abilities of the rats were tested by the Morris water maze test, the step-down test, and the step-through test; spontaneous behavior was tested by the open-field test. After all tests were accomplished, rats were weighed and sacrificed, and the brain tissue was immediately isolated and divided into two parts. Sections were fabricated from one part, and changes in the morphology and ultrastructure in CA3 region of hippocampus were observed under an optical microscope and transmission electron microscope, along with the detection of apoptotic cells with the terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) method. The tissue of the second part was digested into single-cell suspension liquid, and the cell apoptosis was assayed with flow cytometry and the lactate dehydrogenase (LDH) leakage was detected with spectrophotometry. There was no obvious change in food and water consumption, body weight and the ratio of brain to body weight, or any overt clinical symptoms in the BDE-153-treated rats. Compared to the control group, rats' latency time in the test session (LT2) in the step-down test was significantly increased in the 10mg/kg BDE-153 group at 2 months after treatment (P<0.05), and the BDE-153-treated rats' swimming times and distances in the target quadrant were significantly decreased at 1 month and 2 months after treatment (P<0.05 or P<0.01). These parameters were also significantly increased in the opposite quadrant at 1 month after treatment (P<0.05 or P<0.01). The spontaneous behavior was significantly reduced in the treated groups compared to the controls (P<0.05 or P<0.01). The severity of neurobehavioral dysfunction was dependent on the exposure dose of BDE-153, and worsened with age. Under an optical microscope, the treated rats' neurons in the CA3 region of the hippocampus were observed to be reduced and disarranged, and the cell junctions were loosened and the intercellular spaces were enlarged. Under a transmission electron microscope, the cell nucleus was observed to shrink; the chromatin was condensed and gathered near the nuclear membrane, the Nissl bodies and other organelles in the perikaryon were reduced, and the vacuole was observed to degenerate and even disappear. Moreover, compared to the controls, the cell apoptosis rates were significantly increased in the 5 and 10mg/kg BDE-153 groups (P<0.05), and the LDH activity was significantly increased in the 10mg/kg BDE-153 groups (P<0.01). Lactation exposure to BDE-153 damaged adult rats' learning and memory abilities, disrupted their spontaneous behavior (hypoactivity) and induced hippocampus neuron apoptosis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  3. Occurrence of retained placenta is preceded by an inflammatory state and alterations of energy metabolism in transition dairy cows.

    PubMed

    Dervishi, Elda; Zhang, Guanshi; Hailemariam, Dagnachew; Dunn, Suzana M; Ametaj, Burim N

    2016-01-01

    Failure to expel fetal membranes within 24 h of calving is a pathological condition defined as retained placenta (RP). The objective of this investigation was to evaluate whether there are alterations in several selected serum variables related to innate immunity and carbohydrate and lipid metabolism that precede occurrence of RP in transition Holstein dairy cows. One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected from the coccygeal vein during the -8 to +4 wks around parturition, once per week before the morning feeding. Six healthy control cows (CON) and 6 cows with RP were selected and serum samples at -8, -4, time of diagnosis of disease, and +4 wks relative to parturition were used for analyses. All samples were analyzed for lactate, non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor (TNF), haptoglobin (Hp), and serum amyloid A (SAA). Cows with RP had greater concentrations of serum lactate, IL-1, IL-6, TNF, and SAA in comparison with CON cows. Intriguingly, elevated concentrations of all five variables were observed at -8 and -4 wks before the occurrence of RP compared to healthy cows. Cows with RP also had lower DMI and milk production vs CON animals; however milk composition was not affected by RP. Cows with RP showed an activated innate immunity 8 wks prior to diagnosis of disease. Overall results suggest that serum IL-1, IL- 6, and TNF, and lactate can be used as screening biomarkers to indicate cows that might have health issues during the transition period.

  4. Th-POK regulates mammary gland lactation through mTOR-SREBP pathway.

    PubMed

    Zhang, Rui; Ma, Huimin; Gao, Yuan; Wu, Yanjun; Qiao, Yuemei; Geng, Ajun; Cai, Cheguo; Han, Yingying; Zeng, Yi Arial; Liu, Xiaolong; Ge, Gaoxiang

    2018-02-01

    The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation.

  5. Th-POK regulates mammary gland lactation through mTOR-SREBP pathway

    PubMed Central

    Wu, Yanjun; Qiao, Yuemei; Geng, Ajun; Cai, Cheguo; Han, Yingying; Zeng, Yi Arial

    2018-01-01

    The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation. PMID:29420538

  6. Graphitized carbon nanofiber-Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders.

    PubMed

    Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Añorga, Larraitz; Jubete, Elena; Ruiz, Virginia; Borghei, Maryam; Cabañero, Germán; Grande, Hans J

    2015-02-01

    This work describes the fabrication of a new lactate biosensor. The strategy is based on the use of a novel hybrid nanomaterial for amperometric biosensors i.e. platinum nanoparticles (PtNps) supported on graphitized carbon nanofibers (PtNps/GCNF) prepared by chemical reduction of the Pt precursor at GCNF surfaces. The biosensors were constructed by covalent immobilization of lactate oxidase (LOx) onto screen printed carbon electrodes (SPCEs) modified with PtNps (PtNps/GCNF-SPCEs) using polyethyleneimine (PEI) and glutaraldehyde (GA). Experimental variables concerning both the biosensor design and the detection process were investigated for an optimal analytical performance. Lactate biosensors show good reproducibility (RSD 4.9%, n=10) and sensitivity (41,302±546) μA/Mcm(2), with a good limit of detection (6.9μM). Covalent immobilization of the enzyme allows the reuse of the biosensor for several measurements, converting them in a cheap alternative to the solid electrodes. The long-term stability of the biosensors was also evaluated. 90% of the signal was kept after 3months of storage at room temperature (RT), while 95% was retained after 18months at -20°C. These results demonstrate that the method provides sensitive electrochemical lactate biosensors where the stability of the enzymatic activity can be preserved for a long period of time in adequate storage conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The Role of Lactate-Mediated Metabolic Coupling between Astrocytes and Neurons in Long-Term Memory Formation

    PubMed Central

    Steinman, Michael Q.; Gao, Virginia; Alberini, Cristina M.

    2016-01-01

    Long-term memory formation, the ability to retain information over time about an experience, is a complex function that affects multiple behaviors, and is an integral part of an individual’s identity. In the last 50 years many scientists have focused their work on understanding the biological mechanisms underlying memory formation and processing. Molecular studies over the last three decades have mostly investigated, or given attention to, neuronal mechanisms. However, the brain is composed of different cell types that, by concerted actions, cooperate to mediate brain functions. Here, we consider some new insights that emerged from recent studies implicating astrocytic glycogen and glucose metabolisms, and particularly their coupling to neuronal functions via lactate, as an essential mechanism for long-term memory formation. PMID:26973477

  8. Fructose-1,6-Bisphospate does not preserve ATP in hypoxic-ischemic neonatal cerebrocortical slices

    PubMed Central

    Liu, Jia; Hirai, Kiyoshi; Litt, Lawrence

    2008-01-01

    Fructose-1,6-bisphosphate (FBP), an endogenous intracellular metabolite in glycolysis, was found in many preclinical studies to be neuroprotective during hypoxia-ischemia (HI) when administered exogenously. We looked for HI neuroprotection from FBP in a neonatal rat brain slice model, using 14.1 Tesla 1H /31P/13C NMR spectroscopy of perchloric acid slice extracts to ask: 1) if FBP preserves high energy phosphates during HI; and 2) if exogenous [1-13C]FBP enters cells and is glycolytically metabolized to [3-13C]lactate. We also asked: 3) if substantial superoxide production occurs during and after HI, thinking such might be treatable by exogenous FBP's antioxidant effects. Superfused P7 rat cerebrocortical slices (350μm) were treated with 2 mM FBP before and during 30 min of HI, and then given four hours of recovery with an FBP-free oxygenated superfusate. Slices were removed before HI, at the end of HI, and at 1 and 4 hours after HI. FBP did not improve high energy phosphate levels or change 1H metabolite profiles. Large increases in [3-13C]lactate were seen with 13C NMR, but the lactate fractional enrichment was always (1.1±0.5)%, implying that all of lactate's 13C was natural abundance 13C, that none was from metabolism of 13C-FBP. FBP had no effect on the fluorescence of ethidium produced from superoxide oxidation of hydroethidine. Compared to control slices, ethidium fluorescence was 25% higher during HI and 50% higher at the end of recovery. Exogenous FBP did not provide protection or enter glycolysis. Its use as an antioxidant might be worth studying at higher FBP concentrations. PMID:18725216

  9. Moderate caloric restriction in lactating rats programs their offspring for a better response to HF diet feeding in a sex-dependent manner.

    PubMed

    Palou, Mariona; Torrens, Juana María; Priego, Teresa; Sánchez, Juana; Palou, Andreu; Picó, Catalina

    2011-06-01

    We aimed to assess the lasting effects of moderate caloric restriction in lactating rats on the expression of key genes involved in energy balance of their adult offspring (CR) and their adaptations under high-fat (HF) diet. Dams were fed with either ad libitum normal-fat (NF) diet or a 30% caloric restricted diet throughout lactation. After weaning, the offspring were fed with NF diet until the age of 15 weeks and then with an NF or a HF diet until the age of 28 weeks, when they were sacrificed. Body weight and food intake were followed. Blood parameters and the expression of selected genes in hypothalamus and white adipose tissue (WAT) were analysed. CR ate fewer calories and showed lower body weight gain under HF diet than their controls. CR males were also resistant to the increase of insulin and leptin occurring in their controls under HF diet, and HF diet exposed CR females showed lower circulating fasting triglyceride levels than controls. In the hypothalamus, CR males had higher ObRb mRNA levels than controls, and CR females displayed greater InsR mRNA levels than controls and decreased neuropeptide Y mRNA levels when exposed to HF diet. CR males maintained WAT capacity of fat uptake and storage and of fatty-acid oxidation under HF diet, whereas these capacities were impaired in controls; female CR showed higher WAT ObRb mRNA levels than controls. These results suggest that 30% caloric restriction in lactating dams ameliorates diet-induced obesity in their offspring by enhancing their sensitivity to insulin and leptin signaling, but in a gender-dependent manner. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Low arsenic concentrations impair memory in rat offpring exposed during pregnancy and lactation: Role of α7 nicotinic receptor, glutamate and oxidative stress.

    PubMed

    Mónaco, Nina María; Bartos, Mariana; Dominguez, Sergio; Gallegos, Cristina; Bras, Cristina; Esandi, María Del Carmen; Bouzat, Cecilia; Giannuzzi, Leda; Minetti, Alejandra; Gumilar, Fernanda

    2018-04-17

    Inorganic arsenic (iAs) is an important natural pollutant. Millions of individuals worldwide drink water with high levels of iAs. Arsenic exposure has been associated to cognitive deficits. However, the underlying mechanisms remain unknown. In the present work we investigated in female adult offspring the effect of the exposure to low arsenite sodium levels through drinking water during pregnancy and lactation on short- and long-term memory. We also considered a possible underlying neurotoxic mechanism. Pregnant rats were exposed during pregnancy and lactation to environmentally relevant iAs concentrations (0.05 and 0.10 mg/L). In 90-day-old female offspring, short-term memory (STM) and long-term memory (LTM) were evaluated using a step-down inhibitory avoidance task. In addition, we evaluated the α7 nicotinic receptor (α7-nAChR) expression, the transaminases and the oxidative stress levels in hippocampus. The results showed that the exposure to 0.10 mg/L iAs in this critical period produced a significant impairment in the LTM retention. This behavioral alteration might be associated with several events that occur in the hippocampus: decrease in α7-nAChR expression, an increase of glutamate levels that may produce excitotoxicity, and a decrease in the antioxidant enzyme catalase (CAT) activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.

    PubMed

    Geurts, Aron M; Mattson, David L; Liu, Pengyuan; Cabacungan, Erwin; Skelton, Meredith M; Kurth, Theresa M; Yang, Chun; Endres, Bradley T; Klotz, Jason; Liang, Mingyu; Cowley, Allen W

    2015-02-01

    Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats. © 2014 American Heart Association, Inc.

  12. GESTATIONAL AND LACTATIONAL EFFECTS IN RATS OF SODIUM, SULFATE, AND CONCENTRATED DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) in drinking water (DW). Because many DBPs are unidentified, we sought to evaluate DW concentrates. In preparation for a multigenerational ...

  13. Gestational and lactational effects in rats of sodium, sulfate, and concentrated disinfection by-products in drinking water

    EPA Science Inventory

    Epidemiological and animal toxicity studies have raised concerns regarding possible adverse health effects of disinfection by-products (DBPs) in drinking water (DW). Because many DBPs are unidentified, we sought to evaluate DW concentrates. In preparation for a multigenerational ...

  14. Protection Against Microcystin-LR-Induced Hepatoxicity by Silymarin: Biochemistry, Histopathology and Lethality

    DTIC Science & Technology

    1990-04-04

    wild artichoke (jilybus sdrinum L. Gaertn), completely abolihed the lethal effects, pathological changes, and ,34nificantly decreased the levels of...aminotransferase, and lactate dehydrogenase. Pretreatment of either rats or mice with a single dose of silymarin, a flavonotignane isolated from the wild artichoke

  15. Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids.

    PubMed

    Weltin, Andreas; Hammer, Steffen; Noor, Fozia; Kaminski, Yeda; Kieninger, Jochen; Urban, Gerald A

    2017-01-15

    3D hepatic microtissues, unlike 2D cell cultures, retain many of the in-vivo-like functionalities even after long-term cultivation. Such 3D cultures are increasingly applied to investigate liver damage due to drug exposure in toxicology. However, there is a need for thorough metabolic characterization of these microtissues for mechanistic understanding of effects on culture behaviour. We measured metabolic parameters from single human HepaRG hepatocyte spheroids online and continuously with electrochemical microsensors. A microsensor platform for lactate and oxygen was integrated in a standard 96-well plate. Electrochemical microsensors for lactate and oxygen allow fast, precise and continuous long-term measurement of metabolic parameters directly in the microwell. The demonstrated capability to precisely detect small concentration changes by single spheroids is the key to access their metabolism. Lactate levels in the culture medium starting from 50µM with production rates of 5µMh -1 were monitored and precisely quantified over three days. Parallel long-term oxygen measurements showed no oxygen depletion or hypoxic conditions in the microwell. Increased lactate production by spheroids upon suppression of the aerobic metabolism was observed. The dose-dependent decrease in lactate production caused by the addition of the hepatotoxic drug Bosentan was determined. We showed that in a toxicological application, metabolic monitoring yields quantitative, online information on cell viability, which complements and supports other methods such as microscopy. The demonstrated continuous access to 3D cell culture metabolism within a standard setup improves in vitro toxicology models in replacement strategies of animal experiments. Controlling the microenvironment of such organotypic cultures has impact in tissue engineering, cancer therapy and personalized medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats.

    PubMed

    Isik, F; Tunali Akbay, Tugba; Yarat, A; Genc, Z; Pisiriciler, R; Caliskan-Ak, E; Cetinel, S; Altıntas, A; Sener, G

    2011-03-01

    The pathogenesis and treatment of ulcerative colitis remain poorly understood. The aim of the present study is to investigate the effects of black cumin (Nigella sativa) oil on rats with colitis. Experimental colitis was induced with 1 mL trinitrobenzene sulfonic acid (TNBS) in 40% ethanol by intracolonic administration with 8-cm-long cannula under ether anesthesia to rats in colitis group and colitis + black cumin oil group. Rats in the control group were given saline at the same volume by intracolonic administration. Black cumin oil (BCO, Origo "100% natural Black Cumin Seed Oil," Turkey) was given to colitis + black cumin oil group by oral administration during 3 days, 5 min after colitis induction. Saline was given to control and colitis groups at the same volume by oral administration. At the end of the experiment, macroscopic lesions were scored and the degree of oxidant damage was evaluated by colonic total protein, sialic acid, malondialdehyde, and glutathione levels, collagen content, and tissue factor, superoxide dismutase, and myeloperoxidase activities. Tissues were also examined by histological and cytological analysis. Proinflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6], lactate dehydrogenase activity, and triglyceride and cholesterol levels were analyzed in blood samples. We found that black cumin oil decreased the proinflammatory cytokines, lactate dehydrogenase, triglyceride, and cholesterol, which were increased in colitis. BCO, by preventing inflammatory status in the blood, partly protected colonic tissue against experimental ulcerative colitis.

  17. Elucidation of the mechanism of atorvastatin-induced myopathy in a rat model.

    PubMed

    El-Ganainy, Samar O; El-Mallah, Ahmed; Abdallah, Dina; Khattab, Mahmoud M; Mohy El-Din, Mahmoud M; El-Khatib, Aiman S

    2016-06-01

    Myopathy is among the well documented and the most disturbing adverse effects of statins. The underlying mechanism is still unknown. Mitochondrial dysfunction related to coenzyme Q10 decline is one of the proposed theories. The present study aimed to investigate the mechanism of atorvastatin-induced myopathy in rats. In addition, the mechanism of the coenzyme Q10 protection was investigated with special focus of mitochondrial alterations. Sprague-Dawely rats were treated orally either with atorvastatin (100mg/kg) or atorvastatin and coenzyme Q10 (100mg/kg). Myopathy was assessed by measuring serum creatine kinase (CK) and myoglobin levels together with examination of necrosis in type IIB fiber muscles. Mitochondrial dysfunction was evaluated by measuring muscle lactate/pyruvate ratio, ATP level, pAkt as well as mitochondrial ultrastructure examination. Atorvastatin treatment resulted in a rise in both CK (2X) and myoglobin (6X) level with graded degrees of muscle necrosis. Biochemical determinations showed prominent increase in lactate/pyruvate ratio and a decline in both ATP (>80%) and pAkt (>50%) levels. Ultrastructure examination showed mitochondrial swelling with disrupted organelle membrane. Co-treatment with coenzyme Q10 induced reduction in muscle necrosis as well as in CK and myoglobin levels. In addition, coenzyme Q10 improved all mitochondrial dysfunction parameters including mitochondrial swelling and disruption. These results presented a model for atorvastatin-induced myopathy in rats and proved that mitochondrial dysfunction is the main contributor in statin-myopathy pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Basal levels of metabolic activity are elevated in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): measurement of regional activity of cytochrome oxidase and lactate dehydrogenase by histochemistry.

    PubMed

    Dufour, Franck; Koning, Estelle; Nehlig, Astrid

    2003-08-01

    The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are considered an isomorphic, predictive, and homologous model of human generalized absence epilepsy. It is characterized by the expression of spike-and-wave discharges in the thalamus and cortex. In this strain, basal regional rates of cerebral glucose utilization measured by the quantitative autoradiographic [(14)C]2-deoxyglucose technique display a widespread consistent increase compared to a selected strain of genetically nonepileptic rats (NE). In order to verify whether these high rates of glucose metabolism are paralleled by elevated activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histochemistry the regional activity of the two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation. CO and LDH activities were significantly higher in GAERS than in NE rats in 24 and 28 of the 30 brain regions studied, respectively. The differences in CO and LDH activity between both strains were widespread, affected all brain systems studied, and ranged from 12 to 63%. The data of the present study confirm the generalized increase in cerebral glucose metabolism in GAERS, occurring both at the glycolytic and at the oxidative step. However, they still do not allow us to understand why the ubiquitous mutation(s) generates spike-and-wave discharges only in the thalamocortical circuit.

  19. Therapeutic effect of Tripterygium wilfordii Hook F multiglycosides on gut barrier dysfunction in rats with acute necrotizing pancreatitis.

    PubMed

    Wang, Jie; Wu, Gang; Ma, Baojin; Wu, Jianhua; Cai, Duan

    2013-02-01

    The aim of the current study was to investigate the therapeutic effect of Tripterygium wilfordii Hook F multiglycosides (TWG) on gut barrier dysfunction in rats with acute necrotizing pancreatitis (ANP). ANP was induced in rats using 3.5% sodium taurocholate. The rats were divided into 3 groups: the sham operation (SO), ANP and ANP+TWG groups. Biochemical and pathological change of pancreatic tissue and ileal mucosa, bacterial cultures and the survival rate were measured following surgery and treatment. TWG treatment significantly decreased amylase and lipase activities and plasma endotoxin and D-lactate levels. Edema and inflammation in the pancreas and ileal mucosa were alleviated. Positive bacterial cultures were significantly reduced. The survival rate of the rats in the ANP+TWG group was higher than that of the rats in the ANP group. TWG treatment showed beneficial effects by protecting the pancreas from bacterial infection caused by gut barrier dysfunction and improving the outcomes of the rats with ANP.

  20. Vinclozolin: a feasibility and sensitivity study of the ILSI-HESI F1-extended one-generation rat reproduction protocol.

    PubMed

    Schneider, Steffen; Kaufmann, Wolfgang; Strauss, Volker; van Ravenzwaay, Bennard

    2011-02-01

    Feasibility of the ILSI-HESI (ACSA) extended one-generation protocol was tested with vinclozolin (dietary 0, 4, 20, 100mg/kg/day). Parental Wistar rats (n=25/sex/dose) were dosed pre-mating (males 4, females 2 weeks) through F1 offspring weaning (postnatal day PND21); F1 dosing continued through PND70. At PND21, 3 subsets (each 1 pup/sex/litter) were selected for neurotoxicology (functional observational battery, motor activity, neuropathology), clinical pathology (hematology, clinical chemistry, urinalysis, thyroid hormone assay) (subsets 1a, 1b; each n=10/sex/dose), immunotoxicology (IgM) SRBC antibody response and natural killer cell assays (subset 2; n=25/sex/dose), and estrus cycle (subset 3; n=25/dose). Vinclozolin reduced parental and offspring bodyweight and prostate, seminal vesicles and epididymides weight, and increased adrenal weight/induced adrenal cortical hypertrophy at 100mg/kg. Mating, fertility, gestation and lactation were unaffected. At 20 and 100mg/kg, F1 males had reduced anogenital distance and retained areolae; at 100mg/kg only, there was hypospadias, purulent prostatitis and seminal vesicle inflammation with atrophy, and Leydig cell hyperplasia, and in F1 females accelerated vaginal opening. These effects are consistent with vinclozolin's known anti-androgenic developmental effects. Neuro- and immunotoxicology tests were unaffected. F1 Only T4 was reduced at 20 and 100mg/kg. The overall sensitivity of the extended one-generation protocol is comparable to or even greater than the current two-generation study. Thus it reduces animal use while maintaining or enhancing information for risk assessment. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Total iodine quantification in fluids and tissues from iodine- or iodide-supplemented rats by ion chromatography following microwave-assisted digestion.

    PubMed

    Delgado, Guadalupe; Muñoz-Torres, Carolina; Orozco-Esquivel, Teresa; Anguiano, Brenda; Aceves, Carmen

    2015-03-01

    Iodine is a crucial component of thyroid hormones, and several reports have shown that iodine per se is implicated in the physiopathology of other organs. Innovative ion chromatography detection following a four-step temperature ramp microwave digestion in 25-50 mM nitric acid was developed to measure total iodine in biological fluids and tissue samples from female Sprague-Dawley rats supplemented with 0.05% molecular iodine (I2) or 0.05% potassium iodide (I(-)) in drinking water. The reported method allows the measurement of total iodine with a limit of quantification of 13.7 μg L(-1), recoveries of 96.3-100.3%, and intra- and inter-assay variations, of 3.5% and 7.4% respectively. Analysis of biological fluids showed that after 48 hours, iodine-supplemented animals exhibited significantly higher levels of total iodine in both serum and urine compared with those supplemented with iodide. The half-life of iodine in serum and urine measured over the first 48 h showed similar patterns for both the I2 (7.89 and 7.76 hours) and I(-) (8.27 and 8.90 hours) supplements. Differential uptake patterns were observed in tissues after 6 days of supplements, with I(-) preferentially retained by thyroid, lactating mammary gland, and milk, and a slightly but significantly higher capture of I2 in pituitary, ovary, and virgin mammary gland. We developed a rapid, selective, and accurate digestion method to process fluid and tissue samples that permits reproducible measurements of total iodine by ion chromatography; iodine or iodide supplement show a similar serum and urine half-life, but organ-specific uptake depends on the chemical form of the iodine supplement.

  2. Isolating Lysosomes from Rat Liver.

    PubMed

    Pryor, Paul R

    2016-04-01

    This protocol describes the generation of a fraction enriched in lysosomes from rat liver. The lysosomes are rapidly isolated using density-gradient centrifugation with gradient media that retain the osmolarity of the lysosomes such that they are functional and can be used in in vitro assays. © 2016 Cold Spring Harbor Laboratory Press.

  3. Strontium-90 in hair.

    PubMed

    HOPKINS, B J; TUTTLE, L W; PORIES, W J; STRAIN, W H

    1963-03-15

    The hair of rats injected with strontium-90 retains a significant amount of the radionuclide. Although the strontium-90 content of hair is variable in these rats and appears to be subject to a variety of influences, determination of the radionuclide content of hair may offer a nondestructive method of estimating strontium-90 in bone.

  4. Perinatal alcohol exposure enhances nocistatin levels in adulthood.

    PubMed

    Tekes, Kornélia; Hantos, Mónika; Gyenge, Melinda; Csaba, Gyorgy

    2007-06-01

    In earlier experiments perinatal hormonal imprinting by alcohol decreased the hormone content of immune cells for life. In the present study, both a single day (15% on the third postnatal day) and a long-term treatment schedule of alcohol exposure (3% for 21 days) of dams during lactation significantly (P < 0.01) enhanced endogenous levels of nocistatin in the blood plasma as well as in the cerebrospinal fluid of the offspring, measured in 3-month-old rats. Our data suggest that alcohol consumption during lactation can cause a life-long influence on nocistatin levels in the offspring and most likely modify nocistatin-related functions such as pain tolerance.

  5. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization

    PubMed Central

    Jiang, Tianyi; Guo, Xiaoting; Yan, Jinxin; Zhang, Yingxin; Wang, Yujiao; Zhang, Manman; Sheng, Binbin; Ma, Cuiqing; Xu, Ping

    2017-01-01

    ABSTRACT Bacterial membrane-associated NAD-independent d-lactate dehydrogenase (Fe-S d-iLDH) oxidizes d-lactate into pyruvate. A sequence analysis of the enzyme reveals that it contains an Fe-S oxidoreductase domain in addition to a flavin adenine dinucleotide (FAD)-containing dehydrogenase domain, which differs from other typical d-iLDHs. Fe-S d-iLDH from Pseudomonas putida KT2440 was purified as a His-tagged protein and characterized in detail. This monomeric enzyme exhibited activities with l-lactate and several d-2-hydroxyacids. Quinone was shown to be the preferred electron acceptor of the enzyme. The two domains of the enzyme were then heterologously expressed and purified separately. The Fe-S cluster-binding motifs predicted by sequence alignment were preliminarily verified by site-directed mutagenesis of the Fe-S oxidoreductase domain. The FAD-containing dehydrogenase domain retained 2-hydroxyacid-oxidizing activity, although it decreased compared to the full Fe-S d-iLDH. Compared to the intact enzyme, the FAD-containing dehydrogenase domain showed increased catalytic efficiency with cytochrome c as the electron acceptor, but it completely lost the ability to use coenzyme Q10. Additionally, the FAD-containing dehydrogenase domain was no longer associated with the cell membrane, and it could not support the utilization of d-lactate as a carbon source. Based on the results obtained, we conclude that the Fe-S oxidoreductase domain functions as an electron transfer component to facilitate the utilization of quinone as an electron acceptor by Fe-S d-iLDH, and it helps the enzyme associate with the cell membrane. These functions make the Fe-S oxidoreductase domain crucial for the in vivo d-lactate utilization function of Fe-S d-iLDH. IMPORTANCE Lactate metabolism plays versatile roles in most domains of life. Lactate utilization processes depend on certain enzymes to oxidize lactate to pyruvate. In recent years, novel bacterial lactate-oxidizing enzymes have been continually reported, including the unique NAD-independent d-lactate dehydrogenase that contains an Fe-S oxidoreductase domain besides the typical flavin-containing domain (Fe-S d-iLDH). Although Fe-S d-iLDH is widely distributed among bacterial species, the investigation of it is insufficient. Fe-S d-iLDH from Pseudomonas putida KT2440, which is the major d-lactate-oxidizing enzyme for the strain, might be a representative of this type of enzyme. A study of it will be helpful in understanding the detailed mechanisms underlying the lactate utilization processes. PMID:28847921

  6. Similar increases in extracellular lactic acid in the limbic system during epileptic and/or olfactory stimulation.

    PubMed

    Fornai, F; Bassi, L; Gesi, M; Giorgi, F S; Guerrini, R; Bonaccorsi, I; Alessandrì, M G

    2000-01-01

    Previous studies have shown that physiological stimulation of brain activity increases anaerobic glucose consumption, both in humans and in experimental animals. To investigate this phenomenon further, we measured extracellular lactate levels within different rat brain regions, using microdialysis. Experiments were performed comparing the effects of natural, physiological olfactory stimulation of the limbic system with experimental limbic seizures. Olfactory stimulation was carried out by using different odors (i.e. both conventional odors: 2-isobutyl-3-methoxypyrazine, green pepper essence; thymol; and 2-sec-butylthiazoline, a sexual pheromone). Limbic seizures were either induced by systemic injection of pilocarpine (200-400 mg/kg) or focally elicited by microinfusions of chemoconvulsants (bicuculline 118 pmol and cychlothiazide 1.2 nmol) within the anterior piriform cortex. Seizures induced by systemic pilocarpine tripled lactic acid within the hippocampus, whereas limbic seizures elicited by focal microinfusion of chemoconvulsants within the piriform cortex produced a less pronounced increase in extracellular lactic acid. Increases in extracellular lactate occurring during olfactory stimulation with the sexual pheromone (three times the baseline levels) were non-significantly different from those occurring after systemic pilocarpine. Increases in lactic acid following natural olfactory stimulation were abolished both by olfactory bulbectomy and by the focal microinfusion of tetrodotoxin, while they were significantly attenuated by the local application of the N-methyl-D-aspartate antagonist AP-5. Increases in hippocampal lactate induced by short-lasting stimuli (olfactory stimulation or microinfusion of subthreshold doses of chemoconvulsants, bicuculline 30 pmol) were reproducible after a short delay (1 h) and cumulated when applied sequentially. In contrast, limbic status epilepticus led to a long-lasting refractoriness to additional lactate-raising stimuli and there was no further increase in lactate levels when the olfactory stimulation was produced during status epilepticus. Increases in lactic acid following olfactory stimulation occurred with site specificity in the rhinencephalon (hippocampus, piriform and entorhinal cortex) but not in the dorsal striatum. Site specificity crucially relied on the quality of the stimulus. For instance, other natural stimuli (i.e. tail pinch) produced a similar increase in extracellular lactate in all brain areas under investigation. The major conclusion of this work is that the presentation of an odor known to be a rat pheromone results in lactate production as great as that induced by the systemic convulsant pylocarpine (maximum: 2.286+/-0.195 mM and 1.803+/-0.108 mM, respectively). This supports the notion that the great magnitude of lactate production known to accompany seizures can result from the intensified neural activity per se ("aerobic gycolysis"), not merely from local anoxia or other pathological changes.

  7. Hyper-G stress-induced hyperglycemia in rats mediated by glucoregulatory hormones

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.

    1985-01-01

    The present investigation is concerned with possible relations of the hyperglycemic response of rats exposed to hyper-G stress to (1) alterations in blood levels of the glucoregulatory hormones and gluconeogenic substrates, and (2) changes in insulin response on muscle glucose uptake. Male Sprague-Dawley rats weighing 250-300 g were used in the study. The results of the experiments indicate that the initial rapid rise in blood glucose of rats exposed to hyper-G stress is mediated by increases in circulating catecholamines and glucagon, both potent stimulators of hepatic gluconeogenesis. Lactate, derived from epinephrine stimulation of muscle glycogenolysis, appears to be a major precursor for the initial rise in blood glucose. The inhibition of the insulin-stimulated glucose uptake by muscle tissues may be a factor in the observed sustained hyperglycemia.

  8. Exercise and recovery metabolism in the Pacific spiny dogfish (Squalus acanthias).

    PubMed

    Richards, J G; Heigenhauser, G J F; Wood, C M

    2003-08-01

    We examined the effects of exhaustive exercise and post-exercise recovery on white muscle substrate depletion and metabolite distribution between white muscle and blood plasma in the Pacific spiny dogfish, both in vivo and in an electrically stimulated perfused tail-trunk preparation. Measurements of arterial-venous lactate, total ammonia, beta-hydroxybutyrate, glucose, and L-alanine concentrations in the perfused tail-trunk assessed white muscle metabolite fluxes. Exhaustive exercise was fuelled primarily by creatine phosphate hydrolysis and glycolysis as indicated by 62, 71, and 85% decreases in ATP, creatine phosphate, and glycogen, respectively. White muscle lactate production during exercise caused a sustained increase (approximately 12 h post-exercise) in plasma lactate load and a short-lived increase (approximately 4 h post-exercise) in plasma metabolic acid load during recovery. Exhaustive exercise and recovery did not affect arterial PO2, PCO2, or PNH3 but the metabolic acidosis caused a decrease in arterial HCO3- immediately after exercise and during the first 8 h recovery. During recovery, lactate was retained in the white muscle at higher concentrations than in the plasma despite increased lactate efflux from the muscle. Pyruvate dehydrogenase activity was very low in dogfish white muscle at rest and during recovery (0.53 +/- 0.15 nmol g wet tissue(-1) min(-1); n=40) indicating that lactate oxidation is not the major fate of lactate during post-exercise recovery. The lack of change in white muscle free-carnitine and variable changes in short-chain fatty acyl-carnitine suggest that dogfish white muscle does not rely on lipid oxidation to fuel exhaustive exercise or recovery. These findings support the notion that extrahepatic tissues cannot utilize fatty acids as an oxidative fuel. Furthermore, our data strongly suggest that ketone body oxidation is important in fuelling recovery metabolism in dogfish white muscle and at least 20% of the ATP required for recovery could be supplied by uptake and oxidation of beta-hydroxybutyrate from the plasma.

  9. Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain.

    PubMed

    Liu, Aijun; Zhang, Zhiwen; Li, Anmin; Xue, Jinghui

    2010-08-06

    CIRP (cold-inducible RNA-binding protein) mRNA is highly expressed in hypothermic conditions in mammalian cells, and the relationship between CIRP and neuroprotection for cerebral ischemia under hypothermia has been focused upon. At present, however, the expression characteristics of CIRP under hypothermia and cerebral ischemia in vivo are not clearly elucidated. In this study, CIRP mRNA expression in various regions of rat brain was examined by reverse transcriptase polymerase chain reaction (RT-PCR). CIRP expression levels were found to be similar in the hippocampus and cortex. Real-time quantitative PCR analysis revealed increasing CIRP mRNA expression in the cortex during the 24-h observation period following treatment with hypothermia or cerebral ischemia, with a greater increase in the hypothermia group. When cerebral ischemia was induced following hypothermia, CIRP mRNA expression in the cortex again showed a significant increasing tendency, but ischemia delayed the appearance of this increase. To reveal the relationship between CIRP and energy metabolism in the rat brain, lactate and pyruvate concentrations in the cortex of the rats treated with hypothermia, ischemia and ischemia after hypothermia were determined by spectrophotometric assay, and levels of phosphofructokinas-1 (PFK-1), the major regulatory enzyme of the glycolytic pathway, in the rat cortex in the three groups was also analyzed by Western blot. Using linear correlation, lactate and pyruvate concentrations, and PFK-1 levels, were each analyzed in the three groups in association with CIRP mRNA expression levels. The analysis did not reveal any correlation between the three metabolic parameters and CIRP mRNA expression induced by hypothermia, suggesting that while playing a role in neuroprotection under hypothermia, CIRP does not affect cerebral energy metabolism. Copyright 2010. Published by Elsevier B.V.

  10. The effects of dietary fish oil on exercising skeletal muscle vascular and metabolic control in chronic heart failure rats.

    PubMed

    Holdsworth, Clark T; Copp, Steven W; Hirai, Daniel M; Ferguson, Scott K; Sims, Gabrielle E; Hageman, Karen S; Stebbins, Charles L; Poole, David C; Musch, Timothy I

    2014-03-01

    Impaired vasomotor control in chronic heart failure (CHF) is due partly to decrements in nitric oxide synthase (NOS) mediated vasodilation. Exercising muscle blood flow (BF) is augmented with polyunsaturated fatty acid (PUFA) supplementation via fish oil (FO) in healthy rats. We hypothesized that FO would augment exercising muscle BF in CHF rats via increased NO-bioavailability. Myocardial infarction (coronary artery ligation) induced CHF in Sprague-Dawley rats which were subsequently randomized to dietary FO (20% docosahexaenoic acid, 30% eicosapentaenoic acid, n = 15) or safflower oil (SO, 5%, n = 10) for 6-8 weeks. Mean arterial pressure (MAP), blood [lactate], and hindlimb muscles BF (radiolabeled microspheres) were determined at rest, during treadmill exercise (20 m·min(-1), 5% incline) and exercise + N(G)-nitro-l-arginine-methyl-ester (l-NAME) (a nonspecific NOS inhibitor). FO did not change left ventricular end-diastolic pressure (SO: 14 ± 2; FO: 11 ± 1 mm Hg, p > 0.05). During exercise, MAP (SO: 128 ± 3; FO: 132 ± 3 mm Hg) and blood [lactate] (SO: 3.8 ± 0.4; FO: 4.6 ± 0.5 mmol·L(-1)) were not different (p > 0.05). Exercising hindlimb muscle BF was lower in FO than SO (SO: 120 ± 11; FO: 93 ± 4 mL·min(-1)·100 g(-1), p < 0.05) but was not differentially affected by l-NAME. Specifically, 17 of 28 individual muscle BF's were lower (p < 0.05) in FO demonstrating that PUFA supplementation with FO in CHF rats does not augment muscle BF during exercise but may lower metabolic cost.

  11. Protection of rats against 3-butene-1,2-diol-induced hepatotoxicity and hypoglycemia by N-acetyl-L-cysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprague, Christopher L.; Elfarra, Adnan A.

    2005-09-15

    3-Butene-1,2-diol (BDD), an allylic alcohol and major metabolite of 1,3-butadiene, has previously been shown to cause hepatotoxicity and hypoglycemia in male Sprague-Dawley rats, but the mechanisms of toxicity were unclear. In this study, rats were administered BDD (250 mg/kg) or saline, ip, and serum insulin levels, hepatic lactate levels, and hepatic cellular and mitochondrial GSH, GSSG, ATP, and ADP levels were measured 1 or 4 h after treatment. The results show that serum insulin levels were not causing the hypoglycemia and that the hypoglycemia was not caused by an enhancement of the metabolism of pyruvate to lactate because hepatic lactatemore » levels were either similar (1 h) or lower (4 h) than controls. However, both hepatic cellular and mitochondrial GSH and GSSG levels were severely depleted 1 and 4 h after treatment and the mitochondrial ATP/ADP ratio was also lowered 4 h after treatment relative to controls. Because these results suggested a role for hepatic cellular and mitochondrial GSH in BDD toxicity, additional rats were administered N-acetyl-L-cysteine (NAC; 200 mg/kg) 15 min after BDD administration. NAC treatment partially prevented depletion of hepatic cellular and mitochondrial GSH and preserved the mitochondrial ATP/ADP ratio. NAC also prevented the severe depletion of serum glucose concentration and the elevation of serum alanine aminotransferase activity after BDD treatment without affecting the plasma concentration of BDD. Thus, depletion of hepatic cellular and mitochondrial GSH followed by the decrease in the mitochondrial ATP/ADP ratio was likely contributing to the mechanisms of hepatotoxicity and hypoglycemia in the rat.« less

  12. Temporal and spatial characteristics of cone degeneration in RCS rats.

    PubMed

    Huang, Yan Ming; Yin, Zheng Qin; Liu, Kang; Huo, Shu Jia

    2011-03-01

    The temporal and spatial characteristics of cone degeneration in the Royal College of Surgeons (RCS) rat were studied to provide information for treatment strategies of retinitis pigmentosa. Nonpigmented dystrophic RCS rats (RCS) and pigmented nondystrophic RCS rats (controls) were used. Cone processes were visualized with peanut agglutinin (PNA). Cone development appears to have been completed by postnatal day 21 (P21) in both the RCS and control rats. Signs of cone degeneration were obvious by P30, with shorter outer segments (OSs) and enlarged inner segments (ISs). At that time, 81.7% of the cones retained stained ISs. The rate of IS density decline was slower in the peripheral, nasal, and superior retina, and only 43.6% of the cones with ISs were present at P45. By P60, PNA-labeled cone ISs were distorted and restricted to the peripheral retina, and by P90, few cone pedicles were detected. Our findings indicate that therapeutic strategies aimed at rescuing cones in the degenerating retina should be applied before P21 and no later than P45 while substantial numbers of cones retain their ISs. Either the middle or peripheral regions of the nasal and superior retina are the best locations for transplantation strategies.

  13. Histochemical discrimination of fibers in regenerating rat infraorbital nerve

    NASA Technical Reports Server (NTRS)

    Wilke, R. A.; Riley, D. A.; Sanger, J. R.

    1992-01-01

    In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.

  14. Developmental Lead Exposure Alters Methamphetamine Self-administration in the Male Rat: Acquisition and Reinstatement

    PubMed Central

    Rocha, Angelica; Valles, Rodrigo; Bratton, Gerald R.; Nation, Jack R.

    2010-01-01

    The rate of acquisition of drug self-administration and the return to drug seeking are important elements of the overall drug profile, and are essential factors in understanding risks associated with drug abuse. Experiment 1 examined the effects of perinatal (gestation/lactation) lead exposure on adult rates of acquisition of intravenous (i.v.) methamphetamine self-administration. Experiment 2 investigated the effects of perinatal lead exposure on drug-maintained responding in a reinstatement (relapse) paradigm. In Experiment 1, female rats were gavaged daily with 0 or 16-mg lead for 30 days prior to breeding with nonexposed males. Lead exposure continued through gestation and lactation and was discontinued at weaning (postnatal day [PND] 21). Male rats born to control or lead-exposed dams were tested daily as adults in an acquisition paradigm that incorporated both Pavlovian and operant components. An initial 3-hr autoshaping period preceded a 3-hr self-administration period. For 35 daily training sessions i.v. methamphetamine infusions [inf] (0.02 mg/kg) were paired with the extension and retraction of a lever (autoshaping), while inf occurred during self-administration only when a lever press was executed (FR-1). In Experiment 2 animals developmentally exposed to lead were trained on a FR-2 to self-administer methamphetamine (0.04 mg/kg/inf) and then placed on an extinction schedule prior to receiving intraperitoneal (i.p.) priming injections of saline, 0.50, 1.00, or 1.50 mg/kg methamphetamine. The findings from Experiment 1 showed that acquisition was delayed in rats born to lead-exposed dams gavaged daily with 16-mg lead throughout gestation and lactation when a 0.02 mg/kg/inf of methamphetamine served as the reinforcement outcome. Additional data from Experiment 2 indicated priming cues (injections of methamphetamine [i.p.]) administered after extinction were less likely to occasion a return to drug seeking (relapse) in the 16-mg group relative to the 0-mg control group. These results suggest perinatal lead exposure alters patterns of methamphetamine self-administration during the adult cycle. PMID:18242880

  15. 26Al incorporation into the tissues of suckling rats through maternal milk

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Nagai, H.; Kobayashi, K.; Tada, W.; Horikawa, T.; Matsuzaki, H.

    2004-08-01

    Aluminium (Al) is highly neurotoxic and inhibits prenatal and postnatal development of the brain in humans and experimental animals. However, Al incorporation into the brain of sucklings through maternal milk has not yet been well clarified because Al lacks a suitable isotope for radioactive tracer experiments. Using 26Al as a tracer, we measured 26Al incorporation into the brain of suckling rats by accelerator mass spectrometry. Lactating rats were subcutaneously injected with 26AlCl3 from day 1 to day 20 postpartum. Suckling rats were weaned from day 21 postpartum. From day 5 to day 20 postpartum, the 26Al levels measured in the brain, liver, kidneys and bone of suckling rats increased significantly. After weaning, the amounts of 26Al in the liver and kidneys decreased remarkably. However, the 26Al amount in the brain had diminished only slightly up to 140 days after weaning.

  16. Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid

    PubMed Central

    Ruan, Zheng; Yang, Yuhui; Zhou, Yan; Wen, Yanmei; Ding, Sheng; Liu, Gang; Wu, Xin; Deng, Zeyuan; Assaad, Houssein; Wu, Guoyao

    2016-01-01

    This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo. PMID:24927697

  17. Effect of 1,25-dihydroxycholecalciferol and 1,25-dihydroxycholecalciferol glycoside on 2,3-diphosphoglycerate levels of the rat erythrocyte.

    PubMed

    Skliar, M I; Fernandez, M C; Faienza, H; Orsatti, M B; Puche, R C; Boland, R L; Skliar, M I

    1980-12-01

    The erythrocytes of rats treated with 1, 25-dihydroxycholecalciferol or 1, 25-dihydroxycholecalciferol glycoside showed decreased levels of 2, 3-diphosphoglycerate. The same result has been obtained in vitro, indicating a direct effect of the sterol on the red cell. The glycoside is less active than the free sterol in vivo and more active in vitro. The decreased levels of diphosphoglycerate induced tissue hypoxia as shown by a higher plasma lactate/pyruvate ratio and a three fold increase in plasma erythropoietin concentration.

  18. Coconut Haustorium Maintains Cardiac Integrity and Alleviates Oxidative Stress in Rats Subjected to Isoproterenol-induced Myocardial Infarction

    PubMed Central

    Chikku, A. M.; Rajamohan, T.

    2012-01-01

    The present study evaluates the effect of aqueous extract of coconut haustorium on isoproterenol-induced myocardial infarction in Sprague Dawley rats. Rats were pretreated with aqueous extract of coconut haustorium (40 mg/100 g) orally for 45 days. After pretreatment, myocardial infarction was induced by injecting isoproterenol subcutaneously (20 mg/100 g body weight) twice at an interval of 24 h. Activity of marker enzymes like lactate dehydrogenase, creatinine kinase-MB, aspartate transaminase and alanine transaminase were increased in the serum and decreased in the heart of isoproterenol treated rats indicating cardiac damage. These changes were significantly reduced in haustorium pretreated rats. Moreover, an increase in the activities of antioxidant enzymes and decrease in the levels of peroxidation products were observed in the myocardium of coconut haustorium pretreated rats. Histopathology of the heart of these rats showed almost normal tissue morphology. From these results, it is clear that aqueous extract of coconut haustorium possess significant cardioprotective and antioxidant properties during isoproterenol-induced myocardial infarction in rats. PMID:23716867

  19. Association between body energy content in the dry period and post-calving production disease status in dairy cattle.

    PubMed

    Smith, G L; Friggens, N C; Ashworth, C J; Chagunda, M G G

    2017-09-01

    The transition from gestation to lactation is marked by significant physiological changes for the individual cow such that disease incidence is highest in early lactation. Around the time of calving, cows rely on mobilisation of body energy reserves to fill the energy deficit created by an increase in nutrient demands at a time of restricted feed intake. It is well established that monitoring of body energy reserves in lactation is an important component of herd health management. However, despite their influence on future health and productivity, monitoring of body energy reserves in the dry period is often sparse. Further, there is increasing concern that current dry off management is inappropriate for modern cattle and may influence future disease risk. This study aimed to identify candidate indicators of early lactation production disease from body energy data collected in the dry period and production data recorded at the time of dry off. Retrospective analysis was performed on 482 cow-lactations collected from a long-term Holstein-Friesian genetic and management systems project, the Langhill herd in Scotland. Cow-lactations were assigned to one of four health groups based on health status in the first 30 days of lactation. These four groups were as follows: healthy, reproductive tract disorders (retained placenta and metritis), subclinical mastitis and metabolic disorders (ketosis, hypocalcaemia, hypomagnesaemia and left displaced abomasum). ANOVA, employing a GLM was used to determine effects for the candidate indicator traits. Cows which were diagnosed with a reproductive tract disorder in the first 30 days of lactation experienced a significantly greater loss in body energy content, body condition score and weight in the preceding dry period than healthy cows. The rate of change in body energy content during the first 15 days of the dry period was -18.26 MJ/day for cows which developed reproductive tract disorder compared with +0.63 MJ/day for healthy cows. Cows diagnosed with subclinical mastitis in the first 30 days of lactation had significantly greater milk yield at dry off in the previous lactation than cows that developed a reproductive tract disorder or metabolic disease in addition to a significantly higher yield to body energy content ratio at dry off than healthy cows. Physiological and production traits recorded in the lactation and dry period preceding a disease event differed between cows which developed different diseases post-calving. Differences in these traits allow the development of new disease indicators for use in models for the prediction of disease risk in the transition period.

  20. Characteristics of 106 spontaneous mammary tumours appearing in Sprague-Dawley female rats.

    PubMed Central

    Okada, M.; Takeuchi, J.; Sobue, M.; Kataoka, K.; Inagaki, Y.; Shigemura, M.; Chiba, T.

    1981-01-01

    Pathological studies were undertaken on 106 mammary tumours (89 benign, 17 malignant) appearing spontaneously in 95 normal female Sprague-Dawley rats which were killed at Day 756. The benign tumours comprised those with a predominant acinar hyperplasia and those with adenomatous or fibroadenomatous pattern. No significant differences were found histochemically between the acinar cells of the benign tumours and of the lactating gland, except that the amount of fibrous interstitial connective tissue was larger in the former. 3H- or 35S-glycosaminoglycan synthesis by the benign tumours was found to be much higher. The prolactin value in the plasma of the benign-tumour-bearing rats was about 27 times that of 6-month-old virgin rats, and similar to that of rats on the 7th day post partum. Carcinomatous proliferation of tubuloacinar cells could be seen in 5 of the 89 benign tumours. The incidence of benign tumours increases with the age of the rats. Images Fig. 1 Fig. 2 Fig. 3 PMID:7248153

  1. Amelioration of tamoxifen-induced liver injury in rats by grape seed extract, black seed extract and curcumin.

    PubMed

    El-Beshbishy, Hesham A; Mohamadin, Ahmed M; Nagy, Ayman A; Abdel-Naim, Ashraf B

    2010-03-01

    Liver injury was induced in female rats using tamoxifen (TAM). Grape seeds (Vitis vinifera) extract (GSE), black seed (Nigella sativa) extract (NSE), curcumin (CUR) or silymarin (SYL) were orally administered to TAM-intoxicated rats. Liver histopathology of TAM-intoxicated:rats showed pathological changes. TAM-intoxication elicited declines in liver antioxidant enzymes levels (glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase), reduced glutathione (GSH) and GSH/GSSG ratio plus the hepatic elevations in lipid peroxides, oxidized glutathione (GSSG), tumor necrosis factor-alpha (TNF-alpha) and serum liver enzymes; alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase and gamma glutamyl transferase levels. Oral intake of NSE, GSE, CUR or SYL to TAM-intoxicated rats, attenuated histopathological changes and corrected all parameters mentioned above. Improvements were prominent in case of NSE (similarly SYL) > CUR > GSE. Data indicated that NSE, GSE or CUR act as free radicals scavengers and protect TAM-induced liver injury in rats.

  2. The antidepressant role of dietary long-chain polyunsaturated n-3 fatty acids in two phases in the developing brain.

    PubMed

    Ferraz, Anete Curte; Kiss, Agata; Araújo, Renata Lins Fuentes; Salles, Hélidy Maria Rossi; Naliwaiko, Katya; Pamplona, Juliana; Matheussi, Francesca

    2008-03-01

    In this work we investigated the effect from fish oil (FO) supplementation, rich in n-3 fatty acids, on an antidepressant effect on adult rats in Phase A (supplementation during pregnancy and lactation) and phase B (supplementation during post-weaning until adulthood). During Phase A, female rats, used as matrix to obtain male rats, were divided in three groups: FO (daily supplemented), CF (coconut fat daily supplemented) and control (not supplemented). Our results showed that adult rats whose mothers were supplemented with FO during Phase A and rats supplemented during phase B demonstrated a significantly decreased immobility time when compared to control and CF groups. There was no difference in neither motor activity nor anxiety behavior in the three groups excluding false positive results. Our results suggest that n-3 fatty acids supplementation during Phases A and B had a beneficial effect on preventing the development of depression-like behavior in adult rats.

  3. Glycemia, ketonemia, and brain enzymes of ketone body utilization in suckling and adult rats undernourished from intrauterine life.

    PubMed

    Escrivá, F; Rodríguez, C; Pascual-Leone, A M

    1985-05-01

    The effect of undernutrition from the 16th day of pregnancy up to 70th day of life on blood glucose and ketone bodies and on several brain mitochondrial enzymes related to energy metabolism or biosynthetic function was investigated. Undernutrition in perinatal period was established by means of a food restriction to pregnant rats and, later, to the lactating mother; undernourished postweaned rats received half the diet consumed by the controls. Body and brain weight from undernourished rats was less than controls throughout the entire period studied. Glycemia and ketonemia were also always lower than controls. Cytochrome c oxidase, citrate synthase, 3-hydroxybutyrate dehydrogenase, 3-oxoacid coenzyme A transferase, and acetoacetyl-coenzyme A thiolase activities during the suckling period were in most stages lower than controls; subsequently, activities in undernourished rats reached or surpassed the control values. These results could explain the "catch up" phenomenon in several ultrastructural parameters found by other authors in undernourished postweaned rats.

  4. Developmental Toxicity Evaluations of Whole Mixtures of Disinfection By-products using Concentrated Drinking Water in Rats: Gestational and Lactational Effects of Sulfate and Sodium

    EPA Science Inventory

    A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Co...

  5. Developmental Toxicity Evaluations of Whole Mixtures of Disinfection By-products using Concentrated Drinking Water in Rats: Gestational and Lactational Effects of Sulfate and Sodium*

    EPA Science Inventory

    A developmental toxicity bioassay was used in three experiments to evaluate drinking water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135 fold by reverse osmosis; select lost disinfection by-products were spiked back. Conc...

  6. THE NUTRITIONAL VALUE OF OCD RATIONS.

    DTIC Science & Technology

    Three series of studies of the nutritional value of Office of Civil Defense shelter rations were carried out. In the first, nitrogen balance and...none of the OCD rations (biscuits, crackers or wafers) supported satisfactory reproduction in the rat when fed during pregnancy and lactation; both the survival and growth of the progency were seriously impaired. (Author)

  7. Maternal Flaxseed Oil During Lactation Enhances Bone Development in Male Rat Pups.

    PubMed

    Pereira, Aline D'Avila; Ribeiro, Danielle Cavalcante; de Santana, Fernanda Carvalho; de Sousa Dos Santos, Aline; Mancini-Filho, Jorge; do Nascimento-Saba, Celly Cristina Alves; Velarde, Luis Guillermo Coca; da Costa, Carlos Alberto Soares; Boaventura, Gilson Teles

    2016-08-01

    Flaxseed oil is an alpha linolenic acid source important in the growth and body development stage; furthermore, this acid acts on adipose tissue and bone health. The aim of this study was to evaluate body composition, fatty acid composition, hormone profile, retroperitoneal adipocyte area and femur structure of pups at weaning, whose mothers were fed a diet containing flaxseed oil during lactation. After birth, pups were randomly assigned: control (C, n = 12) and flaxseed oil (FO, n = 12), rats whose mothers were treated with diet containing soybean or flaxseed oil. At 21 days, the pups were weaned and body mass, length, body composition, biochemical parameter, leptin, osteoprotegerin, osteocalcin, fatty acids composition, intra-abdominal fat mass and femur structure were analyzed. FO showed (p < 0.05): higher body mass (+12 %) and length (+9 %); body fat mass (g, +45 %); bone mineral density (+8 %), bone mineral content (+55 %) and bone area (+35 %), osteocalcin (+173 %) and osteoprotegerin (+183 %). Arachidonic acid was lower (p < 0.0001), alpha-linolenic and eicosapentaenoic were higher (p < 0.0001). Intra-abdominal fat mass was higher (+25 %), however, the retroperitoneal adipocytes area was lower (-44 %). Femur mass (+10 %), distance between epiphyses (+4 %) and bone mineral density (+13 %) were higher. The study demonstrates that adequate flaxseed oil content during a lactation diet plays an important role in the development of pups.

  8. Lactational Vitamin E Protects Against the Histotoxic Effects of Systemically Administered Vanadium in Neonatal Rats.

    PubMed

    Olaolorun, F A; Obasa, A A; Balogun, H A; Aina, O O; Olopade, J O

    2014-12-29

    The work investigated the protective role of lactational vitamin E administration on vanadium-induced histotoxicity. Three groups of Wistar rats, with each group comprising of two dams and their pups, were used in this study. Group I pups were administered intraperitoneal injection of sterile water at volumes corresponding to the dose rate of the vanadium (sodium metavanadate) treated group from postnatal day (PND) 1-14 while those in Group II were administered intraperitoneal injection of 3mg/kg vanadium from PND 1-14. Group III pups were administered intraperitoneal injection of 3mg/kg vanadium while the dam received oral vitamin E (500 mg) concurrently every 72 hours. The results showed that group II pups exhibited histopathological changes which included seminiferous tubule disruption of the testes characterised by vacuolar degeneration and coagulative necrosis of spermatogonia and Sertoli cells with reduction in mitosis, and areas of interstitial thickening with fibroblast proliferation. In addition, the lungs showed disruption of the bronchiolar wall and denudation of the bronchiolar respiratory epithelium while the liver showed hydropic degeneration and coagulative necrosis of the centrilobular hepatocytes. These histotoxic changes were ameliorated in the vanadium + vitamin E group. We conclude that lactational vitamin E protects against the histotoxic effects of vanadium and could be a consideration for supplementation in the occupationally and environmentally exposed neonates. However, caution should be taken in vitamin E supplementation because there is still equivocal evidence surrounding its benefits as a supplement at the moment.

  9. Inhibition of Lactate Transport Erases Drug Memory and Prevents Drug Relapse.

    PubMed

    Zhang, Yan; Xue, Yanxue; Meng, Shiqiu; Luo, Yixiao; Liang, Jie; Li, Jiali; Ai, Sizhi; Sun, Chengyu; Shen, Haowei; Zhu, Weili; Wu, Ping; Lu, Lin; Shi, Jie

    2016-06-01

    Drug memories that associate drug-paired stimuli with the effects of abused drugs contribute to relapse. Exposure to drug-associated contexts causes consolidated drug memories to be in a labile state, during which manipulations can be given to impair drug memories. Although substantial evidence demonstrates the crucial role of neuronal signaling in addiction, little is known about the contribution of astrocyte-neuron communication. Rats were trained for cocaine-induced conditioned place preference (CPP) or self-administration and microinjected with the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol into the basolateral amygdala (BLA) immediately after retrieval. The concentration of lactate was measured immediately after retrieval via microdialysis, and the CPP score and number of nosepokes were recorded 24 hours later. Furthermore, we used antisense oligodeoxynucleotides to disrupt the expression of astrocytic lactate transporters (monocarboxylate transporters 1 and 2) in the BLA after retrieval, tested the expression of CPP 1 day later, and injected L-lactate into the BLA 15 minutes before retrieval to rescue the effects of the oligodeoxynucleotides. Injection of 1,4-dideoxy-1,4-imino-D-arabinitol into the BLA immediately after retrieval prevented the subsequent expression of cocaine-induced CPP, decreased the concentration of lactate in the BLA, and reduced the number of nosepokes for cocaine self-administration. Disrupting the expression of monocarboxylate transporters 1 and 2 in the BLA also caused subsequent deficits in the expression of cocaine-induced CPP, which was rescued by pretreatment with L-lactate. Our results suggest that astrocyte-neuron lactate transport in the BLA is critical for the reconsolidation of cocaine memory. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Dependence of normal development of skeletal muscle in neonatal rats on load bearing

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2000-01-01

    Antigravity function plays an important role in determining the morphological and physiological properties of the neuromuscular system. Inhibition of the normal development of the neuromuscular system is induced by hindlimb unloading during the neonatal period in rats. However, the role of gravitational loading on the development of skeletal muscle in rats is not well understood. It could be hypothesized that during the early postnatal period, i.e. when minimal weight-supporting activity occurs, the activity imposed by gravity would be of little consequence in directing the normal development of the skeletal musculature. We have addressed this issue by limiting the amount of postnatal weight-support activity of the hindlimbs of rats during the lactation period. We have focused on the development of three characteristics of the muscle fibers, i.e. size, myonuclear number and myosin heavy chain expression.

  11. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    PubMed

    Fitzgerald, R J; Adams, B O; Sandham, H J; Abhyankar, S

    1989-03-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation was slightly but not significantly (P greater than or equal to 0.2) less. Multiple oral or fecal samples plated on 2,3,5-triphenyltetrazolium indicator medium revealed no evidence of back mutation from Ldh- to Ldh+ in vivo. Both Ldh+ strain 041 and Ldh- strain 044 demonstrated bacteriocinlike activity in vitro against a number of human strains of mutans streptococci representing serotype a (S. cricetus) and serotypes c and e (S. mutans). Serotypes b (S. rattus) and f (S. mutans) and strains of S. mitior, S. sanguis, and S. salivarius were not inhibited. Thus, Ldh mutant strain 044 possesses a number of desirable traits that suggest it should be investigated further as a possible effector strain for replacement therapy of dental caries. These traits include its stability and low cariogenicity in the sensitive gnotobiotic rat caries model, its bacteriocinlike activity against certain other cariogenic S. mutans (but not against more inocuous indigenous oral streptococci), and the fact that it is a member of the most prevalent human serotype of cariogenic streptococci.

  12. Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex.

    PubMed

    Dash, Michael B; Tononi, Giulio; Cirelli, Chiara

    2012-07-01

    It is well established that brain metabolism is higher during wake and rapid eye movement (REM) sleep than in nonrapid eye movement (NREM) sleep. Most of the brain's energy is used to maintain neuronal firing and glutamatergic transmission. Recent evidence shows that cortical firing rates, extracellular glutamate levels, and markers of excitatory synaptic strength increase with time spent awake and decline throughout NREM sleep. These data imply that the metabolic cost of each behavioral state is not fixed but may reflect sleep-wake history, a possibility that is investigated in the current report. Chronic (4d) electroencephalographic (EEG) recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of oxygen ([oxy]) and lactate ([lac]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to sleep deprivation. Basic sleep research laboratory. Wistar Kyoto (WKY) adult male rats. N/A. Within 30-60 sec [lac] and [oxy] progressively increased during wake and REM sleep and declined during NREM sleep (n = 10 rats/metabolite), but with several differences. [Oxy], but not [lac], increased more during wake with high motor activity and/or elevated EEG high-frequency power. Meanwhile, only the NREM decline of [lac] reflected sleep pressure as measured by slow-wave activity, mirroring previous results for cortical glutamate. The observed state-dependent changes in cortical [lac] and [oxy] are consistent with higher brain metabolism during waking and REM sleep in comparison with NREM sleep. Moreover, these data suggest that glycolytic activity, most likely through its link with glutamatergic transmission, reflects sleep homeostasis.

  13. Ovarian expression of cellular Ki-ras p21 varies with physiological status.

    PubMed Central

    Palejwala, S; Goldsmith, L T

    1992-01-01

    To elucidate the potential role of the ras protooncogene proteins in a specific tissue, the present study determined the levels of individual c-ras-encoded p21 proteins in the rat ovary during various stages of physiological function. p21 protein was extracted from ovaries taken from immature normal female rats, mature nonpregnant animals in the metestrus stage of the estrus cycle, rats at various stages of pregnancy, and actively lactating animals. Levels of individual p21s were evaluated by immunoblot analysis with specific antibodies to the p21 proteins encoded by the Kirsten, Harvey, and neuroblastoma c-ras protooncogenes, c-Ki-ras, c-Ha-ras, and N-ras. Results showed that c-Ki-ras p21 is at its lowest level in the immature ovary and increases with development of the corpora lutea to its highest levels at day 16 of pregnancy, after which levels decline and then rise again during lactation. This pattern, which mimics that of circulating progesterone levels, suggests that ovarian c-Ki-ras p21 levels are regulated and that c-Ki-ras p21 plays a role in the differentiated function of the rat ovary, likely the luteal compartment. In contrast, levels of c-N-ras p21 did not appear to vary with changes in the physiological function of the ovary but appeared to be constitutive. A preferential role for the c-Ki-ras p21 may be due to the documented unique differences in the structure of the carboxyl terminus of this particular c-ras p21. Images PMID:1570348

  14. Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury.

    PubMed

    Dang, Yangjie; Liu, Ting; Mei, Xiaopeng; Meng, Xiangzhong; Gou, Xingchun; Deng, Bin; Xu, Hao; Xu, Lixian

    2017-12-01

    It is not known whether simultaneous delivery of hydrogen and oxygen can reduce injury caused by hemorrhagic shock and resuscitation (HSR). This study investigated the therapeutic potential of hyperoxygenated hydrogen-rich solution (HHOS), a combined hydrogen/oxygen carrier, in a rat model of HSR-induced liver injury. Rats (n = 60) were randomly divided into 5 groups (n = 6 per group at each time point). One group underwent sham operation, and the others were subjected to severe hemorrhagic shock and then treated with lactated Ringer's solution (LRS), hydrogen-rich solution, hyperoxygenated solution, or HHOS. At 2 and 6 h after resuscitation, blood samples (n = 6) were collected from the femoral artery and serum concentrations of alanine aminotransferase and aspartate aminotransferase (AST) were measured. Rats were then sacrificed, and histopathological changes in the liver were evaluated by quantifying the percentage of apoptotic cells by caspase-3 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick-end labeling. Inflammation was assessed by assessing malondialdehyde content and tumor necrosis factor-α, and interleukin (IL)-6 expression. Compared to lactated Ringer's solution, hydrogen-rich solution, or hyperoxygenated solution groups, serum AST and alanine aminotransferase levels and IL-6, tumor necrosis factor-α, and malondialdehyde expression in liver tissue were decreased by HHOS treatment. The number of caspase-3- and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was decreased (P < 0.05) by HHOS treatment, 2 and 6 h after resuscitation. HHOS has protective effects against liver injury in a rat model of HSR. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    NASA Astrophysics Data System (ADS)

    Bu, Qian; Yan, Guangyan; Deng, Pengchi; Peng, Feng; Lin, Hongjun; Xu, Youzhi; Cao, Zhixing; Zhou, Tian; Xue, Aiqin; Wang, Yanli; Cen, Xiaobo; Zhao, Ying-Lan

    2010-03-01

    As titanium dioxide nanoparticles (TiO2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO2 NPs (dosed at 0.16, 0.4 and 1 g kg - 1, respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by 1H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO2 NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, α-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO2 NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO2 NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO2 NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  16. The effect of stinging nettle (Urtica dioica) seed oil on experimental colitis in rats.

    PubMed

    Genc, Zeynep; Yarat, Aysen; Tunali-Akbay, Tugba; Sener, Goksel; Cetinel, Sule; Pisiriciler, Rabia; Caliskan-Ak, Esin; Altıntas, Ayhan; Demirci, Betul

    2011-12-01

    This study investigated the effect of Urtica dioica, known as stinging nettle, seed oil (UDO) treatment on colonic tissue and blood parameters of trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. Experimental colitis was induced with 1 mL of TNBS in 40% ethanol by intracolonic administration with a 8-cm-long cannula with rats under ether anesthesia, assigned to a colitis group and a colitis+UDO group. Rats in the control group were given saline at the same volume by intracolonic administration. UDO (2.5 mL/kg) was given to the colitis+UDO group by oral administration throughout a 3-day interval, 5 minutes later than colitis induction. Saline (2.5 mL/kg) was given to the control and colitis groups at the same volume by oral administration. At the end of the experiment macroscopic lesions were scored, and the degree of oxidant damage was evaluated by colonic total protein, sialic acid, malondialdehyde (MDA), and glutathione levels, collagen content, tissue factor activity, and superoxide dismutase and myeloperoxidase activities. Colonic tissues were also examined by histological and cytological analysis. Pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), lactate dehydrogenase activity, and triglyceride and cholesterol levels were analyzed in blood samples. We found that UDO decreased levels of pro-inflammatory cytokines, lactate dehydrogenase, triglyceride, and cholesterol, which were increased in colitis. UDO administration ameliorated the TNBS-induced disturbances in colonic tissue except for MDA. In conclusion, UDO, through its anti-inflammatory and antioxidant actions, merits consideration as a potential agent in ameliorating colonic inflammation.

  17. Anti-apoptotic and myocardial protective effects of ethyl pyruvate after regional ischaemia/reperfusion myocardial damage in an in vivo rat model.

    PubMed

    Shim, Haeng Seon; Lee, Wang Gyu; Kim, Yeon A; Han, Jeong Yeol; Park, Miyeong; Song, Yun Gyu; Kim, Joon Soo; Shin, Il-Woo

    2017-09-01

    The integration of reactive oxygen species is strongly associated with important pathophysiological mechanisms that mediate myocardial ischaemia/reperfusion (I/R) damage. Pyruvate is an efficacious scavenger of reactive oxygen species and a previous study has shown that ethyl pyruvate (EP) has a myocardial protective effect against regional I/R damage in an in vivo rat model. The purpose of this study was to determine whether the myocardial protective effect of EP is associated with anti-apoptosis. Rats were allocated to receive EP dissolved in lactated Ringer's solution or lactated Ringer's solution alone, via intraperitoneal infusion one hour before ischaemia. They were exposed to 30 minutes of ischaemia followed by reperfusion of the left coronary artery territory over two hours. Anti-apoptotic effects were checked using several biochemical parameters after two hours of reperfusion. Apoptosis was analysed using measured caspase-3 activity, Western blotting of B-cell lymphoma 2 (Bcl-2) family protein cleaved by caspase-3, and assessment of DNA laddering patterns and the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining test. In ischaemic myocardium, EP increased Bcl-2 expression, but reduced Bcl-2-associated X protein and cleaved caspase-3 expressions. EP reduced the expression of DNA laddering and the number of myocardial I/R-damaged TUNEL-positive cells. This study demonstrated that EP has an anti-apoptotic effect after regional I/R damage in an in vivo rat heart model. The myocardial protective effect of EP may be related to its anti-apoptotic effect. Copyright: © Singapore Medical Association

  18. Communal nesting exerts epigenetic influences on affective and social behaviors in rats selectively bred for an infantile trait.

    PubMed

    Martinez, Ashley Rae; Brunelli, Susan A; Zimmerberg, Betty

    2015-02-01

    Communal nesting (CN) is a mouse model of early social enrichment during pregnancy and lactation. In this study, a rat model of CN was developed to determine if CN exerts an epigenetic effect in rats selectively bred for an infantile affective trait (high and low rates of ultrasonic distress calls). High and Low offspring from CN groups were compared to standard reared (SN) offspring on five measures of social and affective behavior at three critical ages. A differential effect of the CN paradigm on High and Low lines was seen in measures of anxiety and arousal, but not in measures of depression or social behavior. Neonatal CN subjects emitted fewer distress calls than SN subjects when separated from their dams, and the High line subjects were more affected by the CN procedure. As juveniles, CN subjects showed increased social behaviors in tests of juvenile parenting and play compared to SN subjects. In adulthood, CN differentially increased the activity of Low line subjects. All CN subjects displayed less anxiety behavior in an open field compared to SN subjects; High line subjects were more anxious than Lows. CN reduced immobility and increased attempts to escape on the Porsolt forced swim task relative to SN subjects. These results extend the usefulness of this early enrichment paradigm from mice to rats, and found some rodent species differences in outcomes dependent on the behavioral test. They also emphasize the importance of social contact during pregnancy and lactation on offspring's optimal development across behaviors and ages. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Life-stage-, sex-, and dose-dependent dietary toxicokinetics and relationship to toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D) in rats: implications for toxicity test dose selection, design, and interpretation.

    PubMed

    Saghir, Shakil A; Marty, Mary S; Zablotny, Carol L; Passage, Julie K; Perala, Adam W; Neal, Barbara H; Hammond, Larry; Bus, James S

    2013-12-01

    Life-stage-dependent toxicity and dose-dependent toxicokinetics (TK) were evaluated in Sprague Dawley rats following dietary exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D renal clearance is impacted by dose-dependent saturation of the renal organic anion transporter; thus, this study focused on identifying inflection points of onset of dietary nonlinear TK to inform dose selection decisions for toxicity studies. Male and female rats were fed 2,4-D-fortified diets at doses to 1600 ppm for 4-weeks premating, <2 weeks during mating, and to test day (TD) 71 to parental (P1) males and to P1 females through gestation/lactation to TD 96. F1 offspring were exposed via milk with continuing diet exposure until postnatal day (PND) 35. As assessed by plasma area under the curve for the time-course plasma concentration, nonlinear TK was observed ≥ 1200 ppm (63 mg/kg/day) for P1 males and between 200 and 400 ppm (14-27 mg/kg/day) for P1 females. Dam milk and pup plasma levels were higher on lactation day (LD) 14 than LD 4. Relative to P1 adults, 2,4-D levels were higher in dams during late gestation/lactation and postweaning pups (PND 21-35) and coincided with elevated intake of diet/kg body weight. Using conventional maximum tolerated dose (MTD) criteria based on body weight changes for dose selection would have resulted in excessive top doses approximately 2-fold higher than those identified incorporating critical TK data. These data indicate that demonstration of nonlinear TK, if present at dose levels substantially above real-world human exposures, is a key dose selection consideration for improving the human relevance of toxicity studies compared with studies employing conventional MTD dose selection strategies.

  20. Life-Stage-, Sex-, and Dose-Dependent Dietary Toxicokinetics and Relationship to Toxicity of 2,4-Dichlorophenoxyacetic Acid (2,4-D) in Rats: Implications for Toxicity Test Dose Selection, Design, and Interpretation

    PubMed Central

    Marty, Mary S.

    2013-01-01

    Life-stage-dependent toxicity and dose-dependent toxicokinetics (TK) were evaluated in Sprague Dawley rats following dietary exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D renal clearance is impacted by dose-dependent saturation of the renal organic anion transporter; thus, this study focused on identifying inflection points of onset of dietary nonlinear TK to inform dose selection decisions for toxicity studies. Male and female rats were fed 2,4-D-fortified diets at doses to 1600 ppm for 4-weeks premating, <2 weeks during mating, and to test day (TD) 71 to parental (P1) males and to P1 females through gestation/lactation to TD 96. F1 offspring were exposed via milk with continuing diet exposure until postnatal day (PND) 35. As assessed by plasma area under the curve for the time-course plasma concentration, nonlinear TK was observed ≥1200 ppm (63mg/kg/day) for P1 males and between 200 and 400 ppm (14–27mg/kg/day) for P1 females. Dam milk and pup plasma levels were higher on lactation day (LD) 14 than LD 4. Relative to P1 adults, 2,4-D levels were higher in dams during late gestation/lactation and postweaning pups (PND 21–35) and coincided with elevated intake of diet/kg body weight. Using conventional maximum tolerated dose (MTD) criteria based on body weight changes for dose selection would have resulted in excessive top doses approximately 2-fold higher than those identified incorporating critical TK data. These data indicate that demonstration of nonlinear TK, if present at dose levels substantially above real-world human exposures, is a key dose selection consideration for improving the human relevance of toxicity studies compared with studies employing conventional MTD dose selection strategies. PMID:24105888

  1. Greater nutrition knowledge is associated with lower 1-year postpartum weight retention in low-income women.

    PubMed

    Nuss, Henry; Freeland-Graves, Jeanne; Clarke, Kristine; Klohe-Lehman, Deborah; Milani, Tracey J

    2007-10-01

    The purpose of this study was to assess nutrition knowledge during early and late postpartum in a sample of low-income and minority women, and to determine if that knowledge had any relationship to weight retention at 1-year postpartum. A questionnaire was developed and validated in a sample of 151 low-income new mothers. This instrument was then administered to a separate sample of mothers (n=140) of similar demographics to assess nutrition knowledge at 0 to 1 days and 12 months postpartum. In addition, a survey of nutrition information sources was administered at both time points. Nutrition knowledge was compared with 12-month postpartum weight retention and demographic variables. Women who retained less than 5% of weight gained during pregnancy had greater knowledge of nutrition at 0 months (53% vs 49%, P<0.05) and 12 months (55% vs 51%, P<0.05) than those who retained 5% or more of weight gained during pregnancy. Whites had higher nutrition knowledge scores than non-Hispanic blacks and Hispanics. Women who lactated 6 months or more had more knowledge than those who lactated less than 6 months. Higher knowledge test scores were observed among women who used the Internet and books/magazines as their source for information. These results indicate that assessment of nutrition knowledge in early postpartum can identify women at risk for significant weight retention.

  2. Oligosaccharide-based Surfactant/Citric Acid Buffer System Stabilizes Lactate Dehydrogenase during Freeze-drying and Storage without the Addition of Natural Sugar.

    PubMed

    Ogawa, Shigesaburo; Kawai, Ryuichiro; Koga, Maito; Asakura, Kouichi; Takahashi, Isao; Osanai, Shuichi

    2016-06-01

    Experiments were conducted to assess the maintenance effects of oligosaccharide-based surfactants on the enzymatic activity of a model protein, lactate dehydrogenase (LDH), during freeze-drying and room temperature storage using the citric acid buffer system. Oligosaccharide-based surfactants, which exhibit a high glass transition temperature (Tg), promoted the eminent retention of enzymatic activity during these protocols, whereas monosaccharide-based surfactants with a low Tg displayed poor performance at high concentration, albeit much better than that of Tween 80 at middle concentration. The increase in the alkyl chain length did not exert positive effects as observed for the maintenance effect during freeze-thawing, but an amphiphilic nature and a glass forming ability were crucial for the effective stabilization at a low excipient concentration during freeze-drying. Even a low oligosaccharide-based surfactant content (0.1 mg mL(-1)) could maintain LDH activity during freeze-drying, but a high surfactant content (1.0 mg mL(-1)) was required to prevent buffer precipitation and retain high LDH activity on storage. Regarding storage, glass formation restricted molecular mobility in the lyophilized matrix, and LDH activity was effectively retained. The present results describe a strategy based on the glass-forming ability of surfactant-type excipients that affords a natural sugar-free formulation or an alternative use for polysorbate-type surfactants.

  3. Maternal betaine supplementation in rats induces intergenerational changes in hepatic IGF-1 expression and DNA methylation.

    PubMed

    Zhao, Nannan; Yang, Shu; Hu, Yun; Dong, Haibo; Zhao, Ruqian

    2017-08-01

    Betaine is widely used in animal nutrition to promote growth. Here, we aimed to investigate whether maternal betaine supplementation during pregnancy can exert multigenerational effects on growth across two generations and the possible epigenetic modifications associated to such effects. In this study, 3-month-old female Sprague-Dawley rats were fed diet supplemented with 1% betaine throughout the pregnancy and lactation. Betaine-supplemented dams produced bigger litter but smaller F1 pups at birth and weaning. However, F2 pubs had higher weaning weight. In accordance with the growth performance, serum insulin-like growth factor 1 (IGF-1) levels were significantly lower in F1 yet higher in F2 pups, so was hepatic IGF-1 mRNA expression. Concurrently, dietary betaine supplementation to F0 dams increased hepatic expression of betaine homocysteine methyltransferase, at both mRNA and protein levels, in F1, but not F2 pups. Moreover, hepatic IGF-1 gene promoter 1 was detected to be significantly hypermethylated in F1 pups, whereas both promoters 1 and 2, together with almost all exons, were found to be hypomethylated in F2 offspring. Maternal betaine supplementation during pregnancy and lactation exerts distinct effects on growth of F1 and F2 rat offspring, probably through differential modification of IGF-1 gene methylation and expression in liver. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis

    PubMed Central

    Rato, L.; Alves, M. G.; Dias, T. R.; Cavaco, J. E.; Oliveira, Pedro F.

    2015-01-01

    Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by 1H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters. PMID:26064993

  5. Role of the mitochondrial metabolism of pyruvate on the regulation of ketogenesis in rat hepatocytes.

    PubMed

    Demaugre, F; Buc, H; Girard, J; Leroux, J P

    1983-01-01

    In hepatocytes isolated from fed rats the inhibition of lipogenesis (-80%) by 5-tetradecyloxy-2-furoate (an inhibitor of acetylCoA carboxylase) and alpha-cyano-3-hydroxycinnamate (an inhibitor of pyruvate entry into mitochondria) increases the oxidation of 0.35 mM oleate respectively by 70% and 90%. 5-tetradecyloxy-2-furoate increases ketone body production from oleate only by 30% and has no effect on ketogenesis from octanoate, whereas alpha-cyano-3-hydroxycinnamate mimics the effects of fasting on ketone body production: It increases ketogenesis from 0.35 mM oleate by 90%, from 0.78 mM oleate by 25% and from 1.57 mM butyrate by 37%. alpha-cyano-3-hydroxycinnamate also decreases the activity of tricarboxylic acid cycle and the production of malate and citrate. In hepatocytes from fasted rats, alpha-cyano-3-hydroxycinnamate does not modify ketogenesis from oleate, unless cells are incubated with a mixture of lactate and pyruvate. A lactate and pyruvate mixture decreases ketogenesis from oleate and octanoate and increases citrate and malate production without modifying the uptake of fatty acids. This effect is potentiated by 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase. The results cannot be interpreted only by the effects of malonylCoA on carnitine acyltransferase. They are discussed with respect to the possible involvement of mitochondrial oxaloacetate concentration in the regulation of ketogenesis.

  6. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis.

    PubMed

    Rato, L; Alves, M G; Dias, T R; Cavaco, J E; Oliveira, Pedro F

    2015-01-01

    Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by (1)H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters.

  7. Assessing inflammatory liver injury in an acute CCl4 model using dynamic 3D metabolic imaging of hyperpolarized [1-(13)C]pyruvate.

    PubMed

    Josan, Sonal; Billingsley, Kelvin; Orduna, Juan; Park, Jae Mo; Luong, Richard; Yu, Liqing; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2015-12-01

    To facilitate diagnosis and staging of liver disease, sensitive and non-invasive methods for the measurement of liver metabolism are needed. This study used hyperpolarized (13)C-pyruvate to assess metabolic parameters in a CCl4 model of liver damage in rats. Dynamic 3D (13)C chemical shift imaging data from a volume covering kidney and liver were acquired from 8 control and 10 CCl4-treated rats. At 12 time points at 5 s temporal resolution, we quantified the signal intensities and established time courses for pyruvate, alanine, and lactate. These measurements were compared with standard liver histology and an alanine transaminase (ALT) enzyme assay using liver tissue from the same animals. All CCl4-treated but none of the control animals showed histological liver damage and elevated ALT enzyme levels. In agreement with these results, metabolic imaging revealed an increased alanine/pyruvate ratio in liver of CCl4-treated rats, which is indicative of elevated ALT activity. Similarly, lactate/pyruvate ratios were higher in CCl4-treated compared with control animals, demonstrating the presence of inflammation. No significant differences in metabolite ratios were observed in kidney or vasculature. Thus this work shows that metabolic imaging using (13)C-pyruvate can be a successful tool to non-invasively assess liver damage in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Lactate and glutamate dynamics during prolonged stimulation of the rat barrel cortex suggest adaptation of cerebral glucose and oxygen metabolism.

    PubMed

    Sonnay, Sarah; Duarte, João M N; Just, Nathalie

    2017-03-27

    A better understanding of BOLD responses stems from a better characterization of the brain's ability to metabolize glucose and oxygen. Non-invasive techniques such as functional magnetic resonance spectroscopy (fMRS) have thus been developed allowing for the reproducible assessment of metabolic changes during barrel cortex (S1BF) activations in rats. The present study aimed at further exploring the role of neurotransmitters on local and temporal changes in vascular and metabolic function in S1BF. fMRS and fMRI data were acquired sequentially in α-chloralose anesthetized rats during 32-min rest and trigeminal nerve stimulation periods. During stimulation, concentrations of lactate (Lac) and glutamate (Glu) increased in S1BF by 0.23±0.05 and 0.34±0.05μmol/g respectively in S1BF. Dynamic analysis of metabolite concentrations allowed estimating changes in cerebral metabolic rates of glucose (ΔCMR Glc ) and oxygen (ΔCMR O2 ). Findings confirmed a prevalence of oxidative metabolism during prolonged S1BF activation. Habituation led to a significant BOLD magnitude decline as a function of time while both total ΔCMR Glc and ΔCMR O2 remained constant revealing adaptation of glucose and oxygen metabolisms to support ongoing trigeminal nerve stimulation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    PubMed

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  10. Effect of Tridax procumbens (Linn.) on bile duct ligation-induced liver fibrosis in rats.

    PubMed

    Joshi, P P; Patil, S D; Silawat, N; Deshmukh, P T

    2011-12-01

    The present study was undertaken to clarify whether methanolic extract of Tridax procumbens prevents liver fibrosis in rat. The hepatic fibrosis was induced by 28 days of bile duct ligation in rats. The 4-week treatment with Tridex procumbens reduced the serum aspartate aminotransferase (U L⁻¹), glutamate pyruvate transaminase (U L⁻¹), alkaline phosphatase (IU L⁻¹), lactate dehydrogenase (IU L⁻¹), total bilirubin (mg dL⁻¹), direct bilirubin (mg dL⁻¹) and hydroxyproline (mg gm⁻¹) content in liver and improved the histological appearance of liver section. The results of this study led us to conclude that T. procumbens can reduce the degree of hepatocellular damage and may become antifibrotic agent for liver fibrosis.

  11. [Comparative study of the effect of decamethoxine, decamine and levorin on carbohydrate metabolic indices in the liver of white rats].

    PubMed

    Meshchishetn, I F; Iarmol'chuk, G M

    1979-01-01

    Intramuscular injection of decamin into the animals in a dose of 0.5 and 1 mg/kg has no significant effect on carbohydrate metabolism in the liver of white rats. Decamethoxin and levorin injected in the same doses, specifically in a dose of 1 mg/kg, reduced the level of glucose as well as that of total and free glycogen in the liver. The drugs lowered also the activity of phosphorylase and glocoso-6-phosphatase. Meanwhile the activity of hexokinase, lactate dehydrogenase and phosphoglucosiomerase was potentiated. The animals given decamethoxin showed the aforesaid parameters returning to normal 20 days after the drug was discontinued, whereas similar changes were not found in the rats on levorin.

  12. Energy metabolism and biotransformation as endpoints to pre-screen hepatotoxicity using a liver spheroid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Jinsheng; Purcell, Wendy M.

    2006-10-15

    The current study investigated liver spheroid culture as an in vitro model to evaluate the endpoints relevant to the status of energy metabolism and biotransformation after exposure to test toxicants. Mature rat liver spheroids were exposed to diclofenac, galactosamine, isoniazid, paracetamol, m-dinitrobenzene (m-DNB) and 3-nitroaniline (3-NA) for 24 h. Pyruvate uptake, galactose biotransformation, lactate release and glucose secretion were evaluated after exposure. The results showed that pyruvate uptake and lactate release by mature liver spheroids in culture were maintained at a relatively stable level. These endpoints, together with glucose secretion and galactose biotransformation, were related to and could reflect themore » status of energy metabolism and biotransformation in hepatocytes. After exposure, all of the test agents significantly reduced glucose secretion, which was shown to be the most sensitive endpoint of those evaluated. Diclofenac, isoniazid, paracetamol and galactosamine reduced lactate release (P < 0.01), but m-DNB increased lactate release (P < 0.01). Diclofenac, isoniazid and paracetamol also reduced pyruvate uptake (P < 0.01), while galactosamine had little discernible effect. Diclofenac, galactosamine, paracetamol and m-DNB also reduced galactose biotransformation (P < 0.01), by contrast, isoniazid did not. The metabolite of m-DNB, 3-NA, which served as a negative control, did not cause significant changes in lactate release, pyruvate uptake or galactose biotransformation. It is concluded that pyruvate uptake, galactose biotransformation, lactate release and glucose secretion can be used as endpoints for evaluating the status of energy metabolism and biotransformation after exposure to test agents using the liver spheroid model to pre-screen hepatotoxicity.« less

  13. Hypothyroxinemia induced by mild iodine deficiency deregulats thyroid proteins during gestation and lactation in dams.

    PubMed

    Wei, Wei; Wang, Yi; Dong, Jing; Wang, Yuan; Min, Hui; Song, Binbin; Shan, Zhongyan; Teng, Weiping; Xi, Qi; Chen, Jie

    2013-08-02

    The main object of the present study was to explore the effect on thyroidal proteins following mild iodine deficiency (ID)-induced maternal hypothyroxinemia during pregnancy and lactation. In the present study, we established a maternal hypothyroxinemia model in female Wistar rats by using a mild ID diet. Maternal thyroid iodine content and thyroid weight were measured. Expressions of thyroid-associated proteins were analyzed. The results showed that the mild ID diet increased thyroid weight, decreased thyroid iodine content and increased expressions of thyroid transcription factor 1, paired box gene 8 and Na+/I- symporter on gestational day (GD) 19 and postpartum days (PN) 21 in the maternal thyroid. Moreover, the up-regulated expressions of type 1 iodothyronine deiodinase (DIO1) and type 2 iodothyronine deiodinase (DIO2) were detected in the mild ID group on GD19 and PN21. Taken together, our data indicates that during pregnancy and lactation, a maternal mild ID could induce hypothyroxinemia and increase the thyroidal DIO1 and DIO2 levels.

  14. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis.

    PubMed

    Eler, Gabrielle Jacklin; Santos, Israel Souza; de Moraes, Amarilis Giaretta; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2015-04-01

    The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n-propyl gallate, n-pentyl gallate, and n-octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n-octyl gallate > n-pentyl gallate > n-propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects. © 2014 Wiley Periodicals, Inc.

  15. Perfluorooctanoate: Placental and lactational transport pharmacokinetics in rats.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinderliter, Paul M.; Mylchreest, E.; Gannon, S. A.

    This study was conducted to develop a quantitative understanding of the potential for gestational and lactational transfer of perfluorooctanoate (PFOA) in the rat. Time-mated female rats were dosed by oral gavage once daily at concentrations of 3, 10, or 30 mg/kg/day of the ammonium salt of PFOA (APFO) starting on gestation (G) day 4 and continuing until sacrifice. On days 10, 15, and 21G, five rats per dose level were sacrificed and blood samples were collected 2h post-dose. Embryos were collected on day 10G, amniotic fluid, placentas, and embryos/fetuses were collected on days 15 and 21G, and fetal blood samplesmore » were collected on day 21G. Five rats per dose level were allowed to deliver and nurse their litters, and on days 3, 7, 14, and 21 post-partum (PP) milk and blood samples of maternal and pup were collected 2h post-dose. All samples were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) for PFOA concentration. Concentrations of PFOA in maternal plasma and milk attained steady state during the sampling interval. The steady-state concentrations in maternal plasma were 10-15, 25-30, and 60-75 microg/mL in rats receiving 3, 10, and 30 mg/kg, respectively. Steady-state concentrations in milk were approximately 10 times less than those in maternal plasma. The concentration of PFOA in fetal plasma on day 21G was approximately half the steady-state concentration in maternal plasma. The milk concentrations appeared to be generally comparable to the concentrations in pup plasma. Pup plasma concentrations decreased from day 3PP to day 7PP, and were similar on days 7, 14, and 21PP at all dose levels. PFOA was detected in placenta (days 15 and 21G), amniotic fluid (days 15 and 21G), embryo (days 10 and 15G), and fetus (day 21G). These pharmacokinetics allow estimation of the dose to developing and nursing rat offspring following maternal exposure.« less

  16. Reduction-oxidation state and protein degradation in skeletal muscles of growing rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    The relationship between the NAD redox state and protein degradation during growth was studied in isolated soleus and extensor digitorum longus muscles of 4- to 14-week-old rats. As muscle size increased with age, protein breakdown slowed and the muscles became progressively more reduced as shown by higher ratios of lactate/pyruvate in incubated and fresh-frozen muscle. Correlations were strong between redox state of protein degradation, and muscle mass, and between redox state and protein degradation. This relationship may be important in the slowing of muscle breakdown that occurs with age.

  17. [Energy reactions in the skeletal muscles of rats following space flight on the Kosmos-936 biosatellite].

    PubMed

    Mailian, E S; Bruavkova, L B; Kokoreva, L V

    1982-01-01

    The respiration of mitochondria isolated from mixed skeletal muscles of hindlimbs of rats flown for 18.5 days on Cosmos-936 was investigated polarographically. At R + 10 hours the rate of mitochondrial respiration in different metabolic states during the oxidation of succinic acid and NAD-dependent substrates declined. The enzyme activity of mitochondrial cytochrome oxidase and cytosol lactate dehydrogenase diminished. At R + 25 days both aerobic and anaerobic oxidative processes increased, thus leading to the recovery of the parameters (sometimes they not only returned to the norm but exceeded it).

  18. Influence of acute and chronic treadmill exercise on rat plasma lactate and brain NPY, L-ENK, DYN A1-13.

    PubMed

    Chen, Jia-Xu; Zhao, Xin; Yue, Guang-Xin; Wang, Zhu-Feng

    2007-02-01

    This study was designed to investigate the effect of acute and chronic high-intensity treadmill exercise on changes in plasma lactate and brain neuropeptide (NPY), leucine-enkephalin (L-ENK), and dynorphin A(1-13) (DYN A(1-13)). Avidin-biotin complex (ABC) immunohistochemistry and image pattern analysis were used to observe the effect of chronic (total 7 weeks) and acute treadmill exercise (an initial speed of 15 m min(-1) gradually increased to 35 m min(-1) with 0 degrees, 20-25 min per day duration) on the changes of NPY, L-ENK, and DYN A(1-13) in different areas of rat brain. Plasma lactate was also measured in response to such exercise. Compared with preexercise control (P < 0.01), plasma lactate concentration significantly increased in the immediate postexercise; but it returned to the normal level soon after the 30 min postexercise. The content of NPY in paraventricular (PVN), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei continued to increase in 0, 30, and 180 min postexercise compared with preexercise control (P < 0.01). The content of L-ENK in caudate-putamen (CPu) significantly increased in the immediate postexercise compared with preexercise control (P < 0.01), but it gradually returned to the normal level after the 180 min postexercise. However, the content of DYN A(1-13) in PVN rose substantially only in 30 min postexercise in comparison with the preexercise control (P < 0.01). Thus, different changes of NPY, L-ENK, and DYN A(1-13) in response to such high-intensity exercise depend on the brain region and the time examined, especially, the contents of NPY in different brain regions continuously remain at a high level after such high-intensity exercise. And this high level might reduce energy expenditure and thus contribute to the stimulation of brain NPY neurons.

  19. Repeated in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure affects male gonads in offspring, leading to sex ratio changes in F{sub 2} progeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Masahiko; Tamura, Masashi; Yamashita, Junko

    2005-08-15

    The effects of in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the reproductive system of male rat offspring (F{sub 1}) and the sex ratio of the subsequent generation (F{sub 2}) were examined. Female Holtzman rats were gavaged with an initial loading dose of 400 ng/kg TCDD prior to mating, followed by weekly maintenance doses of 80 ng/kg during mating, pregnancy, and the lactation period. Maternal exposure to TCDD had no significant effects on fetus/pup (F{sub 1}) mortality, litter size, or sex ratio on gestation day (GD) 20 or postnatal day (PND) 2. The TCDD concentration in maternal livers and adipose tissuemore » on GD20 was 1.21 and 1.81 ng/kg, respectively, and decreased at weaning to 0.72 in the liver and 0.84 in the adipose tissue. In contrast, the TCDD concentration in pup livers was 1.32 ng/kg on PND2 and increased to 1.80 ng/kg at weaning. Ventral prostate weight of male offspring was significantly decreased by TCDD exposure on PND28 and 120 compared with that of controls. Weight of the testes, cauda epididymides, and seminal vesicle, and sperm number in the cauda epididymis were not changed by TCDD exposure at PND120. TCDD- or vehicle-exposed male offspring were mated with unexposed females. The sex ratio (percentage of male pups) of F{sub 2} offspring was significantly reduced in the TCDD-exposed group compared with controls. These results suggest that in utero and lactational TCDD exposures affect the development of male gonads in offspring (F{sub 1}), leading to changes in the sex ratio of the subsequent generation (F{sub 2})« less

  20. Moderate glucose supply reduces hemolysis during systemic inflammation

    PubMed Central

    Jägers, Johannes; Brauckmann, Stephan; Kirsch, Michael; Effenberger-Neidnicht, Katharina

    2018-01-01

    Background Systemic inflammation alters energy metabolism. A sufficient glucose level, however, is most important for erythrocytes, since erythrocytes rely on glucose as sole source of energy. Damage to erythrocytes leads to hemolysis. Both disorders of glucose metabolism and hemolysis are associated with an increased risk of death. The objective of the study was to investigate the impact of intravenous glucose on hemolysis during systemic inflammation. Materials and methods Systemic inflammation was accomplished in male Wistar rats by continuous lipopolysaccharide (LPS) infusion (1 mg LPS/kg and h, 300 min). Sham control group rats received Ringer’s solution. Glucose was supplied moderately (70 mg glucose/kg and h) or excessively (210 mg glucose/kg and h) during systemic inflammation. Vital parameters (eg, systemic blood pressure) as well as blood and plasma parameters (eg, concentrations of glucose, lactate and cell-free hemoglobin, and activity of lactate dehydrogenase) were measured hourly. Clot formation was analyzed by thromboelastometry. Results Continuous infusion of LPS led to a so-called post-aggression syndrome with disturbed electrolyte homeostasis (hypocalcemia, hyperkalemia, and hypernatremia), changes in hemodynamics (tachycardia and hypertension), and a catabolic metabolism (early hyperglycemia, late hypoglycemia, and lactate formation). It induced severe tissue injury (significant increases in plasma concentrations of transaminases and lactate dehydrogenase), alterations in blood coagulation (disturbed clot formation), and massive hemolysis. Both moderate and excessive glucose supply reduced LPS-induced increase in systemic blood pressure. Excessive but not moderate glucose supply increased blood glucose level and enhanced tissue injury. Glucose supply did not reduce LPS-induced alterations in coagulation, but significantly reduced hemolysis induced by LPS. Conclusion Intravenous glucose infusion can diminish LPS-related changes in hemodynamics, glucose metabolism, and, more interestingly, LPS-induced hemolysis. Since cell-free hemoglobin is known to be a predictor for patient’s survival, a reduction of hemolysis by 35% only by the addition of a small amount of glucose is another step to minimize mortality during systemic inflammation. PMID:29559805

  1. Hypothalamic nutrient sensing activates a forebrain-hindbrain neuronal circuit to regulate glucose production in vivo.

    PubMed

    Lam, Carol K L; Chari, Madhu; Rutter, Guy A; Lam, Tony K T

    2011-01-01

    Hypothalamic nutrient sensing regulates glucose production, but the neuronal circuits involved remain largely unknown. Recent studies underscore the importance of N-methyl-d-aspartate (NMDA) receptors in the dorsal vagal complex in glucose regulation. These studies raise the possibility that hypothalamic nutrient sensing activates a forebrain-hindbrain NMDA-dependent circuit to regulate glucose production. We implanted bilateral catheters targeting the mediobasal hypothalamus (MBH) (forebrain) and dorsal vagal complex (DVC) (hindbrain) and performed intravenous catheterizations to the same rat for infusion and sampling purposes. This model enabled concurrent selective activation of MBH nutrient sensing by either MBH delivery of lactate or an adenovirus expressing the dominant negative form of AMPK (Ad-DN AMPK α2 [D¹⁵⁷A]) and inhibition of DVC NMDA receptors by either DVC delivery of NMDA receptor blocker MK-801 or an adenovirus expressing the shRNA of NR1 subunit of NMDA receptors (Ad-shRNA NR1). Tracer-dilution methodology and the pancreatic euglycemic clamp technique were performed to assess changes in glucose kinetics in the same conscious, unrestrained rat in vivo. MBH lactate or Ad-DN AMPK with DVC saline increased glucose infusion required to maintain euglycemia due to an inhibition of glucose production during the clamps. However, DVC MK-801 negated the ability of MBH lactate or Ad-DN AMPK to increase glucose infusion or lower glucose production. Molecular knockdown of DVC NR1 of NMDA receptor via Ad-shRNA NR1 injection also negated MBH Ad-DN AMPK to lower glucose production. Molecular and pharmacological inhibition of DVC NMDA receptors negated hypothalamic nutrient sensing mechanisms activated by lactate metabolism or AMPK inhibition to lower glucose production. Thus, DVC NMDA receptor is required for hypothalamic nutrient sensing to lower glucose production and that hypothalamic nutrient sensing activates a forebrain-hindbrain circuit to lower glucose production.

  2. In utero and lactational exposure of male rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin. 3. Effects on spermatogenesis and reproductive capability.

    PubMed

    Mably, T A; Bjerke, D L; Moore, R W; Gendron-Fitzpatrick, A; Peterson, R E

    1992-05-01

    When administered in overtly toxic doses to postweanling male rats, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces adverse effects on the reproductive system including a decrease in spermatogenesis. Because the male reproductive system may be particularly susceptible to toxic insult during the perinatal period, the effects of in utero and lactational TCDD exposure on its development were examined. Male rats born to dams given TCDD (0.064, 0.16, 0.40, or 1.0 micrograms/kg, po) or vehicle on Day 15 of gestation were evaluated at various stages of development; effects on spermatogenesis and male reproductive capability are reported herein. Testis, epididymis, and cauda epididymis weights were decreased in a dose-related fashion at 32, 49, 63, and 120 days of age, that is, when males were at the juvenile, pubertal, postpubertal, and mature stages of sexual development, respectively. When measured on Days 49, 63, and 120, daily sperm production by the testis was reduced at the highest maternal TCDD dose to 57-74% of the control rate. Cauda epididymal sperm reserves in 63- and 120-day-old males were decreased to as low as 25 and 44%, respectively, of control values, although the motility and morphology of these sperm appeared to be unaffected. The magnitude of the effects described above tended to lessen with time; nevertheless, the decreases in epididymis and cauda epididymis weights, daily sperm production, and cauda epididymal sperm number were statistically significant at the lowest maternal dose tested (0.064 micrograms TCDD/kg) on Day 120 and at most earlier times. To determine if in utero and lactational TCDD exposure also affects male reproductive capability, rats were mated at approximately 70 and 120 days of age with control females. Little if any effect on fertility was seen, and the survival and growth of offspring was unaffected. These results are not inconsistent with the pronounced reductions in daily sperm production and cauda epididymal sperm reserves caused by perinatal TCDD exposure since rats produce and ejaculate far more sperm than are required for normal fertility. The TCDD-induced reduction in spermatogenesis cannot be accounted for by concurrent effects on plasma follicle-stimulating hormone or androgen concentrations or by undernutrition. To investigate the nature of the spermatogenic lesion, leptotene spermatocyte to Sertoli cell ratios were determined.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Balancing exercise and food intake with lactation to promote post-partum weight loss.

    PubMed

    Lovelady, Cheryl

    2011-05-01

    Excess weight gain during pregnancy and post-partum weight retention are risk factors for obesity. While many studies report average weight retained from pregnancy is only 0·5-3·0 kg; between 14 and 20% of women are 5 kg heavier at 6-18 months post-partum than they were before pregnancy. Among normal-weight women, lactation usually promotes weight loss to a moderate extent, but not among those with BMI≥35 kg/m2. While exercise and energy restriction may promote weight loss during lactation, their effect on milk volume and composition and, consequently, infant growth must be considered. The effect of exercise on lactation performance has been investigated. Moderate aerobic exercise of 45 min/d, 5 d/week improved cardiovascular fitness, plasma lipids and insulin response; however, it did not promote post-partum weight loss. Breast milk volume and composition were not affected. The effect of exercise with energy restriction in overweight women on the growth of their infants has also been studied. At 1 month post-partum, women restricted their energy intake by 2092 kJ/d and exercised 45 min/d, 4 d/week for 10 weeks. Women in the diet and exercise group lost more weight than the control group (4·8 (sd 1·7) kg v. 0·8 (sd 2·3) kg); however, there were no differences in infant growth. Based on the current evidence, it is recommended that once lactation is established, overweight women may restrict their energy intake by 2092 kJ/d and exercise aerobically 4 d/week to promote a weight loss of 0·5 kg/week.

  4. Potential risk indicators of retained placenta and other diseases in multiparous cows.

    PubMed

    Qu, Y; Fadden, A N; Traber, M G; Bobe, G

    2014-07-01

    Retained placenta (RP), defined as fetal membranes not being expelled within 24 h after calving, is a costly disease in multiparous dairy cows that has been linked to immune suppression, infections, elevated lipid mobilization, and depleted status of antioxidants including α-tocopherol, and that increases the risk of other diseases (OD) in early lactation. Early detection of cows at increased risk of developing RP, OD, or both in early lactation could improve treatment success and result in improved milk production and reproductive performance. To identify risk indicators of RP, OD, or both, we used a nested case-control design and compared multiparous dairy cows that developed RP (n=32) with cows that remained healthy (H; n=32) or cows that developed OD (n=32) in early lactation. We compared peripartal body condition score (BCS) as well as serum concentrations of α-tocopherol, metabolites [β-hydroxybutyrate (BHBA), cholesterol, glucose, nonesterified fatty acids (NEFA), and urea N], haptoglobin, and macrominerals (i.e., calcium, magnesium, and phosphorus) on d -21, -14, -7, -3, -1, 0, 1, 3, 7, 14, 21, 28, 35, 42, and 49 postpartum. In addition, average serum concentrations were calculated for each cow for the last 3 wk prepartum, for 3 and 2 wk prepartum combined, for the last week prepartum, and for the morning after calving and compared between groups. The RP cows had lower BCS than the H or OD cows until 2 wk postpartum. During the prepartal periods, RP and OD cows had lower α-tocopherol concentrations (corrected or not for cholesterol concentration) and higher NEFA and BHBA concentrations than H cows. Thus, lower prepartal BCS could be an early predictor for RP risk, and lower α-tocopherol concentrations and higher NEFA and BHBA concentrations could be early predictors for disease. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Bacopa monniera Linn. extract modulates antioxidant and marker enzyme status in fibrosarcoma bearing rats.

    PubMed

    Rohini, G; Sabitha, K E; Devi, C S Shyamala

    2004-08-01

    Antioxidative property and tumor inhibitive property of B. monniera (20mg/kg body wt, sc) was examined in 3-methylcholanthrene induced fibrosarcoma rats. Antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and the levels of glutathione (GSH) and the rate of lipid peroxidation (LPO) in the liver and kidney tissues were assessed. A significant increase was noted for the rate of LPO with a corresponding decrease in the antioxidant enzyme status in fibrosarcoma bearing rats. In fibrosarcoma bearing rats, the tumor markers like lactate dehydrogenase (LDH), creatine kinase (CK), alanine transaminase (ALT), aspartate transaminase (AST) and sialic acid (SA) were increased in the serum. Treatment with B. monniera extract significantly increased the antioxidant enzyme status, inhibited lipid peroxidation and reduced the tumor markers. It can be concluded that B.monniera extract promotes the antioxidant status, reduces the rate of lipid peroxidation and the markers of tumor progression in the fibrosarcoma bearing rats.

  6. Effect of simulated transport stress on the rat small intestine: A morphological and gene expression study.

    PubMed

    Wan, Changrong; Yin, Peng; Xu, Xiaolong; Liu, Mingjiang; He, Shasha; Song, Shixiu; Liu, Fenghua; Xu, Jianqin

    2014-04-01

    The present study investigated the effects of simulated transport stress on morphology and gene expression in the small intestine of laboratory rats. Sprague Dawley rats were subjected to 35°C and 0.1×g on a constant temperature shaker for physiological, biochemical, morphological and microarray analysis before and after treatment. The treatment induced obvious stress responses with significant decreases in body weight (P<0.01), increases in rectal temperature, serum corticosterone (CORT), serum glucose (GLU), creatine kinase (CK) and lactate dehydrogenase (LDH) levels (P<0.01), as well as expression of Hsp27/70/90 mRNA (P<0.05; P<0.01). The rat jejunum was severely damaged and apoptotic after mimicking transport stress, which may mainly be related to cell death, oxidation reduction and hormone imbalance determined by microarray analysis. The bioinformatics analysis from the present study would provide insight into the potential mechanisms underlying transport stress-induced injury in the rat small intestine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Protective effects of zingerone on oxidative stress and inflammation in cisplatin-induced rat nephrotoxicity.

    PubMed

    Alibakhshi, Tuba; Khodayar, Mohammad Javad; Khorsandi, Layasadat; Rashno, Mohammad; Zeidooni, Leila

    2018-05-29

    Cisplatin is one of the most commonly used and highly effective cancer chemotherapeutic agents. Use of cisplatin is limited due to persistence of severe side effects such as nephrotoxicity, neurotoxicity, and hearing loss. Nephrotoxicity is the most common limiting side effect of cisplatin use. Zingerone is one of the active ingredients present in ginger plant that has anti-inflammatory and antioxidant effects. In this study, Wistar rats were assigned randomly to 6 groups with 5 animals in each group. The control group; cisplatin group which received 7.5 mg/kg of cisplatin intraperitoneally (i.p.) at the 4th day; zingerone group received 50 mg/kg of zingerone orally for 7 days. Three other groups were pretreated with 10, 20, and 50 mg/kg of zingerone orally for 7 days and cisplatin administered 7.5 mg/kg i.p. at the 4th day, respectively. The animals were sacrificed 72 h after cisplatin injection and blood samples were taken to evaluate the serum factors. Right kidneys were collected for histopathological studies and left kidneys were considered to measure the oxidative stress parameters and TNF-α cytokine. Co-administration of zingerone along with cisplatin resulted a statistically significant reduction in lactate dehydrogenase (LDH) activity, creatinine and BUN levels of serum in comparison with cisplatin alone group (P < 0.01). Zingerone significantly decreased the tissue levels of malondialdehyde (MDA) (P < 0.05) and significantly retained the enzyme activity of catalase (CAT) (P < 0.05) and glutathione peroxidase (GPX) (P < 0.05) in kidney tissue compared to cisplatin. Zingerone did not permit the reduction of glutathione (GSH) levels (P < 0.001) in kidney tissue and by reducing the level of tumor necrosis factor (TNF)-α (P < 0.05) suppressed the inflammation produced by cisplatin. Furthermore, zingerone improved histopathological changes such as vacuolation (fat deposit), brush border loss, infiltration of leukocytes, glomerular diameters and congestion of RBCs. However, our findings suggest that zingerone has nephroprotective effects in cisplatin rat model of nephrotoxicity mostly through suppression of oxidative stress and inflammation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat

    PubMed Central

    Zambrano, E; Bautista, C J; Deás, M; Martínez-Samayoa, P M; González-Zamorano, M; Ledesma, H; Morales, J; Larrea, F; Nathanielsz, P W

    2006-01-01

    Extensive epidemiological and experimental evidence indicates that a sub-optimal environment during fetal and neonatal development in both humans and animals may programme offspring susceptibility to later development of chronic diseases including obesity and diabetes that are the result of altered carbohydrate metabolism. We determined the effects of protein restriction during pregnancy and/or lactation on growth, serum leptin, and glucose and insulin responses to a glucose tolerance test in male and female offspring at 110 days postnatal life. We fed Wistar rats a normal control 20% casein diet (C) or a restricted diet (R) of 10% casein during pregnancy. Female but not male R pups weighed less than C at birth. After delivery, mothers received the C or R diet during lactation to provide four offspring groups: CC (first letter maternal pregnancy diet and second maternal lactation diet), RR, CR and RC. All offspring were fed ad libitum with C diet after weaning. Relative food intake correlated inversely with weight. Offspring serum leptin correlated with body weight and relative, but not absolute, food intake in both male and female pups. Serum leptin was reduced in RR female pups compared with CC and increased in RC males compared with CC at 110 days of age. Offspring underwent a glucose tolerance test (GTT) at 110 days postnatal life. Female RR and CR offspring showed a lower insulin to glucose ratio than CC. At 110 days of age male RR and CR also showed some evidence of increased insulin sensitivity. Male but not female RC offspring showed evidence of insulin resistance compared with CC. Cholesterol was similar and triglycerides (TG) higher in male compared with female CC. Cholesterol and TG were higher in males than females in RR, CR and RC (P < 0.05). Cholesterol and TG did not differ between groups in females. Cholesterol and TG were elevated in RC compared with CC males. Nutrient restriction in lactation increased relative whole protein and decreased whole lipid in both males and females. RC females showed decreased relative levels of protein and increased fat. We conclude that maternal protein restriction during either pregnancy and/or lactation alters postnatal growth, appetitive behaviour, leptin physiology, TG and cholesterol concentrations and modifies glucose metabolism and insulin resistance in a sex- and time window of exposure-specific manner. PMID:16339179

  9. Effect of HX108-CS supplementation on exercise capacity and lactate accumulation after high-intensity exercise.

    PubMed

    Oh, Seung-Lyul; Chang, Hyukki; Kim, Hee-Jae; Kim, Yong-An; Kim, Dong-Sik; Ho, Seong-Hyun; Kim, Seon-Hee; Song, Wook

    2013-04-15

    In the present study, we determined the effects of HX108-CS (mixed extract of Schisandra chinensis and Chaenomeles sinensis) supplementation on lactate accumulation and endurance capacity. Furthermore, we examined CK (creatine kinase), LDH (lactate dehydrogenase) activity to determine whether the HX108-CS affected markers of skeletal muscle injury in vivo and in vitro. Exercise capacity was measured by an exhaustive swimming test using ICR mice divided into four groups; one group received distilled water (DW) (Control group, n = 10), and the other groups received three different dosages of HX108-CS (10, 50 and 100 mg/kg, n = 10 per group) solution in water orally. Then, for the time-dependent measurements of blood lactate, CK, and LDH, Sprague-Dawley rats were divided into two groups; one received DW (Control group, n = 10), and the other group received HX108-CS (100 mg/kg, n = 10) solution in the same way as mice. Before the exercise test, the animals were given either DW or HX108-CS for 2 weeks. High-intensity treadmill exercise was performed for 30 minutes. Blood samples were collected and analyzed during and after exercise. For the in vitro experiment, C2C12 cells were treated with HX108-CS to examine its effect on lactate production, CK, and LDH activity. Blood lactate concentration was significantly lowered immediately after treadmill exercise in HX108-CS group; however, there were no significant differences in activities of CK and LDH between HX108-CS and control during treadmill exercise and recovery phase. Furthermore, treatment with 100 mg/kg of HX108-CS led to a significant increase in the time to exhaustion in swimming test, and concurrently blood lactate concentration was significantly decreased in 50 and 100 mg/kg treated group. Moreover, our results of in vitro experiment showed that HX108-CS suppressed lactate production, CK, and LDH activity in a dose-dependent manner. These results suggest that supplementation with HX108-CS may enhance exercise capacity by lowering lactate accumulation. This may in part be related to an amelioration of skeletal muscle injury.

  10. The energy content of wet corn distillers grains for lactating dairy cows.

    PubMed

    Birkelo, C P; Brouk, M J; Schingoethe, D J

    2004-06-01

    Forty-five energy balances were completed with 12 multiparous, lactating Holstein cows in a study designed to determine the energy content of wet corn distillers grains. Treatments were applied in a repeated switchback design and consisted of total mixed diets containing 31.4% corn silage, 18.4% alfalfa hay, and either 30.7% rolled corn and 16.7% soybean meal or 17.0% rolled corn and 31.2% wet corn distillers grains (dry matter basis). Replacement of corn and soybean meal with wet corn distillers grains reduced dry matter intake 10.9% but did not affect milk production. Neither digestible nor metabolizable energy were affected by diet composition. Heat and milk energy output did not differ by diet, but body energy retained was 2.8 Mcal/d less in cows fed the wet corn distillers grains diet. Multiple regression estimates of maintenance metabolizable energy requirement and partial efficiencies of metabolizable energy used for lactation and body energy deposition did not differ by diet. Pooled estimates were 136.2, 0.66, and 0.85, kcal of metabolizable energy/ body weight0.75 per day, respectively. Calculated by difference, wet corn distillers grains was estimated to contain 4.09, 3.36, and 2.27 Mcal/kg of dry matter as digestible, metabolizable, and lactational net energy, respectively. These energy estimates were 7 to 11% and 10 to 15%, respectively, greater than those reported for dried corn distillers grains by the 1989 and 2001 dairy NRC publications.

  11. Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for L-lactate with long term stability.

    PubMed

    Giménez-Gómez, Pablo; Gutiérrez-Capitán, Manuel; Capdevila, Fina; Puig-Pujol, Anna; Fernández-Sánchez, César; Jiménez-Jorquera, Cecilia

    2016-01-28

    L-lactic acid is monitored during malolactic fermentation process of wine and its evolution is strongly related with the quality of the final product. The analysis of L-lactic acid is carried out off-line in a laboratory. Therefore, there is a clear demand for analytical tools that enabled real-time monitoring of this process in field and biosensors have positioned as a feasible alternative in this regard. The development of an amperometric biosensor for L-lactate determination showing long-term stability is reported in this work. The biosensor architecture includes a thin-film gold electrochemical transducer selectively modified with an enzymatic membrane, based on a three-dimensional matrix of polypyrrole (PPy) entrapping lactate oxidase (LOX) and horseradish peroxidase (HRP) enzymes. The experimental conditions of the biosensor fabrication regarding the pyrrole polymerization and the enzymes entrapment are optimized. The biosensor response to L-lactate is linear in a concentration range of 1 × 10(-6)-1 × 10(-4) M, with a detection limit of 5.2 × 10(-7) M and a sensitivity of - (13500 ± 600) μA M(-1) cm(-2). The biosensor shows an excellent working stability, retaining more than 90% of its original sensitivity after 40 days. This is the determining factor that allowed for the application of this biosensor to monitor the malolactic fermentation of three red wines, showing a good agreement with the standard colorimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nutritional recovery with a soybean diet impaired the glucagon response but did not alter liver gluconeogenesis in the adult offspring of rats deprived of protein during pregnancy and lactation.

    PubMed

    Pacheco, Nelma Cristina Silva; de Almeida, Ana Paula Carli; de Siqueira, Kariny Cássia; de Lima, Faena Moura; Reis, Silvia Regina de Lima; Latorraca, Marcia Queiroz; Stoppiglia, Luiz Fabrizio

    2018-06-22

    Nutritional recovery of early malnutrition with soybean diet reduces liver glycogen stores in the fed state and produces liver insulin resistance. We investigated whether nutritional recovery on a soybean flour diet alters hepatic gluconeogenesis in the adult offspring of rats deprived of protein during pregnancy and lactation. Male rats from mothers that were fed either 17% (C) or 6% (L) protein during pregnancy and lactation were maintained on a 17% casein (CC, n=16 and LC, n=17), 17% soybean flour (CS, n=10 and LS, n=10) or 6% casein (LL, n=10) diet after weaning. The soybean diet reduced basal serum glucose (soybean diet=5.6±0.6 mmol/L vs casein diet= 6.2±0.6 mmol/L; p<0.05), but increased alanine aminotransferase mRNA/GAPDH (soybean diet =0.062 ±0.038 vs casein diet= 0.024 ±0.011; p<0.01) and phosphoenolpyruvate carboxykinase mRNA/GAPDH (soybean diet =1.53 ±0.52 vs casein diet= 0.95 ±0.43; p<0.05), and the glycerokinase protein content (soybean diet =0.86 ±0.08 vs casein diet= 0.75 ±0.11; p<0.05). The serum glucose concentration (recovered groups=5.6±0.5mmol/L vs control groups=6.2±0.7mmol/L, p<0.05) and pophosphoenolpyruvate carboxykinase activity (recovered groups=2.8±0.6μU/mg vs control groups=3.6±0.6μU/mg; p<0.05) were decreased in rats subjected to protein restriction in early life. The glucose area under the curve during the pyruvate tolerance test did not differ among the groups, whereas glucose area under the curve after glucagon infusion was reduced by early malnutrition (recovered groups=4210±572mg/dL.40min vs control groups=4493±688mg/dL.40min; p<0.001), and by the soybean diet (soybean diet= 3995±500mg/dL.40min vs casein diet=4686±576 mg/dL.40min, p<0.05). Thus, soybean diet impaired the response to glucagon, but did not alter gluconeogenesis.

  13. A maternal "junk food" diet in pregnancy and lactation promotes nonalcoholic Fatty liver disease in rat offspring.

    PubMed

    Bayol, Stéphanie A; Simbi, Bigboy H; Fowkes, Robert C; Stickland, Neil C

    2010-04-01

    With rising obesity rates, nonalcoholic fatty liver disease is predicted to become the main cause of chronic liver disease in the next decades. Rising obesity prevalence is attributed to changes in dietary habits with increased consumption of palatable junk foods, but maternal malnutrition also contributes to obesity in progeny. This study examines whether a maternal junk food diet predisposes offspring to nonalcoholic fatty liver disease. The 144 rat offspring were fed either a balanced chow diet alone or with palatable junk foods rich in energy, fat, sugar, and/or salt during gestation, lactation, and/or after weaning up to the end of adolescence. Offspring fed junk food throughout the study exhibited exacerbated hepatic steatosis, hepatocyte ballooning, and oxidative stress response compared with offspring given free access to junk food after weaning only. These offspring also displayed sex differences in their hepatic molecular metabolic adaptation to diet-induced obesity with increased expression of genes associated with insulin sensitivity, de novo lipogenesis, lipid oxidation, and antiinflammatory properties in males, whereas the gene expression profile in females was indicative of hepatic insulin resistance. Hepatic inflammation and fibrosis were not detected indicating that offspring had not developed severe steatohepatitis by the end of adolescence. Hepatic steatosis and increased oxidative stress response also occurred in offspring born to junk food-fed mothers switched to a balanced chow diet from weaning, highlighting a degree of irreversibility. This study shows that a maternal junk food diet in pregnancy and lactation contributes to the development of nonalcoholic fatty liver disease in offspring.

  14. Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males.

    PubMed

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1997-12-01

    Although studies have shown that testosterone receptor blockade with flutamide after hemorrhage restores the depressed immune function, it remains unknown whether administration of flutamide following trauma and hemorrhage and resuscitation has any salutary effects on the depressed cardiovascular and hepatocellular functions. To study this, male rats underwent a laparotomy (representing trauma) and were then bled and maintained at a mean arterial pressure (MAP) of 40 mmHg until the animals could not maintain this pressure. Ringer lactate was given to maintain a MAP of 40 mmHg until 40% of the maximal shed blood volume was returned in the form of Ringer lactate. The rats were then resuscitated with four times the shed blood volume in the form of Ringer lactate over 60 min. Flutamide (25 mg/kg) or an equal volume of the vehicle propanediol was injected subcutaneously 15 min before the end of resuscitation. Various in vivo heart performance parameters (e.g., maximal rate of the pressure increase or decrease), cardiac output, and hepatocellular function (i.e., the maximum velocity and the overall efficiency of indocyanine green clearance) were determined at 20 h after resuscitation. Additionally, hepatic microvascular blood flow (HMBF) was determined using a laser Doppler flowmeter. The results indicate that left ventricular performance, cardiac output, HMBF, and hepatocellular function decreased significantly at 20 h after the completion of trauma, hemorrhage, and resuscitation. Administration of the testosterone receptor blocker flutamide, however, significantly improved cardiac performance, HMBF, and hepatocellular function. Thus flutamide appears to be a novel and useful adjunct for improving cardiovascular and hepatocellular functions in males following trauma and hemorrhagic shock.

  15. Developmental programming of aging of isolated pancreatic islet glucose-stimulated insulin secretion in female offspring of mothers fed low-protein diets in pregnancy and/or lactation.

    PubMed

    Morimoto, S; Sosa, T C; Calzada, L; Reyes-Castro, L A; Díaz-Díaz, E; Morales, A; Nathanielsz, P W; Zambrano, E

    2012-12-01

    Diabetes predisposition is determined by pancreatic islet insulin secretion and insulin resistance. We studied female rat offspring exposed to low-protein maternal diet (50% control protein diet) in pregnancy and/or lactation at postnatal days 36, 110 and 450. Rats were fed either control 20% casein diet (C) or restricted diet (R - 10% casein) during pregnancy. After delivery, mothers received either C or R diet until weaning to provide four offspring groups: CC, RR, CR and RC (first letter denoting maternal pregnancy diet and the second lactation diet). Serum glucose, insulin and homeostatic model assessment (HOMA) were measured. Pancreatic islets were isolated and in vitro insulin secretion quantified in low glucose (5 mM) and high glucose (11 mM). Serum glucose, insulin and HOMA were similar in all groups at 36 and 110 postnatal days. HOMA was only higher in RR at 450 postnatal days. Only CC demonstrated differences in glucose sensitivity of β-cells to high and low doses at the three ages studied. At 36 days, RR, CR and RC and at 450 days RR and RC groups did not show glucose-stimulated insulin secretion differences between low and high glucose. Aging-associated glucose-stimulated insulin secretion loss was affected by maternal dietary history, indicating that developmental programming must be considered a major factor in aging-related development of predisposition to later-life dysfunctional insulin metabolism. Female offspring islets' insulin secretion was higher than previously reported in males.

  16. A Maternal “Junk Food” Diet in Pregnancy and Lactation Promotes Nonalcoholic Fatty Liver Disease in Rat Offspring

    PubMed Central

    Bayol, Stéphanie A.; Simbi, Bigboy H.; Fowkes, Robert C.; Stickland, Neil C.

    2010-01-01

    With rising obesity rates, nonalcoholic fatty liver disease is predicted to become the main cause of chronic liver disease in the next decades. Rising obesity prevalence is attributed to changes in dietary habits with increased consumption of palatable junk foods, but maternal malnutrition also contributes to obesity in progeny. This study examines whether a maternal junk food diet predisposes offspring to nonalcoholic fatty liver disease. The 144 rat offspring were fed either a balanced chow diet alone or with palatable junk foods rich in energy, fat, sugar, and/or salt during gestation, lactation, and/or after weaning up to the end of adolescence. Offspring fed junk food throughout the study exhibited exacerbated hepatic steatosis, hepatocyte ballooning, and oxidative stress response compared with offspring given free access to junk food after weaning only. These offspring also displayed sex differences in their hepatic molecular metabolic adaptation to diet-induced obesity with increased expression of genes associated with insulin sensitivity, de novo lipogenesis, lipid oxidation, and antiinflammatory properties in males, whereas the gene expression profile in females was indicative of hepatic insulin resistance. Hepatic inflammation and fibrosis were not detected indicating that offspring had not developed severe steatohepatitis by the end of adolescence. Hepatic steatosis and increased oxidative stress response also occurred in offspring born to junk food-fed mothers switched to a balanced chow diet from weaning, highlighting a degree of irreversibility. This study shows that a maternal junk food diet in pregnancy and lactation contributes to the development of nonalcoholic fatty liver disease in offspring. PMID:20207831

  17. Cerebral Metabolic Alterations in Rats With Diabetic Ketoacidosis

    PubMed Central

    Glaser, Nicole; Yuen, Natalie; Anderson, Steven E.; Tancredi, Daniel J.; O'Donnell, Martha E.

    2010-01-01

    OBJECTIVE Cerebral edema is a life-threatening complication of diabetic ketoacidosis (DKA) in children. Recent data suggest that cerebral hypoperfusion and activation of cerebral ion transporters may be involved, but data describing cerebral metabolic alterations during DKA are lacking. RESEARCH DESIGN AND METHODS We evaluated 50 juvenile rats with DKA and 21 normal control rats using proton and phosphorus magnetic resonance spectroscopy (MRS). MRS measured cerebral intracellular pH and ratios of metabolites including ATP/inorganic phosphate (Pi), phosphocreatine (PCr)/Pi, N-acetyl aspartate (NAA)/creatine (Cr), and lactate/Cr before and during DKA treatment. We determined the effects of treatment with insulin and intravenous saline with or without bumetanide, an inhibitor of Na-K-2Cl cotransport, using ANCOVA with a 2 × 2 factorial study design. RESULTS Cerebral intracellular pH was decreased during DKA compared with control (mean ± SE difference −0.13 ± 0.03; P < 0.001), and lactate/Cr was elevated (0.09 ± 0.02; P < 0.001). DKA rats had lower ATP/Pi and NAA/Cr (−0.32 ± 0.10, P = 0.003, and −0.14 ± 0.04, P < 0.001, respectively) compared with controls, but PCr/Pi was not significantly decreased. During 2-h treatment with insulin/saline, ATP/Pi, PCr/Pi, and NAA/Cr declined significantly despite an increase in intracellular pH. Bumetanide treatment increased ATP/Pi and PCr/Pi and ameliorated the declines in these values with insulin/saline treatment. CONCLUSIONS These data demonstrate that cerebral metabolism is significantly compromised during DKA and that further deterioration occurs during early DKA treatment—consistent with possible effects of cerebral hypoperfusion and reperfusion injury. Treatment with bumetanide may help diminish the adverse effects of initial treatment with insulin/saline. PMID:20028943

  18. Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat offspring

    PubMed Central

    Nakamura, Noriko; Inselman, Amy L.; White, Gene A.; Chang, Ching-Wei; Trbojevich, Raul A.; Sepehr, Estatira; Voris, Kristie L.; Patton, Ralph E.; Bryant, Matthew S.; Harrouk, Wafa; McIntyre, Barry; Foster, Paul M.; Hansen, Deborah K.

    2015-01-01

    BACKGROUND 2-hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet (UV)-absorbing compound used in many cosmetic products as a UV-protecting agent and in plastics for preventing UV-induced photodecomposition. HMB has been detected in over 95% of randomly collected human urine samples from adults and from premature infants, and it may have estrogenic potential. METHODS To determine the effects of maternal and lactational exposure to HMB on development and reproductive organs of offspring, time-mated female Harlan Sprague-Dawley rats were dosed with 0, 1,000, 3,000, 10,000, 25,000, or 50,000 ppm HMB (7-8 per group) added to chow from gestation day 6 until weaning on postnatal day (PND) 23. RESULTS AND CONCLUSION Exposure to HMB was associated with reduced body and organ weights in female and male offspring. No significant differences were observed in the number of implantation sites/litter, mean resorptions/litter, % litters with resorptions, number and weights of live fetuses, or sex ratios between the control and HMB dose groups. Normalized anogenital distance in male pups at PND 23 was decreased in the highest dose group. Spermatocyte development was impaired in testes of male offspring in the highest dose group. In females, follicular development was delayed in the highest dose group. However, by evaluating levels of the compound in rat serum, the doses at which adverse events occurred are much higher than usual human exposure levels. Thus, exposure to less than 10,000 ppm HMB does not appear to be associated with adverse effects on the reproductive system in rats. PMID:25707689

  19. Neither Milk Production, Milk Transfer Nor Pup Growth Hormone Account for Reduced Body Weights of Rat Pups Reared In Hypergravity

    NASA Technical Reports Server (NTRS)

    Bear, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Studies spanning the gravity continuum from 0 to 2-g are revealing new insights into how mammalian reproduction and development may proceed in the microgravity of space. Rat pups reared from either conception or midgestation in hypergravity (hg) weigh 6-15% less than 1-g controls. In the present study we analyzed maternal and pup factors that may account for reduced body weight of hg reared pups. Beginning on Gestational day (G)11 of the rats' 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g, 1.75-g or 2.0-g. Prolaction (Prl) and oxytocin (OT) were measured in hg-exposed dams during either pregnancy (G20) or lactation (Postnatal day [P] 10). Gravity related differences in Prl were not observed whereas OT was depressed during lactation in hg dams relative to controls (p less than 0.05). Milk transfer measured during a discrete suckling episode was actually increased in hg-reared litters and comparable numbers of milk-letdowns were observed in the two conditions. Recent reports using dwarfing phenotypes in mouse mutants have provided evidence for postnatal dependence on growth hormone (GH) and insulin-like growth factors (IGFs). Plasma GH measured in P10 pups using enzyme immunoassay (EIA) was significantly elevated in hg pups relative to 1-g controls (mean +/- sd., ng/ml: 2.0-g, 10.6 [3.0], 1.5-g 8.9 [4.0], 1.0-g, 7.95 [3.1]). Together, these findings suggest that neither milk production, milk transfer nor pup GH play significant roles in reduced body weights of hg-reared pups. Studies underway are focused on insulin-like growth factors.

  20. Combinatorial therapy of exercise-preconditioning and nanocurcumin formulation supplementation improves cardiac adaptation under hypobaric hypoxia.

    PubMed

    Nehra, Sarita; Bhardwaj, Varun; Bansal, Anju; Saraswat, Deepika

    2017-09-26

    Chronic hypobaric hypoxia (cHH) mediated cardiac insufficiencies are associated with pathological damage. Sustained redox stress and work load are major causative agents of cardiac insufficiencies under cHH. Despite the advancements made in pharmacological (anti-oxidants, vasodilators) and non-pharmacological therapeutics (acclimatization strategies and schedules), only partial success has been achieved in improving cardiac acclimatization to cHH. This necessitates the need for potent combinatorial therapies to improve cardiac acclimatization at high altitudes. We hypothesize that a combinatorial therapy comprising preconditioning to mild aerobic treadmill exercise and supplementation with nanocurcumin formulation (NCF) consisting of nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) might improve cardiac adaptation at high altitudes. Adult Sprague-Dawley rats pre-conditioned to treadmill exercise and supplemented with NCF were exposed to cHH (7620 m altitude corresponding to pO2~8% at 28±2°C, relative humidity 55%±1%) for 3 weeks. The rat hearts were analyzed for changes in markers of oxidative stress (free radical leakage, lipid peroxidation, manganese-superoxide dismutase [MnSOD] activity), cardiac injury (circulating cardiac troponin I [TnI] and T [cTnT], myocardial creatine kinase [CK-MB]), metabolic damage (lactate dehydrogenase [LDH] and acetyl-coenzyme A levels, lactate and pyruvate levels) and bio-energetic insufficiency (ATP, p-AMPKα). Significant modulations (p≤0.05) in cardiac redox status, metabolic damage, cardiac injury and bio-energetics were observed in rats receiving both NCF supplementation and treadmill exercise-preconditioning compared with rats receiving only one of the treatments. The combinatorial therapeutic strategy showed a tremendous improvement in cardiac acclimatization to cHH compared to either exercise-preconditioning or NCF supplementation alone which was evident from the effective modulation in redox, metabolic, contractile and bio-energetic homeostasis.

  1. Protective effects of ascorbic acid and garlic extract against lead-induced apoptosis in developing rat hippocampus.

    PubMed

    Ebrahimzadeh-Bideskan, Ali-Reza; Hami, Javad; Alipour, Fatemeh; Haghir, Hossein; Fazel, Ali-Reza; Sadeghi, Akram

    2016-10-01

    Lead exposure has negative effects on developing nervous system and induces apoptosis in newly generated neurons. Natural antioxidants (i.e. Ascorbic acid and Garlic) might protect against lead-induced neuronal cell damage. The aim of the present study was to investigate the protective effects of Ascorbic acid and Garlic administration during pregnancy and lactation on lead-induced apoptosis in rat developing hippocampus. Timed pregnant Wistar rats were administrated with Lead (1500 ppm) via drinking water (Pb group) or lead plus Ascorbic acid (Pb + AA Group, 500 mg/kg, IP), or lead plus Garlic Extract (Pb + G Group, 1 ml garlic juice/100 g BW, via Gavage) from early gestation (GD 0) until postnatal day 50 (PN 50). At the end of experiments, the pups' brains were carefully dissected. To identify neuronal death, the brain sections were stained with TUNEL assay. Mean of blood and brain lead levels increased significantly in Pb group comparing to other studied groups (P < 0.01). There was significant reduction in blood and brain lead level in Pb + AA and Pb + G groups when compared to those of Pb group (P < 0.01). The mean number of TUNEL positive cells in the CA1, CA3, and DG was significantly lower in the groups treated by either Ascorbic acid or Garlic (P < 0.05). Administration of Ascorbic acid and Garlic during pregnancy and lactation protect against lead-induced neuronal cell apoptosis in the hippocampus of rat pups partially via the reduction of Pb concentration in the blood and in the brain.

  2. Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: comparison with valproic acid autistic model.

    PubMed

    Ali, Elham H A; Elgoly, Amany H Mahmoud

    2013-10-01

    The aim of this work is to evaluate the impact of butyl paraben (BP) in brain of the pups developed for mothers administered BP from early pregnancy till weaning and its effect on studying the behavior, brain neurotransmitters and brain derived neurotrophic factor BDNF via comparing the results with valproic acid (VA) autistic-rat model preparing by a single oral injection dose of VA (800 mg/kg b.wt) at the 12.5 days of gestation. Butyl paraben was orally and subcutaneously administered (200 mg/kg b.wt) to pregnant rats from gestation day 1 to lactation day 21. The offspring male rats were subjected at the last 3 days of lactation to Morris water maze and three chamber sociability test then decapitated and the brain was excised and dissected to the cortex, hippocampus, cerebellum, midbrain and pons for the determination of norepinephrine, dopamine and serotonin (NE, DA and 5-HT) and cortex amino acids and whole brain BDNF. The results showed similar social and learning and memory behavioral deficits in VA rat model and the butyl paraben offspring in comparison with the controls. Also, some similar alterations were observed in monoamine content, amino acids and BDNF factor in the autistic-like model and butyl paraben offspring in comparison with the controls. The alterations were recorded notably in hippocampus and pons NE, midbrain DA, hippocampus and midbrain 5-HT, and frontal cortex GABA and asparagine. These data suggest that prenatal exposure to butyl paraben induced neuro-developmental disorders similar to some of the neurodevelopmental disorders observed in the VA model of autism. © 2013 Elsevier Inc. All rights reserved.

  3. Oxidative damage and antioxidant defense in thymus of malnourished lactating rats.

    PubMed

    Gavia-García, Graciela; González-Martínez, Haydeé; Miliar-García, Ángel; Bonilla-González, Edmundo; Rosas-Trejo, María de Los Ángeles; Königsberg, Mina; Nájera-Medina, Oralia; Luna-López, Armando; González-Torres, María Cristina

    2015-01-01

    Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The Effects of Mangiferin (Mangifera indica L) in Doxorubicin-induced Cardiotoxicity in Rats.

    PubMed

    Arozal, W; Suyatna, F D; Juniantito, V; Rosdiana, D S; Amurugam, S; Aulia, R; Monayo, E R; Siswandi, R

    2015-11-01

    The cardiotoxicity effect of doxorubicin (DOX), a widely used antitumor agent has restricted its clinical application. The aim of the current study was to explore the potential protective effect of mangiferin, a naturally occurring glucosylxanthone, that have antioxidant activity by its iron-complexing ability in mitochondria, against DOX-induced cardiac toxicity in rats in comparison with other antioxidants namely Sylimarin (SYL) and Vitamin E (VitE). Mangiferin was given orally to rats at a dose of 50, and 100 mg/kg for 5 weeks, and DOX was injected at a total dose of 15 mg/kg. Cardiac toxicity was evaluated by lactate dehydrogenase and creatine kinase in the serum, malondialdehyde (MDA) level in plasma and cardiac tissue, and antioxidant enzyme superoxide dismutase (SOD) in cardiac tissue. Mangiferin protected against DOX-induced increased mortality and electrocardiogram abnormality and decreased biochemical markers of cardiac toxicity i. e., lactate dehydrogenase and creatine phosphokinase isoenzyme. In addition, elevation of plasma and cardiac tissue levels of MDA in response to DOX treatment were significantly attenuated. The reduction of cardiac activity of SOD was significantly reduced in contrast with the other antioxidant SYL and Vit E. Histopathologically, mangiferin treatment showed significant reduction in inflammatory cell number, fibrotic area, and necrotic foci as compared with DOX only-treated rats. These results suggested that mangiferin had better protective effect against DOX-induced cardiac toxicity in comparison with SYL and VitE, thus besides the antioxidant activity, different mechanism may be involved in the action of mangiferin and need to be clarified in the future studies. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Short fasting does not protect perfused ex vivo rat liver against ischemia-reperfusion. On the importance of a minimal cell energy charge.

    PubMed

    Papegay, Bérengère; Stadler, Michaela; Nuyens, Vincent; Kruys, Véronique; Boogaerts, Jean G; Vamecq, Joseph

    2017-03-01

    Dietary restriction or reduced food intake was supported to protect against renal and hepatic ischemic injury. In this vein, short fasting was recently shown to protect in situ rat liver against ischemia-reperfusion. Here, perfused ex vivo instead of in situ livers were exposed to ischemia-reperfusion to study the impact of disconnecting liver from extrahepatic supply in energetic substrates on the protection given by short-term fasting. Perfused ex vivo livers using short (18 h) fasted compared with fed rats were submitted to ischemia-reperfusion and studied for release of cytolysis markers in the perfusate. Energetic stores are differently available in time and cell energetic charges (ratio of adenosine triphosphate plus half of the adenosine diphosphate concentrations to the sum of adenosine triphosphate + adenosine diphosphate + adenosine monophosphate concentrations), adenosine phosphates, and glycogen, which were further measured at different time points in livers. Short fasting versus feeding failed to protect perfused ex vivo rat livers against ischemia/reperfusion, increasing the release of cytolysis markers (potassium, cytochrome c, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase) in the perfusate during reoxygenation phase. Toxicity of short fasting versus feeding was associated with lower glycogen and energetic charges in livers and lower lactate levels in the perfusate. High energetic charge, intracellular content in glycogen, and glycolytic activity may protect liver against ischemia/reperfusion injury. This work does not question how much the protective role previously demonstrated in the literature for dietary restriction and short fasting. In fact, it suggests that exceeding the energy charge threshold value of 0.3 might trigger the effectiveness of this protective role. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Psychological Stress Alters Ultrastructure and Energy Metabolism of Masticatory Muscle in Rats

    PubMed Central

    Chen, Yong-Jin; Huang, Fei; Zhang, Min; Shang, Hai-Yan

    2010-01-01

    To investigate the effects of psychological stress on the masticatory muscles of rats, a communication box was applied to induce the psychological stress (PS) in rats. The successful establishment of psychological stimulation was confirmed by elevated serum levels of adrenocorticotropic hormone (ACTH) and changed behaviors in the elevated plusmaze apparatus. The energy metabolism of the bilateral masseter muscles was tested via chemocolorimetric analysis, whereas muscle ultrastructure was assessed by electron microscopy. In comparison to the control group, the PS group showed evidence of swollen mitochondria with cristae loss and reduced matrix density in the masticatory muscles after three weeks of stimulation; after five weeks of stimulation, severe vacuolar changes to the mitochondria were observed. Increased vascular permeability of the masticatory muscle capillaries was found in the five-week PS rats. In addition, there was decreased activity of Na+-K+ATPase and Ca2+-ATPase and a simultaneous increase in the activity of lactate dehydrogenase and lactic acid in the masticatory muscles of PS rats. Together, these results indicate that psychological stress induces alterations in the ultrastructure and energy metabolism of masticatory muscles in rats. PMID:21052548

  7. A decreased metabolic clearance of glucose is involved in the hyperglycemic effect of a serum temperature induced factor (TIF).

    PubMed

    Masson, C; Bougrine, R; Bois, F; Zaïd, A; Nicolas, J P; Guéant, J L

    1995-01-01

    We have studied the effects of a hyperglycemic temperature induced factor (TIF) on glucose metabolism, in 3 groups of Wistar rats: 10 rats injected with non-heated serum, 10 rats injected with heated serum and 10 rats injected with semi-purified TIF. Seric levels of insulin and glucagon were not modified in rats injected with heated serum. The injection of heated serum induced hyperglycemia (p < 0.0001), a decrease of lactate (p < 0.001) and pyruvate (p < 0.05) levels, and an increase of acetoacetate level (p < 0.001). The levels of beta hydroxybutyrate and amino acids (alanine and glutamine) were not changed. Glucose turn over rate (12.3 +/- 1.3 g/min/kg) and metabolic clearance of glucose (10.0 +/- 0.8 ml/min/kg) were significantly lower in rats treated with heated serum and purified TIF than in controls (respectively, p < 0.05 and p < 0.001). These data suggested that the hyperglycemic effect of heated serum and isolated TIF could correspond to an impaired metabolic clearance of glucose and to an increased gluconeogenesis.

  8. Maternal docosahexaenoic acid increases adiponectin and normalizes IUGR-induced changes in rat adipose deposition.

    PubMed

    Bagley, Heidi N; Wang, Yan; Campbell, Michael S; Yu, Xing; Lane, Robert H; Joss-Moore, Lisa A

    2013-01-01

    Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor- γ 2 (PPAR γ 2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPAR γ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPAR γ agonist, would normalize IUGR adipose deposition in association with increased PPAR γ , adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPAR γ expression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  9. Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows.

    PubMed

    Hertl, J A; Schukken, Y H; Welcome, F L; Tauer, L W; Gröhn, Y T

    2014-03-01

    The objective of this study was to estimate the effects of clinical mastitis (CM) cases due to different pathogens on milk yield in Holstein cows. The first 3 CM cases in a cow's lactation were modeled. Eight categories of pathogens were included: Streptococcus spp.; Staphylococcus aureus; coagulase-negative staphylococci (CNS); Escherichia coli; Klebsiella spp.; cases with CM signs but no bacterial growth (above the level detectable by our microbiological procedures) observed in the culture sample, and cases with contamination (≥ 3 pathogens in the sample); other pathogens that may be treated with antibiotics (included Citrobacter, Corynebacterium bovis, Enterobacter, Enterococcus, Pasteurella, Pseudomonas; "other treatable"); and other pathogens not successfully treated with antibiotics (Trueperella pyogenes, Mycoplasma, Prototheca, yeasts; "other not treatable"). Data from 38,276 lactations in cows from 5 New York State dairy herds, collected from 2003-2004 until 2011, were analyzed. Mixed models with an autoregressive correlation structure (to account for correlation among the repeated measures of milk yield within a lactation) were estimated. Primiparous (lactation 1) and multiparous (lactations 2 and 3) cows were analyzed separately, as the shapes of their lactation curves differed. Primiparas were followed for up to 48 wk of lactation and multiparas for up to 44 wk. Fixed effects included parity, calving season, week of lactation, CM (type, case number, and timing of CM in relation to milk production cycle), and other diseases (milk fever, retained placenta, metritis, ketosis, displaced abomasum). Herd was modeled as a random effect. Clinical mastitis was more common in multiparas than in primiparas. In primiparas, Streptococcus spp. occurred most frequently as the first case. In multiparas, E. coli was most common as the first case. In subsequent cases, CM cases with no specific growth or contamination were most common in both parity groups. The hazard of CM increased with case number. Mastitic cows were generally higher producers before the CM episode than their nonmastitic herdmates. Milk loss varied with pathogen and case number. In primiparas, the greatest losses were associated with E. coli and "other not treatable" organisms. In multiparas, the greatest losses were associated with Klebsiella spp. and "other not treatable" organisms. Milk loss was not associated with occurrence of CNS. The findings may help farmers to make optimal management decisions for their cows. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. [Maternal methyl-containing dietary supplementation alters the ability to learn in adult rats in swimming Morris test].

    PubMed

    Pliusnina, I Z; Os'kina, I N; Shchepina, O A; Prasolova, L A; Trut, L N

    2006-01-01

    Maternal choline diet influences the spatial learning processes. In this work, the learning ability of adult progeny of mothers who had received methyl diet enriched with choline and betain during pregnancy and lactation was studied in Morris test. The introduction of the diet to pregnant rats resulted in an increase in the time of search for invisible platform and time of swimming near the pool walls in offsprings, which meant a worsening of their learning ability. It was also found that change in platform searching strategy was not associated with an increase in anxiety of male rats. Possible involvement of maternal methyl diet in the change of expression of genes which control development of the nervous system is discussed.

  11. A maternal methyl-containing diet alters learning ability in the Morris swimming test in adult rats.

    PubMed

    Plyusnina, I Z; Os'kina, I N; Shchepina, O A; Prasolova, L A; Trut, L N

    2007-06-01

    Maternal choline diet is known to affect the processes of spatial learning. We report here our studies of learning ability in the Morris swimming test in the adult offspring of maternal rats given a methyl-containing supplement enriched with choline and betaine during pregnancy and lactation. Increases in the time taken to find the invisible platform and the duration of swimming close to the vessel walls were seen, these demonstrating worsening of learning ability in response to the maternal diet. Changes in the platform search strategy were not associated with increases in anxiety in male rats. The possible role of a maternal methyl-containing diet in altering the expression of genes controlling the development of the nervous system is discussed.

  12. Feeding a Mixture of Choline Forms to Lactating Dams Improves the Development of the Immune System in Sprague-Dawley Rat Offspring.

    PubMed

    Richard, Caroline; Lewis, Erin D; Goruk, Susan; Wadge, Emily; Curtis, Jonathan M; Jacobs, René L; Field, Catherine J

    2017-06-02

    Dietary choline is essential during lactation, but few studies have examined the implications of feeding a mixture of choline forms on immune function. This study investigates the impact of feeding lactating dams different mixtures of choline forms, similar to those in human diets, on the development and later immune function of suckled offspring. Sprague-Dawley lactating dams ( n = 6/diet) were randomized to consume one of three diets, containing 1 g/kg choline: Control (100% free choline (FC)), Mixed Choline (MC: 50% phosphatidylcholine (PC), 25% FC, 25% glycerophosphocholine (GPC)), or High GPC (HGPC: 75% GPC, 12.5% PC, 12.5% FC). At weaning, female pups ( n = 2/dam) were fed the Control diet until 10 weeks. At 3 weeks, MC and HGPC pups were heavier and their splenocytes had a higher proportion of helper T cells expressing CD25 and CD28 and produced less interferon gamma (IFN-γ) and tumor-necrosis factor-α (TNF-α) after Concanavalin A stimulation vs. Control pups ( p < 0.05). At 10 weeks, MC and HGPC offspring had a lower proportion of macrophages and dendritic cells and produced less interleukin (IL)-1β but more IL-10 after lipopolysaccharide stimulation vs. Control pups ( p < 0.05). In summary, feeding mixed choline diets during lactation improved T cell phenotype/function at the end of suckling and programmed a less inflammatory response later in life.

  13. Feeding a Mixture of Choline Forms to Lactating Dams Improves the Development of the Immune System in Sprague-Dawley Rat Offspring

    PubMed Central

    Richard, Caroline; Lewis, Erin D.; Goruk, Susan; Wadge, Emily; Curtis, Jonathan M.; Jacobs, René L.; Field, Catherine J.

    2017-01-01

    Dietary choline is essential during lactation, but few studies have examined the implications of feeding a mixture of choline forms on immune function. This study investigates the impact of feeding lactating dams different mixtures of choline forms, similar to those in human diets, on the development and later immune function of suckled offspring. Sprague-Dawley lactating dams (n = 6/diet) were randomized to consume one of three diets, containing 1 g/kg choline: Control (100% free choline (FC)), Mixed Choline (MC: 50% phosphatidylcholine (PC), 25% FC, 25% glycerophosphocholine (GPC)), or High GPC (HGPC: 75% GPC, 12.5% PC, 12.5% FC). At weaning, female pups (n = 2/dam) were fed the Control diet until 10 weeks. At 3 weeks, MC and HGPC pups were heavier and their splenocytes had a higher proportion of helper T cells expressing CD25 and CD28 and produced less interferon gamma (IFN-γ) and tumor-necrosis factor-α (TNF-α) after Concanavalin A stimulation vs. Control pups (p < 0.05). At 10 weeks, MC and HGPC offspring had a lower proportion of macrophages and dendritic cells and produced less interleukin (IL)-1β but more IL-10 after lipopolysaccharide stimulation vs. Control pups (p < 0.05). In summary, feeding mixed choline diets during lactation improved T cell phenotype/function at the end of suckling and programmed a less inflammatory response later in life. PMID:28574475

  14. Biocompatibility of peritoneal dialysis fluids: long-term exposure of nonuremic rats.

    PubMed

    Musi, Barbara; Braide, Magnus; Carlsson, Ola; Wieslander, Anders; Albrektsson, Ann; Ketteler, Markus; Westenfeld, Ralf; Floege, Jürgen; Rippe, Bengt

    2004-01-01

    Long-term peritoneal dialysis (PD) leads to structural and functional changes in the peritoneum. The aim of the present study was to investigate the long-term effects of PD fluid components, glucose and glucose degradation products (GDP), and lactate-buffered solution on morphology and transport characteristics in a nonuremic rat model. Rats were subjected to two daily intraperitoneal injections (20 mL/day) during 12 weeks of one of the following: commercial PD fluid (Gambrosol, 4%; Gambro AB, Lund, Sweden), commercial PD fluid with low GDP levels (Gambrosol trio, 4%; Gambro AB), sterile-filtered PD fluid (4%) without GDP, or a glucose-free lactate-buffered PD fluid. Punctured and untreated controls were used. Following exposure, the rats underwent a single 4-hour PD dwell (30 mL, 4% glucose) to determine peritoneal function. Additionally, submesothelial tissue thickness, percentage of high mesothelial cells (perpendicular diameter > 2 microm), vascular density, vascular endothelial growth factor (VEGF), and transforming growth factor (TGF) beta1 mRNA expression were determined. Submesothelial collagen concentration was estimated by van Gieson staining. Submesothelial tissue thickness and vascular density, mediated by VEGF and TGFbeta production, in the diaphragmatic peritoneum increased significantly in rats exposed to any PD fluid. Gambrosol induced a marked increased fibrosis of the hepatic peritoneum. A significant increase in high mesothelial cells was observed in the Gambrosol group only. Net ultrafiltration was reduced in the Gambrosol and in the glucose-free groups compared to untreated controls. Small solute transport was unchanged, but all groups exposed to fluids showed significantly increased lymph flow. Our results show that long-term exposure to different components of PD fluids leads to mesothelial cell damage, submesothelial fibrosis, and neoangiogenesis. Mesothelial cell damage could be connected to the presence of GDP; the other changes were similar for all fluids. Peritoneal transport characteristics did not change in any consistent way and the neoangiogenesis observed was not paralleled by increased solute transport.

  15. Influence of maternal ingestion of Aroclor 1254[reg sign] (PCB) or FireMaster BP-6[reg sign] (PBB) on unstimulated and stimulated corticosterone levels in young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meserve, L.A.; Murray, B.A.; Landis, J.A.

    1992-05-01

    The organohalides polychlorinated biphenyl (PCB) and polybrominated biphenyl (PBB) remain troublesome environmental pollutants. For example, the percentage of the population in which PCB is detectable in adipose tissue remains high. These compounds are of particular interest to residents of the North Central United States, especially in regions surrounding the Great Lakes where contaminated fish may be a regular component of the diet. Additionally, PBB was mistakenly fed to cattle and chickens in Michigan during the early 1970s, products of which were ingested by humans. Among the physiological effects of ingestion of PCB or PBB is the depression of thyroid status,more » which has been reported in adult humans, in adult experimental animals, and in the offspring of these animals. In adult rats, circulating levels of thyroid hormones are inversely proportional to dose of PCB or PBB in the diet. On the other hand, reports of effects of these organohalides on adrenocortical function remain equivocal, describing both PCB- and PBB-induced depression, and absence of effect in rats and monkeys. Despite the possible consequences of maternal ingestion of PCB or PBB on future generations, little work has been done previously to determine whether consumption of these materials by pregnant and lactating animals confers hypothyroidism on their offspring, and/or influences other mechanisms of endocrine control in the young. Since early studies showed that hypothyroidism induced by feeding pregnant rats the goitrogen thiouracil altered the functional capabilities in their young of the hypothalamus-pituitary-adrenal (HPA) axis, as revealed by circulating corticosterone levels, the present study was done to determine whether ingestion of either PCB (Aroclor 1254[reg sign]) or PBB (FireMaster BP-6[reg sign]) by pregnant and lactating rats resulted in depressed thyroid status and/or modified HPA axis function in their 15 day old young. 19 refs., 1 fig., 1 tab.« less

  16. Does cross-fostering modify the prenatal effect of methamphetamine on learning of adult male rats?

    PubMed

    Hrubá, L; Schutová, B; Pometlová, M; Slamberová, R

    2009-01-01

    Our previous studies demonstrated that methamphetamine administered during gestation and lactation periods impairs maternal behavior, alters the functional development of rat pups and affects behavior in adulthood. The aim of our study was to investigate the effect of prenatal methamphetamine exposure and cross-fostering on learning tested in Morris water maze (MWM) in adult male rats. Mothers were daily exposed to injection of methamphetamine (MA) (5 mg/kg) or saline (S): prior to impregnation and throughout gestation and lactation periods. On postnatal day 1, pups were cross-fostered so that each mother received some of her own and some of the pups of mother with the opposite treatment. Based on the prenatal and postnatal treatments 4 experimental groups (S/S, S/MA, MA/S, MA/MA) were tested in MWM. Two types of tests were used: (1) "Place navigation test" (Learning) and (2) "Probe test" (Probe). In the test of learning, all animals fostered by methamphetamine-treated dams had longer latencies and trajectories, and bigger search error than the animals fostered by saline-treated control mother, regardless of prenatal exposure. Further, the animals prenatally exposed to methamphetamine swam slower than the animals prenatally exposed to saline, regardless of postnatal exposure in the test of learning and in the Probe test. Our results showed that neither prenatal nor postnatal methamphetamine exposure affected the Probe test. Our results showed that prenatal exposure to methamphetamine at dose of 5 mg/kg does not impair learning in the MWM, while postnatal exposure to methamphetamine from mothers' breastmilk and maternal care of mother exposed to methamphetamine impairs learning of adult male rats. On the other hand, the maternal care of control mothers does not impair learning of rat pups prenatally exposed to methamphetamine. The present study demonstrates that cross-fostering may affect learning in adulthood.

  17. Modulation of caspase-3 activity and Fas ligand mRNA expression in rat liver cells in vivo by alcohol and lipopolysaccharide.

    PubMed

    Deaciuc, I V; Fortunato, F; D'Souza, N B; Hill, D B; Schmidt, J; Lee, E Y; McClain, C J

    1999-02-01

    The purpose of this study was to determine if exacerbation of apoptosis precedes liver injury during chronic exposure of rats to alcohol. After 7 weeks of feeding an alcohol- or dextrin-containing liquid diet, the animals were treated with gram-negative bacterial lipopolysaccharide (1 mg x kg(-1) body weight, intravenously) or sterile saline and sacrificed 3 hr after the treatment. Alanine:2-oxoglutarate aminotransferase (ALT) and lactate:NAD oxidoreductase [lactate dehydrogenase (LDH)] were measured in plasma. The caudate lobe of the liver was resected for histology, while the rest of the organ was perfused with collagenase to isolate hepatocytes, Kupffer cells (KCs), and sinusoidal endothelial cells (SECs) by centrifugal elutriation. Hepatocyte mitochondria were isolated by differential centrifugation of the cell homogenate. Reduced and oxidized glutathione (GSH and GSSG) in isolated hepatocytes and hepatocyte mitochondria, and malondialdehyde in hepatocytes were assayed. Caspase-3 activity and Fas ligand mRNA expression were determined in hepatocytes, KCs, and SECs. Plasma ALT and LDH activity, liver histology, GSH, GSSG and their ratio, and malondialdehyde content were not affected by alcohol treatment Caspase-3 activity was significantly increased in alcohol-treated rats in all three cell types, with the lowest response observed in hepatocytes and the highest in KCs. Fas ligand mRNA expression, which had the highest level in SECs, followed by KCs and hepatocytes, was not affected by alcohol administration. Lipopolysaccharide had the following effects: an increase in ALT in both pair- and alcohol-fed rats, and LDH only in alcohol-fed rats, a decrease in GSH + GSSG levels in both mitochondria and hepatocytes, an elevation of malondialdehyde content in hepatocytes, a raise in caspase-3 activity in all groups and cell types, and an augmentation of Fas ligand expression in hepatocytes and KCs, but not in SECs. These data suggest that, during chronic alcohol consumption, an exacerbated apoptosis precedes alcohol-induced liver injury.

  18. Effects of a normolipidic diet containing trans fatty acids during perinatal period on the growth, hippocampus fatty acid profile, and memory of young rats according to sex.

    PubMed

    de Souza, Amanda Santos; Rocha, Mônica Santos; Tavares do Carmo, Maria das Graças

    2012-04-01

    To investigate whether dietary trans fatty acids (TFAs) are incorporated in the hippocampus and its effects on the growth and aversive and spatial memories of young rats. Wistar rat offspring whose mothers were fed with normolipidic diets containing soybean oil (soy group) or hydrogenated vegetable oil (trans group) during gestation and lactation were used. Male and female pups received the same diets as their mothers until the end of behavioral testing. The composition of fatty acids in the total lipids of the diets and hippocampus was quantified by gas chromatography. The results were evaluated by Student's t test or analysis of variance followed by the Bonferroni correction. The trans male and female body weights were higher during lactation and after weaning, with trans males having the lower body weight of the two. There was incorporation of 0.11% and 0.17% of TFAs in the hippocampi of male and female rats, respectively. During passive avoidance test, there was no significant difference. In the water maze test, there was no significant difference between male groups in the training and retention phases, except on day 4, when there was a significant decrease in latency in trans males. Trans females were worse on day 2 only and showed an improvement in spatial memory during the probe trial. The TFAs were incorporated in small amounts in the hippocampus and did not affect aversive memory. However, spatial memory was modified in young rats fed with a diet rich in TFAs. These findings suggested that, in addition to the TFA content of the diet provided, it is important to consider the provision of essential fatty acids and the ω-6/ω-3 ratio. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Gestational and Lactational Exposure to Ethinyl Estradiol, but not Bisphenol A, Decreases Androgen-Dependent Reproductive Organ Weights and Epididymal Sperm Abundance in the Male Long Evans Hooded Rat.

    EPA Science Inventory

    Many chemicals released into the environment are capable of disrupting normal sex steroid balance, including the oral contraceptive ethinyl estradiol (EE) and the plastic monomer bisphenol A (BPA). EE and BPA are reported to impair reproductive organ development in laboratory ani...

  20. AN ASSESSMENT OF THE EFFECTS OF GESTATIONAL AND LACTATIONAL EXPOSURE TO ETHINYL ESTRADIOL (EE) AND BISPHENOL A (BPA) ON REPRODUCTIVE MORPHOLOGY AND BEHAVIOR IN FEMALE AND MALE LONG EVANS HOODED RAT

    EPA Science Inventory

    Anthropogenic estrogens are pervasive in the environment. Although the effects of these 'xenoestrogens' are controversial in humans, some fish species are adversely affected in contaminated ecosystems. The current project focuses on the effects of developmental exposure to two ...

  1. In utero and lactational exposure to bisphenol A, in contrast to ethinyl estradiol, does not alter sexually dimorphic behavior, puberty, fertility, and anatomy of female LE rats.

    EPA Science Inventory

    Many chemicals released into the environment display estrogenic activity including the oral contraceptive ethinyl estradiol (EE2) and the plastic monomer bisphenol A (BPA). EE2 is present in some aquatic systems at concentrations sufficient to alter reproductive function of fishe...

  2. AN ASSESSMENT OF THE EFFECTS OF GESTATIONAL AND LACTATIONAL EXPOSURE TO ETHINYL ESTRADIOL (EE) AND BISPHENOL A (BPA) ON REPRODUCTIVE MORPHOLOGY AND BEHAVIOR IN THE FEMALE LONG EVANS HOODED RAT

    EPA Science Inventory

    Anthropogenic estrogens are pervasive in the environment. The effects of these 'xenoestrogens' are controversial in humans, although there is a clear indication that some fish species are adversely affected in contaminated ecosystems. The current project focuses on the effects ...

  3. A Two-Year Ecological Study of Norway Rats (Rattus norvegicus) in a Brazilian Urban Slum.

    PubMed

    Panti-May, Jesús A; Carvalho-Pereira, Ticiana S A; Serrano, Soledad; Pedra, Gabriel G; Taylor, Josh; Pertile, Arsinoê C; Minter, Amanda; Airam, Vladimir; Carvalho, Mayara; Júnior, Nivison N; Rodrigues, Gorete; Reis, Mitermayer G; Ko, Albert I; Childs, James E; Begon, Mike; Costa, Federico

    2016-01-01

    The Norway or brown rat (Rattus norvegicus) is among the most ubiquitous of rodents. However, the lack of studies describing Norway rat populations from tropical areas have limited our understanding regarding their demography and seasonal dynamics. In this study, we describe seasonal pattern in the abundance, reproductive parameters, and morphometrics of Norway rat populations in Salvador, Brazil. Rodents were trapped over four seasonal trapping periods (2013-2014) from three valleys. A total of 802 Norway rats were trapped over the course of the study over 7653 trap-nights. Norway rat abundance was high, but there was no significant differences between seasons. The reproductive parameters (e.g. frequency of pregnant and lactating females) did not show statistical differences between seasons. Female rats collected in the rainy season were heavier and older than females from the dry season. Salvador rats had a high incidence of pregnancy and birth rate (estimated birth rate of 79 young per year) compared to previous studies. The information generated is critical for the understanding of the ecology of Norway rat, the main reservoir of Leptospira in Salvador. However, future studies examining the effect of rodent control programs aimed at reducing populations, and determining rates of recovery, will further clarify our understanding of population dynamics.

  4. A Two-Year Ecological Study of Norway Rats (Rattus norvegicus) in a Brazilian Urban Slum

    PubMed Central

    Panti-May, Jesús A.; Carvalho-Pereira, Ticiana S. A.; Serrano, Soledad; Pedra, Gabriel G.; Taylor, Josh; Pertile, Arsinoê C.; Minter, Amanda; Airam, Vladimir; Carvalho, Mayara; Júnior, Nivison N.; Rodrigues, Gorete; Reis, Mitermayer G.; Ko, Albert I.; Childs, James E.; Begon, Mike; Costa, Federico

    2016-01-01

    The Norway or brown rat (Rattus norvegicus) is among the most ubiquitous of rodents. However, the lack of studies describing Norway rat populations from tropical areas have limited our understanding regarding their demography and seasonal dynamics. In this study, we describe seasonal pattern in the abundance, reproductive parameters, and morphometrics of Norway rat populations in Salvador, Brazil. Rodents were trapped over four seasonal trapping periods (2013–2014) from three valleys. A total of 802 Norway rats were trapped over the course of the study over 7653 trap-nights. Norway rat abundance was high, but there was no significant differences between seasons. The reproductive parameters (e.g. frequency of pregnant and lactating females) did not show statistical differences between seasons. Female rats collected in the rainy season were heavier and older than females from the dry season. Salvador rats had a high incidence of pregnancy and birth rate (estimated birth rate of 79 young per year) compared to previous studies. The information generated is critical for the understanding of the ecology of Norway rat, the main reservoir of Leptospira in Salvador. However, future studies examining the effect of rodent control programs aimed at reducing populations, and determining rates of recovery, will further clarify our understanding of population dynamics. PMID:27015422

  5. N-acetylcysteine reduces the renal oxidative stress and apoptosis induced by hemorrhagic shock.

    PubMed

    Moreira, Miriam Aparecida; Irigoyen, Maria Claudia; Saad, Karen Ruggeri; Saad, Paulo Fernandes; Koike, Marcia Kiyomi; Montero, Edna Frasson de Souza; Martins, José Luiz

    2016-06-01

    Renal ischemia/reperfusion injury induced by hemorrhagic shock (HS) and subsequent fluid resuscitation is a common cause of acute renal failure. The objective of this study was to evaluate the effect of combining N-acetylcysteine (NAC) with fluid resuscitation on renal injury in rats that underwent HS. Two groups of male Wistar rats were induced to controlled HS at 35 mm Hg mean arterial pressure for 60 min. After this period, the HS and fluid resuscitation (HS/R) group was resuscitated with lactate containing 50% of the blood that was withdrawn. The HS/R + NAC group was resuscitated with Ringer's lactate combined with 150 mg/kg of NAC and blood. The sham group animals were catheterized but were not subjected to shock. All animals were kept under anesthesia and euthanized after 120 min of fluid resuscitation or observation. Animals treated with NAC presented attenuation of histologic lesions, reduced oxidative stress, and apoptosis markers when compared with animals from the HS/R group. The serum creatinine was similar in all the groups. NAC is a promising drug for combining with fluid resuscitation to attenuate the kidney injury associated with HS. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model

    PubMed Central

    Kuai, Qiyuan; Wang, Chunyan; Wang, Yanbing; Li, Weijing; Zhang, Gongqing; Qiao, Zhixin; He, Min; Wang, Xuanlin; Wang, Yu; Jiang, Xingwei; Su, Lihua; He, Yuezhong; Ren, Suping; Yu, Qun

    2016-01-01

    A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting. PMID:27910887

  7. Resveratrol Intake During Pregnancy and Lactation Modulates the Early Metabolic Effects of Maternal Nutrition Differently in Male and Female Offspring.

    PubMed

    Ros, Purificación; Díaz, Francisca; Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Barrios, Vicente; Argente, Jesús; Chowen, Julie A

    2018-02-01

    Poor maternal nutrition can have detrimental long-term consequences on energy homeostasis in the offspring. Resveratrol exerts antioxidant and antiobesity actions, but its impact during development remains largely unknown. We hypothesized that resveratrol intake during pregnancy and lactation could improve the effects of poor maternal nutrition on offspring metabolism. Wistar rats received a low-fat diet (LFD; 10.2% kcal from fat) or high-fat diet (HFD; 61.6% kcal from fat), with half of each group receiving resveratrol in their drinking water (50 mg/L) during pregnancy and lactation. Body weight (BW) of dams was measured at treatment onset and weaning [postnatal day (PND) 21] and of pups at birth and PND21, at which time dams and pups were euthanized. Although HFD dams consumed more energy, their BW at the end of lactation was unaffected. Mean litter size was not modified by maternal diet or resveratrol. At birth, male offspring from HFD and resveratrol (HFD + R) dams weighed less than those from LFD and resveratrol (LFD + R) dams. On PND21, pups of both sexes from HFD dams weighed more, had more visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT), and had higher serum leptin levels than those from LFD dams. Resveratrol reduced BW, leptin, VAT, and SCAT, with females being more affected, but increased glycemia. Neuropeptide levels were unaffected by resveratrol. In conclusion, resveratrol intake during pregnancy and lactation decreased BW and adipose tissue content in offspring of dams on an HFD but did not affect offspring from LFD-fed dams, suggesting that the potential protective effects of resveratrol during gestation/lactation are diet dependent. Copyright © 2018 Endocrine Society.

  8. In utero and lactational exposure to low-dose genistein-vinclozolin mixture affects the development and growth factor mRNA expression of the submandibular salivary gland in immature female rats.

    PubMed

    Kouidhi, Wided; Desmetz, Catherine; Nahdi, Afef; Bergès, Raymond; Cravedi, Jean-Pierre; Auger, Jacques; El May, Michèle; Canivenc-Lavier, Marie Chantal

    2012-06-01

    It has been suggested that hormonally controlled submandibular salivary gland (SSG) development and secretions may be affected by endocrine disruptor compounds. We investigated the effects of oral gestation-lactation exposure to 1 mg/kg body weight daily dose of the estrogenic soy-isoflavone genistein and/or the anti-androgenic food contaminant vinclozolin in female rats. The SSGs of female offspring were collected at postnatal day 35 to study gland morphogenesis and mRNA expression of sex-hormone receptors and endocrine growth factors as sex-dependent biomarkers. Because of high expression in neonatal SSG, mRNA expression of transforming growth factor α was also studied. Exposure to genistein, vinclozolin, or a genistein+vinclozolin mixture resulted in significantly lower numbers of striated ducts linked to an increase in their area and lower acinar proliferation (Ki-67-positive nuclei). Exposure to the mixture had the highest significant effects, which were particularly associated with repression of epidermal growth factor, nerve growth factor, and transforming growth factor α expression. In conclusion, early exposure to low doses of genistein and vinclozolin can affect glandular structure and endocrine gene mRNA expression in prepubertal SSG in female rats, and the effects are potentialized by the genistein+vinclozolin mixture. Our study provides the first evidence that SSG are targeted by both estrogenic and anti-androgenic disrupting compounds and are more sensitive to mixtures.

  9. A selective, non-peptide CRF receptor 1 antagonist prevents sodium lactate-induced acute panic-like responses.

    PubMed

    Shekhar, Anantha; Johnson, Philip L; Fitz, Stephanie D; Nakazato, Atsuro; Chaki, Shigeyuki; Steckler, Thomas; Schmidt, Mark

    2011-04-01

    Corticotropin releasing factor (CRF) is implicated in a variety of stress-related disorders such as depression and anxiety, and blocking CRF receptors is a putative strategy for treating such disorders. Using a well-studied animal model of panic, we tested the efficacy of JNJ19567470/CRA5626, a selective, non-peptidergic CRF type 1 receptor (CRF1) antagonist (3, 10 and 40 mg/kg intraperitoneal injection), in preventing the sodium lactate (NaLac)-induced panic-like behavioural and cardiovascular responses. Adult male rats with chronic reduction of GABA levels (by inhibition of GABA synthesis with l-allyglycine, a glutamic acid decarboxylase inhibitor) in the dorsomedial/perifornical hypothalamus are highly anxious and exhibit physiological and behavioural responses to intravenous NaLac infusions similar to patients with panic disorder. These 'panic-prone' rats pre-treated with vehicle injections displayed NaLac-induced increases in autonomic responses (i.e. tachycardia and hypertensive responses), anxiety-like behaviour in the social interaction test, and flight-like increases in locomotor activity. However, systemically injecting such panic-prone rats with the highest dose of CRF1 receptor antagonist prior to NaLac infusions blocked all NaLac-induced behaviour and cardiovascular responses. These data suggest that selective CRF1 receptor antagonists could be a novel target for developing anti-panic drugs that are as effective as benzodiazepines in acute treatment of a panic attack without the deleterious side-effects (e.g. sedation and cognitive impairment) associated with benzodiazepines.

  10. ATLS Hypovolemic Shock Classification by Prediction of Blood Loss in Rats Using Regression Models.

    PubMed

    Choi, Soo Beom; Choi, Joon Yul; Park, Jee Soo; Kim, Deok Won

    2016-07-01

    In our previous study, our input data set consisted of 78 rats, the blood loss in percent as a dependent variable, and 11 independent variables (heart rate, systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, respiration rate, temperature, perfusion index, lactate concentration, shock index, and new index (lactate concentration/perfusion)). The machine learning methods for multicategory classification were applied to a rat model in acute hemorrhage to predict the four Advanced Trauma Life Support (ATLS) hypovolemic shock classes for triage in our previous study. However, multicategory classification is much more difficult and complicated than binary classification. We introduce a simple approach for classifying ATLS hypovolaemic shock class by predicting blood loss in percent using support vector regression and multivariate linear regression (MLR). We also compared the performance of the classification models using absolute and relative vital signs. The accuracies of support vector regression and MLR models with relative values by predicting blood loss in percent were 88.5% and 84.6%, respectively. These were better than the best accuracy of 80.8% of the direct multicategory classification using the support vector machine one-versus-one model in our previous study for the same validation data set. Moreover, the simple MLR models with both absolute and relative values could provide possibility of the future clinical decision support system for ATLS classification. The perfusion index and new index were more appropriate with relative changes than absolute values.

  11. Intralipid minimizes hepatocytes injury after anoxia-reoxygenation in an ex vivo rat liver model.

    PubMed

    Stadler, Michaela; Nuyens, Vincent; Boogaerts, Jean G

    2007-01-01

    Ischemia-reperfusion injury is a determinant in liver injury occurring during surgical procedures, ischemic states, and multiple organ failure. The pre-existing nutritional status of the liver, i.e., fasting, might contribute to the extent of tissue injury. This study investigated whether Intralipid, a solution containing soybean oil, egg phospholipids, and glycerol, could protect ex vivo perfused livers of fasting rats from anoxia-reoxygenation injury. The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Isolated livers were perfused with glucose 5.5 and 15 mM, and two different concentrations of Intralipid, i.e., 0.5:100 and 1:100 (v/v) Intralipid 10%:medium (n = 5 in each group). The experiment consisted of perfusion for 15 min, warm anoxia for 60 min, and reoxygenation during 60 min. Hepatic enzymes, potassium, glucose, lactate, bilirubin, dienes, trienes, and cytochrome-c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in biopsies. Intralipid attenuated transaminases, lactate dehydrogenase, potassium, diene, and triene release in the perfusate (dose-dependant) during the reoxygenation phase when compared with glucose-treated groups. The concentration of cytochrome-c in the medium was the highest in the 5.5-mM glucose group. The glycogen content was low in all livers at the start of the experiment. Intralipid presents, under the present experimental conditions, a better protective effect than glucose in anoxia-reoxygenation injury of the rat liver.

  12. Effects of olsalazine in the jejunum of the rat.

    PubMed Central

    Mohsen, A Q; Mulvey, D; Priddle, J D; Parsons, D S; Jewell, D P

    1987-01-01

    Olsalazine (ADS) is the azo-linked dimer of 5-aminosalicylic acid (5-ASA). It is of value for the management of patients with ulcerative colitis but may be associated with increasing diarrhoea in a few. This study examines the effect of 5-ASA and ADS on small intestinal transport systems of the rat. Krebs-Ringer-bicarbonate solution was circulated through the lumen of a jejunal segment and the appearance of fluid, glucose and lactate on the serosal surface was shown to be linear over a two hour period. Addition of 5-ASA (10 mmol/l) or ADS (5 mmol/l and 10 mmol/l) caused a significant inhibition both of fluid transport (p less than 0.001), and of the appearance of glucose (p less than 0.001) and lactate (p less than 0.001 for 5 mmol/l and 10 mmol/l ADS, p less than 0.01 for 10 mmol/l 5-ASA). The uptake of glucose by rings of rat jejunum was shown to be markedly reduced by ADS. Experiments substituting glucose with either sucrose of 2-aminoisobutyric acid showed that ADS (5 mmol/l, 10 mmol/l) also inhibited the serosal appearance of fructose and the amino acid. These results show that 5-ASA and ADS, at concentrations which could be expected in the jejunum of patients receiving therapeutic doses, are able to inhibit small intestinal transport systems. The resulting increase in load on the diseased colon could be important for the pathogenesis of diarrhoea. PMID:3570038

  13. Hypoxic preconditioning facilitates acclimatization to hypobaric hypoxia in rat heart.

    PubMed

    Singh, Mrinalini; Shukla, Dhananjay; Thomas, Pauline; Saxena, Saurabh; Bansal, Anju

    2010-12-01

    Acute systemic hypoxia induces delayed cardioprotection against ischaemia-reperfusion injury in the heart. As cobalt chloride (CoCl₂) is known to elicit hypoxia-like responses, it was hypothesized that this chemical would mimic the preconditioning effect and facilitate acclimatization to hypobaric hypoxia in rat heart. Male Sprague-Dawley rats treated with distilled water or cobalt chloride (12.5 mg Co/kg for 7 days) were exposed to simulated altitude at 7622 m for different time periods (1, 2, 3 and 5 days). Hypoxic preconditioning with cobalt appreciably attenuated hypobaric hypoxia-induced oxidative damage as observed by a decrease in free radical (reactive oxygen species) generation, oxidation of lipids and proteins. Interestingly, the observed effect was due to increased expression of the antioxidant proteins hemeoxygenase and metallothionein, as no significant change was observed in antioxidant enzyme activity. Hypoxic preconditioning with cobalt increased hypoxia-inducible factor 1α (HIF-1α) expression as well as HIF-1 DNA binding activity, which further resulted in increased expression of HIF-1 regulated genes such as erythropoietin, vascular endothelial growth factor and glucose transporter. A significant decrease was observed in lactate dehydrogenase activity and lactate levels in the heart of preconditioned animals compared with non-preconditioned animals exposed to hypoxia. The results showed that hypoxic preconditioning with cobalt induces acclimatization by up-regulation of hemeoxygenase 1 and metallothionein 1 via HIF-1 stabilization. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society of Great Britain.

  14. Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study.

    PubMed

    Shijo, Katsunori; Sutton, Richard L; Ghavim, Sima S; Harris, Neil G; Bartnik-Olson, Brenda L

    2017-01-01

    Administration of sodium pyruvate (SP; 9.08 μmol/kg, i.p.), ethyl pyruvate (EP; 0.34 μmol/kg, i.p.) or glucose (GLC; 11.1 μmol/kg, i.p.) to rats after unilateral controlled cortical impact (CCI) injury has been reported to reduce neuronal loss and improve cerebral metabolism. In the present study these doses of each fuel or 8% saline (SAL; 5.47 nmoles/kg) were administered immediately and at 1, 3, 6 and 23 h post-CCI. At 24 h all CCI groups and non-treated Sham injury controls were infused with [1,2 13 C] glucose for 68 min 13 C nuclear magnetic resonance (NMR) spectra were obtained from cortex + hippocampus tissues from left (injured) and right (contralateral) hemispheres. All three fuels increased lactate labeling to a similar degree in the injured hemisphere. The amount of lactate labeled via the pentose phosphate and pyruvate recycling (PPP + PR) pathway increased in CCI-SAL and was not improved by SP, EP, and GLC treatments. Oxidative metabolism, as assessed by glutamate labeling, was reduced in CCI-SAL animals. The greatest improvement in oxidative metabolism was observed in animals treated with SP and fewer improvements after EP or GLC treatments. Compared to SAL, all three fuels restored glutamate and glutamine labeling via pyruvate carboxylase (PC), suggesting improved astrocyte metabolism following fuel treatment. Only SP treatments restored the amount of [4 13 C] glutamate labeled by the PPP + PR pathway to sham levels. Milder injury effects in the contralateral hemisphere appear normalized by either SP or EP treatments, as increases in the total pool of 13 C lactate and labeling of lactate in glycolysis, or decreases in the ratio of PC/PDH labeling of glutamine, were found only for CCI-SAL and CCI-GLC groups compared to Sham. The doses of SP, EP and GLC examined in this study all enhanced lactate labeling and restored astrocyte-specific PC activity but differentially affected neuronal metabolism after CCI injury. The restoration of astrocyte metabolism by all three fuel treatments may partially underlie their abilities to improve cerebral glucose utilization and to reduce neuronal loss following CCI injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study

    PubMed Central

    Shijo, Katsunori; Sutton, Richard L.; Ghavim, Sima S.; Harris, Neil G.; Bartnik-Olson, Brenda L.

    2016-01-01

    Administration of sodium pyruvate (SP; 9.08 μmol/kg, i.p.), ethyl pyruvate (EP; 0.34 μmol/kg, i.p.) or glucose (GLC; 11.1 μmol/kg, i.p.) to rats after unilateral controlled cortical impact (CCI) injury has been reported to reduce neuronal loss and improve cerebral metabolism. In the present study these doses of each fuel or 8% saline (SAL; 5.47 nmoles/kg) were administered immediately and at 1, 3, 6 and 23 h post-CCI. At 24 h all CCI groups and non-treated Sham injury controls were infused with [1,2 13C] glucose for 68 min 13C nuclear magnetic resonance (NMR) spectra were obtained from cortex + hippocampus tissues from left (injured) and right (contralateral) hemispheres. All three fuels increased lactate labeling to a similar degree in the injured hemisphere. The amount of lactate labeled via the pentose phosphate and pyruvate recycling (PPP + PR) pathway increased in CCI-SAL and was not improved by SP, EP, and GLC treatments. Oxidative metabolism, as assessed by glutamate labeling, was reduced in CCI-SAL animals. The greatest improvement in oxidative metabolism was observed in animals treated with SP and fewer improvements after EP or GLC treatments. Compared to SAL, all three fuels restored glutamate and glutamine labeling via pyruvate carboxylase (PC), suggesting improved astrocyte metabolism following fuel treatment. Only SP treatments restored the amount of [4 13C] glutamate labeled by the PPP + PR pathway to sham levels. Milder injury effects in the contralateral hemisphere appear normalized by either SP or EP treatments, as increases in the total pool of 13C lactate and labeling of lactate in glycolysis, or decreases in the ratio of PC/PDH labeling of glutamine, were found only for CCI-SAL and CCI-GLC groups compared to Sham. The doses of SP, EP and GLC examined in this study all enhanced lactate labeling and restored astrocyte-specific PC activity but differentially affected neuronal metabolism after CCI injury. The restoration of astrocyte metabolism by all three fuel treatments may partially underlie their abilities to improve cerebral glucose utilization and to reduce neuronal loss following CCI injury. PMID:27919624

  16. Effect of dietary proteins on zinc bioavailability in pregnant rats.

    PubMed

    Uenishi, K; Horio, H; Manabe, S; Sakamoto, S

    1993-12-01

    In order to clarify the effects of dietary proteins on zinc bioavailability during pregnancy, two experiments were carried out. In Experiment 1, changes in zinc retention due to pregnancy (difference in retention between pregnant and nonpregnant animals) during early-mid and late pregnancy were examined in rats fed 10 and 20% egg white diets. Total amounts of retained zinc due to pregnancy were about 1000 micrograms or slightly more, equal to the zinc content in the products of conception at term. However, extra zinc retention during late pregnancy ranged between only 20 to 40% of overall retention, suggesting that almost all zinc retained during early-mid pregnancy moved from the mothers to the fetuses near term. Zinc retention in early-mid and late periods of pregnancy was higher in pregnant than nonpregnant rats, due mainly to increases in intake and bioavailability. In Experiment 2, to examine the effects of quality and quantity of dietary proteins, pregnant rats were fed either 10 or 20% egg white (EW), whole egg (WE), casein (C) and soy protein isolate with or without methionine (SM and S, respectively) diets. Total zinc retention during pregnancy was affected by both zinc and nitrogen intakes, though the former effect was greater than the latter. Because rats fed the EW diets retained dietary zinc efficiently, a relationship between zinc retention (Y, microgram/100 g BW/21 d.) and zinc intake (X, microgram/100 g BW/21 d.) was also examined in the non-EW protein groups, resulting in the following regression equation: Y = 0.471X-1790 (n: 51, r = 0.81, p < 0.001). Dietary protein quality affected the food intake resulting in different zinc intake and retention during pregnancy. Zinc from EW diets was more available than from the other four protein diets, because similar plots for rats fed the 10 and 20% EW diets fell above this line. Reasons for efficient bioavailability of zinc in EW were discussed in connection with the forms of zinc in diets and the pancreatic or intestinal responses to ingested EW.

  17. Blood Selenium Associated with Health and Fertility in Norwegian Dairy Herds

    PubMed Central

    Kommisrud, E; Østerås, O; Vatn, T

    2005-01-01

    A survey of blood selenium (Se) concentrations in Norwegian Red heifers and dry period cows was conducted to reveal possible association to management, feeding, health and fertility. Selenium contents were determined in 254 herd blood samples consisting of pooled samples from individual non-lactating animals from herds in 5 counties. The Se concentrations showed a normal distribution with mean 0.09 μg Se/g blood, with a standard deviation (SD) of 0.05, and ranged from 0.02 to 0.23 μg/g, with 50 % of the samples being between 0.06 and 0.11 μg/g. The herds with Se concentrations below 0.06 μg/g were smaller (21.4 ± 8.7 cow-years) than those with Se levels above 0.11 μg/g (27.5 ± 14.1 cow-years) (P < 0.01), but there were no differences in milk yield, incidence of replacement, proportion of animal culling, amount of concentrate or grass silage as percentage of energy consumption between the groups. Treatment registration records showed a tendency that more animals in the low Se herds were treated for all the diseases included in this investigation (64.8 animals per 100 cow-years) than those in the high Se herds (57.5 per 100 cow-years), while no such differences were revealed for individual disorders. There was, however, a significant difference in bulk milk somatic cell counts (BMSCC) between low and high Se herds, their values being 137 000 and 155 000 cells/ml, respectively. This difference was significantly influenced by herd size. Furthermore, a total of 4 916 lactations were analyzed from individual health and fertility recordings, including 2 934 first lactations and 1 982 later lactations. The present study revealed a reduced incidence of disease treatment with increased Se concentrations from 0.02 to 0.23 μg Se/g blood. In this regard, there seemed to be an optimum of 0.10 to 0.15 μg Se/g for all types of mastitis treatments summarized, and for treatment of retained placenta. Thus, herd Se concentrations below and above these values was connected with increased probability for sum mastitis and retained placenta, reflecting the effect of the quadratic term of Se. The cow (composite) milk somatic cell count (SCC) was lower in lactations from low Se herds than in high Se herds with a marked SCC increase in the Se concentration interval from 0.11–0.13 μg/g blood. In conclusion, heifers and dry period cows in Norway are low in blood Se content and there seems to be a positive association between increased blood Se concentration pre partum and decreased incidence of mastitis, ovarian cysts and anoestrus/silent oestrus post partum. PMID:16398334

  18. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats.

    PubMed

    Sundaram, Ramalingam; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2014-05-15

    The present study was designed to evaluate the antihyperglycemic potential of tangeretin on the activities of key enzymes of carbohydrate and glycogen metabolism in control and streptozotocin induced diabetic rats. The daily oral administration of tangeretin (100mg/kg body weight) to diabetic rats for 30 days resulted in a significant reduction in the levels of plasma glucose, glycosylated hemoglobin (HbA1c) and increase in the levels of insulin and hemoglobin. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, lactate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in liver of diabetic rats were significantly reverted to near normal levels by the administration of tangeretin. Further, tangeretin administration to diabetic rats improved hepatic glycogen content suggesting the antihyperglycemic potential of tangeretin in diabetic rats. The effect produced by tangeretin on various parameters was comparable to that of glibenclamide - a standard oral hypoglycemic drug. Thus, these results show that tangeretin modulates the activities of hepatic enzymes via enhanced secretion of insulin and decreases the blood glucose in streptozotocin induced diabetic rats by its antioxidant potential. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Further Studies on Antioxidant Potential and Protection of Pancreatic β-Cells by Embelia ribes in Experimental Diabetes

    PubMed Central

    Bhandari, Uma; Jain, Neeti; Pillai, K. K.

    2007-01-01

    This study was designed to examine the antioxidant defense by ethanolic extract of Embelia ribes on streptozotocin-(40 mg/kg, intravenously, single-injection) induced diabetes in Wistar rats. Forty days of oral feeding the extract (100 mg/kg and 200 mg/kg) to diabetic rats resulted in significant (P < .01) decrease in blood glucose, blood glycosylated haemoglobin, serum lactate dehydrogenase, creatine kinase, and increase in blood glutathione levels as compared to pathogenic diabetic rats. Further, the extract also significantly (P < .01) decreased the pancreatic thiobarbituric acid-reactive substances (TBARS) levels and significantly (P < .01) increased the superoxide dismutase, catalase, and glutathione levels as compared to above levels in pancreatic tissue of pathogenic diabetic rats. The islets were shrunken in diabetic rats in comparison to normal rats. In the drug-treated diabetic rats, there was expansion of islets. The results of test drug were comparable to gliclazide (25 mg/kg, daily), a standard antihyperglycemic agent. The study concludes that Embelia ribes enhances the antioxidant defense against reactive oxygen species produced under hyperglycemic condition and this protects β-cells against loss, and exhibit antidiabetic property. PMID:17641739

  20. Association between gravitational force and tissue metabolism in periparturient rats

    NASA Technical Reports Server (NTRS)

    Zakrzewska, E. I.; Maple, R.; Lintault, L.; Wade, C.; Baer, L.; Ronca, A.; Plaut, K.

    2004-01-01

    Recently, interest in mammalian reproduction and offspring survival in altered gravity has been growing. Because successful lactation is critical for mammalian neonate survival, we have been studying the effect of gravity metabolism. We have shown an exponential relationship between glucose metabolic rate in mammary tissue of periparturient rats and an increase in gravity load. In this study we showed that changes in mammary metabolic rate due to gravity force were accompanied by a decrease in glucose metabolism in adipose tissue and by a reduced size of adipocytes. We assume that these changes are likely due to changes in prolactin or leptin levels related to altered gravity load.

Top