Sample records for lactic acid starter

  1. Modeling Lactic Fermentation of Gowé Using Lactobacillus Starter Culture.

    PubMed

    de J C Munanga, Bettencourt; Loiseau, Gérard; Grabulos, Joël; Mestres, Christian

    2016-12-01

    A global model of the lactic fermentation step of gowé was developed by assembling blocks hosting models for bacterial growth, lactic acid production, and the drop of pH during fermentation. Commercial strains of Lactobacillus brevis and of Lactobacillus plantarum were used; their growth was modeled using Rosso's primary model and the gamma concept as a secondary model. The optimum values of pH and temperature were 8.3 ± 0.3, 44.6 ± 1.2 °C and 8.3 ± 0.3, 3.2 ± 37.1 °C with μ max values of 1.8 ± 0.2 and 1.4 ± 0.1 for L. brevis and L. plantarum respectively. The minimum inhibitory concentration of undissociated lactic acid was 23.7 mM and 35.6 mM for L. brevis and L. plantarum , respectively. The yield of lactic acid was five times higher for L. plantarum than for L. brevis , with a yield of glucose conversion to lactic acid close to 2.0 for the former and 0.8 for the latter. A model was developed to predict the pH drop during gowé fermentation. The global model was partially validated during manufacturing of gowé. The global model could be a tool to aid in the choice of suitable starters and to determine the conditions for the use of the starter.

  2. Exploitation of vegetables and fruits through lactic acid fermentation.

    PubMed

    Di Cagno, Raffaella; Coda, Rossana; De Angelis, Maria; Gobbetti, Marco

    2013-02-01

    Lactic acid fermentation represents the easiest and the most suitable way for increasing the daily consumption of fresh-like vegetables and fruits. Literature data are accumulating, and this review aims at describing the main features of the lactic acid bacteria to be used for fermentation. Lactic acid bacteria are a small part of the autochthonous microbiota of vegetables and fruits. The diversity of the microbiota markedly depends on the intrinsic and extrinsic parameters of the plant matrix. Notwithstanding the reliable value of the spontaneous fermentation to stabilize and preserve raw vegetables and fruits, a number of factors are in favour of using selected starters. Two main options may be pursued for the controlled lactic acid fermentation of vegetables and fruits: the use of commercial/allochthonous and the use of autochthonous starters. Several evidences were described in favour of the use of selected autochthonous starters, which are tailored for the specific plant matrix. Pro-technological, sensory and nutritional criteria for selecting starters were reported as well as several functional properties, which were recently ascribed to autochthonous lactic acid bacteria. The main features of the protocols used for the manufacture of traditional, emerging and innovative fermented vegetables and fruits were reviewed. Tailored lactic acid bacteria starters completely exploit the potential of vegetables and fruits, which enhances the hygiene, sensory, nutritional and shelf life properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Modeling Lactic Fermentation of Gowé Using Lactobacillus Starter Culture

    PubMed Central

    de J. C. Munanga, Bettencourt; Loiseau, Gérard; Grabulos, Joël; Mestres, Christian

    2016-01-01

    A global model of the lactic fermentation step of gowé was developed by assembling blocks hosting models for bacterial growth, lactic acid production, and the drop of pH during fermentation. Commercial strains of Lactobacillus brevis and of Lactobacillus plantarum were used; their growth was modeled using Rosso’s primary model and the gamma concept as a secondary model. The optimum values of pH and temperature were 8.3 ± 0.3, 44.6 ± 1.2 °C and 8.3 ± 0.3, 3.2 ± 37.1 °C with μmax values of 1.8 ± 0.2 and 1.4 ± 0.1 for L. brevis and L. plantarum respectively. The minimum inhibitory concentration of undissociated lactic acid was 23.7 mM and 35.6 mM for L. brevis and L. plantarum, respectively. The yield of lactic acid was five times higher for L. plantarum than for L. brevis, with a yield of glucose conversion to lactic acid close to 2.0 for the former and 0.8 for the latter. A model was developed to predict the pH drop during gowé fermentation. The global model was partially validated during manufacturing of gowé. The global model could be a tool to aid in the choice of suitable starters and to determine the conditions for the use of the starter. PMID:27916901

  4. The role of lactic acid bacteria (Lactobacillus sp yel133) from beef in inhibiting of microbial contaminants on various fillers of starter culture

    NASA Astrophysics Data System (ADS)

    Yunilas; Mirwandhono, E.

    2018-02-01

    The role of Lactic Acid Bacteria (LAB) on the starter culture can be seen from the ability to grow and suppress the growth of microbial contaminants (fungi). The research aimed to investigate the role of LAB (Lactobacillus sp YEL133) in inhibiting microbial contaminants (fungi) on starter cultures of various fillers. The materials used in this research was Lactobacillus sp YEL133 from beef and various fillers (rice flour, corn starch and wheat flour). The research methods used completely randomized design (CRD) with 3 treatments and 4 replications. The treatments of this research was P1(rice flour), P2 (corn starch) and P3 (wheat flour) that inoculated with Lactobacillus sp YEL133. Parameters which is observed such as: growth of lactic acid bacteria, total microbes and total fungi as microbial contaminants. The results showed that the starter culture with a filler material of rice flour produce lactic acid bacteria and microbes were highly significant (P <0.01) for corn starch and wheat flour, as well as able to suppress the growth of microbial contaminants (fungi). The conclusion of the research is the use Lactobacillus sp YEL133 can suppress the growth of fungi on the starter culture using rice flour.

  5. Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages.

    PubMed

    Rubio, Raquel; Jofré, Anna; Martín, Belén; Aymerich, Teresa; Garriga, Margarita

    2014-04-01

    A total of 109 lactic acid bacteria isolated from infant faeces were identified by partial 16S rRNA, cpn60 and/or pheS sequencing. Lactobacillus was the most prevalent genus, representing 48% of the isolates followed by Enterococcus (38%). Lactobacillus gasseri (21%) and Enterococcus faecalis (38%) were the main species detected. A further selection of potential probiotic starter cultures for fermented sausages focused on Lactobacillus as the most technologically relevant genus in this type of product. Lactobacilli strains were evaluated for their ability to grow in vitro in the processing conditions of fermented sausages and for their functional and safety properties, including antagonistic activity against foodborne pathogens, survival from gastrointestinal tract conditions (acidity, bile and pancreatin), tyramine production, antibiotic susceptibility and aggregation capacity. The best strains according to the results obtained were Lactobacillus casei/paracasei CTC1677, L. casei/paracasei CTC1678, Lactobacillus rhamnosus CTC1679, L. gasseri CTC1700, L. gasseri CTC1704, Lactobacillus fermentum CTC1693. Those strains were further assayed as starter cultures in model sausages. L. casei/paracasei CTC1677, L. casei/paracasei CTC1678 and L. rhamnosus CTC1679 were able to lead the fermentation and dominate (levels ca. 10(8) CFU/g) the endogenous lactic acid bacteria, confirming their suitability as probiotic starter cultures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters.

    PubMed

    Siragusa, Sonya; Di Cagno, Raffaella; Ercolini, Danilo; Minervini, Fabio; Gobbetti, Marco; De Angelis, Maria

    2009-02-01

    The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g(-1). Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation.

  7. Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation.

    PubMed

    Mamhoud, Asma; Nionelli, Luana; Bouzaine, Taroub; Hamdi, Moktar; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2016-05-16

    Wheat bread is the most popular staple food consumed in Tunisia and, despite the niche production of some typical breads (e.g. Tabouna, Mlawi, Mtabga), the major part is currently produced with baker's yeast at industrial or, mainly, at artisanal level, while the use of sourdough fermentation is rarely reported. Considering the growing national demand for cereal baked goods, it can be hypothesized that sourdough fermentation through the use of selected lactic acid bacteria as starters could improve the overall quality and the diversification of local products. Different cereal grains were collected from the regions of Ariana, Bizerta, Beja Nabeul, and Seliana, and the autochthonous lactic acid bacteria were isolated, identified, characterized and selected on the basis of the kinetics of acidification, the proteolytic activity, and the quotient of fermentation. Lactobacillus curvatus MA2, Pediococcus pentosaceus OA2, and Pediococcus acidilactici O1A1 were used together as mixed starter to obtain a selected sourdough. According to the backslopping procedure, a type I sourdough was made from a Tunisian flour (spontaneous sourdough). Compared to the use of the spontaneous sourdough, the one obtained with selected and mixed starters by a unique fermentation step, favored the increase of the concentrations of organic acids, phenols, and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities, that increased ca. 20% compared to the control. Moreover, the selected starters improved the in vitro protein digestibility (ca. 82% when selected sourdough was used), textural and sensory features of the breads, as determined by textural profile analysis and panel test, respectively. This study aimed at exploiting the potential of selected autochthonous lactic acid bacteria and extending the use of a sourdough (type II), thanks to the set-up of a two-step fermentation protocol designed for application at the

  8. Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage.

    PubMed

    Fonseca, F; Béal, C; Corrieu, G

    2000-02-01

    We have developed a method to quantify the resistance to freezing and frozen storage of lactic acid starters, based on measuring the time necessary to reach the maximum acidification rate in milk (tm) using the Cinac system. Depending on the operating conditions, tm increased during the freezing step and storage. The loss of acidification activity during freezing was quantified by the difference (delta tm) between the tm values of the concentrated cell suspension before and after freezing. During storage at -20 degrees C, linear relationships between tm and the storage time were established. Their slope, k, allowed the quantitation of the decrease in acidification activity during 9-14 weeks of frozen storage. The method was applied to determine the resistance to freezing and frozen storage of four strains of lactic acid bacteria and to quantify the cryoprotective effect of glycerol.

  9. Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation.

    PubMed

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-12-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes.

  10. Susceptibility of nine organophosphorus pesticides in skimmed milk towards inoculated lactic acid bacteria and yogurt starters.

    PubMed

    Zhou, Xin-Wei; Zhao, Xin-Huai

    2015-01-01

    Previous research has shown that fresh milk might be polluted by some organophosphorus pesticides (OPPs). In this study the dissipation of nine OPPs, namely chlorpyrifos, chlorpyrifos-methyl, diazinon, dichlorvos, fenthion, malathion, phorate, pirimiphos-methyl and trichlorphon, in skimmed milk was investigated to clarify their susceptibility towards lactic acid bacteria (LAB) and yogurt starters. Skimmed milk was spiked with nine OPPs, inoculated with five strains of LAB and two commercial yogurt starters at 42 °C for 24 and 5 h respectively and subjected to quantitative OPP analysis by gas chromatography. Degradation kinetic constants of these OPPs were calculated based on a first-order reaction model. OPP dissipation in the milk was enhanced by the inoculated strains and starters, resulting in OPP concentrations decreasing by 7.0-64.6 and 7.4-19.2% respectively. Totally, the nine OPPs were more susceptible to Lactobacillus bulgaricus, as it enhanced their degradation rate constants by 18.3-133.3%. Higher phosphatase production of the assayed stains was observed to bring about greater OPP degradation in the milk. Both LAB and yogurt starters could enhance OPP dissipation in skimmed milk, with the nine OPPs studied having different susceptibilities towards them. Phosphatase was a key factor governing OPP dissipation. The LAB of higher phosphatase production have more potential to decrease OPPs in fermented foods. © 2014 Society of Chemical Industry.

  11. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation ▿

    PubMed Central

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-01-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes. PMID:20889778

  12. The Use of Lactic Acid Bacteria Starter Cultures during the Processing of Fermented Cereal-based Foods in West Africa: A Review.

    PubMed

    Soro-Yao, Amenan Anastasie; Brou, Kouakou; Amani, Georges; Thonart, Philippe; Djè, Koffi Marcelin

    2014-12-01

    Lactic acid bacteria (LAB) are the primary microorganisms used to ferment maize-, sorghum- or millet-based foods that are processed in West Africa. Fermentation contributes to desirable changes in taste, flavour, acidity, digestibility and texture in gruels (ogi, baca, dalaki), doughs (agidi, banku, komé) or steam-cooked granulated products (arraw, ciacry, dégué). Similar to other fermented cereal foods that are available in Africa, these products suffer from inconsistent quality. The use of LAB starter cultures during cereal dough fermentation is a subject of increasing interest in efforts to standardise this step and guaranty product uniformity. However, their use by small-scale processing units or small agro-food industrial enterprises is still limited. This review aims to illustrate and discuss major issues that influence the use of LAB starter cultures during the processing of fermented cereal foods in West Africa.

  13. Genetics of Lactic Acid Bacteria

    NASA Astrophysics Data System (ADS)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  14. Effects of the Essential Oil from Origanum vulgare L. on Survival of Pathogenic Bacteria and Starter Lactic Acid Bacteria in Semihard Cheese Broth and Slurry.

    PubMed

    de Souza, Geany Targino; de Carvalho, Rayssa Julliane; de Sousa, Jossana Pereira; Tavares, Josean Fechine; Schaffner, Donald; de Souza, Evandro Leite; Magnani, Marciane

    2016-02-01

    This study assessed the inhibitory effects of the essential oil from Origanum vulgare L. (OVEO) on Staphylococcus aureus, Listeria monocytogenes, and a mesophilic starter coculture composed of lactic acid bacteria (Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris) in Brazilian coalho cheese systems. The MIC of OVEO was 2.5 μl/ml against both S. aureus and L. monocytogenes and 0.6 μl/ml against the tested starter coculture. In cheese broth containing OVEO at 0.6 μl/ml, no decrease in viable cell counts (VCC) of both pathogenic bacteria was observed, whereas the initial VCC of the starter coculture decreased approximately 1.0 log CFU/ml after 24 h of exposure at 10°C. OVEO at 1.25 and 2.5 μl/ml caused reductions of up to 2.0 and 2.5 log CFU/ml in S. aureus and L. monocytogenes, respectively, after 24 h of exposure in cheese broth. At these same concentrations, OVEO caused a greater decrease of initial VCC of the starter coculture following 4 h of exposure. Higher concentrations of OVEO were required to decrease the VCC of all target bacteria in semisolid coalho cheese slurry compared with cheese broth. The VCC of Lactococcus spp. in coalho cheese slurry containing OVEO were always lower than those of pathogenic bacteria under the same conditions. These results suggest that the concentrations of OVEO used to control pathogenic bacteria in semihard cheese should be carefully evaluated because of its inhibitory effects on the growth of starter lactic acid cultures used during the production of the product.

  15. The Use of Lactic Acid Bacteria Starter Cultures during the Processing of Fermented Cereal-based Foods in West Africa: A Review

    PubMed Central

    Soro-Yao, Amenan Anastasie; Brou, Kouakou; Amani, Georges; Thonart, Philippe; Djè, Koffi Marcelin

    2014-01-01

    Lactic acid bacteria (LAB) are the primary microorganisms used to ferment maize-, sorghum- or millet-based foods that are processed in West Africa. Fermentation contributes to desirable changes in taste, flavour, acidity, digestibility and texture in gruels (ogi, baca, dalaki), doughs (agidi, banku, komé) or steam-cooked granulated products (arraw, ciacry, dégué). Similar to other fermented cereal foods that are available in Africa, these products suffer from inconsistent quality. The use of LAB starter cultures during cereal dough fermentation is a subject of increasing interest in efforts to standardise this step and guaranty product uniformity. However, their use by small-scale processing units or small agro-food industrial enterprises is still limited. This review aims to illustrate and discuss major issues that influence the use of LAB starter cultures during the processing of fermented cereal foods in West Africa. PMID:27073601

  16. High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2017-11-22

    γ-Aminobutyric acid (GABA) and GABA-rich foods have shown anti-hypertensive and anti-depressant activities as the major functions in humans and animals. Hence, high GABA-producing lactic acid bacteria (LAB) could be used as functional starters for manufacturing novel fermented dairy foods. Glutamic acid decarboxylases (GADs) from LAB are highly conserved at the species level based on the phylogenetic tree of GADs from LAB. Moreover, two functionally distinct GADs and one intact gad operon were observed in all the completely sequenced Lactobacillus brevis strains suggesting its common capability to synthesize GABA. Difficulties and strategies for the manufacture of GABA-rich fermented dairy foods have been discussed and proposed, respectively. In addition, a genetic survey on the sequenced LAB strains demonstrated the absence of cell envelope proteinases in the majority of LAB including Lb. brevis, which diminishes their cell viabilities in milk environments due to their non-proteolytic nature. Thus, several strategies have been proposed to overcome the non-proteolytic nature of Lb. brevis in order to produce GABA-rich dairy foods.

  17. [Modeling of lactic acid fermentation of leguminous plant juices].

    PubMed

    Shurkhno, R A; Validov, Sh Z; Boronin, A M; Naumova, R P

    2006-01-01

    Lactic acid fermentation of leguminous plant juices was modeled to provide a comparative efficiency assessment of the previously selected strains of lactic acid bacteria as potential components of starter cultures. Juices of the legumes fodder galega, red clover, and alfalfa were subjected to lactic acid fermentation in 27 variants of experiment. Local strains (Lactobacillus sp. RS 2, Lactobacillus sp. RS 3, and Lactobacillus sp. RS 4) and the collection strain Lactobacillus plantarum BS 933 appeared the most efficient (with reference to the rate and degree of acidogenesis, ratio of lactic and acetic acids, and dynamics of microflora) in fermenting fodder galega juice; Lactobacillus sp. RS 1, Lactobacillus sp. RS 2, Lactobacillus sp. RS 3, Lactobacillus sp. RS 4, and L. plantarum BS 933 were the most efficient for red clover juice. Correction of alfalfa juice fermentation using the tested lactic acid bacterial strains appeared inefficient, which is explainable by its increased protein content and a low level of the acids produced during fermentation.

  18. Effects of selected lactic acid bacteria on the characteristics of amaranth sourdough.

    PubMed

    Jekle, Mario; Houben, Andreas; Mitzscherling, Martin; Becker, Thomas

    2010-10-01

    As the processing of amaranth in baked goods is challenging, the use of sourdough fermentation is a promising possibility to exploit the advantages of this raw material. In this study the fermentation properties of Lactobacillus plantarum, Lactobacillus paralimentarius and Lactobacillus helveticus in amaranth-based sourdough were examined in order to validate them as starter cultures. pH, total titratable acidity (TTA) and lactic/acetic acid ratio of the sourdough and sensory properties of the resulting wheat bread were evaluated using fermentation temperatures of 30 and 35 °C. While fermentation pH, TTA and lactic acid concentration showed small variations with the use of L. plantarum and L. paralimentarius, L. helveticus reached the most intensive acidification after initial adaptation to the substrate. Acetic acid production was independent of lactic acid metabolism. Furthermore, the lactic/acetic acid ratio exceeded recommendation by 10-35 times (fermentation quotient 25-82). Sensory evaluation showed no significant differences between the two fermentation temperatures but differences among the three micro-organisms. The results provide relevant information on the fermentation properties required of a customised starter for amaranth flour. Copyright © 2010 Society of Chemical Industry.

  19. Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures.

    PubMed

    Kostinek, M; Specht, I; Edward, V A; Pinto, C; Egounlety, M; Sossa, C; Mbugua, S; Dortu, C; Thonart, P; Taljaard, L; Mengu, M; Franz, C M A P; Holzapfel, W H

    2007-03-20

    A total of 375 lactic acid bacteria were isolated from fermenting cassava in South Africa, Benin, Kenya and Germany, and were characterised by phenotypic and genotypic tests. These could be divided into five main groups comprising strains of facultatively heterofermentative rods, obligately heterofermentative rods, heterofermentative cocci, homofermentative cocci and obligately homofermentative rods, in decreasing order of predominance. Most of the facultatively heterofermentative rods were identified by phenotypic tests as presumptive Lactobacillus plantarum-group strains, which also comprised the most predominant bacteria (54.4% of strains) isolated in the study. The next predominant group of lactic acid bacteria (14.1% of total isolates) consisted of obligately heterofermentative rods belonging either to the genus Lactobacillus or Weissella, followed by the heterofermentative cocci (13.9% of isolates) belonging to the genera Weissella or Leuconostoc. Homofermentative cocci were also isolated (13.3% of isolates). Biochemical properties such as production of alpha-amylase, beta-glucosidase, tannase, antimicrobials (presumptive bacteriocin and H(2)O(2)-production), acidification and fermentation of the indigestible sugars raffinose and stachyose, were evaluated in vitro for selection of potential starter strains. A total of 32 strains with one or more desirable biochemical properties were pre-selected and identified using rep-PCR fingerprinting in combination with 16S rRNA sequencing of representative rep-PCR cluster isolates. Of these strains, 18 were identified as L. plantarum, four as Lactobacillus pentosus, two each as Leuconostoc fallax, Weissella paramesenteroides and Lactobacillus fermentum, one each as Leuconostoc mesenteroides subsp. mesenteroides and Weissella cibaria, while two remained unidentified but could be assigned to the L. plantarum-group. These strains were further investigated for clonal relationships, using RAPD-PCR with three primers, and of

  20. Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds.

    PubMed

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2017-05-28

    Lactic acid bacteria (LAB) are used as fermentation starters in vegetable and dairy products and influence the pH and flavors of foods. For many centuries, LAB have been used to manufacture fermented foods; therefore, they are generally regarded as safe. LAB produce various substances, such as lactic acid, β-glucosidase, and β-galactosidase, making them useful as fermentation starters. Existing functional substances have been assessed as fermentation substrates for better component bioavailability or other functions. Representative materials that were bioconverted using LAB have been reported and include minor ginsenosides, γ-aminobutyric acid, equol, aglycones, bioactive isoflavones, genistein, and daidzein, among others. Fermentation mainly involves polyphenol and polysaccharide substrates and is conducted using bacterial strains such as Streptococcus thermophilus, Lactobacillus plantarum, and Bifidobacterium sp. In this review, we summarize recent studies of bioconversion using LAB and discuss future directions for this field.

  1. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    PubMed

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  2. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing.

    PubMed

    Di Cagno, Raffaella; Cardinali, Gainluigi; Minervini, Giovanna; Antonielli, Livio; Rizzello, Carlo Giuseppe; Ricciuti, Patrizia; Gobbetti, Marco

    2010-05-01

    Pichia guilliermondii was the only identified yeast in pineapple fruits. Lactobacillus plantarum and Lactobacillus rossiae were the main identified species of lactic acid bacteria. Typing of lactic acid bacteria differentiated isolates depending on the layers. L. plantarum 1OR12 and L. rossiae 2MR10 were selected within the lactic acid bacteria isolates based on the kinetics of growth and acidification. Five technological options, including minimal processing, were considered for pineapple: heating at 72 degrees C for 15 s (HP); spontaneous fermentation without (FP) or followed by heating (FHP), and fermentation by selected autochthonous L. plantarum 1OR12 and L. rossiae 2MR10 without (SP) or preceded by heating (HSP). After 30 days of storage at 4 degrees C, HSP and SP had a number of lactic acid bacteria 1000 to 1,000,000 times higher than the other processed pineapples. The number of yeasts was the lowest in HSP and SP. The Community Level Catabolic Profiles of processed pineapples indirectly confirmed the capacity of autochthonous starters to dominate during fermentation. HSP and SP also showed the highest antioxidant activity and firmness, the better preservation of the natural colours and were preferred for odour and overall acceptability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  3. Biodiversity and growth dynamics of lactic acid bacteria in artisanal PDO Ossau-Iraty cheeses made from raw ewe's milk with different starters.

    PubMed

    Feutry, Fabienne; Oneca, María; Berthier, Françoise; Torre, Paloma

    2012-02-01

    The biodiversity and growth dynamics of Lactic Acid Bacteria (LAB) in farm-house Ossau-Iraty cheeses were investigated from vat milk to 180 days of ripening in six independent batches made from six raw ewe's milks using five typical cheese-making methods. Commercial starter S1 was used for three batches, starter S1 combined with S2 for one batch and no starter for two batches. Up to ten LAB species from five genera and up to two strains per species were identified per milk; up to eleven species from five genera and up to three strains per species were identified per cheese. Lactococcus lactis, Lactobacillus paracasei, Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, and Leuconostoc mesenteroides were detected in all cheeses. Lactococci reached the highest counts irrespective of the milk and starter used. Lactococci and enterococci increased during manufacture, and mesophilic lactobacilli increased during ripening. Strain and species numbers, the percentage of isolates originating from the raw milk, maximum counts of each genus/species and time for reaching them, all varied according to whether or not a starter was used and the composition of the starter. The genotypes of strains within species varied according to the raw milk used. This generated distinct LAB microbiotas throughout manufacture and ripening that will certainly impact on the characteristics of the ripened cheeses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Starter cultures for kimchi fermentation.

    PubMed

    Lee, Mo-Eun; Jang, Ja-Young; Lee, Jong-Hee; Park, Hae-Woong; Choi, Hak-Jong; Kim, Tae-Woon

    2015-05-01

    Kimchi is a traditional Korean vegetable product that is naturally fermented by various microorganisms present in the raw materials. Among these microorganisms, lactic acid bacteria dominate the fermentation process. Natural fermentation with unsterilized raw materials leads to the growth of various lactic acid bacteria, resulting in variations in the taste and quality of kimchi, which may make it difficult to produce industrial-scale kimchi with consistent quality. The use of starter cultures has been considered as an alternative for the industrial production of standardized kimchi, and recent trends suggest that the demand for starter cultures is on the rise. However, several factors should be carefully considered for the successful application of starter cultures for kimchi fermentation. In this review, we summarize recent studies on kimchi starter cultures, describe practical problems in the application of industrial-scale kimchi production, and discuss the directions for further studies.

  5. Exploitation of Albanian wheat cultivars: characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation.

    PubMed

    Nionelli, Luana; Curri, Nertila; Curiel, José Antonio; Di Cagno, Raffaella; Pontonio, Erica; Cavoski, Ivana; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-12-01

    Six Albanian soft and durum wheat cultivars were characterized based on chemical and technological features, showing different attitudes for bread making. Gliadin and glutenin fractions were selectively extracted from flours, and subjected to two-dimensional electrophoresis. Linja 7 and LVS flours showed the best characteristics, and abundance of high molecular weight (HMW)-glutenins. Type I sourdoughs were prepared through back slopping procedure, and the lactic acid bacteria were typed and identified. Lactobacillus plantarum and Leuconostoc mesenteroides were the predominant species. Thirty-eight representative isolates were singly used for sourdough fermentation of soft and durum wheat Albanian flours and their selection was carried out based on growth and acidification, quotient of fermentation, and proteolytic activity. Two different pools of lactic acid bacteria were designed to ferment soft or durum wheat flours. Sourdough fermentation with mixed and selected starters positively affected the quotient of fermentation, concentration of free amino acids, profile of phenolic acids, and antioxidant and phytase activities. This study provided the basis to exploit the potential of wheat Albanian flours based on an integrated approach, which considered the characterization of the flours and the processing conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Spray-dried adjunct cultures of autochthonous non-starter lactic acid bacteria.

    PubMed

    Peralta, Guillermo H; Bergamini, Carina V; Audero, Gabriela; Páez, Roxana; Wolf, I Verónica; Perotti, M Cristina; Hynes, Erica R

    2017-08-16

    Spray-drying of lactic cultures provides direct-to-vat starters, which facilitate their commercialization and use. However, this process may alter the metabolic activity and deteriorate technological features. In this work, we assessed the influence of spray-drying on the survival and aroma production of two strains of mesophilic lactobacilli: Lactobacillus paracasei 90 and Lactobacillus plantarum 91, which have already been characterized as good adjunct cultures. The spray-drying was carried out using a laboratory scale spray and the dried cultures were monitored during the storage for the survival rate. The dried cultures were applied to two cheese models: sterile cheese extract and miniature soft cheese. The influence on the carbohydrate metabolism and the production of organic acids and volatile compounds was determined. Both strains retained high levels of viable counts in the powder after drying and during the storage at 5°C for twelve months. In addition, they also remained at high level in both cheese models during incubation or ripening. Similar profiles of carbohydrate fermentation and bioformation of volatile compounds were observed in the cheese extracts for each of the strains when tested as both fresh and dried cultures. In addition, the ability of Lb. paracasei 90 to increase the production of acetoin and diacetyl remarkably in cheese models was also confirmed for the spray-dried culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures.

    PubMed

    Zanirati, Débora Ferreira; Abatemarco, Mário; Sandes, Sávio Henrique de Cicco; Nicoli, Jacques Robert; Nunes, Álvaro Cantini; Neumann, Elisabeth

    2015-04-01

    Brazilian kefir is a homemade fermented beverage that is obtained by incubating milk or a brown sugar solution with kefir grains that contribute their different microbiological compositions. It is highly important to isolate and characterize microorganisms from Brazilian kefir grains to obtain starter cultures for the industrial production of a standardized commercial kefir. Thus, the present study aimed to isolate lactic acid bacteria from eight kefir grains that were propagated in milk or sugar solutions from five different locations in Brazil and to select Lactobacillus isolates based on desirable in vitro probiotic properties. One hundred eight isolates from both substrates were identified by amplified ribosomal DNA restriction analysis and/or 16S rRNA gene sequencing and were determined to belong to the following 11 species from the genera: Lactococcus, Leuconostoc, Lactobacillus (L.), and Oenococcus. Leuconostoc mesenteroides, Lactobacillus kefiri, and Lactobacillus kefiranofaciens were isolated only from milk grains, whereas Lactobacillus perolens, Lactobacillus parafarraginis, Lactobacillus diolivorans, and Oenococcus oeni were isolated exclusively from sugar water grains. When the microbial compositions of four kefir grains were evaluated with culture-independent analyses, L. kefiranofaciens was observed to predominant in milk grains, whereas Lactobacillus hilgardii was most abundant in sugar water kefir. Unfortunately, L. hilgardii was not isolated from any grain, although this bacteria was detected with a culture-independent methodology. Fifty-two isolated Lactobacilli were tested for gastric juice and bile salt tolerance, antagonism against pathogens, antimicrobial resistance, and surface hydrophobicity. Three Lactobacillus strains (L. kefiranofaciens 8U, L. diolivorans 1Z, and Lactobacillus casei 17U) could be classified as potential probiotics. In conclusion, several lactic acid bacteria that could be used in combination with yeasts as starter

  8. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses.

    PubMed

    Mucchetti, G; Locci, F; Massara, P; Vitale, R; Neviani, E

    2002-10-01

    Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.

  9. Lactic acid bacteria in Hamei and Marcha of North East India.

    PubMed

    Tamang, J P; Dewan, S; Tamang, B; Rai, A; Schillinger, U; Holzapfel, W H

    2007-06-01

    Hamei and Marcha are mixed dough inocula used as starters for preparation of various indigenous alcoholic beverages in Manipur and Sikkim in India, respectively. These starters are traditionally prepared from rice with wild herbs and spices. Samples of Hamei and Marcha, collected from Manipur and Sikkim, respectively, were analysed for lactic acid bacterial composition. The population of lactic acid bacteria (LAB) was 6.9 and 7.1 Log cfu/g in Hamei and Marcha, respectively. On the basis of phenotypic and genotypic characters, LAB strains isolated from Hamei and Marcha were identified as Pediococcus pentosaceus, Lactobacillus plantarum and Lactobacillus brevis. Technological properties of LAB such as antimicrobial properties, effect on acidification, ability to produce biogenic amines and ethanol, degree of hydrophobicity and enzymatic activities were also performed. Pediococcus pentosaceus HS: B1, isolated from Hamei, was found to produce bacteriocin. None of the strains produced biogenic amines. LAB strains showed a strong acidifying ability and they also produced a wide spectrum of enzymes.

  10. Influence of oregano essential oil on traditional Argentinean cheese elaboration: Effect on lactic starter cultures.

    PubMed

    Marcial, Guillermo E; Gerez, Carla L; de Kairuz, Martha Nuñez; Araoz, Victoria Coll; Schuff, Carola; de Valdez, Graciela Font

    The aim of this work is to study the oregano essential oil (OEO) composition from Northwestern Argentinean regions and to evaluate its effect on the lactic starter cultures. The oregano used, Origanum vulgare var hirtum, was obtained from Andalgalá, Catamarca. The essential oil presented high amounts of α-terpinene (10%), γ-terpinene (15.1%), terpinen-4-ol (15.5%) and thymol (13.0%) as the main components. No negative effect on growth or metabolic activity of lactic acid bacteria Streptococcus thermophilus CRL 728 and CRL 813, Lactobacillus delbrueckii subsp. bulgaricus CRL 656 and CRL 468, and Lactococcus lactis subsp. lactis CRL 597 up to the maximum concentration (200μg/g) assayed was observed. No differences in the organoleptic characteristics of semi-hard cheeses flavored with oregano essential oil (200μg/g) and homemade cheeses flavored with oregano leaves were found. With respect to the microbiological quality of the products, neither enterobacteria nor mold and yeast were detected during ripening in essential-oil flavored cheese compared to control cheese (enterobacteria 2×10 3 UFC/g) and cheese flavored with oregano leaves (mold/yeast 4×10 4 CFU/g). Our results showed that the use of oregano essential oil and lactic starter culture considerably improved cheese quality. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  12. Identification by using MALDI-TOF mass spectrometry of lactic acid bacteria isolated from non-commercial yogurts in southern Anatolia, Turkey.

    PubMed

    Karaduman, Ayse; Ozaslan, Mehmet Ozaslan; Kilic, Ibrahim H; Bayil-Oguzkan, Sibel; Kurt, Bekir S; Erdogan, Nese

    2017-03-01

    Yogurt is a dairy product obtained by bacterial fermentation of milk. Commercial yogurts are produced using standard starters while, in the production of non-commercial yogurt, the microbiota is quite different since yogurts are used as starter for years. To determine the final characteristics of the fermented product it is necessary to know the biochemical properties of the starter cultures, such as acidity, aroma and flavor. This can only be achieved by identifying and characterizing the bacteria in starter cultures. In our study, 208 non-commercial yogurt samples were collected from 9 different locations in Anatolia, southern Turkey. Their pH and lactic acid bacteria profiles were analyzed. Isolated bacteria were identified by MALDI-TOF MS (matrix-assisted laser sesorption-ionization time-of-flight, mass spectrometry), which is a fast and reliable method for identification of bacterial isolates compared to classical laboratory methods. In this study, 41% of the isolates were identified by using this method, which is 99.9% and 34.0% confidence. The isolates contained two genera (Enterococcus and Lactobacillus) and four species. Afterwards, the four lactic acid bacteria were characterized physiologically and biochemically and we found that they differed from lactic acid bacteria used in commercial yogurt production. [Int Microbiol 20(1): 25-30 (2017)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  13. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  14. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.).

    PubMed

    Yang, Jaesik; Ji, Yosep; Park, Hyunjoon; Lee, Jieun; Park, Soyoung; Yeo, Soyoung; Shin, Hyunkil; Holzapfel, Wilhelm H

    2014-11-17

    The purpose of this research was to find safe and suitable starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler), also known as garlic chives or Oriental garlic. This traditional herb has several functional properties and a strong flavour; its leaves are used as food material. Eighteen strains of lactic acid bacteria (LAB) were isolated from well-fermented leek kimchi. Controlled fermentation of the leek leaves was conducted with 2 strains (Weissella confusa LK4 and Lactobacillus plantarum LK8), selected as potential starter cultures on the basis of their safety properties, and on the pH, total titratable acidity (TTA), and viable cell numbers [colony forming units (CFUml(-1))] achieved during the fermentation. Microbial dynamics was also followed during fermentation by using PCR-DGGE (Denaturing Gradient Gel Electrophoresis) on DNA level. To analyse bioactive compounds such as thiols and allicin (diallyl thiosulfinates), the total flavonoid and polyphenolic contents were determined by colorimetric methods. Functional properties were assessed on the basis of anti-oxidative capacities by determining the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect, and ferric reducing antioxidant power (FRAP). W. confusa LK4 rapidly increased during the first stage of leek fermentation, and was mainly responsible for accelerated fermentation during the early period in contrast to L. plantarum LK8, a stronger acid producer during the later stages of fermentation. After 48 h fermentation, leeks fermented with W. confusa LK4 showed the highest radical scavenging effects and reducing ability. The detectable amount of allicin of fermented leeks decreased relative to the change in pH, whereas the concentration of thiols significantly increased. Total flavonoid and poly-phenolic contents changed during fermentation and showed correlation with anti-oxidant effects. We therefore suggest the suitability of W. confusa LK4 as a potential starter

  15. Pro-technological and functional characterization of lactic acid bacteria to be used as starters for hemp (Cannabis sativa L.) sourdough fermentation and wheat bread fortification.

    PubMed

    Nionelli, Luana; Montemurro, Marco; Pontonio, Erica; Verni, Michela; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2018-08-20

    Lactic acid bacteria were isolated from hemp (Cannabis sativa L.) flour, spontaneously fermented dough, and type I sourdough. Isolates were identified and further selected based on pro-technological, nutritional and functional properties. Lactobacillus plantarum/s5, Pediococcus acidilactici/s5, and Leuconostoc mesenteroides/s1 were used as mixed starter to produce hemp sourdough. Significant decreases of the concentration of phytic acid, condensed tannins, and total saponins were observed during fermentation. The in vitro protein digestibility increased up to 90%. Experimental wheat breads were made adding 5% to 15% (w/w) hemp sourdough to the formula, characterized, and compared to baker's yeast wheat bread manufactured without hemp sourdough. The use of hemp sourdough improved the textural features of wheat bread, without adversely affect the sensory profile. Proportionally to the fortification with hemp sourdough, protein digestibility of the breads increased, while the predicted glycemic index significantly decreased (87 vs 100%). This work demonstrated that the fermentation with selected starters improved nutritional functionality of hemp flour, allowing its large-scale use in different food applications, meeting the consumers and producers request for novel fermented baked goods with a well-balanced nutritional profile. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters.

    PubMed

    Vogelmann, Stephanie A; Seitter, Michael; Singer, Ulrike; Brandt, Markus J; Hertel, Christian

    2009-04-15

    The adaptability of lactic acid bacteria (LAB) and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava was investigated using PCR-DGGE and bacteriological culture combined with rRNA gene sequence analysis. Sourdoughs were prepared either from flours of the cereals wheat, rye, oat, barley, rice, maize, and millet, or from the pseudocereals amaranth, quinoa, and buckwheat, or from cassava, using a starter consisting of various species of LAB and yeasts. Doughs were propagated until a stable microbiota was established. The dominant LAB and yeast species were Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus spicheri, Issatchenkia orientalis and Saccharomyces cerevisiae. The proportion of the species within the microbiota varied. L. paralimentarius dominated in the pseudocereal sourdoughs, L. fermentum, L. plantarum and L. spicheri in the cassava sourdough, and L. fermentum, L. helveticus and L. pontis in the cereal sourdoughs. S. cerevisiae constituted the dominating yeast, except for quinoa sourdough, where I. orientalis also reached similar counts, and buckwheat and oat sourdoughs, where no yeasts could be detected. To assess the usefulness of competitive LAB and yeasts as starters, the fermentations were repeated using flours from rice, maize, millet and the pseudocereals, and by starting the dough fermentation with selected dominant strains. At the end of fermentation, most of starter strains belonged to the dominating microbiota. For the rice, millet and quinoa sourdoughs the species composition was similar to that of the prior fermentation, whereas in the other sourdoughs, the composition differed.

  17. Taxonomic Structure and Monitoring of the Dominant Population of Lactic Acid Bacteria during Wheat Flour Sourdough Type I Propagation Using Lactobacillus sanfranciscensis Starters▿

    PubMed Central

    Siragusa, Sonya; Di Cagno, Raffaella; Ercolini, Danilo; Minervini, Fabio; Gobbetti, Marco; De Angelis, Maria

    2009-01-01

    The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g−1. Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation. PMID

  18. Phenotypic and Genotypic Characterization of Non-Starter Lactic Acid Bacteria in Mature Cheddar Cheese

    PubMed Central

    Fitzsimons, N. A.; Cogan, T. M.; Condon, S.; Beresford, T.

    1999-01-01

    Non-starter lactic acid bacteria were isolated from 14 premium-quality and 3 sensorially defective mature Irish Cheddar cheeses, obtained from six manufacturers. From countable plates of Lactobacillus-selective agar, 20 single isolated colonies were randomly picked per cheese. All 331 viable isolates were biochemically characterized as mesophilic (i.e., group II) Lactobacillus spp. Phenotypically, the isolates comprised 96.4% L. paracasei, 2.1% L. plantarum, 0.3% L. curvatus, 0.3% L. brevis, and 0.9% unidentified species. Randomly amplified polymorphic DNA (RAPD) analysis was used to rapidly identify the dominant strain groups in nine cheeses from three of the factories, and through clustering by the unweighted pair group method with arithmetic averages, an average of seven strains were found per cheese. In general, strains isolated from cheese produced at the same factory clustered together. The majority of isolates associated with premium-quality cheese grouped together and apart from clusters of strains from defective-quality cheese. No correlation was found between the isomer of lactate produced and RAPD profiles, although isolates which did not ferment ribose clustered together. The phenotypic and genotypic methods employed were validated with a selection of 31 type and reference strains of mesophilic Lactobacillus spp. commonly found in Cheddar cheese. RAPD analysis was found to be a useful and rapid method for identifying isolates to the species level. The low homology exhibited between RAPD banding profiles for cheese isolates and collection strains demonstrated the heterogeneity of the L. paracasei complex. PMID:10427029

  19. Application of Impedance Microbiology for Evaluating Potential Acidifying Performances of Starter Lactic Acid Bacteria to Employ in Milk Transformation.

    PubMed

    Bancalari, Elena; Bernini, Valentina; Bottari, Benedetta; Neviani, Erasmo; Gatti, Monica

    2016-01-01

    Impedance microbiology is a method that enables tracing microbial growth by measuring the change in the electrical conductivity. Different systems, able to perform this measurement, are available in commerce and are commonly used for food control analysis by mean of measuring a point of the impedance curve, defined "time of detection." With this work we wanted to find an objective way to interpret the metabolic significance of impedance curves and propose it as a valid approach to evaluate the potential acidifying performances of starter lactic acid bacteria to be employed in milk transformation. To do this it was firstly investigated the possibility to use the Gompertz equation to describe the data coming from the impedance curve obtained by mean of BacTrac 4300®. Lag time (λ), maximum specific M% rate (μmax), and maximum value of M% (Yend) have been calculated and, given the similarity of the impedance fitted curve to the bacterial growth curve, their meaning has been interpreted. Potential acidifying performances of eighty strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis , and Streptococcus thermophilus species have been evaluated by using the kinetics parameters, obtained from Excel add-in DMFit version 2.1. The novelty and importance of our findings, obtained by means of BacTrac 4300®, is that they can also be applied to data obtained from other devices. Moreover, the meaning of λ, μmax, and Yend that we have extrapolated from Modified Gompertz equation and discussed for lactic acid bacteria in milk, can be exploited also to other food environment or other bacteria, assuming that they can give a curve and that curve is properly fitted with Gompertz equation.

  20. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  1. Phenotypic and genotypic diversity of dominant lactic acid bacteria isolated from traditional yoghurts produced by tribes of Iran

    PubMed Central

    RoushanZadeh, S; Eskandari, M. H.; Shekarforoush, S. S.; Hosseini, A

    2014-01-01

    Morphological, biochemical and molecular characteristics were studied to identify dominant lactic acid bacteria (LAB), isolated from traditional yoghurts produced by tribes of Iran. From 60 yoghurt samples, a total of 137 LAB isolates were determined, in which 66 and 71 were identified as lactic acid cocci and bacilli, respectively. Biochemical tests showed the occurrence of 9.76% mesophilic homofermentative, 10.98% mesophilic hetrofermentative, 26.83% thermophilic homofermentative and 47.56% mesophilic homofermentative cocci. As for lactic acid bacilli, mesophilic facultative hetrofermentative (26%); thermophilic obligate homofermentative (56%); mesophilic obligate hetrofermentative (18%) were found. Genetically the presence of the following species were verified: E. faecium; E. faecalis; E. durans; L. lactis subsp. lactis; St. thermophilus; Lb. delbruecki subsp. bulgaricus; Lb. brevis; Lb. diolivorans; Lb. helveticus; Lb. jensenii; Lb. plantarum. 9% of the Lactobacillus isolates showed incompatible results between phenotypic and genotypic characteristics. From the cocci isolates, 38.46% showed identical results between phylogenetic characteristics. The current study constitutes the first step in the designing process of LAB starter cultures, to protect the typical organoleptic characteristics of traditional yoghurt. The results could also be used to introduce new starter cultures for commercial use. PMID:27175129

  2. Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters

    PubMed Central

    Pettersson, H. E.

    1975-01-01

    Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009

  3. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation.

    PubMed

    Coda, Rossana; Cagno, Raffaella Di; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-02-01

    Cereal-based foods represent a very important source of biological as well as of cultural diversity, as testified by the wide range of derived fermented products. A trend that is increasingly attracting bakery industries as well as consumers is the use of non-conventional flours for the production of novel products, characterised by peculiar flavour and better nutritional value. Lactic acid bacteria microbiota of several non-wheat cereals and pseudo-cereals has been recently deeply investigated with the aim of studying the biodiversity and finding starter cultures for sourdough fermentation. Currently, the use of ancient or ethnic grains is mainly limited to traditional typical foods and the bread making process is not well standardised with consequent negative effects on the final properties. The challenge in fermenting such grains is represented by the necessity to combine good technology and sensory properties with nutritional/health benefits. The choice of the starter cultures has a critical impact on the final quality of cereal-based products, and strains that dominate and outcompete contaminants should be applied for specific sourdough fermentations. In this sense, screening and characterisation of the lactic acid bacteria microbiota is very useful in the improvement of a peculiar flour, from both a nutritional and technological point of view. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Engineering lactic acid bacteria for increased industrial functionality.

    PubMed

    Bron, Peter A; Kleerebezem, Michiel

    2011-01-01

    Based on their spoilage-preventing and flavor-contributing characteristics, lactic acid bacteria (LAB) are employed as starter cultures for the fermentation of foods and feeds. In addition, several specific LAB strains are marketed on basis of their beneficial effects on the consumer's health, representing an explosively growing market for the products containing these so-called probiotics. Due to this extensive industrial use there is a strong interest in unraveling the molecular mechanisms involved in industrial robustness, cognate stress resistance, and health-promoting phenotypes of these LAB that may vary drastically between different starter and probiotic strains currently marketed. This review describes some of the post-genomic tools developed, as well as their employment for the identification of bacterial effector molecules involved in the aforementioned industrially relevant phenotypes. Furthermore, it addresses possible strategies to exploit such knowledge into the rational design of LAB strains with increased industrial functionality.

  5. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.

    PubMed

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene

    2015-03-01

    Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both

  6. Antimicrobial Activity and Chemical Composition of "Kpètè-Kpètè": A Starter of Benin Traditional Beer Tchoukoutou.

    PubMed

    N'tcha, Christine; Sina, Haziz; Kayodé, Adéchola Pierre Polycarpe; Gbenou, Joachim D; Baba-Moussa, Lamine

    2017-01-01

    The aim of this study was to investigate the antibacterial effect of the crude starter " kpètè-kpètè " and lactic acid bacteria used during the production of "tchoukoutou." To achieve this, a total of 11 lactic acid bacteria and 40 starter samples were collected from four communes. The samples were tested on 29 gram + and - strains by disk diffusion method. The minimum inhibitory and bactericidal concentrations of starter and lactic acid bacteria were determined by conventional methods. Organic acids, sugar, and volatile compounds were determined using the HPLC method. The "kpètè-kpètè" displays a high antibacterial activity against the tested strains. The most sensitive strain was S. epidermidis (12.5 mm) whereas the resistance strain was Proteus mirabilis (8 mm). All the tested ferment has not any inhibitory effect on Enterococcus faecalis . The lactic acid bacteria isolates of Parakou showed the highest (17.48 mm) antibacterial activity whereas the smallest diameter was obtained with the ferment collected from Boukoumbé (9.80 mm). The starters' chemical screening revealed the presence of tannins, anthocyanin flavonoids, triterpenes, steroids, reducing compounds, and mucilage O-glycosides. These compounds are probably the source of recorded inhibition effect. The lactic acid bacteria of the "kpètè-kpètè" could be used to develop a food ingredient with probiotic property.

  7. Application of Impedance Microbiology for Evaluating Potential Acidifying Performances of Starter Lactic Acid Bacteria to Employ in Milk Transformation

    PubMed Central

    Bancalari, Elena; Bernini, Valentina; Bottari, Benedetta; Neviani, Erasmo; Gatti, Monica

    2016-01-01

    Impedance microbiology is a method that enables tracing microbial growth by measuring the change in the electrical conductivity. Different systems, able to perform this measurement, are available in commerce and are commonly used for food control analysis by mean of measuring a point of the impedance curve, defined “time of detection.” With this work we wanted to find an objective way to interpret the metabolic significance of impedance curves and propose it as a valid approach to evaluate the potential acidifying performances of starter lactic acid bacteria to be employed in milk transformation. To do this it was firstly investigated the possibility to use the Gompertz equation to describe the data coming from the impedance curve obtained by mean of BacTrac 4300®. Lag time (λ), maximum specific M% rate (μmax), and maximum value of M% (Yend) have been calculated and, given the similarity of the impedance fitted curve to the bacterial growth curve, their meaning has been interpreted. Potential acidifying performances of eighty strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis, and Streptococcus thermophilus species have been evaluated by using the kinetics parameters, obtained from Excel add-in DMFit version 2.1. The novelty and importance of our findings, obtained by means of BacTrac 4300®, is that they can also be applied to data obtained from other devices. Moreover, the meaning of λ, μmax, and Yend that we have extrapolated from Modified Gompertz equation and discussed for lactic acid bacteria in milk, can be exploited also to other food environment or other bacteria, assuming that they can give a curve and that curve is properly fitted with Gompertz equation. PMID:27799925

  8. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review.

    PubMed

    Othman, Majdiah; Ariff, Arbakariya B; Rios-Solis, Leonardo; Halim, Murni

    2017-01-01

    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery.

  9. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review

    PubMed Central

    Othman, Majdiah; Ariff, Arbakariya B.; Rios-Solis, Leonardo; Halim, Murni

    2017-01-01

    Lactic acid bacteria are industrially important microorganisms recognized for their fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Nevertheless, lactic acid fermentation often suffers end-product inhibition which decreases the cell growth rate. The inhibition of lactic acid is due to the solubility of the undissociated lactic acid within the cytoplasmic membrane and insolubility of dissociated lactate, which causes acidification of cytoplasm and failure of proton motive forces. This phenomenon influences the transmembrane pH gradient and decreases the amount of energy available for cell growth. In general, the restriction imposed by lactic acid on its fermentation can be avoided by extractive fermentation techniques, which can also be exploited for product recovery. PMID:29209295

  10. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Lactic acid fermentation and storage of blanched garlic.

    PubMed

    de Castro, A; Montaño, A; Sánchez, A H; Rejano, L

    1998-02-17

    The controlled fermentation of peeled, blanched garlic, using a starter culture of Lactobacillus plantarum, was studied and compared with that of unblanched garlic. Blanching was carried out in hot water (90 degrees C) for 15 min. The starter grew abundantly in the case of blanched garlic, producing mainly lactic acid and reaching a pH of 3.8 after 7 days, but its growth was inhibited in unblanched garlic. Ethanol and fructose, coming from enzymatic activities of the garlic, and a green pigment were formed during the fermentation of unblanched garlic, but not of blanched garlic. The blanched garlic fermented by L. plantarum, even without a preservation treatment (pasteurization), was microbiologically stable during storage at 30 degrees C in an acidified brine (approximately 3% (w/w) NaCl and pH 3.5 at equilibrium), but fructans were hydrolyzed. The packed fermented product and that obtained by direct packing without fermentation were not significantly different with regard to flavour.

  12. Tracing microbiota changes in yamahai-moto, the traditional Japanese sake starter.

    PubMed

    Koyanagi, Takashi; Nakagawa, Akira; Kiyohara, Masashi; Matsui, Hiroshi; Tsuji, Atsushi; Barla, Florin; Take, Harumi; Katsuyama, Yoko; Tokuda, Koji; Nakamura, Shizuo; Minami, Hiromichi; Enomoto, Toshiki; Katayama, Takane; Kumagai, Hidehiko

    2016-01-01

    Sake is made from steamed rice, malted rice, and water. Sake production begins with the preparation of a small-scale starter (moto); the quality of moto significantly influences the flavor and richness of sake. In the traditional starter, yamahai-moto, the growth of naturally occurring lactic acid bacteria represses the putrefactive micro-organisms, whereas in the modern starter, sokujo-moto, this is achieved by adding lactic acid. In this study, the successive change in bacterial flora of yamahai-moto was analyzed by pyrosequencing 16S ribosomal RNA genes. Lactobacillus was dominant throughout the process (93-98%). Nitrate-reducing bacteria that have been generally assumed to be the first colonizers of yamahai-moto were scarcely found in the early stage, but Lactobacillus acidipiscis dominated. Lactobacillus sakei drastically increased in the middle stage. This is the first report, though one case study, to show how the early stage microbiota in Japanese yamahai-moto is varyingly controlled without nitrate-reducing bacteria using next-generation sequencing.

  13. Antimicrobial Activity and Chemical Composition of “Kpètè-Kpètè”: A Starter of Benin Traditional Beer Tchoukoutou

    PubMed Central

    N'tcha, Christine; Sina, Haziz; Kayodé, Adéchola Pierre Polycarpe; Gbenou, Joachim D.

    2017-01-01

    The aim of this study was to investigate the antibacterial effect of the crude starter “kpètè-kpètè” and lactic acid bacteria used during the production of “tchoukoutou.” To achieve this, a total of 11 lactic acid bacteria and 40 starter samples were collected from four communes. The samples were tested on 29 gram + and − strains by disk diffusion method. The minimum inhibitory and bactericidal concentrations of starter and lactic acid bacteria were determined by conventional methods. Organic acids, sugar, and volatile compounds were determined using the HPLC method. The “kpètè-kpètè” displays a high antibacterial activity against the tested strains. The most sensitive strain was S. epidermidis (12.5 mm) whereas the resistance strain was Proteus mirabilis (8 mm). All the tested ferment has not any inhibitory effect on Enterococcus faecalis. The lactic acid bacteria isolates of Parakou showed the highest (17.48 mm) antibacterial activity whereas the smallest diameter was obtained with the ferment collected from Boukoumbé (9.80 mm). The starters' chemical screening revealed the presence of tannins, anthocyanin flavonoids, triterpenes, steroids, reducing compounds, and mucilage O-glycosides. These compounds are probably the source of recorded inhibition effect. The lactic acid bacteria of the “kpètè-kpètè” could be used to develop a food ingredient with probiotic property. PMID:28367445

  14. Amino acid profile and sensory characteristics of dry fermented pork loins produced with a mixture of probiotic starter cultures.

    PubMed

    Neffe-Skocińska, Katarzyna; Okoń, Anna; Kołożyn-Krajewska, Danuta; Dolatowski, Zbigniew

    2017-07-01

    Proteolysis is a biochemical process in dry-aged meat products where proteins are metabolized and broken down to polypeptides, peptides, and free amino acids. In the literature it is reported that an appropriate choice of probiotic starter culture limits proteolytic changes in dry-fermented meat products. In this study the combined effect of a mixture of probiotic starter cultures on the free amino acid profile, total count of lactic acid bacteria, and the sensory quality of dry-aged pork loins after fermentation and after storing the vacuum-packed samples was evaluated. LOCK900 and BB12 probiotic strains were the technologically best two-species mixture of starter cultures for the production of probiotic dry-aged pork loins. They allowed us to obtain products with high and stable bacterial count and acceptable sensory quality, both after 21 days of fermentation and after 2 months of cold storage. Changes in the free amino acid profile and increased intensity of the selected sensory attributes result from a significant share of probiotics in meat proteolysis occurring during fermentation and storage. The results suggest the relevance of using probiotic bacteria as a two-species starter culture for the production of dry-aged products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Enhancement of γ-aminobutyric acid (GABA) in Nham (Thai fermented pork sausage) using starter cultures of Lactobacillus namurensis NH2 and Pediococcus pentosaceus HN8.

    PubMed

    Ratanaburee, Anussara; Kantachote, Duangporn; Charernjiratrakul, Wilawan; Sukhoom, Ampaitip

    2013-10-15

    The aim was to produce Nham that was enriched with γ-aminobutyric acid (GABA); therefore two GABA producing lactic acid bacteria (Pediococcus pentosaceus HN8 and Lactobacillus namurensis NH2) were used as starter cultures. By using the central composite design (CCD) we showed that addition of 0.5% monosodium glutamate (MSG) together with an inoculum size of roughly 6logCFU/g of each of the two strains produced a maximal amounts of GABA (4051 mg/kg) in the 'GABA Nham' product. This was higher than any current popular commercial Nham product by roughly 8 times. 'GABA Nham' with the additions of both starters and MSG (TSM) supported maximum populations of lactic acid bacteria (LAB) with a minimum of yeasts and no staphylococci or molds when compared to the controls that had no addition of any starters or MSG (TNN), or only the addition of MSG (TNM), or with only the starter (TSN). Based on proximate analysis among the Nham sets, 'GABA Nham' was low in fat, carbohydrate and energy although its texture and color were slightly different from the control (TNN). However, sensory evaluations of 'GABA Nham' were more acceptable than the controls and commercial Nham products for all tested parameters. Hence, a unique novel 'GABA Nham' fermented pork sausage was successfully developed. © 2013.

  16. Prevention by lactic acid bacteria of the oxidation of human LDL.

    PubMed

    Terahara, M; Kurama, S; Takemoto, N

    2001-08-01

    Ether extracts of lactic acid bacteria were analyzed for prevention of the oxidation of erythrocyte membrane and human low-density lipoprotein in vivo. Streptococcus thermophilus 1131 and Lactobacillus delbrueckii subsp. bulgaricus 2038, yogurt starters, were chosen as test-strains, and ether extracts of these cultures were used as samples. Both strain 1131 and strain 2038 produced radical scavengers and inhibited oxidation of erythrocyte membranes and low-density lipoproteins. The antioxidative activity of strain 2038 was higher than that of strain 1131.

  17. Autochthonous lactic acid bacteria with probiotic aptitudes as starter cultures for fish-based products.

    PubMed

    Speranza, Barbara; Racioppo, Angela; Beneduce, Luciano; Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-08-01

    This study focused on the selection of lactic starters with probiotic properties for the production of fermented fish-products by the use of a multivariate approach (Cluster Analysis and Principal Component Analysis). Seventy-five isolates were recovered from fish intestinal microbiota and characterized by evaluating phenotypical, technological and probiotic traits; the most promising isolates were molecularly identified and then used into fish fermented sausage production. Namely, data from technological characterization were modelled through Growth Index and used as input to run a preliminary selection. Thus, 15 promising strains were selected and subjected to probiotic characterization; considering the results from probiotic tests, 3 promising strains were finally chosen (11, 68 and 69), identified as members of the genus Lactobacillus and used for the validation at laboratory level through the assessment of their performances for the production of fermented fish sausages. The results were promising as the use of the selected strains reduced the fermentation time (2 days) ensuring a good microbiological quality of the final product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    PubMed

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  19. The antagonistic activity of lactic acid bacteria isolated from peda, an Indonesian traditional fermented fish

    NASA Astrophysics Data System (ADS)

    Putra, T. F.; Suprapto, H.; Tjahjaningsih, W.; Pramono, H.

    2018-04-01

    Peda is an Indonesian traditional fermented whole fish prepared by addition of salt prior to fermentation and drying process. Salt used to control the growth of the lactic acid bacteria for the fermentation process. The objectives of this study were isolating and characterize the potential lactic acid bacteria (LAB) from peda as culture starter candidate, particularly its activity against pathogenic bacteria. A total of five samples from five regions of East Java Province was collected and subjected to LAB isolation. Fifty-seven of 108 colonies that show clear zone in de Man, Rogosa and Sharpe (MRS) agar supplemented with 0.5% CaCO3 were identified as LAB. Twenty-seven of the LAB isolates were exhibit inhibition against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 27853. Isolate Aerococcus NJ-20 was exhibited strong inhibition against S. aureus ATCC 6538 (7.6 ± 1.35 mm inhibition zone) but was not produce bacteriocin. This finding suggests that the isolate Aerococcus NJ-20 can be applied as biopreservative culture starter on peda production. Further analysis on technological properties of isolates will be needed prior to application.

  20. The toxicity and decreased concentration of aflatoxin B in natural lactic acid fermented maize meal.

    PubMed

    Mokoena, M P; Chelule, P K; Gqaleni, N

    2006-04-01

    Aflatoxin B(1) (AFB(1)) is a mycotoxin which is known to frequently contaminate poorly stored food products destined for human consumption. This study was carried out to investigate the potential activity of lactic acid fermentation in reducing AFB(1) level in fermented maize meal products. Maize meal was spiked with 60 mug g(-1) AFB(1) and fermented, with or without starter culture, for 4 days at 25 degrees C. Unbound AFB(1) in solution and the pH of the media were monitored daily. A significant decrease (P < 0.05) in the level of unbound AFB(1) was observed (75% in the fourth day). Simultaneously, a progressive decrease in the pH of the media from 6.5 to 3.1 was also observed. AFB(1) was below the detection limit in commercial fermented porridge (amahewu) samples. Cytotoxicity tests on AFB(1)-spiked fermented extracts showed that those with a starter culture were comparatively less toxic (30-36%) than those with no added starter culture (24-30%). However, this difference was not significant (P > 0.05). These results indicate that lactic acid fermentation can significantly reduce the concentration of AFB(1) in maize to trace levels. However, the safety of fermented products has not been well studied, as the mechanism of AFB(1) removal is not well understood. Natural fermentation may potentially reduce exposure to natural toxins occurring in food.

  1. Amylolytic bacterial lactic acid fermentation - a review.

    PubMed

    Reddy, Gopal; Altaf, Md; Naveena, B J; Venkateshwar, M; Kumar, E Vijay

    2008-01-01

    Lactic acid, an enigmatic chemical has wide applications in food, pharmaceutical, leather, textile industries and as chemical feed stock. Novel applications in synthesis of biodegradable plastics have increased the demand for lactic acid. Microbial fermentations are preferred over chemical synthesis of lactic acid due to various factors. Refined sugars, though costly, are the choice substrates for lactic acid production using Lactobacillus sps. Complex natural starchy raw materials used for production of lactic acid involve pretreatment by gelatinization and liquefaction followed by enzymatic saccharification to glucose and subsequent conversion of glucose to lactic acid by Lactobacillus fermentation. Direct conversion of starchy biomass to lactic acid by bacteria possessing both amylolytic and lactic acid producing character will eliminate the two step process to make it economical. Very few amylolytic lactic acid bacteria with high potential to produce lactic acid at high substrate concentrations are reported till date. In this view, a search has been made for various amylolytic LAB involved in production of lactic acid and utilization of cheaply available renewable agricultural starchy biomass. Lactobacillus amylophilus GV6 is an efficient and widely studied amylolytic lactic acid producing bacteria capable of utilizing inexpensive carbon and nitrogen substrates with high lactic acid production efficiency. This is the first review on amylolytic bacterial lactic acid fermentations till date.

  2. Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production.

    PubMed

    Corona, Onofrio; Alfonzo, Antonio; Ventimiglia, Giusi; Nasca, Anna; Francesca, Nicola; Martorana, Alessandra; Moschetti, Giancarlo; Settanni, Luca

    2016-10-01

    Four obligate heterofermentative lactic acid bacteria (LAB) strains (Weissella cibaria PON10030 and PON10032 and Leuconostoc citreum PON 10079 and PON10080) were tested as single strain starters, mono-species dual strain starters, and multiple strain starter for the preparation and propagation of sourdoughs for the production of a typical bread at industrial level. The kinetics of pH and TTA during the daily sourdough refreshments indicated a correct acidification process for all trials. The concentration of lactic and acetic acid increased consistently during fermentation. The resulting molar ratios between these two organic acids in the experimental trials were lower than those observed in the control trial. The microbiological investigation showed levels of approximately 10(9) CFU/mL in almost all sourdoughs and the comparison of the genetic polymorphisms of the dominating LAB with those of the pure cultures evidenced the persistence of the added strains over time. The resulting breads were evaluated for several quality parameters. The breads with the greatest height were obtained with the quadruple combination of leuconostocs and weissellas. The highest softness was registered for the breads obtained from fermentations performed by W. cibaria PON10032 alone and in combination. The different inocula influenced also the color, the void fraction, the cell density and the mean cell area of the breads. Different levels of acids, alcohols, aldehydes, esters, hydrocarbons, ketones, terpenes, furans and phenol were emitted by the breads. The sensory tests indicated the breads from the sourdoughs fermented with the seven LAB inocula as sweeter and less acidic than control breads and the breads from the trials with the highest complexity of LAB inoculums were those more appreciated by tasters. A multivariate approach found strong differences among the trials. In particular, control breads and the breads obtained with different starter LAB were quite distant and a more

  3. Lactic Acid Fermentation Improved Textural Behaviour, Phenolic Compounds and Antioxidant Activity of Chia 
(Salvia hispanica L.) Dough

    PubMed Central

    2017-01-01

    Summary In this work, autochthonous lactic acid bacteria (LAB) were isolated from chia (Salvia hispanica L.) dough and selected on the basis of the kinetics of acidification and proteolytic activity. Strain no. C8, identified as Lactobacillus plantarum C8, was selected and used as starter to obtain chia sourdough. Lactic acid fermentation increased the organic acid mass fractions (lactic, acetic and phenyl lactic acids to 12.3 g, 1.0 g and 23.8 µg per kg of dough respectively), and antioxidant activities, which increased by approx. 33–40% compared to unfermented chia flour dough. In addition, total phenolic content increased 25% and its composition was strongly modified after 24 h of fermentation by L. plantarum C8. Chlorogenic acid was only found in the fermented dough (2.5 mg/g), while ferulic acid was detected from the beginning of fermentation, being 32% higher in chia sourdough (5.6 mg/g). The use of fermented chia sourdough improved the overall characteristics of white bread, including physical (e.g. reduced hardness and chewiness of the crumb) and antioxidant properties (25% on average), compared to the white bread. These results indicate that the use of chia sourdough could be a promising alternative to improve the technological and antioxidant properties of wheat bread. In addition, this work has shown, for the first time, that lactic acid bacterium is able to ferment chia dough, improving its overall characteristics. PMID:29089851

  4. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    PubMed

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  5. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    PubMed

    Ramirez-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  6. Quantitative analysis of the lactic acid and acetaldehyde produced by Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional Turkish yogurts using HPLC.

    PubMed

    Gezginc, Y; Topcal, F; Comertpay, S; Akyol, I

    2015-03-01

    The present study was conducted to evaluate the lactic acid- and acetaldehyde-producing abilities of lactic acid bacterial species isolated from traditionally manufactured Turkish yogurts using HPLC. The lactic acid bacterial species purified from the yogurts were the 2 most widely used species in industrial yogurt production: Streptococcus thermophilus and Lactobacillus bulgaricus. These bacteria have the ability to ferment hexose sugars homofermentatively to generate lactic acid and some carbonyl compounds, such as acetaldehyde through pyruvate metabolism. The levels of the compounds produced during fermentation influence the texture and the flavor of the yogurt and are themselves influenced by the chemical composition of the milk, processing conditions, and the metabolic activity of the starter culture. In the study, morphological, biochemical, and molecular characteristics were employed to identify the bacteria obtained from homemade yogurts produced in different regions of Turkey. A collection of 91 Strep. thermophilus and 35 L. bulgaricus strains were investigated for their lactic acid- and acetaldehyde-formation capabilities in various media such as cow milk, LM17 agar, and aerobic-anaerobic SM17 agar or de Man, Rogosa, and Sharpe agar. The amounts of the metabolites generated by each strain in all conditions were quantified by HPLC. The levels were found to vary depending on the species, the strain, and the growth conditions used. Whereas lactic acid production ranged between 0 and 77.9 mg/kg for Strep. thermophilus strains, it ranged from 0 to 103.5 mg/kg for L. bulgaricus. Correspondingly, the ability to generate acetaldehyde ranged from 0 to 105.9 mg/kg in Strep. thermophilus and from 0 to 126.9 mg/kg in L. bulgaricus. Our study constitutes the first attempt to determine characteristics of the wild strains isolated from traditional Turkish yogurts, and the approach presented here, which reveals the differences in metabolite production abilities of the

  7. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1061 Lactic acid. (a) Lactic acid (C3H6O3, CAS Reg. Nos.: dl mixture, 598-82-3; l-isomer, 79-33-4; d... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lactic acid. 184.1061 Section 184.1061 Food and... hydrolysis to lactic acid. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed...

  8. Two efficient nitrite-reducing Lactobacillus strains isolated from traditional fermented pork (Nanx Wudl) as competitive starter cultures for Chinese fermented dry sausage.

    PubMed

    Chen, Xi; Li, Jiapeng; Zhou, Tong; Li, Jinchun; Yang, Junna; Chen, Wenhua; Xiong, Youling L

    2016-11-01

    Lactic acid bacteria isolated from traditional Dong pork product (Nanx Wudl) were investigated for their potential as starter cultures for Chinese fermented dry sausages. Based on preliminary screening, Lactobacillus plantarum CMRC6 and Lactobacillus sakei CMRC15, both showing excellent nitrite-reducing capacity, were used as single-strain starter cultures. For comparison, a commercial composite starter was also tested. In CMRC6 and CMRC15-inoculated sausages, lactic acid bacteria dominated the microflora and improved the microbiological safety by suppression of Enterobacteriaceae growth. Nitrite content of all inoculated sausages declined rapidly during ripening compared to non-inoculated. Texture profiles analysis showed inoculated sausages had more pronounced textural development during ripening. Sensory evaluation indicated CMRC6 and CMRC15-fermented sausages had comparable or more desirable organoleptic characteristics than sausage made with commercial starters. Therefore, CMRC6 and CMRC15 are promising candidates as multi-functional starter cultures for microbiological safety and residual nitrite control in gourmet Chinese dry sausage production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  10. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  11. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  12. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactic acid test system. 862.1450 Section 862.1450....1450 Lactic acid test system. (a) Identification. A lactic acid test system is a device intended to measure lactic acid in whole blood and plasma. Lactic acid measurements that evaluate the acid-base status...

  13. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Lactic acid. 184.1061 Section 184.1061 Food and... Substances Affirmed as GRAS § 184.1061 Lactic acid. (a) Lactic acid (C3H6O3, CAS Reg. Nos.: dl mixture, 598-82-3; l-isomer, 79-33-4; d-isomer, 10326-41-7), the chemical 2-hydroxypropanoic acid, occurs...

  14. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Lactic acid. 184.1061 Section 184.1061 Food and... Substances Affirmed as GRAS § 184.1061 Lactic acid. (a) Lactic acid (C3H6O3, CAS Reg. Nos.: dl mixture, 598-82-3; l-isomer, 79-33-4; d-isomer, 10326-41-7), the chemical 2-hydroxypropanoic acid, occurs...

  15. The effect of lactic acid bacterial starter culture and chemical additives on wilted rice straw silage.

    PubMed

    Wang, Yan-Su; Shi, Wei; Huang, Lin-Ting; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-04-01

    Lactic acid bacteria (LAB) are suitable for rice straw silage fermentation, but have been studied rarely, and rice straw as raw material for ensiling is difficult because of its disadvantages, such as low nutrition for microbial activities and low abundances of natural populations of LAB. So we investigated the effect of application of LAB and chemical additives on the fermentation quality and microbial community of wilted rice straw silage. Treatment with chemical additives increased the concentrations of crude protein (CP), water soluble carbohydrate (WSC), acetic acid and lactic acid, reduced the concentrations of acid detergent fiber (ADF) and neutral detergent fiber (NDF), but did not effectively inhibit the growth of spoilage organisms. Inoculation with LABs did not improve the nutritional value of the silage because of poor growth of LABs in wilted rice straw. Inoculation with LAB and addition of chemical materials improved the quality of silage similar to the effects of addition of chemical materials alone. Growth of aerobic and facultatively anaerobic bacteria was inhibited by this mixed treatment and the LAB gradually dominated the microbial community. In summary, the fermentation quality of wilted rice straw silage had improved by addition of LAB and chemical materials. © 2015 Japanese Society of Animal Science.

  16. 21 CFR 582.1061 - Lactic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Lactic acid. 582.1061 Section 582.1061 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1061 Lactic acid. (a) Product. Lactic acid. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.1061 - Lactic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Lactic acid. 582.1061 Section 582.1061 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1061 Lactic acid. (a) Product. Lactic acid. (b) Conditions of use. This substance is generally...

  18. 21 CFR 582.1061 - Lactic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Lactic acid. 582.1061 Section 582.1061 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1061 Lactic acid. (a) Product. Lactic acid. (b) Conditions of use. This substance is generally...

  19. 21 CFR 582.1061 - Lactic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Lactic acid. 582.1061 Section 582.1061 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1061 Lactic acid. (a) Product. Lactic acid. (b) Conditions of use. This substance is generally...

  20. Yeasts from autochthonal cheese starters: technological and functional properties.

    PubMed

    Binetti, A; Carrasco, M; Reinheimer, J; Suárez, V

    2013-08-01

    The aim of this work was to identify 20 yeasts isolated from autochthonal cheese starters and evaluate their technological and functional properties. The capacities of the yeasts to grow at different temperatures, pH, NaCl and lactic acid concentrations as well as the proteolytic and lipolytic activities were studied. Moreover, survival to simulated gastrointestinal digestion, hydrophobicity, antimicrobial activity against pathogens and auto- and co-aggregation abilities were evaluated. The sequentiation of a fragment from the 26S rDNA gene indicated that Kluyveromyces marxianus was the predominant species, followed by Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces lactis and Galactomyces geotrichum. RAPD with primer M13 allowed a good differentiation among strains from the same species. All strains normally grew at pH 4.7-5.5 and temperatures between 15 and 35°C. Most of them tolerated 10% NaCl and 3% lactic acid. Some strains showed proteolytic (eight isolates) and/or lipolytic (four isolates) capacities. All strains evidenced high gastrointestinal resistance, moderate hydrophobicity, intermediate auto-aggregation and variable co-aggregation abilities. No strains inhibited the growth of the pathogens assayed. Some strains from dairy sources showed interesting functional and technological properties. This study has been the first contribution to the identification and characterization of yeasts isolated from autochthonal cheese starters in Argentina. Many strains could be proposed as potential candidates to be used as probiotics and/or as co-starters in cheese productions. © 2013 The Society for Applied Microbiology.

  1. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  2. Potential benefits of the application of yeast starters in table olive processing.

    PubMed

    Arroyo-López, Francisco N; Romero-Gil, Verónica; Bautista-Gallego, Joaquín; Rodríguez-Gómez, Francisco; Jiménez-Díaz, Rufino; García-García, Pedro; Querol, Amparo; Garrido-Fernández, Antonio

    2012-01-01

    Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, improve lactic acid bacteria growth, and inhibit spoilage microorganisms. Nowadays, they are being considered as probiotic agents because many species are able to resist the passage through the gastrointestinal tract and show favorable effects on the host. In this way, yeasts may improve the health of consumers by means of the degradation of non-assimilated compounds (such as phytate complexes), a decrease in cholesterol levels, the production of vitamins and antioxidants, the inhibition of pathogens, an adhesion to intestinal cell line Caco-2, and the maintenance of epithelial barrier integrity. Many yeast species, usually found in table olive processing (Wickerhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens, and Kluyveromyces lactis, among others), have exhibited some of these properties. Thus, the selection of the most appropriate strains to be used as starters in this fermented vegetable, alone or in combination with lactic acid bacteria, is a promising research line to develop in the near future.

  3. Potential benefits of the application of yeast starters in table olive processing

    PubMed Central

    Arroyo-López, Francisco N.; Romero-Gil, Verónica; Bautista-Gallego, Joaquín; Rodríguez-Gómez, Francisco; Jiménez-Díaz, Rufino; García-García, Pedro; Querol, Amparo; Garrido-Fernández, Antonio

    2012-01-01

    Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, improve lactic acid bacteria growth, and inhibit spoilage microorganisms. Nowadays, they are being considered as probiotic agents because many species are able to resist the passage through the gastrointestinal tract and show favorable effects on the host. In this way, yeasts may improve the health of consumers by means of the degradation of non-assimilated compounds (such as phytate complexes), a decrease in cholesterol levels, the production of vitamins and antioxidants, the inhibition of pathogens, an adhesion to intestinal cell line Caco-2, and the maintenance of epithelial barrier integrity. Many yeast species, usually found in table olive processing (Wickerhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens, and Kluyveromyces lactis, among others), have exhibited some of these properties. Thus, the selection of the most appropriate strains to be used as starters in this fermented vegetable, alone or in combination with lactic acid bacteria, is a promising research line to develop in the near future.

  4. Performance of starter in yogurt supplemented with soy protein isolate and biotransformation of isoflavones during storage period.

    PubMed

    Pham, T Thuy; Shah, Nagendra P

    2009-01-01

    In this study, soy protein isolate (SPI) (4%, v/w) was supplemented to the yogurt mix to increase the amount of biologically active isoflavone in yogurt (SY). The control yogurt was without any SPI supplementation (USY). The supplementation significantly (P < 0.05) increased the lactose metabolism by the yogurt starter including Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 (Lb 11842) and Streptococcus thermophilus ST 1342 (ST 1342) during the fermentation process by 4.7%. The starter produced more acetic acid and less lactic acid in SY than that in USY and altered the ratio of lactic and acetic acid during the entire storage period. The viability of both Lb 11842 and ST 1342 in SY was significantly (P < 0.05) lower than that in USY from 14 d of the storage period, however, their concentration still remained high (8.11 to 8.84 log CFU/g). The starter transformed 72.8% of total inactive isoflavone glycosides (IG) to active isoflavone aglycones (IA), increasing the IA content from 1.35 to 15.01 mg/100 g sample. During the storage period, IA concentration slowly rose from 15.02 to 15.51 mg/100 g sample.

  5. Genome Sequence of Lactococcus raffinolactis Strain 4877, Isolated from Natural Dairy Starter Culture

    PubMed Central

    Meslier, Victoria; Loux, Valentin

    2012-01-01

    The nonstarter lactic acid bacterium Lactococcus raffinolactis is prevalent in a wide range of environments, such as the dairy environment, but little is known about this species. Here, we present the draft genome of Lactococcus raffinolactis strain 4877, isolated from a natural mesophilic dairy starter culture. PMID:23105090

  6. Technological and functional applications of low-calorie sweeteners from lactic acid bacteria.

    PubMed

    Patra, F; Tomar, S K; Arora, S

    2009-01-01

    Lactic acid bacteria (LAB) have been extensively used for centuries as starter cultures to carry out food fermentations and are looked upon as burgeoning "cell factories" for production of host of functional biomolecules and food ingredients. Low-calorie sugars have been a recent addition and have attracted a great deal of interest of researchers, manufacturers, and consumers for varied reasons. These sweeteners also getting popularized as low-carb sugars have been granted generally recommended as safe (GRAS) status by the U.S. Federal Drug Administration (USFDA) and include both sugars and sugar alcohols (polyols) which in addition to their technological attributes (sugar replacer, bulking agent, texturiser, humectant, cryoprotectant) have been observed to exert a number of health benefits (low calories, low glycemic index, anticariogenic, osmotic diuretics, obesity control, prebiotic). Some of these sweeteners successfully produced by lactic acid bacteria include mannitol, sorbitol, tagatose, and trehalose and there is a potential to further enhance their production with the help of metabolic engineering. These safe sweeteners can be exploited as vital food ingredients for development of low-calorie foods with added functional values especially for children, diabetic patients, and weight watchers.

  7. Use of Protein Hydrolysates in Industrial Starter Culture Fermentations

    NASA Astrophysics Data System (ADS)

    Ummadi, Madhavi (Soni); Curic-Bawden, Mirjana

    Lactic acid bacteria (LAB) have been used as starter cultures for fermenting foods long before the importance of microorganisms were recognized. The most important group of LAB are the lactococci, lactobacilli, streptococci, and pediococci. Additionally, bifidobacteria have been included as a probiotic, providing added value to the product. Since the genera involved are so diverse, the nutritional requirements (energy, carbon and nitrogen sources) differ significantly between and within species. Designing an optimum fermentation medium for production of active and vigorous LAB starter cultures and probiotics requires selecting the right raw ingredients, especially protein hydrolysates that can provide adequate nutrients for growth and viability. This chapter attempts to describe the application of various commercial protein hydrolysates used for production of dairy and meat starter cultures, with special emphasis on meeting the nitrogen requirements of industrially important LAB species.

  8. Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji

    2015-01-01

    Production of optically pure lactic acid from lignocellulosic material for commercial purposes is hampered by several difficulties, including heterofermentation of pentose sugars and high energy consumption by mesophilic lactic acid bacteria. Here, we report a novel lactic acid bacterium, strain QU 50, that has the potential to produce optically pure l-lactic acid (≥99.2%) in a homofermentative manner from xylose under thermophilic conditions. Strain QU 50 was isolated from Egyptian fertile soil and identified as Enterococcus faecium QU 50 by analyzing its sugar fermentation pattern and 16S rRNA gene sequence. Enterococcus faecium QU 50 fermented xylose efficiently to produce lactic acid over wide pH (6.0-10.0) and temperature ranges (30-52°C), with a pH of 6.5 and temperature of 50°C being optimal. To our knowledge, this is the first report of homofermentative lactic acid production from xylose by a thermophilic lactic acid bacterium. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Catalytic conversion of lactic acid and its derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokitkar, P.B.; Langford, R.; Miller, D.J.

    1993-12-31

    The catalytic upgrading of lactic acid and methyl lactate is being investigated. With the commercialization of inexpensive starch fermentation technologies, US production of lactic acid is undergoing a surge. Dropping cost and increased availability offer a major opportunity to develop lactic acid as a renewable feedstock for chemicals production. IT can be catalytically converted into several important chemical intermediates currently derived from petroleum including acrylic acid, propanoic acid, and 2,3-pentanedione. The process can expand the potential of biomass as a substitute feedstock for petroleum and can benefit both the US chemical process industry and US agriculture via increased production ofmore » high-value, non-food products from crops and crop byproducts. Reaction studies of lactic acid and its ester are conducted in fixed bed reactors at 250-380{degrees}C and 0.1-0.5 MPa (1-5 atm) using salt catalysts on low surface area supports. Highest selectivities achieved are 42% to acrylic acid and 55% to 2,3-pentanedione from lactic acid over NaNO{sub 3} catalyst on low surface area silica support. High surface area (microporous) or highly acidic supports promote fragmentation to acetaldehyde and thus reduce yields of desirable products. The support acidity gives rice to lactic acid from neat methyl lactate feed but the lactic acid yield goes down after the nitrate salt is impregnated on the support. Both lactic acid and methyl lactate form 2,3-pentanedione. Methyl lactate reactions are more complex since it forms all the products obtained from lactic acid as well as many corresponding esters of the acids obtained from lactic acid (mainly methyl acrylate, methyl propionate, methyl acetate). At high temperatures, methyl acetate and acetic acid yields become significant from methyl lactate whereas lactic acid gives significant amount of acetol at high temperatures.« less

  10. Genome Sequence of Lactobacillus sakei subsp. sakei LS25, a Commercial Starter Culture Strain for Fermented Sausage.

    PubMed

    McLeod, Anette; Brede, Dag Anders; Rud, Ida; Axelsson, Lars

    2013-07-11

    Lactobacillus sakei is a lactic acid bacterium associated primarily with fermented meat and fish. Here, we present the draft genome sequence of L. sakei subsp. sakei strain LS25, a commercial starter culture strain for fermented sausage.

  11. The production of glucans via glucansucrases from Lactobacillus satsumensis isolated from a fermented beverage starter culture

    USDA-ARS?s Scientific Manuscript database

    Several starter cultures used in the production of fermented beverages were screened for lactic acid bacteria that produced water-insoluble polysaccharides from sucrose. The strain producing the greatest amount was identified as Lactobacillus satsumensis by its 16S RNA sequence. This strain produc...

  12. Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahony, Jennifer, E-mail: j.mahony@ucc.ie; Ainsworth, Stuart; Stockdale, Stephen

    Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes,more » and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.« less

  13. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  14. Biotechnological production of enantiomerically pure d-lactic acid.

    PubMed

    Klotz, Silvia; Kaufmann, Norman; Kuenz, Anja; Prüße, Ulf

    2016-11-01

    The fermentation process of l-lactic acid is well known. Little importance was attached to d-lactic acid, but in the past 10 years, d-lactic acid gained significantly in importance. d-Lactic acid is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of d-lactic acid. Additionally, the technological achievements in biotechnological d-lactic acid production including fermentation techniques like fed batch, simultaneous saccharification, and fermentation and continuous techniques are presented. Attention is also turned to suitable alternative substrates and their applicability in fermentation processes. Furthermore, advantages and disadvantages of product recovery and purification are discussed. Economic aspects of PLA are pointed out, and the present industrial producers of lactic acid are briefly introduced.

  15. Vaginal concentrations of lactic acid potently inactivate HIV

    PubMed Central

    Aldunate, Muriel; Tyssen, David; Johnson, Adam; Zakir, Tasnim; Sonza, Secondo; Moench, Thomas; Cone, Richard; Tachedjian, Gilda

    2013-01-01

    Objectives When Lactobacillus spp. dominate the vaginal microbiota of women of reproductive age they acidify the vagina to pH <4.0 by producing ∼1% lactic acid in a nearly racemic mixture of d- and l-isomers. We determined the HIV virucidal activity of racemic lactic acid, and its d- and l-isomers, compared with acetic acid and acidity alone (by the addition of HCl). Methods HIV-1 and HIV-2 were transiently treated with acids in the absence or presence of human genital secretions at 37°C for different time intervals, then immediately neutralized and residual infectivity determined in the TZM-bl reporter cell line. Results l-lactic acid at 0.3% (w/w) was 17-fold more potent than d-lactic acid in inactivating HIVBa-L. Complete inactivation of different HIV-1 subtypes and HIV-2 was achieved with ≥0.4% (w/w) l-lactic acid. At a typical vaginal pH of 3.8, l-lactic acid at 1% (w/w) more potently and rapidly inactivated HIVBa-L and HIV-1 transmitter/founder strains compared with 1% (w/w) acetic acid and with acidity alone, all adjusted to pH 3.8. A final concentration of 1% (w/w) l-lactic acid maximally inactivated HIVBa-L in the presence of cervicovaginal secretions and seminal plasma. The anti-HIV activity of l-lactic acid was pH dependent, being abrogated at neutral pH, indicating that its virucidal activity is mediated by protonated lactic acid and not the lactate anion. Conclusions l-lactic acid at physiological concentrations demonstrates potent HIV virucidal activity distinct from acidity alone and greater than acetic acid, suggesting a protective role in the sexual transmission of HIV. PMID:23657804

  16. Preparation of a Lactobacillus plantarum starter culture for cucumber fermentations that can meet kosher guidelines

    USDA-ARS?s Scientific Manuscript database

    A method is described for growth of a Lactobacillus plantarum starter culture in jars of commercially available pasteurized fresh-pack kosher dill cucumbers so that jars can be used to inoculate commercial scale cucumber fermentation tanks. A procedure is also described to transfer lactic acid bacte...

  17. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides.

    PubMed

    Zannini, Emanuele; Waters, Deborah M; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.

  18. Stress Physiology of Lactic Acid Bacteria

    PubMed Central

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie

    2016-01-01

    SUMMARY Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  19. Stress Physiology of Lactic Acid Bacteria.

    PubMed

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters.

    PubMed

    Gatti, Monica; Bottari, Benedetta; Lazzi, Camilla; Neviani, Erasmo; Mucchetti, Germano

    2014-02-01

    The robustness of the starter culture during cheese fermentation is enhanced by the presence of a rich consortium of microbes. Natural starters are consortia of microbes undoubtedly richer than selected starters. Among natural starters, natural whey starters (NWS) are the most common cultures currently used to produce different varieties of cheeses. Undefined NWS are typically used for Italian cooked, long-ripened, extra-hard, raw milk cheeses, such as Parmigiano Reggiano and Grana Padano. Together with raw milk microbiota, NWS are responsible for most cheese characteristics. The microbial ecology of these 2 cheese varieties is based on a complex interaction among starter lactic acid bacteria (SLAB) and nonstarter lactic acid bacteria (NSLAB), which are characterized by their different abilities to grow in a changing substrate. This review aims to summarize the latest findings on Parmigiano Reggiano and Grana Padano to better understand the dynamics of SLAB, which mainly arise from NWS, and NSLAB, which mainly arise from raw milk, and their possible role in determining the characteristics of these cheeses. The review is presented in 4 main sections. The first summarizes the main microbiological and chemical properties of the ripened cheese as determined by cheese-making process variables, as these variables may affect microbial growth. The second describes the microbiota of raw milk as affected by specific milk treatments, from milking to the filling of the cheese milk vat. The third describes the microbiota of NWS, and the fourth reviews the knowledge available on microbial dynamics from curd to ripened cheese. As the dynamics and functionality of complex undefined NWS is one of the most important areas of focus in current food microbiology research, this review may serve as a good starting point for implementing future studies on microbial diversity and functionality of undefined cheese starter cultures. Copyright © 2014 American Dairy Science Association

  1. Improvement in sensory characteristics of Campbell Early wine by adding dual starters of Saccharomyces cerevisiae and Oenococcus oeni.

    PubMed

    Yoo, Ki-Seon; Kim, Ji Eun; Seo, Eun-Young; Kim, Yu Jin; Choi, Hwa Young; Yoon, Hyang-Sik; Kim, Myoung-Dong; Han, Nam Soo

    2010-07-01

    This study was performed to investigate the effects of adding a dual starter on the chemical and sensory characteristics of red wine made of Campbell Early grape. The yeast starter, Saccharomyces cerevisiae, and lactic acid bacteria (LAB) starter, Oenococcus oeni, were used for inoculation in the winemaking process for alcoholic and malolactic fermentation (MLF), respectively. After 200 days incubation, the chemical compositions of yeast/LAB-added wine (YL-wine) were compared with those of no starter-added wine (control) and yeast-added wine (Y-wine). The results show that no significant differences were observed in pH, total sugar, and alcohol content among wine samples, but the malic acid content in YL-wine was significantly reduced and various esters and higher alcohols were synthesized. The sensory test revealed that the addition of dual starters resulted in improved overall acceptability in wine. This study emphasizes the importance of O. oeni in addition to yeast in making Campbell Early wine.

  2. Iranian wheat flours from rural and industrial mills: Exploitation of the chemical and technology features, and selection of autochthonous sourdough starters for making breads.

    PubMed

    Pontonio, Erica; Nionelli, Luana; Curiel, José Antonio; Sadeghi, Alireza; Di Cagno, Raffaella; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2015-05-01

    This study aimed at describing the main chemical and technology features of eight Iranian wheat flours collected from industrial and artisanal mills. Their suitability for bread making was investigated using autochthonous sourdough starters. Chemical analyses showed high concentration of fibers and ash, and technology aptitude for making breads. As shown through 2-DE analyses, gliadin and glutenin subunits were abundant and varied among the flours. According to the back slopping procedure, type I sourdoughs were prepared from Iranian flours, and lactic acid bacteria were typed and identified. Strains of Pediococcus pentosaceus, Weissella cibaria, Weissella confusa, and Leuconostoc citreum were the most abundant. Based on the kinetics of growth and acidification, quotient of fermentation and concentration of total free amino acids, lactic acid bacteria were selected and used as sourdough mixed starters for bread making. Compared to spontaneous fermentation, sourdoughs fermented with selected and mixed starters favored the increase of the concentrations of organic acids and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities. Although the high concentration of fibers, selected and mixed starters improved the textural features of the breads. This study might had contribute to the exploitation of the potential of Iranian wheat flours and to extend the use of sourdough, showing positive technology, nutritional and, probably, economic repercussions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE.

    PubMed

    Thanh, Vu Nguyen; Mai, Le Thuy; Tuan, Duong Anh

    2008-12-10

    The diversity of fungi and bacteria associated with traditional Vietnamese alcohol fermentation starters (banh men) was investigated by PCR-mediated DGGE. From 52 starter samples, 13 species of fungi (including yeasts) and 23 species of bacteria were identified. The fungal composition of the starters was consistent with little variation among samples. It consisted of amylase producers (Rhizopus oryzae, R. microsporus, Absidia corymbifera, Amylomyces sp., Saccharomycopsis fibuligera), ethanol producers (Saccharomyces cerevisiae, Issatchenkia sp., Pichia anomala, Candida tropicalis, P. ranongensis, Clavispora lusitaniae), and (opportunistic) contaminants (Xeromyces bisporus, Botryobasidium subcoronatum). The bacterial microflora of starters was highly variable in species composition and dominated by lactic acid bacteria (LAB). The most frequent LAB were Pediococcus pentosaceus, Lactobacillus plantarum, L. brevis, Weissella confusa, and W. paramesenteroides. Species of amylase-producing Bacillus (Bacillus subtilis, B. circulans, B. amyloliquefaciens, B. sporothermodurans), acetic acid bacteria (Acetobacter orientalis, A. pasteurianus), and plant pathogens/environment contaminants (Burkholderia ubonensis, Ralstonia solanacearum, Pelomonas puraquae) were also detected. Fungal DGGE was found to be useful for evaluating starter type and starter quality. Moreover, in view of the high biological diversity of these substrates, bacterial DGGE may be useful in determining the identity of a starter. The constant occurrence of opportunistic contaminants highlights the need for careful examination of the role of individual components in starters.

  4. Microbial production of lactic acid: the latest development.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2016-12-01

    Lactic acid is an important platform chemical for producing polylactic acid (PLA) and other value-added products. It is naturally produced by a wide spectrum of microbes including bacteria, yeast and filamentous fungi. In general, bacteria ferment C5 and C6 sugars to lactic acid by either homo- or hetero-fermentative mode. Xylose isomerase, phosphoketolase, transaldolase, l- and d-lactate dehydrogenases are the key enzymes that affect the ways of lactic acid production. Metabolic engineering of microbial strains are usually needed to produce lactic acid from unconventional carbon sources. Production of d-LA has attracted much attention due to the demand for producing thermostable PLA, but large scale production of d-LA has not yet been commercialized. Thermophilic Bacillus coagulans strains are able to produce l-lactic acid from lignocellulose sugars homo-fermentatively under non-sterilized conditions, but the lack of genetic tools for metabolically engineering them severely affects their development for industrial applications. Pre-treatment of agriculture biomass to obtain fermentable sugars is a pre-requisite for utilization of the huge amounts of agricultural biomass to produce lactic acid. The major challenge is to obtain quality sugars of high concentrations in a cost effective-way. To avoid or minimize the use of neutralizing agents during fermentation, genetically engineering the strains to make them resist acidic environment and produce lactic acid at low pH would be very helpful for reducing the production cost of lactic acid.

  5. Sensitive determination of D-lactic acid and L-lactic acid in urine by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Henry, H; Marmy Conus, N; Steenhout, P; Béguin, A; Boulat, O

    2012-04-01

    D-lactic acid in urine originates mainly from bacterial production in the intestinal tract. Increased D-lactate excretion as observed in patients affected by short bowel syndrome or necrotizing enterocolitis reflects D-lactic overproduction. Therefore, there is a need for a reliable and sensitive method able to detect D-lactic acid even at subclinical elevation levels. A new and highly sensitive method for the simultaneous determination of L- and D-lactic acid by a two-step procedure has been developed. This method is based on the concentration of lactic acid enantiomers from urine by supported liquid extraction followed by high-performance liquid chromatography-tandem mass spectrometry. The separation was achieved by the use of an Astec Chirobiotic™ R chiral column under isocratic conditions. The calibration curves were linear over the ranges of 2-400 and 0.5-100 µmol/L respectively for L- and D-lactic acid. The limit of detection of D-lactic acid was 0.125 µmol/L and its limit of quantification was 0.5 µmol/L. The overall accuracy and precision were well within 10% of the nominal values. The developed method is suitable for production of reference values in children and could be applied for accurate routine analysis. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Enhancement of gamma-aminobutyric acid (GABA) levels using an autochthonous Lactobacillus futsaii CS3 as starter culture in Thai fermented shrimp (Kung-Som).

    PubMed

    Sanchart, Chatthaphisuth; Rattanaporn, Onnicha; Haltrich, Dietmar; Phukpattaranont, Pimpimol; Maneerat, Suppasil

    2017-08-01

    Gamma-aminobutyric acid (GABA) is a non-proteinogenic amino acid, which has a variety of well-characterized beneficial physiological functions. In order to improve GABA levels and the fermentation process of Thai fermented shrimp (Kung-Som), autochthonous Lactobacillus futsaii CS3 was inoculated as a starter culture into Kung-Som, and its effects on the quality of Kung-Som were studied. The optimal conditions for GABA production in Kung-Som as obtained by response surface methodology (RSM) using a central composite design (CCD) were an inoculum size of roughly 10 7 CFU/g (X 1 ) of L. futsaii cells together with the addition of 0.5% (w/w) monosodium glutamate (MSG) (X 2 ), resulting in maximum GABA levels of 10,500 mg per kg fresh product. Under these optimized conditions, the experimental GABA content of Kung-Som with an added starter culture was up to four times higher than that of the control (without starter culture) or commercial Kung-Som products (10,120 mg/kg product). Kung-Som produced by inoculation with L. futsaii CS3 but without addition of MSG showed a considerably increased GABA content of 7790 mg/kg compared to the control. Fermentation time was reduced to less than 1 week for these samples compared to the control batches, which took up to 19 days. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) revealed that L. futsaii CS3 remained prominently throughout the Kung-Som fermentation, and that lactic acid bacteria (LAB) rapidly dominated the total microflora because of this inoculation with L. futsaii CS3. Kung-Som samples with starter culture were accepted as well as commercial ones by 30 panelists (p > 0.05). In conclusion, L. futsaii CS3 is a good starter culture for GABA production, resulting in, improved microbiological safety as well as reduced fermentation time.

  7. Production of wheat bread without preservatives using sourdough starters

    PubMed Central

    Denkova, Rositsa; Ilieva, Svetla; Denkova, Zapryana; Georgieva, Ljubka; Yordanova, Mariya; Nikolova, Dilyana; Evstatieva, Yana

    2014-01-01

    In order for the beneficial effects of sourdough application in breadmaking to take place a proper selection of lactic acid bacteria species and strains, an appropriate technology and effective control of the purity and activity of the selected cultures. Four symbiotic starters for sourdough for the production of bread were developed and probated in a production laboratory using the selected strains Lactobacillus brevis LBRZ7, L. buchneri LBRZ6, L. plantarum X2, L. paracasei RN5, L. sanfranciscensis R and L. fermentum LBRH10 and the probiotic strain Propionibacterium freudenreichii ssp. shermanii NBIMCC 327. The starter sourdoughs that include Propionibacterium freudenreichii ssp. shermanii NBIMCC 327 had greater antimicrobial activity against saprophytic microorganisms: Bacillus subtilis, B. mesentericus, Aspergillus niger, Penicillium sp. and Rhizopus sp., but none of them inhibited the growth of bakery yeasts Saccharomyces cerevisiae. It was established that in order to prevent bacterial spoilage 10% of the selected starter sourdoughs had to be added in the breadmaking process, while for prevention of mold spoilage the necessary amount of starter sourdough had to be between 15% and 20%.The application of the developed starters for the production of wheat bread guarantees longer shelf life and no adverse alterations in the features of the final bread. PMID:26019574

  8. Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products.

    PubMed

    Fiorentini, Angela Maria; Sawitzki, Maristela Cortez; Bertol, Teresinha Marisa; Sant'anna, Ernani S

    2009-01-01

    Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products Viability of Staphylococcus xylosus strains AD1 and U5 isolated from natural fermented sausages was investigated as starter cultures in fermented sausages produced in the South Region of Brazil. The study demonstrated that the Staphylococcus xylosus strains AD1 and U5 showed significant growth during fermentation, stability over freeze-dried process, negative reaction for staphylococcal enterotoxins and viability for using as a single-strain culture or associated with lactic acid bacteria for production of fermented sausages.

  9. Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs.

    PubMed

    Galle, Sandra; Schwab, Clarissa; Arendt, Elke; Gänzle, Michael

    2010-05-12

    The addition of sourdough fermented with lactic acid bacteria synthesizing organic acids and oligo- and exopolysaccharides (EPS) from sucrose enhances texture, nutritional value, shelf life, and machinability of wheat, rye, and gluten-free bread. This study compared acetate, mannitol, and oligosaccharide formation of EPS-producing strains of Weissella and Leuconostoc spp. to the traditional sourdough starter Lactobacillus sanfranciscensis. In broth, Leuconostoc strains generally formed acetate and mannitol, whereas Weissella produced only small amounts of acetate and no mannitol in the presence of sucrose. In the presence of sucrose and maltose, Weissella and Leuconostoc strains synthesized glucooligosaccharides and EPS. Strains of Weissella were employed as starter cultures for wheat and sorghum sourdough and formed 0.8-8 g kg(-1) EPS and gluco-oligosaccharides but only low amounts of acetate and mannitol. In contrast, the formation of EPS from sucrose led to the production of high amounts of acetate and mannitol by L. sanfranciscensis LTH 2950 in wheat sourdough. This study indicates that Weissella strains are suitable starter cultures for wheat and sorghum sourdoughs and efficiently produce gluco-oligosaccharides and EPS.

  10. Strain improvement of Lactobacillus lactis for D-lactic acid production.

    PubMed

    Joshi, D S; Singhvi, M S; Khire, J M; Gokhale, D V

    2010-04-01

    Three mutants, isolated by repeated UV mutagenesis of Lactobacillus lactis NCIM 2368, produced increased D: -lactic acid concentrations. These mutants were compared with the wild type using 100 g hydrolyzed cane sugar/l in the fermentation medium. One mutant, RM2-24, produced 81 g lactic acid/l which was over three times that of the wild type. The highest D: -lactic acid (110 g/l) in batch fermentation was obtained with 150 g cane sugar/l with a 73% lactic acid yield. The mutant utilizes cellobiose efficiently, converting it into D-lactic acid suggesting the presence of cellobiase. Thus, this strain could be used to obtain D-lactic acid from cellulosic materials that are pre-hydrolyzed with cellulase.

  11. Lactic acid production from xylose by Geobacillus stearothermophilus strain 15

    NASA Astrophysics Data System (ADS)

    Kunasundari, B.; Naresh, S.; Chu, J. E.

    2017-09-01

    Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.

  12. Corrosion Behavior of Titanium in Artificial Saliva by Lactic Acid

    PubMed Central

    Qu, Qing; Wang, Lei; Chen, Yajun; Li, Lei; He, Yue; Ding, Zhongtao

    2014-01-01

    As one of the main products produced by oral microorganisms, the role of lactic acid in the corrosion of titanium is very important. In this study, the corrosion behavior of titanium in artificial saliva with and without lactic acid were investigated by open-circuit potentials (OCPs), polarization curves and electrochemical impedance spectroscopy (EIS). OCP firstly increased with the amount of lactic acid from 0 to 3.2 g/L and then tended to decrease from 3.2 to 5.0 g/L. The corrosion of titanium was distinctly affected by lactic acid, and the corrosion rate increased with increasing the amount of lactic acid. At each concentration of lactic acid, the corrosion rate clearly increased with increasing the immersing time. Results of scanning electron microscopy (SEM) also indicated that lactic acid accelerated the pitting corrosion in artificial saliva. A probable mechanism was also proposed to explain the experimental results. PMID:28788143

  13. Visualisation of insect tracheal systems by lactic acid immersion.

    PubMed

    Ruan, Y; Li, Y; Zhang, M; Chen, X; Liu, Z; Wang, S; Jiang, S

    2018-05-15

    The endeavours to reveal the tracheal system of insects and some arachnids has a long history. The traditional way to observe a tracheal system in an insect body is by utilising the glycerin immersion method. In this study, we developed the lactic acid immersion method, which reveals a more complete tracheal system. By mounting various types of live specimens or body parts directly into lactic acid, multiple intact and complex tracheal systems were clearly visualised. The lactic acid immersion contributed to revealing tracheal systems by penetrating body tissue while reserving enough time for observation before the penetration of the tracheae. Preliminary comparisons were conducted between lactic acid and other mediae, including glycerin. It turned out that lactic acid immersion provides better details and more distinct structures. In our test, the optimal time for observing the tracheal system was 10-25 min after the organism was immersed in lactic acid. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  14. The relationships between consumer liking, sensory and chemical attributes of Vitis vinifera L. cv. Pinotage wines elaborated with different Oenococcus oeni starter cultures.

    PubMed

    Malherbe, Sulette; Menichelli, Elena; du Toit, Maret; Tredoux, Andreas; Muller, Nina; Naes, Tormod; Nieuwoudt, Hélène

    2013-08-30

    Malolactic fermentation (MLF) mediated by lactic acid bacteria (LAB) has been shown to modulate chemical and sensory attributes of wine. This study investigated the relation between consumer liking, chemical and sensory attributes of Vitis vinifera L. cv. Pinotage wines that were made over two vintages by four different lactic acid Oenococcus oeni starter cultures as well as a control treatment where MLF was prevented. Descriptive analysis showed that the sensory attributes buttery, caramel, vegetative flavour, fruity and nutty aroma differed significantly between the wines. These effects on the wines were not the same for the two vintages tested. Preference mapping results showed that the sensory attributes influenced the average consumer liking. The main chemical and sensory correlations found for MLF-treated wines were related to 2,3-butanedione (diacetyl) with the buttery character and various esters with fruity aromas. Although the direct effect of the bacterial starter cultures on wine sensory attributes is difficult to establish, and subject to variation over vintage, the present work suggests that the contribution of LAB starter cultures to wine sensory attributes can influence consumer liking. Selection of an MLF starter culture can thus potentially be used to develop specific wine styles. © 2013 Society of Chemical Industry.

  15. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.

    PubMed

    O'Sullivan, Daniel J; McSweeney, Paul L H; Cotter, Paul D; Giblin, Linda; Sheehan, Jeremiah J

    2016-04-01

    Nonstarter lactic acid bacteria are commonly implicated in undesirable gas formation in several varieties, including Cheddar, Dutch-, and Swiss-type cheeses, primarily due to their ability to ferment a wide variety of substrates. This effect can be magnified due to factors that detrimentally affect the composition or activity of starter bacteria, resulting in the presence of greater than normal amounts of fermentable carbohydrates and citrate. The objective of this study was to determine the potential for a facultatively heterofermentative Lactobacillus (Lactobacillus casei DPC6987) isolated from a cheese plant environment to promote gas defects in the event of compromised starter activity. A Swiss-type cheese was manufactured, at pilot scale and in triplicate, containing a typical starter culture (Streptococcus thermophilus and Lactobacillus helveticus) together with propionic acid bacteria. Lactobacillus helveticus populations were omitted in certain vats to mimic starter failure. Lactobacillus casei DPC6987 was added to each experimental vat at 4 log cfu/g. Cheese compositional analysis and X-ray computed tomography revealed that the failure of starter bacteria, in this case L. helveticus, coupled with the presence of a faculatively heterofermentative Lactobacillus (L. casei) led to excessive eye formation during ripening. The availability of excess amounts of lactose, galactose, and citrate during the initial ripening stages likely provided the heterofermentative L. casei with sufficient substrates for gas formation. The accrual of these fermentable substrates was notable in cheeses lacking the L. helveticus starter population. The results of this study are commercially relevant, as they demonstrate the importance of viability of starter populations and the control of specific nonstarter lactic acid bacteria to ensure appropriate eye formation in Swiss-type cheese. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights

  16. Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented quinoa sourdoughs.

    PubMed

    Ruiz Rodríguez, L; Vera Pingitore, E; Rollan, G; Cocconcelli, P S; Fontana, C; Saavedra, L; Vignolo, G; Hebert, E M

    2016-05-01

    To analyse lactic acid bacteria (LAB) diversity and technological-functional and safety properties of strains present during spontaneous fermented quinoa sourdoughs. Fermentation was performed by daily backslopping at 30°C for 10 days. Autochthonous LAB microbiota was monitored by a biphasic approach combining random amplified polymorphic DNA (RAPD)-PCR and rRNA gene sequencing with PCR-denaturing gradient gel electrophoresis (DGGE) analysis. Identification and intraspecies differentiation allowed to group isolates within nine LAB species belonging to four genera. A succession of LAB species occurred during 10-days backslopping; Lactobacillus plantarum and Lactobacillus brevis were detected as dominant species in the consortium. The characterization of 15 representative LAB strains was performed based on the acidifying capacity, starch and protein hydrolysis, γ-aminobutyric acid and exopolysaccharides production, antimicrobial activity and antibiotic resistance. Strains characterization led to the selection of Lact. plantarum CRL1905 and Leuconostoc mesenteroides CRL1907 as candidates to be assayed as functional starter culture for the gluten-free (GF) quinoa fermented products. Results on native LAB microbiota present during quinoa sourdough fermentation will allow the selection of strains with appropriate technological properties to be used as a novel functional starter culture for GF-fermented products. © 2016 The Society for Applied Microbiology.

  17. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  18. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects.

    PubMed

    Singhvi, Mamata; Zendo, Takeshi; Sonomoto, Kenji

    2018-05-26

    Lactic acid (LA) is an important platform chemical due to its significant applications in various fields and its use as a monomer for the production of biodegradable poly(lactic acid) (PLA). Free LA production is required to get rid of CaSO 4 , a waste material produced during fermentation at neutral pH which will lead to easy purification of LA required for the production of biodegradable PLA. Additionally, there is no need to use corrosive acids to release free LA from the calcium lactate produced during neutral fermentation. To date, several attempts have been made to improve the acid tolerance of lactic acid bacteria (LAB) by using both genome-shuffling approaches and rational design based on known mechanisms of LA tolerance and gene deletion in yeast strains. However, the lack of knowledge and the complexity of acid-tolerance mechanisms have made it challenging to generate LA-tolerant strains by simply modifying few target genes. Currently, adaptive evolution has proven an efficient strategy to improve the LA tolerance of individual/engineered strains. The main objectives of this article are to summarize the conventional biotechnological LA fermentation processes to date, assess their overall economic and environmental cost, and to introduce modern LA fermentation strategies for free LA production. In this review, we provide a broad overview of free LA fermentation processes using robust LAB that can ferment in acidic environments, the obstacles to these processes and their possible solutions, and the impact on future development of free LA fermentation processes commercially.

  19. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    PubMed

    Fraqueza, Maria João

    2015-11-06

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products

    PubMed Central

    Fiorentini, Ângela Maria; Sawitzki, Maristela Cortez; Bertol, Teresinha Marisa; Sant’Anna, Ernani S.

    2009-01-01

    Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products Viability of Staphylococcus xylosus strains AD1 and U5 isolated from natural fermented sausages was investigated as starter cultures in fermented sausages produced in the South Region of Brazil. The study demonstrated that the Staphylococcus xylosus strains AD1 and U5 showed significant growth during fermentation, stability over freeze-dried process, negative reaction for staphylococcal enterotoxins and viability for using as a single-strain culture or associated with lactic acid bacteria for production of fermented sausages. PMID:24031331

  2. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers.

    PubMed

    Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei

    2016-10-01

    Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins. © The Author(s) 2016.

  3. Precision genome engineering in lactic acid bacteria

    PubMed Central

    2014-01-01

    Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selection and without leaving behind any foreign DNA. In this review we discuss the application of SSDR technology in lactic acid bacteria, with an emphasis on key factors that were critical to move this technology from E. coli into Lactobacillus reuteri and Lactococcus lactis. We also provide a blueprint for how to proceed if one is attempting to establish SSDR technology in a lactic acid bacterium. The emergence of CRISPR-Cas technology in genome engineering and its potential application to enhancing SSDR in lactic acid bacteria is discussed. The ability to perform precision genome engineering in medically and industrially important lactic acid bacteria will allow for the genetic improvement of strains without compromising safety. PMID:25185700

  4. Lactic acid and methane: improved exploitation of biowaste potential.

    PubMed

    Dreschke, G; Probst, M; Walter, A; Pümpel, T; Walde, J; Insam, H

    2015-01-01

    This feasibility study investigated a two-step biorefining approach to increase the value gained by recycling of organic municipal solid waste. Firstly, lactic acid was produced via batch fermentation at 37°C using the indigenous microbiome. Experiments revealed an optimal fermentation period of 24h resulting in high yields of lactic acid (up to 37gkg(-1)). The lactic acid proportion of total volatile fatty acid content reached up to 83%. Lactobacilli were selectively enriched to up to 75% of the bacterial community. Additionally conversion of organic matter to lactic acid was increased from 22% to 30% through counteracting end product inhibition by continuous lactic acid extraction. Secondly, fermentation residues were used as co-substrate in biomethane production yielding up to 618±41Nmlbiomethaneg(-1) volatile solids. Digestate, the only end product of this process can be used as organic fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    PubMed Central

    Senedese, Ana Lívia Chemeli; Maciel Filho, Rubens; Maciel, Maria Regina Wolf

    2015-01-01

    Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid). L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses) and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v) inoculum). Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid. PMID:25922852

  7. Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria.

    PubMed

    Kimoto-Nira, H; Moriya, N; Hayakawa, S; Kuramasu, K; Ohmori, H; Yamasaki, S; Ogawa, M

    2017-07-01

    It has recently been reported that the rare sugar d-allulose has beneficial effects, including the suppression of postprandial blood glucose elevation in humans, and can be substituted for sucrose as a low-calorie food ingredient. To examine the applications of d-allulose in the dairy industry, we investigated the effects of d-allulose on the acid production of 8 strains of yogurt starter (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and 4 strains of lactococci, including potential probiotic candidates derived from dairy products. Acid production by 2 L. delbrueckii ssp. bulgaricus yogurt starter strains in milk was suppressed by d-allulose, but this phenomenon was also observed in some strains with another sugar (xylose), a sugar alcohol (sorbitol), or both. In contrast, among the dairy probiotic candidates, Lactococcus lactis H61, which has beneficial effects for human skin when drunk as part of fermented milk, was the only strain that showed suppression of acid production in the presence of d-allulose. Strain H61 did not metabolize d-allulose. We did not observe suppression of acid production by strain H61 with the addition of xylose or sorbitol, and xylose and sorbitol were not metabolized by strain H61. The acid production of strain H61 after culture in a constituted medium (tryptone-yeast extract-glucose broth) was also suppressed with the addition of d-allulose, but growth efficiency and sugar fermentation style were not altered. Probiotic activities-such as the angiotensin-converting enzyme inhibitory activity of H61-fermented milk and the superoxide dismutase activity of H61 cells grown in tryptone-yeast extract-glucose broth-were not affected by d-allulose. d-Allulose may suppress acid production in certain lactic acid bacteria without altering their probiotic activity. It may be useful for developing new probiotic dairy products from probiotic strains such as Lactococcus lactis H61. Copyright © 2017 American Dairy Science

  8. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    PubMed

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  9. The importance of lactic acid in migraines and fibromyalgia.

    PubMed

    de Sá Ribeiro, Guido Assis Cachuba; Scola, Rosana Hermínia; Piovesan, Elcio Juliato; Wollmann Junior, Darley Rugeri; Paiva, Eduardo Dos Santos; da Cunha, Claudio Leinig Pereira; Werneck, Lineu Cesar

    2015-01-01

    Lactic acid is a byproduct of both muscle metabolism and the central nervous system. Changes in metabolism are related to various physiological and pathological conditions. The aim of this study was to determine the relationship between migraine and fibromyalgia with the levels of lactic acid in the blood. We study of 93 patients was divided into five groups: 1) patients with fibromyalgia (n=20); 2) episodic migraine (n=20); 3) chronic migraine (n=20); 4) fibromyalgia and episodic migraine (n= 13); and 5) fibromyalgia and chronic migraine (n=20), and 20 healthy subjects (control group). Blood levels of lactic acid were measured at four different time points: at rest, during aerobic exercise, during anaerobic physical activity and while resting after anaerobic exercise. Lactic acid increased in all groups during anaerobic physical activity without predominance for either group. During aerobic physical activity, all groups increased lactic acid levels, but the increase was more expressive in the chronic migraine group and the chronic migraine with fibromyalgia group without statistical significance. We did not found abnormalities involving the metabolism of lactic acid in episodic and chronic migraine with or without fibromyalgia. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  10. Fermented goats' milk produced with selected multiple starters as a potentially functional food.

    PubMed

    Minervini, Fabio; Bilancia, Maria Teresa; Siragusa, Sonya; Gobbetti, Marco; Caponio, Francesco

    2009-09-01

    A screening among five lactic acid bacteria, used alone or in combination, led to select a mixed starter (Streptococcus thermophilus CR12, Lactobacillus casei LC01, Lactobacillus helveticus PR4, Lactobacillus plantarum 1288) capable to produce a fermented goats' milk containing gamma-aminobutyric acid (GABA) and angiotensin-I converting enzyme (ACE)-inhibitory peptides. The fermented milk was characterized by cell counts of lactic acid bacteria not lower than 7.0 log cfu g(-1), even after 45 days of storage at 4 degrees C. Fermentation of goats' milk resulted in the production of ca. 28 mg kg(-1) of GABA. Furthermore the fermented goats' milk had an in vitro ACE-inhibitory activity of ca. 73%. Prolonged cold storage did not significantly affect both the concentration of GABA and the ACE-inhibitory activity. Moreover, the taurine content did not significantly vary during both fermentation and the entire storage period.

  11. Ultrasonic Monitoring of the Progress of Lactic Acid Fermentation

    NASA Astrophysics Data System (ADS)

    Masuzawa, Nobuyoshi; Kimura, Akihiro; Ohdaira, Etsuzo

    2003-05-01

    Promotion of lactic acid fermentation by ultrasonic irradiation has been attempted. It is possible to determine the progress of fermentation and production of a curd, i.e., yoghurt and or kefir, by measuring acidity using a pH meter. However, this method is inconvenient and indirect for the evaluation of the progress of lactic acid fermentation under anaerobic condition. In this study, an ultrasonic monitoring method for evaluating the progress of lactic acid fermentation was examined.

  12. Modelling and predicting the simultaneous growth of Escherichia coli and lactic acid bacteria in milk.

    PubMed

    Ačai, P; Valík, L'; Medved'ová, A; Rosskopf, F

    2016-09-01

    Modelling and predicting the simultaneous competitive growth of Escherichia coli and starter culture of lactic acid bacteria (Fresco 1010, Chr. Hansen, Hørsholm, Denmark) was studied in milk at different temperatures and Fresco inoculum concentrations. The lactic acid bacteria (LAB) were able to induce an early stationary state in E. coli The developed model described and tested the growth inhibition of E. coli (with initial inoculum concentration 10(3) CFU/mL) when LAB have reached maximum density in different conditions of temperature (ranging from 12 ℃ to 30 ℃) and for various inoculum sizes of LAB (ranging from approximately 10(3) to 10(7) CFU/mL). The prediction ability of the microbial competition model (the Baranyi and Roberts model coupled with the Gimenez and Dalgaard model) was first performed only with parameters estimated from individual growth of E. coli and the LAB and then with the introduced competition coefficients evaluated from co-culture growth of E. coli and LAB in milk. Both the results and their statistical indices showed that the model with incorporated average values of competition coefficients improved the prediction of E. coli behaviour in co-culture with LAB. © The Author(s) 2015.

  13. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  14. Lactic acid bacteria of meat and meat products.

    PubMed

    Egan, A F

    1983-09-01

    When the growth of aerobic spoilage bacteria is inhibited, lactic acid bacteria may become the dominant component of the microbial flora of meats. This occurs with cured meats and with meats packaged in films of low gas permeability. The presence of a flora of psychrotrophic lactic acid bacteria on vacuum-packaged fresh chilled meats usually ensures that shelf-life is maximal. When these organisms spoil meats it is generally by causing souring, however other specific types of spoilage do occur. Some strains cause slime formation and greening of cured meats, and others may produce hydrogen sulphide during growth on vacuum-packaged beef. The safety and stability of fermented sausages depends upon fermentation caused by lactic acid bacteria. Overall the presence on meats of lactic acid bacteria is more desirable than that of the types of bacteria they have replaced.

  15. Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria.

    PubMed

    Verni, Michela; Wang, Changyin; Montemurro, Marco; De Angelis, Maria; Katina, Kati; Rizzello, Carlo G; Coda, Rossana

    2017-01-01

    This study investigated the metabolic traits of 27 lactic acid bacteria (LAB) strains belonging to different species, previously isolated from faba bean. The activities assayed, related to technological and nutritional improvement of fermented faba bean, included peptidases, β-glucosidase, phytase, as well as exopolysaccharides synthesis and antimicrobial properties. In addition, the bacteria performance as starter cultures during faba bean fermentation on proteolysis, antioxidant potential, and degradation of condensed tannins were assessed. Fermentative profiling showed that only 7 out of 27 strains were able to metabolize D-raffinose, particularly Leuc. mesenteroides I01 and I57. All strains of Pediococcus pentosaceus exerted high PepN activity and exhibited β-glucosidase activity higher than the median value of 0.015 U, while phytase activity was largely distributed among the different strains. All the weissellas, and in lower amount leuconostocs, showed ability to produce EPS from sucrose. None of the strains did not survive the simulated gastrointestinal tract with the exception of P. pentosaceus I56, I76, 147, I214, having a viability of 8-9 log CFU/ml at the end of the treatment. None of the strains showed antimicrobial activity toward Staphylococcus aureus , while eight strains of P. pentosaceus exhibited a strong inhibitory activity toward Escherichia coli and Listeria monocytogenes . Generally, the doughs fermented with pediococci exhibited high amount of total free amino acids, antioxidant activity, and condensed tannins degradation. These results allowed the identification of LAB biotypes as potential starter cultures for faba bean bioprocessing, aiming at the enhancement of faba bean use in novel food applications.

  16. Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria

    PubMed Central

    Verni, Michela; Wang, Changyin; Montemurro, Marco; De Angelis, Maria; Katina, Kati; Rizzello, Carlo G.; Coda, Rossana

    2017-01-01

    This study investigated the metabolic traits of 27 lactic acid bacteria (LAB) strains belonging to different species, previously isolated from faba bean. The activities assayed, related to technological and nutritional improvement of fermented faba bean, included peptidases, β-glucosidase, phytase, as well as exopolysaccharides synthesis and antimicrobial properties. In addition, the bacteria performance as starter cultures during faba bean fermentation on proteolysis, antioxidant potential, and degradation of condensed tannins were assessed. Fermentative profiling showed that only 7 out of 27 strains were able to metabolize D-raffinose, particularly Leuc. mesenteroides I01 and I57. All strains of Pediococcus pentosaceus exerted high PepN activity and exhibited β-glucosidase activity higher than the median value of 0.015 U, while phytase activity was largely distributed among the different strains. All the weissellas, and in lower amount leuconostocs, showed ability to produce EPS from sucrose. None of the strains did not survive the simulated gastrointestinal tract with the exception of P. pentosaceus I56, I76, 147, I214, having a viability of 8–9 log CFU/ml at the end of the treatment. None of the strains showed antimicrobial activity toward Staphylococcus aureus, while eight strains of P. pentosaceus exhibited a strong inhibitory activity toward Escherichia coli and Listeria monocytogenes. Generally, the doughs fermented with pediococci exhibited high amount of total free amino acids, antioxidant activity, and condensed tannins degradation. These results allowed the identification of LAB biotypes as potential starter cultures for faba bean bioprocessing, aiming at the enhancement of faba bean use in novel food applications. PMID:29312174

  17. Review - Lactic acid bacteria in traditional fermented Asian foods.

    PubMed

    Azam, Mariya; Mohsin, Mashkoor; Ijaz, Hira; Tulain, Ume Ruqia; Ashraf, Muhammad Adnan; Fayyaz, Ahad; Abadeen, Zainul; Kamran, Qindeel

    2017-09-01

    Lactic acid bacteria play vital roles in various fermented foods in Asia. This paper reviews many types of the world's lactic acid fermented foods and discusses the beneficial effects of lactic acid fermentation of food. The lactic acid bacteria associated with foods now include species of the genera Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. Lactic acid bacteria (LAB) are involved in many fermentation processes of Asian traditional foods, demonstrating their profound effects on improving food quality and food safety. During the past few decades' interest has arisen in the use of the varied antagonistic activities of LAB to extent the shelf-life of protein-rich products such as meats and fish. This review article outlines the main types of LAB fermentation as well as their typical fermented foods such as idli, kishk, sauerkraut, koumiss, Suan-tsai, stinky tofu, Chinese sausage and kefir. The roles of LAB and the reasons for their common presence are also discussed.

  18. Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk.

    PubMed

    Atanasova, Jivka; Moncheva, Penka; Ivanova, Iskra

    2014-11-02

    We examined 62 strains and 21 trade starter cultures from the collection of LB Bulgaricum PLC for proteolytic and antimicrobial activity of lactic acid bacteria (LAB) grown in goat milk. The aim of this study was to investigate the fermentation of caseins, α-lactalbumin and β-lactoglobulin by LAB, using the o -phthaldialdehyde (OPA) spectrophotometric assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The proteolysis targeted mainly caseins, especially β-casein. Whey proteins were proteolyzed, essentially β-lactoglobulin. The proteolytic activity of Lactococcus lactis l598, Streptococcus thermophilus t3D1, Dt1, Lactobacillus lactis 1043 and L. delbrueckii subsp. bulgaricus b38, b122 and b24 was notably high. The proteolysis process gave rise to medium-sized peptide populations. Most of the examined strains showed antimicrobial activity against some food pathogens, such as Escherichia coli , Staphylococcus aureus , Salmonella cholere enteridis , Listeria monocytogenes , Listeria innocua and Enterobacter aerogenes . The most active producers of antimicrobial-active peptides were strains of L. delbrueckii subsp. bulgaricus and S. thermophilus , which are of practical importance. The starter cultures containing the examined species showed high proteolytic and antimicrobial activity in skimmed goat milk. The greatest antimicrobial activity of the cultures was detected against E. aerogenes . The obtained results demonstrated the significant proteolytic potential of the examined strains in goat milk and their potential for application in the production of dairy products from goat's milk. The present results could be considered as the first data on the proteolytic capacity of strains and starter cultures in goat milk for the purposes of trade interest of LB Bulgaricum PLC.

  19. Estimation of lactic acid bacterial cell number by DNA quantification.

    PubMed

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2018-01-01

    Lactic acid bacteria are provided by fermented foods, beverages, medicines, and supplements. Because the beneficial effects of medicines and supplements containing functional lactic acid bacteria are related to the bacterial cell number, it is important to establish a simple method for estimating the total number of lactic acid bacterial cells in the products for quality control. Almost all of the lactic acid bacteria in the products are dead, however, making it difficult to estimate the total number of lactic acid bacterial cells in the products using a standard colony-counting method. Here we estimated the total lactic acid bacterial cell number in samples containing dead bacteria by quantifying the DNA. The number of viable Enterococcus faecalis 0831-07 cells decreased to less than 1 × 10 -8 by 15 min of heat treatment at 80°C. The amount of extracted DNA from heat-treated cells was 78% that of non-heated cells. The number of viable Lactobacillus paraplantarum 11-1 cells decreased to 1 × 10 -4 after 4 days culture. The amount of extracted DNA of the long-cultured cells, however, was maintained at 97%. These results suggest that cell number of lactic acid bacteria killed by heat-treatment or long-term culture can be estimated by DNA quantification.

  20. Biodiversity and technological potential of lactic acid bacteria isolated from spontaneously fermented amaranth sourdough.

    PubMed

    Ruiz Rodríguez, L; Vera Pingitore, E; Rollan, G; Martos, G; Saavedra, L; Fontana, C; Hebert, E M; Vignolo, G

    2016-08-01

    Spontaneous fermented sourdoughs prepared from amaranth flour were investigated for the presence of autochthonous lactic acid bacteria (LAB) predominating microbiota. The doughs were fermented with daily backslopping on a laboratory scale at 30°C for 10 days. LAB counts ranged from 2·60 to 8·54 log CFU g(-1) with a pH declined from 6·2 to 3·8 throughout fermentation. The combined use of randomly amplified polymorphic DNA (RAPD)-PCR analysis and sequence analysis of 16S rRNA was applied for LAB intraspecies differentiation and taxonomic identification, respectively. Enterococcus, Pediococcus and Lactobacillus species were present in amaranth sourdoughs (AS). After the first refreshment step, Lactobacillus plantarum dominated AS until the end of fermentation. In coincidence, when DGGE analysis was performed, the occurrence of a progressive change in bacterial communities allowed the selection of Lact. plantarum as a dominant species. Moreover, technological, functional and safety characteristics of representative RAPD-biotypes were investigated. Lact. plantarum CRL1898 was selected as a potential candidate for gluten-free amaranth sourdough starter. Nowadays, there is an increasing interest in ancient noncereal gluten-free (GF) crops such as amaranth, due to their reported nutritional and health benefits. However, the use of these grains is still limited to traditional foods and bread making processes that are not yet well standardized. Results on the dynamics of autochthonous lactic acid bacteria (LAB) microbiota during laboratory spontaneous amaranth sourdoughs (AS) fermentation will contribute to overcome challenges for GF-fermented products development. In addition, knowledge about LAB diversity involving Enterococcus, Pediococcus and Lactobacillus species, with Lactobacillus plantarum predominating during AS fermentation, and their technological and functional properties provides the basis for the selection of autochthonous strains as starters cultures

  1. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    PubMed

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Lactic acid fermentation of cassava dough into agbelima.

    PubMed

    Amoa-Awua, W K; Appoh, F E; Jakobsen, M

    1996-08-01

    The souring of cassava dough during fermentation into the fermented cassava meal, agbelima, was investigated. Four different types of traditional inocula were used to ferment the dough and increases in titrable acidity expressed as lactic acid from 0.31-0.38 to 0.78-0.91% (w/w) confirmed the fermentation to be a process of acidification. The microflora of all inocula and fermenting dough contained high counts of lactic acid bacteria, 10(8)-10(9) cfu/g in all inocula and 10(7)-10(8), 10(8)-10(9) and 10(9) cfu/g at 0, 24 and 48 h in all fermentations. Lactobacillus plantarum was the dominant species of lactic acid bacteria during all types of fermentation accounting for 51% of 171 representative isolates taken from various stages of fermentation. Other major lactic acid bacteria found were Lactobacillus brevis, 16%, Leuconostoc mesenteroides, 15% and some cocci including Streptococcus spp. whose numbers decreased with fermentation time. The lactic acid bacteria were responsible for the souring of agbelima through the production of lactic acid. All L. plantarum, L. brevis and L. mesenteroides isolates examined demonstrated linamarase as well as other enzymatic activities but did not possess tissue degrading enzymes like cellulase, pectin esterase and polygalacturonase. The aroma profile of agbelima did not vary with the type of inoculum used and in all samples the build-up of aroma compounds were dominated by a non-identified low molecular weight alcohol, 1-propanol, isoamyl alcohol, ethyl acetate, 3-methyl-1-butanol and acetoin. Substantial reductions occurred in the levels of cyanogenic compounds present in cassava during fermentation into agbelima and detoxification was enhanced by the use of inoculum.

  3. [Lactic acid inhibits the formation of semen-derived amyloid fibrils].

    PubMed

    Li, Jin-Qing; Song, Ya-Li; Xun, Tian-Rong; Tan, Sui-Yi; Liu, Shu-Wen

    2017-07-20

    To investigate the inhibitory effect of lactic acid on semen-derived amyloid (SEVI) fibril formation. PAP248-286 (2 mg/mL) was incubated with 4.0, 2.0, 1.0, 0.5, 0.25, and 0.125 mg/mL of lactic acid. After incubation for different times, aliquots were drawn from each sample for Thioflavin T (ThT) and Congo red staining to monitor semen-derived amyloid fibril formation. The β sheet structure formation of PAP248-286 was measured by circular dichroism spectrum, and the morphology of amyloid fibrils incubated with or without lactic acid was observed with transmission electron microscopy (TEM). The enhancing effect of amyloid fibril incubated with lactic acid at different time points was determined using virus infection assay. PAP248-286 (2 mg/mL) was incubated with dilutions of vaginal secretion from healthy women, and amyloid fibril formation was detected with ThT and Congo red staining. Lactic acid inhibited SEVI fibril formation in a dose-dependent manner in vitro. Lactic acid at 0.5 mg/mL completely inhibited 2 mg/mL SEVI fibril formation within 48 h. After incubation for 48 h, lactic acid at 1 mg/mL inhibited the formation of β-sheet structure of SEVI (2 mg/mL) and completely inhibited 2 mg/mL PAP248-286 aggregation as observed with TEM. In the presence of lactic acid, PAP248-286 lost the ability to enhance virus infection. Vaginal secretion inhibited SEVI fibril formation in a dose-dependent manner, and virtually no SEVI fibril occurred after incubation of 2 mg/mL PAP248-286 with 67% vaginal secretion. Lactic acid inhibits SEVI fibril formation in vitro.

  4. Comparative genomics of the lactic acid bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarova, K.; Slesarev, A.; Wolf, Y.

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive genemore » loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.« less

  5. Catalytical Conversion of Carbohydrates into Lactic Acid via Hydrothermal Reaction

    NASA Astrophysics Data System (ADS)

    Wei, Zhen; Jin, Fangming; Zhang, Guangyi; Zhang, Shiping; Yao, Guodong

    2010-11-01

    This paper focuses on catalytical conversion of carbohydrates into lactic acid, under the hydrothermal conditions, which may have a promising future for its high speediness and effectiveness. The catalysis of ZnO was investigated to improve the lactic acid yields. The results showed that the lactic acid yields increased immensely by the addition of ZnO. The effects of the reaction time and the addition amount of ZnO on the conversion of carbohydrates to lactic acid were studied. The highest lactic acid yields reached up to 28% starting from glucose after the reaction time of 60 s under the conditions of 0.2 mmol ZnO, 300° C, the filling rate of 35%, and over 30% starting from fructose at the same temperature and filling rate when the reaction time of 40 s and 2.0 mmol ZnO were employed. The collaborative effects of ZnO and NaOH used as the catalysts together at the same time were also studied. Furthermore, the catalytic mechanism of ZnO in the hydrothermal conversion of carbohydrates into lactic acid was discussed.

  6. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate

    PubMed Central

    Subramanian, Mohan Raj; Talluri, Suvarna; Christopher, Lew P

    2015-01-01

    Lactic acid is an intermediate-volume specialty chemical for a wide range of food and industrial applications such as pharmaceuticals, cosmetics and chemical syntheses. Although lactic acid production has been well documented, improved production parameters that lead to reduced production costs are always of interest in industrial developments. In this study, we describe the production of lactic acid at high concentration, yield and volumetric productivity utilizing a novel homofermentative, facultative anaerobe Enterococcus faecalis CBRD01. The highest concentration of 182 g lactic acid l−1 was achieved after 38 h of fed-batch fermentation on glucose. The bacterial isolate utilized only 2–13% of carbon for its growth and energy metabolism, while 87–98% of carbon was converted to lactic acid at an overall volumetric productivity of 5 g l−1 h−1. At 13 h of fermentation, the volumetric productivity of lactate production reached 10.3 g l−1 h−1, which is the highest ever reported for microbial production of lactic acid. The lactic acid produced was of high purity as formation of other metabolites was less than 0.1%. The present investigation demonstrates a new opportunity for enhanced production of lactic acid with potential for reduced purification costs. PMID:24894833

  7. Evaluation of genetic polymorphism among Lactobacillus rhamnosus non-starter Parmigiano Reggiano cheese strains.

    PubMed

    Bove, Claudio Giorgio; De Dea Lindner, Juliano; Lazzi, Camilla; Gatti, Monica; Neviani, Erasmo

    2011-01-05

    Parmigiano Reggiano (PR) is an Italian cooked, long-ripened cheese made with unheated cow's milk and natural whey starter. The microflora is involved in the manufacturing of this cheese, arising from the natural whey starter, the raw milk and the environment. Molecular studies have shown that mesophilic non-starter lactic acid bacteria (NSLAB) are the dominant microflora present during the ripening of PR. In this study, a characterisation of Lactobacillus rhamnosus isolated from a single PR manufacturing and ripening process is reported, using a combination of genotypic fingerprinting techniques (RAPD-PCR and REP-PCR). The intraspecies heterogeneity evidenced for 66 strains is correlated to their abilities to adapt to specific environmental and technological conditions. The detection of biotypes that correlate with specific moments in cheese ripening or differential development throughout this process suggests that these strains may have specific roles closely linked to their peculiar technological properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Evaluation of Petrifilm Lactic Acid Bacteria Plates for Counting Lactic Acid Bacteria in Food.

    PubMed

    Kanagawa, Satomi; Ohshima, Chihiro; Takahashi, Hajime; Burenqiqige; Kikuchi, Misato; Sato, Fumina; Nakamura, Ayaka; Mohamed, Shimaa M; Kuda, Takashi; Kimura, Bon

    2018-06-01

    Although lactic acid bacteria (LAB) are used widely as starter cultures in the production of fermented foods, they are also responsible for food decay and deterioration. The undesirable growth of LAB in food causes spoilage, discoloration, and slime formation. Because of these adverse effects, food companies test for the presence of LAB in production areas and processed foods and consistently monitor the behavior of these bacteria. The 3M Petrifilm LAB Count Plates have recently been launched as a time-saving and simple-to-use plate designed for detecting and quantifying LAB. This study compares the abilities of Petrifilm LAB Count Plates and the de Man Rogosa Sharpe (MRS) agar medium to determine the LAB count in a variety of foods and swab samples collected from a food production area. Bacterial strains isolated from Petrifilm LAB Count Plates were identified by 16S rDNA sequence analysis to confirm the specificity of these plates for LAB. The results showed no significant difference in bacterial counts measured by using Petrifilm LAB Count Plates and MRS medium. Furthermore, all colonies growing on Petrifilm LAB Count Plates were confirmed to be LAB, while yeast colonies also formed in MRS medium. Petrifilm LAB Count Plates eliminated the plate preparation and plate inoculation steps, and the cultures could be started as soon as a diluted food sample was available. Food companies are required to establish quality controls and perform tests to check the quality of food products; the use of Petrifilm LAB Count Plates can simplify this testing process for food companies.

  9. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V; Kumar, Amit; Hardwidge, Philip R; Govind, Revathi; Tanaka, Tsutomu; Kondo, Akihiko

    2016-01-01

    D-lactic acid is used as a monomer in the production of poly-D-lactic acid (PDLA), which is used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic acid by using all sugars derived from biomass efficiently, xylose-assimilating genes encoding xylose isomerase and xylulokinase were cloned into an L-lactate-deficient strain, Lactobacillus plantarum. The resulting recombinant strain, namely L. plantarum NCIMB 8826 ∆ldhL1-pLEM-xylAB, was able to produce D-lactic acid (at optical purity >99 %) from xylose at a yield of 0.53 g g(-1). Simultaneous utilization of glucose and xylose to produce D-lactic acid was also achieved by this strain, and 47.2 g L(-1) of D-lactic acid was produced from 37.5 g L(-1) glucose and 19.7 g L(-1) xylose. Corn stover and soybean meal extract (SBME) were evaluated as cost-effective medium components for D-lactic acid production. Optimization of medium composition using response surface methodology resulted in 30 % reduction in enzyme loading and 70 % reduction in peptone concentration. In addition, we successfully demonstrated D-lactic acid fermentation from corn stover and SBME in a fed-batch fermentation, which yielded 61.4 g L(-1) D-lactic acid with an overall yield of 0.77 g g(-1). All these approaches are geared to attaining high D-lactic acid production from biomass sugars to produce low-cost, highly thermostable biodegradable plastics.

  10. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. Results We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, 13C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. Conclusions We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In

  11. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium.

    PubMed

    Varman, Arul M; Yu, Yi; You, Le; Tang, Yinjie J

    2013-11-25

    The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, (13)C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In the late growth phase, the

  12. Growth and activity of Bulgarian yogurt starter culture in iron-fortified milk.

    PubMed

    Simova, Emilina; Ivanov, Galin; Simov, Zhelyazko

    2008-10-01

    Bulgarian yogurts were manufactured and fortified with 8, 15 and 27 mg of iron kg(-1) of yogurt. The growth and acidifying activity of the starter culture bacteria Streptococcus thermophilus 13a and Lactobacillus delbrueckii subsp. bulgaricus 2-11 were monitored during milk fermentation and over 15 days of yogurt storage at 4 degrees C. Fortifying milk with iron did not affect significantly the growth of the starter culture during manufacture and storage of yogurt. Counts of yogurt bacteria at the end of fermentation of iron-fortified milks were between 2.1 x 10(10) and 4.6 x 10(10) CFU ml(-1), which were not significantly different from numbers in unfortified yogurts. In all batches of yogurt, the viable cell counts of S. thermophilus 13a were approximately three times higher than those of L. delbrueckii subsp. bulgaricus 2-11. Greater decrease in viable cell count over 15 days of storage was observed for S. thermophilus 13a compared to L. delbrueckii subsp. bulgaricus 2-11. Intensive accumulation of lactic acid was observed during incubation of milk and all batches reached pH 4.5 +/- 0.1 after 3.0 h. At the end of fermentation process, lactic acid concentrations in iron-fortified yogurts were between 6.9 +/- 0.4 and 7.3 +/- 0.5 g l(-1). The acidifying activity of starter culture bacteria in the control and iron-fortified milks was similar. There was no increase in oxidized, metallic and bitter off-flavors in iron-fortified yogurts compared to the control. Iron-fortified yogurts did not differ significantly in their sensorial, chemical and microbiological characteristics with unfortified yogurt, suggesting that yogurt is a suitable vehicle for iron fortification and that the ferrous lactate is an appropriate iron source for yogurt fortification.

  13. D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2013-12-01

    Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly L-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-L and D-lactic acid and has a higher melting temperature. To date, several studies have explored the production of L-lactic acid, but information on biosynthesis of D-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of D-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to D-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L(-1) of D-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g(-1) and 1.01 g L(-1) h(-1), respectively. Luedeking-Piret model described the mixed growth-associated production of D-lactic acid with a maximum specific growth rate 0.2 h(-1) and product formation rate 0.026 h(-1), obtained for this strain. The efficient synthesis of D-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.

  14. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.

    PubMed

    Zhang, Bo; Cai, Wei-min; He, Pin-jing

    2007-01-01

    To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.

  15. Behaviors of D- and L-lactic acids during the brewing process of sake (Japanese rice wine).

    PubMed

    Kodama, Shuji; Yamamoto, Atsushi; Matsunaga, Akinobu; Matsui, Keizou; Nakagomi, Kazuya; Hayakawa, Kazuichi

    2002-02-13

    The amounts of D- and L-lactic acids during the brewing process of sake were determined by capillary electrophoresis using 2-hydroxypropyl-beta-cyclodextrin as a chiral selector. Because L-lactic acid, which prevents the growth of nonuseful microorganisms, is a raw material of sake, the ratio of L-lactic acid to total lactic acid is almost 1.0 at the initial stage of sake brewing. During brewing, the ratio decreased gradually and finally reached 0.39. Yeast (Saccharomyces cerevisiae) for sake brewing produced D-lactic acid, but not L-lactic acid in a culture medium. These results suggest that the decrease in the ratio of L-lactic acid to total lactic acid during sake brewing resulted in D-lactic acid production by yeast. The ratios in 18 brands of sake obtained commercially ranged from 0.23 to 0.78. The levels of D-lactic acid in sake (140-274 mg/L) were in a narrower range than those of L-lactic acid (61-461 mg/L). Although the D-lactic acid level in sake did not correspond to total lactic acid level, the L-lactic acid level correlated well with total lactic acid level (R(2) = 0.867). These results suggest that the ratio of L-lactic acid to total lactic acid in sake reflected the amount of L-lactic acid added at the initial stage of sake brewing.

  16. Production of Functional High-protein Beverage Fermented with Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food

    PubMed Central

    2015-01-01

    The aim of this study was to manufacture functional high protein fermented beverage, using whey protein concentrate (WPC) and Lactobacillus plantarum DK211 isolated from kimchi, and to evaluate the physicochemical, functional, and sensory properties of the resulting product. The fermented whey beverage (FWB) was formulated with whey protein concentrate 80 (WPC 80), skim milk powder, and sucrose; and fermented with Lactobacillus plantarum DK211 as single, or mixed with Lactococcus lactis R704, a commercial starter culture. The pH, titratable acidity, and viable cell counts during fermentation and storage were evaluated. It was found that the mixed culture showed faster acid development than the single culture. The resulting FWB had high protein (9%) and low fat content (0.2%). Increased viscosity, and antioxidant and antimicrobial activity were observed after fermentation. A viable cell count of 109 CFU/mL in FWB was achieved within 10 h fermentation, and it remained throughout storage at 15℃ for 28 d. Sensory analysis was also conducted, and compared to that of a commercial protein drink. The sensory scores of FWB were similar to those of the commercial protein drink in most attributes, except sourness. The sourness was highly related with the high lactic acid content produced during fermentation. The results showed that WPC and vegetable origin lactic acid bacteria isolated from kimchi might be used for the development of a high protein fermented beverage, with improved functionality and organoleptic properties. PMID:26761827

  17. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    PubMed

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates.

  18. Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture.

    PubMed

    Pereira, Gilberto Vinícius de Melo; Miguel, Maria Gabriela da Cruz Pedrozo; Ramos, Cíntia Lacerda; Schwan, Rosane Freitas

    2012-08-01

    Spontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (with Saccharomyces cerevisiae as the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentum and Lactobacillus plantarum were the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicalis was the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strains L. fermentum UFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol), S. cerevisiae UFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), and Acetobacter tropicalis UFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes.

  19. Microbiological and Physicochemical Characterization of Small-Scale Cocoa Fermentations and Screening of Yeast and Bacterial Strains To Develop a Defined Starter Culture

    PubMed Central

    Pereira, Gilberto Vinícius de Melo; Miguel, Maria Gabriela da Cruz Pedrozo; Ramos, Cíntia Lacerda

    2012-01-01

    Spontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (with Saccharomyces cerevisiae as the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentum and Lactobacillus plantarum were the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicalis was the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strains L. fermentum UFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol), S. cerevisiae UFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), and Acetobacter tropicalis UFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes. PMID:22636007

  20. Increased plasma d-lactic acid associated with impaired memory in rats.

    PubMed

    Hanstock, T L; Mallet, P E; Clayton, E H

    2010-12-02

    d-Lactic acidosis is associated with memory impairment in humans. Recent research indicates that d-lactic acid may inhibit the supply of energy from astrocytes to neurons involved with memory formation. However, little is known about the effects of increased hind-gut fermentation due to changes in diet on circulating lactic acid concentrations and memory. Thirty-six male Wistar rats were fed three dietary treatments: a commercial rat and mouse chow, a soluble carbohydrate based diet or a fermentable carbohydrate based diet. The parameters estimating memory were examined by employing the object recognition test. Physical parameters of fermentation including hind-gut and plasma lactic acid concentrations were examined after sacrifice, either 3 or 21h after feeding. Increased fermentation in the hind-gut of rats, indicated by lower caecum pH, was associated with increased plasma l-lactic acid (r=-0.41, p=0.020) and d-lactic acid (r=-0.33, p=0.087). Memory, being able to discriminate between a familiar and a novel object during the object recognition test, was reduced with increasing plasma d-lactic acid (r=-0.51, p=0.021). Memory impairment was associated with alterations in plasma d-lactic acid following the fermentation of carbohydrate in the hind-gut. Further work is still required to determine whether these effects are mediated centrally or via direct connections through the enteric nervous system. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Cell immobilization for production of lactic acid biofilms do it naturally.

    PubMed

    Dagher, Suzanne F; Ragout, Alicia L; Siñeriz, Faustino; Bruno-Bárcena, José M

    2010-01-01

    Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Antifungal starter culture for packed bread: influence of two storage conditions.

    PubMed

    Gerez, Carla L; Fornaguera, María J; Obregozo, Mariano D; Font de Valdez, Graciela; Torino, María I

    2015-01-01

    In this study, we analyzed the conservation of a semi-liquid bio-preserver (SL778) developed with Lactobacillus plantarum CRL 778, a lactic acid bacterium (LAB) having antifungal activity. The characteristics of the SL778 starter remained stable during a 14-day storage at 4°C. At -20°C, cell viability and organic acid concentration showed a significant (p<0.05) decrease after 7 days. These differences observed between the storage temperatures tested were reflected in the acidification activity of SL778 during dough fermentation. However, SL778 maintained its antifungal efficacy up to a 14-day storage at both temperatures. Sensory attributes (acidic and spicy tastes and acidic smell) of breads manufactured with starter SL778 (stored at 4 or -20°C) were evaluated. No undesirable difference was detected with respect to bread control without SL778 and bread manufactured with SL778 (stored at 4 or -20°C). In conclusion, the SL778 semi-liquid bio-preserver can be stored at 4 or -20°C without modifying its antifungal activity during 14 days. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Antioxidant Activities of Lactic Acid Bacteria for Quality Improvement of Fermented Sausage.

    PubMed

    Zhang, Yulong; Hu, Ping; Lou, Lijiao; Zhan, Jianlong; Fan, Min; Li, Dan; Liao, Qianwei

    2017-12-01

    Lactobacillus curvatus (SR6) and Lactobacillus paracasei (SR10-1) were assessed for their antioxidant activities and inoculated into sausages to investigate their effects on quality during fermentation. The results showed that L. curvatus SR6 had better DPPH• scavenging activity (59.67% ± 6.68%) and reducing power (47.31% ± 4.62%) and L. paracasei SR10-1 had better OH• scavenging activity (285.67% ± 2.00%) and anti-lipid peroxidation capacity (63.89% ± 0.93%). The superoxide dismutase activity of the cell culture fluid was greater than 47.00 U/mL, and the catalase activity of the cell-free extracts was greater than 1.00 U/mL. In the sausage model, lactic acid bacteria rapidly became the dominant microflora and reduced the moisture content, water activity, nitrite, and pH. The bacteria significantly enhanced the antioxidant activity of the sausage extracts, which improved the sensory characteristics and safety of the sausages. These results illustrate that both strains have excellent antioxidant activities and can be used as antioxidant starters in fermented meat products. The study illustrated the antioxidant and antioxidase activities of Lactobacillus curvatus SR6 and Lactobacillus paracasei SR10-1 and demonstrated the changes in the quality characteristics and antioxidant activities of fermented sausages. The findings provide valuable information for the meat industry on the application of functional starters in fermented meat products. © 2017 Institute of Food Technologists®.

  4. D-lactic acid measurements in the diagnosis of bacterial infections.

    PubMed Central

    Smith, S M; Eng, R H; Campos, J M; Chmel, H

    1989-01-01

    Body fluids suspected of bacterial infection were cultured and examined for the presence of D-lactic acid, a specific bacterial metabolite. We examined 206 patients and 264 specimens. D-Lactic acid was found in concentrations of greater than or equal to 0.15 mM in 11 of 11 infected and 6 of 40 noninfected ascitic fluids, 6 of 6 infected and 4 of 33 noninfected pleural fluids, 4 of 4 infected and 0 of 13 noninfected synovial fluids, and 26 of 27 infected and 2 of 130 noninfected cerebrospinal fluids. The overall sensitivity was 79.7%, and the specificity was 99.5% when the D-lactic acid concentration was at least 0.15 mM. The most important clinical utility of the D-lactic acid measurement appears to be for patients with bacterial infection in various body compartments and in patients who have already received antimicrobial therapy. An elevation in D-lactic acid may indicate the presence of bacterial infection even when cultures are negative. PMID:2715313

  5. Functional genomics of lactic acid bacteria: from food to health

    PubMed Central

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  6. Functional genomics of lactic acid bacteria: from food to health.

    PubMed

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.

  7. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Kumar, Amit; Hardwidge, Philip R; Tanaka, Tsutomu; Kondo, Akihiko; Vadlani, Praveen V

    2016-03-01

    d-lactic acid is of great interest because of increasing demand for biobased poly-lactic acid (PLA). Blending poly-l-lactic acid with poly-d-lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d-lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l-lactate-deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1-pCU-PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d-lactic acid yield and productivity. d-lactic acid (27.3 g L(-1) ) and productivity (0.75 g L(-1) h(-1) ) was obtained from corn stover and d-lactic acid (22.0 g L(-1) ) and productivity (0.65 g L(-1) h(-1) ) was obtained from sorghum stalks using ΔldhL1-pCU-PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d-lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d-lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271-278, 2016. © 2016 American Institute of Chemical Engineers.

  8. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films.

    PubMed

    Liu, Rui; Dai, Lin; Hu, Li-Qiu; Zhou, Wen-Qin; Si, Chuan-Ling

    2017-11-01

    The need for green renewable alternatives such as lignin to traditional fillers has driven recent interest in polylactic acid blend materials. Herein, lignin-graft-polylactic acid copolymers (LG-g-PDLA, LG-g-PDLLA, and LG-g-PLLA) have been synthesized via ring-opening polymerization of d-, dl-, and l-lactic acid. Then poly(l-lactic acid)/lignin-graft-polylactic acid (PLLA/LG-g-PDLA, /LG-g-PDLLA, and /LG-g-PLLA) complex films have been prepared. The results showed that, compared with LG-g-PDLA and LG-g-PLLA, a small amount of LG-g-PDLA addition could improve the crystallization rate, reduce the glass transition temperature and cold crystallization temperature of PLLA due to the stereocomplex crystallites. The thermal stability, tensile strength and strain of the stereocomplex films were also enhanced. Moreover, the PLLA/LG-g-PDLA films have good ultraviolet resistance and excellent biocompatibility. This study provides a green approach to design advanced polylactic acid-based blends with renewable natural resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    PubMed

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation.

  10. Lactic acid bacteria and yeasts associated with gowé production from sorghum in Bénin.

    PubMed

    Vieira-Dalodé, G; Jespersen, L; Hounhouigan, J; Moller, P L; Nago, C M; Jakobsen, M

    2007-08-01

    To identify the dominant micro-organisms involved in the production of gowé, a fermented beverage, and to select the most appropriate species for starter culture development. Samples of sorghum gowé produced twice at three different production sites were taken at different fermentation times. DNA amplification by internal transcribed spacer-polymerase chain reaction of 288 lactic acid bacteria (LAB) isolates and 16S rRNA gene sequencing of selected strains revealed that the dominant LAB responsible for gowé fermentation were Lactobacillus fermentum, Weissella confusa, Lactobacillus mucosae, Pediococcus acidilactici, Pediococcus pentosaceus and Weissella kimchii. DNA from 200 strains of yeasts was amplified and the D1/D2 domain of the 26S rRNA gene was sequenced for selected isolates, revealing that the yeasts species were Kluyveromyces marxianus, Pichia anomala, Candida krusei and Candida tropicalis. Gowé processing is characterized by a mixed fermentation dominated by Lact. fermentum, W. confusa and Ped. acidilactici for the LAB and by K. marxianus, P. anomala and C. krusei for the yeasts. The diversity of the LAB and yeasts identified offers new opportunities for technology upgrading and products development in gowé production. The identified species can be used as possible starter for a controlled fermentation of gowé.

  11. The behavior and importance of lactic acid complexation in Talspeak extraction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis S.; Nilsson, Mikael; Nash, Kenneth L.

    2008-07-01

    Advanced partitioning of spent nuclear fuel in the UREX +la process relies on the TALSPEAK process for separation of fission-product lanthanides from trivalent actinides. The classic TALSPEAK utilizes an aqueous medium of both lactic acid and diethylenetriaminepentaacetic acid and the extraction reagent di(2-ethylhexyl)phosphoric acid in an aromatic diluent. In this study, the specific role of lactic acid and the complexes involved in the extraction of the trivalent actinides and lanthanides have been investigated using {sup 14}C-labeled lactic acid. Our results show that lactic acid partitions between the phases in a complex fashion. (authors)

  12. Effects of sodium citrate, citric acid and lactic acid on human blood coagulation.

    PubMed

    Scaravilli, Vittorio; Di Girolamo, Luca; Scotti, Eleonora; Busana, Mattia; Biancolilli, Osvaldo; Leonardi, Patrizia; Carlin, Andrea; Lonati, Caterina; Panigada, Mauro; Pesenti, Antonio; Zanella, Alberto

    2018-05-01

    Citric acid infusion in extracorporeal blood may allow concurrent regional anticoagulation and enhancement of extracorporeal CO 2 removal. Effects of citric acid on human blood thromboelastography and aggregometry have never been tested before. In this in vitro study, citric acid, sodium citrate and lactic acid were added to venous blood from seven healthy donors, obtaining concentrations of 9 mEq/L, 12 mEq/L and 15 mEq/L. We measured gas analyses, ionized calcium (iCa ++ ) concentration, activated clotting time (ACT), thromboelastography and multiplate aggregometry. Repeated measure analysis of variance was used to compare the acidifying and anticoagulant properties of the three compounds. Sodium citrate did not affect the blood gas analysis. Increasing doses of citric and lactic acid progressively reduced pH and HCO 3 - and increased pCO 2 (p<0.001). Sodium citrate and citric acid similarly reduced iCa ++ , from 0.39 (0.36-0.39) and 0.35 (0.33-0.36) mmol/L, respectively, at 9 mEq/L to 0.20 (0.20-0.21) and 0.21 (0.20-0.23) mmol/L at 15 mEq/L (p<0.001). Lactic acid did not affect iCa ++ (p=0.07). Sodium citrate and citric acid similarly incremented the ACT, from 234 (208-296) and 202 (178-238) sec, respectively, at 9 mEq/L, to >600 sec at 15 mEq/L (p<0.001). Lactic acid did not affect the ACT values (p=0.486). Sodium citrate and citric acid similarly incremented R-time and reduced α-angle and maximum amplitude (MA) (p<0.001), leading to flat-line thromboelastograms at 15 mEq/L. Platelet aggregometry was not altered by any of the three compounds. Citric acid infusions determine acidification and anticoagulation of blood similar to lactic acid and sodium citrate, respectively.

  13. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O& #x27; Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  14. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde [Sycamore, IL; Ingram, Lonnie O'Neal [Gainesville, FL; Shanmugam, Keelnatham T [Gainesville, FL; Yomano, Lorraine [Gainesville, FL; Grabar, Tammy B [Gainesville, FL; Moore, Jonathan C [Gainesville, FL

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  15. Lignin poly(lactic acid) copolymers

    DOEpatents

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  16. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products.

    PubMed

    Katla, A K; Kruse, H; Johnsen, G; Herikstad, H

    2001-07-20

    Commercial starter culture bacteria are widely used in the production of dairy products and could represent a potential source for spread of genes encoding resistance to antimicrobial agents. To learn more about the antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products, a total of 189 isolates of lactic acid bacteria were examined for susceptibility to ampicillin, penicillin G, cephalothin, vancomycin, bacitracin, gentamicin, streptomycin, erythromycin, tetracycline, chloramphenicol, quinupristin/dalfopristin, ciprofloxacin, trimethoprim and sulphadiazine using Etest for MIC determination. Most of the isolates (140) originated from 39 dairy products (yoghurt, sour cream, fermented milk and cheese), while 49 were isolated directly from nine commercial cultures. The bacteria belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Streptococcus. Only one of the 189 isolates was classified as resistant to an antimicrobial agent included in the study. This isolate, a lactobacillus, was classified as high level resistant to streptomycin. The remaining isolates were not classified as resistant to the antimicrobial agents included other than to those they are known to have a natural reduced susceptibility to. Thus, starter culture bacteria in Norwegian dairy products do not seem to represent a source for spread of genes encoding resistance to antimicrobial agents.

  17. Preparation of lactic acid bacteria fermented wheat-yoghurt mixtures.

    PubMed

    Magala, Michal; Kohajdová, Zlatica; Karovičová, Jolana

    2013-01-01

    Tarhana, a wheat-yoghurt fermented mixture, is considered as a good source of saccharides, proteins, some vitamins and minerals. Moreover, their preparation is inexpensive and lactic acid fermentation offers benefits like product preservation, enhancement of nutritive value and sensory properties improvement. The aim of this work was to evaluate changes of some chemical parameters during fermentation of tarhana, when the level of salt and amount of yoghurt used were varied. Some functional and sensory characteristics of the fi nal product were also determined. Chemical analysis included determination of pH, titrable acidity, content of reducing saccharides, lactic, acetic and citric acid. Measured functional properties of tarhana powder were foaming capacity, foam stability, water absorption capacity, oil absorption capacity and emulsifying activity. Tarhana soups samples were evaluated for their sensory characteristics (colour, odor, taste, consistency and overall acceptability). Fermentation of tarhana by lactic acid bacteria and yeasts led to decrease in pH, content of reducing saccharides and citric acid, while titrable acidity and concentration of lactic and acetic acid increased. Determination of functional properties of tarhana powder showed, that salt absence and increased amount of yoghurt in tarhana recipe reduced foaming capacity and oil absorption capacity, whereas foam stability and water absorption capacity were improved. Sensory evaluation of tarhana soups showed that variations in tarhana recipe adversly affected sensory parameters of fi nal products. Variations in tarhana recipe (salt absence, increased proportion of yoghurt) led to changes in some chemical parameters (pH, titrable acidity, reducing saccharides, content of lactic, acetic and citric acid). Functional properties were also affected with changed tarhana recipe. Sensory characteristics determination showed, that standard tarhana fermented for 144 h had the highest overall acceptability.

  18. Low-pH production of D-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7.

    PubMed

    Park, Hyun Joo; Bae, Jung-Hoon; Ko, Hyeok-Jin; Lee, Sun-Hee; Sung, Bong Hyun; Han, Jong-In; Sohn, Jung-Hoon

    2018-06-13

    Lactic acid is a platform chemical for the sustainable production of various materials. To develop a robust yeast platform for low-pH production of D-lactic acid, an acid-tolerant yeast strain was isolated from grape skins and named Pichia kudriavzevii NG7 by ribosomal RNA sequencing. This strain was able to grow at pH 2.0 and 50°C. For the commercial application of P. kudriavzevii NG7 as a lactic acid producer, the ethanol fermentation pathway was redirected to lactic acid by replacing pyruvate decarboxylase 1 gene (PDC1) with D-lactate dehydrogenase gene (D-LDH) derived from Lactobacillus plantarum. To enhance lactic acid tolerance, this engineered strain was adapted to high lactic acid concentrations, and a new transcriptional regulator, PAR1, responsible for acid tolerance, was identified by whole-genome resequencing. The final engineered strain produced 135 g/L and 154 g/L of D-lactic acid with productivity over 3.66 g/L/h at pH 3.6 and 4.16 g/L/h at pH 4.7, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Differences between Cheddar cheese manufactured by the milled-curd and stirred-curd methods using different commercial starters.

    PubMed

    Shakeel-ur-Rehman; Drake, M A; Farkye, N Y

    2008-01-01

    Traditionally, Cheddar cheese is made by the milled-curd method. However, because of the mechanization of cheese making and time constraints, the stirred-curd method is more commonly used by many large-scale commercial manufacturers. This study was undertaken to evaluate quality differences during ripening (at 2 and 8 degrees C) of Cheddar cheese made by the milled-curd and stirred-curd methods, using 4 different commercial starters. Twenty-four vats (4 starters x 2 methods x 3 replicates) were made, with approximately 625 kg of pasteurized (72 degrees C x 16 s) whole milk in each vat. Fat, protein, and salt contents of the cheeses were not affected by the starter. Starter cell densities in cheese were not affected by the method of manufacture. Nonstarter lactic acid bacteria counts at 90, 180, and 270 d were influenced by the manufacturing method, with a higher trend in milled-curd cheeses. Proteolysis in cheese (percentage of water-soluble N) was influenced by the starter and manufacturing method (270 d). Sensory analysis by a trained descriptive panel (n = 8) revealed differences in cooked, whey, sulfur, brothy, milk fat, umami, and bitter attributes caused by the starter, whereas only brothy flavor was influenced by storage temperature. The method of manufacture influenced diacetyl, sour, and salty flavors.

  20. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  1. Lactic acid bacteria found in fermented fish in Thailand.

    PubMed

    Tanasupawat, Somboon; Okada, Sanae; Komagata, Kazuo

    1998-06-01

    Forty-seven strains of homofermentative rod-shaped and 5 heterofermentative sphere-shaped lactic acid bacteria were isolated from 4 kinds of fermented fish (pla-ra, pla-chom, kung-chom, and hoi-dong) in Thailand. These bacteria were separated into four groups by phenotypic and chemotaxonomic characteristics, including fluorometric DNA-DNA hybridization. Five strains (Group I) contained meso-diaminopimelic acid in the cell wall. Four strains were identified as Lactobacillus pentosus, and one strain was L. plantarum. Tested strains of this group produced DL-lactic acid. The rest of the rod-shaped bacteria, 23 strains (Group II) and 19 strains (Group III), lacked meso-diaminopimelic acid in the cell wall and were identified as L. farciminis and Lactobacillus species, respectively. The tested strains of these groups produced L-lactic acid. The amount of cellular fatty acids of C16:0 and C18:1, and the DNA base compositions were significant for differentiating the strains in Groups II and III. Five strains of cocci in chains (Group IV) produced gas from glucose. The tested strains of this group produced d-lactic acid. They were identified as a Leuconostoc species. The distribution of these bacteria in fermented fish in Thailand is discussed.

  2. Effect of proteolytic starter cultures as leavening agents of pizza dough.

    PubMed

    Pepe, O; Villani, F; Oliviero, D; Greco, T; Coppola, S

    2003-08-01

    Lactic acid bacteria (LAB) and yeasts were selected on the basis of in vitro proteolytic activity against wheat gluten protein and then assayed as leavening agents for pizza dough. Trials were carried out to compare a proteolytic starter (Prt(+)), consisting of Lactobacillus sakei T56, Weissella paramesenteroides A51 and Candida krusei G271, and a non-proteolytic starter (Prt(-)), consisting of Lb. sakei T58, W. paramesenteroides A58 and Saccharomyces cerevisiae T22. The proteolytic activity of the starter cultures was monitored immediately after mixing of the dough and throughout the fermentation process. The proteolytic activity was assessed by analysing the salt-soluble protein (SSP) and the dioxane-soluble protein (DSP) fractions of the pizza dough by discontinuous SDS-PAGE. Only the Prt(+) starter exhibited considerable qualitative and quantitative changes in the electrophoretic patterns of the protein fractions extracted. After the fermentation, the Prt(+) and Prt(-) doughs were tested to evaluate the influence of the proteolytic activity on the mechanical properties of the dough before and after baking. Indications emerged suggesting an influence of the proteolytic activity on the viscoelasticity of pizza dough. The pizza dough with Prt(+) strains showed an increase in viscous properties during the fermentation as compared with the Prt(-) dough. Moreover, an increase in the firmness of the crumb was observed in Prt(+) baked pizza dough.

  3. Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production.

    PubMed

    Ju, Si Yeon; Kim, Jin Ho; Lee, Pyung Cheon

    2016-01-01

    Lactic acid has been approved by the United States Food and Drug Administration as Generally Regarded As Safe (GRAS) and is commonly used in the cosmetics, pharmaceutical, and food industries. Applications of lactic acid have also emerged in the plastics industry. Lactic acid bacteria (LAB), such as Leuconostoc and Lactobacillus , are widely used as lactic acid producers for food-related and biotechnological applications. Nonetheless, industrial mass production of lactic acid in LAB is a challenge mainly because of growth inhibition caused by the end product, lactic acid. Thus, it is important to improve acid tolerance of LAB to achieve balanced cell growth and a high titer of lactic acid. Recently, adaptive evolution has been employed as one of the strategies to improve the fitness and to induce adaptive changes in bacteria under specific growth conditions, such as acid stress. Wild-type Leuconostoc mesenteroides was challenged long term with exogenously supplied lactic acid, whose concentration was increased stepwise (for enhancement of lactic acid tolerance) during 1 year. In the course of the adaptive evolution at 70 g/L lactic acid, three mutants (LMS50, LMS60, and LMS70) showing high specific growth rates and lactic acid production were isolated and characterized. Mutant LMS70, isolated at 70 g/L lactic acid, increased d-lactic acid production up to 76.8 g/L, which was twice that in the wild type (37.8 g/L). Proteomic, genomic, and physiological analyses revealed that several possible factors affected acid tolerance, among which a mutation of ATPase ε subunit (involved in the regulation of intracellular pH) and upregulation of intracellular ammonia, as a buffering system, were confirmed to contribute to the observed enhancement of tolerance and production of d-lactic acid. During adaptive evolution under lethal stress conditions, the fitness of L. mesenteroides gradually increased to accumulate beneficial mutations according to the stress level. The

  4. l-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste.

    PubMed

    Bernardo, Marcela Piassi; Coelho, Luciana Fontes; Sass, Daiane Cristina; Contiero, Jonas

    2016-01-01

    Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid), a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Semicontinuous Production of Lactic Acid From Cheese Whey Using Integrated Membrane Reactor

    NASA Astrophysics Data System (ADS)

    Li, Yebo; Shahbazi, Abolghasem; Coulibaly, Sekou; Mims, Michele M.

    Semicontinuous production of lactic acid from cheese whey using free cells of Bifidobacterium longum with and without nanofiltration was studied. For the semicontinuous fermentation without membrane separation, the lactic acid productivity of the second and third runs is much lower than the first run. The semicontinuous fermentation with nanoseparation was run semicontinuously for 72 h with lactic acid to be harvested every 24 h using a nanofiltration membrane unit. The cells and unutilized lactose were kept in the reactor and mixed with newly added cheese whey in the subsequent runs. Slight increase in the lactic acid productivity was observed in the second and third runs during the semicontinuous fermentation with nanofiltration. It can be concluded that nanoseparation could improve the lactic acid productivity of the semicontinuous fermentation process.

  6. Separate and Concentrate Lactic Acid Using Combination of Nanofiltration and Reverse Osmosis Membranes

    NASA Astrophysics Data System (ADS)

    Li, Yebo; Shahbazi, Abolghasem; Williams, Karen; Wan, Caixia

    The processes of lactic acid production include two key stages, which are (a) fermentation and (b) product recovery. In this study, free cell of Bifidobacterium longum was used to produce lactic acid from cheese whey. The produced lactic acid was then separated and purified from the fermentation broth using combination of nanofiltration and reverse osmosis membranes. Nanofiltration membrane with a molecular weight cutoff of 100-400 Da was used to separate lactic acid from lactose and cells in the cheese whey fermentation broth in the first step. The obtained permeate from the above nanofiltration is mainly composed of lactic acid and water, which was then concentrated with a reverse osmosis membrane in the second step. Among the tested nanofiltration membranes, HL membrane from GE Osmonics has the highest lactose retention (97±1%). In the reverse osmosis process, the ADF membrane could retain 100% of lactic acid to obtain permeate with water only. The effect of membrane and pressure on permeate flux and retention of lactose/lactic acid was also reported in this paper.

  7. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus.

    PubMed

    Tangwatcharin, Pussadee; Khopaibool, Prapaporn

    2012-07-01

    The objective of this study was to investigate the in vitro activities of virgin coconut oil, lauric acid and monolaurin in combination with lactic acid against two strains of Staphylococcus aureus, ATCC 25923 and an isolate from a pig carcass, by determination of Fractional Bactericidal Concentration Index (FBCI), time-kill method, as well as scanning and transmission electron microscopy. Minimum bactericidal concentrations (MBC) of lauric acid, monolaurin and lactic acid were 3.2 mg/ml, 0.1 mg/ml and 0.4% (v/v), respectively. The effects of lauric acid + lactic acid and monolaurin + lactic acid combinations were synergistic against both strains, exhibiting FBCIs of 0.25 and 0.63, respectively. In time-kill studies, lauric acid and monolaurin + lactic acid combinations added at their minimum inhibitory concentrations produced a bactericidal effect. The induction of stress in non-stressed cells was dependent on the type and concentration of antimicrobial. This resulted in a loss and change of the cytoplasm and membrane in cells of the bacterium. In contrast, virgin coconut oil (10%) was not active against S. aureus. The bacterial counts found in pork loin treated with lauric acid and monolaurin alone were significantly higher (p <0.05) than those treated with both lipids in combination with lactic acid at sub-inhibitory concentrations. The color, odor and overall acceptability of the pork loins were adversely affected by treatment with the three lipids and lactic acid alone but when combinations of the agents were used the sensory quality was acceptable.

  8. Manufacture and characterization of functional emmer beverages fermented by selected lactic acid bacteria.

    PubMed

    Coda, Rossana; Rizzello, Carlo Giuseppe; Trani, Antonio; Gobbetti, Marco

    2011-05-01

    Autochthonous lactic acid bacteria from emmer flour were screened based on the kinetic of acidification and used to ferment beverages containing emmer flour, emmer gelatinized flour, and emmer malt at percentages ranging 5-30% (wt/wt). Preliminarily, the concentration of raw flour and malt was selected based on sensory analysis. Different protocols were set up for the manufacture of four different beverages which used Lactobacillus plantarum 6E as the starter. Emmer beverages were mainly differentiated based on the concentration of organic acids, carbohydrates, amino acids, dietary fibers, vitamins, antioxidant and phytase activities, and volatiles and sensory profiles. Wheat flour bread was used as the control to determine the hydrolysis index (HI=100), as an indirect estimation of the glycemic index. The beverage made with 30% (wt/wt) of gelatinized flour showed an HI of 56%, its viscosity was improved by using an EPS-producing strain and it allowed the survival of the potential probiotic Lactobacillus rhamnosus SP1 at cell density of ca. 5 × 10(8) cfu/ml throughout storage at 4 °C. Among the exploited biotechnological options, this latter beverage could be considered as a promising novel functional food. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid

    PubMed Central

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-01-01

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions. PMID:28165036

  10. Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii

    PubMed Central

    2017-01-01

    ABSTRACT Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae. Furthermore, formate dehydrogenase (FDH) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression

  11. Use of Psychrotolerant Lactic Acid Bacteria (Lactobacillus spp. and Leuconostoc spp.) Isolated from Chinese Traditional Paocai for the Quality Improvement of Paocai Products.

    PubMed

    Liu, Aiping; Li, Xiaoyan; Pu, Biao; Ao, Xiaolin; Zhou, Kang; He, Li; Chen, Shujuan; Liu, Shuliang

    2017-03-29

    To improve the quality of Chinese traditional Paocai, two psychrotolerant lactic acid bacteria (LAB) strains were isolated from Paocai, and the quality of Chinese Paocai product using these two strains as starter cultures was compared to a control sample fermented with aged brine at 10 °C. The results suggested that the physicochemical and sensory features of Paocai fermented with psychrotolerant LAB were more suitable for industrial applications. The nitrite content of Paocai fermented with psychrotolerant LAB was 1 mg/kg, which was significantly lower than that of the control Paocai (P < 0.05). Low-temperature fermentation with the starter cultures of psychrotolerant LAB could effectively prevent overacidity and over-ripening of the Paocai products. Additionally, Paocai fermented with psychrotolerant LAB harbored relatively simple microbial flora as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. This study provides a basis for improving the quality of Chinese traditional Paocai and the large-scale production of low-temperature Chinese traditional Paocai products.

  12. Lactic Fermentation as an Efficient Tool to Enhance the Antioxidant Activity of Tropical Fruit Juices and Teas

    PubMed Central

    Fessard, Amandine; Kapoor, Ashish; Patche, Jessica; Assemat, Sophie; Hoarau, Mathilde; Bourdon, Emmanuel; Bahorun, Theeshan; Remize, Fabienne

    2017-01-01

    Tropical fruits like pineapple, papaya, mango, and beverages such as green or black teas, represent an underestimated source of antioxidants that could exert health-promoting properties. Most food processing technologies applied to fruit beverages or teas result in an impairment of inherent nutritional properties. Conversely, we hypothesise that lactic acid fermentation may constitute a promising route to maintain and even improve the nutritional qualities of processed fruits. Using specific growth media, lactic acid bacteria were selected from the fruit phyllosphere diversity and fruit juice, with the latter undergoing acidification kinetics analyses and characterised for exopolysaccharide production. Strains able to ferment tropical fruit juices or teas into pleasant beverages, within a short time, were of particular interest. Strains Weissella cibaria 64 and Leuconostoc mesenteroides 12b, able to increase antioxidant activity, were specifically studied as potential starters for lactic fermented pineapple juice. PMID:28489022

  13. Betaine and Beet Molasses Enhance L-Lactic Acid Production by Bacillus coagulans

    PubMed Central

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses. PMID:24956474

  14. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    PubMed

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  15. Microbiological Quality of Panicum maximum Grass Silage with Addition of Lactobacillus sp. as Starter

    NASA Astrophysics Data System (ADS)

    Sumarsih, S.; Sulistiyanto, B.; Utama, C. S.

    2018-02-01

    The aim of the research was to evaluate microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp as starter. The completely randomized design was been used on this research with 4 treaments and 3 replications. The treatments were P0 ( Panicum maximum grass silage without addition Lactobacillus sp ), P1 ( Panicum maximum grass silage with 2% addition Lactobacillus sp), P2 (Panicum maximum grass silage with 4% addition Lactobacillus sp) and P3 (Panicum maximum grass silage with 6% addition Lactobacillus sp).The parameters were microbial populations of Panicum maximum grass silage (total lactic acid bacteria, total bacteria, total fungi, and Coliform bacteria. The data obtained were analyzed variance (ANOVA) and further tests performed Duncan’s Multiple Areas. The population of lactic acid bacteria was higher (P<0.05) and the total bacteria, fungi and Coliform were lower (P<0.05) with addition Lactobacillus sp. Microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp was better than no addition Lactobacillus sp.

  16. Synthesis and Hydrolytic Degradation of Substituted Poly(DL-Lactic Acid)s

    PubMed Central

    Tsuji, Hideto; Eto, Takehiko; Sakamoto, Yuzuru

    2011-01-01

    Non-substituted racemic poly(DL-lactic acid) (PLA) and substituted racemic poly(DL-lactic acid)s or poly(DL-2-hydroxyalkanoic acid)s with different side-chain lengths, i.e., poly(DL-2-hydroxybutanoic acid) (PBA), poly(DL-2-hydroxyhexanoic acid) (PHA), and poly(DL-2-hydroxydecanoic acid) (PDA) were synthesized by acid-catalyzed polycondensation of DL-lactic acid (LA), DL-2-hydroxybutanoic acid (BA), DL-2-hydroxyhexanoic acid (HA), and DL-2-hydroxydecanoic acid (DA), respectively. The hydrolytic degradation behavior was investigated in phosphate-buffered solution at 80 and 37 °C by gravimetry and gel permeation chromatography. It was found that the reactivity of monomers during polycondensation as monitored by the degree of polymerization (DP) decreased in the following order: LA > DA > BA > HA. The hydrolytic degradation rate traced by DP and weight loss at 80 °C decreased in the following order: PLA > PDA > PHA > PBA and that monitored by DP at 37 °C decreased in the following order: PLA > PDA > PBA > PHA. LA and PLA had the highest reactivity during polymerization and hydrolytic degradation rate, respectively, and were followed by DA and PDA. BA, HA, PBA, and PHA had the lowest reactivity during polymerization and hydrolytic degradation rate. The findings of the present study strongly suggest that inter-chain interactions play a major role in the reactivity of non-substituted and substituted LA monomers and degradation rate of the non-substituted and substituted PLA, along with steric hindrance of the side chains as can be expected. PMID:28824149

  17. Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2007-01-01

    The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.

  18. Human milk is a source of lactic acid bacteria for the infant gut.

    PubMed

    Martín, Rocío; Langa, Susana; Reviriego, Carlota; Jimínez, Esther; Marín, María L; Xaus, Jordi; Fernández, Leonides; Rodríguez, Juan M

    2003-12-01

    To investigate whether human breast milk contains potentially probiotic lactic acid bacteria, and therefore, whether it can be considered a synbiotic food. Study design Lactic acid bacteria were isolated from milk, mammary areola, and breast skin of eight healthy mothers and oral swabs and feces of their respective breast-fed infants. Some isolates (178 from each mother and newborn pair) were randomly selected and submitted to randomly amplified polymorphic DNA (RAPD) polymerase chain reaction analysis, and those that displayed identical RAPD patterns were identified by 16S rDNA sequencing. Within each mother and newborn pair, some rod-shaped lactic acid bacteria isolated from mammary areola, breast milk, and infant oral swabs and feces displayed identical RAPD profiles. All of them, independently from the mother and child pair, were identified as Lactobacillus gasseri. Similarly, among coccoid lactic acid bacteria from these different sources, some shared an identical RAPD pattern and were identified as Enterococcus faecium. In contrast, none of the lactic acid bacteria isolated from breast skin shared RAPD profiles with lactic acid bacteria of the other sources. Breast-feeding can be a significant source of lactic acid bacteria to the infant gut. Lactic acid bacteria present in milk may have an endogenous origin and may not be the result of contamination from the surrounding breast skin.

  19. Production of potential probiotic Spanish-style green table olives at pilot plant scale using multifunctional starters.

    PubMed

    Rodríguez-Gómez, F; Romero-Gil, V; Bautista-Gallego, J; García-García, P; Garrido-Fernández, A; Arroyo-López, F N

    2014-12-01

    This work evaluates the use of two multifunctional starters of Lactobacillus pentosus species (TOMC LAB2 and TOMC LAB4) during elaboration of Manzanilla olive fruits processed according to the Spanish-style. Data show that the use of inocula at the onset of fermentation led to a proper acidification and sugar consumption of brines compared to the spontaneous process, obtaining in a shorter period of time the maximum population for lactic acid bacteria. Both inoculated L. pentosus strains were recovered at high frequencies at the end of fermentation on the olive surface, which was corroborated by RAPD-PCR analysis. In situ observation of olive epidermis slices by scanning electron microscopy revealed a strong aggregation and adhesion between microorganisms, which reached population levels of approximately 6 and 7 log10 cfu/cm(2) for yeasts and lactic acid bacteria, respectively. Enterobacteriaceae on the olive surface were also found at the onset of fermentation (∼9 log10 cfu/cm(2)), but they declined during the process and were below the detection limit at the end of fermentation. Results obtained in this study show the advantage of using multifunctional starters with the ability to adhere to the olive epidermis because, ultimately, the fruits are the food ingested by consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Monascus ruber as cell factory for lactic acid production at low pH.

    PubMed

    Weusthuis, Ruud A; Mars, Astrid E; Springer, Jan; Wolbert, Emil Jh; van der Wal, Hetty; de Vrije, Truus G; Levisson, Mark; Leprince, Audrey; Houweling-Tan, G Bwee; Pha Moers, Antoine; Hendriks, Sjon Na; Mendes, Odette; Griekspoor, Yvonne; Werten, Marc Wt; Schaap, Peter J; van der Oost, John; Eggink, Gerrit

    2017-07-01

    A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate. Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190g/l at pH 3.8 and 129g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature for lactic acid production at low pH. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Lactic acid fermentation in the production of foods from vegetables, cereals and legumes.

    PubMed

    Steinkraus, K H

    1983-09-01

    Lactic acid bacteria perform an essential role in the preservation and production of wholesome foods. Generally the lactic acid fermentations are low-cost and often little or no heat is required in their preparation. Thus, they are fuel-efficient. Lactic acid fermented foods have an important role in feeding the world's population on every continent today. As world population rises, lactic acid fermentation is expected to become even more important in preserving fresh vegetables, fruits, cereals and legumes for feeding humanity.

  2. Lactic acid fermentation of dahlia tuber starch and waste using Lactobacillus bulgaricus: A comparative study

    NASA Astrophysics Data System (ADS)

    Praputri, E.; Sundari, E.; Martynis, M.; Agenta, P.

    2018-03-01

    Lactic acid fermentation of dahlia tuber starch and waste was performed by means of Lactobacillus bulgaricus through enzymatic hydrolysis followed by fermentation process. The effect of pH condition on lactic acid production was investigated during the process. The selected bacteria produced lactic acid after 24 hours of fermentation and the productivity was increase after 24 hours of fermentation. After 120 hours of fermentation, it was found that dahlia tuber starch can produce up to 16.18% of lactic acid, whereas lactic acid produced from dahlia tuber waste was only 0.40% at pH of 4. The lactic acid production increase significantly for pH 3.5 and 4 until 96 hours of fermentation, then slowed down. On the other hand, for pH 4.5 the lactic acid production increase until 48 hours of fermentation and then slowed down. The identification of fermentation product indicated that the lactic acid produced in this study was 16.20%, acidic, yellow and cloudy with pH 3.4 – 4.2. The density of lactic acid produced ranged between 1.21 to 1.25 gr/ml.

  3. Microbial ecology and starter culture technology in coffee processing.

    PubMed

    Vinícius de Melo Pereira, Gilberto; Soccol, Vanete Thomaz; Brar, Satinder Kaur; Neto, Ensei; Soccol, Carlos Ricardo

    2017-09-02

    Coffee has been for decades the most commercialized food product and most widely consumed beverage in the world, with over 600 billion cups served per year. Before coffee cherries can be traded and processed into a final industrial product, they have to undergo postharvest processing on farms, which have a direct impact on the cost and quality of a coffee. Three different methods can be used for transforming the coffee cherries into beans, known as wet, dry, and semi-dry methods. In all these processing methods, a spontaneous fermentation is carried out in order to eliminate any mucilage still stuck to the beans and helps improve beverage flavor by microbial metabolites. The microorganisms responsible for the fermentation (e.g., yeasts and lactic acid bacteria) can play a number of roles, such as degradation of mucilage (pectinolytic activity), inhibition of mycotoxin-producing fungi growth, and production of flavor-active components. The use of starter cultures (mainly yeast strains) has emerged in recent years as a promising alternative to control the fermentation process and to promote quality development of coffee product. However, scarce information is still available about the effects of controlled starter cultures in coffee fermentation performance and bean quality, making it impossible to use this technology in actual field conditions. A broader knowledge about the ecology, biochemistry, and molecular biology could facilitate the understanding and application of starter cultures for coffee fermentation process. This review provides a comprehensive coverage of these issues, while pointing out new directions for exploiting starter cultures in coffee processing.

  4. Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.

    PubMed

    Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens

    2010-05-01

    Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.

  5. Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis.

    PubMed

    Wang, Jingxuan; Zhao, Peng; Li, Ying; Xu, Lida; Tian, Pingfang

    2018-04-05

    Klebsiella pneumoniae is a promising industrial species for bioproduction of bulk chemicals such as 1,3-propanediol, 2,3-butanediol and 3-hydroxypropionic acid (3-HP). However, lactic acid is a troublesome by-product when optimizing for 3-HP production. Therefore, it is highly desirable to minimize lactic acid. Here, we show that lactic acid synthesis can be largely blocked by an engineered CRISPR interference (CRISPRi) system in K. pneumoniae. EGFP was recruited as a reporter of this CRISPRi system. Fluorescence assay of this CRISPRi system showed that enhanced green fluorescent protein (EGFP) expression level was repressed by 85-90%. To further test this CRISPRi system, guide RNAs were designed to individually or simultaneously target four lactate-producing enzyme genes. Results showed that all lactate-producing enzyme genes were significantly repressed. Notably, D-lactate dehydrogenase (ldhA) was shown to be the most influential enzyme for lactic acid formation in micro-aerobic conditions, as inhibiting ldhA alone led to lactic acid level similar to simultaneously repressing four genes. In shake flask cultivation, the strain coexpressing puuC (an aldehyde dehydrogenase catalyzing 3-hydroxypropionaldehyde to 3-HP) and dCas9-sgRNA inhibiting ldhA produced 1.37-fold 3-HP relative to the reference strain. Furthermore, in bioreactor cultivation, this CRISPRi strain inhibiting ldhA produced 36.7 g/L 3-HP, but only generated 1 g/L lactic acid. Clearly, this engineered CRISPRi system largely simplified downstream separation of 3-HP from its isomer lactic acid, an extreme challenge for 3-HP bioprocess. This study offers a deep understanding of lactic acid metabolism in diverse species, and we believe that this CRISPRi system will facilitate biomanufacturing and functional genome studies of K. pneumoniae or beyond.

  6. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Lactic acid; exemption from the requirement of a tolerance. 180.1090 Section 180.1090 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1090 Lactic acid; exemption from the requirement of a tolerance. Lactic acid...

  7. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Lactic acid; exemption from the requirement of a tolerance. 180.1090 Section 180.1090 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1090 Lactic acid; exemption from the requirement of a tolerance. Lactic acid...

  8. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Lactic acid; exemption from the requirement of a tolerance. 180.1090 Section 180.1090 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1090 Lactic acid; exemption from the requirement of a tolerance. Lactic acid...

  9. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Lactic acid; exemption from the requirement of a tolerance. 180.1090 Section 180.1090 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1090 Lactic acid; exemption from the requirement of a tolerance. Lactic acid...

  10. 40 CFR 180.1090 - Lactic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Lactic acid; exemption from the requirement of a tolerance. 180.1090 Section 180.1090 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1090 Lactic acid; exemption from the requirement of a tolerance. Lactic acid...

  11. Effects of lactic acid on astrocytes in primary culture.

    PubMed

    Norenberg, M D; Mozes, L W; Gregorios, J B; Norenberg, L O

    1987-03-01

    Excessive tissue lactic acidosis is considered to be detrimental to the central nervous system (CNS) and may adversely affect recovery from anoxia, ischemia, trauma and epilepsy. Since astrocytes are believed to play a role in pH regulation in the CNS, we studied the effect of this acid on primary astrocyte cultures. Cells exposed to lactic acid showed chromatin clumping, an increase of lipid and dense bodies, a loss of polyribosomal clusters, slightly increased cytoplasmic lucency, swollen mitochondria and tangled intermediate filaments. These alterations progressed with lower pH and longer exposure. Irreversible changes occurred one to two hours after exposure at pH 6; after 30 to 60 minutes (min) at pH 5.5 and after ten to 30 min at pH 5. Comparable results were obtained with the use of other weak acids indicating that the observed changes were due to increased hydrogen ion concentration rather than secondary to lactate per se. Additionally, various concentrations of lactic acid adjusted to identical pH produced similar morphologic alterations. Thus, while lactic acid caused marked and at times irreversible alterations in astrocytes, severe and prolonged acidosis was required to produce such injurious effects. This relative resistance of astrocytes to acidosis is in keeping with their potential role in pH regulation in brain.

  12. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... glucose, sucrose, or lactose, or by a procedure involving formation of lactonitrile from acetaldehyde and hydrogen cyanide and subsequent hydrolysis to lactic acid. (b) The ingredient meets the specifications of...

  13. 21 CFR 184.1061 - Lactic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... glucose, sucrose, or lactose, or by a procedure involving formation of lactonitrile from acetaldehyde and hydrogen cyanide and subsequent hydrolysis to lactic acid. (b) The ingredient meets the specifications of...

  14. Optimisation of lactic acid fermentation for improved vinegar flavour during rosy vinegar brewing.

    PubMed

    Jiang, Yujian; Guo, Jianna; Li, Yudong; Lin, Sen; Wang, Li; Li, Jianrong

    2010-06-01

    Rosy vinegar is a well-known traditional Chinese product whose flavour is affected by its lactic acid content. In this study, Lactobacillus bacteria were employed to increase the content of lactic acid during the ethanol fermentation stage. The optimised fermentation parameters were determined as an inoculation amount of 3% (v/v), a temperature of 30 degrees C and an initial pH value of 4.0. Fermentation under these optimal conditions resulted in an alcohol degree of 6.2% (v/v), a total acidity of 49.5 g L(-1) and a lactic acid content of 4.14 g L(-1). The content of lactic acid (4.14 g L(-1)), which approached the level achieved by solid state fermentation, was 3.56-fold higher than that in vinegar fermented without lactic acid bacteria (1.16 g L(-1)). The results indicate that mixed fermentation with Lactobacillus plantarum and Saccharomyces cerevisiae strains greatly increases the lactic acid content and improves the flavour of rosy vinegar. Copyright (c) 2010 Society of Chemical Industry.

  15. Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii.

    PubMed

    Ortiz-Merino, Raúl A; Kuanyshev, Nurzhan; Byrne, Kevin P; Varela, Javier A; Morrissey, John P; Porro, Danilo; Wolfe, Kenneth H; Branduardi, Paola

    2018-03-01

    Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii 's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae Furthermore, formate dehydrogenase ( FDH ) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns

  16. Extracellular protease derived from lactic acid bacteria stimulates the fermentative lactic acid production from the by-products of rice as a biomass refinery function.

    PubMed

    Watanabe, Masanori; Techapun, Charin; Kuntiya, Ampin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Takenaka, Shinji; Maeda, Isamu; Koyama, Masahiro; Nakamura, Kozo

    2017-02-01

    A lactic acid producing bacterium, Lactobacillus rhamnosus M-23, newly isolated from a rice washing drainage storage tank was found to produce l-(+)-lactic acid from a non-sterilized mixture of rice washing drainage and rice bran without any additions of nutrients under the simultaneous saccharification and fermentation (SSF) process. This strain has the ability to utilize the non-sterilized rice washing drainage and rice bran as a source of carbohydrate, saccharifying enzymes and nutrients for lactic acid production. Observation of extracellular protease activity in SSF culture broth showed that a higher protease activity was present in strain M-23 than in other isolated lactic acid producing bacteria (LABs). To investigate the structural changes of solid particles of rice washing drainage throughout LAB cultivation, scanning electron microscopic (SEM) observation and Fourier transform infrared-spectroscopy (FT-IR) analysis were performed. The results of the SEM observation showed that the surface material could be removed from solid particles of rice washing drainage treated by culture broth (supernatant) of strain M-23, thus exposing the crystal structure of the starch particle surface. The results of the FT-IR analysis revealed that the specific transmittance decrease of the CC and CO stretching and OH group of the solid particles of the rice washing drainage were highly correlated with the produced lactic acid concentration and extracellular protease activity, respectively. These results demonstrate the high lactic acid producing ability of strain M-23 from a non-sterilized mixture of rice washing drainage and rice bran under the SSF condition due to the removal of proteinaceous material and exposure of the starch particle surface by extracellular protease. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield.

    PubMed

    Mimitsuka, Takashi; Sawai, Kenji; Kobayashi, Koji; Tsukada, Takeshi; Takeuchi, Norihiro; Yamada, Katsushige; Ogino, Hiroyasu; Yonehara, Tetsu

    2015-01-01

    Poly d-lactic acid is an important polymer because it improves the thermostability of poly l-lactic acid by stereo complex formation. To demonstrate potency of continuous fermentation using a membrane-integrated fermentation reactor (MFR) system, continuous fermentation using genetically modified Saccharomyces cerevisiae which produces d-lactic acid was performed at the low pH and microaerobic conditions. d-Lactic acid continuous fermentation using the MFR system by genetically modified yeast increased production rate by 11-fold compared with batch fermentation. In addition, the carbon yield of d-lactic acid in continuous fermentation was improved to 74.6 ± 2.3% compared to 39.0 ± 1.7% with batch fermentation. This dramatic improvement in carbon yield could not be explained by a reduction in carbon consumption to form cells compared to batch fermentation. Further detailed analysis at batch fermentation revealed that the carbon yield increased to 76.8% at late stationary phase. S. cerevisiae, which exhibits the Crabtree-positive effect, demonstrated significant changes in metabolic activities at low sugar concentrations (Rossignol et al., Yeast, 20, 1369-1385, 2003). Moreover, lactate-producing S. cerevisiae requires ATP supplied not only from the glycolytic pathway but also from the TCA cycle (van Maris et al., Appl. Environ. Microbiol., 70, 2898-2905, 2004). Our finding was revealed that continuous fermentation, which can maintain the conditions of both a low sugar concentration and air supply, results in Crabtree-positive and lactate-producing S. cerevisiae for suitable conditions of d-lactic acid production with respect to redox balance and ATP generation because of releasing the yeast from the Crabtree effect. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    PubMed Central

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  19. Topical zinc oxide vs. salicylic acid-lactic acid combination in the treatment of warts.

    PubMed

    Khattar, Joe A; Musharrafieh, Umayya M; Tamim, Hala; Hamadeh, Ghassan N

    2007-04-01

    Warts are a common dermatologic problem. Treatment is painful, prolonged, and can cause scarring. To evaluate topical zinc oxide for the treatment of warts. This was a randomized, double-blind controlled trial of 44 patients. Twenty-two patients were given topical zinc oxide 20% ointment, and the other 22 received salicylic acid 15% + lactic acid 15% ointment twice daily. All patients were followed up for 3 months or until cure, whichever occurred first. All patients were observed for side-effects. Sixteen patients in the zinc group and 19 in the salicylic acid-lactic acid group completed the study. In the zinc oxide-treated group, 50% of the patients showed complete cure and 18.7% failed to respond, compared with 42% and 26%, respectively, in the salicylic acid-lactic acid-treated group. No patients developed serious side-effects. Topical zinc oxide is an efficacious, painless, and safe therapeutic option for wart treatment.

  20. Rational selection of Leuconostoc strains for mixed starters based on the physiological biodiversity found in raw milk fermentations.

    PubMed

    Sánchez, Jorge Ignacio; Martínez, Beatriz; Rodríguez, Ana

    2005-12-15

    The technological abilities of eleven wild Leuconostoc strains isolated from artisanal Afuega'l Pitu cheese, a homemade acid-coagulated cheese from raw milk from Asturias (northern Spain), were studied in order to test their potential application as components of dairy starters. Metabolic activity, production of flavour compounds, resistance to NaCl, acid, nisin and freezing, as well as genetic biodiversity were investigated. Marked differences among all tested strains reflected the existing biodiversity in naturally fermented products. After evaluation of their performance, strains IPLA567 and IPLA979 revealed the best properties to be used use in mixed dairy starter cultures. These two strains were able to ferment lactose and galactose and produced larger amounts of lactic acid than the others. Moreover, they showed high tolerance levels to NaCl, acid and nisin, although their resistance to freezing was slightly lower than the other strains. This study evidences the fact that natural environments can be considered as a proper source of new strains, which may help the dairy industry to widen their fermented products range.

  1. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1.

    PubMed

    Lee, Jinsuk J; Crook, Nathan; Sun, Jie; Alper, Hal S

    2016-01-01

    Polylactic acid (PLA) is an important renewable polymer, but current processes for producing its precursor, lactic acid, suffer from process inefficiencies related to the use of bacterial hosts. Therefore, improving the capacity of Saccharomyces cerevisiae to produce lactic acid is a promising approach to improve industrial production of lactic acid. As one such improvement required, the lactic acid tolerance of yeast must be significantly increased. To enable improved tolerance, we employed an RNAi-mediated genome-wide expression knockdown approach as a means to rapidly identify potential genetic targets. In this approach, several gene knockdown targets were identified which confer increased acid tolerance to S. cerevisiae BY4741, of which knockdown of the ribosome-associated chaperone SSB1 conferred the highest increase (52%). This target was then transferred into a lactic acid-overproducing strain of S. cerevisiae CEN.PK in the form of a knockout and the resulting strain demonstrated up to 33% increased cell growth, 58% increased glucose consumption, and 60% increased L-lactic acid production. As SSB1 contains a close functional homolog SSB2 in yeast, this result was counterintuitive and may point to as-yet-undefined functional differences between SSB1 and SSB2 related to lactic acid production. The final strain produced over 50 g/L of lactic acid in under 60 h of fermentation.

  2. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae.

    PubMed

    Liaud, Nadège; Rosso, Marie-Noëlle; Fabre, Nicolas; Crapart, Sylvaine; Herpoël-Gimbert, Isabelle; Sigoillot, Jean-Claude; Raouche, Sana; Levasseur, Anthony

    2015-05-03

    Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.g. cellulose, hemicellulose, starch). Aspergilli are versatile microbial cell factories able to naturally produce large amounts of organic acids at low pH and to metabolize cheap abundant carbon sources such as plant biomass. However, they have never been used for lactic acid production. To investigate the feasibility of lactic acid production with Aspergillus, the NAD-dependent lactate dehydrogenase (LDH) responsible for lactic acid production by Rhizopus oryzae was produced in Aspergillus brasiliensis BRFM103. Among transformants, the best lactic acid producer, A. brasiliensis BRFM1877, integrated 6 ldhA gene copies, and intracellular LDH activity was 9.2 × 10(-2) U/mg. At a final pH of 1.6, lactic acid titer reached 13.1 g/L (conversion yield: 26%, w/w) at 138 h in glucose-ammonium medium. This extreme pH drop was subsequently prevented by switching nitrogen source from ammonium sulfate to Na-nitrate, leading to a final pH of 3 and a lactic acid titer of 17.7 g/L (conversion yield: 47%, w/w) at 90 h of culture. Final titer was further improved to 32.2 g/L of lactic acid (conversion yield: 44%, w/w) by adding 20 g/L glucose to the culture medium at 96 h. This strain was ultimately able to produce lactic acid from xylose, arabinose, starch and xylan. We obtained the first Aspergillus strains able to produce large amounts of lactic acid by inserting recombinant ldhA genes from R. oryzae into a wild-type A. brasiliensis strain. pH regulation failed to significantly increase lactic acid production, but switching nitrogen source and changing culture feed

  3. M2-like macrophage polarization in high lactic acid-producing head and neck cancer.

    PubMed

    Ohashi, Toshimitsu; Aoki, Mitsuhiro; Tomita, Hiroyuki; Akazawa, Takashi; Sato, Katsuya; Kuze, Bunya; Mizuta, Keisuke; Hara, Akira; Nagaoka, Hitoshi; Inoue, Norimitsu; Ito, Yatsuji

    2017-06-01

    Reprogramming of glucose metabolism in tumor cells is referred to as the Warburg effect and results in increased lactic acid secretion into the tumor microenvironment. We have previously shown that lactic acid has important roles as a pro-inflammatory and immunosuppressive mediator and promotes tumor progression. In this study, we examined the relationship between the lactic acid concentration and expression of LDHA and GLUT1, which are related to the Warburg effect, in human head and neck squamous cell carcinoma (HNSCC). Tumors expressing lower levels of LDHA and GLUT1 had a higher concentration of lactic acid than those with higher LDHA and GLUT1 expression. Lactic acid also suppressed the expression of LDHA and GLUT1 in vitro. We previously reported that lactic acid enhances expression of an M2 macrophage marker, ARG1, in murine macrophages. Therefore, we investigated the relationship between the lactic acid concentration and polarization of M2 macrophages in HNSCC by measuring the expression of M2 macrophage markers, CSF1R and CD163, normalized using a pan-macrophage marker, CD68. Tumors with lower levels of CD68 showed a higher concentration of lactic acid, whereas those with higher levels of CSF1R showed a significantly higher concentration of lactic acid. A similar tendency was observed for CD163. These results suggest that tumor-secreted lactic acid is linked to the reduction of macrophages in tumors and promotes induction of M2-like macrophage polarization in human HNSCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Anaerobic Membrane Bioreactor for Continuous Lactic Acid Fermentation

    PubMed Central

    Fan, Rong; Ebrahimi, Mehrdad; Czermak, Peter

    2017-01-01

    Membrane bioreactor systems can enhance anaerobic lactic acid fermentation by reducing product inhibition, thus increasing productivity. In batch fermentations, the bioconversion of glucose is strongly inhibited in the presence of more than 100 g·L−1 lactic acid and is only possible when the product is simultaneously removed, which can be achieved by ceramic membrane filtration. The crossflow velocity is a more important determinant of flux than the transmembrane pressure. Therefore, to stabilize the performance of the membrane bioreactor system during continuous fermentation, the crossflow velocity was controlled by varying the biomass concentration, which was monitored in real-time using an optical sensor. Continuous fermentation under these conditions, thus, achieved a stable productivity of ~8 g·L−1·h−1 and the concentration of lactic acid was maintained at ~40 g·L−1 at a dilution rate of 0.2 h−1. No residual sugar was detected in the steady state with a feed concentration of 50 g·L−1. PMID:28467384

  5. An improved process of isomaltooligosaccharide production in kimchi involving the addition of a Leuconostoc starter and sugars.

    PubMed

    Cho, Seung Kee; Eom, Hyun-Ju; Moon, Jin Seok; Lim, Sae-Bom; Kim, Yong Kook; Lee, Ki Won; Han, Nam Soo

    2014-01-17

    Isomaltooligosaccharides (IMOs) are α-(1→6)-linked oligodextrans that show a prebiotic effect on Bifidobacterium spp. This study sought to improve IMO synthesis during lactate fermentation in kimchi by inoculating the kimchi fermentation mix with a starter and sugars; the psychrotrophic Leuconostoc citreum KACC 91035 strain with high dextransucrase activity was used as a starter and sucrose (58 mM) and maltose (56 mM) were added as the donor and acceptor for the glucose-transferring reaction of the dextransucrase, respectively. With the addition of both the starter and the sugars and incubation at 10°C, IMOs were produced in kimchi after 3d. Without the starter, the IMO production rate and maximal concentration in kimchi were 15.05 mM/d and 75.27 mM, respectively, whereas with the starter, the rate and concentration increased to 22.04 mM/d and 110.19 mM, respectively. In addition, the sucrose-maltose mix gave an appropriate level of sweetness by releasing fructose and prevented unfavorable polymer synthesis by IMO production. This result suggests that lactic acid bacteria expressing a highly active glycosyltransferase can be used for the synthesis of beneficial oligosaccharides in various fermented foods. © 2013.

  6. Lactose behaviour in the presence of lactic acid and calcium.

    PubMed

    Wijayasinghe, Rangani; Vasiljevic, Todor; Chandrapala, Jayani

    2016-08-01

    Physical properties of lactose appeared influenced by presence of lactic acid in the system. Some other components such as Ca may further attenuate lactose behaviour and impact its phase transition. A model-based study was thus implemented with varying concentrations of Ca (0·12, 0·072 or 0·035% w/w) and lactic acid (0·05, 0·2, 0·4 or 1% w/w) in establishing the effects of these two main acid whey constituents on lactose phase behaviour. Concentrated solutions (50% w/w) containing lactose, lactic acid and Ca were analysed for thermal behaviour and structural changes by Differential Scanning Colorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR), respectively. Presence of 1% (w/w) lactic acid and 0·12% (w/w) Ca in lactose solution significantly increased the evaporation enthalpy of water, delayed and increased the energy required for lactose crystallisation as compared to pure lactose. FTIR analysis indicated a strong hydration layer surrounding lactose molecules, restricting water mobility and/or inducing structural changes of lactose, hindering its crystallisation. The formation of calcium lactate, which restricts the diffusion of lactose molecules, is also partly responsible. It appears that Ca removal from acid whey may be a necessary step in improving the processability of acid whey.

  7. Effects of a Series of Acidic Drugs on L-Lactic Acid Transport by the Monocarboxylate Transporters MCT1 and MCT4.

    PubMed

    Leung, Yat H; Belanger, Francois; Lu, Jennifer; Turgeon, Jacques; Michaud, Veronique

    2017-01-01

    Drug-induced myopathy is a serious side effect that often requires removal of a medication from a drug regimen. For most drugs, the underlying mechanism of drug-induced myopathy remains unclear. Monocarboxylate transporters (MCTs) mediate L-lactic acid transport, and inhibition of MCTs may potentially lead to perturbation of L-lactic acid accumulation and muscular disorders. Therefore, we hypothesized that L-lactic acid transport may be involved in the development of drug-induced myopathy. The aim of this study was to assess the inhibitory potential of 24 acidic drugs on L-lactic acid transport using breast cancer cell lines Hs578T and MDA-MB-231, which selectively express MCT1 and MCT4, respectively. The influx transport of L-lactic acid was minimally inhibited by all drugs tested. The efflux transport was next examined: loratadine (IC50: 10 and 61 µM) and atorvastatin (IC50: 78 and 41 µM) demonstrated the greatest potency for inhibition of L-lactic acid efflux by MCT1 and MCT4, respectively. Acidic drugs including fluvastatin, cerivastatin, simvastatin acid, lovastatin acid, irbesartan and losartan exhibited weak inhibitory potency on L-lactic acid efflux. Our results suggest that some acidic drugs, such as loratadine and atorvastatin, can inhibit the efflux transport of L-lactic acid. This inhibition may cause an accumulation of intracellular L-lactic acid leading to acidification and muscular disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Microbiological and fermentative properties of baker's yeast starter used in breadmaking.

    PubMed

    Reale, A; Di Renzo, T; Succi, M; Tremonte, P; Coppola, R; Sorrentino, E

    2013-08-01

    This study assessed the levels of microbial contaminants in liquid, compressed and dry commercial baker's yeasts used as starters in breadmaking. Eumycetes, Enterobacteriaceae, total and fecal coliforms, Bacillus spp., and lactic acid bacteria (LAB), in particular enterococci, were quantified. Results obtained in this study highlighted that baker's yeast could represent a potential vehicle of spoilage and undesirable microorganisms into the baking environment, even if these do not influence the leavening activity in the dough, as ascertained by rheofermentometer analysis. Different microbial groups, such as spore-forming bacteria and moulds, were found in baker's yeast starters. Moreover, different species of LAB, which are considered the main contaminants in large-scale yeast fermentations, were isolated and identified by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA sequencing. The most recurrent species were Lactobacillus plantarum, Enterococcus faecalis, and Enterococcus durans, isolated from both compressed and dry starters, whereas strains belonging to Leuconostoc and Pediococcus genera were found only in dry ones. Nested-Polymerase Chain Reaction (Nested-PCR) and Randomly Amplified Polymorphic DNA-PCR (RAPD-PCR) were also used to highlight the biodiversity of the different commercial yeast strains, and to ascertain the culture purity. © 2013 Institute of Food Technologists®

  9. Whey-cheese production using freeze-dried kefir culture as a starter.

    PubMed

    Dimitrellou, D; Kourkoutas, Y; Banat, I M; Marchant, R; Koutinas, A A

    2007-10-01

    The aim of the present study was to evaluate the use of a freeze-dried kefir culture in the production of a novel type of whey-cheese similar to traditional Greek Myzithra-cheese, to achieve improvement of the quality characteristics of the final product and the extension of shelf-life. The use of kefir culture as a starter led to increased lactic acid concentrations and decreased pH values in the final product compared with whey-cheese without starter culture. The effect of the starter culture on production of aroma-related compounds responsible for cheese flavour was also studied using the solid phase microextraction gas chromatography/mass spectrometry technique. Spoilage in unsalted kefir-whey-cheese was observed on the thirteenth and the twentieth day of preservation at 10 and 5 degrees C, respectively, while the corresponding times for unsalted whey-cheese preservation were 11 and 14 days. The cheeses produced were characterized as high-quality products during the preliminary sensory evaluation. An indication of increased preservation time was attributed to the freeze-dried kefir culture, which also seemed to suppress growth of pathogens. The results suggested the use of kefir culture as a means to extend the shelf-life of dairy products with reduced or no salt content.

  10. Cocrystallization as a tool to solve deliquescence issues: The case of L-lactic acid

    NASA Astrophysics Data System (ADS)

    de Maere d'Aertrycke, J. B.; Robeyns, K.; Willocq, J.; Leyssens, T.

    2017-08-01

    L-Lactic acid is an organic acid used in various fields such as food, cosmetic or pharmaceutical industry. It furthermore is the building-block of poly-lactic acid, a biodegradable and bioavailable polymer. Still, handling L-lactic acid under its solid form remains less straightforward mainly due to its deliquescent behavior, a phase transition from the solid to the dissolved state resulting from air humidity absorption. If several techniques are already known to avoid or reduce deliquescence, the use of cocrystallization in this context is still poorly investigated. In this paper, we investigate whether cocrystallization can be used as a suitable solution for deliquescence in the case of L-lactic acid. Out of 32 possible coformers tested, four were found to form cocrystals with L-lactic acid and the crystal structures of 1:1 L-lactic acid:D-tryptophan and 1:1 L-lactic acid:3-nitrobenzamide were determined. The hygroscopic behavior of these latter two was studied and compared to the behavior of pure L-lactic acid. Significant improvement was observed: dynamic vapor sorption at 25 °C revealed that water absorbed at 90% relative humidity dropped from 1.3157 g/gsample to 0.0017 g/gsample or 0.0299 g/gsample, with cocrystals of D-tryptophan and 3-nitrobenzamide respectively. This illustrates the effectiveness of cocrystallization as a tool to treat deliquescent materials.

  11. Laboratory evaluation of lactic acid on attraction of Culex spp. (Diptera: Culicidae).

    PubMed

    Allan, Sandra A; Bernier, Ulrich R; Kline, Daniel L

    2010-12-01

    The role of lactic acid was evaluated for attraction of Culex nigripalpus, Culex quinquefasciatus, Culex tarsalis, and Aedes aegypti in the laboratory using a dual-port olfactometer. When lactic acid was combined with chicken odor, attraction was increased for Cx. quinquefasciatus compared to chicken odor alone but not for Cx. nigripalpus, Cx. tarsalis, and Ae. aegypti. Lactic acid combined with hand odor did not change attraction of Cx. tarsalis and Ae. aegypti but decreased attraction of Cx. nigripalpus and Cx. quinquefasciatus. The addition of lactic acid to CO(2) increased attraction of Ae. aegypti and Cx. quinquefasciatus but reduced attraction of Cx. nigripalpus and Cx. tarsalis. Use of commercial lactic acid baits with CO(2) resulted in a similar trend except for Cx. nigripalpus which showed no difference. A blend of lactic acid, acetone, and dimethyl disulfide was attractive to Ae. aegypti (63.4%) but elicited low responses by all Culex spp. (1.3-26.8%). Addition of the blend to CO(2) increased attraction of Ae. aegypti and Cx. quinquefasciatus but reduced attraction of Cx. nigripalpus and Cx. tarsalis. The mixture of compounds plus CO(2) was as attractive as a hand for Cx. quinquefasciatus, Cx. tarsalis, and Ae. aegypti. © 2010 The Society for Vector Ecology.

  12. Acetate accumulation enhances mixed culture fermentation of biomass to lactic acid.

    PubMed

    Khor, Way Cern; Roume, Hugo; Coma, Marta; Vervaeren, Han; Rabaey, Korneel

    2016-10-01

    Lactic acid is a high-in-demand chemical, which can be produced through fermentation of lignocellulosic feedstock. However, fermentation of complex substrate produces a mixture of products at efficiencies too low to justify a production process. We hypothesized that the background acetic acid concentration plays a critical role in lactic acid yield; therefore, its retention via selective extraction of lactic acid or its addition would improve overall lactic acid production and eliminate net production of acetic acid. To test this hypothesis, we added 10 g/L of acetate to fermentation broth to investigate its effect on products composition and concentration and bacterial community evolution using several substrate-inoculum combinations. With rumen fluid inoculum, lactate concentrations increased by 80 ± 12 % (cornstarch, p < 0.05) and 16.7 ± 0.4 % (extruded grass, p < 0.05) while with pure culture inoculum (Lactobacillus delbrueckii and genetically modified (GM) Escherichia coli), a 4 to 23 % increase was observed. Using rumen fluid inoculum, the bacterial community was enriched within 8 days to >69 % lactic acid bacteria (LAB), predominantly Lactobacillaceae. Higher acetate concentration promoted a more diverse LAB population, especially on non-inoculated bottles. In subsequent tests, acetate was added in a semi-continuous percolation system with grass as substrate. These tests confirmed our findings producing lactate at concentrations 26 ± 5 % (p < 0.05) higher than the control reactor over 20 days operation. Overall, our work shows that recirculating acetate has the potential to boost lactic acid production from waste biomass to levels more attractive for application.

  13. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation.

    PubMed

    Nguyen, Cuong Mai; Nguyen, Thanh Ngoc; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Park, Youn-Je; Kim, Jin-Cheol

    2014-01-01

    This research examines the acid hydrolysis of Curcuma longa waste, to obtain the hydrolysate containing lactic acid and ethanol fermentative sugars. A central composite design for describing regression equations of variables was used. The selected optimum condition was 4.91% sulphuric acid, 122.68°C and 50 min using the desirability function under the following conditions: the maximum reducing sugar (RS) yield is within the limited range of the 5-hydroxymethylfurfural (HMF) and furfural concentrations. Under the condition, the obtained solution contained 144 g RS/L, 0.79 g furfural/L and 2.59 g HMF/L and was directly fermented without a detoxification step. The maximum product concentration, average productivity, RS conversion and product yield were 115.36 g/L, 2.88 g/L/h, 89.43% and 64% for L-lactic acid; 113.92 g/L, 2.59 g/L/h, 88.31% and 63.29% for D-lactic acid; and 55.03 g/L, 1.38 g/L/h, 42.66 and 30.57%, respectively, for ethanol using a 7-L jar fermenter. Copyright © 2013. Published by Elsevier Ltd.

  14. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.

    PubMed

    Ou, Mark S; Ingram, Lonnie O; Shanmugam, K T

    2011-05-01

    Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150-180 g l(-1)) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l(-1) and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to L: (+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.

  15. Integrated production of lactic acid and biomass on distillery stillage.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  16. Heme and menaquinone induced electron transport in lactic acid bacteria

    PubMed Central

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species. PMID:19480672

  17. Heme and menaquinone induced electron transport in lactic acid bacteria.

    PubMed

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-05-29

    For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  18. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams.

    PubMed

    Kim, Young Joo; Park, Sung Yong; Lee, Hong Chul; Yoo, Seung Seok; Oh, Sejong; Kim, Kwang Hyun; Chin, Koo Bok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham.

  19. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams

    PubMed Central

    Yoo, Seung Seok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham. PMID:27499673

  20. Vaginal pH and Microbicidal Lactic Acid When Lactobacilli Dominate the Microbiota

    PubMed Central

    O’Hanlon, Deirdre E.; Moench, Thomas R.; Cone, Richard A.

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid. PMID:24223212

  1. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    PubMed

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  2. Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus.

    PubMed

    Xu, Qianqian; Zang, Ying; Zhou, Jie; Liu, Peng; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-11-01

    Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of D-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for D-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of D-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest D-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of D-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of D-lactic acid production from inulin by SSF represents a high-yield method for D-lactic acid production from non-food grains.

  3. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters.

    PubMed

    Rossetti, Lia; Carminati, Domenico; Zago, Miriam; Giraffa, Giorgio

    2009-03-15

    A Qualified Presumption of Safety (QPS) approach was applied to dominant lactic acid bacteria (LAB) associated with Grana Padano cheese whey starters. Thirty-two strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum, and representing the overall genotypic LAB diversity associated with 24 previously collected whey starters [Rossetti, L., Fornasari, M.E., Gatti, M., Lazzi, C., Neviani, E., Giraffa, G., 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. International Journal of Food Microbiology 127, 168-171], were analyzed. All L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus isolates were susceptible to four (i.e. vancomycin, gentamicin, tetracycline, and erythromycin) of the clinically most relevant antibiotics. One L. fermentum strain displayed phenotypic resistance to tetracycline (Tet(R)), with MIC of 32 microg/ml, and gentamycin (Gm(R)), with MIC of 32 microg/ml. PCR was applied to this strain to test the presence of genes tet(L), tet(M), tet(S), and aac(6')-aph(2')-Ia, which are involved in horizontal transfer of Tet(R) and Gm(R), respectively but no detectable amplification products were observed. According to QPS criteria, we conclude that Grana cheese whey starters do not present particular safety concerns.

  4. Influence of starter culture ratios and warm room treatment on free fatty acid and amino acid in Swiss cheese.

    PubMed

    Ji, T; Alvarez, V B; Harper, W J

    2004-07-01

    Quantification of water-soluble volatile free fatty acids (FFA) and free amino acids (FAA) was performed as a ripening index and an indirect measure of flavor development in Swiss-type cheeses. The objective of this research was to assess the effect of warm room treatment (WRT) and usage ratio of starter cultures, Streptococcus thermophilus and Lactobacillus helveticus vs. propionibacteria, on the concentration of FFA and FAA in pilot plant-scale Swiss cheese. A capillary gas chromatograph equipped with a flame ionization detector was used for the analysis of FFA in Swiss cheese. Free amino acids were analyzed by the Cd-ninhydrin method. Starter culture ratios did not affect development of FAA during the cheese ripening. However, duration of WRT had an effect on the concentration of FAA in the Swiss cheese. Free amino acids increased considerably during WRT. A continuous increase in FAA was shown during 70-d ripening time after WRT. The concentrations of C2:0 and C3:0 fatty acids were affected by starter culture ratios after 2-wk WRT, but these differences had mostly disappeared after 3-wk WRT. Similar concentrations of FFA and FAA reported in previous studies were developed in Swiss cheese with a 3-wk WRT and a 0.33:1 ratio of Streptococcus thermophilus and Lactobacillus helveticus to propionibacteria.

  5. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    USDA-ARS?s Scientific Manuscript database

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  6. From honeycomb- to microsphere-patterned surfaces of poly(lactic acid) and a starch-poly(lactic acid) blend via the breath figure method.

    PubMed

    Duarte, Ana Rita C; Maniglio, Devid; Sousa, Nuno; Mano, João F; Reis, Rui L; Migliaresi, Claudio

    2017-01-26

    This study investigated the preparation of ordered patterned surfaces and/or microspheres from a natural-based polymer, using the breath figure and reverse breath figure methods. Poly(D,L-lactic acid) and starch poly(lactic acid) solutions were precipitated in different conditions - namely, polymer concentration, vapor atmosphere temperature and substrate - to evaluate the effect of these conditions on the morphology of the precipitates obtained. The possibility of fine-tuning the properties of the final patterns simply by changing the vapor atmosphere was also demonstrated here using a range of compositions of the vapor phase. Porous films or discrete particles are formed when the differences in surface tension determine the ability of polymer solution to surround water droplets or methanol to surround polymer droplets, respectively. In vitro cytotoxicity was assessed applying a simple standard protocol to evaluate the possibility to use these materials in biomedical applications. Moreover, fluorescent microscopy images showed a good interaction of cells with the material, which were able to adhere on the patterned surfaces after 24 hours in culture. The development of patterned surfaces using the breath figure method was tested in this work for the preparation of both poly(lactic acid) and a blend containing starch and poly(lactic acid). The potential of these films to be used in the biomedical area was confirmed by a preliminary cytotoxicity test and by morphological observation of cell adhesion.

  7. Grana Padano cheese whey starters: microbial composition and strain distribution.

    PubMed

    Rossetti, Lia; Fornasari, Maria Emanuela; Gatti, Monica; Lazzi, Camilla; Neviani, Erasmo; Giraffa, Giorgio

    2008-09-30

    The aim of this work was to evaluate the species composition and the genotypic strain heterogeneity of dominant lactic acid bacteria (LAB) isolated from whey starter cultures used to manufacture Grana Padano cheese. Twenty-four Grana Padano cheese whey starters collected from dairies located over a wide geographic production area in the north of Italy were analyzed. Total thermophilic LAB streptococci and lactobacilli were quantified by agar plate counting. Population structure of the dominant and metabolically active LAB species present in the starters was profiled by reverse transcriptase, length heterogeneity-PCR (RT-LH-PCR), a culture-independent technique successfully applied to study whey starter ecosystems. The dominant bacterial species were Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum. Diversity in the species composition allowed the whey cultures to be grouped into four main typologies, the one containing L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus being the most frequent one (45% of the cultures analyzed), followed by that containing only the two lactobacilli (40%). Only a minor fraction of the cultures contained L. helveticus alone (4%) or all the four LAB species (11%). Five hundred and twelve strains were isolated from the 24 cultures and identified by M13-PCR fingerprinting coupled with 16S rRNA gene sequencing. Most of the strains were L. helveticus (190 strains; 37% of the total), L delbrueckii subsp. lactis (90 strains; 18%) and S. thermophilus (215 strains; 42%). This result was in good agreement with the qualitative whey starter composition observed by RT-LH-PCR. M13-PCR fingerprinting indicated a markedly low infra-species diversity, i.e. the same biotypes were often found in more than one culture. The distribution of the biotypes into the different cultures was mainly dairy plant-specific rather than correlated with the different production areas.

  8. Cascade Production of Lactic Acid from Universal Types of Sugars Catalyzed by Lanthanum Triflate.

    PubMed

    Liu, Dajiang; Kim, Kwang Ho; Sun, Jian; Simmons, Blake A; Singh, Seema

    2018-02-09

    Lignocellulosic biomass conversion into value-added platform chemicals in the non-toxic, water-tolerant Lewis acid, and water solutions bears the hallmark of green chemistry. Lactic acid derived from biomass is an important chemical building block for biodegradable polymers such as polylactide. Herein, a universal method of converting lignocellulosic sugars into lactic acid using catalytic amount of water-stable Lewis acid La(OTf) 3 is demonstrated. The lignocellulosic sugars studied in this work include 1) pyrolytic sugars from pyrolysis oil, and 2) sugars derived from ionic liquid (IL)-pretreated biomass. Under moderate conditions (250 °C, 1 h), levoglucosan (major pyrolytic sugar), glucose, and xylose were converted into lactic acid with carbon-based molar yields of 75, 74, and 61 %, respectively. Furthermore, roughly 49 mol % (based on levoglucosan) and 74 wt % (relative to pretreated biomass) of lactic acid were obtained from the conversion of pyrolytic sugars and sugar-rich fraction after lignin removal from switchgrass, respectively. To our knowledge, this is the first reported conversion of pyrolytic sugar into lactic acid by chemocatalysis and also lignocellulosic sugars are converted into lactic acid without hydrolysis. This approach could potentially be extended to other lignocellulosic sugars after simple removal of lignin from biomass pretreatment, rendering moderate to high yields of lactic acid. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity

    PubMed Central

    2013-01-01

    Background Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. Results T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. Conclusions Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be

  10. Characterization of aromatic properties of old-style cheese starters.

    PubMed

    Lacroix, N; St-Gelais, D; Champagne, C P; Fortin, J; Vuillemard, J-C

    2010-08-01

    Old-style cheese starters were evaluated to determine their ability to produce cheese aroma compounds. Detailed analyses of the aroma-producing potential of 13 old-style starter cultures were undertaken. The proteolytic profile of the starters was established by an accelerated ripening study using a model cheese slurry and compared with those of a commercial aromatic starter and commercial Cheddar cheeses. To evaluate the aromatic potential of the starter cultures, quantification of free amino acids liberated and volatile compounds after 15 d of ripening at 30 degrees C as well as sensory analysis were carried out. Results showed that proteolysis patterns of all 13 starter cultures in the curd model were comparable to those of commercial Cheddar cheeses. All tested cultures demonstrated the ability to produce high amounts of amino acids recognized as precursors of aroma compounds. Several differences were observed between the starters and commercial Cheddar cheeses regarding some amino acids such as glutamate, leucine, phenylalanine, proline, and ornithine, reflecting the various enzymatic systems present in the starters. Starters Bt (control) and ULAAC-E exhibited various significant differences regarding their free amino acid profiles, as confirmed by sensory analysis. In addition, identification of volatile compounds confirmed the presence of several key molecules related to aroma, such as 3-methylbutanal and diacetyl. Besides the aroma-producing aspect, 2 starters (ULAAC-A and ULAAC-H) seem to possess an important ability to generate large amounts of gamma-aminobutyric acid, which contributed up to 15% of the total amino acids present in the model curd after 15 d ripening. gamma-Aminobutyric acid is an amine well-known for its antihypertensive and calming effects. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Cerebrospinal fluid in tuberculous meningitis exhibits only the L-enantiomer of lactic acid.

    PubMed

    Mason, Shayne; Reinecke, Carolus J; Kulik, Willem; van Cruchten, Arno; Solomons, Regan; van Furth, A Marceline Tutu

    2016-06-07

    The defining feature of the cerebrospinal fluid (CSF) collected from infants and children with tuberculous meningitis (TBM), derived from an earlier untargeted nuclear magnetic resonance (NMR) metabolomics study, was highly elevated lactic acid. Undetermined was the contribution from host response (L-lactic acid) or of microbial origin (D-lactic acid), which was set out to be determined in this study. In this follow-up study, we used targeted ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) to determine the ratio of the L and D enantiomers of lactic acid in these CSF samples. Here we report for the first time that the lactic acid observed in the CSF of confirmed TBM cases was in the L-form and solely a response from the host to the infection, with no contribution from any bacteria. The significance of elevated lactic acid in TBM appears to be that it is a crucial energy substrate, used preferentially over glucose by microglia, and exhibits neuroprotective capabilities. These results provide experimental evidence to support our conceptual astrocyte-microglia lactate shuttle model formulated from our previous NMR-based metabolomics study - highlighting the fact that lactic acid plays an important role in neuroinflammatory diseases such as TBM. Furthermore, this study reinforces our belief that the determination of enantiomers of metabolites corresponding to infectious diseases is of critical importance in substantiating the clinical significance of disease markers.

  12. Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to cocoa fermentation using inoculated organisms.

    PubMed

    Ho, Van Thi Thuy; Fleet, Graham H; Zhao, Jian

    2018-08-20

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of the bean pulp by microorganisms is essential for developing the precursors of chocolate flavour. Currently, the cocoa fermentation is still conducted by an uncontrolled traditional process via a consortium of indigenous species of yeasts, lactic acid bacteria and acetic acid bacteria. Although the essential contribution of yeasts to the production of good quality beans and, typical chocolate character is generally agreed, the roles of lactic acid bacteria and acetic acid bacteria are less certain. The objective of this study was to investigate the contribution of LAB and AAB in cocoa bean fermentation by conducting small scale laboratory fermentations under aseptic conditions, inoculated with different groups of microorganisms previously isolated from spontaneous cocoa fermentations. The inoculation protocols were: (1) four yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae; (2) four yeasts plus the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum; (3) four yeasts plus the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateuri and (4) four yeasts plus two lactic acid bacteria and two acetic acid bacteria. Only the inoculated species were detected in the microbiota of their respective fermentations. Beans from the inoculated fermentations showed no significant differences in colour, shell weights and concentrations of residual sugars, alcohols and esters (p>0.05), but they were slightly different in contents of lactic acid and acetic acid (p<0.05). All beans were fully brown and free of mould. Residual sugar levels were less than 2.6 mg/g while the shell contents and ethanol were in the range of 11-13.4% and 4.8-7 mg/g, respectively. Beans fermented in the presence of LAB contained higher levels of lactic acid (0.6-1.2 mg/g) whereas higher concentrations of acetic acid

  13. Enhancement of L(+)-Lactic Acid Production of Immobilized Rhizopus Oryzae Implanted by Ion Beams

    NASA Astrophysics Data System (ADS)

    Fan, Yonghong; Yang, Yingge; Zheng, Zhiming; Li, Wen; Wang, Peng; Yao, Liming; Yu, Zengliang

    2008-02-01

    Immobilized Rhizopus oryzae culturing may be a solution to the inhibited production of L(+)-lactic acid in submerged fermentation, which is caused by aggregated mycelia floc. In the present study, a R. oryzae mutant (RL6041) with a 90% conversion rate of glucose into L-lactic acid was obtained by N+ implantation under the optimized conditions of a beam energy of 15 keV and a dose of 2.6 × 1015 ions/cm2. Using polyurethane foam as the immobilization matrix, the optimal L-lactic acid production conditions were determined as 4 mm polyurethane foam, 150 r/min, 50 g/L ~ 80 g/L of initial glucose, 38°C and pH 6.0. 15-cycle repeated productions of L-lactic acid by immobilized RL6041 were performed under the optimized culturing conditions and over 80% of the glucose was converted into L-lactic acid in 30 hours on average. The results show that immobilized RL6041 is a promising candidate for continuous L-lactic acid production.

  14. Inhibition of Listeria monocytogenes by piscicolin 126 in milk and Camembert cheese manufactured with a thermophilic starter.

    PubMed

    Wan, J; Harmark, K; Davidson, B E; Hillier, A J; Gordon, J B; Wilcock, A; Hickey, M W; Coventry, M J

    1997-03-01

    The effect of bacteriocin, piscicolin 126, on the growth of Listeria monocytogenes and cheese starter bacteria was investigated in milk and in Camembert cheese manufactured from milk challenged with 10(2) cfu ml(-1) L. monocytogenes. In milk incubated at 30 degrees C, piscicolin 126 added in the range of 512-2,048 AU ml(-1) effectively inhibited growth of L. monocytogenes for more than 20 d when challenged with approximately 10(2) cfu ml(-1) L. monocytogenes. At higher challenge levels (10(4) and 10(6) cfu ml(-1)), piscicolin 126 reduced the viable count of L. monocytogenes by 4-5 log units immediately after addition of the bacteriocin; however, growth of Listeria occurred within 24 h. The minimum inhibitory concentration (MIC) of piscicolin 126 against lactic acid cheese starter bacteria was generally greater than 204,800 AU ml(-1) , and the viable count and acid production of these starter cultures in milk were not affected by the addition of 2,048 AU ml(-1) piscicolin 126. Camembert cheeses made from milk challenged with L. monocytogenes and with added piscicolin 126 showed a viable count of L. monocytogenes 3-4 log units lower than those without piscicolin 126. Inactivation of piscicolin 126 by proteolytic enzymes from cheese starter bacteria and mould together with the emergence of piscicolin 126-resistant isolates was responsible for the recovery of L. monocytogenes in the cheeses during ripening.

  15. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    PubMed

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  16. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology

    PubMed Central

    Yoo, Mi-Young; Lim, Sang-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products. PMID:27433115

  17. Pyroglutamic acid in cheese: presence, origin, and correlation with ripening time of Grana Padano cheese.

    PubMed

    Mucchetti, G; Locci, F; Gatti, M; Neviani, E; Addeo, F; Dossena, A; Marchelli, R

    2000-04-01

    Pyroglutamic acid is present in many cheese varieties and particularly in high amounts (0.5 g/100 g of cheese) in extensively ripened Italian cheeses (Grana Padano and Parmigiano Reggiano) that are produced with thermophilic lactic acid bacteria as starters. The mechanism of pyroglutamic acid formation in cheese seems to be mostly enzymatic, as demonstrated by the presence of only L-pyroglutamic acid enantiomer. Thermophilic lactobacilli are involved in pyroglutamic acid production, as suggested by the low pyroglutamic acid content found in Bagos, a ripened Italian mountain cheese produced without addition of starter. Because milk pasteurization did not influence the pyroglutamic acid content in the ripened Grana Padano cheese, the formation of pyroglutamic acid mainly depends on the whey starter microflora rather than that of raw milk. Pyroglutamic acid concentration is linearly correlated (R2 = 0.94) with the age of Grana Padano cheese.

  18. Microbial diversity of a Camembert-type cheese using freeze-dried Tibetan kefir coculture as starter culture by culture-dependent and culture-independent methods.

    PubMed

    Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei

    2014-01-01

    The biochemical changes occurring during cheese ripening are directly and indirectly dependent on the microbial associations of starter cultures. Freeze-dried Tibetan kefir coculture was used as a starter culture in the Camembert-type cheese production for the first time. Therefore, it's necessary to elucidate the stability, organization and identification of the dominant microbiota presented in the cheese. Bacteria and yeasts were subjected to culture-dependent on selective media and culture-independent polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of dominant bands to assess the microbial structure and dynamics through ripening. In further studies, kefir grains were observed using scanning electron microscopy (SEM) methods. A total of 147 bacteria and 129 yeasts were obtained from the cheese during ripening. Lactobacillus paracasei represents the most commonly identified lactic acid bacteria isolates, with 59 of a total of 147 isolates, followed by Lactococcus lactis (29 isolates). Meanwhile, Kazachstania servazzii (51 isolates) represented the mainly identified yeast isolate, followed by Saccharomyces cerevisiae (40 isolates). However, some lactic acid bacteria detected by sequence analysis of DGGE bands were not recovered by plating. The yeast S. cerevisiae and K. servazzii are described for the first time with kefir starter culture. SEM showed that the microbiota were dominated by a variety of lactobacilli (long and curved) cells growing in close association with a few yeasts in the inner portion of the grain and the short lactobacilli were observed along with yeast cells on the exterior portion. Results indicated that conventional culture method and PCR-DGGE should be combined to describe in maximal detail the microbiological composition in the cheese during ripening. The data could help in the selection of appropriate commercial starters for Camembert-type cheese.

  19. Microbial Diversity of a Camembert-Type Cheese Using Freeze-Dried Tibetan Kefir Coculture as Starter Culture by Culture-Dependent and Culture-Independent Methods

    PubMed Central

    Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei

    2014-01-01

    The biochemical changes occurring during cheese ripening are directly and indirectly dependent on the microbial associations of starter cultures. Freeze-dried Tibetan kefir coculture was used as a starter culture in the Camembert-type cheese production for the first time. Therefore, it's necessary to elucidate the stability, organization and identification of the dominant microbiota presented in the cheese. Bacteria and yeasts were subjected to culture-dependent on selective media and culture-independent polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of dominant bands to assess the microbial structure and dynamics through ripening. In further studies, kefir grains were observed using scanning electron microscopy (SEM) methods. A total of 147 bacteria and 129 yeasts were obtained from the cheese during ripening. Lactobacillus paracasei represents the most commonly identified lactic acid bacteria isolates, with 59 of a total of 147 isolates, followed by Lactococcus lactis (29 isolates). Meanwhile, Kazachstania servazzii (51 isolates) represented the mainly identified yeast isolate, followed by Saccharomyces cerevisiae (40 isolates). However, some lactic acid bacteria detected by sequence analysis of DGGE bands were not recovered by plating. The yeast S. cerevisiae and K. servazzii are described for the first time with kefir starter culture. SEM showed that the microbiota were dominated by a variety of lactobacilli (long and curved) cells growing in close association with a few yeasts in the inner portion of the grain and the short lactobacilli were observed along with yeast cells on the exterior portion. Results indicated that conventional culture method and PCR-DGGE should be combined to describe in maximal detail the microbiological composition in the cheese during ripening. The data could help in the selection of appropriate commercial starters for Camembert-type cheese. PMID:25360757

  20. Characterization of lactic acid bacteria from local cow´s milk kefir

    NASA Astrophysics Data System (ADS)

    Ismail, YS; Yulvizar, C.; Mazhitov, B.

    2018-03-01

    One of products from milk fermentation is kefir. It is made by adding kefir grains which are composed of lactic acid bacteria and yeast into milk. The lactic acid bacteria are a group of bacteria that produce antimicrobial substances and able to inhibit the growth of pathogenic bacteria. In this research, the lactic acid bacteria were isolated from Aceh local cow`s milk kefir to determine the genus of the isolates. The methods used in the characterization of lactic acid bacteria are colony morphology, cell morphology, and biochemical tests which includes a catalase test; 5%, 6.5%, and 10% salt endurance tests; 37°C and 14°C temperature endurance tests, SIM test, TSIA test, MR-VP test, and O/F test. Of the four isolates found from the cow’s milk kefir, two isolates were confirmed as lactic acid bacteria (isolates SK-1 and SK-4). Both isolates are Gram positive bacteria, and have negative catalase activity. From the observations of colony morphology, cell morphology, and biochemical tests, it was found that the genus of SK-1 is Lactobacillus and the genus of SK-4 is Enterococcus.

  1. Stimulation of Lactic Acid Bacteria by a Micrococcus Isolate: Evidence for Multiple Effects

    PubMed Central

    Nath, K. R.; Wagner, B. J.

    1973-01-01

    Growth of, and rate of acid production by, six cultures of lactic acid bacteria were increased in the presence of Micrococcus isolate F4 or a preparation of its capsular material. Concentrations of hydrogen peroxide found in pure cultures of the lactic acid bacteria were not detectable, or were greatly reduced, in mixed culture with Micrococcus isolate F4. The capsular material was not as effective as whole cells in preventing accumulation of H2O2. Catalase stimulated growth of, and the rate of acid production by, the lactic acid bacteria, but not to the same extent as Micrococcus isolate F4 in some cultures. The existence of two mechanisms for micrococcal stimulation of the lactic acid bacteria is postulated. One mechanism involves removal of H2O2; the other has not been characterized. PMID:4199337

  2. The role of monocarboxylate transporters in uptake of lactic acid in HeLa cells.

    PubMed

    Cheeti, Sravanthi; Warrier, Bharat K; Lee, Chi H

    2006-11-15

    This study was aimed to identify the monocarboxylate transporters (MCTs) in HeLa cells and to delineate their role in transportation of L-lactic acid. The functional role of MCTs in lactic acid transport was evaluated at various mucosal pHs (4.5-7.4) or in the presence of various loading doses (0.2-2mM) of lactic acid, MCT substrates (nicotinic acid, n-butyric acid, etc.) and inhibitors (alpha-cyano-4-hydroxycinnamate and para-chloromercuribenzoic acid). The molecular properties of MCTs were characterized using reverse transcription-polymerase chain reaction (RT-PCR). The uptake rate of lactic acid by HeLa cells significantly increased from 0.353+/-0.052 to 1.103+/-0.196 micromol/mg protein as the extra-cellular pH changed from 7.4 to 4.5, indicating that activities of MCT were mediated through H(+)-linked mechanism. The uptake profile of lactic acid followed the saturable process with the K(m) value of 0.53 mM. The uptake rate of lactic acid is concentration dependent and is reduced in the presence of MCT inhibitors. MCT isoforms 1, 5 and 6 in HeLa cells were identified by RT-PCR. HeLa cell line can be used as an effective screening tool for intravaginally administered drugs targeted toward MCT.

  3. Characterization and application of lactic acid bacteria for tropical silage preparation.

    PubMed

    Pholsen, Suradej; Khota, Waroon; Pang, Huili; Higgs, David; Cai, Yimin

    2016-10-01

    Strains TH 14, TH 21 and TH 64 were isolated from tropical silages, namely corn stover, sugar cane top and rice straw, respectively, prepared in Thailand. These strains were selected by low pH growth range and high lactic acid-producing ability, similar to some commercial inoculants. Based on the analysis of 16S ribosomal RNA gene sequence and DNA-DNA relatedness, strain TH 14 was identified as Lactobacillus casei, and strains TH 21 and TH 64 were identified as L. plantarum. Strains TH 14, TH 21, TH 64 and two commercial inoculants, CH (L. plantarum) and SN (L. rhamnosus), were used as additives to fresh and wilted purple Guinea and sorghum silages prepared using a small-scale fermentation method. The number of epiphytic lactic acid bacteria (LAB) in the forages before ensilage was relatively low but the numbers of coliform and aerobic bacteria were higher. Sorghum silages at 30 days of fermentation were all well preserved with low pH (3.56) and high lactic acid production (72.86 g/kg dry matter). Purple Guinea silage inoculated with LAB exhibited reduced count levels of aerobic and coliform bacteria, lower pH, butyric acid and ammonia nitrogen and increased lactic acid concentration, compared with the control. Strain TH 14 more effectively improved lactic acid production compared with inoculants and other strains. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  4. Lactic acid delays the inflammatory response of human monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Katrin, E-mail: katrin.peter@ukr.de; Rehli, Michael, E-mail: michael.rehli@ukr.de; RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg

    2015-02-13

    Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genesmore » was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors.« less

  5. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    PubMed

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-06-01

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread.

    PubMed

    Cizeikiene, Dalia; Juodeikiene, Grazina; Bartkiene, Elena; Damasius, Jonas; Paskevicius, Algimantas

    2015-01-01

    The objective of this study was to determinate phytase activity of bacteriocins producing lactic acid bacteria previously isolated from spontaneous rye sourdough. The results show that the highest extracellular phytase activity produces Pediococcus pentosaceus KTU05-8 and KTU05-9 strains with a volumetric phytase activity of 32 and 54 U/ml, respectively, under conditions similar to leavening of bread dough (pH 5.5 and 30 °C). In vitro studies in simulated gastrointestinal tract media pH provide that bioproducts prepared with P. pentosaceus strains used in wholemeal wheat bread preparation increase solubility of iron, zinc, manganese, calcium and phosphorus average 30%. Therefore, P. pentosaceus KTU05-9 and KTU05-8 strains could be recommended to use as a starter for sourdough preparation for increasing of mineral bioavailability from wholemeal wheat bread.

  7. Direct lactic acid fermentation of Jerusalem artichoke tuber extract using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis.

    PubMed

    Choi, Hwa-Young; Ryu, Hee-Kyoung; Park, Kyung-Min; Lee, Eun Gyo; Lee, Hongweon; Kim, Seon-Won; Choi, Eui-Sung

    2012-06-01

    Lactic acid fermentation of Jerusalem artichoke tuber was performed with strains of Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis prior to fermentation. Some strains of L. paracasei, notably KCTC13090 and KCTC13169, could ferment hot-water extract of Jerusalem artichoke tuber more efficiently compared with other Lactobacillus spp. such as L. casei type strain KCTC3109. The L. paracasei strains could utilize almost completely the fructo-oligosaccharides present in Jerusalem artichoke. Inulin-fermenting L. paracasei strains produced c.a. six times more lactic acid compared with L. casei KCTC3109. Direct lactic fermentation of Jerusalem artichoke tuber extract at 111.6g/L of sugar content with a supplement of 5 g/L of yeast extract by L. paracasei KCTC13169 in a 5L jar fermentor produced 92.5 ce:hsp sp="0.25"/>g/L of lactic acid with 16.8 g/L fructose equivalent remained unutilized in 72 h. The conversion efficiency of inulin-type sugars to lactic acid was 98% of the theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Genetic and technological characterisation of vineyard- and winery-associated lactic acid bacteria.

    PubMed

    Nisiotou, Aspasia A; Dourou, Dimitra; Filippousi, Maria-Evangelia; Diamantea, Ellie; Fragkoulis, Petros; Tassou, Chryssoula; Banilas, Georgios

    2015-01-01

    Vineyard- and winery-associated lactic acid bacteria (LAB) from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF). Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs). Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine.

  9. Lactic acid bacteria in the quality improvement and depreciation of wine.

    PubMed

    Lonvaud-Funel, A

    1999-01-01

    The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 10(6) CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteria, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet completely elucidated

  10. Chirality Matters: Synthesis and Consumption of the d-Enantiomer of Lactic Acid by Synechocystis sp. Strain PCC6803

    PubMed Central

    Angermayr, S. Andreas; Correddu, Danilo; Kern, Ramona; Hagemann, Martin; Hellingwerf, Klaas J.

    2015-01-01

    Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of these two enantiomers. Recently, cyanobacterium Synechocystis sp. strain PCC6803 was genetically modified to allow formation of either of these two enantiomers. This report elaborates on the d-lactic acid production achieved by the introduction of a d-specific lactate dehydrogenase from the lactic acid bacterium Leuconostoc mesenteroides into Synechocystis. A typical batch culture of this recombinant strain initially shows lactic acid production, followed by a phase of lactic acid consumption, until production “outcompetes” consumption at later growth stages. We show that Synechocystis is able to use d-lactic acid, but not l-lactic acid, as a carbon source for growth. Deletion of the organism's putative d-lactate dehydrogenase (encoded by slr1556), however, does not eliminate this ability with respect to d-lactic acid consumption. In contrast, d-lactic acid consumption does depend on the presence of glycolate dehydrogenase GlcD1 (encoded by sll0404). Accordingly, this report highlights the need to match a product of interest of a cyanobacterial cell factory with the metabolic network present in the host used for its synthesis and emphasizes the need to understand the physiology of the production host in detail. PMID:26682849

  11. Clinical Efficacy Comparison of Saccharomyces Boulardii and Lactic Acid as Probiotics in Acute Pediatric Diarrhea.

    PubMed

    Asmat, Shakila; Shaukat, Fouzia; Asmat, Raheela; Bakhat, Hafiz Faiq Siddique Gul; Asmat, Tauseef M

    2018-03-01

    To compare the efficacy of Saccharomyces boulardii and lactic acid producing probiotics in addition to usual treatment regimen to cure diarrhea among children (6 months to 5 years of age). Randomized controlled trial. Department of Pediatrics, Sheikh Zayed Hospital, Lahore, from February to July 2015. Children suffering from acute diarrhea were orally administered Saccharomyces boulardii and lactic acid producing probiotics for 5 days. The efficacy of administered probiotics was monitored. Patients were given Saccharomyces boulardii and lactic acid producing probiotics randomly to remove the bias. Two hundred patients randomly selected for trials; out of which, 100 were treated with Saccharomyces boulardii while the other 100 were supplemented with lactic acid concomitantly along with conventional diarrhea treatment. Results indicated that Saccharomyces boulardii treatment group has significantly higher efficacy rate (45%) compared to lactic acid producing probiotics (26%). This study concluded that Saccharomyces boulardii has a better efficacy compared to lactic acid and may be adopted as a probiotic of choice.

  12. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.

    PubMed

    Walton, Sara L; Bischoff, Kenneth M; van Heiningen, Adriaan R P; van Walsum, G Peter

    2010-08-01

    Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose-utilizing capabilities. It was found to have high tolerance for inhibitors such as acetic acid and sodium, which are present in pre-pulping hemicellulose extracts. Fermentation of 20 g/l xylose in the presence of 30 g/l acetic acid required a longer lag phase but overall lactic acid yield was not diminished. Similarly, fermentation of xylose in the presence of 20 g/l sodium increased the lag time but did not affect overall product yield, though 30 g/l sodium proved completely inhibitory. Fermentation of hot water-extracted Siberian larch containing 45 g/l total monosaccharides, mainly galactose and arabinose, produced 33 g/l lactic acid in 60 h and completely consumed all sugars. Small amounts of co-products were formed, including acetic acid, formic acid, and ethanol. Hemicellulose extract formed during autohydrolysis of mixed hardwoods contained mainly xylose and was converted into lactic acid with a 94% yield. Green liquor-extracted hardwood hemicellulose containing 10 g/l acetic acid and 6 g/l sodium was also completely converted into lactic acid at a 72% yield. The Bacillus coagulans MXL-9 strain was found to be well suited to production of lactic acid from lignocellulosic biomass due to its compatibility with conditions favorable to industrial enzymes and its ability to withstand inhibitors while rapidly consuming all pentose and hexose sugars of interest at high product yields.

  13. Membrane-mediated extractive fermentation for lactic acid production from cellulosic biomass.

    PubMed

    Chen, R; Lee, Y Y

    1997-01-01

    Lactic acid production from cellulosic biomass by cellulase and Lactobacillus delbrueckii was studied in a fermenter-extractor employing a microporous hollow fiber membrane (MHF). This bioreactor system was operated under a fed-batch mode with continuous removal of lactic acid by anin situ extraction. A tertiary amine (Alamine 336) was used as an extractant for lactic acid. The extraction capacity of Alamine 336 is greatly enhanced by addition of alcohol. Long-chain alcohols serve well for this purpose since they are less toxic to micro-organism. Addition of kerosene, a diluent, was necessary to reduce the solvent viscosity. A solvent mixture of 20% Alamine 336, 40% oleyl alcohol, and 40% kerosene was found to be most effective in the extraction of lactic acid. Progressive change of pH from an initial value of 5.0 down to 4.3 has significantly improved the overall performance of the simultaneous saccharification and extractive fermentation over that of constant pH operation. The change of pH was applied to promote cell growth in the early phase, and extraction in the latter phase.

  14. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    PubMed

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  15. Implementation of a new integrated d-lactic acid biosensor in a semiautomatic FIA system for the simultaneous determination of lactic acid enantiomers. Application to the analysis of beer samples.

    PubMed

    Vargas, E; Ruiz, M A; Campuzano, S; González de Rivera, G; López-Colino, F; Reviejo, A J; Pingarrón, J M

    2016-05-15

    An integrated amperometric d-lactic acid biosensor involving a gold film deposited by sputtering on a stainless steel disk electrode where the enzymes D-lactic acid dehydrogenase (DLDH) and diaphorase (DP) as well as the redox mediator tetrathiafulvalene (TTF) are coimmobilized by using a dialysis membrane, is reported in this work. Amperometry in stirred solutions at a detection potential of +0.15 V (vs Ag/AgCl reference electrode) provided a linear calibration plot for D-lactic acid over the 1.0×10(-4) to 3.8×10(-3) g L(-1) concentration range, with a limit of detection of 3.1×10(-5) g L(-1). The usefulness of the biosensor was demonstrated by determining D-lactic acid in beer samples with good results. Additionally, the biosensor was implemented together with a commercial L-lactic amperometric biosensor in a semiautomatic flow-injection analysis (FIA) system able to perform a rapid and simple stereo-specific determination of D- and D-lactic without a previous separation step. The operational characteristics of the biosensors under flow conditions were evaluated and its applicability was demonstrated through the simultaneous determination of both enantiomers in beer samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid.

    PubMed

    Abdel-Rahman, Mohamed Ali; Sonomoto, Kenji

    2016-10-20

    There has been growing interest in the microbial production of optically pure lactic acid due to the increased demand for lactic acid-derived environmentally friendly products, for example biodegradable plastic (poly-lactic acid), as an alternative to petroleum-derived materials. To maximize the market uptake of these products, their cost should be competitive and this could be achieved by decreasing the production cost of the raw material, that is, lactic acid. It is of great importance to isolate and develop robust and highly efficient microbial lactic acid producers. Alongside the fermentative substrate and concentration, the yield and productivity of lactic acid are key parameters and major factors in determining the final production cost of lactic acid. In this review, we will discuss the current limitations and challenges for cost-efficient microbial production of optically pure lactic acid. The main obstacles to effective fermentation are the use of food resources, indirect utilization of polymeric sugars, sensitivity to inhibitory compounds released during biomass treatments, substrate inhibition, decreased lactic acid yield and productivity, inefficient utilization of mixed sugars, end product inhibition, increased use of neutralizing agents, contamination problems, and decreased optical purity of lactic acid. Furthermore, opportunities to address and overcome these limitations, either by fermentation technology or metabolic engineering approaches, will be introduced and discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Importance of lactic acid bacteria in Asian fermented foods

    PubMed Central

    2011-01-01

    Lactic acid bacteria play important roles in various fermented foods in Asia. Besides being the main component in kimchi and other fermented foods, they are used to preserve edible food materials through fermentation of other raw-materials such as rice wine/beer, rice cakes, and fish by producing organic acids to control putrefactive microorganisms and pathogens. These bacteria also provide a selective environment favoring fermentative microorganisms and produce desirable flavors in various fermented foods. This paper discusses the role of lactic acid bacteria in various non-dairy fermented food products in Asia and their nutritional and physiological functions in the Asian diet. PMID:21995342

  18. Adding Value to Goat Meat: Biochemical and Technological Characterization of Autochthonous Lactic Acid Bacteria to Achieve High-Quality Fermented Sausages

    PubMed Central

    Nediani, Miriam T.; García, Luis; Saavedra, Lucila; Martínez, Sandra; López Alzogaray, Soledad; Fadda, Silvina

    2017-01-01

    Quality and safety are important challenges in traditional fermented sausage technology. Consequently, the development of a tailored starter culture based on indigenous microbiota constitutes an interesting alternative. In the present study, spontaneously fermented goat meat sausages were created and analyzed using a physicochemical and microbiological approach. Thereafter 170 lactic acid bacteria (LAB) strains were isolated and preliminary characterized by phenotypic assays. The hygienic and technological properties, and growth and fermentative potential of isolates using a goat-meat-based culture medium were evaluated. All strains proved to have bioprotective features due to their acidogenic metabolism. Almost all grew optimally in meat environments. LAB isolates presented proteolytic activity against meat proteins and enriched amino acid contents of the goat-meat-based model. The most efficient strains were four different Lactobacillus sakei isolates, as identified by genotyping and RAPD analysis. L. sakei strains are proposed as optimal candidates to improve the production of fermented goat meat sausages, creating a new added-value fermented product. PMID:28513575

  19. Adding Value to Goat Meat: Biochemical and Technological Characterization of Autochthonous Lactic Acid Bacteria to Achieve High-Quality Fermented Sausages.

    PubMed

    Nediani, Miriam T; García, Luis; Saavedra, Lucila; Martínez, Sandra; López Alzogaray, Soledad; Fadda, Silvina

    2017-05-17

    Quality and safety are important challenges in traditional fermented sausage technology. Consequently, the development of a tailored starter culture based on indigenous microbiota constitutes an interesting alternative. In the present study, spontaneously fermented goat meat sausages were created and analyzed using a physicochemical and microbiological approach. Thereafter 170 lactic acid bacteria (LAB) strains were isolated and preliminary characterized by phenotypic assays. The hygienic and technological properties, and growth and fermentative potential of isolates using a goat-meat-based culture medium were evaluated. All strains proved to have bioprotective features due to their acidogenic metabolism. Almost all grew optimally in meat environments. LAB isolates presented proteolytic activity against meat proteins and enriched amino acid contents of the goat-meat-based model. The most efficient strains were four different Lactobacillus sakei isolates, as identified by genotyping and RAPD analysis. L. sakei strains are proposed as optimal candidates to improve the production of fermented goat meat sausages, creating a new added-value fermented product.

  20. Development of Safe and Flavor-Rich Doenjang (Korean Fermented Soybean Paste) Using Autochthonous Mixed Starters at the Pilot Plant Scale.

    PubMed

    Lee, Eun Jin; Hyun, Jiye; Choi, Yong-Ho; Hurh, Byung-Serk; Choi, Sang-Ho; Lee, Inhyung

    2018-06-01

    Doenjang (Korean fermented soybean paste) with an improved flavor and safety was prepared by the simultaneous fermentation of autochthonous mixed starters at the pilot plan scale. First, whole soybean meju was fermented by coculturing safety-verified starters Aspergillus oryzae MJS14 and Bacillus amyloliquefaciens zip6 or Bacillus subtilis D119C. These fermented whole soybean meju were aged in a brine solution after the additional inoculation of Tetragenococcus halophilus 7BDE22 and Zygosaccharomyces rouxii SMY045 to yield doenjang. Four doenjang batches prepared using a combination of mold, bacilli, lactic acid bacteria, and yeast starters were free of safety issues and had the general properties of traditional doenjang, a rich flavor and taste. All doenjang batches received a high consumer acceptability score, especially the ABsT and ABsTZ batches. This study suggests that flavor-rich doenjang similar to traditional doenjang can be manufactured safely and reproducibly in industry by mimicking the simultaneous fermentation of autochthonous mixed starters as in traditional doenjang fermentation. The development of a pilot plant process for doenjang fermentation using safety-verified autochthonous mixed starter will facilitate the manufacture of flavor-rich doenjang similar to traditional doenjang safely and reproducibly in industry. © 2018 Institute of Food Technologists®.

  1. High cell density cultivation of probiotics and lactic acid production.

    PubMed

    Schiraldi, Chiara; Adduci, Vincenzo; Valli, Vivien; Maresca, Carmelina; Giuliano, Mariateresa; Lamberti, Monica; Cartenì, Maria; De Rosa, Mario

    2003-04-20

    The commercial interest in functional foods that contain live microorganisms, also named probiotics, is paralleled by the increasing scientific attention to their functionality in the digestive tract. This is especially true of yogurts that contain strains of lactic-acid bacteria of intestinal origin, among these, Lactobacillus delbrueckii ssp. bulgaricus is extensively used in the dairy industry and it has been demonstrated to be a probiotic strain. In this work we describe high cell density cultivations of this microorganism also focusing on the stereospecific production of lactic acid. Key parameters such as medium composition (bactocasitone concentration) and diverse aeration conditions were explored. The results showed that the final concentration of biomass in anaerobic fermentation was lower than the one obtained in microaerophilic conditions, while it gave a very high productivity of lactic acid which was present as a racemic mixture in the permeate. Fermentation experiments carried out with air sparging, even at very low flow-rate, led to the production of the sole L(+) lactic acid giving sevenfold increase in biomass yield in respect to the batch cultivation. Finally, a mathematical model was developed to describe the microfiltration bioprocess applied in this research considering an inhibition kinetic and enucleating a suitable mathematical description for the decrease of the transmembrane flux. Copyright 2003 Wiley Periodicals, Inc.

  2. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B.

    PubMed

    Zhao, Jinfang; Xu, Liyuan; Wang, Yongze; Zhao, Xiao; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde

    2013-06-07

    Polylactic acid (PLA), a biodegradable polymer, has the potential to replace (at least partially) traditional petroleum-based plastics, minimizing "white pollution". However, cost-effective production of optically pure L-lactic acid is needed to achieve the full potential of PLA. Currently, starch-based glucose is used for L-lactic acid fermentation by lactic acid bacteria. Due to its competition with food resources, an alternative non-food substrate such as cellulosic biomass is needed for L-lactic acid fermentation. Nevertheless, the substrate (sugar stream) derived from cellulosic biomass contains significant amounts of xylose, which is unfermentable by most lactic acid bacteria. However, the microorganisms that do ferment xylose usually carry out heterolactic acid fermentation. As a result, an alternative strain should be developed for homofermentative production of optically pure L-lactic acid using cellulosic biomass. In this study, an ethanologenic Escherichia coli strain, SZ470 (ΔfrdBC ΔldhA ΔackA ΔpflB ΔpdhR ::pflBp6-acEF-lpd ΔmgsA), was reengineered for homofermentative production of L-lactic acid from xylose (1.2 mole xylose = > 2 mole L-lactic acid), by deleting the alcohol dehydrogenase gene (adhE) and integrating the L-lactate dehydrogenase gene (ldhL) of Pediococcus acidilactici. The resulting strain, WL203, was metabolically evolved further through serial transfers in screw-cap tubes containing xylose, resulting in the strain WL204 with improved anaerobic cell growth. When tested in 70 g L-1 xylose fermentation (complex medium), WL204 produced 62 g L-1 L-lactic acid, with a maximum production rate of 1.631 g L-1 h-1 and a yield of 97% based on xylose metabolized. HPLC analysis using a chiral column showed that an L-lactic acid optical purity of 99.5% was achieved by WL204. These results demonstrated that WL204 has the potential for homofermentative production of L-lactic acid using cellulosic biomass derived substrates, which contain a

  3. Melting of α'- and α-crystals of poly(lactic acid)

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Maria Laura; Androsch, René

    2016-05-01

    The influence of chain structure on thermal stability of α'-crystals of poly(lactic acid) (PLA) with high L-lactic acid content (96-100 %) is detailed in this contribution. α'-crystals of PLA grow at temperatures below 120 °C, and spontaneously transform into stable α-modification during heating. Using conventional differential scanning calorimetry (DSC) and fast scanning chip calorimetry (FSC), a wide range of scanning rates, between about 10-1 and 102 K s-1 could be tested. It was found that reorganization of disordered α'-crystals into stable α-crystals can be suppressed by fast heating. The critical heating rate needed to completely melt α'-crystals and to avoid formation of α-crystals on continuation of heating varies with the chain composition, and decreases upon increase of the D-lactic acid content in the PLA chain.

  4. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation.

    PubMed

    Wang, Yan-Su; Wu, Tian-Hao; Yang, Yao; Zhu, Cen-Ling; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-01-01

    This investigation examined the reduction of pesticide residues on straw inoculated with lactic acid bacteria (LAB) during ensiling. Lactobacillus casei WYS3 was isolated from rice straw that contained pesticide residues. Non-sterilized rice straw, which was inoculated with L. casei WYS3, showed increased removal of chlorpyrifos after ensiling, compared with rice straw that was not inoculated with L. casei WYS3 or sterilized rice straw. In pure culture, these strains can bind chlorpyrifos as indicated by high-performance liquid chromatography analysis. Viable L. casei WYS3 was shown to bind 33.3-42% of exogenously added chlorpyrifos. These results are similar to those of acid-treated cells but less than those of heat-treated cells, which were found to bind 32.0% and 77.2% of the added chlorpyrifos respectively. Furthermore, gas chromatography-mass spectrometry analysis determined that L. casei WYS3 detoxified chlorpyrifos via P-O-C cleavage. Real-time polymerized chain reaction analysis determined that organophosphorus hydrolase gene expression tripled after the addition of chlorpyrifos to LAB cultures, compared with the control group (without chlorpyrifos). This paper highlights the potential use of LAB starter cultures for the detoxification and removal of chlorpyrifos residues in the environment.

  5. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain.

    PubMed

    Zhang, Caili; Zhou, Cheng; Assavasirijinda, Nilnate; Yu, Bo; Wang, Limin; Ma, Yanhe

    2017-11-25

    Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as L-lactic acid producers. Thermophilic Bacillus coagulans is an excellent producer of L-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two L-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible L-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native D-lactate dehydrogenase was too low to support efficient D-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of D-lactic acid was constructed by deletion of two L-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the D-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. This genetically engineered strain produced only D-lactic acid under non-sterilized condition, and finally 145 g/L of D-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure D-lactic acid titer produced by a thermophilic strain.

  6. Accelerated fatigue of dentin with exposure to lactic acid.

    PubMed

    Do, D; Orrego, S; Majd, H; Ryou, H; Mutluay, M M; Xu, Hockin H K; Arola, D

    2013-11-01

    Composite restorations accumulate more biofilm than other dental materials. This increases the likelihood for the hard tissues supporting a restoration (i.e. dentin and enamel) to be exposed to acidic conditions beyond that resulting from dietary variations. In this investigation the fatigue strength and fatigue crack growth resistance of human coronal dentin were characterized within a lactic acid solution (with pH = 5) and compared to that of controls evaluated in neutral conditions (pH = 7). A comparison of the fatigue life distributions showed that the lactic acid exposure resulted in a significant reduction in the fatigue strength (p ≤ 0.001), and nearly 30% reduction in the apparent endurance limit (from 44 MPa to 32 MPa). The reduction in pH also caused a significant decrease (p ≤ 0.05) in the threshold stress intensity range required for the initiation of cyclic crack growth, and significant increase in the incremental rate of crack extension. Exposure of tooth structure to lactic acid may cause demineralization, but it also increases the likelihood of restored tooth failures via fatigue, and after short time periods. © 2013 Elsevier Ltd. All rights reserved.

  7. Changes in urinary level and configuration ratio of D-lactic acid in patients with short bowel syndrome.

    PubMed

    Inoue, Yoshito; Shinka, Toshihiro; Ohse, Morimasa; Kohno, Miyuki; Konuma, Kunio; Ikawa, Hiromichi; Kuhara, Tomiko

    2007-08-01

    The present study showed that the D-lactic acid configuration ratio in the urine rose earlier than that in blood or the urinary or blood D-lactic acid levels upon disease onset, and that the D-lactic acid measurement in urine is more sensitive and useful than that in blood. As this result, a prediction of a D-lactic acidosis may be possible. To simplify the procedure for detecting D-lactic acid, we first showed a correlation between the D-lactic acid configuration ratio in urine and blood, indicating urine could be used. To separate the optical isomers of lactic acid, we simplified our previous procedure. For chiral recognition, we chose O-acetyl-(-)-menthylation and analyzed the samples under GC/MS by capillary gas chromatography on a DB-5 MS column. This procedure is less sensitive than the former method, but it is faster and simpler, requiring only one derivatization step. This method may be useful for predicting D-lactic acidosis in patients with short bowel syndrome.

  8. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation.

    PubMed

    Kuanyshev, Nurzhan; Ami, Diletta; Signori, Lorenzo; Porro, Danilo; Morrissey, John P; Branduardi, Paola

    2016-08-01

    The ability of Zygosaccharomyces bailii to grow at low pH and in the presence of considerable amounts of weak organic acids, at lethal condition for Saccharomyces cerevisiae, increased the interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents one of the important commodity chemical which can be produced by microbial fermentation. We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth rate, the number of PI positive cells is similar to that of the control. Moreover, we have performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of the same samples. This technique has been never applied before to study Z. bailii under this condition. The analyses revealed lactic acid induced macromolecular changes in the overall cellular protein secondary structures, and alterations of cell wall and membrane physico-chemical properties. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Leguminose green juice as an efficient nutrient for l(+)-lactic acid production.

    PubMed

    Dietz, Donna; Schneider, Roland; Papendiek, Franka; Venus, Joachim

    2016-10-20

    Lactic acid is one of the most important building blocks for the production of bioplastic. Many investigations have been conducted to reduce the lactic acid production costs. In this work, the focus was put on the application of legume pressed juice or green juice as nutrient source. The pressed juice was utilized directly without prior pre-treatment and sterilization. Using two different alfalfa green juices and a clover green juice from two different harvest years as sole nutrients, non-sterile fermentations were performed at 52°C and pH 6.0 with a thermotolerant strain Bacillus coagulans AT107. The results showed that alfalfa green juices generally were more suitable for high lactic acid production than clover green juices, presumably due to the higher nitrogen content. A final titer of 98.8g/L after 30h with l(+)-lactic acid purity of >99% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation.

    PubMed

    Tanaka, Takaaki; Hoshina, Masahiro; Tanabe, Suguru; Sakai, Kenji; Ohtsubo, Sadami; Taniguchi, Masayuki

    2006-01-01

    Production of d-lactic acid from rice bran, one of the most abundant agricultural by-products in Japan, is studied. Lactobacillus delbrueckii subsp. delbrueckii IFO 3202 and defatted rice bran powder after squeezing rice oil were used for the production. Since the rice bran contains polysaccharides as starch and cellulose, we coupled saccharification with amylase and cellulase to lactic acid fermentation. The indigenous bacteria in the rice bran produced racemic lactic acid in the saccharification at pH 6.0-6.8. Thus the pH was controlled at 5.0 to suppress the growth of the indigenous bacteria. L. delbrueckii IFO 3202 produced 28 kgm(-3) lactic acid from 100 kgm(-3) rice bran after 36 h at 37 degrees C. The yield based on the amount of sugars soluble after 36-h hydrolysis of the bran by amylase and cellulase (36 kgm(-3) from 100 kgm(-3) of the bran) was 78%. The optical purity of produced d-lactic acid was 95% e.e.

  11. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.

    PubMed

    Generali, Melanie; Kehl, Debora; Capulli, Andrew K; Parker, Kevin K; Hoerstrup, Simon P; Weber, Benedikt

    2017-10-01

    Biodegradable scaffold matrixes form the basis of any in vitro tissue engineering approach by acting as a temporary matrix for cell proliferation and extracellular matrix deposition until the scaffold is replaced by neo-tissue. In this context several synthetic polymers have been investigated, however a concise systematic comparative analyses is missing. Therefore, the present study systematically compares three frequently used polymers for the in vitro engineering of extracellular matrix based on poly-glycolic acid (PGA) under static as well as dynamic conditions. Ultra-structural analysis was used to examine the polymers structure. For tissue engineering (TE) three human fibroblast cell lines were seeded on either PGA-poly-4-hydroxybutyrate (P4HB), PGA-poly-lactic acid (PLA) or PGA-poly-caprolactone (PCL) patches. These patches were analyzed after 21days of culture qualitative by histology and quantitative by determining the amount of DNA, glycosaminoglycan and hydroxyproline. We found that PGA-P4HB and PGA-PLA scaffolds enhance tissue formation significantly higher than PGA-PCL scaffolds (p<0.05). Polymer remnants were visualized by polarization microscopy. In addition, biomechanical properties of the tissue engineered patches were determined in comparison to native tissue. This study may allow future studies to specifically select certain polymer starter matrices aiming at specific tissue properties of the bioengineered constructs in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    PubMed Central

    Maas, Ronald H. W.; Bakker, Robert R.; Jansen, Mickel L. A.; Visser, Diana; de Jong, Ed; Eggink, Gerrit

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314. Decrease in pH because of lactic acid formation was partially adjusted by automatic addition of the alkaline substrate. After 55 h of incubation, the polymeric glucan, xylan, and arabinan present in the lime-treated straw were hydrolyzed for 55%, 75%, and 80%, respectively. Lactic acid (40.7 g/l) indicated a fermentation efficiency of 81% and a chiral l(+)-lactic acid purity of 97.2%. In total, 711 g lactic acid was produced out of 2,706 g lime-treated straw, representing 43% of the overall theoretical maximum yield. Approximately half of the lactic acid produced was neutralized by fed-batch feeding of lime-treated straw, whereas the remaining half was neutralized during the batch phase with a Ca(OH)2 suspension. Of the lime added during the pretreatment of straw, 61% was used for the neutralization of lactic acid. This is the first demonstration of a process having a combined alkaline pretreatment of lignocellulosic biomass and pH control in fermentation resulting in a significant saving of lime consumption and avoiding the necessity to recycle lime. PMID:18247027

  13. Use of autochthonous starters to ferment red and yellow peppers (Capsicum annum L.) to be stored at room temperature.

    PubMed

    Di Cagno, Raffaella; Surico, Rosalinda F; Minervini, Giovanna; De Angelis, Maria; Rizzello, Carlo G; Gobbetti, Marco

    2009-03-31

    Strains of Lactobacillus curvatus, Leuconostoc mesenteroides, Lactobacillus plantarum and Weissella confusa were identified from raw red and yellow peppers (RYPs) by partial 16S rRNA gene sequence and subjected to typing by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) analysis. L. plantarum PE21, L. curvatus PE4 and W. confusa PE36 were selected based on the kinetics of growth and acidification, and used as the autochthonous mixed starter for the fermentation of RYPs. A protocol which included blanching at 85 degrees C for 2 min, fermentation at 35 degrees C for 15 h in brine (1%, w/v), and heat treatment at 85 degrees C for 15 min, followed by storage at room temperature for 30 days with and without sunflower seeds oil was set up. Unstarted RYPs subjected to the same treatments were used as the control. Cell numbers of autochthonous starter in the RYPs were ca. 1000 times higher than presumptive lactic acid bacteria in unstarted RYPs. As shown by RAPD-PCR analysis, all three autochthonous strains persisted during processing and storage. Presumptive lactic acid bacteria found in started RYPs progressively decreased during storage, leading to a microbiota mainly consisting of autochthonous starters. Started RYPs showed rapid decrease of pH (<3.7), marked consumption of fermentable carbohydrates, and inhibition of total enterobacteria and yeasts. Unstarted RYPs were subjected to slight acidification (pH ca. 4.87) and considerable contamination by total enterobacteria and yeasts throughout storage. After 30 days of storage, started RYPs had significantly (P<0.05) higher firmness and colour indexes with respect to unstarted RYPs. The microbial and sensory features of started RYPs stored with sunflower seeds oil were almost similar to those of RYPs stored without suspending liquid.

  14. Membrane-integrated fermentation system for improving the optical purity of D-lactic acid produced during continuous fermentation.

    PubMed

    Sawai, Hideki; Na, Kyungsu; Sasaki, Nanami; Mimitsuka, Takashi; Minegishi, Shin-ichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu

    2011-01-01

    This report describes the production of highly optically pure D-lactic acid by the continuous fermentation of Sporolactobacillus laevolacticus and S. inulinus, using a membrane-integrated fermentation (MFR) system. The optical purity of D-lactic acid produced by the continuous fermentation system was greater than that produced by batch fermentation; the maximum value for the optical purity of D-lactic acid reached 99.8% enantiomeric excess by continuous fermentation when S. leavolacticus was used. The volumetric productivity of the optically pure D-lactic acid was about 12 g/L/h, this being approximately 11-fold higher than that obtained by batch fermentation. An enzymatic analysis indicated that both S. laevolacticus and S. inulinus could convert L-lactic acid to D-lactic acid by isomerization after the late-log phase. These results provide evidence for an effective bio-process to produce D-lactic acid of greater optical purity than has conventionally been achieved to date.

  15. Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41.

    PubMed

    Tashiro, Yukihiro; Kaneko, Wataru; Sun, Yanqi; Shibata, Keisuke; Inokuma, Kentaro; Zendo, Takeshi; Sonomoto, Kenji

    2011-03-01

    We isolated and characterized a D-lactic acid-producing lactic acid bacterium (D-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 (T) and L. delbrueckii subsp. lactis JCM 1248 (T), which are also known as D-LAB, the QU 41 strain exhibited a high thermotolerance and produced D-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on D-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l D-lactic acid was acquired with high optical purity (>99.9% of D-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve D-lactic acid productivity. At a dilution rate of 0.87 h(-1), the high cell density continuous culture exhibited the highest D-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.

  16. Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tango, M.S.A.; Ghaly, A.E.

    1999-12-01

    A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentationmore » time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.« less

  17. Monitoring lactic acid production during milk fermentation by in situ quantitative proton nuclear magnetic resonance spectroscopy.

    PubMed

    Bouteille, R; Gaudet, M; Lecanu, B; This, H

    2013-04-01

    When fermenting milk, lactic bacteria convert part of α- and β-lactoses into d- and l- lactic acids, causing a pH decrease responsible for casein coagulation. Lactic acid monitoring during fermentation is essential for the control of dairy gel textural and organoleptic properties, and is a way to evaluate strain efficiency. Currently, titrations are used to follow the quantity of acids formed during jellification of milk but they are not specific to lactic acid. An analytical method without the use of any reagent was investigated to quantify lactic acid during milk fermentation: in situ quantitative proton nuclear magnetic resonance spectroscopy. Two methods using in situ quantitative proton nuclear magnetic resonance spectroscopy were compared: (1) d- and l-lactic acids content determination, using the resonance of their methyl protons, showing an increase from 2.06 ± 0.02 to 8.16 ± 0.74 g/L during 240 min of fermentation; and (2) the determination of the α- and β-lactoses content, decreasing from 42.68 ± 0.02 to 30.76 ± 1.75 g/L for the same fermentation duration. The ratio between the molar concentrations of produced lactic acids and consumed lactoses enabled cross-validation, as the value (2.02 ± 0.18) is consistent with lactic acid bacteria metabolism. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Membrane-mediated extractive fermentation for lactic acid production from cellulosic biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rongfu; Lee, Y.Y.

    1997-12-31

    Lactic acid production from cellulosic biomass by cellulose and Lactobacillus delbrueckii was studied in a fermenter-extractor employing a microporous hollow fiber membrane (NIHF). This bioreactor system was operated under a fed-batch mode with continuous removal of lactic acid by an in situ extraction. A tertiary amine (Alamine 336) was used as an extractant for lactic acid. The extraction capacity of Alamine 336 is greatly enhanced by addition of alcohol. Long-chain alcohols serve well for this purpose since they are less toxic to micro-organism. Addition of kerosene, a diluent, was necessary to reduce the solvent viscosity. A solvent mixture of 20%more » Alamine 336,40% oleyl alcohol, and 40% kerosene was found to be most effective in the extraction of lactic acid. Progressive change of pH from an initial value of 5.0 down to 4.3 has significantly improved the overall performance of the simultaneous saccharification and extractive fermentation over that of constant pH operation. The change of pH was applied to promote cell growth in the early phase, and extraction in the latter phase. 20 refs., 10 figs., 1 tab.« less

  19. Lactic Acid Bateria - Friend or Foe? Lactic Acid Bacteria in the Production of Polysaccharides and Fuel Ethanol

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) have been widely used in the production of fermented foods and as probiotics. Alternan is a glucan with a distinctive backbone structure of alternating alpha-(1,6) and alpha-(1,3) linkages produced by the LAB Leuconostoc mesenteroides. In recent years, improved strains f...

  20. Catalytic processing of lactic acid over Pt/Nb(2)O(5).

    PubMed

    Serrano-Ruiz, Juan Carlos; Dumesic, James A

    2009-01-01

    Dilute aqueous solutions of lactic acid (30 %wt.) can be catalytically processed at 573 K and 57 bar over a low-metal-content Pt(0.1 %)/Nb(2)O(5) catalyst in a spontaneously separating organic phase rich in valuable products such as C(4)-C(7) ketones. An increase in the lactic acid concentration to 60 wt % allows conversion of approximately 50 % of the carbon feed in this organic layer, while maintaining good stability of the catalyst. Experiments at low conversion showed that lactic acid reacts first over Pt(0.1 %)/Nb(2)O(5) to produce acetaldehyde and propanoic acid (along with CO and CO(2) in the gas phase). These compounds (less oxygenated than lactic acid but still reactive) are the key intermediates in the overall process, and they react differently depending on the nature of the catalyst support. In particular, reaction kinetics studies with propanoic acid as feed showed that Pt(0.1 %)/Nb(2)O(5) favored the formation of pentanones by ketonization reactions, whereas a monofunctional Pt(0.1 %)/carbon catalyst produced ethane and CO(x) by decomposition reactions. In the same manner, acetaldehyde was preferentially hydrogenated to ethanol over Pt(0.1 %)/carbon, whereas the presence of niobia allowed this intermediate to react (by successive aldol condensations) to form C(4)-C(7) condensation products stored in the organic phase. Finally, reaction pathways are proposed to explain the catalytic processing of lactic acid over bifunctional Pt(0.1 %)/Nb(2)O(5). In this scheme, metal sites catalyze hydrogenation reactions and niobia promotes C--C coupling processes (ketonization and aldol condensation), in contrast to C--C cleavage reactions which take place preferentially over Pt(0.1 %)/carbon and lead to loss of carbon in the gas effluent as CO, CO(2), and methane.

  1. Metagenomics analysis of microbial communities associated with a traditional rice wine starter culture (Xaj-pitha) of Assam, India.

    PubMed

    Bora, Sudipta Sankar; Keot, Jyotshna; Das, Saurav; Sarma, Kishore; Barooah, Madhumita

    2016-12-01

    This is the first report on the microbial diversity of xaj-pitha, a rice wine fermentation starter culture through a metagenomics approach involving Illumine-based whole genome shotgun (WGS) sequencing method. Metagenomic DNA was extracted from rice wine starter culture concocted by Ahom community of Assam and analyzed using a MiSeq ® System. A total of 2,78,231 contigs, with an average read length of 640.13 bp, were obtained. Data obtained from the use of several taxonomic profiling tools were compared with previously reported microbial diversity studies through the culture-dependent and culture-independent method. The microbial community revealed the existence of amylase producers, such as Rhizopus delemar, Mucor circinelloides, and Aspergillus sp. Ethanol producers viz., Meyerozyma guilliermondii, Wickerhamomyces ciferrii, Saccharomyces cerevisiae, Candida glabrata, Debaryomyces hansenii, Ogataea parapolymorpha, and Dekkera bruxellensis, were found associated with the starter culture along with a diverse range of opportunistic contaminants. The bacterial microflora was dominated by lactic acid bacteria (LAB). The most frequent occurring LAB was Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc lactis, Weissella cibaria, Lactococcus lactis, Weissella para mesenteroides, Leuconostoc pseudomesenteroides, etc. Our study provided a comprehensive picture of microbial diversity associated with rice wine fermentation starter and indicated the superiority of metagenomic sequencing over previously used techniques.

  2. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    NASA Astrophysics Data System (ADS)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  3. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    PubMed

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The evaluation of kefir pure culture starter: Liquid-core capsule entrapping microorganisms isolated from kefir grains.

    PubMed

    Wang, Liang; Zhong, Hao; Liu, Keying; Guo, Aizhen; Qi, Xianghui; Cai, Meihong

    2016-10-01

    The main purpose of this study was to develop a pure culture starter for producing kefir. In order to accomplish starter recycling, yeasts (Kluyveromyces marxianus strain, Pichia kudriavzevii clone), lactic acid bacteria (Lactobacillus kefiri strain F4Aa, Lactobacillus kefiri strain NM131-7, Lactobacillus kefiri strain NM132-3, Lactobacillus kefiri strain NM180-3, respectively), and acetic acid bacteria (Acetobacter lovaniensis strain) were entrapped in liquid core capsules based on the distribution ratio in kefir grains. The microbiological, antimicrobial, and chemical properties of kefir made with capsules (M) and kefir grains (K) were measured and compared. According to the results of plate counts in different selective medium, the number of yeasts and bacteria in the liquid core capsules gradually increased and stabilized after eight fermentation cycles. The results of gas chromatography-mass spectrometry showed that almost all the aroma components existed in the two type of kefir, except the ethyl lactate. There was no significant difference in alcohol content, protein content, and fat content, except the acidity and sugar content. Water holding capacity of kefir K was higher than kefir M. There were 14 same free amino acids in kefir M and kefir K, and the content of most free amino acids was similar. In antimicrobial test, there was no significant difference in both kefirs. © The Author(s) 2016.

  5. Neuropathic Pain Following Poly-L-Lactic Acid (Sculptra) Injection.

    PubMed

    Vrcek, Ivan; El-Sawy, Tarek; Chou, Eva; Allen, Theresa; Nakra, Tanuj

    Injectable fillers have become a prevalent means of facial rejuvenation and volume expansion. While typically well tolerated, serious complications have been reported. The authors present a case in which an otherwise healthy female with a history of multiple filler injections including poly-L-lactic acid, developed 3 weeks of neuropathic pain in the left temporal fossa following injection. To the best of the authors knowledge, neuropathic pain has not been reported as a complication following poly-L-lactic acid injection. The patient was treated with an injection of steroid and long-acting anesthetic with resolution of symptoms.

  6. Pretreatment of corn stover by solid acid for d-lactic acid fermentation.

    PubMed

    Wang, Xiqing; Wang, Gang; Yu, Xiaoxiao; Chen, Huan; Sun, Yang; Chen, Guang

    2017-09-01

    Solid acid is a new acid that is safe and green, which has been widely used in the fields of acid pickling. In this study, we adopted solid acid to pretreat corn stover and used the pretreated corn stover in the fermentation of d-lactic acid. Finally, we obtained optimal conditions for the pretreatment of corn stover by solid acid: digestion temperature of 120°C, digestion time of 80min, and solid acid concentration of 1.5%. Then adding cellulase of 30FPU/g, the conversion rate of glucose reached 71.06% after enzymatic hydrolysis for 72h. In addition, the changes of corn stover structure after pretreatment were further represented by using scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). At the same time, we used the pretreated corn stover as fermentation substrate and Lactobacillus. delbrueckii sp. bulgaricus as the starting strain to produce d-lactic acid. The yield reached 18g/L, with the optical purity being 99%e.e. This research has provided a new way to comprehensively utilizae corn stover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages.

    PubMed

    Klingberg, Trine Danø; Axelsson, Lars; Naterstad, Kristine; Elsser, Dieter; Budde, Birgitte Bjørn

    2005-12-15

    Potential probiotic cultures suitable as starter cultures for the Scandinavian-type fermented sausages were identified among strains well-adapted to fermented meats as well as strains originating from a culture collection. From 15 different fermented meat products, 22 strains were isolated as dominant non-starter lactic acid bacteria (NSLAB). The isolates were identified by RAPD, API and sequence analysis of 16S rRNA and showed to be five strains of Lactobacillus sakei, five strains of Lactobacillus farciminis, five strains belonging to the group of Lactobacillus plantarum/pentosus, four strains of Lactobacillus alimentarius, two strains of Lactobacillus brevis and one strain of Lactobacillus versmoldensis. Heterofermentative strains as well as strains not growing at 37 degrees C and not lowering pH below 5.1 in a meat model were excluded leaving 9 strains for further studies. These strains together with 19 strains from a culture collection were evaluated by in vitro methods including survival upon exposure to pH 2.5 or 0.3% oxgall and adhesion to the human colon adenocarcinoma cell line Caco-2 as well as antimicrobial activity against potential pathogens. Strains that fulfilled all the probiotic criteria and showed to be fast acid producers in a meat model included three strains belonging to the group of Lb. plantarum/pentosus (MF1291, MF1298, MF1300) which originated from the dominant NSLAB of fermented meat products. MF1291 and MF 1298 were further identified as Lb. plantarum and MF1300 as Lb. pentosus. The three strains were all successfully applied as starter cultures for the production of fermented sausage. The viable count at the end of the processing period reached high cell numbers (4.7x10(7)-2.9x10(8) cfu/g) and pH of the sausages decreased to pH 4.8-4.9 without any flavour deviation compared to sausage fermented by a commercial meat starter culture.

  8. Selection of starter cultures for the production of sour cassava starch in a pilot-scale fermentation process.

    PubMed

    Penido, Fernanda Corrêa Leal; Piló, Fernanda Barbosa; Sandes, Sávio Henrique de Cicco; Nunes, Álvaro Cantini; Colen, Gecernir; Oliveira, Evelyn de Souza; Rosa, Carlos Augusto; Lacerda, Inayara Cristina Alves

    2018-02-28

    Sour cassava starch (Polvilho azedo) is obtained from a spontaneous fermentation conducted by microorganisms from raw materials and fermentation tanks. This product is traditionally used in the baking industry for the manufacture of biscuits and Brazilian cheese breads. However, the end of fermentation is evaluated empirically, and the process occurs without standardization, which results in products of inconsistent quality. Predominant microbiota from a cassava flour manufacturer was isolated in order to select starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Lactic acid bacteria and yeasts were isolated, enumerated and grouped by Restriction Fragment Length Polymorphism, and PCR fingerprinting, respectively. One isolate of each molecular profile was identified by sequencing of the rRNA gene. LAB were prevalent throughout the entire process. Lactobacillus brevis (21.5%), which produced the highest values of acidity, and Lactobacillus plantarum (13.9%) were among the most frequent species. Pichia scutulata (52.2%) was the prevalent yeast and showed amylolytic activity. The aforementioned species were tested as single and mixed starter cultures in a pilot-scale fermentation process for 28 days. L. plantarum exhibited better performance as a starter culture, which suggests its potential for the production of sour cassava starch. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    PubMed

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  10. Production of optically pure D-lactic acid from brown rice using metabolically engineered Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Hama, Shinji; Kihara, Maki; Noda, Hideo; Tanaka, Tsutomu; Kondo, Akihiko

    2017-03-01

    Simultaneous saccharification and fermentation (SSF) of D-lactic acid was performed using brown rice as both a substrate and a nutrient source. An engineered Lactobacillus plantarum NCIMB 8826 strain, in which the ʟ-lactate dehydrogenase gene was disrupted, produced 97.7 g/L D-lactic acid from 20% (w/v) brown rice without any nutrient supplementation. However, a significant amount of glucose remained unconsumed and the yield of lactic acid was as low as 0.75 (g/g-glucose contained in brown rice). Interestingly, the glucose consumption was significantly improved by adapting L. plantarum cells to the low-pH condition during the early stage of SSF (8-17 h). As a result, 117.1 g/L D-lactic acid was produced with a high yield of 0.93 and an optical purity of 99.6% after 144 h of fermentation. SSF experiments were repeatedly performed for ten times and D-lactic acid was stably produced using recycled cells (118.4-129.8 g/L). On average, D-lactic acid was produced with a volumetric productivity of 2.18 g/L/h over 48 h.

  11. Maple sap as a rich medium to grow probiotic lactobacilli and to produce lactic acid.

    PubMed

    Cochu, A; Fourmier, D; Halasz, A; Hawari, J

    2008-12-01

    To demonstrate the feasibility of growing lactobacilli and producing lactic acid using maple sap as a sugar source and to show the importance of oligosaccharides in the processes. Two maple sap samples (Cetta and Pinnacle) and purified sucrose were used as carbon sources in the preparation of three culture media. Compared with the sucrose-based medium, both maple sap-based media produced increased viable counts in two strains out of five by a factor of four to seven. Maple sap-based media also enhanced lactic acid production in three strains. Cetta sap was found to be more efficient than Pinnacle sap in stimulating lactic acid production and, was also found to be richer in various oligosaccharides. The amendment of the Pinnacle-based medium with trisaccharides significantly stimulated Lactobacillus acidophilus AC-10 to grow and produce lactic acid. Maple sap, particularly if rich in oligosaccharides, represents a good carbon source for the growth of lactobacilli and the production of lactic acid. This study provides a proof-of-concept, using maple sap as a substrate for lactic acid production and for the development of a nondairy probiotic drink.

  12. Development of a new lactic acid bacterial inoculant for fresh rice straw silage.

    PubMed

    Kim, Jong Geun; Ham, Jun Sang; Li, Yu Wei; Park, Hyung Soo; Huh, Chul-Sung; Park, Byung-Chul

    2017-07-01

    Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Lactic acid bacteria (LAB) from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821) were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841), two commercial inoculants (HM/F and P1132) and no additive as a control. After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p<0.05). Acidity (pH) was lowest, and lactic acid highest, in 1821-treated silage (p<0.05). The NH 3 -N content decreased significantly in inoculant-treated silage (p<0.05) and the NH 3 -N content in 1821-treated silage was lowest among the treatments. The dry matter (DM) content of the control silage was lower than that of fresh rice straw (p<0.05), while that of the 1841- and p1174-inoculant-treated silages was significantly higher than that of HM/F-treated silage. Microbial additives did not have any significant (p>0.05) effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP) content and in vitro DM digestibility (IVDMD) increased after inoculation of LAB 1821 (p<0.05). LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, NH 3 -N, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

  13. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods.

    PubMed

    Linares, Daniel M; Gómez, Carolina; Renes, Erica; Fresno, José M; Tornadijo, María E; Ross, R P; Stanton, Catherine

    2017-01-01

    Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value.

  14. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria.

    PubMed

    Gaspar, Paula; Carvalho, Ana L; Vinga, Susana; Santos, Helena; Neves, Ana Rute

    2013-11-01

    The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body of comprehensive data on their metabolism and genetics was generated throughout the years. This knowledge has been instrumental in the implementation of successful applications in the food industry, such as the selection of robust starter cultures with desired phenotypic traits. The advent of genomics, functional genomics and high-throughput experimentation combined with powerful computational tools currently allows for a systems level understanding of these food industry workhorses. The technological developments in the last decade have provided the foundation for the use of LAB in applications beyond the classic food fermentations. Here we discuss recent metabolic engineering strategies to improve particular cellular traits of LAB and to design LAB cell factories for the bioproduction of added value chemicals. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods

    PubMed Central

    Linares, Daniel M.; Gómez, Carolina; Renes, Erica; Fresno, José M.; Tornadijo, María E.; Ross, R. P.; Stanton, Catherine

    2017-01-01

    Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value. PMID:28572792

  16. Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JI12.

    PubMed

    Ye, Lidan; Hudari, Mohammad Sufian Bin; Zhou, Xingding; Zhang, Dongxu; Li, Zhi; Wu, Jin Chuan

    2013-06-01

    Cost-effective conversion of lignocellulose hydrolysate to optically pure lactic acid is commercially attractive but very challenging. Bacillus coagulans JI12 was isolated from natural environment and used to produce L-lactic acid (optical purity > 99.5 %) from lignocellulose sugars and acid hydrolysate of oil palm empty fruit bunch (EFB) at 50 °C and pH 6.0 without sterilization of the medium. In fed-batch fermentation with 85 g/L initial xylose and 55 g/L xylose added after 7.5 h, 137.5 g/L lactic acid was produced with a yield of 98 % and a productivity of 4.4 g/L h. In batch fermentation of a sugar mixture containing 8.5 % xylose, 1 % glucose, and 1 % L-arabinose, the lactic acid yield and productivity reached 98 % and 4.8 g/L h, respectively. When EFB hydrolysate was used, 59.2 g/L of lactic acid was produced within 9.5 h at a yield of 97 % and a productivity of 6.2 g/L h, which are the highest among those ever reported from lignocellulose hydrolysates. These results indicate that B. coagulans JI12 is a promising strain for industrial production of L-lactic acid from lignocellulose hydrolysate.

  17. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits.

    PubMed

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery.

  18. Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow's milk cheese.

    PubMed

    Ribeiro, S C; Coelho, M C; Todorov, S D; Franco, B D G M; Dapkevicius, M L E; Silva, C C G

    2014-03-01

    Evaluate technologically relevant properties from bacteriocin-producing strains to use as starter/adjunct cultures in cheese making. Eight isolates obtained from Pico cheese produced in Azores (Portugal) were found to produce bacteriocins against Listeria monocytogenes and three isolates against Clostridium perfringens. They were identified as Lactococcus lactis and Enterococcus faecalis and submitted to technological tests: growth at different conditions of temperature and salt, acid production, proteolysis, lipolysis, coexistence, enzymatic profile and autolytic capacity. Safety evaluation was performed by evaluating haemolytic, gelatinase and DNase activity, resistance to antibiotics and the presence of virulence genes. Some isolates presented good technological features such as high autolytic activity, acid and diacetyl production. Lactococcus lactis was negative for all virulence genes tested and inhibit the growth of all Lactic acid bacteria (LAB) isolates. Enterococci were positive for the presence of some virulence genes, but none of the isolates were classified as resistant to important antibiotics. The bacteriocin-producing Lc. lactis present good potential for application in food as adjunct culture in cheese production. The study also reveals good technological features for some Enterococcus isolates. Bacteriocin-producing strains presented important technological properties to be exploited as new adjunct culture for the dairy industry, influencing flavour development and improve safety. © 2013 The Society for Applied Microbiology.

  19. Antimicrobial Effect of Calcium Chloride Alone and Combined with Lactic Acid Injected into Chicken Breast Meat

    PubMed Central

    Alahakoon, Amali U.; Jayasena, Dinesh D.; Jung, Samooel; Kim, Sun Hyo

    2014-01-01

    Chicken breast meat was injected with calcium chloride alone and in combination with lactic acid (0.01% and 0.002%, respectively). The inhibitory effects of the treatments on microbial growth were determined in the injected chicken breast meat stored at 4°C under aerobic packaging condition for 0, 3, and 7 d. Calcium chloride combined with 0.002% and 0.01% lactic acid reduced microbial counts by 0.14 and 1.08 Log CFU/g, respectively, however, calcium chloride alone was unable to inhibit microbial growth. Calcium chloride combined with 0.01% lactic acid was the most effective antimicrobial treatment and resulted in the highest initial redness value. Calcium chloride alone and combined with lactic acid suppressed changes in pH and the Hunter color values during storage. However, injection of calcium chloride and lactic acid had adverse effects on lipid oxidation and sensory characteristics. The higher TBARS values were observed in samples treated with calcium chloride and lactic acid when compared to control over the storage period. Addition of calcium chloride and lactic acid resulted in lower sensory scores for parameters tested, except odor and color, compared to control samples. Therefore, the formulation should be improved in order to overcome such defects prior to industrial application. PMID:26760942

  20. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  1. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum.

    PubMed

    Yoshida, Shogo; Okano, Kenji; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2011-10-01

    In order to achieve efficient D-lactic acid fermentation from a mixture of xylose and glucose, the xylose-assimilating xylAB operon from Lactobacillus pentosus (PXylAB) was introduced into an L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum (ΔldhL1-xpk1::tkt-Δxpk2) strain in which the phosphoketolase 1 gene (xpk1) was replaced with the transketolase gene (tkt) from Lactococcus lactis, and the phosphoketolase 2 (xpk2) gene was deleted. Two copies of xylAB introduced into the genome significantly improved the xylose fermentation ability, raising it to the same level as that of ΔldhL1-xpk1::tkt-Δxpk2 harboring a xylAB operon-expressing plasmid. Using the two-copy xylAB integrated strain, successful homo-D-lactic acid production was achieved from a mixture of 25 g/l xylose and 75 g/l glucose without carbon catabolite repression. After 36-h cultivation, 74.2 g/l of lactic acid was produced with a high yield (0.78 g per gram of consumed sugar) and an optical purity of D-lactic acid of 99.5%. Finally, we successfully demonstrated homo-D-lactic acid fermentation from a mixture of three kinds of sugar: glucose, xylose, and arabinose. This is the first report that describes homo-D-lactic acid fermentation from mixed sugars without carbon catabolite repression using the xylose-assimilating pathway integrated into lactic acid bacteria.

  2. Transport mechanism for L-lactic acid in human myocytes using human prototypic embryonal rhabdomyosarcoma cell line (RD cells).

    PubMed

    Kobayashi, Masaki; Fujita, Itaru; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2005-07-01

    Monocarboxylate transporter (MCT), which cotransport L-lactic acid and protons across cell membranes, are important for regulation of muscle pH. However, it has not been demonstrated in detail whether MCT isoform contribute to the transport of L-lactic acid in skeletal muscle. The aim of this study was to characterize L-lactic acid transport using an human rhabdomyosarcoma (RD) cell line as a model of human skeletal muscle. mRNAs of MCT 1, 2 and 4 were found to be expressed in RD cells. The [14C] L-lactic acid uptake was concentration-dependent with a Km of 1.19 mM. This Km value was comparable to its Km values for MCT1 or MCT2. MCT1 mRNA was found to be present markedly greater than that MCT2. Therefore, MCT1 most probably acts on L-lactic acid uptake at RD cells. [14C] L-Lactic acid efflux in RD cells was inhibited by alpha-cyano-4-hydroxycinnamate (CHC) but not by butyric acid, a substrate of MCT1. Accordingly, MCT2 or MCT4 is responsible for L-lactic acid efflux by RD cells. MCT4 mRNA was found to be present significantly greater than that MCT2. We conclude that MCT1 is responsible for L-lactic acid uptake and L-lactic acid efflux is mediated by MCT4 in RD cells.

  3. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.

    PubMed

    Okino, Shohei; Suda, Masako; Fujikura, Keitaro; Inui, Masayuki; Yukawa, Hideaki

    2008-03-01

    In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of L-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce D-lactic acid. The modification involved expression of fermentative D-lactate dehydrogenase (D-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in L-lactate dehydrogenase (L-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum DeltaldhA/pCRB201 and C. glutamicum DeltaldhA/pCRB204, respectively. The productivity of C. glutamicum DeltaldhA/pCRB204 was fivefold higher than that of C. glutamicum DeltaldhA/pCRB201. By using C. glutamicum DeltaldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l(-1)) of D-lactic acid of greater than 99.9% optical purity was produced within 30 h.

  4. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    PubMed Central

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity. PMID:29584690

  5. Fermentation and recovery process for lactic acid production

    DOEpatents

    Tsai, S.P.; Moon, S.H.; Coleman, R.

    1995-11-07

    A method is described for converting starch to glucose and fermenting glucose to lactic acid, including simultaneous saccharification and fermentation through use of a novel consortium of bacterial strains. 2 figs.

  6. Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano.

    PubMed

    Lazzi, Camilla; Povolo, Milena; Locci, Francesco; Bernini, Valentina; Neviani, Erasmo; Gatti, Monica

    2016-09-16

    In this study, the relationship between the dynamics of the growth and lysis of lactic acid bacteria in Grana Padano cheese and the formation of the volatile flavor compounds during cheese ripening was investigated. The microbial dynamics of Grana Padano cheeses that were produced in two different dairies were followed during ripening. The total and cultivable lactic microflora, community composition as determined by length heterogeneity-PCR (LH-PCR), and extent of bacterial lysis using an intracellular enzymatic activity assay were compared among cheeses after 2, 6 and 13months of ripening in two dairies. The evolution of whole and lysed microbiota was different between the two dairies. In dairy 2, the number of total cells was higher than that in dairy 1 in all samples, and the number of cells that lysed during ripening was lower. In addition, at the beginning of ripening (2months), the community structure of the cheese from dairy 2 was more complex and was composed of starter lactic acid bacteria (Lactobacillus helveticus and Lactobacillus delbrueckii) and NSLAB, possibly arising from raw milk, including Lactobacillus rhamnosus/Lactobacillus casei and Pediococcus acidilactici. On the other hand, the cheese from dairy 1 that ripened for 2months was mainly composed of the SLAB L. helveticus and L. delbrueckii. An evaluation of the free-DNA fraction through LH-PCR identified those species that had a high degree of lysis. Data on the dynamics of bacterial growth and lysis were evaluated with respect to the volatile profile and the organic acid content of the two cheeses after 13months of ripening, producing very different results. Cheese from dairy 1 showed a higher content of free fatty acids, particularly those deriving from milk fat lipolysis, benzaldehyde and organic acids, such as pGlu and citric. In contrast, cheese from dairy 2 had a greater amount of ketones, alcohols, hydrocarbons, acetic acid and propionic acid. Based on these results, we can conclude that

  7. Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation.

    PubMed

    Zhao, Bo; Wang, Limin; Li, Fengsong; Hua, Dongliang; Ma, Cuiqing; Ma, Yanhe; Xu, Ping

    2010-08-01

    D-lactic acid was produced by Sporolactobacillus sp. strain CASD in repeated batch fermentation with one- and two-reactor systems. The strain showed relatively high energy consumption in its growth-related metabolism in comparison with other lactic acid producers. When the fermentation was repeated with 10% (v/v) of previous culture to start a new batch, D-lactic acid production shifted from being cell-maintenance-dependent to cell-growth-dependent. In comparison with the one-reactor system, D-lactic acid production increased approximately 9% in the fourth batch of the two-reactor system. Strain CASD is an efficient D-lactic acid producer with increased growth rate at the early stage of repeated cycles, which explains the strain's physiological adaptation to repeated batch culture and improved performance in the two-reactor fermentation system. From a kinetic point of view, two-reactor fermentation system was shown to be an alternative for conventional one-reactor repeated batch operation. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106.

    PubMed

    Ye, Lidan; Zhou, Xingding; Hudari, Mohammad Sufian Bin; Li, Zhi; Wu, Jin Chuan

    2013-03-01

    Cost-effective production of optically pure lactic acid from lignocellulose sugars is commercially attractive but challenging. Bacillus coagulans C106 was isolated from environment and used to produce l-lactic acid from xylose at 50°C and pH 6.0 in mineral salts medium containing 1-2% (w/v) of yeast extract without sterilizing the medium before fermentation. In batch fermentation with 85g/L of xylose, lactic acid titer and productivity reached 83.6g/L and 7.5g/Lh, respectively. When fed-batch (120+80+60g/L) fermentation was applied, they reached 215.7g/L and 4.0g/Lh, respectively. In both cases, the lactic acid yield and optical purity reached 95% and 99.6%, respectively. The lactic acid titer and productivity on xylose are the highest among those ever reported. Ca(OH)2 was found to be a better neutralizing agent than NaOH in terms of its giving higher lactic acid titer (1.2-fold) and productivity (1.8-fold) under the same conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Short communication: Conversion of lactose and whey into lactic acid by engineered yeast.

    PubMed

    Turner, Timothy L; Kim, Eunbee; Hwang, ChangHoon; Zhang, Guo-Chang; Liu, Jing-Jing; Jin, Yong-Su

    2017-01-01

    Lactose is often considered an unwanted and wasted byproduct, particularly lactose trapped in acid whey from yogurt production. But using specialized microbial fermentation, the surplus wasted acid whey could be converted into value-added chemicals. The baker's yeast Saccharomyces cerevisiae, which is commonly used for industrial fermentation, cannot natively ferment lactose. The present study describes how an engineered S. cerevisiae yeast was constructed to produce lactic acid from purified lactose, whey, or dairy milk. Lactic acid is an excellent proof-of-concept chemical to produce from lactose, because lactic acid has many food, pharmaceutical, and industrial uses, and over 250,000 t are produced for industrial use annually. To ferment the milk sugar lactose, a cellodextrin transporter (CDT-1, which also transports lactose) and a β-glucosidase (GH1-1, which also acts as a β-galactosidase) from Neurospora crassa were expressed in a S. cerevisiae strain. A heterologous lactate dehydrogenase (encoded by ldhA) from the fungus Rhizopus oryzae was integrated into the CDT-1/GH1-1-expressing strain of S. cerevisiae. As a result, the engineered strain was able to produce lactic acid from purified lactose, whey, and store-bought milk. A lactic acid yield of 0.358g/g of lactose was achieved from whey fermentation, providing an initial proof of concept for the production of value-added chemicals from excess industrial whey using engineered yeast. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization

    NASA Astrophysics Data System (ADS)

    Quynh, Tran Minh; Mai, Hoang Hoa; Lan, Pham Ngoc

    2013-02-01

    Poly(L-lactic acid)s (PLLAx) were synthesized from L-lactic acid by polycondensation. Different stereocomplexes were also obtained with equimolar mixtures of synthesized PLLAx and a commercial PDLA. The stereocomplexes were crosslinked with triallyl isocyanurate (TAIC) by gamma irradiation. Crosslinking density increased with radiation doses, the heavier the crosslinking network, the lower its swelling degree. The crosslinking structures were introduced in the stereocomplexes inhibiting the mobility for crystallization of PLLA molecules. Thermal and mechanical properties of PLA stereocomplexes were remarkably enhanced by radiation induced crosslinking. PLA stereocomplex does not seem to be degraded by PLLA degrading microorganisms existing in compost at room temperature, but the synthesized PLLA was significantly degraded.

  11. Genetic and Technological Characterisation of Vineyard- and Winery-Associated Lactic Acid Bacteria

    PubMed Central

    Nisiotou, Aspasia A.; Filippousi, Maria-Evangelia; Fragkoulis, Petros; Tassou, Chryssoula; Banilas, Georgios

    2015-01-01

    Vineyard- and winery-associated lactic acid bacteria (LAB) from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF). Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs). Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine. PMID:25866789

  12. Lactic acid as an invaluable green solvent for ultrasound-assisted scalable synthesis of pyrrole derivatives.

    PubMed

    Wang, Shi-Fan; Guo, Chao-Lun; Cui, Ke-Ke; Zhu, Yan-Ting; Ding, Jun-Xiong; Zou, Xin-Yue; Li, Yi-Hang

    2015-09-01

    Lactic acid has been used as a bio-based green solvent to study the ultrasound-assisted scale-up synthesis. We report here, for the first time, on the novel and scalable process for synthesis of pyrrole derivatives in lactic acid solvent under ultrasonic radiation. Eighteen pyrrole derivatives have been synthesized in lactic acid solvent under ultrasonic radiation and characterized by (1)H NMR, IR, ESI MS. The results show, under ultrasonic radiation, lactic acid solvent can overcome the scale-up challenges and exhibited many advantages, such as bio-based origin, shorter reaction time, lower volatility, higher yields, and ease of isolating the products. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Lactic Acid Bacteria – Friend or Foe? Lactic Acid Bacteria in the Production of Polysaccharides and Fuel Ethanol

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) have been widely used in the production of fermented foods and as probiotics. Alternan is a glucan with a distinctive backbone structure of alternating a-(1,6) and a-(1,3) linkages produced by the LAB Leuconostoc mesenteroides. In recent years, we have developed improved...

  14. Evaluation of Fermented Sausages Manufactured with Reduced-fat and Functional Starter Cultures on Physicochemical, Functional and Flavor Characteristics

    PubMed Central

    Yoo, Seung Seok

    2014-01-01

    Fermented foods with probiotics having functional properties may provide beneficial effects on health. These effects are varied, depending on the type of lactic acid bacteria (LAB). Different probiotic LAB might have different functional properties. Thus, this study was performed to evaluate the quality of fermented sausages manufactured with functional starter cultures (Lactobacillus plantarum 115 and 167, and Pediococcus damnosus L12) and different fat levels, and to determine the optimum condition for the manufacture of these products. Medium-fat (~15%) fermented sausages reduced the drying time and cholesterol contents, as compared to regular-fat counterparts. In proximate analysis, the contents of moisture and protein of regular-fat products were lower than medium-fat with reduced fat content. The regular-fat products also had a lighter color and less redness, due to reduced fat content. Approximately 35 volatile compounds were identified in functional fermented sausages, and hexanal, trans-caryophyllene, and tetradecanal were the major volatile compounds. Selected mixed starter culture showed the potential possibility of replacing the commercial starter culture (LK30 plus) in flavor profiles. However, medium-fat fermented sausage containing selected mixed starter culture tended to be less acceptable than their high-fat counterparts, due to excess dry ring developed in the surface. These results indicate that the use of combinations of L. plantarum 115 and 167, and P. damnosus L12 as a starter culture, will prove useful for manufacturing the fermented sausage. PMID:26761176

  15. Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity-PCR.

    PubMed

    Lazzi, C; Rossetti, L; Zago, M; Neviani, E; Giraffa, G

    2004-01-01

    To detect bacteria present in controlled dairy ecosystems with defined composition by length-heterogeneity (LH)-PCR. LH-PCR allows to distinguish different organisms on the basis of natural variations in the length of 16S rRNA gene sequences. LH-PCR was applied to depict population structure of the lactic acid bacteria (LAB) species recoverable from Grana Padano cheese whey starters. Typical bacterial species present in the LAB community were evidenced and well discriminated. Small differences in species composition, e.g. the frequent finding of Streptococcus thermophilus and the constant presence of thermophilic lactobacilli (Lactobacillus helveticus, Lact. delbrueckii subsp. lactis/bulgaricus and Lact. fermentum) were reliably highlighted. Specificity of LH-PCR was confirmed by species-specific PCR from total DNA of the cultures. LH-PCR is a useful tool to monitor microbial composition and population dynamics in dairy starter cultures. When present, non-dominant bacterial species present in the whey starters, such as Strep. thermophilus, can easily be visualized and characterized without isolating and cultivating single strains. A similar approach can be applied to more complex dairy ecosystems such as milk or cheese curd. Community members and differences in population structure of controlled dairy ecosystems such as whey starters for hard cheeses can be evaluated and compared in a relative easy, fast, reliable and highly reproducible way.

  16. Kefir immobilized on corn grains as biocatalyst for lactic acid fermentation and sourdough bread making.

    PubMed

    Plessas, Stavros; Alexopoulos, Athanasios; Bekatorou, Argyro; Bezirtzoglou, Eugenia

    2012-12-01

    The natural mixed culture kefir was immobilized on boiled corn grains to produce an efficient biocatalyst for lactic acid fermentation with direct applications in food production, such as sourdough bread making. The immobilized biocatalyst was initially evaluated for its efficiency for lactic acid production by fermentation of cheese whey at various temperatures. The immobilized cells increased the fermentation rate and enhanced lactic acid production compared to free kefir cells. Maximum lactic acid yield (68.8 g/100 g) and lactic acid productivity (12.6 g/L per day) were obtained during fermentation by immobilized cells at 37 °C. The immobilized biocatalyst was then assessed as culture for sourdough bread making. The produced sourdough breads had satisfactory specific loaf volumes and good sensory characteristics. Specifically, bread made by addition of 60% w/w sourdough containing kefir immobilized on corn was more resistant regarding mould spoilage (appearance during the 11(th) day), probably due to higher lactic acid produced (2.86 g/Kg of bread) compared to the control samples. The sourdough breads made with the immobilized biocatalyst had aroma profiles similar to that of the control samples as shown by headspace SPME GC-MS analysis. © 2012 Institute of Food Technologists®

  17. HCOOH-induced Controlled-release Hydrolysis of Microalgae (Scenedesmus) to Lactic Acid over Sn-Beta Catalyst.

    PubMed

    Zan, Yifan; Sun, Yuanyuan; Kong, Lingzhao; Miao, Gai; Bao, Liwei; Wang, Hao; Li, Shenggang; Sun, Yuhan

    2018-06-12

    Formic acid induced controlled-release hydrolysis of sugar-rich microalgae (Scenedesmus) over the Sn-Beta catalyst was found to be a highly efficient process for producing lactic acid as a platform chemical. One-pot reaction with a very high lactic acid yield of 83.0% was realized in a batch reactor using water as the solvent. Under the attack of formic acid, the cell wall of Scenedesmus was disintegrated, and hydrolysis of the starch inside the cell was strengthened in a controlled-release mode, resulting in a stable and relatively low glucose concentration. Subsequently, the Sn-Beta catalyst was employed for the efficient conversion of glucose into lactic acid with stable catalytic performance through isomerization, retro-aldol and de-/rehydration reactions. Thus, the hydrolysis of polysaccharides and the catalytic conversion of the monosaccharide into lactic acid was realized by the synergy between an organic Brønsted acid and a heterogeneous Lewis acid catalyst. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lactic acid peeling in superficial acne scarring in Indian skin.

    PubMed

    Sachdeva, Silonie

    2010-09-01

    Chemical peeling with both alpha and beta hydroxy acids has been used to improve acne scarring with pigmentation. Lactic acid, a mild alpha hydroxy acid, has been used in the treatment of various dermatological indications but no study is reported in acne scarring with pigmentation. To evaluate the efficacy and safety of full strength pure lactic acid 92% (pH 2.0) chemical peel in superficial acne scarring in Indian skin. Seven patients, Fitzpatrick skin type IV-V, in age group 20-30 years with superficial acne scarring were enrolled in the study. Chemical peeling was done with lactic acid at an interval of 2 weeks to a maximum of four peels. Pre- and post-peel clinical photographs were taken at every session. Patients were followed every month for 3 months after the last peel to evaluate the effects. At the end of 3 months, there was definite improvement in the texture, pigmentation, and appearance of the treated skin, with lightening of scars. Significant improvement (greater than 75% clearance of lesions) occurred in one patient (14.28%), good improvement (51-75% clearance) in three patients (42.84%), moderate improvement (26-50% clearance) in two patients (28.57%), and mild improvement (1-25% clearance) in one patient (14.28%). © 2010 Wiley Periodicals, Inc.

  19. Evaluation of freeze-dried kefir coculture as starter in feta-type cheese production.

    PubMed

    Kourkoutas, Y; Kandylis, P; Panas, P; Dooley, J S G; Nigam, P; Koutinas, A A

    2006-09-01

    The use of freeze-dried kefir coculture as a starter in the production of feta-type cheese was investigated. Maturation of the produced cheese at 4 degrees C was monitored for up to 70 days, and the effects of the starter culture, the salting method, and the ripening process on quality characteristics were studied. The use of kefir coculture as a starter led to increased lactic acid concentrations and decreased pH values in the final product associated with significantly higher conversion rates compared to salted rennet cheese. Determination of bacterial diversity at the end of the ripening process in salted kefir and rennet cheeses by denaturing gradient gel electrophoresis technology, based on both DNA and RNA analyses, suggested a potential species-specific inhibition of members of the genera Staphylococcus and Psychrobacter by kefir coculture. The main active microbial associations in salted kefir cheese appeared to be members of the genera Pseudomonas and Lactococcus, while in salted rennet cheese, Oxalobacteraceae, Janthinobacterium, Psychrobacter, and Pseudomonas species were noted. The effect of the starter culture on the production of aroma-related compounds responsible for cheese flavor was also studied by the solid-phase microextraction-gas chromatography-mass spectrometry technique. Kefir coculture also appeared to extend the shelf life of unsalted cheese. Spoilage of kefir cheese was observed on the 9th and 20th days of preservation at 10 and 5 degrees C, respectively, while spoilage in the corresponding rennet cheese was detected on the 7th and 16th days. Microbial counts during preservation of both types of unsalted cheese increased steadily and reached similar levels, with the exception of staphylococci, which were significantly lower in unsalted kefir cheese. All types of cheese produced with kefir as a starter were approved and accepted by the panel during the preliminary sensory evaluation compared to commercial feta-type cheese.

  20. Conversion of Aqueous Ammonia-Treated Corn Stover to Lactic Acid by Simultaneous Saccharification and Cofermentation

    NASA Astrophysics Data System (ADS)

    Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.

    Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.

  1. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy.

    PubMed

    Fu, Yong-Qian; Yin, Long-Fei; Zhu, Hua-Yue; Jiang, Ru

    2016-10-01

    In this study, lactic acid fermentation by Rhizopus oryzae was investigated using the two different fermentation strategies of one-step fermentation (OSF) and conventional fermentation (CF). Compared to CF, OSF reduced the demurrage of the production process and increased the production of lactic acid. However, the qp was significantly lower than during CF. Based on analysis of μ, qs and qp, a novel modified OSF strategy was proposed. This strategy aimed to achieve a high final concentration of lactic acid, and a high qp by R. oryzae. In this strategy, the maximum lactic acid concentration and productivity of the lactic acid production stage reached 158g/l and 5.45g/(lh), which were 177% and 366% higher, respectively, than the best results from CF. Importantly, the qp and yield did not decrease. This strategy is a convenient and economical method for l-lactic acid fermentation by R. oryzae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Park, Chulhwan; Kim, Seung Wook

    2017-07-01

    In this study, L-lactic acid production was investigated from metabolically engineered strain of E. aerogenes ATCC 29007. The engineered strain E. aerogenes SUMI01 (Δpta) was generated by the deletion of phosphate acetyltransferase (pta) gene from the chromosome of E. aerogenes ATCC 29007 and deletion was confirmed by colony PCR. Under the optimized fermentation conditions, at 37°C and pH 6 for 84h, the L-lactic acid produced by engineered strain E. aerogenes SUMI01 (Δpta) in flask fermentation using 100g/L mannitol as the carbon source was 40.05g/L as compared to that of the wild type counterpart 20.70g/L. At the end of the batch fermentation in bioreactor the production of L-lactic acid reached to 46.02g/L and yield was 0.41g/g by utilizing 112.32g/L mannitol. This is the first report regarding the production of L-lactic acid from Enterobacter species. We believe that this result may provide valuable guidelines for further engineering Enterobacter strain for the improvement of L-lactic acid production. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Dilute sulfuric acid fractionation of Korean food waste for ethanol and lactic acid production by yeast.

    PubMed

    Kim, Yong Seon; Jang, Ji Yeon; Park, Seong Jik; Um, Byung Hwan

    2018-04-01

    Fermentation of food waste biomass can be used to produce biochemicals such as lactic acid and ethanol in a cost-effective manner. Korean food waste (KFW) dewatered by a screw press contains 23.1% glucan on a dry basis and is a potential raw material for the production of ethanol and lactic acid through fermentation. This study was conducted to optimize the dilute acid fractionation conditions for KFW fermentation with respect to the H 2 SO 4 concentration (0-0.8% w/v), temperature (130-190 °C), and residence time (1-128 min) using response surface methodology. Dilute sulfuric acid fractionation was carried out using a 30-mL stainless steel reactor under conditions, and then the dilute acid fractionation was scaled-up in 1-L and 7-L stainless steel reactors under the optimal conditions. The hydrolysate was concentrated, liquid-liquid extracted and neutralized for lactic acid and ethanol production. The highest concentration of glucose obtained from the KFW was 26.4 g/L using fractionation with 0.37% w/v H 2 SO 4 at 156 °C for 123.6 min. Using recombinant Saccharomyces cerevisiae containing a codon-optimized lactate dehydrogenase, the yield of lactic acid and ethanol was 77% of the theoretical yield for 17.4 g/L of fermentable sugar at pH 5.5. Additionally, the yield of ethanol produced by Issatchenkia orientalis was 89% of the theoretical yield for 25 g/L of fermentable sugar at pH 3. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures.

    PubMed

    Elkhtab, Ebrahim; El-Alfy, Mohamed; Shenana, Mohamed; Mohamed, Abdelaty; Yousef, Ahmed E

    2017-12-01

    Compounds with the ability to inhibit angiotensin-converting enzyme (ACE) are used medically to treat human hypertension. The presence of such compounds naturally in food is potentially useful for treating the disease state. The goal of this study was to screen lactic acid bacteria, including species commonly used as dairy starter cultures, for the ability to produce new potent ACE-inhibiting peptides during milk fermentation. Strains of Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus, Lactobacillus paracasei, Lactococcus lactis, Leuconostoc mesenteroides, and Pediococcus acidilactici were tested in this study. Additionally, a symbiotic consortium of yeast and bacteria, used commercially to produce kombucha tea, was tested. Commercially sterile milk was inoculated with lactic acid bacteria strains and kombucha culture and incubated at 37°C for up to 72 h, and the liberation of ACE-inhibiting compounds during fermentation was monitored. Fermented milk was centrifuged and the supernatant (crude extract) was subjected to ultrafiltration using 3- and 10-kDa cut-off filters. Crude and ultrafiltered extracts were tested for ACE-inhibitory activity. The 10-kDa filtrate resulting from L. casei ATCC 7469 and kombucha culture fermentations (72 h) showed the highest ACE-inhibitory activity. Two-step purification of these filtrates was done using HPLC equipped with a reverse-phase column. Analysis of HPLC-purified fractions by liquid chromatography-mass spectrometry/mass spectrometry identified several new peptides with potent ACE-inhibitory activities. Some of these peptides were synthesized, and their ACE-inhibitory activities were confirmed. Use of organisms producing these unique peptides in food fermentations could contribute positively to human health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production.

    PubMed

    Berlowska, Joanna; Cieciura, Weronika; Borowski, Sebastian; Dudkiewicz, Marta; Binczarski, Michal; Witonska, Izabela; Otlewska, Anna; Kregiel, Dorota

    2016-10-17

    Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.

  6. Bioconversion of renewable resources into lactic acid: an industrial view.

    PubMed

    Yadav, A K; Chaudhari, A B; Kothari, R M

    2011-03-01

    Lactic acid, an anaerobic product of glycolysis, can be theoretically produced by synthetic route; however, it is commercially produced by homo-fermentative batch mode of operations. Factors affecting its production and strategies improving it are considered while devising an optimized protocol. Although a hetero-fermentative mode of production exists, it is rarely used for commercial production. Attempts to use Rhizopus sp. for lactic acid production through either hetero-fermentative or thermophilic conditions were not economical. Since almost 70% of the cost of its production is accounted by raw materials, R & D efforts are still focused to find economically attractive agri-products to serve as sources of carbon and complex nitrogen inputs to meet fastidious nutrient needs for microbial growth and lactic acid production. Therefore, need exists for using multi-pronged strategies for higher productivity. Its present production and consumption scenario is examined. Its optically active isomers and chemical structure permit its use for the production of several industrially important chemicals, health products (probiotics), food preservatives, and bio-plastics. In addition, its salts and esters appear to have a variety of applications.

  7. Fundamentals of poly(lactic acid) microstructure, crystallization behavior, and properties

    NASA Astrophysics Data System (ADS)

    Kang, Shuhui

    Poly(lactic acid) is an environmentally-benign biodegradable and sustainable thermoplastic material, which has found broad applications as food packaging films and as non-woven fibers. The crystallization and deformation mechanisms of the polymer are largely determined by the distribution of conformation and configuration. Knowledge of these mechanisms is needed to understand the mechanical and thermal properties on which processing conditions mainly depend. In conjunction with laser light scattering, Raman spectroscopy and normal coordinate analysis are used in this thesis to elucidate these properties. Vibrational spectroscopic theory, Flory's rotational isomeric state (RIS) theory, Gaussian chain statistics and statistical mechanics are used to relate experimental data to molecular chain structure. A refined RIS model is proposed, chain rigidity recalculated and chain statistics discussed. A Raman spectroscopic characterization method for crystalline and amorphous phase orientation has been developed. A shrinkage model is also proposed to interpret the dimensional stability for fibers and uni- or biaxially stretched films. A study of stereocomplexation formed by poly(l-lactic acid) and poly(d-lactic acid) is also presented.

  8. Nuclear Localization of Haa1, Which Is Linked to Its Phosphorylation Status, Mediates Lactic Acid Tolerance in Saccharomyces cerevisiae

    PubMed Central

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Horie, Hitoshi; Kaneko, Yoshinobu

    2014-01-01

    Improvement of the lactic acid resistance of the yeast Saccharomyces cerevisiae is important for the application of the yeast in industrial production of lactic acid from renewable resources. However, we still do not know the precise mechanisms of the lactic acid adaptation response in yeast and, consequently, lack effective approaches for improving its lactic acid tolerance. To enhance our understanding of the adaptation response, we screened for S. cerevisiae genes that confer enhanced lactic acid resistance when present in multiple copies and identified the transcriptional factor Haa1 as conferring resistance to toxic levels of lactic acid when overexpressed. The enhanced tolerance probably results from increased expression of its target genes. When cells that expressed Haa1 only from the endogenous promoter were exposed to lactic acid stress, the main subcellular localization of Haa1 changed from the cytoplasm to the nucleus within 5 min. This nuclear accumulation induced upregulation of the Haa1 target genes YGP1, GPG1, and SPI1, while the degree of Haa1 phosphorylation observed under lactic acid-free conditions decreased. Disruption of the exportin gene MSN5 led to accumulation of Haa1 in the nucleus even when no lactic acid was present. Since Msn5 was reported to interact with Haa1 and preferentially exports phosphorylated cargo proteins, our results suggest that regulation of the subcellular localization of Haa1, together with alteration of its phosphorylation status, mediates the adaptation to lactic acid stress in yeast. PMID:24682296

  9. Inhibitory effect of essential oils against Lactobacillus rhamnosus and starter culture in fermented milk during its shelf-life period

    PubMed Central

    Moritz, Cristiane Mengue Feniman; Rall, Vera Lúcia Mores; Saeki, Margarida Júri; Júnior, Ary Fernandes

    2012-01-01

    The use of essential oils in foods has attracted great interest, due to their antagonistic action against pathogenic microorganisms. However, this action is undesirable for probiotic foods, as products containing Lactobacillus rhamnosus. The aim of the present study was to measure the sensitivity profile of L. rhamnosus and a yogurt starter culture in fermented milk, upon addition of increasing concentrations of cinnamon, clove and mint essential oils. Essential oils were prepared by steam distillation, and chemically characterised by gas chromatography-mass spectrometry (GC-MS) and determination of density. Survival curves were obtained from counts of L. rhamnosus and the starter culture (alone and in combination), upon addition of 0.04% essential oils. In parallel, titratable acidity was monitored over 28 experimental days. Minimum inhibitory concentration values, obtained using the microdilution method in Brain Heart Infusion medium, were 0.025, 0.2 and 0.4% for cinnamon, clove and mint essential oils, respectively. Cinnamon essential oil had the highest antimicrobial activity, especially against the starter culture, interfering with lactic acid production. Although viable cell counts of L. rhamnosus were lower following treatment with all 3 essential oils, relative to controls, these results were not statistically significant; in addition, cell counts remained greater than the minimum count of 108CFU/mL required for a product to be considered a probiotic. Thus, although use of cinnamon essential oil in yogurt makes starter culture fermentation unfeasible, it does not prevent the application of L. rhamnosus to probiotic fermented milk. Furthermore, clove and mint essential oil caused sublethal stress to L. rhamnosus. PMID:24031939

  10. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria.

    PubMed

    Kaškonienė, Vilma; Stankevičius, Mantas; Bimbiraitė-Survilienė, Kristina; Naujokaitytė, Gintarė; Šernienė, Loreta; Mulkytė, Kristina; Malakauskas, Mindaugas; Maruška, Audrius

    2017-02-01

    The scientific interest for the search of natural means of microbial inhibitors has not faded for several years. A search of natural antibiotics, so-called bacteriocins which are produced by lactic acid bacteria (LAB), gains a huge attention of the scientists in the last century, in order to reduce the usage of synthetic food additives. Pure bacteriocins with wide spectra of antibacterial activity are promising among the natural biopreservatives. The usage of bacteriocin(s) producing LAB as starter culture for the fermentation of some food products, in order to increase their shelf-life, when synthetic preservatives are not allowable, is also possible. There are a lot of studies focusing on the isolation of new bacteriocins from traditional fermented food, dairy products and other foods or sometimes even from unusual non-food matrices. Bacteriocins producing bacteria have been isolated from different sources with the different antibacterial activity against food-borne microorganisms. This review covers the classification of bacteriocins, diversity of sources of bacteriocin(s) producing LAB, antibacterial spectra of isolated bacteriocins and analytical methods for the bacteriocin purification and analysis within the last 15 years.

  11. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria.

    PubMed

    Choi, Suk-Ho

    2016-01-01

    Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares' milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10-3.36 % lactose, 1.44-2.33 % ethyl alcohol, 1.08-1.62 % lactic acid and 0.12-0.22 % acetic acid. Lactobacillus (L.) helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares' milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

  12. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    USDA-ARS?s Scientific Manuscript database

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  13. [The microflora of sour dough. IV. Communication: bacterial composition of sourdough starters genus Lactobacillus beijerinck (author's transl)].

    PubMed

    Spicher, G; Schröder, R

    1978-11-28

    The bacterial composition of three so called pure culture sourdough starters of varying origin was investigated. 245 isolates were obtained all belonging to the genus Beijerinck. According to their morphological, physiological and biochemical characteristics they were classified into the subgroups: Thermobacterium (L. acidophilus), Streptobacterium (L. casei, L. plantarum, L. farciminis, L. alimentarius) and Betabacterium (L. brevis, L. brevis var. lindneri, L buchneri, L. fermentum, L. fructi vorans). In the three sourdough starters the identified lactic organisms varied in number and proportion. In starter preparation "A" only the varieties L. fructi vorans and L. fermentum were present. Preparation "B" contained a great variety of microorganisms with L. brevis and L. brevis L. lindneri predominating. In starter "C" L. brevis, L. plantarum and L. alimentarius predominated.

  14. Detoxification of sugarcane-derived hemicellulosic hydrolysate using a lactic acid producing strain.

    PubMed

    Alves de Oliveira, Regiane; Vaz Rossell, Carlos Eduardo; Venus, Joachim; Cândida Rabelo, Sarita; Maciel Filho, Rubens

    2018-07-20

    Furfural and HMF are known for a negative impact in different bioprocesses, including lactic acid fermentation. There are already some methods described to remove these inhibitory compounds from the hydrolysates. However, these methods also reduce the yield of sugars from the hydrolysis and increase the process costs. In this work, the detoxification of sugarcane-derived hemicellulosic hydrolysate was performed by Lactobacillus plantarum during the fermentation time. At the end of the fermentation, a decrease of 98% of furfural and 86% of HMF and was observed, with a final lactic acid titer of 34.5 g/L. The simultaneous fermentation and bio-detoxification simplify the process and reduce operational costs, leading to economic competitiveness of second-generation feedstock for lactic acid production. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. D-lactic acid interferes with the effects of platelet activating factor on bovine neutrophils.

    PubMed

    Alarcón, P; Conejeros, I; Carretta, M D; Concha, C; Jara, E; Tadich, N; Hidalgo, M A; Burgos, R A

    2011-11-15

    D-lactic acidosis occurs in ruminants, such as cattle, with acute ruminal acidosis caused by ingestion of excessive amounts of highly fermentable carbohydrates. Affected animals show clinical signs similar to those of septic shock, as well as acute laminitis and liver abscesses. It has been proposed that the inflammatory response and susceptibility to infection could both be caused by the inhibition of phagocytic mechanisms. To determine the effects of d-lactic acid on bovine neutrophil functions, we pretreated cells with different concentrations of D-lactic acid and measured intracellular pH using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and calcium flux using FLUO-3 AM-loaded neutrophils. Reactive oxygen species (ROS) production was measured using a luminol chemiluminescence assay, and MMP-9/gelatinase-B granule release was measured by zymography. CD11b and CD62L/l-selectin expression, changes in cell shape, superoxide anion production, phagocytosis of Escherichia coli-Texas red bioparticles, and apoptosis were all measured using flow cytometry. Our results demonstrated that D-lactic acid reduced ROS production, CD11b upregulation and MMP-9 release in bovine neutrophils treated with 100 nM platelet-activating factor (PAF). D-lactic acid induced MMP-9 release and, at higher concentrations, upregulated CD11b expression, decrease L-selectin expression, and induces late apoptosis. We concluded that D-lactic acid can interfere with neutrophil functions induced by PAF, leading to reduced innate immune responses during bacterial infections. Moreover, the increase of MMP-9 release and CD11b expression induced by 10mM D-lactic acid could promote an nonspecific neutrophil-dependent inflammatory reaction in cattle with acute ruminal acidosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition.

    PubMed

    Othman, Majdiah; Ariff, Arbakariya B; Wasoh, Helmi; Kapri, Mohd Rizal; Halim, Murni

    2017-11-27

    Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.015 L/h was 6.1 times higher with 1.6 times reduction in lactic acid accumulation compared to batch fermentation. Anion exchange resin, IRA 67 was found to have the highest selectivity towards lactic acid compared to other components studied. Fed-batch fermentation of P. acidilactici coupled with lactic acid removal system using IRA 67 resin showed 55.5 and 9.1 times of improvement in maximum viable cell concentration compared to fermentation without resin for batch and fed-batch mode respectively. The improvement of the P. acidilactici growth in the constant fed-batch fermentation indicated the use of minimal and simple process control equipment is an effective approach for reducing by-product inhibition. Further improvement in the cultivation performance of P. acidilactici in fed-bath fermentation with in situ addition of anion-exchange resin significantly helped to enhance the growth of P. acidilactici by reducing the inhibitory effect of lactic acid and thus increasing probiotic production.

  17. Increased d-lactic Acid intestinal bacteria in patients with chronic fatigue syndrome.

    PubMed

    Sheedy, John R; Wettenhall, Richard E H; Scanlon, Denis; Gooley, Paul R; Lewis, Donald P; McGregor, Neil; Stapleton, David I; Butt, Henry L; DE Meirleir, Kenny L

    2009-01-01

    Patients with chronic fatigue syndrome (CFS) are affected by symptoms of cognitive dysfunction and neurological impairment, the cause of which has yet to be elucidated. However, these symptoms are strikingly similar to those of patients presented with D-lactic acidosis. A significant increase of Gram positive facultative anaerobic faecal microorganisms in 108 CFS patients as compared to 177 control subjects (p<0.01) is presented in this report. The viable count of D-lactic acid producing Enterococcus and Streptococcus spp. in the faecal samples from the CFS group (3.5 x 10(7) cfu/L and 9.8 x 10(7) cfu/L respectively) were significantly higher than those for the control group (5.0 x 10(6) cfu/L and 8.9 x 10(4) cfu/L respectively). Analysis of exometabolic profiles of Enterococcus faecalis and Streptococcus sanguinis, representatives of Enterococcus and Streptococcus spp. respectively, by NMR and HPLC showed that these organisms produced significantly more lactic acid (p<0.01) from (13)C-labeled glucose, than the Gram negative Escherichia coli. Further, both E. faecalis and S. sanguinis secrete more D-lactic acid than E. coli. This study suggests a probable link between intestinal colonization of Gram positive facultative anaerobic D-lactic acid bacteria and symptom expressions in a subgroup of patients with CFS. Given the fact that this might explain not only neurocognitive dysfunction in CFS patients but also mitochondrial dysfunction, these findings may have important clinical implications.

  18. Chirped-Pulse Ftmw Spectroscopy of the Lactic ACID-H_2O System

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Białkowska-Jaworska, Ewa; Zaleski, Daniel P.; Neill, Justin L.; Steber, Amanda L.; Pate, Brooks H.

    2011-06-01

    The previous study of the rotational spectrum of lactic acid in supersonic expansion revealed rather temperamental behaviour of signal intensity suggestive of considerable clusterization. Lactic acid samples contain an appreciable amount of water so that the presence of clusters with water, as well as lactic dimers is suspected. Several, mainly computational, studies of such species have already been published. Investigation of the chirped-pulse rotational spectrum of a heated lactic acid (LA) sample diluted in Ne carrier gas allowed unambiguous assignment of the LA-H_2O, LA-(H_2O)_2, and LA-(H_2O)_3 species. In addition, the rotational spectrum of the AaT conformer of lactic acid has been assigned. This conformer involves an intramolecular hydrogen bond to the hydroxyl of the carboxylic group and it has been estimated to be less stable by ca 10 kJ/mol than the most stable SsC conformer. The evidence for the assignment and a discussion of the derived properties for the new species are presented. L.Pszczółkowski, E.Białkowska-Jaworska, Z.Kisiel, J. Mol. Spectrosc. 234, 106 (2005). J.Sadlej, J.Cz.Dobrowolski, J.E.Rode, M.H.Jamróz, PCCP 8, 101 (2006) M.Losada, H.Tran, Y.Xu, J. Chem. Phys. 128, 014508 (2008) A.Smaga, J.Sadlej, J. Phys. Chem. A 114, 4427 (2010). A.Borba, A.Gomez-Zavaglia, L.Łapinski, R.Fausto, PCCP 6, 2101 (2004).

  19. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass.

    PubMed

    Müller, Gerdt; Kalyani, Dayanand Chandrahas; Horn, Svein Jarle

    2017-03-01

    Enzymatic catalysis plays a key role in the conversion of lignocellulosic biomass to fuels and chemicals such as lactic acid. In the last decade, the efficiency of commercial cellulase cocktails has increased significantly, in part due to the inclusion of lytic polysaccharide monooxygenases (LPMOs). However, the LPMOs' need for molecular oxygen to break down cellulose demands reinvestigations of process conditions. In this study, we evaluate the efficiency of lactic acid production from steam-exploded birch using an LPMO-containing cellulase cocktail in combination with lactic acid bacteria, investigating both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). While the SSF set up generally has been considered to be more efficient because it avoids sugar accumulation which may inhibit the cellulases, the SHF set up in our study yielded 26-32% more lactic acid than the SSF. This was mainly due to competition for oxygen between LPMOs and the fermenting organisms in the SSF process, which resulted in reduced LPMO activity and thus less efficient saccharification of the lignocellulosic substrate. By means of aeration it was possible to activate the LPMOs in the SSF, but less lactic acid was produced due to a shift in metabolic pathways toward production of acetic acid. Overall, this study shows that lactic acid can be produced efficiently from lignocellulosic biomass, but that the use of LPMO-containing cellulase cocktails in fermentation processes demands re-thinking of traditional process set ups due to the requirement of oxygen in the saccharification step. Biotechnol. Bioeng. 2017;114: 552-559. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Study of mixed Ca-Zn hydroxyapatite surface modified by lactic acid

    NASA Astrophysics Data System (ADS)

    Turki, Thouraya; Aissa, Abdallah; Bac, Christophe Goze; Rachdi, Férid; Debbabi, Mongi

    2012-07-01

    The new hybrid inorganic-organic composites, Ca(10-x)Znx(PO4)6(OH)2-lactic acid, at different amounts of zinc and lactic acid were prepared by dissolution of the organic compound in an hydroxyapatite suspension. They were characterized by XRD, IR, MAS NMR (13C and 1H) and chemical analysis. The crystallinity was slightly affected by the presence of organic fragments. IR and (13C and 1H) MAS NMR measurements indicate that the carboxylic groups of the acid interact with calcium and zinc ions of hydroxyapatite surface. Chemical analysis displays that zinc promotes the acid grafting. A mechanism of surface modification is proposed based on the obtained results.

  1. Levels of lactic acid, normal level & its relation to food, glucose, cholesterol, raised blood urea and phenformin therapy.

    PubMed

    Patel, J C; Sawant, M S; Amin, B M

    2000-01-01

    1. The level of lactic acid was found to be 25 mg percent in 95 percent of 186 normal Indians. There was no difference due to sex and age. 2. Level of lactic acid was estimated in blood of normal persons and diabetics Type II patients to observe the effects of food and glucose. There was no change except the level of lactic acid was in higher but in normal range. 3. Hyperglycemia of over 300 mg raised the blood lactic acid in 25 percent of patients. 4. Lactic acid was not affected by hypercholesteremia but was raised in 60 percent of cases with raised blood urea. 5. Lactic acid was found to remain within normal limits in 48 type II diabetics treated with phenformin dose varying from 50 mg to 225 mg per day. The duration of treatment varied from one year to seven years.

  2. Ensilage of oats and wheatgrass under natural alpine climatic conditions by indigenous lactic acid bacteria species isolated from high-cold areas

    PubMed Central

    Zhang, Miao; Wang, Xiaojie; Cui, Meiyan; Wang, Yanping; Jiao, Zhen

    2018-01-01

    Five different species of selected broad-spectrum antibiotic lactic acid bacteria isolated from extremely high–cold areas were used as starters to ferment indigenous forage oats and wheatgrass under rigid alpine climatic conditions. The five isolates were Lactobacillus plantarum QZ227, Enterococcus mundtii QZ251, Pediococcus cellicola QZ311, Leuconostoc mesenteroides QZ1137 and Lactococcus lactis QZ613, and commercial Lactobacillus plantarum FG1 was used as the positive control and sterile water as the negative control. The minimum and maximum temperatures were −22°C and 23°C during the fermentation process, respectively. The pH of wheatgrass silage fermented by the QZ227 and FG1 inocula reached the expected values (≤4.15) although the pathogens detected in the silage should be further investigated. All of the inocula additives used in this study were effective in improving the fermentation quality of oat silage as indicated by the higher content of lactic acid, lower pH values (≤4.17) and significant inhibition of pathogens. QZ227 exhibited a fermentation ability that was comparable with the commercial inoculum FG1 for the whole process, and the deterioration rate was significantly lower than for FG1 after storage for 7 months. The pathogens Escherichia coli, mold and yeast were counted and isolated from the deteriorated silage. E. coli were the main NH3-N producer while F. fungi and yeast produced very little. PMID:29408855

  3. RECOVERY OF LACTIC ACID FROM AMERICAN CRYSTAL SUGAR COMPANY WASTEWATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel J. Stepan; Edwin S. Olson; Richard E. Shockey

    2001-04-30

    This project has shown that the recovery of several valuable lactic acid products is both technically feasible and economically viable. One of the original objectives of this project was to recover lactic acid. However, the presence of a variety of indigenous bacteria in the wastewater stream and technical issues related to recovery and purification have resulted in the production of lactic acid esters. These esters could by hydrolyzed to lactic acid, but only with unacceptable product losses that would be economically prohibitive. The developed process is projected to produce approximately 200,000 lb per day of lactate esters from wastewater atmore » a single factory at costs that compete with conventional solvents. The lactate esters are good solvents for polymers and resins and could replace acetone, methyl ethyl ketone, MIBK, and other polar solvents used in the polymer industry. Because of their low volatility and viscosity-lowering properties, they will be especially useful for inks for jet printers, alkyl resins, and high-solid paints. Owing to their efficiency in dissolving salts and flux as well as oils and sealants, lactate esters can be used in cleaning circuit boards and machine and engine parts. Unlike conventional solvents, lactate esters exhibit low toxicity, are biodegradable, and are not hazardous air pollutants. Another application for lactate esters is in the production of plasticizers. Severe health problems have been attributed to widely used phthalate ester plasticizers. The U.S. Department of Agriculture showed that replacement of these with inexpensive lactate esters is feasible, owing to their superior polymer compatibility properties. A very large market is projected for polymers prepared from lactic acid. These are called polylactides and are a type of polyester. Thermoplastics of this type have a variety of uses, including moldings, fibers, films, and packaging of both manufactured goods and food products. Polylactides form tough

  4. Lactobacilli Inactivate Chlamydia trachomatis through Lactic Acid but Not H2O2

    PubMed Central

    Gong, Zheng; Luna, Yesmin; Yu, Ping; Fan, Huizhou

    2014-01-01

    Lactobacillus species dominate the microbiome in the lower genital tract of most reproductive-age women. Producing lactic acid and H2O2, lactobacilli are believed to play an important role in prevention of colonization by and growth of pathogens. However, to date, there have been no reported studies characterizing how lactobacilli interact with Chlamydia trachomatis, a leading sexually transmitted bacterium. In this report, we demonstrate inactivation of C. trachomatis infectivity by culture media conditioned by Lactobacillus crispatus, L. gasseri and L. jensenii, known to be dominating organisms in the human vaginal microbiome. Lactobacillus still cultures produced lactic acid, leading to time- and concentration-dependent killing of C. trachomatis. Neutralization of the acidic media completely reversed chlamydia killing. Addition of lactic acid into Lactobacillus-unconditioned growth medium recapitulated the chlamydiacidal activity of conditioned media. The H2O2 concentrations in the still cultures were found to be comparable to those reported for the cervicovaginal fluid, but insufficient to inactivate chlamydiae. Aeration of Lactobacillus cultures by shaking markedly induced H2O2 production, but strongly inhibited Lactobacillus growth and lactic acid production, and thus severely affected acidification, leading to significantly reduced chlamydiacidal efficiency. These observations indicate lactobacilli inactivate chlamydiae primarily through maintaining acidity in a relatively hypoxic environment in the vaginal lumen with limited H2O2, which is consistent with the notion that women with higher vaginal pH are more prone to sexually transmitted C. trachomatis infection. In addition to lactic acid, formic acid and acetic acid also exhibited potent chlamydiacidal activities. Taken together, our findings imply that lowering the vaginal pH through engineering of the vaginal microbiome and other means will make women less susceptible to C. trachomatis infection. PMID

  5. Production of L- and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation.

    PubMed

    Nguyen, Cuong Mai; Kim, Jin-Seog; Nguyen, Thanh Ngoc; Kim, Seul Ki; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Kim, Jin-Cheol

    2013-10-01

    Simultaneous saccharification and cofermentation (SSCF) of Curcuma longa waste biomass obtained after turmeric extraction to L- and D-lactic acid by Lactobacillus coryniformis and Lactobacillus paracasei, respectively, was investigated. This is a rich, starchy, agro-industrial waste with potential for use in industrial applications. After optimizing the fermentation of the biomass by adjusting nitrogen sources, enzyme compositions, nitrogen concentrations, and raw material concentrations, the SSCF process was conducted in a 7-l jar fermentor at 140 g dried material/L. The maximum lactic acid concentration, average productivity, reducing sugar conversion and lactic acid yield were 97.13 g/L, 2.7 g/L/h, 95.99% and 69.38 g/100 g dried material for L-lactic acid production, respectively and 91.61 g/L, 2.08 g/L/h, 90.53% and 65.43 g/100 g dried material for D-lactic acid production, respectively. The simple and efficient process described in this study could be utilized by C. longa residue-based lactic acid industries without requiring the alteration of plant equipment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Production of high optical purity l-lactic acid from waste activated sludge by supplementing carbohydrate: effect of temperature and pretreatment time.

    PubMed

    Jian, Qiwei; Li, Xiang; Chen, Yinguang; Liu, Yanan; Pan, Yin

    2016-10-01

    It has been widely accepted that the most environmentally beneficial way to treat waste activated sludge (WAS), the byproduct of municipal wastewater treatment plant, is to recover the valuable organic acid. However, the bio-conversion of lactic acid, one of the high added-value chemical, is seldom reported from WAS fermentation. In this paper, l-lactic acid was observed dominant in the WAS fermentation liquid with carbohydrate addition at ambient temperature. Furthermore, the effect of temperature on l-lactic acid and d-lactic acid production was fully discussed: two isomers were rapidly produced and consumed up in one day at mesophilic condition; and almost optically pure l-lactic acid was generated at thermophilic condition, yet time-consuming with yield of l-lactic acid enhancing by 52.9% compared to that at ambient temperature. The study mechanism showed that mesophilic condition was optimal for both production and consumption of l-lactic acid and d-lactic acid, while consumption of l-lactic acid and production of d-lactic acid were severely inhibited at thermophilic condition. Therefore, by maintaining thermophilic for 4 h in advance and subsequently fermenting mesophilic for 34 h, the concentration of l-lactic acid with optical activity of 98.3% was improved to 16.6 ± 0.5 g COD/L at a high specific efficiency of 0.6097/d.

  7. Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production.

    PubMed

    Melo, Nadiele T M; Mulder, Kelly C L; Nicola, André Moraes; Carvalho, Lucas S; Menino, Gisele S; Mulinari, Eduardo; Parachin, Nádia S

    2018-02-16

    Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris , a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris . To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.

  8. Lactic acid bacteria isolated from soy sauce mash in Thailand.

    PubMed

    Tanasupawat, Somboon; Thongsanit, Jaruwan; Okada, Sanae; Komagata, Kazuo

    2002-08-01

    Fourteen sphere-shaped and 30 rod-shaped lactic acid bacteria were isolated from soy sauce mash of two factories in Thailand. These strains were separated into two groups, Group A and Group B, by cell shape and DNA-DNA similarity. Group A contained 14 tetrad-forming strains, and these strains were identified as Tetragenococcus halophilus by DNA similarity. Group B contained 30 rod-shaped bacteria, and they were further divided into four Subgroups, B1, B2, B3, and B4, and three ungrouped strains by phenotypic characteristics and DNA similarity. Subgroup B1 contained 16 strains, and these strains were identified as Lactobacillus acidipiscis by DNA similarity. Subgroup B2 included two strains, and the strains were identified as Lactobacillus farciminis by DNA similarity. Subgroup B3 contained five strains. The strains had meso-diaminopimelic acid in the cell wall, and were identified as Lactobacillus pentosus by DNA similarity. The strains tested produced DL-lactic acid from D-glucose. Subgroup B4 contained four strains. The strains had meso-diaminopimelic acid in the cell wall, and they were identified as Lactobacillus plantarum by DNA similarity. Two ungrouped strains were homofermentative, and one was heterofermentative. They showed a low degree of DNA similarity with the type strains tested, and were left unnamed. The distribution of lactic acid bacteria in soy sauce mash in Thailand is discussed.

  9. Characterization of starter kimchi fermented with Leuconostoc kimchii GJ2 and its cholesterol-lowering effects in rats fed a high-fat and high-cholesterol diet.

    PubMed

    Jo, Se Yeon; Choi, Eun A; Lee, Jae Joon; Chang, Hae Choon

    2015-10-01

    The hypocholesterolemic effects of lactic acid bacteria and kimchi have been demonstrated previously. However, the kimchi fermentation process still relies on naturally present microorganisms. To obtain functional kimchi with consistent quality, we validated the capacity of Leuconostoc kimchii GJ2 as a starter culture to control kimchi fermentation. Moreover, cholesterol-lowering effects of starter kimchi as a health-promoting product were explored. Bacteriocin production by Lc. kimchii GJ2 was highly enhanced in the presence of 5% Lactobacillus sakei NJ1 cell fractions. When kimchi was fermented with bacteriocin-enhanced Lc. kimchii GJ2, Lc. kimchii GJ2 became overwhelmingly predominant (98.3%) at the end of fermentation and maintained its dominance (up to 82%) for 84 days. Growing as well as dead cells of Lc. kimchii GJ2 showed high cholesterol assimilation (in vitro). Rats were fed a high-fat and high-cholesterol diet supplemented with starter kimchi. The results showed that feeding of starter kimchi significantly reduced serum total cholesterol, triglyceride and low-density lipoprotein cholesterol levels. Additionally, atherogenic index, cardiac risk factor and triglyceride and total cholesterol levels in liver and epididymal adipose tissue decreased significantly in rats fed starter kimchi. Kimchi fermented with Lc. kimchii GJ2 as a starter culture has efficient cholesterol-lowering effects. © 2014 Society of Chemical Industry.

  10. D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue.

    PubMed

    Bai, Zhongzhong; Gao, Zhen; Sun, Junfei; Wu, Bin; He, Bingfang

    2016-05-01

    d-Lactic acid, is an important organic acid produced from agro-industrial wastes by Sporolactobacillus inulinus YBS1-5 was investigated to reduce the raw material cost of fermentation. The YBS1-5 strain could produce d-lactic acid by using cottonseed meal as the sole nitrogen source. For efficient utilization, the cottonseed meal was enzymatically hydrolyzed and simultaneously utilized during d-lactic acid fermentation. Corncob residues are rich in cellulose and can be enzymatically hydrolyzed without pretreatment. The hydrolysate of this lignocellulosic waste could be utilized by strain YBS1-5 as a carbon source for d-lactic acid production. Under optimal conditions, a high d-lactic acid concentration (107.2g/L) was obtained in 7-L fed-batch fermenter, with an average productivity of 1.19g/L/h and a yield of 0.85g/g glucose. The optical purity of d-lactic acid in the broth was 99.2%. This study presented a new approach for low-cost production of d-lactic acid for an industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Impact of Lactic Acid on Cell Proliferation and Free Radical Induced Cell Death in Monolayer Cultures of Neural Precursor Cells

    PubMed Central

    Lampe, Kyle J.; Namba, Rachael M.; Silverman, Tyler R.; Bjugstad, Kimberly B.

    2009-01-01

    Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well-tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cell population of considerable interest as a source of cells for neural tissue regeneration strategies, generate a high amount of reactive oxygen species, and when associated with a degradable biomaterial, may be impacted by released lactic acid. In this work, the effect of lactic acid on a neural cell population containing proliferative neural precursor cells was examined in monolayer culture. Lactic acid was found to scavenge exogenously added free radicals produced in the presence of either hydrogen peroxide or a photoinitiator (I2959) commonly utilized in the preparation of photopolymerizable biomaterials. In addition to its effect on exogenously added free radicals, lactic acid reduced intracellular redox state, increased the proliferation of the cell population, and modified the cell composition. The findings of this study provide insight into the role that lactic acid plays naturally on developing neural cells and are also of interest to biomaterials scientists that are focused on the development of degradable lactic-acid based polymers for cell culture devices. The effect of lactic acid on other cell populations may differ and should be characterized to best understand how cells function in degradable cell culture devices. PMID:19408314

  12. Probiotic potential of noni juice fermented with lactic acid bacteria and bifidobacteria.

    PubMed

    Wang, Chung-Yi; Ng, Chang-Chai; Su, Hsuan; Tzeng, Wen-Sheng; Shyu, Yuan-Tay

    2009-01-01

    The present study assesses the feasibility of noni as a raw substrate for the production of probiotic noni juice by lactic acid bacteria (Lactobacilluscasei and Lactobacillus plantarum) and bifidobacteria (Bifidobacteriumlongum). Changes in pH, acidity, sugar content, cell survival and antioxidant properties during fermentation were monitored. All tested strains grew well on noni juice, reaching nearly 10⁹ colony-forming units/ml after 48 h fermentation. L.casei produced less lactic acid than B.longum and L. plantarum. After 4 weeks of cold storage at 4°C, B.longum and L. plantarum survived under low-pH conditions in fermented noni juice. In contrast, L.casei exhibited no cell viability after 3 weeks. Moreover, noni juice fermented with B.longum had a high antioxidant capacity that did not differ significantly (P <0.05) from that of lactic acid bacteria. Finally, we found that B.longum and L. plantarum are optimal probiotics for fermentation with noni juice.

  13. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    PubMed Central

    Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C.; Latham, Catherine F.; Ramsland, Paul A.; Gugasyan, Raffi; Cone, Richard A.; Tachedjian, Gilda

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs. PMID:26082720

  14. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    USDA-ARS?s Scientific Manuscript database

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  15. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli.

    PubMed

    Wang, Yongze; Tian, Tian; Zhao, Jinfang; Wang, Jinhua; Yan, Tao; Xu, Liyuan; Liu, Zao; Garza, Erin; Iverson, Andrew; Manow, Ryan; Finan, Chris; Zhou, Shengde

    2012-11-01

    Escherichia coli W, a sucrose-positive strain, was engineered for the homofermentative production of D-lactic acid through chromosomal deletion of the competing fermentative pathway genes (adhE, frdABCD, pta, pflB, aldA) and the repressor gene (cscR) of the sucrose operon, and metabolic evolution for improved anaerobic cell growth. The resulting strain, HBUT-D, efficiently fermented 100 g sucrose l(-1) into 85 g D-lactic acid l(-1) in 72-84 h in mineral salts medium with a volumetric productivity of ~1 g l(-1) h(-1), a product yield of 85 % and D-lactic acid optical purity of 98.3 %, and with a minor by-product of 4 g acetate l(-1). HBUT-D thus has great potential for production of D-lactic acid using an inexpensive substrate, such as sugar cane and/or beet molasses, which are primarily composed of sucrose.

  16. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments

    PubMed Central

    Cui, Yanhua; Hu, Tong; Qu, Xiaojun; Zhang, Lanwei; Ding, Zhongqing; Dong, Aijun

    2015-01-01

    Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research. PMID:26068451

  17. Culture-independent analysis of lactic acid bacteria diversity associated with mezcal fermentation.

    PubMed

    Narváez-Zapata, J A; Rojas-Herrera, R A; Rodríguez-Luna, I C; Larralde-Corona, C P

    2010-11-01

    Mezcal is an alcoholic beverage obtained from the distillation of fermented juices of cooked Agave spp. plant stalks (agave must), and each region in Mexico with denomination of origin uses defined Agave species to prepare mezcal with unique organoleptic characteristics. During fermentation to produce mezcal in the state of Tamaulipas, not only alcohol-producing yeasts are involved, but also a lactic acid bacterial community that has not been characterized yet. In order to address this lack of knowledge on this traditional Mexican beverage, we performed a DGGE-16S rRNA analysis of the lactic acid bacterial diversity and metabolite accumulation during the fermentation of a typical agave must that is rustically produced in San Carlos County (Tamaulipas, Mexico). The analysis of metabolite production indicated a short but important malolactic fermentation stage not previously described for mezcal. The denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA genes showed a distinctive lactic acid bacterial community composed mainly of Pediococcus parvulus, Lactobacillus brevis, Lactobacillus composti, Lactobacillus parabuchneri, and Lactobacillus plantarum. Some atypical genera such as Weissella and Bacillus were also found in the residual must. Our results suggest that the lactic acid bacteria could strongly be implicated in the organoleptic attributes of this traditional Mexican distilled beverage.

  18. Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products

    PubMed Central

    Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2017-01-01

    Among lactic acid bacteria of meat products, Lactobacillus sakei is certainly the most studied species due to its role in the fermentation of sausage and its prevalence during cold storage of raw meat products. Consequently, the physiology of this bacterium regarding functions involved in growth, survival, and metabolism during meat storage and processing are well known. This species exhibits a wide genomic diversity that can be observed when studying different strains and on which probably rely its multiple facets in meat products: starter, spoiler, or protective culture. The emerging exploration of the microbial ecology of meat products also revealed the multiplicity of bacterial interactions L. sakei has to face and their various consequences on microbial quality and safety at the end of storage. PMID:28878171

  19. Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy.

    PubMed

    van der Pol, Edwin C; Eggink, Gerrit; Weusthuis, Ruud A

    2016-01-01

    Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of l(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate thermophilic bacterium Bacillus coagulans DSM2314. Saccharification and fermentation were performed simultaneously (SSF), adding acid-pretreated bagasse either in one batch or in two stages. SSF was performed at low enzyme dosages of 10.5-15.8 FPU/g DW bagasse. The first batch SSF resulted in an average productivity of 0.78 g/l/h, which is not sufficient to compete with lactic acid production processes using high-grade sugars. Addition of 1 g/l furfural to precultures can increase B. coagulans resistance towards by-products present in pretreated lignocellulose. Using furfural-containing precultures, productivity increased to 0.92 g/l/h, with a total lactic acid production of 91.7 g in a 1-l reactor containing 20% W/W DW bagasse. To increase sugar concentrations, bagasse was solubilized with a liquid fraction, obtained directly after acid pretreatment. Solubilizing the bagasse fibres with water increased the average productivity to 1.14 g/l/h, with a total lactic acid production of 84.2 g in a 1-l reactor. Addition of bagasse in two stages reduced viscosity during SSF, resulting in an average productivity in the first 23 h of 2.54 g/l/h, similar to productivities obtained in fermentations using high-grade sugars. Due to fast accumulation of lactic acid, enzyme activity was repressed during two-stage SSF, resulting in a decrease in productivity and a slightly lower total lactic acid production of 75.6 g. In this study, it is shown that an adequate production of lactic acid from lignocellulose was successfully accomplished by a two-stage SSF process, which combines acid-pretreated bagasse, B. coagulans precultivated in the presence of furfural as microorganism, and GC220 as enzyme

  20. Lactic acid fermentation of human urine to improve its fertilizing value and reduce odour emissions.

    PubMed

    Andreev, N; Ronteltap, M; Boincean, B; Wernli, M; Zubcov, E; Bagrin, N; Borodin, N; Lens, P N L

    2017-08-01

    During storage of urine, urea is biologically decomposed to ammonia, which can be lost through volatilization and in turn causes significant unpleasant smell. In response, lactic acid fermentation of urine is a cost-effective technique to decrease nitrogen volatilization and reduce odour emissions. Fresh urine (pH = 5.2-5.3 and NH 4 + -N = 1.2-1.3 g L -1 ) was lacto-fermented for 36 days in closed glass jars with a lactic acid bacterial inoculum from sauerkraut juice and compared to untreated, stored urine. In the lacto-fermented urine, the pH was reduced to 3.8-4.7 and the ammonium content by 22-30%, while the pH of the untreated urine rose to 6.1 and its ammonium content increased by 32% due to urea hydrolysis. The concentration of lactic acid bacteria in lacto-fermented urine was 7.3 CFU ml -1 , suggesting that urine is a suitable growth medium for lactic acid bacteria. The odour of the stored urine was subjectively perceived by four people to be twice as strong as that of lacto-fermented samples. Lacto-fermented urine induced increased radish germination compared to stored urine (74-86% versus 2-31%). Adding a lactic acid bacterial inoculum to one week old urine in the storage tanks in a urine-diverting dry toilet reduced the pH from 8.9 to 7.7 after one month, while the ammonium content increased by 35%, probably due to the high initial pH of the urine. Given that the hydrolyzed stale urine has a high buffering capacity, the lactic acid bacterial inoculum should be added to the urine storage tank of a UDDT before urine starts to accumulate there to increase the efficiency of the lactic acid fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.

    PubMed

    Ouyang, Jia; Cai, Cong; Chen, Hai; Jiang, Ting; Zheng, Zhaojuan

    2012-12-01

    Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (<2 g/L) exerted a stimulating effect on the lactic acid production. When prehydrolysate containing total 25.45 g/L monosaccharide was fermented with B. coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

  2. Separation and determination of the enantiomers of lactic acid and 2-hydroxyglutaric acid by chiral derivatization combined with gas chromatography and mass spectrometry.

    PubMed

    Ding, Xuemei; Lin, Shuhai; Weng, Hongbo; Liang, Jianying

    2018-06-01

    Lactic acid and 2-hydroxyglutaric acid are chiral metabolites that have two distinct d- and l-enantiomers with distinct biochemical properties. Perturbations of a single enantiomeric form have been found to be closely related to certain diseases. Therefore, the ability to differentiate the d and l enantiomers is important for these disease studies. Herein, we describe a method for the separation and determination of lactic acid and 2-hydroxyglutaric acid enantiomers by chiral derivatization (with l-menthol and acetyl chloride) combined with gas chromatography and mass spectrometry. The two pairs of above-mentioned enantiomers exhibited linear calibration curves with a correlation coefficient (R 2 ) exceeding 0.99. The measured data were accurate in the acceptable recovery range of 88.17-102.30% with inter- and intraday precisions (relative standard deviations) in the range of 4.23-17.26%. The limits of detection for d-lactic acid, l-lactic acid, d-2-hydroxyglutaric acid, and l-2-hydroxyglutaric acid were 0.13, 0.11, 1.12, and 1.16 μM, respectively. This method was successfully applied to analyze mouse plasma. The d-lactic acid levels in type 2 diabetes mellitus mouse plasma were observed to be significantly higher (P < 0.05, t-test) than those of normal mice, suggesting that d-lactic acid may serve as an indicator for type 2 diabetes mellitus. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Isolation, identification and growth determination of lactic acid-utilizing yeasts from the ruminal fluid of dairy cattle.

    PubMed

    Sirisan, V; Pattarajinda, V; Vichitphan, K; Leesing, R

    2013-08-01

    Ruminal organic acid production, especially lactic acid, can be modified by feeding cattle highly concentrated diets, which have been shown to adversely affect dairy cattle health. Therefore, the use of lactic acid-utilizing organisms is considered to be a potential method for controlling lactic acid levels. This study was conducted to isolate and identify lactic acid-utilizing yeasts from the ruminal fluid of dairy cattle and to determine the specific growth rate and generation time when using lactic acid as a carbon source instead of glucose. Seventeen yeast isolates were examined in this study. Yeasts isolated from dairy cattle that were fed a high cassava pulp diet (HCP) had higher specific growth rates and shorter generation times than yeasts isolated from dairy cattle that were fed a high-concentrate diet (HC) and a mixed diet (M). The three most effective yeasts in terms of specific growth rate and generation time were Pichia kudriavzevii, Candida rugosa and Kodamaea ohmeri, with 99, 100 and 99% nucleotide identities, respectively. These three isolates could be used as potential probiotics in dairy cattle diets. This study demonstrates that yeasts isolated from the ruminal fluid of dairy cattle can utilize lactic acid as a carbon and energy source for growth. The isolated yeasts can be used as probiotic supplements for dairy cattle that are fed highly concentrated diets to reduce ruminal lactic acid production. © 2013 The Society for Applied Microbiology.

  4. Validation of a 2 percent lactic acid antimicrobial rinse for mobile poultry slaughter operations.

    PubMed

    Killinger, Karen M; Kannan, Aditi; Bary, Andy I; Cogger, Craig G

    2010-11-01

    Poultry processing antimicrobial interventions are critical for pathogen control, and organic, mobile operations in Washington seek alternatives to chlorine. Laboratory and field studies (three replications each) evaluated lactic acid efficacy as a chlorine alternative. For the laboratory study, retail-purchased, conventionally processed chicken wings inoculated with Salmonella were randomly assigned to the following treatments: Salmonella inoculation followed by no treatment (10 wings) or by 3-min rinses of water, 50 to 100 ppm of chlorine, or 2% lactic acid (20 wings for each rinse treatment). Wings were sampled for Salmonella enumeration on xylose lysine desoxycholate agar. During pastured poultry processing at mobile slaughter units for each field study replication, 20 chicken carcasses were randomly assigned to each treatment: untreated control or 3-min immersion in lactic acid or chlorine. Whole-carcass rinses were examined for aerobic plate count (APC) on tryptic soy agar and coliforms on violet red bile agar. Untreated controls were also examined for Salmonella. In the laboratory study, lactic acid produced a significant (P < 0.01) Salmonella reduction compared with the inoculated no-rinse, water, and chlorine treatments, which were statistically similar to each other. In the field study, no Salmonella was detected on untreated controls. Lactic acid produced significant >2-log (P < 0.01) reductions in APC and coliforms, whereas chlorine resulted in slight, but significant 0.4-log reductions (P < 0.01) and 0.21-log reductions (P < 0.05) in APC and coliforms compared with untreated controls. Considering laboratory and field studies, lactic acid produced greater reductions in Salmonella, APC, and coliforms, validating its effectiveness as a chlorine alternative in mobile poultry slaughter operations.

  5. Lactic acid alleviates stress: good for female genital tract homeostasis, bad for protection against malignancy.

    PubMed

    Witkin, Steven S

    2018-05-01

    Women are unique from all other mammals in that lactic acid is present at high levels in the vagina during their reproductive years. This dominance may have evolved in response to the unique human lifestyle and a need to optimally protect pregnant women and their fetuses from endogenous and exogenous insults. Lactic acid in the female genital tract inactivates potentially pathogenic bacteria and viruses, maximizes survival of vaginal epithelial cells, and inhibits inflammation that may be damaging to the developing fetus and maintenance of the pregnancy. In an analogous manner, lactic acid production facilitates survival of malignantly transformed cells, inhibits activation of immune cells, and prevents the release of pro-inflammatory mediators in response to tumor-specific antigens. Thus, the same stress-reducing properties of lactic acid that promote lower genital tract health facilitate malignant transformation and progression.

  6. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Vadlani, Praveen V

    2015-06-01

    Lignocellulosic biomass is an attractive alternative resource for producing chemicals and fuels. Xylose is the dominating sugar after hydrolysis of hemicellulose in the biomass, but most microorganisms either cannot ferment xylose or have a hierarchical sugar utilization pattern in which glucose is consumed first. To overcome this barrier, Lactobacillus brevis ATCC 367 was selected to produce lactic acid. This strain possesses a relaxed carbon catabolite repression mechanism that can use glucose and xylose simultaneously; however, lactic acid yield was only 0.52 g g(-1) from a mixture of glucose and xylose, and 5.1 g L(-1) of acetic acid and 8.3 g L(-1) of ethanol were also formed during production of lactic acid. The yield was significantly increased and ethanol production was significantly reduced if L. brevis was co-cultivated with Lactobacillus plantarum ATCC 21028. L. plantarum outcompeted L. brevis in glucose consumption, meaning that L. brevis was focused on converting xylose to lactic acid and the by-product, ethanol, was reduced due to less NADH generated in the fermentation system. Sequential co-fermentation of L. brevis and L. plantarum increased lactic acid yield to 0.80 g g(-1) from poplar hydrolyzate and increased yield to 0.78 g lactic acid per g of biomass from alkali-treated corn stover with minimum by-product formation. Efficient utilization of both cellulose and hemicellulose components of the biomass will improve overall lactic acid production and enable an economical process to produce biodegradable plastics. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Piezoelectric antibacterial fabric comprised of poly(l-lactic acid) yarn

    NASA Astrophysics Data System (ADS)

    Ando, Masamichi; Takeshima, Satoshi; Ishiura, Yutaka; Ando, Kanako; Onishi, Osamu

    2017-10-01

    A lactic acid monomer has an asymmetric carbon in the molecule, so there are optical isomer l- and d-type. The most widely used poly(lactic acid) (PLA) for commercial applications is poly(l-lactic acid) (PLLA). PLLA is the polymerization product of l-lactide. Certain treatments of PLLA can yield a film that exhibits shear piezoelectricity. Thus, piezoelectric PLLA fiber can be generated by micro slitting piezoelectric PLLA films or by a melt spinning method. We prepared left-handed helical multi fiber yarn (S-yarn) and right-handed helical yarn (Z-yarn) using piezoelectric PLLA fiber. PLLA exhibited shear mode piezoelectricity, causing the electric polarity of the yarn surface to be reversed on the S-yarn and Z-yarn when tension was applied. An SZ-yarn was produced by combining the S-yarn and Z-yarn, and fabric was prepared using the SZ-yarn. This study demonstrated that the fabric has a strong antibacterial effect, which is thought to be due to the strong electric field between the yarns. The field is generated by a piezoelectric effect when the fabric was extended and contracted.

  8. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    PubMed

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  9. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.

    PubMed

    de Lima, Pollyne Borborema Almeida; Mulder, Kelly Cristina Leite; Melo, Nadiele Tamires Moreira; Carvalho, Lucas Silva; Menino, Gisele Soares; Mulinari, Eduardo; de Castro, Virgilio H; Dos Reis, Thaila F; Goldman, Gustavo Henrique; Magalhães, Beatriz Simas; Parachin, Nádia Skorupa

    2016-09-15

    Crude glycerol is the main byproduct of the biodiesel industry. Although it can have different applications, its purification is costly. Therefore, in this study a biotechnological route has been proposed for further utilization of crude glycerol in the fermentative production of lactic acid. This acid is largely utilized in food, pharmaceutical, textile, and chemical industries, making it the hydroxycarboxylic acid with the highest market potential worldwide. Currently, industrial production of lactic acid is done mainly using sugar as the substrate. Thus here, for the first time, Pichia pastoris has been engineered for heterologous L-lactic acid production using glycerol as a single carbon source. For that, the Bos taurus lactate dehydrogenase gene was introduced into P. pastoris. Moreover, a heterologous and a novel homologous lactate transporter have been evaluated for L-lactic acid production. Batch fermentation of the P. pastoris X-33 strain producing LDHb allowed for lactic acid production in this yeast. Although P. pastoris is known for its respiratory metabolism, batch fermentations were performed with different oxygenation levels, indicating that lower oxygen availability increased lactic acid production by 20 %, pushing the yeast towards a fermentative metabolism. Furthermore, a newly putative lactate transporter from P. pastoris named PAS has been identified by search similarity with the lactate transporter from Saccharomyces cerevisiae Jen1p. Both heterologous and homologous transporters, Jen1p and PAS, were evaluated in one strain already containing LDH activity. Fed-batch experiments of P. pastoris strains carrying the lactate transporter were performed with the batch phase at aerobic conditions followed by an aerobic oxygen-limited phase where production of lactic acid was favored. The results showed that the strain containing PAS presented the highest lactic acid titer, reaching a yield of approximately 0.7 g/g. We showed that P. pastoris has a

  10. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University; Kim, Young-Il

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increasedmore » adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.« less

  11. Flavour profiles of dry sausages fermented by selected novel meat starter cultures.

    PubMed

    Erkkilä, S; Petäjä, E; Eerola, S; Lilleberg, L; Mattila-Sandholm, T; Suihko, M L

    2001-06-01

    Probiotic or bioprotective Lactobacillus rhamnosus strains GG, LC-705 and E-97800 as well as Pediococcus pentosaceus E-90390 and Lactobacillus plantarum E-98098 were studied for their ability to act as main fermenting organisms in the manufacturing process of dry sausages. In the preliminary tests, their abilities to produce lactic acid and biogenic amines, histamine or tyramine, were studied in MRS broth and analysed by high-performance liquid chromatography. The strains produced higher or equal amounts of lactic acid compared to control and were amine negative. During the actual fermentation process of dry sausages the numbers of inoculated bacteria increased from the level 6.5-7.0 log cfu/g to 8.0-9.0 log cfu/g. The most fast growing strains were P. pentosaceus E-90390 and the control while the growth of L. plantarum E-98098 and L. rhamnosus LC-705 were the slowest. The pH value of the sausages decreased from 5.6 to 4.9-5.0. The presence of these experimental strains as major organisms in the sausages after fermentation and ripening was confirmed on the bases of their genetic fingerprints. The flavour profiles of the experimental sausages produced by these probiotic or protective strains were similar with that produced by the commercial meat starter culture and commercial North European dry sausage recipe.

  12. Indigenous Starter Cultures to Improve Quality of Artisanal Dry Fermented Sausages from Chaco (Argentina).

    PubMed

    Palavecino Prpich, Noelia Z; Castro, Marcela P; Cayré, María E; Garro, Oscar A; Vignolo, Graciela M

    2015-01-01

    Lactic acid bacteria (LAB) and coagulase negative cocci (CNC) were isolated from artisanal dry sausages sampled from the northeastern region of Chaco, Argentina. In order to evaluate their performance in situ and considering technological features of the isolated strains, two mixed selected autochthonous starter cultures (SAS) were designed: (i) SAS-1 (Lactobacillus sakei 487 + Staphylococcus vitulinus C2) and (ii) SAS-2 (L. sakei 442 + S. xylosus C8). Cultures were introduced into dry sausage manufacturing process at a local small-scale facility. Microbiological and physicochemical parameters were monitored throughout fermentation and ripening periods, while sensory attributes of the final products were evaluated by a trained panel. Lactic acid bacteria revealed their ability to colonize and adapt properly to the meat matrix, inhibiting the growth of spontaneous microflora and enhancing safety and hygienic profile of the products. Both SAS showed a beneficial effect on lipid oxidation and texture of the final products. Staphylococcus vitulinus C2, from SAS-1, promoted a better redness of the final product. Sensory profile revealed that SAS addition preserved typical sensory attributes. Introduction of these cultures could provide an additional tool to standardize manufacturing processes aiming to enhance safety and quality while keeping typical sensory attributes of regional dry fermented sausages.

  13. IN VITRO INTERACTIONS BETWEEN LACTIC ACID SOLUTION AND ART GLASS-IONOMER CEMENTS

    PubMed Central

    Wang, Linda; Cefaly, Daniela Francisca Gigo; dos Santos, Janaína Lima; dos Santos, Jean Rodrigo; Lauris, José Roberto Pereira; Mondelli, Rafael Francisco Lia; Atta, Maria Teresa

    2009-01-01

    Objectives: Production of acids such as lactic acid contributes to establish a cariogenic environment that leads to dental substrate demineralization. Fluoride plays an important role in this case and, as fluoride-releasing materials, glass-ionomer cements are expected to contribute to minimize deleterious reactions. This study evaluated interactions of glass-ionomer cements used in atraumatic restorative treatment (ART-GICs) with an aqueous lactic acid solution, testing the null hypotheses that no changes occur in the pH of the solution or on the surface roughness and mass of the ART-GICs when exposed to lactic acid solution over a 6-week period. Material and Methods: Ketac Molar, Fuji IX, Vitro Molar and Magic Glass were tested, and compared to Filtek Z250 and Ketac Fil Plus as control groups. Six specimens of each material were made according to manufacturers' instructions. The pH of the solution and roughness and mass changes of each specimen were determined over 6 weeks. Each specimen was individually stored in 2 mL of 0.02 M lactic acid solution for 1 week, renewing the solution every week. pH of solution and mass of the specimens were monitored weekly, and surface roughness of the specimens was assessed before and at the end of the 6-week acid challenge. pH and mass data were analyzed statistically by repeated measures using one-way ANOVA and Tukey's post-hoc tests for each material. Paired t-tests were used for roughness analysis. Tukey's post-hoc tests were applied to verify differences of final roughness among the materials. Significance level was set at 5%. Results: The null hypotheses were partially rejected. All materials were able to increase the pH of the lactic acid solution and presented rougher surfaces after immersion, while mass change was minimal and generally not statistically significant. Conclusions: These findings can be helpful to predict the performance of these materials under clinical conditions. A protective action against the carious

  14. Release of Polyphenols Is the Major Factor Influencing the Bioconversion of Rice Straw to Lactic Acid.

    PubMed

    Chen, Xingxuan; Xue, Yiyun; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2017-11-01

    In this study, we found that p-coumaric acid (p-CA), ferulic acid (FA), and condensed tannins were released from rice straw during saccharification. The presence of polyphenols prolonged the lag phase and lowered the productivity of lactic acid. p-CA was identified as a key inhibitor. Tannins had a lower inhibitory effect than p-CA; FA had little inhibitory effect. Acid, alkaline, and ball milling pretreatments elicited different levels of polyphenol release from rice straw. Due to the different levels of polyphenol release in the pretreatment step, the enzymatic hydrolysates contained different concentrations of polyphenols. Compared with fermentation with a synthetic medium, fermentation with the hydrolysates of ball-milled rice straw provided much lower productivity and yield of lactic acid due to the presence of polyphenols. Removal of these compounds played an important role in lactic acid fermentation. When rice straw was alkaline pretreated, the hydrolysates contained few phenolic compounds, resulting in high productivity and yield of lactic acid (1.8 g/L/h and 26.7 g/100 g straw), which were comparable to those in a synthetic medium. This indicates that there is a correlation between removal of phenolic compounds and efficiency in lactic acid fermentation.

  15. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    PubMed

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L

  16. Characterization of Lactic Acid Bacteria (LAB) isolated from Indonesian shrimp paste (terasi)

    NASA Astrophysics Data System (ADS)

    Amalia, U.; Sumardianto; Agustini, T. W.

    2018-02-01

    Shrimp paste was one of fermented products, popular as a taste enhancer in many dishes. The processing of shrimp paste was natural fermentation, depends on shrimp it self and the presence of salt. The salt inhibits the growth of undesirable microorganism and allows the salt-tolerant lactic acid bacteria (LAB) to ferment the protein source to lactic acids. The objectives of this study were to characterize LAB isolated from Indonesian shrimp paste or "Terasi" with different times of fermentation (30, 60 and 90 days). Vitech analysis showed that there were four strains of the microorganism referred to as lactic acid bacteria (named: LABS1, LABS2, LABS3 and LABS4) with 95% sequence similarity. On the basis of biochemical, four isolates represented Lactobacillus, which the name Lactobacillus plantarum is proposed. L.plantarum was play role in resulting secondary metabolites, which gave umami flavor in shrimp paste.

  17. Glucokinase contributes to glucose phosphorylation in D-lactic acid production by Sporolactobacillus inulinus Y2-8.

    PubMed

    Zheng, Lu; Bai, Zhongzhong; Xu, Tingting; He, Bingfang

    2012-11-01

    Sporolactobacillus inulinus, a homofermentative lactic acid bacterium, is a species capable of efficient industrial D-lactic acid production from glucose. Glucose phosphorylation is the key step of glucose metabolism, and fine-tuned expression of which can improve D-lactic acid production. During growth on high-concentration glucose, a fast induction of high glucokinase (GLK) activity was observed, and paralleled the patterns of glucose consumption and D-lactic acid accumulation, while phosphoenolpyruvate phosphotransferase system (PTS) activity was completely repressed. The transmembrane proton gradient of 1.3-1.5 units was expected to generate a large proton motive force to the uptake of glucose. This suggests that the GLK pathway is the major route for glucose utilization, with the uptake of glucose through PTS-independent transport systems and phosphorylation of glucose by GLK in S. inulinus D-lactic acid production. The gene encoding GLK was cloned from S. inulinus and expressed in Escherichia coli. The amino acid sequence revealed significant similarity to GLK sequences from Bacillaceae. The recombinant GLK was purified and shown to be a homodimer with a subunit molecular mass of 34.5 kDa. Strikingly, it demonstrated an unusual broad substrate specificity, catalyzing phosphorylation of 2-deoxyglucose, mannitol, maltose, galactose and glucosamine, in addition to glucose. This report documented the key step concerning glucose phosphorylation of S. inulinus, which will help to understand the regulation of glucose metabolism and D-lactic acid production.

  18. A novel production process for optically pure L-lactic acid from kitchen refuse using a bacterial consortium at high temperatures.

    PubMed

    Tashiro, Yukihiro; Matsumoto, Hiroko; Miyamoto, Hirokuni; Okugawa, Yuki; Pramod, Poudel; Miyamoto, Hisashi; Sakai, Kenji

    2013-10-01

    We investigated L-lactic acid production in static batch fermentation of kitchen refuse using a bacterial consortium from marine-animal-resource (MAR) composts at temperatures ranging from 30 to 65 °C. At relatively low temperatures butyric acid accumulated, whereas at higher temperatures L-lactic acid was produced. In particular, fermentation at 50 °C produced 34.5 g L(-1) L-lactic acid with 90% lactic acid selectivity and 100% optical purity. Denaturing gradient gel electrophoresis indicated that dominant bacteria present in the original MAR composts diminished rapidly and Bacillus coagulans strains became the dominant contributors to L-lactic acid production at 45, 50 and 55 °C. This is the first report of the achievement of 100% optical purity of L-lactic acid using a bacterial consortium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Survival and Growth of Probiotic Lactic Acid Bacteria in Refrigerated Pickle Products.

    PubMed

    Fan, Sicun; Breidt, Fred; Price, Robert; Pérez-Díaz, Ilenys

    2017-01-01

    We examined 10 lactic acid bacteria that have been previously characterized for commercial use as probiotic cultures, mostly for dairy products, including 1 Pediococcus and 9 Lactobacilli. Our objectives were to develop a rapid procedure for determining the long-term survivability of these cultures in acidified vegetable products and to identify suitable cultures for probiotic brined vegetable products. We therefore developed assays to measure acid resistance of these cultures to lactic and acetic acids, which are present in pickled vegetable products. We used relatively high acid concentrations (compared to commercial products) of 360 mM lactic acid and 420 mM acetic acid to determine acid resistance with a 1 h treatment. Growth rates were measured in a cucumber juice medium at pH 5.3, 4.2, and 3.8, at 30 °C and 0% to 2% NaCl. Significant differences in acid resistance and growth rates were found among the 10 cultures. In general, the acid resistant strains had slower growth rates than the acid sensitive strains. Based on the acid resistance data, selected cultures were tested for long-term survival in a simulated acidified refrigerated cucumber product. We found that one of the most acid resistant strains (Lactobacillus casei) could survive for up to 63 d at 4 °C without significant loss of viability at 10 8 CFU/mL. These data may aid in the development of commercial probiotic refrigerated pickle products. © 2016 Institute of Food Technologists®.

  20. Acid and bile tolerance of spore-forming lactic acid bacteria.

    PubMed

    Hyronimus, B; Le Marrec, C; Sassi, A H; Deschamps, A

    2000-11-01

    Criteria for screening probiotics such as bile tolerance and resistance to acids were studied with 13 spore-forming lactic acid producing bacteria. Different strains of Sporolactobacillus, Bacillus laevolacticus, Bacillus racemilacticus and Bacillus coagulans grown in MRS broth were subjected to low pH conditions (2, 2.5 and 3) and increasing bile concentrations. Among these microorganisms, Bacillus laevolacticus DSM 6475 and all Sporolactobacillus strains tested except Sporolactobacillus racemicus IAM 12395, were resistant to pH 3. Only Bacillus racemilacticus and Bacillus coagulans strains were tolerant to bile concentrations over 0.3% (w/v).

  1. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes.

    PubMed

    Dellacasa, Elena; Zhao, Li; Yang, Gesheng; Pastorino, Laura; Sukhorukov, Gleb B

    2016-01-01

    The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA) n stereocomplex and the cores with and without the polymeric (PSS/PAH) n /PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.

  2. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    NASA Astrophysics Data System (ADS)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  3. Physico-chemical characteristics and free fatty acid composition of dry fermented mutton sausages as affected by the use of various combinations of starter cultures and spices.

    PubMed

    Zhao, Lihua; Jin, Ye; Ma, Changwei; Song, Huanlu; Li, Hui; Wang, Zhenyu; Xiao, Shan

    2011-08-01

    The microbiological, physico-chemical and free fatty acid composition of dry fermented mutton sausages were determined during ripening and storage. Three sausage mixtures (starter culture [SC], SC and black pepper [SC+BP] and SC, BP and cumin [SC+BP+C]) were compared with a control (CO). In general, the lactic acid bacteria populations in the SC+BP increased significantly to 9 log CFU/g and were higher than the CO (8 log CFU/g) (P<0.05) from fermentation to ripening. The pH values of the SC, SC+BP and SC+BP+C were 4.81, 4.55 and 4.53 respectively, significantly lower (P<0.05) than the CO at the end of fermentation. The water activity (a(w)) in all sausages decreased significantly to 0.88 at Day 7. The total free fatty acid (TFFA) in the treatments increased significantly (P<0.05) during ripening and storage. The levels of MUFA+PUFA/SFA in SC+BP and SC+BP+C at Day 7 were 2.44 and 2.31 respectively, higher than the control (1.65) (P>0.05). Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch.

    PubMed

    Unban, Kridsada; Kanpiengjai, Apinun; Takata, Goro; Uechi, Keiko; Lee, Wen-Chien; Khanongnuch, Chartchai

    2017-09-01

    An amylolytic lactic acid bacterium isolate K-1 was isolated from the wastewater of a cassava starch manufacturing factory and identified as Entercoccus faecium based on 16S rRNA gene sequence analysis. An extracellular α-amylase was purified to homogeneity and the molecular weight of the purified enzyme was approximately 112 kDa with optimal pH value and temperature measured of 7.0 and 40 °C, respectively. It was stable at a pH range of 6.0-7.0, but was markedly sensitive to high temperatures and low pH conditions, even at a pH value of 5. Ba 2+ , Al 3+ , and Co 2+ activated enzyme activity. This bacterium was capable of producing 99.2% high optically pure L-lactic acid of 4.3 and 8.2 g/L under uncontrolled and controlled pH at 6.5 conditions, respectively, in the MRS broth containing 10 g/L cassava starch as the sole carbon source when cultivated at 37 °C for 48 h. A control pH condition of 6.5 improved and stabilized the yield of L-lactic acid production directly from starch even at a high concentration of starch at up to 150 g/L. This paper is the first report describing the properties of purified α-amylase from E. faecium. Additionally, pullulanase and cyclodextrinase activities were also firstly recorded from E. faecium K-1.

  5. Lactic acid bacteria population dynamics during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine.

    PubMed

    Pardali, Eleni; Paramithiotis, Spiros; Papadelli, Marina; Mataragas, Marios; Drosinos, Eleftherios H

    2017-06-01

    The aim of the present study was to assess the microecosystem development and the dynamics of the lactic acid bacteria population during spontaneous fermentation of radish (Raphanus sativus L.) roots in brine at 20 and 30 °C. In both temperatures, lactic acid bacteria prevailed the fermentation; as a result, the pH value was reduced to ca. 3.6 and total titrable acidity increased to ca. 0.4% lactic acid. Enterococci population increased and formed a secondary microbiota while pseudomonads, Enterobacteriaceae and yeasts/molds populations were below enumeration limit already before the middle of fermentation. Pediococcus pentosaceus dominated during the first days, followed by Lactobacillus plantarum that prevailed the fermentation until the end. Lactobacillus brevis was also detected during the final days of fermentation. A succession at sub-species level was revealed by the combination of RAPD-PCR and rep-PCR analyses. Glucose and fructose were the main carbohydrates detected in brine and were metabolized into lactic acid, acetic acid and ethanol.

  6. Biotechnological conversion of spent coffee grounds into lactic acid.

    PubMed

    Hudeckova, H; Neureiter, M; Obruca, S; Frühauf, S; Marova, I

    2018-04-01

    This work investigates the potential bioconversion of spent coffee grounds (SCG) into lactic acid (LA). SCG were hydrolysed by a combination of dilute acid treatment and subsequent application of cellulase. The SCG hydrolysate contained a considerable amount of reducing sugars (9·02 ± 0·03 g l -1 , glucose; 26·49 ± 0·10 g l -1 galactose and 2·81 ± 0·07 g l -1 arabinose) and it was used as a substrate for culturing several lactic acid bacteria (LAB) and LA-producing Bacillus coagulans. Among the screened micro-organisms, Lactobacillus rhamnosus CCM 1825 was identified as the most promising producer of LA on a SCG hydrolysate. Despite the inhibitory effect exerted by furfural and phenolic compounds in the medium, reasonably high LA concentrations (25·69 ± 1·45 g l -1 ) and yields (98%) were gained. Therefore, it could be demonstrated that SCG is a promising raw material for the production of LA and could serve as a feedstock for the sustainable large-scale production of LA. Spent coffee grounds (SCG) represent solid waste generated in millions of tonnes by coffee-processing industries. Their disposal represents a serious environmental problem; however, SCG could be valorized within a biorefinery concept yielding various valuable products. Herein, we suggest that SCG can be used as a complex carbon source for the lactic acid production. © 2018 The Society for Applied Microbiology.

  7. Effect of different fermentation parameters on L-lactic acid production from liquid distillery stillage.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Rakin, Marica B; Nikolić, Svetlana B; Pejin, Jelena D; Bulatović, Maja L

    2012-09-15

    Expansion of lactic acid applications, predominantly for the preparation of biodegradable polymers increased the research interest for new, economically favourable production processes. Liquid stillage from bioethanol production can be an inexpensive, valuable source of nutrients for growth of lactic acid bacteria. Utilisation of residual biomass with spent fermentation media as a functional animal feed can greatly influence the process value and its ecological aspect. In this paper, the kinetics of lactic acid and biomass production on liquid stillage by Lactobacillus rhamnosus ATCC 7469 was studied. In addition, the impact of temperature, inoculum concentration, shaking and pH control by addition of CaCO(3) was evaluated. Maximal lactic acid yield of 73.4%, as well as high biomass production (3×10(8) CFU ml(-1)) were achieved under selected conditions (41°C, 5% (v/v) of inoculum, 1% (w/v) of CaCO(3), initial pH of 6.5 and shaking rate of 90 rpm). These results were achieved without supplementation of the stillage with nitrogen or mineral sources. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Evaluation of factors influencing the enantioselective enzymatic esterification of lactic acid in ionic liquid.

    PubMed

    Findrik, Zvjezdana; Németh, Gergely; Gubicza, László; Bélafi-Bakó, Katalin; Vasić-Rački, Durđa

    2012-05-01

    In this paper esterification of ethanol and lactic acid catalyzed by Candida antarctica B (Novozyme 435) in ionic liquid (Cyphos 104) was studied. The influence of different variables on lipase enantioselectivity and lactic acid conversion was investigated. The variables investigated were ionic liquid mass/lipase mass ratio, water content, alcohol excess and temperature. Using the Design Expert software 2(3) factorial experimental plan (two levels, three factors) was performed to ascertain the effect of selected variables and their interactions on the ethyl lactate enantiomeric excess and lactic acid conversion. The results of the experiments and statistical processing suggest that temperature and alcohol excess have the highest effect on the ethyl lactate enantiomeric excess, while temperature and water content have the highest influence on the lactic acid conversion. The statistical mathematical model developed on the basis of the experimental data showed that the highest enantiomeric excess achieved in the investigated variable range is 34.3%, and the highest conversion is 63.8% at the initial conditions of water content at 8%; 11-fold molar excess of alcohol and temperature at 30 °C.

  9. Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid.

    PubMed

    Kunasundari, Balakrishnan; Arai, Takamitsu; Sudesh, Kumar; Hashim, Rokiah; Sulaiman, Othman; Stalin, Natra Joseph; Kosugi, Akihiko

    2017-09-01

    The availability of fermentable sugars in high concentrations in the sap of felled oil palm trunks and the thermophilic nature of the recently isolated Bacillus coagulans strain 191 were exploited for lactic acid production under non-sterile conditions. Screening indicated that strain 191 was active toward most sugars including sucrose, which is a major component of sap. Strain 191 catalyzed a moderate conversion of sap sugars to lactic acid (53%) with a productivity of 1.56 g/L/h. Pretreatment of oil palm sap (OPS) using alkaline precipitation improved the sugar fermentability, providing a lactic acid yield of 92% and productivity of 2.64 g/L/h. To better characterize potential inhibitors in the sap, phenolic, organic, and mineral compounds were analyzed using non-treated sap and saps treated with activated charcoal and alkaline precipitation. Phthalic acid, 3,4-dimethoxybenzoic acid, aconitic acid, syringic acid, and ferulic acid were reduced in the sap after treatment. High concentrations of Mg, P, K, and Ca were also precipitated by the alkaline treatment. These results suggest that elimination of excess phenolic and mineral compounds in OPS can improve the fermentation yield. OPS, a non-food resource that is readily available in bulk quantities from plantation sites, is a promising source for lactic acid production.

  10. Linking wine lactic acid bacteria diversity with wine aroma and flavour.

    PubMed

    Cappello, Maria Stella; Zapparoli, Giacomo; Logrieco, Antonio; Bartowsky, Eveline J

    2017-02-21

    In the last two decades knowledge on lactic acid bacteria (LAB) associated with wine has increased considerably. Investigations on genetic and biochemistry of species involved in malolactic fermentation, such as Oenococcus oeni and of Lactobacillus have enabled a better understand of their role in aroma modification and microbial stability of wine. In particular, the use of molecular techniques has provided evidence on the high diversity at species and strain level, thus improving the knowledge on wine LAB taxonomy and ecology. These tools demonstrated to also be useful to detect strains with potential desirable or undesirable traits for winemaking purposes. At the same time, advances on the enzymatic properties of wine LAB responsible for the development of wine aroma molecules have been undertaken. Interestingly, it has highlighted the high intraspecific variability of enzymatic activities such as glucosidase, esterase, proteases and those related to citrate metabolism within the wine LAB species. This genetic and biochemistry diversity that characterizes wine LAB populations can generate a wide spectrum of wine sensory outcomes. This review examines some of these interesting aspects as a way to elucidate the link between LAB diversity with wine aroma and flavour. In particular, the correlation between inter- and intra-species diversity and bacterial metabolic traits that affect the organoleptic properties of wines is highlighted with emphasis on the importance of enzymatic potential of bacteria for the selection of starter cultures to control MLF and to enhance wine aroma. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Physicochemical Properties and Applications of Poly(lactic-co-glycolic acid) for Use in Bone Regeneration

    PubMed Central

    Félix Lanao, Rosa P.; Jonker, Anika M.; Wolke, Joop G.C.; Jansen, John A.; van Hest, Jan C.M.

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most often used synthetic polymer within the field of bone regeneration owing to its biocompatibility and biodegradability. As a consequence, a large number of medical devices comprising PLGA have been approved for clinical use in humans by the American Food and Drug Administration. As compared with the homopolymers of lactic acid poly(lactic acid) and poly(glycolic acid), the co-polymer PLGA is much more versatile with regard to the control over degradation rate. As a material for bone regeneration, the use of PLGA has been extensively studied for application and is included as either scaffolds, coatings, fibers, or micro- and nanospheres to meet various clinical requirements. PMID:23350707

  12. D-lactic acid production from cellooligosaccharides and beta-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Zhang, Qiao; Yoshida, Shogo; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2010-01-01

    In order to achieve direct fermentation of an optically pure D: -lactic acid from cellulosic materials, an endoglucanase from a Clostridium thermocellum (CelA)-secreting plasmid was introduced into an L: -lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum (ldhL1) bacterial strain. CelA expression and its degradation of beta-glucan was confirmed by western blot analysis and enzyme assay, respectively. Although the CelA-secreting ldhL1 assimilated cellooligosaccharides up to cellohexaose (although not cellotetraose), the main end product was acetic acid, not lactic acid, due to the conversion of lactic acid to acetic acid. Cultivation under anaerobic conditions partially suppressed this conversion resulting in the production of 1.27 g/l of D: -lactic acid with a high optical purity of 99.5% from a medium containing 2 g/l of cellohexaose. Subsequently, D: -lactic acid fermentation from barley beta-glucan was carried out with the addition of Aspergillus aculeatus beta-glucosidase produced by recombinant Aspergillus oryzae and 1.47 g/l of D: -lactic was produced with a high optical purity of 99.7%. This is the first report of direct lactic acid fermentation from beta-glucan and a cellooligosaccharide that is a more highly polymerized sugar than cellotriose.

  13. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions.

    PubMed

    Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner

    2015-04-01

    Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3-l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L -1 optically pure (98%) L-lactic acid in 20 h from 50 g L -1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus . The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient.

    PubMed

    Ma, Kedong; Maeda, Toshinari; You, Huiyan; Shirai, Yoshihito

    2014-01-01

    The development of a low-cost polymer-grade L-lactic acid production process was achieved in this study. Excess sludge hydrolyzate (ESH) was chosen as nutrient source for the objective of reducing nutrient cost in lactic acid production. 1% of ESH had high performance in lactic acid production relative to 2g/l yeast extract (YE) while the production cost of ESH was much lower than that of YE, indicating ESH was a promising substitute of YE. By employing a thermophilic strain of Bacillus coagulans (NBRC 12583), non-sterilized batch and repeated batch L-lactic acid fermentation was successfully performed, and the optical purity of L-lactic acid accumulated was more than 99%. Moreover, the factors associated with cell growth and lactic acid fermentation was investigated through a two-stage lactic acid production strategy. Oxygen played an important role in cell growth, and the optimal condition for cell growth and fermentation was pH 7.0 and 50°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    PubMed

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  16. 21 CFR 862.1450 - Lactic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lactic acid test system. 862.1450 Section 862.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  17. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Jokić, Bojan M; Nikolić, Svetlana B; Pejin, Jelena D

    2013-05-01

    In this study, lactic acid and biomass production on liquid distillery stillage from bioethanol production with Lactobacillus rhamnosus ATCC 7469 was studied. The cells were immobilized onto zeolite, a microporous aluminosilicate mineral and the lactic acid production with free and immobilized cells was compared. The immobilization allowed simple cell separation from the fermentation media and their reuse in repeated batch cycles. A number of viable cells of over 10(10) CFU g(-1) of zeolite was achieved at the end of fourth fermentation cycle. A maximal process productivity of 1.69 g L(-1), maximal lactic acid concentration of 42.19 g L(-1) and average yield coefficient of 0.96 g g(-1) were achieved in repeated batch fermentation on the liquid stillage without mineral or nitrogen supplementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Optimization of D-lactic acid production using unutilized biomass as substrates by multiple parallel fermentation.

    PubMed

    Mufidah, Elya; Wakayama, Mamoru

    2016-12-01

    This study investigated the optimization of D-lactic acid production from unutilized biomass, specifically banana peel and corncob by multiple parallel fermentation (MPF) with Leuconostoc mesenteroides and Aspergillus awamori. The factors involved in MPF that were assessed in this study comprised banana peel and corncob, KH 2 PO 4 , Tween 80, MgSO 4 ·7H 2 O, NaCl, yeast extract, and diammonium hydrogen citrate to identify the optimal concentration for D-lactic acid production. Optimization of these component factors was performed using the Taguchi method with an L8 orthogonal array. The optimal concentrations for the effectiveness of MPF using biomass substrates were as follows: (1) banana peel, D-lactic acid production was 31.8 g/L in medium containing 15 % carbon source, 0.5 % KH 2 PO 4 , 0.1 % Tween 80, 0.05 % MgSO 4 ·7H 2 O, 0.05 % NaCl, 1.5 % yeast extract, and 0.2 % diammonium hydrogen citrate. (2) corncob, D-lactic acid production was 38.3 g/L in medium containing 15 % of a carbon source, 0.5 % KH 2 PO 4 , 0.1 % Tween 80, 0.05 % MgSO 4 ·7H 2 O, 0.1 % NaCl, 1.0 % yeast extract, and 0.4 % diammonium hydrogen citrate. Thus, both banana peel and corncob are unutilized potential resources for D-lactic acid production. These results indicate that MPF using L. mesenteroides and A. awamori could constitute part of a potential industrial application of the currently unutilized banana peel and corncob biomass for D-lactic acid production.

  19. Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn stover feedstock.

    PubMed

    Yi, Xia; Zhang, Peng; Sun, Jiaoe; Tu, Yi; Gao, Qiuqiang; Zhang, Jian; Bao, Jie

    2016-01-10

    Pediococcus acidilactici TY112 producing L-lactic acid and P. acidilactici ZP26 producing D-lactic acid, were engineered from the wild-type P. acidilactici DQ2 by ldhD or ldh gene disruption, and the robustness of the wild-type strain to the inhibitors derived from lignocellulose pretreatment was maintained well. In simultaneous saccharification and fermentation (SSF), 77.66 g L(-1) of L-lactic acid and 76.76 g L(-1) of D-lactic acid were obtained at 25% (w/w) solids content of dry dilute acid pretreated and biodetoxified corn stover feedstock. L- and D-Lactic acid yield and productivity were highly dependent on the inhibitor removal extent due to the significant down-regulation on the expressions of ldh and ldhD encoding lactate dehydrogenase by inhibitor, especially syringaldehyde and vanillin at the low concentrations. This study provided a prototype of industrial process for high titer L- and D-lactic acid production from lignocellulose feedstock. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Efficient in situ separation and production of L-lactic acid by Bacillus coagulans using weak basic anion-exchange resin.

    PubMed

    Zhang, Yitong; Qian, Zijun; Liu, Peng; Liu, Lei; Zheng, Zhaojuan; Ouyang, Jia

    2018-02-01

    To get rid of the dependence on lactic acid neutralizer, a simple and economical approach for efficient in situ separation and production of L-lactic acid was established by Bacillus coagulans using weak basic anion-exchange resin. During ten tested resins, the 335 weak basic anion-exchange resins demonstrated the highest adsorption capacity and selectivity for lactic acid recovery. The adsorption study of the 335 resins for lactic acid confirmed that it is an efficient adsorbent under fermentation condition. Langmuir models gave a good fit to the equilibrium data at 50 °C and the maximum adsorption capacity for lactic acid by 335 resins was about 402 mg/g. Adsorption kinetic experiments showed that pseudo-second-order kinetics model gave a good fit to the adsorption rate. When it was used for in situ fermentation, the yield of L-lactic acid by B. coagulans CC17 was close to traditional fermentation and still maintained at about 82% even after reuse by ten times. These results indicated that in situ separation and production of L-lactic acid using the 335 resins were efficient and feasible. This process could greatly reduce the dosage of neutralizing agent and potentially be used in industry.

  1. Biodiversity among Lactobacillus helveticus Strains Isolated from Different Natural Whey Starter Cultures as Revealed by Classification Trees

    PubMed Central

    Gatti, Monica; Trivisano, Carlo; Fabrizi, Enrico; Neviani, Erasmo; Gardini, Fausto

    2004-01-01

    Lactobacillus helveticus is a homofermentative thermophilic lactic acid bacterium used extensively for manufacturing Swiss type and aged Italian cheese. In this study, the phenotypic and genotypic diversity of strains isolated from different natural dairy starter cultures used for Grana Padano, Parmigiano Reggiano, and Provolone cheeses was investigated by a classification tree technique. A data set was used that consists of 119 L. helveticus strains, each of which was studied for its physiological characters, as well as surface protein profiles and hybridization with a species-specific DNA probe. The methodology employed in this work allowed the strains to be grouped into terminal nodes without difficult and subjective interpretation. In particular, good discrimination was obtained between L. helveticus strains isolated, respectively, from Grana Padano and from Provolone natural whey starter cultures. The method used in this work allowed identification of the main characteristics that permit discrimination of biotypes. In order to understand what kind of genes could code for phenotypes of technological relevance, evidence that specific DNA sequences are present only in particular biotypes may be of great interest. PMID:14711641

  2. Discrimination of wine lactic acid bacteria by Raman spectroscopy.

    PubMed

    Rodriguez, Susan B; Thornton, Mark A; Thornton, Roy J

    2017-08-01

    Species of Lactobacillus, Pediococcus, Oenococcus, and Leuconostoc play an important role in winemaking, as either inoculants or contaminants. The metabolic products of these lactic acid bacteria have considerable effects on the flavor, aroma, and texture of a wine. However, analysis of a wine's microflora, especially the bacteria, is rarely done unless spoilage becomes evident, and identification at the species or strain level is uncommon as the methods required are technically difficult and expensive. In this work, we used Raman spectral fingerprints to discriminate 19 strains of Lactobacillus, Pediococcus, and Oenococcus. Species of Lactobacillus and Pediococcus and strains of O. oeni and P. damnosus were classified with high sensitivity: 86-90 and 84-85%, respectively. Our results demonstrate that a simple, inexpensive method utilizing Raman spectroscopy can be used to accurately identify lactic acid bacteria isolated from wine.

  3. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions

    PubMed Central

    Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner

    2015-01-01

    BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3–l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L−1 optically pure (98%) L-lactic acid in 20 h from 50 g L−1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. CONCLUSIONS Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus. The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors.Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25937690

  4. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    PubMed Central

    Yang, Gesheng; Pastorino, Laura

    2016-01-01

    Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356

  5. Characteristic of phenolic compound and antioxidant activity of fermented broccoli (Brassica oleracea L. ssp.) beverage by lactic acid bacteria (LAB)

    NASA Astrophysics Data System (ADS)

    Maryati, Yati; Susilowati, Agustine; Melanie, Hakiki; Lotulung, Puspa D.

    2017-01-01

    Broccoli (Brassica oleracea L. ssp.) has a relatively high nutrient content, especially as a source of vitamins, minerals and fiber and contain bioactive compounds that act as antioxidants. In order to increase the nutritional value and innovate new products, fermentation process involving rich-antioxidants lactic acid bacteria (LAB) was done. The aim of this study is to determine the content of bioactive components, such as total polyphenols, total acid and antioxidant activity of the mixed culture of LAB (L. bulgaricus, S. thermophulus, L. acidophilus, Bd. bifidum)-fermented broccoli extracts. Ratio of fermented broccoli extract and concentration of starter cultureLAB was varied in the range of 5, 10, 15 and 20% (v/v), and the alterations of characteristics of the fermented broccoli extract, before and after fermentation (0 and 24 hours), were evaluated. The results showed that fermentation functional beverage broccoli with different concentrations of LAB cultures affect the antioxidant activity, total polyphenols, total acid and total cell of LAB generated. The optimum conditions obtained for the highest antioxidant activity of 6.74%, at aculture concentration of 20% during fermentation time of 24 h with a pH value of 4.29, total sugar of 10.89%, total acids of 0.97%, total polyphenols of 0.076%, and total LAB of 13.02 + 0.05 log cfu /ml.

  6. Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium.

    PubMed

    Shahab, Robert L; Luterbacher, Jeremy S; Brethauer, Simone; Studer, Michael H

    2018-05-01

    Consolidated bioprocessing (CBP) of lignocellulosic feedstocks to platform chemicals requires complex metabolic processes, which are commonly executed by single genetically engineered microorganisms. Alternatively, synthetic consortia can be employed to compartmentalize the required metabolic functions among different specialized microorganisms as demonstrated in this work for the direct production of lactic acid from lignocellulosic biomass. We composed an artificial cross-kingdom consortium and co-cultivated the aerobic fungus Trichoderma reesei for the secretion of cellulolytic enzymes with facultative anaerobic lactic acid bacteria. We engineered ecological niches to enable the formation of a spatially structured biofilm. Up to 34.7 gL -1 lactic acid could be produced from 5% (w/w) microcrystalline cellulose. Challenges in converting pretreated lignocellulosic biomass include the presence of inhibitors, the formation of acetic acid and carbon catabolite repression. In the CBP consortium hexoses and pentoses were simultaneously consumed and metabolic cross-feeding enabled the in situ degradation of acetic acid. As a result, superior product purities were achieved and 19.8 gL -1 (85.2% of the theoretical maximum) of lactic acid could be produced from non-detoxified steam-pretreated beech wood. These results demonstrate the potential of consortium-based CBP technologies for the production of high value chemicals from pretreated lignocellulosic biomass in a single step. © 2018 Wiley Periodicals, Inc.

  7. Blends of low molecular weight of poly lactic acid (PLA) with gondorukem (gum rosin)

    NASA Astrophysics Data System (ADS)

    Kaavessina, Mujtahid; Distantina, Sperisa; Chafidz, Achmad; Utama, Aditya; Anggraeni, Venisa Mega Puteri

    2018-02-01

    The utilization of plastic was increasing as well as the increasing its demand in wide range application. Consequently, the number of plastic litter will increase and make more serious environmental problems. This research concerns to minimize waste problems by designing biodegradable plastic. In this research, biodegradable plastic was made of poly lactic acid (PLA) and gondorukem (Gum rosin, Resina colophonium) as the plasticizer. The effect of gondorukem towards PLA properties such as rheology and degradability was investigated. The research divided into two steps: (i) the polycondensation of lactic acid (LA) and (ii) modification of obtained poly lactic acid. In the first step, polycondensation was done in N2 atmosphere (138°C) for 30 hours and added 0.1 %w of SnCl2 as catalyst. Bulk modification was conducted by blending of gondurukem in varied weight (0.5, 1, and 2 g in 10 g of PLA). Furthermore, the modified PLA was analyzed its molecular structure, biodegradability and rheological property. The presence of gondorukem enhanced the biodegradability of poly lactic acid. Gondorukem could act as the plasticizer. It is confirmed that the complex viscosity of PLA melt decreased upon the addition of gondorukem

  8. Enhancement of l-lactic acid production via synergism in open co-fermentation of Sophora flavescens residues and food waste.

    PubMed

    Zheng, Jin; Gao, Ming; Wang, Qunhui; Wang, Juan; Sun, Xiaohong; Chang, Qiang; Tashiro, Yukihiro

    2017-02-01

    In this study, Sophora flavescens residues (SFR) were used for l-lactic acid production and were mixed with food waste (FW) to assess the effects of different compositions of SFR and FW. Positive synergistic effects of mixed substrates were achieved with co-fermentation. Co-fermentation increased the proportion of l-lactic acid by decreasing the co-products of ethanol and other organic acids. A maximum l-lactic acid concentration of 48.4g/L and l-lactic acid conversion rate of 0.904g/g total sugar were obtained through co-fermentation of SFR and FW at the optimal ratio of 1:1.5. These results were approximately 6-fold those obtained during mono-fermentation of SFR. Co-fermentation of SFR and FW provides a suitable C/N ratio and pH for effective open fermentative production of l-lactic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Production of Value-added Products by Lactic Acid Bacteria

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  10. High titer L-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling.

    PubMed

    Liu, Gang; Sun, Jiaoe; Zhang, Jian; Tu, Yi; Bao, Jie

    2015-12-01

    Technological potentials of l-lactic acid production from corn stover feedstock were investigated by experimental and techno-economic studies. An optimal performance with 104.5 g/L in l-lactic acid titer and 71.5% in overall yield from cellulose in corn stover to l-lactic acid using an engineered Pediococcus acidilactici strain were obtained by overcoming several technical barriers. A rigorous Aspen plus model for l-lactic acid production starting from dry dilute acid pretreated and biodetoxified corn stover was developed. The techno-economic analysis shows that the minimum l-lactic acid selling price (MLSP) was $0.523 per kg, which was close to that of the commercial l-lactic acid produced from starch feedstock, and 24% less expensive than that of ethanol from corn stover, even though the xylose utilization was not considered. The study provided a prototype of industrial application and an evaluation model for high titer l-lactic acid production from lignocellulose feedstock. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Randomized clinical efficacy of superficial peeling with 85% lactic acid versus 70% glycolic acid.

    PubMed

    Prestes, Paula Souza; Oliveira, Márcia Motta Maia de; Leonardi, Gislaine Ricci

    2013-01-01

    Peeling is a procedure which aims to accelerate the process of skin exfoliation. Development of formulations containing lactic acid at 85% or glycolic acid at 70% and the evaluation of these formulations on clinical efficacy in reduction of fine wrinkles. Preliminary stability tests were carried out and an in vivo study was performed with three groups with 9 representatives each. One was the control group, which used only sunscreen; another one used lactic acid+sunscreen, and the last group used acid glycolic+sunscreen. Clinical efficacy was assessed with a CCD color microscope, through the digitization of images before and after treatment. The applications were carried out by a dermatologist, once a mont h every 30 days, during 3 months. The area with wrinkles was calculated by planimetry point counting, in accordance with Mandarin-de-Lacerda. The formulations were stable in the visual and Ph evaluation. There was no improvement in the control group; for lactic acid, there was significant improvement after the second peeling application on the outer lateral area of the right eye and after the third application on the outer lateral area of the left eye. For the glycolic acid group, there was significant improvement in the outer lateral area of the left eye after the first application, and of the right eye region, after three applications. The formulations used must be kept under refrigeration and should be manipulated every 30 days. Both peelings were effective in reducing fine wrinkles of the outer lateral eye area after three applications (p ≤ 0.05%). It was observed that peeling efficacy in the external-lateral region of one eye might be different compared with that in skin of the external-lateral region of the other eye, relative to the speed of skin improvement.

  12. Randomized clinical efficacy of superficial peeling with 85% lactic acid versus 70% glycolic acid*

    PubMed Central

    Prestes, Paula Souza; de Oliveira, Márcia Motta Maia; Leonardi, Gislaine Ricci

    2013-01-01

    BACKGROUND: Peeling is a procedure which aims to accelerate the process of skin exfoliation. OBJECTIVES Development of formulations containing lactic acid at 85% or glycolic acid at 70% and the evaluation of these formulations on clinical efficacy in reduction of fine wrinkles. METHODS Preliminary stability tests were carried out and an in vivo study was performed with three groups with 9 representatives each. One was the control group, which used only sunscreen; another one used lactic acid+sunscreen, and the last group used acid glycolic+sunscreen. Clinical efficacy was assessed with a CCD color microscope, through the digitization of images before and after treatment. The applications were carried out by a dermatologist, once a mont h every 30 days, during 3 months. The area with wrinkles was calculated by planimetry point counting, in accordance with Mandarin-de-Lacerda. RESULTS The formulations were stable in the visual and Ph evaluation. There was no improvement in the control group; for lactic acid, there was significant improvement after the second peeling application on the outer lateral area of the right eye and after the third application on the outer lateral area of the left eye. For the glycolic acid group, there was significant improvement in the outer lateral area of the left eye after the first application, and of the right eye region, after three applications. The formulations used must be kept under refrigeration and should be manipulated every 30 days. CONCLUSIONS Both peelings were effective in reducing fine wrinkles of the outer lateral eye area after three applications (p≤0.05%). It was observed that peeling efficacy in the external-lateral region of one eye might be different compared with that in skin of the external-lateral region of the other eye, relative to the speed of skin improvement. PMID:24474097

  13. A hollow-fiber membrane extraction process for recovery and separation of lactic acid from aqueous solution.

    PubMed

    Huang, Hanjing; Yang, Shang-Tian; Ramey, David E

    2004-01-01

    An energy-efficient hollow-fiber membrane extraction process was successfully developed to separate and recover lactic acid produced in fermentation. Although many fermentation processes have been developed for lactic acid production, an economical method for lactic acid recovery from the fermentation broth is still needed. Continuous extraction of lactic acid from a simulated aqueous stream was achieved by using Alamine 336 in 2-octanol contained in a hollow-fiber membrane extractor. In this process, the extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor, and the final product is a concentrated lactate salt solution. The extraction rate increased linearly with an increase in the Alamine 336 content in the solvent (from 5 to 40%). Increasing the concentration of the undissociated lactic acid in the feed solution by either increasing the lactate concentration (from 5 to 40 g/L) or decreasing the solution pH (from 5.0 to 4.0) also increased the extraction rate. Based on these observations, a reactive extraction model with a first-order reaction mechanism for both lactic acid and amine concentrations was proposed. The extraction rate also increased with an increase in the feed flow rate, but not the flow rates of solvent and the stripping solution, suggesting that the process was not limited by diffusion in the liquid films or membrane pores. A mathematical model considering both diffusion and chemical reaction in the extractor and back extractor was developed to simulate the process. The model fits the experimental data well and can be used in scale up design of the process.

  14. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    PubMed

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Co-production of functional exopolysaccharides and lactic acid by Lactobacillus kefiranofaciens originated from fermented milk, kefir.

    PubMed

    Cheirsilp, Benjamas; Suksawang, Suwannee; Yeesang, Jarucha; Boonsawang, Piyarat

    2018-01-01

    Kefiran is a functional exopolysaccharide produced by Lactobacillus kefiranofaciens originated from kefir, traditional fermented milk in the Caucasian Mountains, Russia. Kefiran is attractive as thickeners, stabilizers, emulsifiers, gelling agents and also has antimicrobial and antitumor activity. However, the production costs of kefiran are still high mainly due to high cost of carbon and nitrogen sources. This study aimed to produce kefiran and its co-product, lactic acid, from low-cost industrial byproducts. Among the sources tested, whey lactose (at 2% sugar concentration) and spent yeast cells hydrolysate (at 6 g-nitrogen/L) gave the highest kefiran of 480 ± 21 mg/L along with lactic acid of 20.1 ± 0.2 g/L. The combination of these two sources and initial pH were optimized through Response Surface Methodology. With the optimized medium, L. kefiranofaciens produced more kefiran and lactic acid up to 635 ± 7 mg/L and 32.9 ± 0.7 g/L, respectively. When the pH was controlled to alleviate the inhibition from acidic pH, L. kefiranofaciens could consume all sugars and produced kefiran and lactic acid up to 1693 ± 29 mg/L and 87.49 ± 0.23 g/L, respectively. Moreover, the fed-batch fermentation with intermittent adding of whey lactose improved kefiran and lactic acid productions up to 2514 ± 93 mg/L and 135 ± 1.75 g/L, respectively. These results indicate the promising approach to economically produce kefiran and lactic acid from low-cost nutrient sources.

  16. Adsorption of lactic acid on chiral Pt surfaces—A density functional theory study

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2013-02-01

    The adsorption of the chiral molecule lactic acid on chiral Pt surfaces is studied by density functional theory calculations. First, we study the adsorption of L-lactic acid on the flat Pt(111) surface. Using the optimed PBE - van der Waals (oPBE-vdW) functional, which includes van der Waals forces on an ab initio level, it is shown that the molecule has two binding sites, a carboxyl and the hydroxyl oxygen atoms. Since real chiral surfaces are (i) known to undergo thermal roughening that alters the distribution of kinks and step edges but not the overall chirality and (ii) kink sites and edge sites are usually the energetically most favored adsorption sites, we focus on two surfaces that allow qualitative sampling of the most probable adsorption sites. We hereby consider chiral surfaces exhibiting (111) facets, in particular, Pt(321) and Pt(643). The binding sites are either both on kink sites—which is the case for Pt(321) or on one kink site—as on Pt(643). The binding energy of the molecule on the chiral surfaces is much higher than on the Pt(111) surface. We show that the carboxyl group interacts more strongly than the hydroxyl group with the kink sites. The results indicate the possible existence of very small chiral selectivities of the order of 20 meV for the Pt(321) and Pt(643) surfaces. L-lactic acid is more stable on Pt(321)S than D-lactic acid, while the chiral selectivity is inverted on Pt(643)S. The most stable adsorption configurations of L- and D-lactic acid are similar for Pt(321) but differ for Pt(643). We explore the impact of the different adsorption geometries on the work function, which is important for field ion microscopy.

  17. Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses.

    PubMed

    Morales, Fredy; Morales, Jesús I; Hernández, César H; Hernández-Sánchez, Humberto

    2011-07-01

    Isolated strains of halotolerant or halophilic lactic acid bacteria (HALAB) from Cotija and doble crema cheeses were identified and partially characterized by phenotypic and genotypic methods, and their technological abilities were studied in order to test their potential use as dairy starter components. Humidity, a(w), pH, and salt concentration of cheeses were determined. Genotypic diversity was evaluated by randomly amplified polymorphic DNA-polymerase chain reaction. Molecular identification and phylogenetic reconstructions based on 16S rRNA gene sequences were performed. Additional technological abilities such as salt tolerance, acidifying, and proteolytic and lipolytic activities were also investigated. The differences among strains reflected the biodiversity of HALAB in both types of cheeses. Lactobacillus acidipiscis, Tetragenococcus halophilus, Weissella thailandensis, and Lactobacillus pentosus from Cotija cheese, and L. acidipiscis, Enterococcus faecium, Lactobacillus plantarum, Lactobacillus farciminis, and Lactobacillus rhamnosus from doble crema cheese were identified based on 16S rRNA. Quantitative and qualitative assessments showed strains of T. halophilus and L. plantarum to be proteolytic, along with E. faecium, L. farciminis, and L. pentosus to a lesser extent. Lipolytic activity could be demonstrated in strains of E. faecium, L. pentosus, L. plantarum, and T. halophilus. Strains belonging to the species L. pentosus, L. plantarum, and E. faecium were able to acidify the milk media. This study evidences the presence of HALAB that may play a role in the ripening of cheeses.

  18. [Characterization of D-lactate dehydrogenase isozymes from a D-lactic acid producing bacterium Sporolactobacillus inulinus].

    PubMed

    Zhang, Danru; Zheng, Lu; Wu, Bin; He, Bingfang

    2016-11-04

    Sporolactobacillus inulinus, a typical homofermentative lactic acid bacterium, is an efficient D-lactic acid producer. Various environment factors affect the productivity of S. inulinus. Glucokinase, phosphofructokinase, pyruvate kinase and lactic dehydrogenase are the key enzymes of D-lactic acid production from glucose by S. inulinus. The characteristics of these enzymes are important in controlling and regulating the fermentation process. According to the genome bioinformatics analysis of S. inulinus CASD, three putative D-lactate dehydrogenases were identified, among which the bifunctional protein had been reported. In this study, we provided insights into the characteristics of the other two D-lactate dehydrogenase isozymes. S. inulinus Y2-8 genome was used as the template to amplify D-lactate dehydrogenase gene (dldh) and D-isomer specific 2-hydroxyacid dehydrogenase gene (dhdh). The two recombinant strains E-pET-28a/dldh and E-pET-28a/dhdh were constructed for enzyme expression. Both recombinants DLDH and DHDH could convert pyruvic acid into D-lactic acid. Enzymes expressed by recombinant strains were purified by Ni-NTA chromatography. The apparent molecular mass of DLDH was approximately 37 kDa by SDS-PAGE analysis, and DLDH showed a high affinity to pyruvate with the Km value of (0.58±0.04) mmol/L. The optimal reaction temperature and pH for DLDH was 35℃ and 6.5, respectively. The apparent molecular mass of DHDH was approximately 39 kDa, and the Km of DHDH toward pyruvate was (1.70±0.08) mmol/L. The optimum catalysis temperature and pH of DHDH were 30℃ and 7.5, respectively. According to the Km and optimal reaction pH, DLDH was suggested as the main catalyst in formation D-lactic acid from pyruvate during the fermentation. The enzymatic properties would contribute to the regulation of the fermentation of S. inulinus.

  19. Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses).

    PubMed

    Srivastava, Abhinay Kumar; Tripathi, Abhishek Dutt; Jha, Alok; Poonia, Amrita; Sharma, Nitya

    2015-06-01

    In the present work Lactobacillus delbrueckii was used to utilize agro-industrial byproduct (cane molasses) for lactic acid production under submerged fermentation process. Screening of LAB was done by Fourier transform infra red spectroscopy (FTIR). Effect of different amino acids (DL-Phenylalanine, L-Lysine and DL-Aspartic acid) on the fermentation process was done by high performance liquid chromatography (HPLC). Central composite rotatable design (CCRD) was used to optimize the levels of three parameters viz. tween 80, amino acid and cane molasses concentration during fermentative production of lactic acid. Under optimum condition lactic acid production was enhanced from 55.89 g/L to 84.50 g/L. Further, validation showed 81.50 g/L lactic acid production. Scale up was done on 7.5 L fermentor. Productivity was found to be 3.40 g/L/h which was higher than previous studies with reduced fermentation time from 24 h to 12 h. Further characterization of lactic acid was done by FTIR.

  20. Electron transport chains of lactic acid bacteria - walking on crutches is part of their lifestyle

    PubMed Central

    Brooijmans, Rob; Hugenholtz, Jeroen

    2009-01-01

    A variety of lactic acid bacteria contain rudimentary electron transport chains that can be reconstituted by the addition of heme and menaquinone to the growth medium. These activated electron transport chains lead to higher biomass production and increased robustness, which is beneficial for industrial applications, but a major concern when dealing with pathogenic lactic acid bacteria. PMID:20948651

  1. Heart Rate Response and Lactic Acid Concentration in Squash Players.

    ERIC Educational Resources Information Center

    Beaudin, Paula; And Others

    1978-01-01

    It was concluded that playing squash is an activity that results in heart rate responses of sufficient intensity to elicit aerobic training effects without producing high lactic acid concentration in the blood. (MM)

  2. Comparative analysis of microbial community of novel lactic acid fermentation inoculated with different undefined mixed cultures.

    PubMed

    Liang, Shaobo; Gliniewicz, Karol; Mendes-Soares, Helena; Settles, Matthew L; Forney, Larry J; Coats, Erik R; McDonald, Armando G

    2015-03-01

    Three undefined mixed cultures (activated sludge) from different municipal wastewater treatment plants were used as seeds in a novel lactic acid fermentation process fed with potato peel waste (PPW). Anaerobic sequencing batch fermenters were run under identical conditions to produce predominantly lactic acid. Illumina sequencing was used to examine the 16S rRNA genes of bacteria in the three seeds and fermenters. Results showed that the structure of microbial communities of three seeds were different. All three fermentation products had unique community structures that were dominated (>96%) by species of the genus Lactobacillus, while members of this genus constituted <0.1% in seeds. The species of Lactobacillus sp. differed among the three fermentations. Results of this study suggest the structure of microbial communities in lactic acid fermentation of PPW with undefined mixed cultures were robust and resilient, which provided engineering prospects for the microbial utilization of carbohydrate wastes to produce lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance.

    PubMed

    Zhou, Xingding; Ye, Lidan; Wu, Jin Chuan

    2013-05-01

    A thermophilic Bacillus coagulans WCP10-4 with tolerance to high concentration of glucose was isolated from soil and used to produce optically pure L-lactic acid from glucose and starch. In batch fermentation at pH 6.0, 240 g/L of glucose was completely consumed giving 210 g/L of L-lactic acid with a yield of 95 % and a productivity of 3.5 g/L/h. In simultaneous saccharification and fermentation at 50 °C without sterilizing the medium, 200 g/L of corn starch was completely consumed producing 202.0 g/L of L-lactic acid. To the best of our knowledge, this strain shows the highest osmotic tolerance to glucose among the strains ever reported for lactic acid production. This is the first report of simultaneous saccharification and fermentation of starch for lactic acid production under a non-sterilized condition.

  4. Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami.

    PubMed

    Samelis, J; Maurogenakis, F; Metaxopoulos, J

    1994-10-01

    A total of 348 lactic acid bacteria isolated from five batches of naturally fermented dry salami at various stages of ripening were characterised. The majority of the strains were assigned to two main phylogenetic groups of species: (i) the psychrotrophic, formerly called atypical, meat streptobacteria (169 strains) and (ii) a new genus Weissella (120), which was recently proposed (Collins et al., 1993) to include Leuconostoc paramesenteroides and some other closely related species. Meat streptobacteria were identified as Lactobacillus curvatus (88 strains) and L. sake (76), whereas 5 strains were indistinguishable and, thus designated L. sake/curvatus. Non-psychrotrophic streptobacteria were also isolated and identified as L. plantarum (34 strains), L. farciminis (10), L. coryniformis (1) and L. casei subsp. pseudoplantarum (1). The majority of the Weissella strains (86) were leuconostoc-like bacteria; four of them were identified as W. viridescens, 11 belonged to the newly described W. hellenica (Collins et al., 1993), another 11 resembled W. paramesenteroides, whereas 60 isolates were not classified to any species. The latter group comprised strains that produced D(L)-lactate. The remaining Weissella were gas-forming, arginine-positive rods assigned to W. minor (31) and W. halotolerans (3). Other species identified were Enterococcus faecium (10), Leuconostoc mesenteroides (1), L. brevis (1) and Pediococcus sp. (1). The main criteria used to distinguish between above species as well as their distribution on the five salami batches in relation to their succession with time and suitability as starters were discussed.

  5. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.

    PubMed

    Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2016-06-01

    The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Selection of the Strain Lactobacillus acidophilus ATCC 43121 and Its Application to Brewers' Spent Grain Conversion into Lactic Acid

    PubMed Central

    Liguori, Rossana; Soccol, Carlos Ricardo; Vandenberghe, Luciana Porto de Souza; Woiciechowski, Adenise Lorenci; Ionata, Elena; Marcolongo, Loredana; Faraco, Vincenza

    2015-01-01

    Six Lactobacillus strains were analyzed to select a bacterium for conversion of brewers' spent grain (BSG) into lactic acid. Among the investigated strains, L. acidophilus ATCC 43121 showed the highest yield of lactic acid production (16.1 g/L after 48 hours) when grown in a synthetic medium. It was then analyzed for its ability to grow on the hydrolysates obtained from BSG after acid-alkaline (AAT) or aqueous ammonia soaking (AAS) pretreatment. The lactic acid production by L. acidophilus ATCC 43121 through fermentation of the hydrolysate from AAS treated BSG was 96% higher than that from the AAT treated one, although similar yields of lactic acid per consumed glucose were achieved due to a higher (46%) glucose consumption by L. acidophilus ATCC 43121 in the AAS BSG hydrolysate. It is worth noting that adding yeast extract to the BSG hydrolysates increased both the yield of lactic acid per substrate consumed and the volumetric productivity. The best results were obtained by fermentation of AAS BSG hydrolysate supplemented by yeast extract, in which the strain produced 22.16 g/L of lactic acid (yield of 0.61 g/g), 27% higher than the value (17.49 g/L) obtained in the absence of a nitrogen source. PMID:26640784

  7. The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production.

    PubMed

    Sauer, Michael; Russmayer, Hannes; Grabherr, Reingard; Peterbauer, Clemens K; Marx, Hans

    2017-08-01

    Lactic acid bacteria are well known to be beneficial for food production and, as probiotics, they are relevant for many aspects of health. However, their potential as cell factories for the chemical industry is only emerging. Many physiological traits of these microorganisms, evolved for optimal growth in their niche, are also valuable in an industrial context. Here, we illuminate these features and describe why the distinctive adaptation of lactic acid bacteria is particularly useful when developing a microbial process for chemical production from renewable resources. High carbon uptake rates with low biomass formation combined with strictly regulated simple metabolic pathways, leading to a limited number of metabolites, are among the key factors defining their success in both nature and industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Electrochemical l-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase

    PubMed Central

    Ibupoto, Zafar Hussain; Ali Shah, Syed Muhammad Usman; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10−4–1 × 100 mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks. PMID:22736960

  9. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase.

    PubMed

    Ibupoto, Zafar Hussain; Shah, Syed Muhammad Usman Ali; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10(-4)-1 × 10(0) mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks.

  10. Characterization of Lignocellulosic-Poly(lactic acid) reinforced composites

    Treesearch

    Q.X. Hou; X.S. Chai; R. Yang; T. Elder; A.J. Ragauskas

    2005-01-01

    The effects of adding poly(lactic acid) (PLA) to the physical strength of paper test sheets prepared from three unbleached loblolly pine kraft pulps with different amounts of lignin and an aspen bleached chemothermomechanical pulp were studied. The physical strength studies demonstrated that relatively low levels of PLA addition (0.5-4.0%) could dramatically improve...

  11. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia.

    PubMed

    Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor

    2017-12-01

    Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed

  12. Structures of chloralide, ?-lactic acid chloralide, malic acid chloralide and citric acid chloralide

    NASA Astrophysics Data System (ADS)

    Koh, L. L.; Huang, H. H.; Chia, L. H. L.; Liang, E. P.

    1995-06-01

    The crystal and molecular structures of chloralide ( 1), D-lactic acid chloralide ( 2), malic acid chloralide ( 3) and citric acid chloralide ( 4) have been determined by X-ray diffraction methods. Compound 1 crystallizes in the monoclinic space group, {P2 1}/{c}, a = 6.201(2), b = 17.11(2), c = 10.357(6) Å, β = 95.21(4)°, Z = 4; compound 2 in the monoclinic space group P2 1, a = 7.600(4), b = 5.902(4), c = 9.743(6) Å, β = 99.20(5), Z = 2; compound 3 in the monoclinic space group {P2 1}/{c}, a = 16.500(6), b = 5.819(3), c = 10.120(4) Å, β = 91.41(3), Z = 4; compound 4 in the monoclinic space group {P2 1}/{c}, a = 12.041(3), b = 6.1190(10), c = 17.259(4) Å, β = 101.85(2), Z = 4. The five-membered ring systems of all the compounds are slightly twisted out-of-plane, that of compound 4 being the most puckered. The CCl 3 group is trans to the second CCl 3 group in 1, to the CH 3 group in 2 and to the CH 2COOH group in 3. The two CH 2COOH groups in 4 are disposed axially with respect to the ring. Dipole moment and Kerr constant data for D-lactic acid chloralide suggest a structure in solution which is consistent with the X-ray results. The IR spectra of 2, 3 and 4 are discussed in relation to the structures of these compounds.

  13. Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems.

    PubMed

    Brinques, Graziela Brusch; do Carmo Peralba, Maria; Ayub, Marco Antônio Záchia

    2010-02-01

    Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett-Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l(-1) (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l(-1) (dw), with conversion rates of 0.10 g of cell g(-1) lactose and 1.08 g lactic acid g(-1) lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.

  14. Report membrane transport of lactic acid in the filamentous fungus Rhizopus

    USDA-ARS?s Scientific Manuscript database

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  15. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    PubMed

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8.

  16. Profile of preoperative fecal organic acids closely predicts the incidence of postoperative infectious complications after major hepatectomy with extrahepatic bile duct resection: Importance of fecal acetic acid plus butyric acid minus lactic acid gap.

    PubMed

    Yokoyama, Yukihiro; Mizuno, Takashi; Sugawara, Gen; Asahara, Takashi; Nomoto, Koji; Igami, Tsuyoshi; Ebata, Tomoki; Nagino, Masato

    2017-10-01

    To investigate the association between preoperative fecal organic acid concentrations and the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection for biliary malignancies. The fecal samples of 44 patients were collected before undergoing hepatectomy with bile duct resection for biliary malignancies. The concentrations of fecal organic acids, including acetic acid, butyric acid, and lactic acid, and representative fecal bacteria were measured. The perioperative clinical characteristics and the concentrations of fecal organic acids were compared between patients with and without postoperative infectious complications. Among 44 patients, 13 (30%) developed postoperative infectious complications. Patient age and intraoperative bleeding were significantly greater in patients with postoperative infectious complications compared with those without postoperative infectious complications. The concentrations of fecal acetic acid and butyric acid were significantly less, whereas the concentration of fecal lactic acid tended to be greater in the patients with postoperative infectious complications. The calculated gap between the concentrations of fecal acetic acid plus butyric acid minus lactic acid gap was less in the patients with postoperative infectious complications (median 43.5 vs 76.1 μmol/g of feces, P = .011). Multivariate analysis revealed that an acetic acid plus butyric acid minus lactic acid gap <60 μmol/g was an independent risk factor for postoperative infectious complications with an odds ratio of 15.6; 95% confidence interval 1.8-384.1. The preoperative fecal organic acid profile (especially low acetic acid, low butyric acid, and high lactic acid) had a clinically important impact on the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection. Copyright © 2017. Published by Elsevier Inc.

  17. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Dalin, Eileen; Tice, Hope

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  18. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  19. Laboratory Evaluation of Synthetic Blends of l-(+)-Lactic Acid, Ammonia, and Ketones As Potential Attractants For Aedes aegypti.

    PubMed

    Venkatesh, P M; Sen, A

    2017-12-01

    Attraction of Aedes aegypti to various binary, trinary, and quaternary blends of lactic acid and ketones with or without ammonia was studied using a dual choice olfactometer. A dose dependent attraction was observed in cases of single compounds where cyclopentanone attracted the highest percentage (36.9 ± 1.8%) of Ae. aegypti when tested alone. No significant difference was observed between the attraction levels of trinary and binary blends of lactic acid and acetone or butanone when tested against clear air. However, in competitive bioassays, the trinary blend of lactic acid, acetone, and butanone was significantly preferred over binary blends of individual compounds ( P < 0.05). Acetylacetone was weakly attractive when tested alone but showed additive attraction when blended with lactic acid. However, acetylacetone acted as an attraction inhibitor when blended with other compounds. Cyclopentanone was attractive, but enhancement of attraction was not observed when blended with other components. Addition of ammonia to binary or trinary blends of lactic acid, acetone, and/or butanone did not increase the attraction significantly. In competitive bioassays, the blends containing ammonia were significantly preferred over the blends lacking ammonia ( P < 0.05). This highlights ammonia as an essential component of synthetic blends. A quaternary blend of lactic acid, ammonia, acetone, and butanone was most attractive (65 ± 1.5%) and preferred blend of all other combinations.

  20. Effect of Ammonium- and Phosphonium-Based Ionic Liquids on the Separation of Lactic Acid by Supported Ionic Liquid Membranes (SILMs)

    PubMed Central

    Matsumoto, Michiaki; Panigrahi, Abhishek; Murakami, Yuuki; Kondo, Kazuo

    2011-01-01

    Biodegradable polymers have attracted much attention from an environmental point of view. Optically pure lactic acid that can be prepared by fermentation is one of the important raw materials for biodegradable polymer. The separation and purification of lactic acid from the fermentation broth are the major portions of the production costs. We proposed the application of supported ionic liquid membranes to recovering lactic acid. In this paper, the effect of ionic liquids, such as Aliquat 336, CYPHOS IL-101, CYPHOS IL-102, CYPHOS IL-104, CYPHOS IL-109 and CYPHOS IL-111 on the lactic acid permeation have been studied. Aliquat 336, CYPHOS IL-101 and CYPHOS IL-102 were found to be the best membrane solvents as far as membrane stability and permeation of lactic acid are concerned. CYPHOS IL-109 and CYPHOS IL-111 were found to be unsuitable, as they leak out from the pores of the supported liquid membrane (SLM), thereby allowing free transport of lactic acid as well as hydrochloric acid. CYPHOS IL-102 was found to be the most adequate (Permeation rate = 60.41%) among these ionic liquids as far as the separation of lactic acid is concerned. The permeation mechanisms, by which ionic liquid-water complexes act as the carrier of lactate and hydrochloric acid, were proposed. The experimental permeation results have been obtained as opposed to the expected values from the solution-diffusion mechanism. PMID:24957613

  1. Effects of ensiling treatments on lactic acid production and supplementary methane formation of maize and amaranth--an advanced green biorefining approach.

    PubMed

    Haag, Nicola Leonard; Nägele, Hans-Joachim; Fritz, Thomas; Oechsner, Hans

    2015-02-01

    A green biorefinery enables the material and energetic use of biomass via lactic acid and methane production. Different ensiling techniques were applied to maize and amaranth with the aim to increase the amount of lactic acid in the silage. In addition the methane formation potential of the ensiled samples and the remaining solid residues after separating the organic juice were assessed. Treating maize with homofermentative lactic acid bacteria in combination with carbonated lime increased the amount of lactic acid about 91.9%. For amaranth no additional lactic acid production was obtained by treating the raw material. Specific methane yields for the solid residues of amaranth were significantly lower in comparison to the corresponding silages. The most promising treatment resulted in a production of 127.9±4.1 g kg(-1) DM lactic acid and a specific methane yield for the solid residue of 349.5±6.6 lN kg(-1) ODM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Purification of bacteriocins produced by lactic acid bacteria.

    PubMed

    Saavedra, Lucila; Castellano, Patricia; Sesma, Fernando

    2004-01-01

    Bacteriocins are antibacterial substances of a proteinaceous nature that are produced by different bacterial species. Lactic acid bacteria (LAB) produce biologically active peptides or protein complexes that display a bactericidal mode of action almost exclusively toward Gram-positive bacteria and particularly toward closely related species. Generally they are active against food spoilage and foodborne pathogenic microorganisms including Bacillus cereus, Clostridium perfringens, Staphylococcus aureus, and Listeria monocytogenes. There is an increased tendency to use natural occurring metabolites to prevent the growth of undesirable flora in foodstuffs. These metabolites could replace the use of chemical additives such as sorbic acid, sulfur dioxide, nitrite, nitrate, and others. For instance, bacteriocins produced by LAB may be promising for use as bio-preservaties. Bacteriocins of lactic acid bacteria are typically cationic, hydrophobic peptides and differ widely in many characteristics including molecular weight, presence of particular groups of amino acids, pI, net positive charge, and post-translational modifications of certain amino acids. This heterogeneity within the LAB bacteriocins may explain the different procedures for isolation and purification developed so far. The methods most frequently used for isolation, concentration, and purification involve salt precipitation of bacteriocins from culture supernatants, followed by various combinations of gel filtration, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). In this chapter, a protocol is described that combines several methods used in our laboratory for the purification of two cationic bacteriocins, Lactocin 705AL and Enterocin CRL10, produced by Lactobacillus casei CRL705 and Enterococcus mundtii CRL10, respectively.

  3. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  4. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans.

    PubMed

    Ma, Kedong; Hu, Guoquan; Pan, Liwei; Wang, Zichao; Zhou, Yi; Wang, Yanwei; Ruan, Zhiyong; He, Mingxiong

    2016-11-01

    A thermophilic strain Bacillus coagulans (NBRC 12714) was employed to produce l-lactic acid from corn stover hydrolysate in membrane integrated continuous fermentation. The strain NBRC 12714 metabolized glucose and xylose by the Embden-Meyerhof-Parnas pathway (EMP) and the pentose phosphate pathway (PPP), producing l-lactic acid with optical purity >99.5%. The overall l-lactic acid titer of 92g/l with a yield of 0.91g/g and a productivity of 13.8g/l/h were achieved at a dilution rate of 0.15h(-1). The productivity obtained was 1.6-fold than that of conventional continuous fermentation without cell recycling, and also was the highest among the relevant studies ever reported. These results indicated that the process developed had great potential for economical industrial production of l-lactic acid from lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Influence of Lactic Acid Concentration on the Separation of Light Rare Earth Elements by Continuous Liquid-Liquid Extraction with 2-Ethylhexyl Phosphonic Acid Mono-2-ethylhexyl Ester

    NASA Astrophysics Data System (ADS)

    de Carvalho Gomes, Rafael; Seruff, Luciana Amaral; Scal, Maira Labanca Waineraich; Vera, Ysrael Marrero

    2018-02-01

    The separation of rare earth elements (REEs) using solvent extraction adding complexing agents appears to be an alternative to saponification of the extractant. We evaluated the effect of lactic acid concentration on didymium (praseodymium and neodymium) and lanthanum extraction with 2-ethylhexyl phosphonic acid mono-2-ethyl hexyl ester [HEH(EHP)] as extractant. First, we investigated in batch experiments the separation of lanthanum (La) and didymium (Pr and Nd) using McCabe-Thiele diagrams to estimate the number of extraction stages when the feed solution was or was not conditioned with lactic acid. Additionally, we conducted continuous liquid-liquid extraction experiments and evaluated the influence of lactic acid concentration on the REE extraction and separation. The tests showed that the extraction percentage of REEs and the separation factor Pr/La increased when the lactic acid concentration increased, but the didymium purity decreased. Lanthanum, praseodymium, and neodymium extraction rate were 23.0, 89.7, and 99.2 pct, respectively, with 1:1 aqueous/organic volume flow rate and feed solution doped with 0.52 mol L-1 lactic acid. The highest didymium purity reached was 92.0 pct with 0.26 mol L-1 lactic acid concentration.

  6. Properties of poly(lactic acid)/hydroxyapatite composite through the use of epoxy functional compatibilizers for biomedical application.

    PubMed

    Monmaturapoj, Naruporn; Srion, Autcharaporn; Chalermkarnon, Prasert; Buchatip, Suthawan; Petchsuk, Atitsa; Noppakunmongkolchai, Warobon; Mai-Ngam, Katanchalee

    2017-08-01

    A composite of 70/30 poly(lactic acid)/hydroxyapatite was systematically prepared using various amounts of glycidyl methacrylate as reactive compatibilizer or Joncryl ADR®-4368 containing nine glycidyl methacrylate functions as a chain extension/branching agent to improve the mechanical and biological properties for suitable usage as internal bone fixation devices. The effect of glycidyl methacrylate/Joncryl on mechanical properties of poly(lactic acid)/hydroxyapatite was investigated through flexural strength. Cell proliferation and differentiation of osteoblast-like MC3T3-E1 cells cultured on the composite samples were determined by Alamar Blue assay and alkaline phosphatase expression, respectively. Result shows that flexural strength tends to decrease, as glycidyl methacrylate content increases except for 1 wt.% glycidyl methacrylate. With an addition of dicumyl peroxide, the flexural strength shows an improvement than that of without dicumyl peroxide probably due to the chemical bonding of the hydroxyapatite and poly(lactic acid) as revealed by FTIR and NMR, whereas the composite with 5 wt.% Joncryl shows the best result, as the flexural strength increases getting close to pure poly(lactic acid). The significant morphology change could be seen in composite with Joncryl where the uniform agglomeration of hydroxyapatite particles oriented in poly(lactic acid) matrix. Addition of the epoxy functional compatibilizers at suitable percentages could also have benefits to cellular attachment, proliferation, differentiation and mineralization. So that, this poly(lactic acid)/hydroxyapatite composite could be a promising material to be used as internal bone fixation devices such as screws, pins and plates.

  7. GAS PERMEATION PROPERTIES OF POLY(LACTIC ACID). (R826733)

    EPA Science Inventory

    Abstract

    The need for the development of polymeric materials based on renewable resources has led to the development of poly(lactic acid) (PLA) which is being produced from a feedstock of corn rather than petroleum. The present study examines the permeation of nitrogen...

  8. Brewer's spent grain as raw material for lactic acid production by Lactobacillus delbrueckii.

    PubMed

    Mussatto, Solange I; Fernandes, Marcela; Dragone, Giuliano; Mancilha, Ismael M; Roberto, Inês C

    2007-12-01

    Chemically pre-treated brewer's spent grain was saccharified with cellulase producing a hydrolysate with approx. 50 g glucose l(-1). This hydrolysate was used as a fermentation medium without any nutrient supplementation by Lactobacillus delbrueckii, which produced L-lactic acid (5.4 g l(-1)) at 0.73 g g(-1) glucose consumed (73% efficiency). An inoculum of 1 g dry cells l(-1) gave the best yield of the process, but the pH decrease affected the microorganism capacity to consume glucose and convert it into lactic acid.

  9. Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean.

    PubMed

    Bartkiene, Elena; Krungleviciute, Vita; Juodeikiene, Grazina; Vidmantiene, Daiva; Maknickiene, Zita

    2015-04-01

    The ability of bacteriocin-like inhibitory substance (BLIS)-producing lactic acid bacteria (LAB) to degrade biogenic amines as well as to produce L(+) and D(-)-lactic acid during solid state fermentation (SSF) of lupin and soya bean was investigated. In addition, the protein digestibility and formation of organic acids during SSF of legume were investigated. Protein digestibility of fermented lupin and soya bean was found higher on average by 18.3% and 15.9%, respectively, compared to untreated samples. Tested LAB produced mainly L-lactic acid in soya bean and lupin (D/L ratio 0.38-0.42 and 0.35-0.54, respectively), while spontaneous fermentation gave almost equal amounts of both lactic acid isomers (D/L ratio 0.82-0.98 and 0.92, respectively). Tested LAB strains were able to degrade phenylethylamine, spermine and spermidine, whereas they were able to produce putrescine, histamine and tyramine. SSF improved lupin and soya bean protein digestibility. BLIS-producing LAB in lupin and soya bean medium produced a mixture of D- and L-lactic acid with a major excess of the latter isomer. Most toxic histamine and tyramine in fermented lupin and soya bean were found at levels lower those causing adverse health effects. Selection of biogenic amines non-producing bacteria is essential in the food industry to avoid the risk of amine formation. © 2014 Society of Chemical Industry.

  10. Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds.

    PubMed

    Galli, Bruno Domingues; Martin, José Guilherme Prado; da Silva, Paula Porrelli Moreira; Porto, Ernani; Spoto, Marta Helena Fillet

    2016-10-03

    Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits.

    PubMed

    Lynch, Kieran M; Zannini, Emanuele; Coffey, Aidan; Arendt, Elke K

    2018-03-25

    Exopolysaccharides produced by lactic acid bacteria are a diverse group of polysaccharides produced by many species. They vary widely in their molecular, compositional, and structural characteristics, including mechanisms of synthesis. The physiochemical properties of these polymers mean that they can be exploited for the sensorial and textural enhancement of a variety of food and beverage products. Traditionally, lactic acid bacteria exopolysaccharides have an important role in fermented dairy products and more recently are being applied for the improvement of bakery products. The health benefits that are continually being associated with these polysaccharides enable the development of dual function, added-value, and clean-label products. To fully exploit and understand the functionality of these exopolysaccharides, their isolation, purification, and thorough characterization are of great importance. This review considers each of the above factors and presents the current knowledge on the importance of lactic acid bacteria exopolysaccharides in the food and beverage industry.

  12. Correlation of Lactic Acid and Base Deficit Values Obtained From Arterial and Peripheral Venous Samples in a Pediatric Population During Intraoperative Care.

    PubMed

    Bordes, Brianne M; Walia, Hina; Sebastian, Roby; Martin, David; Tumin, Dmitry; Tobias, Joseph D

    2017-12-01

    Lactic acid and base deficit (BD) values are frequently monitored in the intensive care unit and operating room setting to evaluate oxygenation, ventilation, cardiac output, and peripheral perfusion. Although generally obtained from an arterial cannula, such access may not always be available. The current study prospectively investigates the correlation of arterial and peripheral venous values of BD and lactic acid. The study cohort included 48 patients. Arterial BD values ranged from -8 to 4 mEq/L and peripheral venous BD values ranged from -8 to 4 mEq/L. Arterial lactic acid values ranged from 0.36 to 2.45 μmol/L and peripheral venous lactic acid values ranged from 0.38 to 4 μmol/L. The arterial BD (-0.4 ± 2.2 mEq/L) was not significantly different from the peripheral venous BD (-0.6 ± 2.2 mEq/L). The arterial lactic acid (1.0 ± 0.5 μmol/L) was not significantly different from the peripheral venous lactic acid (1.1 ± 0.6 μmol/L). Pearson correlation coefficients demonstrated a very high correlation between arterial and peripheral venous BD ( r = .88, P < .001) and between arterial and peripheral venous lactic acid ( r = .67, P < .001). Bland-Altman plots of both pairs of measures showed that the majority of observations fell within the 95% limits of agreement. Least-squares regression indicated that a 1-unit increase in arterial BD corresponded to a 0.9-unit increase in peripheral venous BD (95% confidence interval [CI]: 0.7-1.0; P < .001) and a 1-unit increase in arterial lactic acid corresponded to a 0.9-unit increase in peripheral venous lactic acid (95% CI: 0.6-1.2; P < .001). These data demonstrate that there is a clinically useful correlation between arterial and peripheral venous lactic acid and BD values.

  13. Beta-carotene-rich carotenoid-protein preparation and exopolysaccharide production by Rhodotorula rubra GED8 grown with a yogurt starter culture.

    PubMed

    Frengova, Ginka I; Simova, Emilina D; Beshkova, Dora M

    2006-01-01

    The underlying method for obtaining a beta-carotene-rich carotenoid-protein preparation and exopolysaccharides is the associated cultivation of the carotenoid-synthesizing lactose-negative yeast strain Rhodotorula rubra GED8 with the yogurt starter culture (Lactobacillus bulgaricus 2-11 + Streptococcus thermophilus 15HA) in whey ultrafiltrate (45 g lactose/l) with a maximum carotenoid yield of 13.37 mg/l culture fluid on the 4.5th day. The chemical composition of the carotenoid-protein preparation has been identified. The respective carotenoid and protein content is 497.4 microg/g dry cells and 50.3% per dry weight, respectively. An important characteristic of the carotenoid composition is the high percentage (51.1%) of beta-carotene (a carotenoid pigment with the highest provitamin A activity) as compared to 12.9% and 33.7%, respectively, for the other two individual pigments--torulene and torularhodin. Exopolysaccharides (12.8 g/l) synthesized by the yeast and lactic acid cultures, identified as acid biopolymers containing 7.2% glucuronic acid, were isolated in the cell-free supernatant. Mannose, produced exclusively by the yeast, predominated in the neutral carbohydrate biopolymer component (76%). The mixed cultivation of R. rubra GED8 with the yogurt starter (L. bulgaricus 2-11 + S. thermophilus 15HA) in ultrafiltrate under conditions of intracellular production of maximum amount of carotenoids and exopolysaccharides synthesis enables combined utilization of the culture fluid from the fermentation process.

  14. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strainmore » 36D1, is presented and discussed.« less

  15. Betaine Improves Polymer-Grade D-Lactic Acid Production by Sporolactobacillus inulinus Using Ammonia as Green Neutralizer.

    PubMed

    Lv, Guoping; Che, Chengchuan; Li, Li; Xu, Shujing; Guan, Wanyi; Zhao, Baohua; Ju, Jiansong

    2017-07-06

    The traditional CaCO3-based fermentation process generates huge amount of insoluble CaSO4 waste. To solve this problem, we have developed an efficient and green D-lactic acid fermentation process by using ammonia as neutralizer. The 106.7 g/L of D-lactic acid production and 0.89 g per g of consumed sugar were obtained by Sporolactobacillus inulinus CASD with a high optical purity of 99.7% by adding 100 mg/L betaine in the simple batch fermentation process. The addition of betaine was experimentally proven to protect cell at high concentration of ammonium ion, increase the D-lactate dehydrogenase specific activity and thus promote the production of D-lactic acid.

  16. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  17. Aroma composition of shalgam: a traditional Turkish lactic acid fermented beverage.

    PubMed

    Tanguler, Hasan; Selli, Serkan; Sen, Kemal; Cabaroglu, Turgut; Erten, Huseyin

    2017-06-01

    Shalgam, a traditional red, cloudy and sour soft beverage, is produced by lactic acid fermentation of black carrot, sourdough, salt, bulgur flour, turnip and adequate water. The present study was designed to characterize the volatile compounds of shalgam obtained from different methods. The aroma compounds of shalgams produced by traditional and direct methods, and addition of Lactic acid bateria (LAB) cultures were examined. Volatile components of shalgam samples were extracted by liquid-liquid extraction technique with pentane/dichloromethane and analyzed by gas chromatography-mass spectrometry (GC-MS). Sixty aroma compounds were identified in shalgam samples including 20 terpenes, 9 esters, 9 alcohols, 5 volatile acids, 6 volatile phenols, 5 lactones, 3 naphthalenes, 2 carbonyl compounds and 1 C13-norisoprenoids. It was found that the aroma profiles of shalgams were quite similar. However, the total volatile content of the shalgam samples increased with addition of Lb. plantarum .

  18. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste.

    PubMed

    Yousuf, Ahasa; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2018-04-28

    Food waste landfilling causes environmental degradation, and this work assesses a sustainable food valorization technique. In this study, food waste is converted into lactic acid in a batch assembly by dark fermentation without pH control and without the addition of external inoculum at 37 °C. The effect of total solid (TS), enzymatic and aeration pretreatment was investigated on liquid products concentration and product yield. The maximum possible TS content was 34% of enzymatic pretreated waste, and showed the highest lactic acid concentration of 52 g/L, with a lactic acid selectivity of 0.6 g lactic /g totalacids . The results indicated that aeration pretreatment does not significantly improve product concentration or yield. Non-pretreated waste in a 29% TS system showed a lactic acid concentration of 31 g/L. The results showed that enzymatic pretreated waste at TS of 34% results in the highest production of lactic acid. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese.

    PubMed

    Broadbent, Jeffery R; Gummalla, Sanjay; Hughes, Joanne E; Johnson, Mark E; Rankin, Scott A; Drake, Mary Anne

    2004-08-01

    Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that alpha-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable alpha-keto acids to more-stable alpha-hydroxy acids via the action of alpha-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus casei d-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that alpha-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of alpha-keto acids, but sensory work indicated that this effect retarded cheese flavor development.

  20. Impact of Microbial Composition of Cambodian Traditional Dried Starters (Dombea) on Flavor Compounds of Rice Wine: Combining Amplicon Sequencing With HP-SPME-GCMS.

    PubMed

    Ly, Sokny; Mith, Hasika; Tarayre, Cédric; Taminiau, Bernard; Daube, Georges; Fauconnier, Marie-Laure; Delvigne, Frank

    2018-01-01

    Dombae is a traditional ferment starter which has been used for starchy based wine production in Cambodia. However, the production technology of rice wine in Cambodia is not optimized. The current study aimed to investigate the microbiota associated in five ferment starters and the effect of a traditional fermentation process using a metagenomics sequencing analysis and HS-SPME-GCMS for the characterization of the aromatic profiles at the end of fermentation. Most of bacteria identified in this study were lactic acid bacteria including Weissella cibaria, Pediococcus sp. MMZ60A, Lactobacillus fermentum , and Lactobacillus plantarum . Saccharomyces cerevisiae and Saccharomycopsis fibuligera were found to be abundant yeasts while the only amylolytic filamentous fungus was Rhizopus oryzae . A total of 25 aromatic compounds were detected and identified as esters, alcohols, acids, ketones and aldehydes. The alcohol group was dominant in each rice wine. Significant changes were observed at the level of microbial communities during fermentation, suggesting microbial succession for the assimilation of starch and subsequently assimilation of fermentation by-products leading to the production of flavor compounds. At this level, the presence of Weissella, Pediococcus , and Lactobacillus genus was strongly correlated with most of the flavor compounds detected.

  1. Impact of Microbial Composition of Cambodian Traditional Dried Starters (Dombea) on Flavor Compounds of Rice Wine: Combining Amplicon Sequencing With HP-SPME-GCMS

    PubMed Central

    Ly, Sokny; Mith, Hasika; Tarayre, Cédric; Taminiau, Bernard; Daube, Georges; Fauconnier, Marie-Laure; Delvigne, Frank

    2018-01-01

    Dombae is a traditional ferment starter which has been used for starchy based wine production in Cambodia. However, the production technology of rice wine in Cambodia is not optimized. The current study aimed to investigate the microbiota associated in five ferment starters and the effect of a traditional fermentation process using a metagenomics sequencing analysis and HS-SPME-GCMS for the characterization of the aromatic profiles at the end of fermentation. Most of bacteria identified in this study were lactic acid bacteria including Weissella cibaria, Pediococcus sp. MMZ60A, Lactobacillus fermentum, and Lactobacillus plantarum. Saccharomyces cerevisiae and Saccharomycopsis fibuligera were found to be abundant yeasts while the only amylolytic filamentous fungus was Rhizopus oryzae. A total of 25 aromatic compounds were detected and identified as esters, alcohols, acids, ketones and aldehydes. The alcohol group was dominant in each rice wine. Significant changes were observed at the level of microbial communities during fermentation, suggesting microbial succession for the assimilation of starch and subsequently assimilation of fermentation by-products leading to the production of flavor compounds. At this level, the presence of Weissella, Pediococcus, and Lactobacillus genus was strongly correlated with most of the flavor compounds detected. PMID:29867806

  2. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  3. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  4. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1994-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  5. Characterization of enzymes in the oxidation of 1,2-propanediol to D: -(-)-lactic acid by Gluconobacter oxydans DSM 2003.

    PubMed

    Wei, Liujing; Yang, Xuepeng; Gao, Keliang; Lin, Jinping; Yang, Shengli; Hua, Qiang; Wei, Dongzhi

    2010-09-01

    Although Gluconobacter oxydans can convert 1,2-propanediol to D: -(-)-lactic acid, the enzyme(s) responsible for the conversion has remain unknown. In this study, the membrane-bound alcohol dehydrogenase (ADH) of Gluconobacter oxydans DSM 2003 was purified and confirmed to be essential for the process of D: -(-)-lactic acid production by gene knockout and complementation studies. A 25 percent decrease in D: -(-)-lactic acid production was found for the aldehyde dehydrogenase (ALDH) deficient strain of G. oxydans DSM 2003, indicating that this enzyme is involved in the reaction but not necessary. It is the first report that reveals the function of ADH and ALDH in the biooxidation of 1,2-propanediol to D: -(-)-lactic acid by G. oxydans DSM 2003.

  6. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Carbon Flux Trapping: Highly Efficient Production of Polymer-Grade d-Lactic Acid with a Thermophilic d-Lactate Dehydrogenase.

    PubMed

    Li, Chao; Tao, Fei; Xu, Ping

    2016-08-17

    High production of polymer-grade d-lactic acid is urgently required, particularly for the synthesis of polylactic acid. High-temperature fermentation has multiple advantages, such as lower equipment requirement and energy consumption, which are essential for lowering operating costs. We identified and introduced a unique d-lactate dehydrogenase into a thermotolerant butane-2,3-diol-producing strain. Carbon flux "trapping" was achieved by a "trapping point" created by combination of the introduced enzyme and the host efflux pump, which afforded irreversible transport of d-lactic acid. The overall carbon flux of the engineered strain was significantly enhanced and was redistributed predominantly to d-lactic acid. Under optimized conditions at 50 °C, d-lactic acid reached the highest titer (226.6 g L(-1) ) reported to date. This discovery allows us to extend the carbon flux trapping strategy to engineering complex metabolic networks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CuO/CeO2 catalysts for glycerol selective conversion to lactic acid.

    PubMed

    Palacio, Ruben; Torres, Sebastian; Royer, Sébastien; Mamede, Anne Sophie; López, Diana; Hernández, Diana

    2018-03-26

    Ceria supported copper oxide catalysts were produced by a deposition-precipitation method, at a high copper loading (up to >25 wt%). These materials demonstrated excellent properties for glycerol selective conversion to lactic acid, with a conversion reaching up to 87% with a selectivity to lactic acid of 74% (8 h reaction, 220 °C, under N2 pressure). These catalysts also exhibited high stability upon 5 successive reaction cycles. The formation of a crystalline CuO phase was demonstrated in the nanocomposites at a high Cu loading, with elongated shaped particles formed on the cerium oxide surface. Such particles were however, not observed at low Cu loadings. XPS analysis revealed that Cu(ii) was the main Cu species on the fresh catalyst, and that this species was reduced to Cu(i) during the reaction. Complementary characterization over the spent catalyst clearly showed the morphological modifications of the CuO phase, however, did not impact significantly either glycerol conversion or selectivity to lactic acid upon recycling. For instance, apparently, the catalytic activity of CuO largely depends on the Cu(ii) species.

  9. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17.

    PubMed

    Zhou, Jie; Ouyang, Jia; Xu, Qianqian; Zheng, Zhaojuan

    2016-12-01

    The main barriers to cost-effective lactic acid production from lignocellulose are the high cost of enzymes and the ineffective utilization of the xylose within the hydrolysate. In the present study, the thermophilic Bacillus coagulans strain CC17 was used for the simultaneous saccharification and fermentation (SSF) of bagasse sulfite pulp (BSP) to produce l-lactic acid. Unexpectedly, SSF by CC17 required approximately 33.33% less fungal cellulase than did separate hydrolysis and fermentation (SHF). More interestingly, CC17 can co-ferment cellobiose and xylose without any exogenous β-glucosidase in SSF. Moreover, adding xylanase could increase the concentration of lactic acid produced via SSF. Up to 110g/L of l-lactic acid was obtained using fed-batch SSF, resulting in a lactic acid yield of 0.72g/g cellulose. These results suggest that SSF using CC17 has a remarkable advantage over SHF and that a potentially low-cost and highly-efficient fermentation process can be established using this protocol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Investigating on the fermentation behavior of six lactic acid bacteria strains in barley malt wort reveals limitation in key amino acids and buffer capacity.

    PubMed

    Nsogning, Sorelle Dongmo; Fischer, Susann; Becker, Thomas

    2018-08-01

    Understanding lactic acid bacteria (LAB) fermentation behavior in malt wort is a milestone towards flavor improvement of lactic acid fermented malt beverages. Therefore, this study aims to outline deficiencies that may exist in malt wort fermentation. First, based on six LAB strains, cell viability and vitality were evaluated. Second, sugars, organic acids, amino acids, pH value and buffering capacity (BC) were monitored. Finally, the implication of key amino acids, fructose and wort BC on LAB growth was determined. Short growth phase coupled with prompt cell death and a decrease in metabolic activity was observed. Low wort BC caused rapid pH drop with lactic acid accumulation, which conversely increased the BC leading to less pH change at late-stage fermentation. Lactic acid content (≤3.9 g/L) was higher than the reported inhibitory concentration (1.8 g/L). Furthermore, sugars were still available but fructose and key amino acids lysine, arginine and glutamic acid were considerably exhausted (≤98%). Wort supplementations improved cell growth and viability leading to conclude that key amino acid depletion coupled with low BC limits LAB growth in malt wort. Then, a further increase in organic acid reduces LAB viability. This knowledge opens doors for LAB fermentation process optimization in malt wort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The sensitivity and significance analysis of parameters in the model of pH regulation on lactic acid production by Lactobacillus bulgaricus.

    PubMed

    Liu, Ke; Zeng, Xiangmiao; Qiao, Lei; Li, Xisheng; Yang, Yubo; Dai, Cuihong; Hou, Aiju; Xu, Dechang

    2014-01-01

    The excessive production of lactic acid by L. bulgaricus during yogurt storage is a phenomenon we are always tried to prevent. The methods used in industry either control the post-acidification inefficiently or kill the probiotics in yogurt. Genetic methods of changing the activity of one enzyme related to lactic acid metabolism make the bacteria short of energy to growth, although they are efficient ways in controlling lactic acid production. A model of pH-induced promoter regulation on the production of lactic acid by L. bulgaricus was built. The modelled lactic acid metabolism without pH-induced promoter regulation fitted well with wild type L. bulgaricus (R2LAC = 0.943, R2LA = 0.942). Both the local sensitivity analysis and Sobol sensitivity analysis indicated parameters Tmax, GR, KLR, S, V0, V1 and dLR were sensitive. In order to guide the future biology experiments, three adjustable parameters, KLR, V0 and V1, were chosen for further simulations. V0 had little effect on lactic acid production if the pH-induced promoter could be well induced when pH decreased to its threshold. KLR and V1 both exhibited great influence on the producing of lactic acid. The proposed method of introducing a pH-induced promoter to regulate a repressor gene could restrain the synthesis of lactic acid if an appropriate strength of promoter and/or an appropriate strength of ribosome binding sequence (RBS) in lacR gene has been designed.

  12. Laboratory Studies of Aedes aegypti Attraction to Ketones, Sulfides, and Primary Chloroalkanes Tested Alone and in Combination with L-Lactic Acid.

    PubMed

    Bernier, Ulrich R; Kline, Daniel L; Allan, Sandra A; Barnard, Donald R

    2015-03-01

    The attraction of female Aedes aegypti to single compounds and binary compositions containing L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because of their structural relation to acetone, dimethyl disulfide, and dichloromethane, which have all been reported to synergize attraction to L-lactic acid. Human odors, carbon dioxide, and the binary mixture of L-lactic acid and CO₂served as controls for comparison of attraction responses produced by the binary mixtures. All tested mixtures that contained chloroalkanes attracted mosquitoes at synergistic levels, as did L-lactic acid and CO₂. Synergism was less frequent in mixtures of L-lactic acid with sulfides and ketones; in the case of ketones, synergistic attraction was observed only for L-lactic acid combined with acetone or butanone. Suppression or inhibition of attraction response was observed for combinations that contained ketones of C7-C12 molecular chain length (optimum in the C8-C10 range). This inhibition effect is similar to that observed previously for specific ranges of carboxylic acids, aldehydes, and alcohols.

  13. Supplementation of medium with diammonium hydrogen phosphate enhanced the D-lactate dehydrogenase levels leading to increased D-lactic acid productivity.

    PubMed

    Singhvi, Mamata; Jadhav, Akanksha; Gokhale, Digambar

    2013-10-01

    The production of D-lactic acid by Lactobacillus lactis RM2-24 was investigated using modified media to increase the efficiency of the fermentation process. The results indicated that the addition of 5 g/l peptone and 1 g/l (NH4)2HPO4 enhanced D-lactic acid production by 32%, as compared to that obtained from non supplemented media, with a productivity of 3.0 g/l/h. Lactate dehydrogenase (LDH) expression profile in these different media was studied which resulted in appearance of additional LDH isoform produced by cells when they were grown in HSYE supplemented with (NH4)2HPO4. The additional LDH appears to be L-LDH contributing to production of L-lactic acid in the fermented broth. This is totally new information in the lactic acid fermentation and could be very useful to industries engaged in D-lactic acid production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Hydrolytic breakdown of lactoferricin by lactic acid bacteria.

    PubMed

    Paul, Moushumi; Somkuti, George A

    2010-02-01

    Lactoferricin is a 25-amino acid antimicrobial peptide fragment that is liberated by pepsin digestion of lactoferrin present in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. These attributes provide lactoferricin and other natural bioactive peptides with the potential to be functional food ingredients that can be used by the food industry in a variety of applications. At present, commercial uses of these types of compounds are limited by the scarcity of information on their ability to survive food processing environments. We have monitored the degradation of lactoferricin during its incubation with two types of lactic acid bacteria used in the yogurt-making industry, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, with the aim of assessing the stability of this milk protein-derived peptide under simulated yogurt-making conditions. Analysis of the hydrolysis products isolated from these experiments indicates degradation of this peptide near neutral pH by lactic acid bacteria-associated peptidases, the extent of which was influenced by the bacterial strain used. However, the data also showed that compared to other milk-derived bioactive peptides that undergo complete degradation under these conditions, the 25-amino acid lactoferricin is apparently more resistant, with approximately 50% of the starting material remaining after 4 h of incubation. These findings imply that lactoferricin, as a natural milk protein-derived peptide, has potential applications in the commercial production of yogurt-like fermented dairy products as a multi-functional food ingredient.

  15. Shelf-life extension of vacuum-packaged meat from pheasant (Phasianus colchicus) by lactic acid treatment.

    PubMed

    Pfeifer, Agathe; Smulders, Frans J M; Paulsen, Peter

    2014-07-01

    We investigated the influence of lactic acid treatment of pheasant meat before vacuum-packaged storage of 3, 7, and 10 d at +6°C on microbiota and pH. Breast muscle samples were collected from carcasses of slaughtered as well as from hunted (shot) wild pheasants. Immersion of meat samples in 3% (wt/wt) lactic acid for 60 s effectuated a significant drop in pH of approximately 0.5 to 0.7 units, which remained during the entire storage period. In parallel, total aerobic counts of such treated and stored samples were on an average 1.5 to 1.7 log units lower than in non-acid-treated samples. Similar results were found for Enterobacteriaceae. A significant decrease in pH was measured at d 7 and 10 in the acid-treated samples in comparison with the untreated ones. In summary, the immersion of pheasant breast meat cuts in dilute lactic acid significantly reduced microbiota during vacuum-packed storage, even at slight temperature abuse conditions. © 2014 Poultry Science Association Inc.

  16. The expression of propionicin PLG-1 gene (plg-1) by lactic starters.

    PubMed

    Mohamed, Sameh E; Tahoun, Mahmoud K

    2015-05-01

    Propionicin PLG-1 is a bacteriocin produced by Propionibacterium thoenii P127. Such bacteriocin inhibits wide range of food-borne pathogens such as pathogenic Escherichia coli, Pseudomonas aeruginosa, Vibrio parahaemolyticus, Yersinia enterocolitica and a strain of Corynebacterium sp. In the present study, plg-1 gene expressing propionicin PLG-1 was isolated, sequenced for the first time and the resulting sequence was analysed using several web-based bioinformatics programs. The PCR product containing plg-1 gene was transferred to different lactic acid bacterial (LAB) strains using pLEB590 as a cloning vector to give the modified vector pLEBPLG-1. LAB transformants showed an antimicrobial activity against Esch. coli DH5α (most affected strain), Listeria monocytogenes 18116, and Salmonella enterica 25566 as model pathogenic strains. Such LAB transformants can be used in dairy industry to control the food-borne pathogens that are largely distributed worldwide and to feed schoolchildren in the poor countries where dangerous epidemic diseases and diarrhoea prevail.

  17. Improvement of l-lactic acid productivity from sweet sorghum juice by repeated batch fermentation coupled with membrane separation.

    PubMed

    Wang, Yong; Meng, Hongyu; Cai, Di; Wang, Bin; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    In order to efficiently produce l-lactic acid from non-food feedstocks, sweet sorghum juice (SSJ), which is rich of fermentable sugars, was directly used for l-lactic acid fermentation by Lactobacillus rhamnosus LA-04-1. A membrane integrated repeated batch fermentation (MIRB) was developed for productivity improvement. High-cell-density fermentation was achieved with a final cell density (OD620) of 42.3, and the CCR effect was overcomed. When SSJ (6.77gL(-1) glucose, 4.51gL(-1) fructose and 50.46gL(-1) sucrose) was used as carbon source in MIRB process, l-lactic acid productivity was increased significantly from 1.45gL(-1)h(-1) (batch 1) to 17.55gL(-1)h(-1) (batch 6). This process introduces an effective way to produce l-lactic acid from SSJ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria.

    PubMed

    Teemu, Halttunen; Seppo, Salminen; Jussi, Meriluoto; Raija, Tahvonen; Kalle, Lertola

    2008-07-15

    Extensive cadmium and lead contamination of water has been reported to occur locally as a result of human activities. Lactic acid bacteria have been reported to remove cadmium and lead from water. The aim of this work was to clarify the mechanisms of cadmium and lead removal from water. In addition, the effect of other metals, reversibility of binding and recyclability of the biomass was assessed. Based on our earlier data, the two most promising lactic acid bacteria, Lactobacillus fermentum ME3 and Bifidobacterium longum 46, were selected for these experiments. The results showed that the presence of other cationic metals and blocking of carboxyl and phosphoryl groups reduced cadmium and lead removal. These results suggest involvement of electrostatic interactions in cadmium and lead removal, and support our earlier findings. Transmission electron micrographs showed large deposits of lead on the bacterial surface suggesting formation of metallic lead precipitates. Both cadmium and lead removal were reversible processes established by full recovery of removed metal after desorption with dilute solutions of EDTA and HNO(3). Resorption capacity of both biomasses tested was reduced after regeneration with 10 mM EDTA and 15 mM HNO(3). Taken together, the results suggest involvement of several reversible mechanisms such as ion exchange and precipitation in cadmium and lead binding by lactic acid bacteria. The results show that specific lactic acid bacteria have the potential for removal of cadmium and lead from water although reduction in resorption capacity after regeneration of the biomass may form a problem. Since the studies so far have mainly focused on removal of single metals from pure water, metal removal in conditions of natural waters should be assessed in further experiments.

  19. Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread.

    PubMed

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Montemurro, Marco; Gobbetti, Marco

    2016-06-01

    Lactic acid bacteria were isolated and identified from quinoa flour, spontaneously fermented quinoa dough, and type I quinoa sourdough. Strains were further selected based on acidification and proteolytic activities. Selected Lactobacillus plantarum T6B10 and Lactobacillus rossiae T0A16 were used as mixed starter to get quinoa sourdough. Compared to non-fermented flour, organic acids, free amino acids, soluble fibers, total phenols, phytase and antioxidant activities, and in vitro protein digestibility markedly increased during fermentation. A wheat bread was made using 20% (w/w) of quinoa sourdough, and compared to baker's yeast wheat breads manufactured with or without quinoa flour. The use of quinoa sourdough improved the chemical, textural, and sensory features of wheat bread, showing better performances compared to the use of quinoa flour. Protein digestibility and quality, and the rate of starch hydrolysis were also nutritional features that markedly improved using quinoa sourdough as an ingredient. This study exploited the potential of quinoa flour through sourdough fermentation. A number of advantages encouraged the manufacture of novel and healthy leavened baked goods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evaluation of the use of malic acid decarboxylase-deficient starter culture in NaCl-free cucumber fermentations to reduce bloater incidence.

    PubMed

    Zhai, Y; Pérez-Díaz, I M; Diaz, J T; Lombardi, R L; Connelly, L E

    2018-01-01

    Accumulation of carbon dioxide (CO 2 ) in cucumber fermentations is known to cause hollow cavities inside whole fruits or bloaters, conducive to economic losses for the pickling industry. This study focused on evaluating the use of a malic acid decarboxylase (MDC)-deficient starter culture to minimize CO 2 production and the resulting bloater index in sodium chloride-free cucumber fermentations brined with CaCl 2 . Attempts to isolate autochthonous MDC-deficient starter cultures from commercial fermentations, using the MD medium for screening, were unsuccessful. The utilization of allochthonous MDC-deficient starter cultures resulted in incomplete utilization of sugars and delayed fermentations. Acidified fermentations were considered, to suppress the indigenous microbiota and favour proliferation of the allochthonous MDC-deficient Lactobacillus plantarum starter cultures. Inoculation of acidified fermentations with L. plantarum alone or in combination with Lactobacillus brevis minimally improved the conversion of sugars. However, inoculation of the pure allochthonous MDC-deficient starter culture to 10 7 CFU per ml in acidified fermentations resulted in a reduced bloater index as compared to wild fermentations and those inoculated with the mixed starter culture. Although use of an allochthonous MDC-deficient starter culture reduces bloater index in acidified cucumber fermentations brined with CaCl 2 , an incomplete conversion of sugars is observed. Economical losses due to the incidence of bloaters in commercial cucumber fermentations brined with CaCl 2 may be reduced utilizing a starter culture to high cell density. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.