Sample records for lactide-co-glycolide nanoparticles exhibit

  1. Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.

    PubMed

    Beck-Broichsitter, Moritz

    2016-09-10

    The introduction of "Ouzo diagrams" has enhanced the applicability of the basic nanoprecipitation process for drug delivery research. The current study investigated the interaction of two relevant polymer/solvent systems, which is thought to impact the location of the stability-limit "Ouzo boundary". Viscosity measurements (Kurata-Stockmayer-Fixman approach) and static light scattering (Debye method) underlined a distinct interplay of the employed polymer (poly(lactide-co-glycolide)) with the utilized organic solvents (acetone and tetrahydrofuran). Both methods indicated that tetrahydrofuran was the "better" solvent for poly(lactide-co-glycolide). Thus, nanoprecipitation of this polymer/solvent composition resulted in larger nanoparticles. This observation can be attributed to the chain configuration of poly(lactide-co-glycolide) in the organic solvent, which influenced the extent of the break-up of the injected solvent layer. Accordingly, the stability-limit curve of the "Ouzo region" was shifted to lower poly(lactide-co-glycolide) fractions for tetrahydrofuran. Overall, the location of the "Ouzo region", which is an essential tool for drug delivery research, is influenced by the employed organic solvent. The current study described two distinct methods suitable to identify relevant polymer-solvent interactions, which dictate the stability-limit "Ouzo boundary" for relevant poly(lactide-co-glycolide). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Chitosan Stabilized Gold-Folate-Poly(lactide-co-glycolide) Nanoplexes Facilitate Efficient Gene Delivery in Hepatic and Breast Cancer Cells.

    PubMed

    Akinyelu, Jude; Singh, Moganavelli

    2018-07-01

    The biodegradable polymer, poly(lactide-co-glycolide) is a popular polymer of choice in many nanotherapeutic studies. Herein, we report on the synthesis and evaluation of four chitosan stabilized poly(lactide-co-glycolide) nanoparticles with and without coating with gold, and the targeting ligand, folic acid, as potential non-viral gene delivery vectors. The poly(lactide-co-glycolide) nanoparticles were synthesized via nanoprecipitation/solvent evaporation method in conjunction with the surface functionalizing folic acid and chitosan. The physiochemical properties (morphology, particle size, zeta potential, folic acid/chitosan presence, DNA binding), and biological properties (nuclease protection, in vitro cytotoxicity and transfection potential in human kidney, hepatocellular carcinoma and breast adenocarcinoma cells), of all four gene bound nanoparticles were evaluated. Gel retardation assays confirmed that all the nanoparticles were able to successfully bind the reporter plasmid, pCMV-luc DNA at varying weight ratios. The gold-folate-poly(lactide-co-glycolide) nanoplexes with the highest binding efficiency (w/w ratio 4:1), best protected the plasmid DNA as evidenced from the nuclease protection assays. Furthermore, these nanoplexes presented as spherical particles with an average particle size of 199.4 nm and zeta potential of 35.7 mV. Folic acid and chitosan functionalization of the nanoparticles was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy. All nanoplexes maintained over 90% cell viability in all cell lines investigated. Interestingly, the gold-folate-poly(lactide-co-glycolide) nanoplexes showed a greater transgene activity in the hepatic and breast cancer cells compared to the other nanocomplexes in the same cell lines. The favorable size, colloidal stability, low cytotoxicity, significant transgene expression, and nuclease protection ability in vitro, all provide support for the use of gold-folate-poly(lactide-co-glycolide

  3. Clonazepam release from poly(DL-lactide-co-glycolide) nanoparticles prepared by dialysis method.

    PubMed

    Nah, J W; Paek, Y W; Jeong, Y I; Kim, D W; Cho, C S; Kim, S H; Kim, M Y

    1998-08-01

    Aim of this work is to prepare poly(DL-lactide-co-glycolide) (PLGA) nanoparticles by dialysis method without surfactant and to investigate drug loading capacity and drug release. The size of PLGA nanoparticles was 269.9 +/- 118.7 nm in intensity average and the morphology of PLGA nanoparticles was spherical shape from the observation of SEM and TEM. In the effect of drug loading contents on the particle size distribution, PLGA nanoparticles were monomodal pattern with narrow size distribution in the empty and lower drug loading nanoparticles whereas bi- or trimodal pattern was showed in the higher drug loading ones. Release of clonazepam from PLGA nanoparticles with higher drug loading contents was slower than that with lower loading contents.

  4. Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol.

    PubMed

    Ignjatović, Nenad; Uskoković, Vuk; Ajduković, Zorica; Uskoković, Dragan

    2013-03-01

    Cholecalciferol, vitamin D3, plays an important role in bonemetabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA). Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems.

  5. Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol

    PubMed Central

    Ignjatović, Nenad; Uskoković, Vuk; Ajduković, Zorica; Uskoković, Dragan

    2013-01-01

    Cholecalciferol, vitamin D3, plays an important role in bone metabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA). Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems. PMID:25382938

  6. Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Ma, Yuandong; Zheng, Yi; Liu, Kexin; Tian, Ge; Tian, Yan; Xu, Lei; Yan, Fei; Huang, Laiqiang; Mei, Lin

    2010-07-01

    Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization using stannous octoate as catalyst. The obtained random copolymers were characterized by 1H NMR, FTIR, GPC and TGA. The docetaxel-loaded nanoparticles made of PLGA-TPGS copolymer were prepared by a modified solvent extraction/evaporation method. The nanoparticles were then characterized by various state-of-the-art techniques. The results revealed that the size of PLGA-TPGS nanoparticles was around 250 nm. The docetaxel-loaded PLGA-TPGS nanoparticles could achieve much faster drug release in comparison with PLGA nanoparticles. In vitro cellular uptakes of such nanoparticles were investigated by CLSM, demonstrating the fluorescence PLGA-TPGS nanoparticles could be internalized by human cervix carcinoma cells (HeLa). The results also indicated that PLGA-TPGS-based nanoparticles were biocompatible, and the docetaxel-loaded PLGA-TPGS nanoparticles had significant cytotoxicity against Hela cells. The cytotoxicity against HeLa cells for PLGA-TPGS nanoparticles was in time- and concentration-dependent manner. In conclusion, PLGA-TPGS random copolymer could be acted as a novel and promising biocompatible polymeric matrix material applicable to nanoparticle-based drug delivery system for cancer chemotherapy.

  7. Comparative evaluation of in vitro parameters of tamoxifen citrate loaded poly(lactide-co-glycolide), poly(epsilon-caprolactone) and chitosan nanoparticles.

    PubMed

    Cirpanli, Y; Yerlikaya, F; Ozturk, K; Erdogar, N; Launay, M; Gegu, C; Leturgez, T; Bilensoy, E; Calis, S; Capan, Y

    2010-12-01

    Tamoxifen (TAM), the clinical choice for the antiestrogen treatment of advanced or metastatic breast cancer, was formulated in nanoparticulate carrier systems in the form of poly(lactide-co-glycolide) (PLGA), poly-epsilon-caprolactone (PCL) and chitosan (CS) nanoparticles. The PLGA and PCL nanoparticles were prepared by a nanoprecipitation technique whereas the CS nanoparticles were prepared by the ionic gelation method. Mean particle sizes were under 260 nm for PLGA and PCL nanoparticles and around 400 nm for CS nanoparticles. Polydispersity indices were less than 0.4 for all formulations. Zeta potential values were positive for TAM loaded nanoparticles because of the positive charge of the drug. Drug loading values were significantly higher for PCL nanoparticles when compared to PLGA and CS nanoparticles. All nanoparticle formulations exhibited controlled release properties. These results indicate that TAM loaded PLGA, PCL and CS nanoparticles may provide promising carrier systems for tumor targeting.

  8. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment

    PubMed Central

    Yuan, Xun; Ji, Wenxiang; Chen, Si; Bao, Yuling; Tan, Songwei; Lu, Shun; Wu, Kongming; Chu, Qian

    2016-01-01

    Drug resistance has become a main obstacle for the effective treatment of lung cancer. To address this problem, a novel biocompatible nanoscale package, poly(d,l-lactide-co-glycolide)-Tween 80, was designed and synthesized to overcome paclitaxel (PTX) resistance in a PTX-resistant human lung cancer cell line. The poly(d,l-lactide-co-glycolide) (PLGA)-Tween 80 nanoparticles (NPs) could efficiently load PTX and release the drug gradually. There was an increased level of uptake of PLGA-Tween 80 in PTX-resistant lung cancer cell line A549/T, which achieved a significantly higher level of cytotoxicity than both PLGA NP formulation and Taxol®. The in vivo antitumor efficacy also showed that PLGA-Tween 80 NP was more effective than Taxol®, indicating that PLGA-Tween 80 copolymer was a promising carrier for PTX in resistant lung cancer. PMID:27307727

  9. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin

    PubMed Central

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin–sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit® FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery. PMID:25999713

  10. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin.

    PubMed

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin-sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit(®) FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery.

  11. Antitumor activity of sorafenib-incorporated nanoparticles of dextran/poly(dl-lactide- co-glycolide) block copolymer

    NASA Astrophysics Data System (ADS)

    Kim, Do Hyung; Kim, Min-Dae; Choi, Cheol-Woong; Chung, Chung-Wook; Ha, Seung Hee; Kim, Cy Hyun; Shim, Yong-Ho; Jeong, Young-Il; Kang, Dae Hwan

    2012-01-01

    Sorafenib-incoporated nanoparticles were prepared using a block copolymer that is composed of dextran and poly( DL-lactide- co-glycolide) [Dex bLG] for antitumor drug delivery. Sorafenib-incorporated nanoparticles were prepared by a nanoprecipitation-dialysis method. Sorafenib-incorporated Dex bLG nanoparticles were uniformly distributed in an aqueous solution regardless of the content of sorafenib. Transmission electron microscopy of the sorafenib-incorporated Dex bLG nanoparticles revealed a spherical shape with a diameter < 300 nm. Sorafenib-incorporated Dex bLG nanoparticles at a polymer/drug weight ratio of 40:5 showed a relatively uniform size and morphology. Higher initial drug feeding was associated with increased drug content in nanoparticles and in nanoparticle size. A drug release study revealed a decreased drug release rate with increasing drug content. In an in vitro anti-proliferation assay using human cholangiocarcinoma cells, sorafenib-incorporated Dex bLG nanoparticles showed a similar antitumor activity as sorafenib. Sorafenib-incorporated Dex bLG nanoparticles are promising candidates as vehicles for antitumor drug targeting.

  12. Nanoparticles obtained by confined impinging jet mixer: poly(lactide-co-glycolide) vs. Poly-ε-caprolactone.

    PubMed

    Turino, Ludmila N; Stella, Barbara; Dosio, Franco; Luna, Julio A; Barresi, Antonello A

    2018-06-01

    This paper is focused on the production and characterization of polymeric nanoparticles obtained by nanoprecipitation. The method consisted of using a confined impinging jet mixer (CIJM), circumventing high-energy equipment. Differences between the use of poly-ε-caprolactone (PCL) and poly(lactide-co-glycolide) (PLGA) as concerns particle mean size, zeta potential, and broad-spectrum antibiotic florfenicol entrapment were investigated. Other analyzed variables were polymer concentration, solvent, and anti-solvent flow rates, and antibiotic initial concentration. To our knowledge, no data were found related to PLGA and PCL nanoparticles comparison using CIJM. Also, florfenicol encapsulation within PCL or PLGA nanoparticles by nanoprecipitation has not been reported yet. The complexity of the nanoprecipitation phenomena has been confirmed, with many relevant variables involved in particles formation. PLGA resulted in smaller and more stable nanoparticles with higher entrapping of florfenicol than PCL.

  13. Stabilizers influence drug–polymer interactions and physicochemical properties of disulfiram-loaded poly-lactide-co-glycolide nanoparticles

    PubMed Central

    Hoda, Muddasarul; Sufi, Shamim Akhtar; Cavuturu, Bindumadhuri; Rajagopalan, Rukkumani

    2018-01-01

    Aim: Stabilizers are known to be an integral component of polymeric nanostructures. Ideally, they manipulate physicochemical properties of nanoparticles. Based on this hypothesis, we demonstrated that disulfiram (drug) and Poly-lactide-co-glycolide (polymer) interactions and physicochemical properties of their nanoparticles formulations are significantly influenced by the choice of stabilizers. Methodology: Electron microscopy, differential scanning calorimetry, x-ray diffraction, Raman spectrum analysis, isothermal titration calorimetry and in silico docking studies were performed. Results & discussion: Polysorbate 80 imparted highest crystallinity while Triton-X 100 imparted highest rigidity, possibly influencing drug bioavailability, blood-retention time, cellular uptake and sustained drug release. All the molecular interactions were hydrophobic in nature and entropy driven. Therefore, polymeric nanoparticles may be critically manipulated to streamline the passive targeting of drug-loaded nanoparticles. PMID:29379637

  14. Cholesterol-modified poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery.

    PubMed

    Lee, Jeong-Jun; Lee, Song Yi; Park, Ju-Hwan; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-07-25

    Poly(lactide-co-glycolide)-cholesterol (PLGA-C)-based nanoparticles (NPs) were developed for the tumor-targeted delivery of curcumin (CUR). PLGA-C/CUR NPs with ∼200nm mean diameter, narrow size distribution, and neutral zeta potential were fabricated by a modified emulsification-solvent evaporation method. The existence of cholesterol moiety in PLGA-C copolymer was confirmed by proton nuclear magnetic resonance ((1)H NMR) analysis. In vitro stability of developed NPs after 24h incubation was confirmed in phosphate buffered saline (PBS) and serum media. Sustained (∼6days) and pH-responsive drug release profiles from PLGA-C NPs were presented. Blank PLGA and PLGA-C NPs exhibited a negligible cytotoxicity in Hep-2 (human laryngeal carcinoma) cells in the tested concentration range. According to the results of flow cytometry and confocal laser scanning microscopy (CLSM) studies, PLGA-C NPs presented an improved cellular accumulation efficiency, compared to PLGA NPs, in Hep-2 cells. Enhanced in vivo tumor targetability of PLGA-C NPs, compared to PLGA NPs, in Hep-2 tumor-xenografted mouse model was also verified by a real-time near-infrared fluorescence (NIRF) imaging study. Developed PLGA-C NPs may be a candidate of efficient and biocompatible nanosystems for tumor-targeted drug delivery and cancer imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cytotoxicity of Paclitaxel in biodegradable self-assembled core-shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles.

    PubMed

    He, Xuezhong; Ma, Junyu; Mercado, Angel E; Xu, Weijie; Jabbari, Esmaiel

    2008-07-01

    Biodegradable core-shell polymeric nanoparticles (NPs), with a hydrophobic core and hydrophilic shell, are developed for surfactant-free encapsulation and delivery of Paclitaxel to tumor cells. Poly (lactide-co-glycolide fumarate) (PLGF) and Poly (lactide-fumarate) (PLAF) were synthesized by condensation polymerization of ultra-low molecular weight poly(L: -lactide-co-glycolide) (ULMW PLGA) with fumaryl chloride (FuCl). Similarly, poly(lactide-co-ethylene oxide fumarate) (PLEOF) macromer was synthesized by reacting ultra-low molecular weight poly(L: -lactide) (ULMW PLA) and PEG with FuCl. The blend PLGF/PLEOF and PLAF/PLEOF macromers were self-assembled into NPs by dialysis. The NPs were characterized with respect to particle size distribution, morphology, and loading efficiency. The physical state and miscibility of Paclitaxel in NPs were characterized by differential scanning calorimetry. Tumor cell uptake and cytotoxicity of Paclitaxel loaded NPs were measured by incubation with HCT116 human colon carcinoma cells. The distribution of NPs in vivo was assessed with Apc(Min/+)mouse using infrared imaging. PLEOF macromer, due to its amphiphilic nature, acted as a surface active agent in the process of self-assembly which produced core-shell NPs with PLGF/PLAF and PLEOF macromers as the core and shell, respectively. The encapsulation efficiency ranged from 70 to 56% and it was independent of the macromer but decreased with increasing concentration of Paclitaxel. Most of the PLGF and PLAF NPs degraded in 15 and 28 days, respectively, which demonstrated that the release was dominated by hydrolytic degradation and erosion of the matrix. As the concentration of Paclitaxel was increased from 0 to 10, and 40 mug/ml, the viability of HCT116 cells incubated with free Paclitaxel decreased from 100 to 65 and 40%, respectively, while those encapsulated in PLGF/PLEOF NPs decreased from 93 to 54 and 28%. Groups with Paclitaxel loaded NPs had higher cytotoxicity compared to

  16. Bioactive Hybrid Particles from Poly(D,L-lactide-co-glycolide) Nanoparticle Stabilized Lipid Droplets.

    PubMed

    Joyce, Paul; Whitby, Catherine P; Prestidge, Clive A

    2015-08-12

    Biodegradable and bioactive hybrid particles composed of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and medium-chain triglycerides were prepared by spray drying lipid-in-water emulsions stabilized by PLGA nanoparticles, to form PLGA-lipid hybrid (PLH) microparticles approximately 5 μm in mean diameter. The nanoparticle stabilizer was varied and mannitol was also incorporated during the preparation to investigate the effect of stabilizer charge and cryoprotectant content on the particle microstructure. An in vitro lipolysis model was used to demonstrate the particles' bioactivity by manipulating the digestion kinetics of encapsulated lipid by pancreatic lipase in simulated gastrointestinal fluid. Lipid digestion kinetics were enhanced in PLH and PLGA-lipid-mannitol hybrid (PLMH) microparticles for both stabilizers, compared to a coarse emulsion, in biorelevant media. An optimal digestion rate was observed for the negatively charged PLMH system, evidenced by a 2-fold increase in the pseudo-first-order rate constant compared to a coarse emulsion. Improved microparticle redispersion, probed by dual dye confocal fluorescence microscopy, increased the available surface area of lipid for lipase adsorption, enhancing digestion kinetics. Thereby, lipase action was controlled in hybrid microparticles by altering the surface charge and carbohydrate content. Our results demonstrate that bioactive microparticles composed of versatile and biodegradable polymeric particles and oil droplets have great potential for use in smart food and nutrient delivery, as well as safer and more efficacious oral delivery of drugs and drug combinations.

  17. Synthesis and characterization of the biodegradable and elastic terpolymer poly(glycolide-co-L-lactide-co-ϵ-caprolactone) for mechano-active tissue engineering.

    PubMed

    Jung, Youngmee; Lee, Sun-Hee; Kim, Sang-Heon; Lim, Jong Choo; Kim, Soo Hyun

    2013-01-01

    We synthesized a series of tri-component biodegradable copolymers with elastic characteristics by ring-opening copolymerization of cyclic lactones, that is, glycolide, L-lactide, and ϵ-caprolactone, in the presence of stannous octoate as a catalyst. We evaluated the physical and chemical characteristics of poly(glycolide-co-L-lactide-co-ϵ-caprolactone) (PGLCL) copolymers. The synthesized PGLCL had a high molecular weight of about 100 kD and an amorphous structure. It was confirmed that the physical and chemical properties of these terpolymers could be modulated by adjusting copolymer composition. PGLCL films exhibited rubber-like elasticity and showed almost complete recovery when subjected to 50% of the tensile strain. To examine the biodegradability of the PGLCL copolymers, we performed in vitro degradation tests for 12 weeks and observed changes in molecular weight, gross weight, and composition. These results showed that the glycolide was degraded most quickly and that ϵ-caprolactone was the slowest to degrade. Additionally, cytotoxicity tests revealed that none of the polymers were toxic. In summary, the mechanical properties and biodegradability of PGLCL terpolymers could be controlled by changing the monomer content, which may be useful for a wide range of tissue engineering applications based on mechanical property requirements.

  18. Pretreatment of poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide enhances osteoblastic differentiation and slows proliferation of mouse preosteoblast cells.

    PubMed

    Carpizo, Katherine H; Saran, Madeleine J; Huang, Weibiao; Ishida, Kenji; Roostaeian, Jason; Bischoff, David; Huang, Catherine K; Rudkin, George H; Yamaguchi, Dean T; Miller, Timothy A

    2008-02-01

    Surface topography is important in the creation of a scaffold for tissue engineering. Chemical etching of poly(l-lactide-co-glycolide) with sodium hydroxide has been shown to enhance adhesion and function of numerous cell types. The authors investigated the effects of sodium hydroxide pretreatment of three-dimensional poly(l-lactide-co-glycolide) scaffolds on the adhesion, differentiation, and proliferation of MC3T3-E1 murine preosteoblasts. MC3T3-E1 cells were seeded onto three-dimensional poly(l-lactide-co-glycolide) scaffolds with and without 1 M sodium hydroxide pretreatment. Cells were then cultured in osteogenic medium and harvested at varying time points for RNA extraction. Quantitative real-time reverse-transcriptase polymerase chain reaction was performed to measure mRNA expression of several osteogenic marker genes. In addition, cell numbers were determined at varying time points during the culture period. All experiments were performed in triplicate. Pretreatment of three-dimensional poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide resulted in statistically significant up-regulation of mRNA expression of alkaline phosphatase, bone sialoprotein, osteocalcin, and vascular endothelial growth factor during the first 10 days of culture. Histologic analysis demonstrated a striking increase in mineralized cell matrix deposition in the sodium hydroxide-treated group. Cell number was statistically higher in the sodium hydroxide-treated group immediately after cell seeding, suggesting improved adhesion. During the first 24 hours of culture, cells grew faster in the control group than in the sodium hydroxide-treated group. Chemical etching of poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide strongly influences the behavior of MC3T3-E1 preosteoblasts in vitro by enhancing adhesion and differentiation and slowing proliferation. Sodium hydroxide treatment may represent a simple and inexpensive way of improving scaffolds for use in bone tissue

  19. Improved degradation and bioactivity of amorphous aerosol derived tricalcium phosphate nanoparticles in poly(lactide-co-glycolide)

    NASA Astrophysics Data System (ADS)

    Loher, Stefan; Reboul, Valentine; Brunner, Tobias J.; Simonet, Marc; Dora, Claudio; Neuenschwander, Peter; Stark, Wendelin J.

    2006-04-01

    The industrially used flame synthesis of silica polymer fillers was extended to amorphous tricalcium phosphate (a-TCP) nanoparticles and resulted in a similar morphology as the traditionally used polymer fillers. Doping of poly(lactide-co-glycolide) (PLGA) with such highly agglomerated a-TCP was investigated for mechanical properties, increased in vitro biodegradation and the formation of a hydroxyapatite layer on the surface of the nanocomposite. PLGA films with particle loadings ranging from 0 to 30 wt% were prepared by solvent casting. Degradation in simulated body fluid (SBF) at 37 °C under sterile conditions for up to 42 days was followed by Raman spectroscopy, scanning electron microscopy (SEM), thermal analysis and tensile tests. The presence of nanoparticles in the PLGA matrix slightly increased the Young's modulus up to 30% compared to pure polymer reference materials. The nanoparticle doped films showed a significantly increased loss of polymer mass during degradation. Scanning electron microscopy images of doped films showed that the SBF degraded the PLGA by corrosion as facilitated by the incorporation of nanoparticulate calcium phosphate. Raman spectroscopy revealed that the deposition of about 10 nm sized hydroxyapatite crystallites on the surface of doped PLGA films was strongly increased by the addition of tricalcium phosphate fillers. The combination of increased hydroxyapatite formation and enhanced polymer degradation may suggest the use of such amorphous, aerosol derived a-TCP fillers for applications in non-load-bearing implant sites.

  20. Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice.

    PubMed

    Basarkar, Ashwin; Singh, Jagdish

    2009-01-01

    Determine the efficiency of cationic nanoparticles prepared by blending poly (lactide-co-glycolide; PLGA) and methacrylate copolymer (Eudragit(R) E100) to deliver a therapeutic gene encoding mouse interleukin-10, in vitro and in vivo. Nanoparticles prepared with PLGA and E100 were evaluated for delivery of plasmid DNA encoding mouse interleukin-10 in vitro and in vivo in mice upon intramuscular injection. Blood-glucose, serum interferon-gamma levels and histology of pancreas were studied to determine therapeutic efficacy. Histological evaluation of skeletal muscle from the injection site was performed to assess the biocompatibility of nanoparticles. PLGA/E100 nanoparticles showed endosomal escape evidenced by confocal microscopy and buffering ability. Transfecting HEK293 cells with plasmid-loaded PLGA/E100 nanoparticles resulted in significantly (p < 0.05) greater expression of interleukin-10 compared to PLGA nanoparticles. Mice treated with PLGA/E100 nanoparticles displayed higher serum levels of interleukin-10 and lower blood glucose levels compared to those treated with interleukin-10 plasmid alone or PLGA nanoparticles. High expression of interleukin-10 facilitated suppression of interferon-gamma levels and reduced islet infiltration. Histology of muscle showed that nanoparticles were biocompatible and did not cause chronic inflammatory response. Nanoparticles prepared by blending PLGA with methacrylate can efficiently and safely deliver plasmid DNA encoding mouse interleukin-10 leading to prevention of autoimmune diabetes.

  1. Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Heo, Dong Nyoung; Lee, Sang Jin; Heo, Min; Kim, Jeongho; Choi, Samjin; Park, Hun-Kuk; Park, Young Guk; Lim, Ho-Nam; Kwon, Il Keun

    2018-02-01

    Poly(lactide-co-glycolide) (PLGA) is a biocompatible and biodegradable polymer that has been widely used in devices for tissue engineering and drug delivery applications. Gold nanoparticles (GNPs) have also been used as biomaterials and have been found to have a positive effect on bone formation. In this study, we synthesized thiol end-capped PLGA (PLGA-SH) and used it for binding GNPs. This PLGA was processed into a sheet form via electrospinning. GNPs with an approximate size of 30 nm were attached onto the PLGA-SH sheet surfaces (PLGA-GNPs). This membrane was characterized by thermogravimetric analysis, ultraviolet/visible spectrophotometry, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and confocal laser scanning microscopy. Characterization results show that the GNPs are well attached on the PLGA-SH sheet and it is possible to control the GNPs load. Additionally, in-vitro results showed that PLGA-GNPs have good biocompatibility. They were also found to enhance osteogenic differentiation of human adipose derived stem cells. From these results, we have determined that the PLGA-GNP fibers can be useful as materials for bone regeneration and can also potentially serve as drug carriers.

  2. Design of experiments for the development of poly( d, l-lactide- co-glycolide) nanoparticles loaded with Uncaria tomentosa

    NASA Astrophysics Data System (ADS)

    Ribeiro, Ana Ferreira; Ferreira, Carina Torres Garruth; dos Santos, Juliana Fernandes; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira

    2015-02-01

    Polymeric nanoparticles have been shown to be effective carriers for natural substances that possess anticancer properties. Incorporation of these natural substances into polymeric nanoparticles increases targeting of these drugs, thus reducing side effects. Uncaria tomentosa (UT) is a Peruvian Amazon plant (existing in the Brazilian Amazon rainforest) that possesses promising anti-tumor activity. This paper describes the development of poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles loaded with UT extract. The emulsion solvent evaporation method was utilized and the initial conditions were determined for the organic phase (OP) and the aqueous phase (AP). The influence of surfactant (type and concentration), PLGA concentration and AP volume on nanoparticle size, polydispersity index (PI), and entrapment efficiency (EE) was determined using a fractional factorial design (FFD). In addition, the formulation was optimized using a Box-Behnken design. After the conditions were optimized, UT nanoparticles were obtained using an OP composed of an ethyl acetate:acetone (3:2) mixture which contained the UT alkaloids and PLGA, and an AP composed of a buffered solution of Poloxamer 188 (pH 7.5). The optimized formulation produced an EE of 64.6 %, a particle size of 107.4 nm and a PI of 0.163. The preliminary experiments provided important information regarding the behavior of the nanoparticulate system and the FFD used in this study greatly facilitated the selection of the most optimal conditions for formulation development.

  3. Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications.

    PubMed

    Gomes, Carmen; Moreira, Rosana G; Castell-Perez, Elena

    2011-03-01

    Eugenol and trans-cinnamaldehyde are natural compounds known to be highly effective antimicrobials; however, both are hydrophobic molecules, a limitation to their use within the food industry. The goal of this study was to synthesize spherical poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped eugenol and trans-cinnamaldehyde for future antimicrobial delivery applications. The emulsion evaporation method was used to form the nanoparticles in the presence of poly (vinyl alcohol) (PVA) as a surfactant. The inclusion of antimicrobial compounds into the PLGA nanoparticles was accomplished in the organic phase. Synthesis was followed by ultrafiltration (performed to eliminate the excess of PVA and antimicrobial compound) and freeze-drying. The nanoparticles were characterized by their shape, size, entrapment efficiency, and antimicrobial efficiency. The entrapment efficiency for eugenol and trans-cinnamaldehyde was approximately 98% and 92%, respectively. Controlled release experiments conducted in vitro at 37 °C and 100 rpm for 72 h showed an initial burst followed by a slower rate of release of the antimicrobial entrapped inside the PLGA matrix. All loaded nanoparticles formulations proved to be efficient in inhibiting growth of Salmonella spp. (Gram-negative bacterium) and Listeria spp. (Gram-positive bacterium) with concentrations ranging from 20 to 10 mg/mL. Results suggest that the application of these antimicrobial nanoparticles in food systems may be effective at inhibiting specific pathogens. Nanoencapsulation of lipophilic antimicrobial compounds has great potential for improving the effectiveness and efficiency of delivery in food systems. This study consisted of synthesizing PLGA nanoparticles with entrapped eugenol and trans-cinnamaldehyde. By characterizing these new delivery systems, one can understand the controlled-release mechanism and antimicrobial efficiency that provides a foundation that will enable food manufacturers to design

  4. Investigation of the influence of the composition on mechanical properties poly(glycolide-DL-lactide)

    NASA Astrophysics Data System (ADS)

    Baikin, A. S.; Sevostyanov, M. A.; Nasakina, E. O.; Sergienko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Kolmakova, A. A.; Yakubov, A. D.; Kolmakov, A. G.

    2018-04-01

    In this paper we describe the creation of films from poly (glycolide-DL-lactide). Studied the mechanical properties of developed polymer films of poly (glycolide-DL-lactide). The effect of the molecular weight of poly (glycolide-DL-lactide) on the mechanical properties of the resulting polymer films is shown. The dependence of the mechanical properties of poly (glycolide-DL-lactide) films on the polymer concentration in chloroform was studied. The possibility of creating biodegradable films with specified mechanical properties is shown.

  5. Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: formulation, characterization, and cytotoxicity studies

    NASA Astrophysics Data System (ADS)

    Sanna, Vanna; Roggio, Anna Maria; Posadino, Anna Maria; Cossu, Annalisa; Marceddu, Salvatore; Mariani, Alberto; Alzari, Valeria; Uzzau, Sergio; Pintus, Gianfranco; Sechi, Mario

    2011-12-01

    Docetaxel (Dtx) chemotherapy is the optional treatment in patients with hormone-refractory metastatic prostate cancer, and Dtx-loaded polymeric nanoparticles (NPs) have the potential to induce durable clinical responses. However, alternative formulations are needed to overcome the serious side effects, also due to the adjuvant used, and to improve the clinical efficacy of the drug. In the present study, two novel biodegradable block-copolymers, poly(lactide-co-caprolactone) (PLA-PCL) and poly(lactide-co-caprolactone-co-glycolide) (PLGA-PCL), were explored for the formulation of Dtx-loaded NPs and compared with PLA- and PLGA-NPs. The nanosystems were prepared by an original nanoprecipitation method, using Pluronic F-127 as surfactant agent, and were characterized in terms of morphology, size distribution, encapsulation efficiency, crystalline structure, and in vitro release. To evaluate the potential anticancer efficacy of a nanoparticulate system, in vitro cytotoxicity studies on human prostate cancer cell line (PC3) were carried out. NPs were found to be of spherical shape with an average diameter in the range of 100 to 200 nm and a unimodal particle size distribution. Dtx was incorporated into the PLGA-PCL NPs with higher ( p < 0.05) encapsulation efficiency than that of other polymers. Differential scanning calorimetry suggested that Dtx was molecularly dispersed in the polymeric matrices. In vitro drug release study showed that release profiles of Dtx varied on the bases of characteristics of polymers used for formulation. PLA-PCL and PLGA-PCL drug loaded NPs shared an overlapping release profiles, and are able to release about 90% of drug within 6 h, when compared with PLA- and PLGA-NPs. Moreover, cytotoxicity studies demonstrated advantages of the Dtx-loaded PLGA-PCL NPs over pure Dtx in both time- and concentration-dependent manner. In particular, an increase of 20% of PC3 growth inhibition was determined by PLGA-PCL NPs with respect to free drug after 72 h

  6. Enzymatic synthesis of poly-L-lactide and poly-L-lactide-co-glycolide in an ionic liquid.

    PubMed

    Chanfreau, Sébastien; Mena, Maria; Porras-Domínguez, Jaime R; Ramírez-Gilly, Mariana; Gimeno, Miquel; Roquero, Pedro; Tecante, Alberto; Bárzana, Eduardo

    2010-06-01

    The syntheses of poly-L-lactide (PLLA) and poly-L-lactide-co-glycolide (PLLGA) is reported in the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF(6)] mediated by the enzyme lipase B from Candida antarctica (Novozyme 435). The highest PLLA yield (63%) was attained at 90 degrees C with a molecular weight (M(n)) of 37.8 x 10(3) g/mol determined by size exclusion chromatography. This procedure produced relatively high crystalline polymers (up to 85% PLLA) as determined by DSC. In experiments at 90 degrees C product synthesis also occurred without biocatalyst, however, PLLA synthesis in [HMIM][PF(6)] at 65 degrees C followed only the enzymatic mechanism as ring opening was not observed without the enzyme. In addition, the enzymatic synthesis of PLLGA is first reported here using Novozyme 435 biocatalyst with up to 19% of lactyl units in the resulting copolymer as determined by NMR. Materials were also characterized by TGA, MALDI-TOF-MS, X-ray diffraction, polarimetry and rheology.

  7. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    PubMed Central

    Lamichhane, Surya P; Arya, Neha; Ojha, Nirdesh; Kohler, Esther; Shastri, V Prasad

    2015-01-01

    The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP)-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG) production is altered in many diseases (or pathologies), NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA) NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549) cells, human pulmonary microvascular endothelial cells (HPMEC), and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 μg/mL) by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of unmodified PLGA. Interestingly, the uptake of chondroitin sulfate NPs was the highest in both cell systems with 40%–60% higher uptake when compared with that of PLGA, and this represented an almost twofold difference over heparin-modified NPs. These findings suggest that GAG modification can be explored as means of changing the uptake behavior of PLGA NPs and these NP systems have potential in cancer therapy. PMID:25632234

  8. Poly(D,L-lactide-co-glycolide) microcomposite containing magnetic iron core nanoparticles as a drug carrier

    NASA Astrophysics Data System (ADS)

    Naik, Sweta; Carpenter, Everett E.

    2008-04-01

    Today many potent anticancer drugs like cisplatin are available which carry a number of side effects. A promising way of reducing the side effects is to target the drug to tissue sites by coating it with biocompatible materials like Poly (dl-lactide-co-glycolide) (PLGA) polymer where controlled drug release is achieved during the biodegradation of the polymer. Also the efficacy of anticancer drugs like cisplatin increases at elevated temperatures, so if local heating can be achieved where the drug is targeted. Local heating can be achieved by introducing iron core nanoparticles in the composites along with the drug, which can be heated by the 2.4 GHz microwaves. Local heating of the nanocomposites also helps to swell the polymer shell and enhance the drug release. The magnetic nanocomposites were synthesized using iron nanoparticles, PLGA and a fluorescent dye, tris-(2,2'bipyridyl) dichlororuthenium (II) using an oil-in-emulsion technique. The emulsion contains PLGA, dye, and iron nanoparticles dissolved in the oil phase and polyvinyl alcohol (PVA) as a stabilizer. As the sample is homogenized, and dried, uniform 100 nm composites are formed where the dye and iron nanoparticles are encapsulated in a PLGA shell. Control of the thickness and loading efficiency of the nanocomposite can be controlled by varying the ratio of PLGA, iron, and dye. The amount of loading was determined using TGA confirming from 20-50% (w/w) loading. As the dye is released from the composite the fluorescence intensity decreases due to self-quenching. This self-quenching allows for the determination of the release kinetics as a function of temperature using fluorescence spectroscopy. Initial results suggest that there is a release of 5-10% of the dye from the composite at 25°C and complete release after the nanocomposite reaches 90°C. Using local microwave heating the complete release of the dye can be accomplished with three two second pulses of 2.4 GHz microwaves. This allows for the

  9. Controlled-release of tetracycline and lovastatin by poly(d,l-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs

    PubMed Central

    Lee, Bor-Shiunn; Lee, Chien-Chen; Wang, Yi-Ping; Chen, Hsiao-Jan; Lai, Chern-Hsiung; Hsieh, Wan-Ling; Chen, Yi-Wen

    2016-01-01

    Chronic periodontitis is characterized by inflammation of periodontal tissues, leading to bone resorption and tooth loss. The goal of treatment is to regenerate periodontal tissues including bone and cementum lost as a consequence of disease. The local delivery of tetracycline was proven to be effective in controlling localized periodontal infection without apparent side effects. Previous studies suggested that lovastatin has a significant role in new bone formation; however, the local delivery of lovastatin might enhance its therapeutic effects. A number of local delivery devices have been developed recently, including poly(d,l-lactide-co-glycolide acid) (PLGA) nanoparticles. The aim of this study was to develop a local delivery device, PLGA-lovastatin-chitosan-tetracycline nanoparticles, which allows the sequential release of tetracycline and lovastatin to effectively control local infection and promote bone regeneration in periodontitis. The size and microstructure of nanoparticles were examined by transmission electron microscopy, Nanoparticle Size Analyzer, and Fourier transform infrared spectroscopy. The release of tetracycline and lovastatin was quantified using a UV-Vis spectrophotometer. Furthermore, the cytotoxic effect and alkaline phosphatase activity of the nanoparticles in osteoblast cell cultures as well as antibacterial activity against periodontal pathogens were investigated. Finally, the bone regeneration potential of PLGA nanoparticles in three-walled defects in beagle dogs was investigated. The results indicated that PLGA-lovastatin-chitosan-tetracycline nanoparticles showed good biocompatibility, antibacterial activity, and increased alkaline phosphatase activity. The volumetric analysis from micro-CT revealed significantly increased new bone formation in defects filled with nanoparticles in dogs. This novel local delivery device might be useful as an adjunctive treatment in periodontal regenerative therapy. PMID:26848264

  10. Controlled-release of tetracycline and lovastatin by poly(D,L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs.

    PubMed

    Lee, Bor-Shiunn; Lee, Chien-Chen; Wang, Yi-Ping; Chen, Hsiao-Jan; Lai, Chern-Hsiung; Hsieh, Wan-Ling; Chen, Yi-Wen

    2016-01-01

    Chronic periodontitis is characterized by inflammation of periodontal tissues, leading to bone resorption and tooth loss. The goal of treatment is to regenerate periodontal tissues including bone and cementum lost as a consequence of disease. The local delivery of tetracycline was proven to be effective in controlling localized periodontal infection without apparent side effects. Previous studies suggested that lovastatin has a significant role in new bone formation; however, the local delivery of lovastatin might enhance its therapeutic effects. A number of local delivery devices have been developed recently, including poly(D,L-lactide-co-glycolide acid) (PLGA) nanoparticles. The aim of this study was to develop a local delivery device, PLGA-lovastatin-chitosan-tetracycline nanoparticles, which allows the sequential release of tetracycline and lovastatin to effectively control local infection and promote bone regeneration in periodontitis. The size and microstructure of nanoparticles were examined by transmission electron microscopy, Nanoparticle Size Analyzer, and Fourier transform infrared spectroscopy. The release of tetracycline and lovastatin was quantified using a UV-Vis spectrophotometer. Furthermore, the cytotoxic effect and alkaline phosphatase activity of the nanoparticles in osteoblast cell cultures as well as antibacterial activity against periodontal pathogens were investigated. Finally, the bone regeneration potential of PLGA nanoparticles in three-walled defects in beagle dogs was investigated. The results indicated that PLGA-lovastatin-chitosan-tetracycline nanoparticles showed good biocompatibility, antibacterial activity, and increased alkaline phosphatase activity. The volumetric analysis from micro-CT revealed significantly increased new bone formation in defects filled with nanoparticles in dogs. This novel local delivery device might be useful as an adjunctive treatment in periodontal regenerative therapy.

  11. Magnetic poly(lactide-co-glycolide) (PLGA) and cellulose particles for MRI-based cell tracking

    PubMed Central

    Nkansah, Michael K.; Thakral, Durga; Shapiro, Erik M.

    2010-01-01

    Biodegradable, superparamagnetic micro- and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into micro- and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt% for PLGA and 69.6 wt% for cellulose). While PLGA and cellulose nanoparticles displayed highest r2* values per millimole of iron (399 s-1mM-1 for cellulose and 505 s-1mM-1 for PLGA), micron-sized PLGA particles had a much higher r2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for non-invasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long term (cellulose-based particles) experiments. PMID:21404328

  12. Pore formation and pore closure in poly(D,L-lactide-co-glycolide) films.

    PubMed

    Fredenberg, Susanne; Wahlgren, Marie; Reslow, Mats; Axelsson, Anders

    2011-03-10

    Pore formation and pore closure in poly(D,L-lactide-co-glycolide)-based drug delivery systems are two important processes as they control the release of the encapsulated drug. The phenomenon pore closure was investigated by studying the effects of the pH and the temperature of the release medium, and the properties of the polymer. Poly(D,L-lactide-co-glycolide) (PLG) films were subjected to a pore forming pre-treatment, and then pore closure was observed simultaneously with changes in glass transition temperature, wettability (contact angle), water absorption and mass remaining. To further understand the effect of pH, combined pore formation and pore closure were studied at different pH values. Pore closure was increased in a release medium with low pH, with a low-molecular-weight PLG of relatively low degree of hydrophobicity, or at high temperature. Pore closure occurred by two different mechanisms, one based on polymer-polymer interactions and one on polymer-water interactions. The mobility of the PLG chains also played an important role. The surface of the PLG films were more porous at pH 5-6 than at lower or higher pH, as pore formation was relatively fast and pore closure were less pronounced in this pH range. The pH had a significant impact on the porous structure, which should be kept in mind when evaluating experimental results, as the pH may be significantly decreased in vitro, in vivo and in situ. The results also show that the initial porosity is very important when using a high-molecular-weight PLG. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Poly(d,l-lactide-co-glycolide)–chitosan composite particles for the treatment of lung cancer

    PubMed Central

    Arya, Neha; Katti, Dhirendra S

    2015-01-01

    Tumor heterogeneity makes combination chemotherapy one of the preferred modes of treatment regimens. In this work, sequential exposure of two anticancer agents, paclitaxel (Tx) followed by topotecan (TPT), was shown to have a synergistic effect on non-small cell lung cancer (NSCLC) cell line, NCI-H460. In order to improve patient compliance, the aforementioned concept was translated into a drug delivery system comprising of poly(d,l-lactide-co-glycolide) (PLGA)–chitosan composite particles. TPT-containing chitosan micro-/nanoparticles were prepared by the facile technique of electrospraying and encapsulated within PLGA microparticles using emulsion-solvent evaporation technique for delayed release of TPT. The formulation containing Tx- and TPT-loaded composite particles demonstrated synergism when exposed to NCI-H460 cellular aggregates (tumoroids) generated in vitro. Overall, the results of this study demonstrated the potential of the formulation containing Tx and PLGA–chitosan (TPT-loaded) composite particles for the treatment of lung cancer. PMID:25945047

  14. Development of novel cationic chitosan-and anionic alginate–coated poly(d,l-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol

    PubMed Central

    Sanna, Vanna; Roggio, Anna Maria; Siliani, Silvia; Piccinini, Massimo; Marceddu, Salvatore; Mariani, Alberto; Sechi, Mario

    2012-01-01

    Background Resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability, which limits the therapeutic application of its beneficial effects. The development of innovative formulation strategies, able to overcome physicochemical and pharmacokinetic limitations of this compound, may be achieved via suitable carriers able to associate controlled release and protection. In this context, nanotechnology is proving to be a powerful strategy. In this study, we developed novel cationic chitosan (CS)- and anionic alginate (Alg)-coated poly(d,l-lactide-co-glycolide) nanoparticles (NPs) loaded with the bioactive polyphenolic trans-(E)-resveratrol (RSV) for biomedical applications. Methods NPs were prepared by the nanoprecipitation method and characterized in terms of morphology, size and zeta potential, encapsulation efficiency, Raman spectroscopy, swelling properties, differential scanning calorimetry, and in vitro release studies. The protective effect of the nanosystems under the light-stressed RSV and long-term stability were investigated. Results NPs turned out to be spherical in shape, with size ranging from 135 to about 580 nm, depending on the composition and the amount of polyelectrolytes, while the encapsulation efficiencies increased from 8% of uncoated poly(d,l-lactide-co-glycolide) (PLGA) to 23% and 32% of Alg- and CS-coated PLGA NPs, respectively. All nanocarriers are characterized by a biphasic release pattern, and more effective controlled release rates are obtained for NPs formulated with higher polyelectrolyte concentrations. Stability studies revealed that encapsulation provides significant protection against light-exposure degradation, by reducing the trans–cis photoisomerization reaction. Moreover, the nanosystems are able to prevent the degradation of trans isoform and the leakage of RSV from the carrier for a period of 6 months. Conclusion Our findings indicated that the newly developed CS- and Alg

  15. Poly(Lactide-Co-Glycolide)-Monomethoxy-Poly-(Polyethylene Glycol) Nanoparticles Loaded with Melatonin Protect Adipose-Derived Stem Cells Transplanted in Infarcted Heart Tissue.

    PubMed

    Ma, Qiang; Yang, Junjie; Huang, Xu; Guo, Weisheng; Li, Sulei; Zhou, Hao; Li, Jingwei; Cao, Feng; Chen, Yundai

    2018-04-01

    Stem cell transplantation is a promising therapeutic strategy for myocardial infarction. However, transplanted cells face low survival rates due to oxidative stress and the inflammatory microenvironment in ischemic heart tissue. Melatonin has been used as a powerful endogenous antioxidant to protect cells from oxidative injury. However, melatonin cannot play a long-lasting effect against the hostile microenvironment. Nano drug delivery carriers have the ability to protect the loaded drug from degradation in physiological environments in a controlled manner, which results in longer effects and decreased side effects. Therefore, we constructed poly(lactide-co-glycolide)-monomethoxy-poly-(polyethylene glycol) (PLGA-mPEG) nanoparticles to encapsulate melatonin. We tested whether the protective effect of melatonin encapsulated by PLGA-mPEG nanoparticles (melatonin nanoparticles [Mel-NPs]) on adipose-derived mesenchymal stem cells (ADSCs) was enhanced compared to that of free melatonin both in vitro and in vivo. In the in vitro study, we found that Mel-NPs reduced formation of the p53- cyclophilin D complex, prevented mitochondrial permeability transition pores from opening, and rescued ADSCs from hypoxia/reoxygenation injury. Moreover, Mel-NPs can achieve higher ADSC survival rates than free melatonin in rat myocardial infarction areas, and the therapeutic effects of ADSCs pretreated with Mel-NPs were more apparent. Hence, the combination of Mel-NPs and stem cell transplantation may be a promising strategy for myocardial infarction therapy. Stem Cells 2018;36:540-550. © AlphaMed Press 2018.

  16. Skin Dendritic Cell Targeting via Microneedle Arrays Laden with Antigen-Encapsulated Poly-d,l-lactide-co-Glycolide Nanoparticles Induces Efficient Antitumor and Antiviral Immune Responses

    PubMed Central

    2013-01-01

    The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8+ T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage. PMID:23373658

  17. Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles.

    PubMed

    Kuo, Yung-Chih; Chen, Yu-Chun

    2015-02-01

    Lactoferrin (Lf) and folic acid (FA) were crosslinked on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) for transporting etoposide across the blood-brain barrier (BBB) and treating human brain malignant glioblastoma. Lf- and FA-grafted PLGA NPs (Lf/FA/PLGA NPs) were employed to permeate the monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and to inhibit the multiplication of U87MG cells. Lf/FA/PLGA NPs showed a satisfactory entrapment efficiency of etoposide and characteristics of sustained drug release. When compared with PLGA NPs, the permeability coefficient for etoposide across the BBB using Lf/FA/PLGA NPs increased about twofold. The antiproliferative efficacy against the growth of U87MG cells was in the following order: Lf/FA/PLGA NPs>FA/PLGA NPs>PLGA NPs>free etoposide solution. In addition, the targeting ability of Lf/FA/PLGA NPs was evidenced by immunostaining of Lf receptor on HBMECs and folate receptor on U87MG cells during endocytosis. Lf/FA/PLGA NPs with loaded etoposide can be a promising anticancer pharmacotherapy to enhance the delivery of etoposide to malignant brain tumors for preclinical trials. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. In Vitro Mineralization by Preosteoblasts in Poly(D, L-lactide-co-glycolide) Inverse Opal Scaffolds Reinforced with Hydroxyapatite Nanoparticles

    PubMed Central

    Choi, Sung-Wook; Zhang, Yu; Thomopoulos, Stavros; Xia, Younan

    2010-01-01

    Inverse opal scaffolds made of poly(D, L-lactide-co-glycolide) (PLGA) and hydroxyapatite (HAp) were fabricated using cubic-closed packed (ccp) lattices of uniform gelatin microspheres as templates and evaluated for bone tissue engineering. The scaffolds exhibited a uniform pore size (213 ± 4.4 μm), a porosity of ∼75%, and an excellent connectivity in three dimensions. Three different formulations were examined: pure PLGA, HAp-impregnated PLGA (PLGA/HAp), and apatite (Ap)-coated PLGA/HAp. After seeding with preosteoblasts (MC3T3-E1), the samples were cultured for different periods of time and then characterized by X-ray microcomputed tomography (micro-CT) and scanning electron microscopy to evaluate osteoinductivity in terms of the amount and spatial distribution of mineral secreted from the differentiated preosteoblasts. Our results indicate that preosteoblasts cultured in the Ap-coated PLGA/HAp scaffolds secreted the largest amount of mineral, which was also homogeneously distributed throughout the scaffolds. In contrast, the cells in the pure PLGA scaffolds secreted very little mineral, which was mainly deposited around the perimeter of the scaffolds. These results suggest that the uniform pore structure and favorable surface properties could facilitate the uniform secretion of extracellular matrix from cells throughout the scaffold. The Ap-coated PLGA/HAp scaffold with uniform pore structure could be a promising material for bone tissue engineering. PMID:20450216

  19. Poly(D, L-lactide-co-glycolide) nanoparticles as delivery agents for photodynamic therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating

    NASA Astrophysics Data System (ADS)

    Boix-Garriga, Ester; Acedo, Pilar; Casadó, Ana; Villanueva, Angeles; Stockert, Juan Carlos; Cañete, Magdalena; Mora, Margarita; Lluïsa Sagristá, Maria; Nonell, Santi

    2015-09-01

    Poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) are being considered as nanodelivery systems for photodynamic therapy. The physico-chemical and biological aspects of their use remain largely unknown. Herein we report the results of a study of PLGA NPs for the delivery of the model hydrophobic photosensitizer ZnTPP to HeLa cells. ZnTPP was encapsulated in PLGA with high efficiency and the NPs showed negative zeta potentials and diameters close to 110 nm. Poly(ethylene glycol) (PEG) coating, introduced to prevent opsonization and clearance by macrophages, decreased the size and zeta potential of the NPs by roughly a factor of two and improved their stability in the presence of serum proteins. Photophysical studies revealed two and three populations of ZnTPP and singlet oxygen in uncoated and PEGylated NPs, respectively. Singlet oxygen is confined within the NPs in bare PLGA while it is more easily released into the external medium after PEG coating, which contributes to a higher photocytotoxicity towards HeLa cells in vitro. PLGA NPs are internalized by endocytosis, deliver their cargo to lysosomes and induce cell death by apoptosis upon exposure to light. In conclusion, PLGA NPs coated with PEG show high potential as delivery systems for photodynamic applications.

  20. Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4

    PubMed Central

    Wang, Mengshu; Zhang, Yong; Feng, Jiao; Gu, Tiejun; Dong, Qingguang; Yang, Xu; Sun, Yanan; Wu, Yongge; Chen, Yan; Kong, Wei

    2013-01-01

    Background Exendin-4 is an incretin mimetic agent approved for type 2 diabetes treatment. However, the required frequent injections restrict its clinical application. Here, the potential use of chitosan-coated poly (d,l-lactide-co-glycolide) (CS-PLGA) nanoparticles was investigated for intestinal delivery of exendin-4. Methods and results Nanoparticles were prepared using a modified water–oil–water (w/o/w) emulsion solvent-evaporation method, followed by coating with chitosan. The physical properties, particle size, and cell toxicity of the nanoparticles were examined. The cellular uptake mechanism and transmembrane permeability were performed in Madin-Darby canine kidney-cell monolayers. Furthermore, in vivo intraduodenal administration of exendin-4-loaded nanoparticles was carried out in rats. The PLGA nanoparticle coating with chitosan led to a significant change in zeta potential, from negative to positive, accompanied by an increase in particle size of ~30 nm. Increases in both the molecular weight and degree of deacetylation of chitosan resulted in an observable increase in zeta potential but no apparent change in the particle size of ~300 nm. Both unmodified PLGA and chitosan-coated nanoparticles showed only slight cytotoxicity. Use of different temperatures and energy depletion suggested that the cellular uptake of both types of nanoparticles was energy-dependent. Further investigation revealed that the uptake of PLGA nanoparticles occurred via caveolin-mediated endocytosis and that of CS-PLGA nanoparticles involved both macropinocytosis and clathrin-mediated endocytosis, as evidenced by using endocytic inhibitors. However, under all conditions, CS-PLGA nanoparticles showed a greater potential to be transported into cells, as shown by flow cytometry and confocal microscopy. Transmembrane permeability analysis showed that unmodified and modified PLGA nanoparticles could improve the transport of exendin-4 by up to 8.9- and 16.5-fold, respectively

  1. Effect of Formulation Variables on Preparation of Celecoxib Loaded Polylactide-Co-Glycolide Nanoparticles

    PubMed Central

    Cooper, Dustin L.; Harirforoosh, Sam

    2014-01-01

    Polymer based nanoparticle formulations have been shown to increase drug bioavailability and/or reduce drug adverse effects. Nonsteroidal anti-inflammatory drugs (e.g. celecoxib) reduce prostaglandin synthesis and cause side effects such as gastrointestinal and renal complications. The aim of this study was to formulate celecoxib entrapped poly lactide-co-glycolide based nanoparticles through a solvent evaporation process using didodecyldimethylammonium bromide or poly vinyl alcohol as stabilizer. Nanoparticles were characterized for zeta potential, particle size, entrapment efficiency, and morphology. Effects of stabilizer concentration (0.1, 0.25, 0.5, and 1% w/v), drug amount (5, 10, 15, and 20 mg), and emulsifier (lecithin) on nanoparticle characterization were examined for formula optimization. The use of 0.1, 0.25, and 0.5% w/v didodecyldimethylammonium bromide resulted in a more than 5-fold increase in zeta potential and a more than 1.5-fold increase in entrapment efficiency with a reduction in particle size over 35%, when compared to stabilizer free formulation. Nanoparticle formulations were also highly influenced by emulsifier and drug amount. Using 0.25% w/v didodecyldimethylammonium bromide NP formulations, peak zeta potential was achieved using 15 mg celecoxib with emulsifier (17.15±0.36 mV) and 20 mg celecoxib without emulsifier (25.00±0.18 mV). Peak NP size reduction and entrapment efficiency was achieved using 5 mg celecoxib formulations with (70.87±1.24 nm and 95.55±0.66%, respectively) and without (92.97±0.51 nm and 95.93±0.27%, respectively) emulsifier. In conclusion, formulations using 5 mg celecoxib with 0.25% w/v didodecyldimethylammonium bromide concentrations produced nanoparticles exhibiting enhanced size reduction and entrapment efficiency. Furthermore, emulsifier free formulations demonstrated improved zeta potential when compared to formulations containing emulsifier (p<0.01). Therefore, our results suggest the use of emulsifier

  2. Neuronal Uptake and Neuroprotective Properties of Curcumin-Loaded Nanoparticles on SK-N-SH Cell Line: Role of Poly(lactide-co-glycolide) Polymeric Matrix Composition.

    PubMed

    Djiokeng Paka, Ghislain; Doggui, Sihem; Zaghmi, Ahlem; Safar, Ramia; Dao, Lé; Reisch, Andreas; Klymchenko, Andrey; Roullin, V Gaëlle; Joubert, Olivier; Ramassamy, Charles

    2016-02-01

    Curcumin, a neuroprotective agent with promising therapeutic approach has poor brain bioavailability. Herein, we demonstrate that curcumin-encapsulated poly(lactide-co-glycolide) (PLGA) 50:50 nanoparticles (NPs-Cur 50:50) are able to prevent the phosphorylation of Akt and Tau proteins in SK-N-SH cells induced by H2O2 and display higher anti-inflammatory and antioxidant activities than free curcumin. PLGA can display various physicochemical and degradation characteristics for controlled drug release applications according to the matrix used. We demonstrate that the release of curcumin entrapped into a PLGA 50:50 matrix (NPs-Cur 50:50) is faster than into PLGA 65:35. We have studied the effects of the PLGA matrix on the expression of some key antioxidant- and neuroprotective-related genes such as APOE, APOJ, TRX, GLRX, and REST. NPs-Cur induced the elevation of GLRX and TRX while decreasing APOJ mRNA levels and had no effect on APOE and REST expressions. In the presence of H2O2, both NPs-Cur matrices are more efficient than free curcumin to prevent the induction of these genes. Higher uptake was found with NPs-Cur 50:50 than NPs-Cur 65:35 or free curcumin. By using PLGA nanoparticles loaded with the fluorescent dye Lumogen Red, we demonstrated that PLGA nanoparticles are indeed taken up by neuronal cells. These data highlight the importance of polymer composition in the therapeutic properties of the nanodrug delivery systems. Our study demonstrated that NPs-Cur enhance the action of curcumin on several pathways implicated in the pathophysiology of Alzheimer's disease (AD). Overall, these results suggest that PLGA nanoparticles are a promising strategy for the brain delivery of drugs for the treatment of AD.

  3. Preparation and optimization of matrix metalloproteinase-1-loaded poly(lactide- co-glycolide- co-caprolactone) nanoparticles with rotatable central composite design and response surface methodology

    NASA Astrophysics Data System (ADS)

    Sun, Ping; Song, Hua; Cui, Daxiang; Qi, Jun; Xu, Mousheng; Geng, Hongquan

    2012-07-01

    Matrix metalloproteases are key regulatory molecules in the breakdown of extracellular matrix and in inflammatory processes. Matrix metalloproteinase-1 (MMP-1) can significantly enhance muscle regeneration by promoting the formation of myofibers and degenerating the fibrous tissue. Herein, we prepared novel MMP-1-loaded poly(lactide-co-glycolide-co-caprolactone) (PLGA-PCL) nanoparticles (NPs) capable of sustained release of MMP-1. We established quadratic equations as mathematical models and employed rotatable central composite design and response surface methodology to optimize the preparation procedure of the NPs. Then, characterization of the optimized NPs with respect to particle size distribution, particle morphology, drug encapsulation efficiency, MMP-1 activity assay and in vitro release of MMP-1 from NPs was carried out. The results of mathematical modeling show that the optimal conditions for the preparation of MMP-1-loaded NPs were as follows: 7 min for the duration time of homogenization, 4.5 krpm for the agitation speed of homogenization and 0.4 for the volume ratio of organic solvent phase to external aqueous phase. The entrapment efficiency and the average particle size of the NPs were 38.75 ± 4.74% and 322.7 ± 18.1 nm, respectively. Further scanning electron microscopy image shows that the NPs have a smooth and spherical surface, with mean particle size around 300 nm. The MMP-1 activity assay and in vitro drug release profile of NPs indicated that the bioactivity of the enzyme can be reserved where the encapsulation allows prolonged release of MMP-1 over 60 days. Taken together, we reported here novel PLGA-PCL NPs for sustained release of MMP-1, which may provide an ideal MMP-1 delivery approach for tissue reconstruction therapy.

  4. Influence of poly (lactide-co-glycolide) type and gamma irradiation on the betamethasone acetate release from the in situ forming systems.

    PubMed

    Rafienia, Mohammad; Emami, Shahriar Hojjati; Mirzadeh, Hamid; Mobedi, Hamid; Karbasi, Saeed

    2009-04-01

    In situ forming biodegradable polymeric systems were prepared from Poly (DL-lactide-co-glycolide), RG504H (50:50, lactide:glycolide), RG756 (75:25) and mixture of them. They were dissolved in N-methyl-2-pyrrolidone (33% w/w) and mixed with betamethasone acetate (BTMA, 5 and 10% w/w) and ethyl heptanoate (5% w/w, as an additive). The effects of gamma irradiation, drug loading, type of polymers and solvent removal were evaluated on release profiles. Scanning electron microscopy (SEM) of RG756 samples loaded by BTMA did not show any degradation until two weeks. Differential scanning calorimeter (DSC) experiments confirmed insignificant decrease in T(g), and consequently release rate. Declining T(g) of RG504H and RG756 after gamma irradiation was about 0.4 and 1.46 degrees C, respectively. High performance liquid chromatography (HPLC) revealed that BTMA release is more rapid from the formulations prepared using the RG504H with lower molecular weight. The formulations prepared by RG756 had lower burst release (2.5-41%) than the samples based on RG504H (60-67%) and mixture of them (30-33%). Regarding this research three different kinds of steriled in situ forming systems were developed which can release BTMA for 24, 90 and 60 days.

  5. Differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds.

    PubMed

    Kuo, Yung-Chih; Yeh, Chun-Fu; Yang, Jen-Tsung

    2009-12-01

    This study investigates the physicochemical properties of poly(lactide-co-glycolide) (PLGA)/chitosan scaffolds and the neuron growth factor (NGF)-guided differentiation of bone marrow stromal cells (BMSCs) in the scaffolds. The scaffolds were prepared by the crosslinking of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, N-hydroxysuccinimide and genipin, and the differentiating BMSCs were characterized against CD44, CD90 and NeuN. The scaffold with 20% PLGA yielded 95% porosity, Young's modulus of 13MPa, 70% adhesion of BMSCs and 1.6-fold increase in the cell viability over 7-day cultivation. BMSCs without guidance in the PLGA/chitosan scaffolds were prone to differentiate toward osteoblasts with apparent deposition of calcium. When NGF was introduced, an increased weight percentage of PLGA yielded more identified neurons. In addition, mature neurons emerged from the PLGA-rich biomaterials after induction with NGF over 2 days. A proper control over the physical and biomedical property of the scaffolds and the NGF-guided differentiation of BMSCs can be promising for nerve regeneration.

  6. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering

    PubMed Central

    Parizek, Martin; Douglas, Timothy EL; Novotna, Katarina; Kromka, Alexander; Brady, Mariea A; Renzing, Andrea; Voss, Eske; Jarosova, Marketa; Palatinus, Lukas; Tesarek, Pavel; Ryparova, Pavla; Lisa, Věra; dos Santos, Ana M; Bacakova, Lucie

    2012-01-01

    Background Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. Methods In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). Results In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm2 versus 1.28 ± 0.09 μm2 in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1–7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion

  7. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering.

    PubMed

    Parizek, Martin; Douglas, Timothy E L; Novotna, Katarina; Kromka, Alexander; Brady, Mariea A; Renzing, Andrea; Voss, Eske; Jarosova, Marketa; Palatinus, Lukas; Tesarek, Pavel; Ryparova, Pavla; Lisa, Věra; dos Santos, Ana M; Warnke, Patrick H; Bacakova, Lucie

    2012-01-01

    Nanofibrous scaffolds loaded with bioactive nanoparticles are promising materials for bone tissue engineering. In this study, composite nanofibrous membranes containing a copolymer of L-lactide and glycolide (PLGA) and diamond nanoparticles were fabricated by an electrospinning technique. PLGA was dissolved in a mixture of methylene chloride and dimethyl formamide (2:3) at a concentration of 2.3 wt%, and nanodiamond (ND) powder was added at a concentration of 0.7 wt% (about 23 wt% in dry PLGA). In the composite scaffolds, the ND particles were either arranged like beads in the central part of the fibers or formed clusters protruding from the fibers. In the PLGA-ND membranes, the fibers were thicker (diameter 270 ± 9 nm) than in pure PLGA meshes (diameter 218 ± 4 nm), but the areas of pores among these fibers were smaller than in pure PLGA samples (0.46 ± 0.02 μm(2) versus 1.28 ± 0.09 μm(2) in pure PLGA samples). The PLGA-ND membranes showed higher mechanical resistance, as demonstrated by rupture tests of load and deflection of rupture probe at failure. Both types of membranes enabled the attachment, spreading, and subsequent proliferation of human osteoblast-like MG-63 cells to a similar extent, although these values were usually lower than on polystyrene dishes. Nevertheless, the cells on both types of membranes were polygonal or spindle-like in shape, and were distributed homogeneously on the samples. From days 1-7 after seeding, their number rose continuously, and at the end of the experiment, these cells were able to create a confluent layer. At the same time, the cell viability, evaluated by a LIVE/DEAD viability/cytotoxicity kit, ranged from 92% to 97% on both types of membranes. In addition, on PLGA-ND membranes, the cells formed well developed talin-containing focal adhesion plaques. As estimated by the determination of tumor necrosis factor-alpha levels in the culture medium and concentration of intercellular adhesion molecule-1, MG-63 cells, and

  8. 21 CFR 878.4493 - Absorbable poly(glycolide/l-lactide) surgical suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Absorbable poly(glycolide/l-lactide) surgical suture. 878.4493 Section 878.4493 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...

  9. 21 CFR 878.4493 - Absorbable poly(glycolide/l-lactide) surgical suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Absorbable poly(glycolide/l-lactide) surgical suture. 878.4493 Section 878.4493 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...

  10. 21 CFR 878.4493 - Absorbable poly(glycolide/l-lactide) surgical suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Absorbable poly(glycolide/l-lactide) surgical suture. 878.4493 Section 878.4493 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...

  11. 21 CFR 878.4493 - Absorbable poly(glycolide/l-lactide) surgical suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Absorbable poly(glycolide/l-lactide) surgical suture. 878.4493 Section 878.4493 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...

  12. 21 CFR 878.4493 - Absorbable poly(glycolide/l-lactide) surgical suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable poly(glycolide/l-lactide) surgical suture. 878.4493 Section 878.4493 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... device is FDA's “Class II Special Controls Guidance Document: Surgical Sutures; Guidance for Industry and...

  13. Application of Resorbable Poly(Lactide-co-Glycolide) with Entangled Hyaluronic Acid as an Autograft Extender for Posterolateral Intertransverse Lumbar Fusion in Rabbits

    PubMed Central

    Oliver, Rema A.; Gage, Gary; Yu, Yan; Bell, David; Bellemore, Jeremy; Adkisson, Huston Davis

    2011-01-01

    Facilitating fusion between bony segments in a reliable and reproducible manner using a synthetic bone graft material has a number of benefits for the surgeon as well as the patient. Although autograft remains the gold standard, associated comorbidities continue to drive the development of new biomaterials for use in spinal fusion. The ability of autograft alone and autograft combined with a radiolucent biomaterial composed of resorbable osteoconductive poly(lactide-co-glycolide) with entangled hyaluronic acid to facilitate fusion was examined in a single-level noninstrumented posterolateral intertransverse lumbar fusion model in New Zealand White rabbits. Progressive bone formation was demonstrated radiographically for the extender group (synthetic biomaterial plus autograft) between 3 and 6 months. Computed tomography revealed a new cortical shell in the fusion mass at 3 and 6 months for both study groups. Tensile testing at 6 months demonstrated that the quality of bone formed between the intertransverse space was equivalent for both study groups. Histologic evaluation of the fusion mass revealed new bone on and adjacent to the transverse processes with the synthetic biomaterial group that extended laterally, supporting the osteoconductive nature of the material. Histological evidence of endochondral bone growth in the intertransverse space was observed for the autograft plus synthetic biomaterial group. Bone remodeling, new marrow spaces, and peripheral cortices were observed for each study group at 3 months that matured by 6 months. These findings support the use of a radiolucent biosynthetic material comprising poly(lactide-co-glycolide) with integrated hyaluronic acid as an autograft extender for lumbar intertransverse fusion. PMID:20712417

  14. Study of the initial stages of drug release from a degradable matrix of poly(d,l-lactide-co-glycolide).

    PubMed

    Frank, Alexis; Kumar Rath, Santosh; Boey, Freddy; Venkatraman, Subbu

    2004-02-01

    The initial stages of the in vitro degradation of and the drug release from a matrix made of poly(d,l-lactide-co-glycolide) was carried out in a phosphate buffer saline (pH 7.0) medium. It has been observed that substantial matrix degradation occurs at the end of 2 weeks of immersion. The drug release using films of the polymer shows a tri-phasic pattern, unlike the bi-phasic patterns usually seen. Mechanisms are proposed for each phase of release, based on results from weight loss, amount of water absorption and scanning electron microscopy. The details of the structural changes and their effects on drug release may have implications for delivering potent drugs over a 2-week period.

  15. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Bayir, Yasin; Halici, Zekai; Karakus, Emre; Aydin, Ali; Cadirci, Elif; Albayrak, Abdulmecit; Demirci, Elif; Karaman, Adem; Ayan, Arif Kursat; Gundogdu, Cemal; Sahin, Fikrettin

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Poly(d,l)-lactide-co-glycolide (PLGA) microspheres as immunoadjuvant for Brugia malayi antigens.

    PubMed

    Saini, Vinay; Verma, Shiv Kumar; Murthy, P Kalpana; Kohli, Dharmveer

    2013-08-28

    Recently we identified in Brugia malayi adult worm extract (BmA) a pro-inflammatory 54-68kDa SDS-PAGE resolved fraction F6 that protects the host from the parasite via Th1/Th2 type responses. We are currently investigating F6 as a potential source of vaccine candidate(s) and the present study is aimed at investigating the suitability of poly(d,l)-lactide-co-glycolide microspheres (PLGA-Ms) as immunoadjuvant for the antigen administration in a single dose. PLGA-Ms were prepared aseptically by a modified double emulsion (w/o/w) solvent evaporation technique and their size, shape, antigen adsorption efficiency, in-process stability, and antigen release were characterized. Swiss mice were immunized by a single subcutaneous administration of BmA and F6 adsorbed on PLGA-Ms (lactide:glycolide ratios 50:50 and 75:25) and the immune responses were compared with administration of 1 or 2 doses of plain BmA and F6. Specific IgG, IgG1, IgG2a, IgG2b, IgE levels in serum, cellular-proliferative response and release of IFN-γ, TNF-α and nitric oxide from the cells of immunized host in response to the antigens/LPS/Con A challenge and antibody-dependant cellular cytotoxicity (ADCC) to parasite life stages were determined. The average size of PLGA-Ms 50:50 was smaller than the size of PLGA-Ms 75:25 and the % antigen adsorption efficiency of PLGA-Ms 50:50 was greater than PLGA-Ms 75:25. Single shot injection of PLGA-Ms 50:50/75:25-BmA/F6 produced better and stronger IgG, IgG1/IgG2a and cell-mediated immune responses than even two injections of plain BmA or F6. Further, PLGA-Ms 50:50-F6 produced stronger responses than PLGA-Ms 50:50-BmA. Anti-PLGA-Ms 50:50-F6 antibodies elicited higher ADCC response to infective larval and microfilarial stages of the parasite than anti-PLGA-Ms 75:25-F6 antibodies. The findings demonstrate that PLGA-Ms 50:50 is an excellent adjuvant for use with F6 in a single administration. This is the first ever report on PLGA as immunoadjuvant for filarial antigens

  17. Development of a calcium phosphate co-precipitate/poly(lactide-co-glycolide) DNA delivery system: release kinetics and cellular transfection studies.

    PubMed

    Kofron, Michelle D; Laurencin, Cato T

    2004-06-01

    One of the most common non-viral methods for the introduction of foreign deoxyribonucleic acid (DNA) into cultured cells is calcium phosphate co-precipitate transfection. This technique involves the encapsulation of DNA within a calcium phosphate co-precipitate, particulate addition to in vitro cell culture, endocytosis of the co-precipitate, and exogenous DNA expression by the transfected cell. In this study, we fabricated a novel non-viral gene transfer system by adsorbing DNA, encapsulated in calcium phosphate (DNA/Ca-P) co-precipitates, to biodegradable two- and three-dimensional poly(lactide-co-glycolide) matrices (2D-DNA/Ca-P/PLAGA, 3D-DNA/Ca-P/PLAGA). Co-precipitate release studies demonstrated an initial burst release over the first 48 h. By day 7, approximately 96% of the initially adsorbed DNA/Ca-P co-precipitate had been released. This was followed by low levels of co-precipitate release for 42 days. Polymerase chain reaction was used to demonstrate the ability of the released DNA containing co-precipitates to transfect SaOS-2 cells cultured in vitro on the 3D-DNA/Ca-P/PLAGA matrix and maintenance of the structural integrity of the exogenous DNA. In summary, a promising system for the incorporation and controlled delivery of exogenous genes encapsulated within a calcium phosphate co-precipitate from biodegradable polymeric matrices has been developed and may have applicability to the delivery of therapeutic genes and the transfection of other cell types.

  18. Preparation and Analysis of Co-precipitated, Biodegradable Poly-(Lactide-co-Glycolide) and Polyethylene Glycol Microspheres Prepared by Spray Drying

    NASA Astrophysics Data System (ADS)

    Javiya, Curie

    Biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) based microspheres are commonly used for numerous clinical applications. PEG is a widely used polymer due to its hydrophilic, biocompatible, and nontoxic nature. In this study, different blends of PLGA/PEG microspheres were prepared using a spray drying technique. The microspheres were spherical with maximum yield found to be 60.3% and average particle size in the range of 2.4 to 3.1 microm. Under the spray drying processing conditions, the polymers showed full miscibility slightly below 15% w/w and partial miscibility up to 20% w/w of PEG in the blended microspheres. At higher temperatures, PLGA and PEG were miscible in all proportions used for the blended microspheres. Blending 10% w/w PEG in PLGA membranes showed significant reduction in attachment of macrophages compared to PLGA membranes. The in-vitro response of macrophage towards the miscible blends of PLGA/PEG microspheres was further characterized. Results showed some reduction in macrophage viability and activation, however, significant effects with PLGA/PEG microspheres were not observed.

  19. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    PubMed Central

    Dinarvand, R; Sepehri, N; Manoochehri, S; Rouhani, H; Atyabi, F

    2011-01-01

    The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA), a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects. PMID:21720501

  20. Activation of Antigen-Specific CD8(+) T Cells by Poly-DL-Lactide/Glycolide (PLGA) Nanoparticle-Primed Gr-1(high) Cells.

    PubMed

    Luo, Wen-Hui; Yang, Ya-Wun

    2016-04-01

    The aim of this study was to investigate the induction of antigen-specific T cell activation and cell cycle modulation by a poly-DL-lactide/glycolide (PLGA) nanoparticle (NP)-primed CD11b(+)Gr-1(high) subset isolated from mouse bone marrow. PLGA NPs containing the ovalbumin (OVA) antigen were prepared using the double emulsion and solvent evaporation method, and protein release rate and cell viability were determined. The Lin2(¯)CD11b(+)Gr-1(high)Ly6c(low) (Gr-1(high)) subset was sorted from the bone marrow of C57BL/6 J mice by fluorescence-activated cell sorting (FACS) and co-cultured with OT-I CD8(+) splenic T cells. Proliferation of OT-I CD8(+) T cells was monitored, and cell cycles were determined by 5-bromo-2'-deoxyuridine (BrdU) labeling. Treatment of Gr-1(high) cells with PLGA/OVA NPs upregulated expression of the SIINFEKL-H2K(b) complex in the context of MHC I. Co-cultures of OT-I CD8(+) T cells with the PLGA/OVA NP-primed Gr-1(high) cells induced the proliferation of T cells in vitro and modulated cell division and morphology. Treatment of Gr-1(high) cells with PLGA/OVA NPs also induced cell apoptosis and necrosis. This study demonstrated the function of PLGA/OVA NPs in the activation of OT-I CD8(+) T cells and the capability of cross-presentation via the Gr-1(high) polymorphonuclear subset from mouse bone marrow.

  1. Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering.

    PubMed

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Kumbar, Sangamesh G; Brown, Justin L; Krogman, Nicholas R; Weikel, Arlin L; Allcock, Harry R; Laurencin, Cato T

    2010-01-01

    The long-term goal of this work is to develop biomimetic polymer-based systems for bone regeneration that both allow for neutral pH degradation products and have the ability to nucleate bonelike apatite. In this study, the etheric biodegradable polyphosphazene, poly[(50%ethyl glycinato)(50%methoxyethoxyethoxy)phosphazene] (PNEG(50)MEEP(50)) was blended with poly(lactide-co-glycolide) PLAGA and studied their ability to produce high-strength degradable biomaterials with bioactivity. Accordingly, two blends with weight ratios of PNEG(50)MEEP(50) to PLAGA 25:75 (BLEND25) and 50:50 (BLEND50) were fabricated using a mutual solvent approach. Increases in PNEG(50)MEEP(50) content in the blend system resulted in decreased elastic modulus of 779 MPa when compared with 1684 MPa (PLAGA) as well as tensile strength 7.9 MPa when compared with 25.7 MPa (PLAGA). However, the higher PNEG(50)MEEP(50) content in the blend system resulted in higher Ca/P atomic ratio of the apatite layer 1.35 (BLEND50) when compared with 0.69 (BLEND25) indicating improved biomimicry. Furthermore, these blends supported primary rat osteoblast adhesion and proliferation with an enhanced phenotypic expression when compared with PLAGA. These findings establish the suitability of PNEG(50)MEEP(50)-PLAGA biodegradable blends as promising bioactive materials for orthopedic applications.

  2. Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor.

    PubMed

    Ignjatović, Nenad L; Penov-Gaši, Katarina M; Wu, Victoria M; Ajduković, Jovana J; Kojić, Vesna V; Vasiljević-Radović, Dana; Kuzmanović, Maja; Uskoković, Vuk; Uskoković, Dragan P

    2016-12-01

    In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1 H NMR and 13 C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d 50 =168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Targeted delivery of rosmarinic acid across the blood-brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E.

    PubMed

    Kuo, Yung-Chih; Rajesh, Rajendiran

    2017-08-07

    Rosmarinic acid-loaded polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles (RA-PAAM-CH-PLGA NPs) were grafted with cross-reacting material 197 (CRM197) and apolipoprotein E (ApoE) for targeting of the blood-brain barrier (BBB) and rescuing degenerated neurons. The polymeric nanocarriers were prepared by microemulsion, solvent diffusion, grafting, and surface modification, and CRM197-ApoE-RA-PAAM-CH-PLGA NPs were used to treat human brain-microvascular endothelial cells, RWA264.7 cells, and Aβ-insulted SK-N-MC cells. Experimental results revealed that an increase in the weight percentage of PAAM decreased the particle size, zeta potential, and grafting efficiency of CRM197 and ApoE. In addition, surface DSPE-PEG(2000) could protect CRM197-ApoE-RA-PAAM-CH-PLGA NPs against uptake by RWA264.7 cells. An increase in the concentration of CRM197 and ApoE decreased the transendothelial electrical resistance and increased the ability of propidium iodide and RA to cross the BBB. The order in the viability of apoptotic SK-N-MC cells was CRM197-ApoE-RA-PAAM-CH-PLGA NPs > CRM197-RA-PAAM-CH-PLGA NPs > RA. Thus, CRM197-ApoE-RA-PAAM-CH-PLGA NPs can be a promising formulation to deliver RA to Aβ-insulted neurons in the pharmacotherapy of Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    PubMed

    Jabbarzadeh, Ehsan; Deng, Meng; Lv, Qing; Jiang, Tao; Khan, Yusuf M; Nair, Lakshmi S; Laurencin, Cato T

    2012-11-01

    Regenerative engineering approaches utilizing biomimetic synthetic scaffolds provide alternative strategies to repair and restore damaged bone. The efficacy of the scaffolds for functional bone regeneration critically depends on their ability to induce and support vascular infiltration. In the present study, three-dimensional (3D) biomimetic poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds were developed by sintering together PLAGA microspheres followed by nucleation of minerals in a simulated body fluid. Further, the angiogenic potential of vascular endothelial growth factor (VEGF)-incorporated mineralized PLAGA scaffolds were examined by monitoring the growth and phenotypic expression of endothelial cells on scaffolds. Scanning electron microscopy micrographs confirmed the growth of bone-like mineral layers on the surface of microspheres. The mineralized PLAGA scaffolds possessed interconnectivity and a compressive modulus of 402 ± 61 MPa and compressive strength of 14.6 ± 2.9 MPa. Mineralized scaffolds supported the attachment and growth and normal phenotypic expression of endothelial cells. Further, precipitation of apatite layer on PLAGA scaffolds resulted in an enhanced VEGF adsorption and prolonged release compared to nonmineralized PLAGA and, thus, a significant increase in endothelial cell proliferation. Together, these results demonstrated the potential of VEGF-incorporated biomimetic PLAGA sintered microsphere scaffolds for bone tissue engineering as they possess the combined effects of osteointegrativity and angiogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  5. Sustained Release of Lidocaine from Solvent-Free Biodegradable Poly[(d,l)-Lactide-co-Glycolide] (PLGA): In Vitro and In Vivo Study.

    PubMed

    Kau, Yi-Chuan; Liao, Chia-Chih; Chen, Ying-Chi; Liu, Shih-Jung

    2014-09-16

    Local anesthetics are commonly used for pain relief by regional nerve blocking. In this study, we fabricated solvent-free biodegradable pellets to extend the duration of lidocaine release without any significant local or systemic toxicity levels. To manufacture the pellets, poly[(d,l)-lactide-co-glycolide] (PLGA) was first pre-mixed with lidocaine powder into different ratios. The powder mixture was then compressed with a mold (diameter of 1, 5, 8 or 10 mm) and sintered at 65 °C to form pellets. The in vitro release study showed that the lidocaine/PLGA pellets exhibited a tri-phase release behavior (a burst, a diffusion-controlled release and a degradation-dominated release) and reached completion around day 28. Scanning electron microscope (SEM) photos show that small channels could be found on the surfaces of the pellets on day 2. Furthermore, the polymer matrix swelled and fell apart on day 7, while the pellets became viscous after 10 days of in vitro elution. Perineural administration of the lidocaine/PLGA pellets produced anti-hypersensitivity effects lasting for at least 24 h in rats, significant when compared to the control group (a pure PLGA was pellet administered). In addition, no inflammation was detected within the nerve and in the neighboring muscle by histopathology.

  6. Paclitaxel-loaded poly(lactide-co-glycolide)/poly(ethylene vinyl acetate) composite for stent coating by ultrasonic atomizing spray.

    PubMed

    Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun

    2012-04-01

    The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography.

  7. Paclitaxel-loaded poly(lactide-co-glycolide)/poly(ethylene vinyl acetate) composite for stent coating by ultrasonic atomizing spray

    PubMed Central

    Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun

    2012-01-01

    The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography. PMID:27877483

  8. Paclitaxel-loaded poly(lactide-co-glycolide)/poly(ethylene vinyl acetate) composite for stent coating by ultrasonic atomizing spray

    NASA Astrophysics Data System (ADS)

    Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun

    2012-04-01

    The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography.

  9. Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO(2) process.

    PubMed

    Chen, Ai-Zheng; Li, Yi; Chau, Foo-Tim; Lau, Tsui-Yan; Hu, Jun-Yan; Zhao, Zheng; Mok, Daniel Kam-Wah

    2009-10-01

    Puerarin nanoparticles were firstly prepared in the process of solution-enhanced dispersion by supercritical CO(2) (SEDS) and then successfully microencapsulated by poly(l-lactide) (PLLA) in a modified SEDS process. By adding an organic non-solvent, an initial puerarin solution with a higher degree of saturation and lower concentration was obtained and applied in the SEDS process. The resulting puerarin nanoparticles were then suspended in PLLA solution and microencapsulated by PLLA in a modified SEDS process, where an 'injector' was employed in the particle suspension delivery system. The puerarin nanoparticles exhibited a good spherical shape, a smooth surface and a narrow particle size distribution with a mean particle size of 188 nm. After microencapsulation the puerarin-PLLA microparticles had a mean size of 675 nm, a drug load of 23.6% and an encapsulation efficiency of 39.4%; after a burst release at the first stage, the drug was released in a sustained process. Compared with the parallel study of a co-precipitation process, this microencapsulation process is a much more promising technique to prepare a drug-polymer carrier for a drug delivery system, especially for protein drugs.

  10. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.

    PubMed

    Zhang, Bing; Zhang, Pei-Biao; Wang, Zong-Liang; Lyu, Zhong-Wen; Wu, Han

    A new therapeutic strategy using nanocomposite scaffolds of grafted hydroxyapatite (g-HA)/ poly(lactide-co-glycolide) (PLGA) carried with autologous mesenchymal stem cells (MSCs) and bone morphogenetic protein-2 (BMP-2) was assessed for the therapy of critical bone defects. At the same time, tissue response and in vivo mineralization of tissue-engineered implants were investigated. A composite scaffold of PLGA and g-HA was fabricated by the solvent casting and particulate-leaching method. The tissue-engineered implants were prepared by seeding the scaffolds with autologous bone marrow MSCs in vitro. Then, mineralization and osteogenesis were observed by intramuscular implantation, as well as the repair of the critical radius defects in rabbits. After eight weeks post-surgery, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed that g-HA/PLGA had a better interface of tissue response and higher mineralization than PLGA. Apatite particles were formed and varied both in macropores and micropores of g-HA/PLGA. Computer radiographs and histological analysis revealed that there were more and more quickly formed new bone formations and better fusion in the bone defect areas of g-HA/PLGA at 2-8 weeks post-surgery. Typical bone synostosis between the implant and bone tissue was found in g-HA/PLGA, while only fibrous tissues formed in PLGA. The incorporation of g-HA mainly improved mineralization and bone formation compared with PLGA. The application of MSCs can enhance bone formation and mineralization in PLGA scaffolds compared with cell-free scaffolds. Furthermore, it can accelerate the absorption of scaffolds compared with composite scaffolds.

  11. An investigation of the mechanism of release of the amphoteric drug amoxycillin from poly(D,L-lactide-co-glycolide) matrices.

    PubMed

    Mollo, A Rosario; Corrigan, Owen I

    2002-01-01

    Amoxycillin-poly (D,L-lactide-co-glycolide) (PLGA) compacts were prepared by direct compression of both powder mixtures or films in a pre-heated press. Release profiles generally showed two phases separated by an induction period. Thus, both diffusion and polymer degradation mechanisms were involved in drug release, the relative importance of each depending on processing type and drug loading. Drug release parameters for each phase were determined. The fraction of total drug released, in the initial release phase, increased with drug loading and was much larger for compressed physical mixtures than for compressed composites prepared from co-evaporate films. Comparison of the polymer mass loss profiles of drug-loaded and drug-free discs indicated that the presence of the amphoteric drug amoxycillin had little impact on the polymer degradation rate, in contrast to the marked acceleration previously reported for basic drugs. Significant drug degradation occurred and was associated with release at later times. Release data was fitted to an equation accounting for degradation of the drug on release and suggested accelerated amoxycillin degradation during the polymer degradation controlled release phase, consistent with changes in pH in the microenvironment of the eroding compact.

  12. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption.

    PubMed

    Jabbarzadeh, Ehsan; Nair, Lakshmi S; Khan, Yusuf M; Deng, Meng; Laurencin, Cato T

    2007-01-01

    A number of bone tissue engineering approaches are aimed at (i) increasing the osteconductivity and osteoinductivity of matrices, and (ii) incorporating bioactive molecules within the scaffolds. In this study we examined the growth of a nano-crystalline mineral layer on poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for tissue engineering. In addition, the influence of the mineral precipitate layer on protein adsorption on the scaffolds was studied. Scaffolds were mineralized by incubation in simulated body fluid (SBF). Scanning electron microscopy (SEM) analysis revealed that mineralized scaffolds possess a rough surface with a plate-like nanostructure covering the surface of microspheres. The results of protein adsorption and release studies showed that while the protein release pattern was similar for PLAGA and mineralized PLAGA scaffolds, precipitation of the mineral layer on PLAGA led to enhanced protein adsorption and slower protein release. Mineralization of tissue-engineered surfaces provides a method for both imparting bioactivity and controlling levels of protein adsorption and release.

  13. Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells

    PubMed Central

    Song, Yeon Hui; Kim, Chan; Kim, Jungsoo; Seo, Sol-Ji; Jeong, Young-Il; Kang, Dae Hwan

    2017-01-01

    Purpose The aim of this study was to fabricate a vorinostat (Zolinza™)-eluting nanofiber membrane-coated gastrointestinal (GI) stent and to study its antitumor activity against cholangiocarcinoma (CCA) cells in vitro and in vivo. Methods Vorinostat and poly(DL-lactide-co-glycolide) dissolved in an organic solvent was sprayed onto a GI stent to make a nanofiber-coated stent using an electro-spinning machine. Intact vorinostat and vorinostat released from nanofibers was used to assess anticancer activity in vitro against various CCA cells. The antitumor activity of the vorinostat-eluting nanofiber membrane-coated stent was evaluated using HuCC-T1 bearing mice. Results A vorinostat-incorporated polymer nanofiber membrane was formed on the surface of the GI stent. Vorinostat was continuously released from the nanofiber membrane over 10 days, and its release rate was higher in cell culture media than in phosphate-buffered saline. Released vorinostat showed similar anticancer activity against various CCA cells in vitro compared to that of vorinostat. Like vorinostat, vorinostat released from nanofibers induced acetylation of histone H4 and inhibited histone deacetylases 1⋅3⋅4/5/7 expression in vitro and in vivo. Furthermore, vorinostat nanofibers showed a higher tumor growth inhibition rate in HuCC-T1 bearing mice than vorinostat injections. Conclusion Vorinostat-eluting nanofiber membranes showed significant antitumor activity against CCA cells in vitro and in vivo. We suggest the vorinostat nanofiber-coated stent may be a promising candidate for CCA treatment. PMID:29089762

  14. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration*

    PubMed Central

    Zhang, Bing; Zhang, Pei-biao; Wang, Zong-liang; Lyu, Zhong-wen; Wu, Han

    2017-01-01

    Objective: A new therapeutic strategy using nanocomposite scaffolds of grafted hydroxyapatite (g-HA)/poly(lactide-co-glycolide) (PLGA) carried with autologous mesenchymal stem cells (MSCs) and bone morphogenetic protein-2 (BMP-2) was assessed for the therapy of critical bone defects. At the same time, tissue response and in vivo mineralization of tissue-engineered implants were investigated. Methods: A composite scaffold of PLGA and g-HA was fabricated by the solvent casting and particulate-leaching method. The tissue-engineered implants were prepared by seeding the scaffolds with autologous bone marrow MSCs in vitro. Then, mineralization and osteogenesis were observed by intramuscular implantation, as well as the repair of the critical radius defects in rabbits. Results: After eight weeks post-surgery, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed that g-HA/PLGA had a better interface of tissue response and higher mineralization than PLGA. Apatite particles were formed and varied both in macropores and micropores of g-HA/PLGA. Computer radiographs and histological analysis revealed that there were more and more quickly formed new bone formations and better fusion in the bone defect areas of g-HA/PLGA at 2–8 weeks post-surgery. Typical bone synostosis between the implant and bone tissue was found in g-HA/PLGA, while only fibrous tissues formed in PLGA. Conclusions: The incorporation of g-HA mainly improved mineralization and bone formation compared with PLGA. The application of MSCs can enhance bone formation and mineralization in PLGA scaffolds compared with cell-free scaffolds. Furthermore, it can accelerate the absorption of scaffolds compared with composite scaffolds. PMID:29119734

  15. Poly(lactide-co-glycolide) nanocapsules containing benzocaine: influence of the composition of the oily nucleus on physico-chemical properties and anesthetic activity.

    PubMed

    de Melo, Nathalie Ferreira Silva; Grillo, Renato; Guilherme, Viviane Aparecida; de Araujo, Daniele Ribeiro; de Paula, Eneida; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2011-08-01

    The aim of this work was to investigate the influence of the oily nucleus composition on physico-chemical properties and anesthetic activity of poly (lactide-co-glycolide) nanocapsules with benzocaine. Nanocapsules containing benzocaine were prepared with three different oily nucleus composition and characterized by mean diameter, polydispersivity, zeta potential, pH and stability were investigated as a function of time. In vitro release kinetics were performed in a system with two compartments separated by a cellulose membrane. Intensity and duration of analgesia were evaluated in rats by sciatic nerve blockade. The greatest stability, slower release profile and improvement in the local anesthetic activity of BZC were obtained with the formulation using USP mineral oil as component. Results from our study provide useful perspectives on selection of the primary materials needed to produce suspensions of polymeric nanocapsules able to act as carriers of BZC, with potential future application in the treatment of pain.

  16. Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface.

    PubMed

    Daly, Susan M; Przybycien, Todd M; Tilton, Robert D

    2005-06-30

    Protein adsorption is a source of variability in the release profiles of therapeutic proteins from biodegradable microspheres. We employ optical reflectometry and total internal reflection fluorescence to explore the extent and kinetics of ribonuclease A (RNase A) adsorption to spin-cast films of poly(lactide-co-glycolide) (PLG) and, in particular, to determine how covalent grafting of polyethylene glycol (PEG) to RNase A affects adsorption. Adsorption kinetics on PLG surfaces are surface-limited for RNase A but transport-limited for unconjugated PEG homopolymers and for PEG-modified RNase A, indicating that PEG anchors the conjugates to the surface during the transport-limited regime. PEG modification of RNase A decreases the total number of adsorbed molecules per unit area but increases the areal surface coverage because the grafted PEG chains exclude additional surface area. Total internal reflection fluorescence-based exchange measurements show that there is no exchange between adsorbed and solution-phase protein molecules. This indicates an unusually tenacious adsorption. Streaming current measurements indicate that the zeta potential of the PLG surface becomes increasingly negative as the film is exposed to water for several weeks, as expected. Aging of the PLG surface results in increased adsorption of unmodified RNase A but decreased adsorption of unconjugated PEG homopolymers and of PEG-RNase A conjugates, relative to the extent of adsorption on freshly prepared PLG surfaces. Adsorption results correlate well with an increase in the rate, total extent and preservation of bioactivity of RNase A released from PLG microspheres for the PEG-modified version of RNase A.

  17. Reduction of systemic exposure and toxicity of cisplatin by encapsulation in poly-lactide-co-glycolide.

    PubMed

    Verrijk, R; Smolders, I J; Bosnie, N; Begg, A C

    1992-12-01

    The tissue distribution and normal tissue toxicity of cisplatin (cDDP) administered as poly-lactide-co-glycolide (PLAGA) microspheres, developed for loco-regional administration of cDDP to the liver, were studied in Wag/Rij rats. Venoportal administration of this formulation resulted in a reduction in total systemic and renal toxicity, which correlated with a decrease in normal tissue exposure to cDDP while maintaining high liver platinum levels. Liver-to-kidney platinum level ratios were 28 times higher after 4 h and 19 times higher after 24 h with PLAGA-cDDP microspheres than with free cDDP. Liver-to-blood platinum ratios at these times were 38 times and 36 times higher using PLAGA-cDDP. In a CC531 colon carcinoma liver micrometastases model, cytotoxicity of microsphere-released cDDP was confirmed in vivo by equal inhibition of tumor growth by PLAGA-cDDP and free cDDP over a period of 26 days. Free cDDP, however, caused significantly more histological renal damage and total body weight loss. The results were supported by the finding of higher plasma creatinine and urea concentrations 26 days after administration of free cDDP. Kidney platinum levels were 7 times lower when PLAGA-cDDP was used. These findings indicate a sparing effect on normal tissues when cDDP is targeted to the liver by formulation in PLAGA. PLAGA-cDDP microspheres may, therefore, be a useful and effective addition to current techniques of loco-regional chemotherapy for disseminated hepatic tumors.

  18. In vivo biocompatibility and in vitro characterization of poly-lactide-co-glycolide structures containing levetiracetam, for the treatment of epilepsy.

    PubMed

    Halliday, Amy J; Campbell, Toni E; Razal, Joselito M; McLean, Karen J; Nelson, Timothy S; Cook, Mark J; Wallace, Gordon G

    2012-02-01

    Epilepsy is a chronic neurological disorder characterized by recurrent seizures, and is highly resistant to medication with up to 40% of patients continuing to experience seizures whilst taking oral antiepileptic drugs. Recent research suggests that this may be due to abnormalities in the blood-brain barrier, which prevent the passage of therapeutic substances into the brain. We sought to develop a drug delivery material that could be implanted within the brain at the origin of the seizures to release antiepileptic drugs locally and avoid the blood brain barrier. We produced poly-lactide-co-glycolide drop-cast films and wet-spun fibers loaded with the novel antiepileptic drug Levetiracetam, and investigated their morphology, in vitro drug release characteristics, and brain biocompatibility in adult rats. The best performing structures released Levetiracetam constantly for at least 5 months in vitro, and were found to be highly brain biocompatible following month-long implantations in the motor cortex of adult rats. These results demonstrate the potential of polymer-based drug delivery devices in the treatment of epilepsy and warrant their investigation in animal models of focal epilepsy. Copyright © 2011 Wiley Periodicals, Inc.

  19. Molecularly Imprinted Biodegradable Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  20. Biophysical characterization of hydrogel-core, lipid-shell nanoparticles (nanolipogels) for HIV chemoprophylaxis

    NASA Astrophysics Data System (ADS)

    Mahadevan, Reena

    Nanoparticles are emerging as versatile vehicles for drug delivery, providing targeting, protection, and controlled-release capabilities to encapsulated cargo. Polymeric nanoparticles made from poly(lactide-co-glycolide) (PLGA) are biodegradable, exhibit tunable drug release, and have encapsulated a wide variety of biological agents. However, PLGA nanoparticles are relatively inefficient at encapsulating small-molecule hydrophilic drugs. Liposomes encapsulate greater amounts of hydrophilic agents and demonstrate good cellular affinity; however, they lack controlled-release functionality. Hydrogel-core lipid-shell nanoparticles, or nanolipogels, combine the controlled-release capability of polymeric nanocarriers with the hydrophilic and cellular affinity of liposomes into a single drug delivery vehicle. This study establishes a facile, reproducible synthetic protocol for nanolipogels and evaluates hydrogel swelling as a mechanism for release of the small hydrophilic antiretroviral azidothymidine from nanolipogels.

  1. Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation.

    PubMed

    Jokanović, Vukoman; Čolović, Božana; Marković, Dejan; Petrović, Milan; Soldatović, Ivan; Antonijević, Djordje; Milosavljević, Petar; Sjerobabin, Nikola; Sopta, Jelena

    2017-05-24

    This study examined the potential of a new porous calcium hydroxyapatite scaffold covered with poly (lactide-co-glycolide) (PLGA) as a bone substitute, identifying its advantages over Geistlich Bio-Oss®, considered the gold standard, in in vivo biofunctionality investigations. Structural and morphological properties of the new scaffold were analyzed by scanning electron and atomic force microscopy. The biofunctionality assays were performed on New Zealand white rabbits using new scaffold for filling full-thickness defects of critical size. The evaluated parameters were: the presence of macrophages, giant cells, monoocytes, plasma cells, granulocytes, neoangiogenesis, fibroplasia, and the percentage of mineralization. Parallel biofunctionality assays were performed using Geistlich Bio-Oss®. The appearance of bone defects 12 weeks after the new scaffold implantation showed the presence of a small number of typical immune response cells. Furthermore, significantly reduced number of capillary buds, low intensity of fibroplasia and high degree of mineralization in a lamellar pattern indicated that the inflammation process has been almost completely overcome and that the new bone formed was in the final phase of remodeling. All biofunctionality assays proved the new scaffold's suitability as a bone substitute for applications in maxillofacial surgery. It showed numerous biological advantages over Geistlich Bio-Oss® which was reflected mainly as a lower number of giant cells surrounding implanted material and higher degree of mineralization in new formed bone.

  2. Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide) Copolymer for Tumor Targeting

    PubMed Central

    Son, Gyung Mo; Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Kang, Dae Hwan; Park, Su Bum; Jeong, Young-IL

    2014-01-01

    Graft copolymer composed hyaluronic acid (HA) and poly(d,l-lactide-co-glycolide) (PLGA) (HAgLG) was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA) to have amine end group in the end of chain (PLGA-amine). PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX)-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC)-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting. PMID:25216338

  3. Oxygen plasma surface modification augments poly(L-lactide-co-glycolide) cytocompatibility toward osteoblasts and minimizes immune activation of macrophages.

    PubMed

    Scislowska-Czarnecka, Anna; Szmigiel, Dariusz; Genet, Michel; Dupont-Gillain, Christine; Pamula, Elzbieta; Kolaczkowska, Elzbieta

    2015-12-01

    Here, we report on modification of one of the model biomedical polymers, poly L-lactide-co-glycolide (PLGA; 85:15), by reactive ion etching (RIE) oxygen plasma treatment. PLGA's major disadvantage is high hydrophobicity which restrains binding of cell-adhesive proteins and host cells. In the current approach, we aimed to answer two questions: (1) will only short (10 s) and moderate (20-200 mTorr, 45-90 W) RIE oxygen plasma treatment, leading to decrease of water contact angle by only up to 10°, sufficiently improve PLGA adherence to cells, and (2) how will this affect osteoblasts and activation of the immune system? All obtained modified PLGAs had improved hydrophilicity but unaltered roughness (as revealed by water contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy) resulting in significantly improved adhesion of osteoblasts (MG-63) and their low activation. Importantly, macrophages (RAW 264.7), one of the key cells initiating inflammation and bone resorption, responded significantly less vigorously to the modified polymers, expressing/releasing lower amounts of nitric oxide, matrix metalloproteinases (MMP-9), and pro-inflammatory cytokines (TNF-α, IL-6, IL-12p70, IFN-γ, IL-10). We conclude that already slight RIE oxygen plasma modification of PLGA is sufficient to improve its surface properties, and enhance cytocompatibility. Most importantly, this type of modification prevents excessive immune response. © 2015 Wiley Periodicals, Inc.

  4. Definition and validation of operating equations for poly(vinyl alcohol)-poly(lactide-co-glycolide) microfiltration membrane-scaffold bioreactors

    PubMed Central

    Shipley, RJ; Waters, SL; Ellis, MJ

    2010-01-01

    The aim of this work is to provide operating data for biodegradable hollow fiber membrane bioreactors. The physicochemical cell culture environment can be controlled with the permeate flowrate, so this aim necessitates the provision of operating equations that enable end-users to set the pressures and feed flowrates to obtain their desired culture environment. In this paper, theoretical expressions for the pure water retentate and permeate flowrates, derived using lubrication theory, are compared against experimental data for a single fiber poly(vinyl alcohol)–poly(lactide-co-glycolide) crossflow module to give values for the membrane permeability and slip. Analysis of the width of the boundary layer region where slip effects are important, together with the sensitivity of the retentate and permeate equations to the slip parameter, show that slip is insignificant for these membranes, which have a mean pore diameter of 1.1 µm. The experimental data is used to determine a membrane permeability, of k = 1.86 × 10−16 m2, and to validate the model. It was concluded that the operating equation that relates the permeate to feed ratio, c, lumen inlet flowrate, Ql,in, lumen outlet pressure, P1, and ECS outlet pressure, P0, is1 where A and B are constants that depend on the membrane permeability and geometry (and are given explicitly). Finally, two worked examples are presented to demonstrate how a tissue engineer can use Equation 1 to specify operating conditions for their bioreactor. PMID:20641054

  5. Surface modification of paclitaxel-loaded tri-block copolymer PLGA- b-PEG- b-PLGA nanoparticles with protamine for liver cancer therapy

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Chen, Zhihong; Xiao, Xiaojun; Ruan, Changshun; Mei, Lin; Liu, Zhigang; Zeng, Xiaowei

    2015-08-01

    In order to enhance the therapeutic effect of chemotherapy on liver cancer, a biodegradable formulation of protamine-modified paclitaxel-loaded poly(lactide- co-glycolide)- b-poly(ethylene glycol)- b-poly(lactide- co-glycolide) (PLGA- b-PEG- b-PLGA) nanoparticles (PTX-loaded/protamine NPs) was prepared. Tri-block copolymer PLGA- b-PEG- b-PLGA was synthesized by ring-opening polymerization and characterized by 1H NMR spectroscopy and gel permeation chromatography. PTX-loaded and PTX-loaded/protamine NPs were characterized in terms of size, size distribution, zeta potential, surface morphology, drug encapsulation efficiency, and drug release. Confocal laser scanning microscopy showed that coumarin 6-loaded/protamine NPs were internalized by hepatocellular carcinoma cell line HepG2. The cellular uptake efficiency of NPs was obviously elevated after protamine modification. With commercial formulation Taxol® as the reference, HepG2 cells were also used to study the cytotoxicity of the NPs. PTX-loaded/protamine NPs exhibited significantly higher cytotoxicity than PTX-loaded NPs and Taxol® did. All the results suggested that surface modification of PTX-loaded PLGA- b-PEG- b-PLGA NPs with protamine boosted the therapeutic efficacy on liver cancer.

  6. Safety and complications of absorbable threads made of poly-L-lactic acid and poly lactide/glycolide: Experience with 148 consecutive patients.

    PubMed

    Sarigul Guduk, Sukran; Karaca, Nezih

    2018-04-01

    Thread lifting is a minimally invasive procedure for lifting and repositioning tissues. Few articles with absorbable sutures exist in the literature. Furthermore there is no study focusing on complications of absorbable sutures. To describe complications of thread lifting using a totally absorbable suture composed of poly-L-lactic acid affixed with poly lactide/glycolide cones. Data regarding complications were analyzed retrospectively for 148 patients underwent thread lifting between June 2014 and February 2017. A total of 321 pairs of sutures used in the 148 patients studied. Overall 40 (27%) patients had complications regarded as minimal or moderate without permanent sequela. The most common complication was skin dimpling and irregularity (n = 17, 11.4%) followed by ecchymosis (n = 12, 8.1%), suture extrusion (n = 4, 2.7%), and pain (n = 4, 2.7%) Except one patient, dimpling, and irregularity resolved in all patients after 3-7 days spontaneously. Suture migration was observed in 2 (1.35%) patients. Hematoma and infection were seen in 2 patients one for each. The procedure using sutures made of absorbable poly-L-lactic acid and poly lactide/glycolide is a relatively safe procedure without major complications. © 2018 Wiley Periodicals, Inc.

  7. Effects of carbon nanotubes (CNTs) on the processing and in-vitro degradation of poly(DL-lactide-co-glycolide)/CNT films.

    PubMed

    Armentano, Ilaria; Dottori, Mariaserena; Puglia, Debora; Kenny, Josè M

    2008-06-01

    Nanocomposite films based on single wall carbon nanotubes (SWNTs) and poly(DL-lactide-co-glycolide) copolymer (50:50 PLGA) were processed and analyzed. The purpose of this study was to investigate the effect of different functionalization systems on the physical stability and morphology of PLGA films. Both covalent and non covalent functionalization of carbon nanotubes were considered in order to control the interactions between PLGA and SWNTs and to understand the role of the filler in the biodegradation properties. Using a solvent casting process, different PLGA/SWNT nanocomposites were prepared and incubated using organic solution under physiological conditions. In-vitro degradation studies were conducted by measurements of weight loss, infrared spectroscopy, glass transition temperature and SEM observations as a function of the incubation time, over a 9-week period. All PLGA films were degraded by hydrolitical degradation. However, a different degradation mechanism was observed in the case of functionalized SWNTs with respect to pristine material. It has been observed that system composition and SWNT functionalization may play a crucial role on the autocatalytic effect of the degradation process. These studies suggest that the degradation kinetics of the films can be engineered by varying carbon nanotube (CNT) content and functionalization. The combination of biodegradable polymers and CNTs opens a new perspective in the self-assembly of nanomaterials and nanodevices.

  8. Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications.

    PubMed

    Chang, Debby P; Garripelli, Vivek Kumar; Rea, Jennifer; Kelley, Robert; Rajagopal, Karthikan

    2015-10-01

    Achieving long-term drug release from polymer-based delivery systems continues to be a challenge particularly for the delivery of large hydrophilic molecules such as therapeutic antibodies and proteins. Here, we report on the utility of an in situ-forming and injectable polymer-solvent system for the long-term release of a model antibody fragment (Fab1). The delivery system was prepared by dispersing a spray-dried powder of Fab1 within poly(lactide-co-glycolide) (PLGA)-triacetin solution. The formulation viscosity was within the range 1.0 ± 0.3 Pa s but it was injectable through a 27G needle. The release profile of Fab1, measured in phosphate-buffered saline (PBS), showed a lag phase followed by sustained-release phase for close to 80 days. Antibody degradation during its residence within the depot was comparable to its degradation upon long-term incubation in PBS. On the basis of temporal changes in surface morphology, stiffness, and depot mass, a mechanism to account for the drug release profile has been proposed. The unprecedented release profile and retention of greater than 80% of antigen-binding capacity even after several weeks demonstrates that PLGA-triacetin solution could be a promising system for the long-term delivery of biologics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Formulation and evaluation of biodegradable nanoparticles for the oral delivery of fenretinide.

    PubMed

    Graves, Richard A; Ledet, Grace A; Glotser, Elena Y; Mitchner, Demaurian M; Bostanian, Levon A; Mandal, Tarun K

    2015-08-30

    Fenretinide is an anticancer drug with low water solubility and poor bioavailability. The goal of this study was to develop biodegradable polymeric nanoparticles of fenretinide with the intent of increasing its apparent aqueous solubility and intestinal permeability. Three biodegradable polymers were investigated for this purpose: two different poly lactide-co-glycolide (PLGA) polymers, one acid terminated and one ester terminated, and one poly lactide-co-glycolide/polyethylene glycol (PLGA/PEG) diblock copolymer. Nanoparticles were obtained by using an emulsification solvent evaporation technique. The formulations were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and particle size analysis. Dissolution studies and Caco-2 cell permeation studies were also carried out for all formulations. Ultra high performance liquid chromatography coupled with mass spectrometry (UPLC/MS) and ultraviolet detection was used for the quantitative determination of fenretinide. Drug loading and the type of polymer affected the nanoparticles' physical properties, drug release rate, and cell permeability. While the acid terminated PLGA nanoparticles performed the best in drug release, the ester terminated PLGA nanoparticles performed the best in the Caco-2 cell permeability assays. The PLGA/PEG copolymer nanoparticles performed better than the formulations with ester terminated PLGA in terms of drug release but had the poorest performance in terms of cell permeation. All three categories of formulations performed better than the drug alone in both drug release and cell permeation studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Fabrication of a reticular poly(lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks

    NASA Astrophysics Data System (ADS)

    Tung, Yen-Ting; Chang, Cheng-Chung; Ju, Jyh-Cherng; Wang, Gou-Jen

    2017-12-01

    The microvascular network is a simple but critical system that is responsible for a range of important biological mechanisms in the bodies of all animals. The ability to generate a functional microvessel not only makes it possible to engineer vital tissue of considerable size but also serves as a platform for biomedical studies. However, most of the current methods for generating microvessel networks in vitro use rectangular channels which cannot represent real vessels in vivo and have dead zones at their corners, hence hindering the circulation of culture medium. We propose a scaffold-wrapping method which enables fabrication of a customized microvascular network in vitro in a more biomimetic way. By integrating microelectromechanical techniques with thermal reflow, we designed and fabricated a microscale hemi-cylindrical photoresist template. A replica mold of polydimethylsiloxane, produced by casting, was then used to generate cylindrical scaffolds with biodegradable poly(lactide-co-glycolide) (PLGA). Human umbilical vein endothelial cells were seeded on both sides of the PLGA scaffold and cultured using a traditional approach. The expression of endothelial cell marker CD31 and intercellular junction vascular endothelial cadherin on the cultured cell demonstrated the potential of generating a microvascular network with a degradable cylindrical scaffold. Our method allows cells to be cultured on a scaffold using a conventional culture approach and monitors cell conditions continuously. We hope our cell-covered scaffold can serve as a framework for building large tissues or can be used as the core of a vascular chip for in vitro circulation studies.

  11. Definition and validation of operating equations for poly(vinyl alcohol)-poly(lactide-co-glycolide) microfiltration membrane-scaffold bioreactors.

    PubMed

    Shipley, R J; Waters, S L; Ellis, M J

    2010-10-01

    The aim of this work is to provide operating data for biodegradable hollow fiber membrane bioreactors. The physicochemical cell culture environment can be controlled with the permeate flowrate, so this aim necessitates the provision of operating equations that enable end-users to set the pressures and feed flowrates to obtain their desired culture environment. In this paper, theoretical expressions for the pure water retentate and permeate flowrates, derived using lubrication theory, are compared against experimental data for a single fiber poly(vinyl alcohol)-poly(lactide-co-glycolide) crossflow module to give values for the membrane permeability and slip. Analysis of the width of the boundary layer region where slip effects are important, together with the sensitivity of the retentate and permeate equations to the slip parameter, show that slip is insignificant for these membranes, which have a mean pore diameter of 1.1 microm. The experimental data is used to determine a membrane permeability, of k = 1.86 x 10(-16) m(2), and to validate the model. It was concluded that the operating equation that relates the permeate to feed ratio, c, lumen inlet flowrate, Q (l,in), lumen outlet pressure, P (1), and ECS outlet pressure, P (0), is P(1) - P(0) = Q(l),in (Ac + B) where A and B are constants that depend on the membrane permeability and geometry (and are given explicitly). Finally, two worked examples are presented to demonstrate how a tissue engineer can use Equation (1) to specify operating conditions for their bioreactor.

  12. Poly D,L-lactide-co-glycolide (PLGA) nanoparticle-encapsulated honeybee (Apis melifera) venom promotes clearance of Salmonella enterica serovar Typhimurium infection in experimentally challenged pigs through the up-regulation of T helper type 1 specific immune responses.

    PubMed

    Lee, Jin-A; Jung, Bock-Gie; Kim, Tae-Hoon; Kim, Yun-Mi; Park, Min-Ho; Hyun, Pung-mi; Jeon, Jong-woon; Park, Jin-kyu; Cho, Cheong-Weon; Suh, Guk-Hyun; Lee, Bong-Joo

    2014-10-15

    Honeybee (Apis melifera) venom (HBV), which includes melittin and lipid-soluble ingredients (chrysin and pinocembrin), elicited increases in the CD4(+)/CD8(+) T lymphocyte ratio, relative mRNA expression levels of the T helper type 1 (Th 1) cytokines (interferon-γ and IL-12) and reinforced viral clearance of an experimental porcine reproductive and respiratory syndrome (PRRS) virus infection in our previous study. On the basis of that previous study, we have now developed poly-d,l-lactide-co-glycolide (PLGA)-encapsulated HBV nanoparticles (P-HBV) for longer sustained release of HBV. We administered P-HBV to pigs via the rectal route, and then evaluated the potential immune-enhancing and bacterial clearance effects of P-HBV against Salmonella enterica serovar Typhimurium. The CD4(+)/CD8(+) lymphocyte ratio, proliferative capacity of peripheral blood lymphocytes and relative mRNA expression levels of IFN-γ and IL-12 (produced mainly by Th1 lymphocytes) were significantly increased in the P-HBV group up to 2 weeks post-administration of P-HBV. After S. Typhimurium infection, the P-HBV group showed a marked reduction in microbial burden in feces and all tissue samples (including the ileum, cecum, colon, and mesenteric lymph node (MLN)), a significant increase in Th 1 cytokines (IFN-γ, IL-2, and IL-12) and a marked decrease in a Th 2 cytokine (IL-4) in all tissue samples and peripheral blood lymphocytes. Thus, P-HBV may be a promising strategy for immune enhancement and prevention of S. Typhimurium or other bacterial infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Preparation of protein loaded poly(D,L-lactide-co-glycolide) microparticles for the antigen delivery to dendritic cells using a static micromixer.

    PubMed

    Wischke, Christian; Lorenzen, Dirk; Zimmermann, Julian; Borchert, Hans-Hubert

    2006-04-01

    The cellular immune response against tumors, viruses, or intracellular bacteria requires adequate antigen delivery to professional phagocytes, their processing and the presentation of antigenic peptides to T-cells. Biodegradable microparticles to enhance antigen phagocytosis and the response of cytotoxic lymphocytes have been proposed. The aim of the present study was to formulate poly(lactide-co-glycolide) (PLGA) microparticles using a w/o/w solvent evaporation procedure in order to obtain suitable vehicles for vaccination. Bovine serum albumin bearing fluorescein isothiocyanate (FITC-BSA) was used as a model antigen. For microparticle preparation a static micromixer was employed. Microparticles of 2-3 microm can be produced with good reproducibility by applying high flow rates at the micromixer. Microparticles with a smooth surface and only one pore were observed using scanning electron microscopy (SEM). Confocal laser scanning microscopy (CLSM) allowed localisation of the FITC-BSA near the surface of the microparticle. Microencapsulation of FITC-BSA did not altered the polymer characteristics, as determined by measuring the glass transition temperature. Additionally we could determine residual methylene chloride, employed as solvent in microparticle preparation, to be less than 1/1000 of the USP and Ph. Eur. limit. The microparticles described herein were able to deliver the model antigen to human dendritic cells (DC).

  14. Preparation and in vitro evaluation of poly(D,L-lactide-co-glycolide) air-filled nanocapsules as a contrast agent for ultrasound imaging.

    PubMed

    Néstor, Mendoza-Muñoz; Kei, Noriega-Peláez Eddy; Guadalupe, Nava-Arzaluz María; Elisa, Mendoza-Elvira Susana; Adriana, Ganem-Quintanar; David, Quintanar-Guerrero

    2011-10-01

    The aim of this study was to prepare air-filled nanocapsules intended ultrasound contrast agents (UCAs) with a biodegradable polymeric shell composed of poly(d,l-lactide-co-glycolide) (PLGA). Because of their size, current commercial UCAs are not capable of penetrating the irregular vasculature that feeds growing tumors. The new generation of UCAs should be designed on the nanoscale to enhance tumor detection, in addition, the polymeric shell in contrast with monomolecular stabilized UCAs improves the mechanical properties against ultrasound pressure and lack of stability. The preparation method of air-filled nanocapsules was based on a modification of the double-emulsion solvent evaporation technique. Air-filled nanocapsules with a mean diameter of 370±96nm were obtained. Electronic microscopies revealed spherical-shaped particles with smooth surfaces and a capsular morphology, with a shell thickness of ∼50nm. Air-filled nanocapsules showed echogenic power in vitro, providing an enhancement of up to 15dB at a concentration of 0.045mg/mL at a frequency of 10MHz. Loss of signal for air-filled nanocapsules was 2dB after 30min, suggesting high stability. The prepared contrast agent in this work has the potential to be used in ultrasound imaging. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals

    PubMed Central

    Chuan, Li; Jia, Zhang; Yu-Jiao, Zu; Shu-Fang, Nie; Jun, Cao; Qian, Wang; Shao-Ping, Nie; Ze-Yuan, Deng; Ming-Yong, Xie; Shu, Wang

    2017-01-01

    Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (–)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer. PMID:26412423

  16. Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis.

    PubMed

    Margaroni, Maritsa; Agallou, Maria; Athanasiou, Evita; Kammona, Olga; Kiparissides, Costas; Gaitanaki, Catherine; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis (VL) persists as a major public health problem, and since the existing chemotherapy is far from satisfactory, development of an effective vaccine emerges as the most appropriate strategy for confronting VL. The development of an effective vaccine relies on the selection of the appropriate antigen and also the right adjuvant and/or delivery vehicle. In the present study, the protective efficacy of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which were surface-modified with a TNFα-mimicking eight-amino-acid peptide (p8) and further functionalized by encapsulating soluble Leishmania infantum antigens (sLiAg) and monophosphoryl lipid A (MPLA), a TLR4 ligand, was evaluated against challenge with L. infantum parasites in BALB/c mice. Vaccination with these multifunctionalized PLGA nanoformulations conferred significant protection against parasite infection in vaccinated mice. In particular, vaccination with PLGA-sLiAg-MPLA or p8-PLGA-sLiAg NPs resulted in almost complete elimination of the parasite in the spleen for up to 4 months post-challenge. Parasite burden reduction was accompanied by antigen-specific humoral and cellular immune responses. Specifically, injection with PLGA-sLiAg-MPLA raised exclusively anti-sLiAg IgG1 antibodies post-vaccination, while in p8-PLGA-sLiAg-vaccinated mice, no antibody production was detected. However, 4 months post-challenge, in mice vaccinated with all the multifunctionalized NPs, antibody class switching towards IgG2a subtype was observed. The study of cellular immune responses revealed the increased proliferation capacity of spleen cells against sLiAg, consisting of IFNγ-producing CD4 + and CD8 + T cells. Importantly, the activation of CD8 + T cells was exclusively attributed to vaccination with PLGA NPs surface-modified with the p8 peptide. Moreover, characterization of cytokine production in vaccinated-infected mice revealed that protection was accompanied by significant increase of IFN

  17. Cross-linked electrospun cartilage acellular matrix/poly(caprolactone-co-lactide-co-glycolide) nanofiber as an antiadhesive barrier.

    PubMed

    Lee, Jin Woo; Park, Joon Yeong; Park, Seung Hun; Kim, Min Ju; Song, Bo Ram; Yun, Hee-Woong; Kang, Tae Woong; Choi, Hak Soo; Kim, Young Jick; Min, Byoung Hyun; Kim, Moon Suk

    2018-07-01

    In this work, we chose cartilage acellular matrix (CAM) as a promising antiadhesive material because CAM effectively inhibits the formation of blood vessels, and we used electrospinning to prepare antiadhesive barriers. Additionally, we synthesized N-hydroxysuccinimide (NHS)-poly(caprolactone-co-lactide-co-glycolide)-NHS (MP) copolymers (to tune degradation) as a cross-linking agent for CAM. This is the first report on the development of electrospun cross-linked (Cx) CAM/MP (CA/P) nanofiber (NF) (Cx-CA/P-NF) with a tunable degradation period as an antiadhesive barrier. Compared with the CA/P-NF before cross-linking, the electrospun Cx-CA/P-NF after cross-linking showed different biodegradation. Cx-CA/P-NF significantly inhibited the in vitro attachment and proliferation of human umbilical vein endothelial cells (HUVECs), as confirmed by an MTT assay and scanning electron microscopy images. Cx-CA/P-NFs implanted between a surgically damaged peritoneal wall and cecum gradually degraded in 7 days; this process was monitored by NIR imaging. The in vivo evaluation of the anti-tissue adhesive effect of Cx-CA/P-NFs revealed little adhesion, few blood vessels, and negligible inflammation at 7 days determined by hematoxylin and eosin staining. ED1 staining of Cx-CA/P-NFs showed infiltration of few macrophages because of the inflammatory response to the Cx-CA/P-NF as compared with an untreated injury model. Additionally, Cx-CA/P-NFs significantly suppressed the formation of blood vessels between the peritoneal wall and cecum, according to CD31 staining. Overall, Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Thus, it is reasonable to conclude that the Cx-CA/P-NF designed herein successfully works as an antiadhesive barrier with a tunable degradation period. The cartilage acellular matrix (CAM) can inhibit the formation of fibrous tissue bridges and blood vessels between the tissue at

  18. Multifunctional nanoparticle-EpCAM aptamer bioconjugates: a paradigm for targeted drug delivery and imaging in cancer therapy.

    PubMed

    Das, Manasi; Duan, Wei; Sahoo, Sanjeeb K

    2015-02-01

    The promising proposition of multifunctional nanoparticles for cancer diagnostics and therapeutics has inspired the development of theranostic approach for improved cancer therapy. Moreover, active targeting of drug carrier to specific target site is crucial for providing efficient delivery of therapeutics and imaging agents. In this regard, the present study investigates the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles, functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. A wide spectrum of in vitro analysis (cellular uptake study, cytotoxicity assay, cell cycle and apoptosis analysis, apoptosis associated proteins study) revealed superior therapeutic potentiality of targeted NPs over other formulations in EpCAM expressing cells. Moreover, our nanotheranostic system served as a superlative bio-imaging modality both in 2D monolayer culture and tumor spheroid model. Our result suggests that, these aptamer-guided multifunctional NPs may act as indispensable nanotheranostic approach toward cancer therapy. This study investigated the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. It was concluded that the studied multifunctional targeted nanoparticle may become a viable and efficient approach in cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro.

    PubMed

    Jin, Cheng; Bai, Ling; Wu, Hong; Tian, Furong; Guo, Guozhen

    2007-09-01

    Paclitaxel and etanidazole are hypoxic radiosensitizers that exhibit cytotoxic action at different mechanisms. The poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing paclitaxel, etanidazole and paclitaxel+etanidazole were prepared by o/w and w/o/w emulsification-solvent evaporation method. The morphology of the nanoparticles was investigated by scanning electron microscope (SEM). The drug encapsulation efficiency (EE) and release profile in vitro were measured by high-performance liquid chromatography (HPLC). The cellular uptake of nanoparticles for the human breast carcinoma cells (MCF-7) and the human carcinoma cervicis cells (HeLa) was evaluated by transmission electronic microscopy and fluorescence microscopy. Cell viability was determined by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical shape with size between 80 and 150 nm. The EE was higher for paclitaxel and lower for etanidazole. The drug release was controlled over time. The cellular uptake of nanoparticles was observed. Co-culture of the two tumor cell lines with drug-loaded nanoparticles demonstrated that released drug effectively sensitized hypoxic tumor cells to radiation. The radiosensitization of paclitaxel+etanidazole nanoparticles was more significant than that of single drug-loaded nanoparticles.

  20. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.

    PubMed

    Jiang, Tao; Nukavarapu, Syam P; Deng, Meng; Jabbarzadeh, Ehsan; Kofron, Michelle D; Doty, Stephen B; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-09-01

    Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated. The chitosan/PLAGA scaffold showed slower degradation than the PLAGA scaffold in vitro. Although chitosan/PLAGA scaffold showed a gradual decrease in compressive properties during the 12-week degradation period, the compressive strength and compressive modulus remained in the range of human trabecular bone. Chitosan/PLAGA-based scaffolds were able to guide bone formation in a rabbit ulnar critical-sized-defect model. Microcomputed tomography analysis demonstrated that successful bridging of the critical-sized defect on the sides both adjacent to and away from the radius occurred using chitosan/PLAGA-based scaffolds. Immobilization of heparin and recombinant human bone morphogenetic protein-2 on the chitosan/PLAGA scaffold surface promoted early bone formation as evidenced by complete bridging of the defect along the radius and significantly enhanced mechanical properties when compared to the chitosan/PLAGA scaffold. Furthermore, histological analysis suggested that chitosan/PLAGA-based scaffolds supported normal bone formation via intramembranous formation. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    PubMed

    Jabbarzadeh, Ehsan; Jiang, Tao; Deng, Meng; Nair, Lakshmi S; Khan, Yusuf M; Laurencin, Cato T

    2007-12-01

    Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.

  2. Poly(D,L-Lactide-Co-Glycolide) Tubes With Multifilament Chitosan Yarn or Chitosan Sponge Core in Nerve Regeneration.

    PubMed

    Wlaszczuk, Adam; Marcol, Wiesław; Kucharska, Magdalena; Wawro, Dariusz; Palen, Piotr; Lewin-Kowalik, Joanna

    2016-11-01

    The influence of different kinds of nerve guidance conduits on regeneration of totally transected rat sciatic nerves through a 7-mm gap was examined. Five different types of conduits made of chitosan and poly(D,L-lactide-co-glycolide) (PLGA) were constructed and tested in vivo. We divided 50 animals into equal groups of 10, with a different type of conduit implanted in each group: chitosan sponge core with an average molecular mass of polymer (Mv) of 287 kDa with 7 channels in a PLGA sleeve, chitosan sponge core with an Mv of 423 kDa with 7 channels in a PLGA sleeve, chitosan sponge core (Mv, 423 kDa) with 13 channels in a PLGA sleeve, chitosan multifilament yarn in a PLGA sleeve, and a PLGA sleeve only. Seven weeks after the operation, we examined the distance covered by regenerating nerve fibers, growing of nerves into the conduit's core, and intensity and type of inflammatory reaction in the conduit, as well as autotomy behavior (reflecting neuropathic pain intensity) in the animals. Two types of conduits were allowing nerve outgrowth through the gap with minor autotomy and minor inflammatory reactions. These were the conduits with chitosan multifilament yarn in a PLGA sleeve and the conduits with 13-channel microcrystalline chitosan sponge in a PLGA sleeve. The type of chitosan used to build the nerve guidance conduit influences the intensity and character of inflammatory reaction present during nerve regeneration, which in turn affects the distance crossed by regenerating nerve fibers, growing of the nerve fibers into the conduit's core, and the intensity of autotomy in the animals. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Peptide-Conjugated Nanoparticles Reduce Positive Co-stimulatory Expression and T Cell Activity to Induce Tolerance.

    PubMed

    Kuo, Robert; Saito, Eiji; Miller, Stephen D; Shea, Lonnie D

    2017-07-05

    Targeted approaches to treat autoimmune diseases would improve upon current therapies that broadly suppress the immune system and lead to detrimental side effects. Antigen-specific tolerance was induced using poly(lactide-co-glycolide) nanoparticles conjugated with disease-relevant antigen to treat a model of multiple sclerosis. Increasing the nanoparticle dose and amount of conjugated antigen both resulted in more durable immune tolerance. To identify active tolerance mechanisms, we investigated downstream cellular and molecular events following nanoparticle internalization by antigen-presenting cells. The initial cell response to nanoparticles indicated suppression of inflammatory signaling pathways. Direct and functional measurement of surface MHC-restricted antigen showed positive correlation with both increasing particle dose from 1 to 100 μg/mL and increasing peptide conjugation by 2-fold. Co-stimulatory analysis of cells expressing MHC-restricted antigen revealed most significant decreases in positive co-stimulatory molecules (CD86, CD80, and CD40) following high doses of nanoparticles with higher peptide conjugation, whereas expression of a negative co-stimulatory molecule (PD-L1) remained high. T cells isolated from mice immunized against myelin proteolipid protein (PLP 139-151 ) were co-cultured with antigen-presenting cells administered PLP 139-151 -conjugated nanoparticles, which resulted in reduced T cell proliferation, increased T cell apoptosis, and a stronger anti-inflammatory response. These findings indicate several potential mechanisms used by peptide-conjugated nanoparticles to induce antigen-specific tolerance. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  4. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals.

    PubMed

    Li, Chuan; Zhang, Jia; Zu, Yu-Jiao; Nie, Shu-Fang; Cao, Jun; Wang, Qian; Nie, Shao-Ping; Deng, Ze-Yuan; Xie, Ming-Yong; Wang, Shu

    2015-09-01

    Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (-)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles.

    PubMed

    Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R

    2015-03-01

    In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process. Copyright © 2015. Published by Elsevier Ltd.

  6. Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis

    PubMed Central

    Margaroni, Maritsa; Agallou, Maria; Athanasiou, Evita; Kammona, Olga; Kiparissides, Costas; Gaitanaki, Catherine; Karagouni, Evdokia

    2017-01-01

    Visceral leishmaniasis (VL) persists as a major public health problem, and since the existing chemotherapy is far from satisfactory, development of an effective vaccine emerges as the most appropriate strategy for confronting VL. The development of an effective vaccine relies on the selection of the appropriate antigen and also the right adjuvant and/or delivery vehicle. In the present study, the protective efficacy of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which were surface-modified with a TNFα-mimicking eight-amino-acid peptide (p8) and further functionalized by encapsulating soluble Leishmania infantum antigens (sLiAg) and monophosphoryl lipid A (MPLA), a TLR4 ligand, was evaluated against challenge with L. infantum parasites in BALB/c mice. Vaccination with these multifunctionalized PLGA nanoformulations conferred significant protection against parasite infection in vaccinated mice. In particular, vaccination with PLGA-sLiAg-MPLA or p8-PLGA-sLiAg NPs resulted in almost complete elimination of the parasite in the spleen for up to 4 months post-challenge. Parasite burden reduction was accompanied by antigen-specific humoral and cellular immune responses. Specifically, injection with PLGA-sLiAg-MPLA raised exclusively anti-sLiAg IgG1 antibodies post-vaccination, while in p8-PLGA-sLiAg-vaccinated mice, no antibody production was detected. However, 4 months post-challenge, in mice vaccinated with all the multifunctionalized NPs, antibody class switching towards IgG2a subtype was observed. The study of cellular immune responses revealed the increased proliferation capacity of spleen cells against sLiAg, consisting of IFNγ-producing CD4+ and CD8+ T cells. Importantly, the activation of CD8+ T cells was exclusively attributed to vaccination with PLGA NPs surface-modified with the p8 peptide. Moreover, characterization of cytokine production in vaccinated–infected mice revealed that protection was accompanied by significant increase of IFNγ and

  7. Mechanistic analysis of Zein nanoparticles/PLGA triblock in situ forming implants for glimepiride.

    PubMed

    Ahmed, Osama Abdelhakim Aly; Zidan, Ahmed Samir; Khayat, Maan

    2016-01-01

    The study aims at applying pharmaceutical nanotechnology and D-optimal fractional factorial design to screen and optimize the high-risk variables affecting the performance of a complex drug delivery system consisting of glimepiride-Zein nanoparticles and inclusion of the optimized formula with thermoresponsive triblock copolymers in in situ gel. Sixteen nanoparticle formulations were prepared by liquid-liquid phase separation method according to the D-optimal fractional factorial design encompassing five variables at two levels. The responses investigated were glimepiride entrapment capacity (EC), particle size and size distribution, zeta potential, and in vitro drug release from the prepared nanoparticles. Furthermore, the feasibility of embedding the optimized Zein-based glimepiride nanoparticles within thermoresponsive triblock copolymers poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) in in situ gel was evaluated for controlling glimepiride release rate. Through the systematic optimization phase, improvement of glimepiride EC of 33.6%, nanoparticle size of 120.9 nm with a skewness value of 0.2, zeta potential of 11.1 mV, and sustained release features of 3.3% and 17.3% drug released after 2 and 24 hours, respectively, were obtained. These desirability functions were obtained at Zein and glimepiride loadings of 50 and 75 mg, respectively, utilizing didodecyldimethylammonium bromide as a stabilizer at 0.1% and 90% ethanol as a common solvent. Moreover, incorporating this optimized formulation in triblock copolymers-based in situ gel demonstrated pseudoplastic behavior with reduction of drug release rate as the concentration of polymer increased. This approach to control the release of glimepiride using Zein nanoparticles/triblock copolymers-based in situ gel forming intramuscular implants could be useful for improving diabetes treatment effectiveness.

  8. A poly(lactide-co-glycolide) film loaded with abundant bone morphogenetic protein-2: A substrate-promoting osteoblast attachment, proliferation, and differentiation in bone tissue engineering.

    PubMed

    Qu, Xiangyang; Cao, Yujiang; Chen, Cong; Die, Xiaohong; Kang, Quan

    2015-08-01

    We explored a novel biodegradable poly(lactide-co-glycolide) (PLGA) film loaded with over 80 wt % bone morphogenetic protein (BMP)-2, which was regarded as a substrate-promoting osteoblast attachment, proliferation, and differentiation for application of bone tissue engineering. Using phospholipid as a surfactant, BMP-2 was modified as a complex (PBC) for dispersing in PLGA/dichloromethane solution. The PLGA film loaded with BMP-2 and phospholipid complex (PBC-PF) showed rough and draped morphology with high entrapment efficiency exceeding 80% and good hydrophilicity, respectively. The in vitro release study of BMP-2 showed that about 50% BMP-2 was slowly and continuously released from PBC-PF within 5 weeks and had a short initial burst release only in the last 1.5 days, which was better than serious burst release of PLGA film loaded with pure BMP-2 without phospholipid (BMP-PF) as control. By comparison with other PLGA films and tissue culture plates, it was confirmed that PBC-PF significantly promoted the attachment, proliferation, and differentiation of osteoblasts with higher entrapment efficiency and better sustained release. These advantages illustrated that PBC-PF could be a potential substrate providing long-term requisite growth factors for osteoblasts, which might be applied in bone tissue engineering. © 2015 Wiley Periodicals, Inc.

  9. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier.

    PubMed

    Nair, K Lekha; Thulasidasan, Arun Kumar T; Deepa, G; Anto, Ruby John; Kumar, G S Vinod

    2012-04-04

    Curcumin, a yellow pigment present in turmeric, possess potential anti-proliferative and anti-inflammatory activities but poor aqueous solubility limits its applications. In this study we report a novel comparative study of the formulation and characterization of curcumin nanoparticles (nanocurcumin) using two poly (lactide-co-glycolide) (PLGA) combinations, 50:50 and 75:25 having different lactide to glycolide ratios. Nanocurcumin 50:50 showed smaller size with higher encapsulation efficiency. Thermal evaluation suggested the presence of curcumin in molecular dispersion form which supported its sustained release up to a week where nanocurcumin 50:50 showed faster release. Cellular uptake studies in human epithelial cervical cancer cells (HeLa) exhibited enhanced intracellular fluorescence with nanocurcumin when compared to free curcumin, when both given in purely aqueous media. Antiproliferative studies using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, Annexin V/propidium iodide staining, poly (ADP-ribose) polymerase (PARP) cleavage and downregulation of clonogenic potential of HeLa cells proved the better antitumor activity of nanocurcumin 50:50 administered in aqueous media. Superior efficacy of nanocurcumin 50:50 in comparison to free curcumin was further demonstrated by electrophoretic mobility shift assay and immunocytochemical analysis. In conclusion, the enhanced aqueous solubility and higher anticancer efficacy of nanocurcumin administered in aqueous media clearly demonstrates its potential against cancer chemotherapy, with dependence on the combination of PLGA. Copyright © 2012. Published by Elsevier B.V.

  10. Enhanced antitumor efficacy of poly(D,L-lactide-co-glycolide)-based methotrexate-loaded implants on sarcoma 180 tumor-bearing mice

    PubMed Central

    Gao, Li; Xia, Lunyang; Zhang, Ruhui; Duan, Dandan; Liu, Xiuxiu; Xu, Jianjian; Luo, Lan

    2017-01-01

    Purpose Methotrexate is widely used in chemotherapy for a variety of malignancies. However, severe toxicity, poor pharmacokinetics, and narrow safety margin of methotrexate limit its clinical application. The aim of this study was to develop sustained-release methotrexate-loaded implants and evaluate antitumor activity of the implants after intratumoral implantation. Materials and methods We prepared the implants containing methotrexate, poly(D,L-lactide-co-glycolide), and polyethylene glycol 4000 with the melt-molding technique. The implants were characterized with regards to drug content, morphology, in vitro, and in vivo release profiles. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were carried out to investigate the physicochemical properties of the implants. Furthermore, the antitumor activity of the implants was tested in a sarcoma 180 mouse model. Results The implants were prepared as solid rods. Scanning electron microscopy images showed a smooth surface of the implant, suggesting that methotrexate was homogeneously dispersed in the polymeric matrix. The results of DSC and FTIR indicated that no significant interaction between methotrexate and the polymer was observed in the implants. Both in vitro and in vivo release profiles of the implants were characterized by burst release followed by sustained release of methotrexate. Intratumoral implantation of methotrexate-loaded implants could efficiently delay tumor growth. Moreover, an increase in the dose of implants led to a higher tumor suppression rate without additional systemic toxicity. Conclusion These results demonstrate that methotrexate-loaded implants had significant antitumor efficacy in a sarcoma 180 mouse model without dose-limiting side effects, and suggest that the implants could be potentially applied as an intratumoral delivery system to treat cancer. PMID:29118572

  11. Long-term degradation of a poly-lactide co-glycolide/β-tricalcium phosphate biocomposite interference screw.

    PubMed

    Barber, F Alan; Dockery, W D; Hrnack, Scott A

    2011-05-01

    To evaluate the long-term in vivo degradation of biodegradable interference screws made of poly-L-lactide co-glycolide (poly-L-lactic acid [PLLA]/polyglycolic acid [PGA]) and β-tricalcium phosphate (β-TCP). To study in vivo the biological behavior of a PLLA/PGA/β-TCP biocomposite screw (Milagro; DePuy Mitek, Raynham, MA), an institutional review board-approved program using anterior cruciate ligament (ACL) interference fixation screws was initiated in 2005. Thirteen patients who had bone-patellar tendon-bone ACL reconstruction fixed at both the femur and tibia with PLLA/PGA/β-TCP screws at least 24 months earlier were evaluated by physical, radiographic, and computed tomography (CT) evaluations. Lysholm, Tegner, Cincinnati, and International Knee Documentation Committee scores were also obtained. Radiographs and CT scans of the operated knee were obtained. CT scan data measured in Hounsfield units (HU) evaluated the material density at the screw and bone plug sites. Soft-tissue and cancellous and cortical bone site readings were also taken. Osteoconductivity scores were determined at the screw sites by use of an ossification quality score (range, 1 to 4). Eleven men and two women were evaluated at a mean of 38 months after surgery (range, 24 to 49 months). CT scans and radiographs showed the bone plug fused to the tunnel wall with no PLLA/PGA/β-TCP screw remaining. The screws were replaced with material that was calcified and non-trabecular. Osteoconductivity was present in 21 of 26 tunnels (81%) and complete (type 4 ossification) in 5 of 26 (19%). Mean screw site densities (femoral, 159 HU; tibial, 157 HU) were not different from the mean cancellous bone density (femoral, 146 HU; tibial, 140 HU). No positive pivot-shift tests were found. Lysholm, Tegner, and Cincinnati scores improved from 44, 3.7, and 37 preoperatively to 93, 6, and 87 at follow-up, respectively. The mean KT arthrometer (MEDmetric, San Diego, CA) difference was 0.8 mm. The PLLA

  12. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies.

    PubMed Central

    Eldridge, J H; Staas, J K; Meulbroek, J A; Tice, T R; Gilley, R M

    1991-01-01

    Microspheres composed of biocompatible, biodegradable poly(DL-lactide-co-glycolide) (DL-PLG) and staphylococcal enterotoxin B (SEB) toxoid were evaluated as a vaccine delivery system when subcutaneously injected into mice. As measured by circulating immunoglobulin G (IgG) antitoxin titers, the delivery of SEB toxoid via DL-PLG microspheres, 1 to 10 microns in diameter, induced an immune response which was approximately 500 times that seen with nonencapsulated toxoid. The kinetics, magnitude, and duration of the antitoxin response induced with microencapsulated toxoid were similar to those obtained when an equal toxoid dose was administered as an emulsion with complete Freund adjuvant. However, the microspheres did not induce the inflammation and granulomata formation seen with complete Freund adjuvant. The adjuvant activity of the microspheres was not dependent on the superantigenicity of SEB toxin and was equally effective at potentiating circulating IgG antitrinitrophenyl levels in response to microencapsulated trinitrophenyl-keyhole limpet hemocyanin. Empty DL-PLG microspheres were not mitogenic, and SEB toxoid injected as a mixture with empty DL-PLG microspheres was no more effective as an immunogen than toxoid alone. Antigen-containing microspheres 1 to 10 microns in diameter exhibited stronger adjuvant activity than those greater than 10 microns, which correlated with the delivery of the 1- to 10-microns, but not the greater than 10-microns, microspheres into the draining lymph nodes within macrophages. The antibody response induced through immunization with microencapsulated SEB toxoid was protective against the weight loss and splenic V beta 8+ T-cell expansion induced by intravenous toxin administration. These results show that DL-PLG microsphere vaccine delivery systems, which are composed of pharmaceutically acceptable components, possess a strong adjuvant activity for their encapsulated antigens. PMID:1879922

  13. Optimization of nanoparticles for cardiovascular tissue engineering.

    PubMed

    Izadifar, Mohammad; Kelly, Michael E; Haddadi, Azita; Chen, Xiongbiao

    2015-06-12

    Nano-particulate delivery systems have increasingly been playing important roles in cardiovascular tissue engineering. Properties of nanoparticles (e.g. size, polydispersity, loading capacity, zeta potential, morphology) are essential to system functions. Notably, these characteristics are regulated by fabrication variables, but in a complicated manner. This raises a great need to optimize fabrication process variables to ensure the desired nanoparticle characteristics. This paper presents a comprehensive experimental study on this matter, along with a novel method, the so-called Geno-Neural approach, to analyze, predict and optimize fabrication variables for desired nanoparticle characteristics. Specifically, ovalbumin was used as a protein model of growth factors used in cardiovascular tissue regeneration, and six fabrication variables were examined with regard to their influence on the characteristics of nanoparticles made from high molecular weight poly(lactide-co-glycolide). The six-factor five-level central composite rotatable design was applied to the conduction of experiments, and based on the experimental results, a geno-neural model was developed to determine the optimum fabrication conditions. For desired particle sizes of 150, 200, 250 and 300 nm, respectively, the optimum conditions to achieve the low polydispersity index, higher negative zeta potential and higher loading capacity were identified based on the developed geno-neural model and then evaluated experimentally. The experimental results revealed that the polymer and the external aqueous phase concentrations and their interactions with other fabrication variables were the most significant variables to affect the size, polydispersity index, zeta potential, loading capacity and initial burst release of the nanoparticles, while the electron microscopy images of the nanoparticles showed their spherical geometries with no sign of large pores or cracks on their surfaces. The release study revealed

  14. Biotin-Conjugated Multilayer Poly [D,L-lactide-co-glycolide]-Lecithin-Polyethylene Glycol Nanoparticles for Targeted Delivery of Doxorubicin.

    PubMed

    Dai, Yu; Xing, Han; Song, Fuling; Yang, Yue; Qiu, Zhixia; Lu, Xiaoyu; Liu, Qi; Ren, Shuangxia; Chen, Xijing; Li, Ning

    2016-09-01

    Multilayer nanoparticle combining the merits of liposome and polymer nanoparticle has been designed for the targeted delivery of doxorubicin (DOX) in cancer treatment. In this study, DOX-PLGA-lecithin-PEG-biotin nanoparticles (DOX-PLPB-NPs) were fabricated and functionalized with biotin for specific tumor targeting. Under the transmission electron microscopy observation, the lipid layer was found to be coated on the polymer core. The physical characteristics of PLPB-NPs were also evaluated. The confocal laser scanning microscopy confirmed the cellular uptake of nanoparticles and targeted delivery PLPB-NPs. The in vitro release experiment demonstrated a pH-depending release of DOX from drug-loaded PLPB-NPs. Cytotoxicity studies in HepG2 cells and in vivo antitumor experiment in tumor-bearing mice both proved DOX-PLPB-NPs showed the best inhibition effect of tumor proliferation. In biodistribution studies, DOX-PLPB-NPs showed a higher DOX concentration than free DOX and DOX-PLGA-lecithin-PEG nanoparticles (DOX-PLP-NPs) in tumor site, especially in 24 h, and the lowest DOX level in normal organs. The results were coincident with the strongest antitumor ability showed among in vivo antitumor experiment. Histopathology analysis demonstrated that DOX-PLPB-NPs exhibited the strongest antitumor ability and lowest cardiotoxicity. In brief, the PLPB-NPs were proved to be an efficient delivery system for tumor-targeting treatment. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Characterization of nanoparticle uptake by endothelial cells.

    PubMed

    Davda, Jasmine; Labhasetwar, Vinod

    2002-02-21

    Endothelium is an important target for drug or gene therapy because of its important role in the biological system. In this paper, we have characterized nanoparticle uptake by endothelial cells in cell culture. Nanoparticles were formulated using poly DL-lactide-co-glycolide polymer containing bovine serum albumin as a model protein and 6-coumarin as a fluorescent marker. It was observed that the cellular uptake of nanoparticles depends on the time of incubation and the concentration of nanoparticles in the medium. The uptake of nanoparticles was rapid with confocal microscopy demonstrating their localization mostly in the cytoplasm. The mitogenic study demonstrated biocompatability of nanoparticles with the cells. The study thus demonstrates that nanoparticles could be used for localizing therapeutic agents or gene into endothelial cells. Nanoparticles localized in the endothelium could provide prolonged drug effects because of their sustained release characterics, and also could protect the encapsulated agent from enzymatic degradation.

  16. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.

    PubMed

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2017-10-25

    Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: preparation and in vitro evaluation.

    PubMed

    Gundogdu, Nuran; Cetin, Meltem

    2014-11-01

    In this study, the preparation and in vitro characterisation of metformin HCl-loaded CS-PLGA nanoparticles (NPs) were aimed. The prepared nanoparticles (blank nanoparticles (C-1), 50 mg of metformin HCl loaded nanoparticles (C-2) and 75 mg of metformin HCl loaded nanoparticles (C-3) ranged in size from 506.67±13.61 to 516.33±16.85 nm and had surface charges of 22.57±1.21 to 32.37±0.57 mV. Low encapsulation efficiency was observed for both nanoparticle formulations due to the leakage of metformin HCl to the external medium during preparation of nanoparticles. Nanoparticle formulations showed highly reproducible drug release profiles. ~20% of metformin HCl was released within 30 minutes and approximately 98% of the loaded metformin HCl was released at 144 hours in a phosphate buffer (PB; pH 6.8). No statistically significant difference was noted between the in vitro release profiles of the nanoparticles (C-2 and C-3) containing metformin HCl. Also, nanoparticles were characterised using FT-IR and DSC.

  18. A poly (lactide-co-glycolide) film loaded with abundant bone morphogenetic protein-2: A substrate promoting osteoblast attachment, proliferation and differentiation in bone tissue engineering.

    PubMed

    Qu, Xiangyang; Cao, Yujiang; Chen, Cong; Die, Xiaohong; Kang, Quan

    2014-12-10

    We explored a novel biodegradable poly (lactide-co-glycolide) (PLGA) film loaded with over 80 wt% bone morphogenetic protein (BMP-2), which was regarded as a substrate promoting osteoblast attachment, proliferation and differentiation for application of bone tissue engineering. Using phospholipid as a surfactant, BMP-2 was modified as a complex (PBC) for dispersing in PLGA/dichloromethane solution. The PLGA film loaded with BMP-2 and phospholipid complex (PBC-PF) showed rough and draped morphology with high entrapment efficiency exceeding 80% and good hydrophilicity respectively. The in-vitro release study of BMP-2 showed that about 50% BMP-2 was slowly and continuously released from PBC-PF within 5 weeks and had a short initial burst release only in the last 1.5 days, which was better than serious burst release of PLGA film loaded with pure BMP-2 without phospholipid (BMP-PF) controlling. By comparison with other PLGA films and tissue culture plates, it was confirmed that PBC-PF significantly promoted the attachment, proliferation and differentiation of osteoblasts with higher entrapment efficiency and better sustained release. These advantages illustrated that PBC-PF could be a potential substrate providing long-term requisite growth factors for osteoblasts, which might be applied in bone tissue engineering. This article is protected by copyright. All rights reserved. Copyright © 2014 Wiley Periodicals, Inc., A Wiley Company.

  19. A novel injectable in situ forming poly-DL-lactide and DL-lactide/glycolide implant containing lipospheres for controlled drug delivery.

    PubMed

    Yehia, Soad A; Elshafeey, Ahmed H; Elsayed, Ibrahim

    2012-06-01

    One of the greatest challenges in in situ forming implant (ISFI) systems by polymer precipitation is the large burst release during the first 1-24 hours after implant injection. The aim of this study was to decrease the burst-release effect of a water-soluble model drug, donepezil HCl, with a molecular weight of 415.96 Da, from in situ forming implants using a novel in situ implant containing lipospheres (ISILs). In situ implant suspensions were prepared by dispersing cetyl alcohol and glyceryl stearate lipospheres in a solution of poly-DL-lactide (PDL) or DL-lactide/glycolide copolymer (PDLG). Also, in situ implant solutions were prepared using different concentrations of PDL or PDLG solutions in N-methyl-2-pyrrolidone (NMP). Triacetin and Pluronic L121 were used to modify the release pattern of donepezil from the in situ implant solutions. In vitro release, rheological measurement, and injectability measurement were used to evaluate the prepared in situ implant formulae. It was found that ISIL decreased the burst effect as well as the rate and extent of drug release, compared to lipospheres, PDL, and PDLG in situ implant. The amount of drug released in the first day was 37.75, 34.99, 48.57, 76.3, and 84.82% for ISIL in 20% PDL (IL-1), ISIL in 20% PDLG (IL-2), lipospheres (L), 20% PDL ISFI (I5), and 20% PDLG ISFI (I8), respectively. The prepared systems showed Newtonian flow behavior. ISIL (IL-1 and IL-2) had a flow rate of 1.94 and 1.40 mL/min, respectively. This study shows the potential of using in situ implants containing lipospheres in controlling the burst effect of ISFI.

  20. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    NASA Astrophysics Data System (ADS)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  1. The effect of oxygen plasma pretreatment and incubation in modified simulated body fluids on the formation of bone-like apatite on poly(lactide-co-glycolide) (70/30).

    PubMed

    Qu, Xue; Cui, Wenjin; Yang, Fei; Min, Changchun; Shen, Hong; Bei, Jianzhong; Wang, Shenguo

    2007-01-01

    In this study, biodegradable poly(lactide-co-glycolide) (PLGA) (70/30) films and scaffolds were first treated with oxygen plasma and then incubated in a modified simulated body fluid 1.5SBF0 to prepare a bone-like apatite layer. The formation of the apatite and its influence on osteoblast-like cells growth were investigated. It was found that the bone-like apatite formability of PLGA(70/30) was enhanced by plasma pretreatment. The changes of surface chemistry and surface topography induced by oxygen plasma treatment were both effective for apatite formation. The apatite formability increased with increasing plasma-treating time. Under a treating condition of 20 W for 30 min, oxygen plasma treatment could penetrate into the inner scaffold. After 6 days incubation, the apatite formed in plasma-treated scaffold was better distributed than in untreated scaffold, and the weight and mechanical strength of the plasma-treated scaffold were both enhanced. Compared with PLGA(70/30), the apatite layer formed on oxygen plasma-treated PLGA(70/30) surface enhanced adhesion and proliferation of OCT-1 osteoblast-like cell, but had no significant effect on cell's ALP activity at day 7. A prolonged investigation is being in process to further verify the bone-like apatite effects on osteogenic differentiation.

  2. Nasal delivery of chitosan-coated poly(lactide-co-glycolide)-encapsulated honeybee (Apis mellifera) venom promotes Th 1-specific systemic and local intestinal immune responses in weaned pigs.

    PubMed

    Lee, Jin-A; Kim, Yun-Mi; Kim, Tae-Hoon; Lee, Sang-Ho; Lee, Cho-A; Cho, Cheong-Weon; Jeon, Jong-Woon; Park, Jin-Kyu; Kim, Sang-Ki; Jung, Bock-Gie; Lee, Bong-Joo

    2016-10-01

    Nasal delivery is a convenient and acceptable route for drug administration, and has been shown to elicit a much more potent local and systemic response compared with other drug delivery routes. We previously demonstrated that rectal administration of poly(lactide-co-glycolide)-encapsulated honeybee venom (P-HBV) could enhance systemic Th 1-specific immune responses. We therefore synthesized chitosan-coated P-HBV (CP-HBV) and then evaluated the immune-boosting efficacy of nasally administered CP-HBV on systemic and local intestinal immunity compared with non-chitosan-coated P-HBV. The nasally delivered CP-HBV effectively enhanced Th 1-specific responses, eliciting a significant increase in the CD3(+)CD4(+)CD8(-) Th cell population, lymphocyte proliferation capacity, and expression of Th 1 cytokines (IFN-γ, IL-12, and IL-2) in peripheral blood mononuclear cells. Furthermore, these immune-boosting effects persisted up to 21days post CP-HBV administration. Nasal administration of CP-HBV also led to an increase of not only the CD4(+) Th 1 and IFN-γ secreting CD4(+) Th 1 cell population but also Th 1-specific cytokines and transcription factors, including IL-12, IFN-γ, STAT4, and T-bet, in isolated mononuclear cells from the spleen and ileum. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Nanobiocomposite of poly(lactide-co-glycolide)/chitosan electrospun scaffold can promote proliferation and transdifferentiation of Schwann-like cells from human adipose-derived stem cells.

    PubMed

    Razavi, Shahnaz; Zarkesh-Esfahani, Hamid; Morshed, Mohammad; Vaezifar, Sedigheh; Karbasi, Saeed; Golozar, Mohammad Ali

    2015-08-01

    The transdifferentiation of human adipose-derived stem cells (ADSCs) into Schwann-like cells on biocomposite scaffolds may be a critical issue in nerve regeneration medicine. In this study, tissue-engineered scaffold with chitosan (CS) nanopowders and poly(lactide-co-glycolide) (PLGA) was investigated for its potential Schwann cells (SCs) transdifferentiation. The differentiation of human ADSCs into S-like cells was induced with different CS content and direction of nanofibers on PLGA/CS scaffolds. Cell morphology and proliferation of differentiated cells were investigated by scanning electron microscopy and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay respectively. For assessment efficiency of transdifferentiation, the expression of SC markers (glial fibrillary acidic protein and S100), and myelinogenic marker (myelin basic protein) was investigated in different nanochitosan content and direction of nanofibers scaffolds, using immunocytochemistry technique. The nanochitosan can significantly promote cell proliferation of differentiated cells (p < 0.05). The mean percentage of S-like cells on greater CS content nanofibers scaffold was significantly higher than others (p < 0.05). In addition, the align orientation of nanofibers in scaffolds guided the differentiation of ADSCs toward myelinating S-like cells on the constructs. Overall, we found that high CS content and aligned-orientation of nanofibers in biocomposite scaffold (70/30A) can promote differentiation and myelinogenic capacity of S-like cells induced from human ADSCs. © 2015 Wiley Periodicals, Inc.

  4. Comparison of PLGA and lecithin/chitosan nanoparticles for dermal targeting of betamethasone valerate.

    PubMed

    Özcan, Ipek; Azizoğlu, Erkan; Senyiğit, Taner; Özyazici, Mine; Özer, Özgen

    2013-07-01

    Poly(lactide-co-glycolide) (PLGA) and lecithin/chitosan (LC) nanoparticles were prepared to evaluate the difference in the behavior upon administration on skin, for steroidal treatment. For this purpose, betamethasone-17-valerate (BMV)-loaded nanoparticles with a narrow size distribution and high entrapment efficiency were prepared. Permeation studies showed that both polymeric nanoparticles enhanced the amount of BMV in epidermis, which is the target site of topical steroidal treatment, when compared with commercial formulation. 1.58-Fold increase was determined in the epidermis concentration of BMV by LC nanoparticles with respect to PLGA nanoparticles. Nanoparticles were diluted in chitosan gel (10%, w/w) to prepare suitable formulation for topical application. Accumulation from both gel formulations were found significantly higher than commercial formulation in skin layers (p < 0.05). In addition, pharmacodynamic responses were also investigated as anti-inflammatory and skin-blanching parameters. Both formulations significantly improved these parameters although they contained 10 times less amount of BMV than commercial cream. Moreover, TEWL measurement exhibited no barrier function changes upon the application of nanoparticles on skin. Overall, both nanoparticles improved the localization of BMV within skin layers; but when compared with PLGA nanoparticles, the LC nanoparticles could be classified as a better candidate for topical delivery vehicle in the treatment of various dermatological inflammatory diseases.

  5. Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate.

    PubMed

    Perugini, P; Simeoni, S; Scalia, S; Genta, I; Modena, T; Conti, B; Pavanetto, F

    2002-10-10

    The aim of this study was to investigate the influence of nanoparticle-based systems on the light-induced decomposition of the sunscreen agent, trans-2-ethylhexyl-p-methoxycinnamate (trans-EHMC). Ethylcellulose (EC) and poly-D,L-lactide-co-glycolide (PLGA) were used as biocompatible polymers for the preparation of the particulate systems. The "salting out" method was used for nanoparticle preparation and several variables were evaluated in order to optimize product characteristics. The photodegradation of the sunscreen agent in emulsion vehicles was reduced by encapsulation into the PLGA nanoparticles (the extent of degradation was 35.3% for the sunscreen-loaded nanoparticles compared to 52.3% for free trans-EHMC) whereas the EC nanoparticle system had no significant effect. Therefore, PLGA nanoparticles loaded with trans-EHMC improve the photostability of the sunscreen agent.

  6. Bone regeneration by nanohydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds seeded with human umbilical cord mesenchymal stem cells in the calvarial defects of the nude mice.

    PubMed

    Wang, Fei; Su, Xiao-Xia; Guo, Yu-Cheng; Li, Ang; Zhang, Yin-Cheng; Zhou, Hong; Qiao, Hu; Guan, Li-Min; Zou, Min; Si, Xin-Qin

    2015-01-01

    In the preliminary study, we have found an excellent osteogenic property of nanohydroxyapatite/chitosan/poly(lactide-co-glycolide) (nHA/CS/PLGA) scaffolds seeded with human umbilical cord mesenchymal stem cells (hUCMSCs) in vitro and subcutaneously in the nude mice. The aim of this study was to further evaluate the osteogenic capacity of nHA/CS/PLGA scaffolds seeded with hUCMSCs in the calvarial defects of the nude mice. Totally 108 nude mice were included and divided into 6 groups: PLGA scaffolds + hUCMSCs; nHA/PLGA scaffolds + hUCMSCs; CS/PLGA scaffolds + hUCMSCs; nHA/CS/PLGA scaffolds + hUCMSCs; nHA/CS/PLGA scaffolds without seeding; the control group (no scaffolds) (n = 18). The scaffolds were implanted into the calvarial defects of nude mice. The amount of new bones was evaluated by fluorescence labeling, H&E staining, and Van Gieson staining at 4 and 8 weeks, respectively. The results demonstrated that the amount of new bones was significantly increased in the group of nHA/CS/PLGA scaffolds seeded with hUCMSCs (p < 0.01). On the basis of previous studies in vitro and in subcutaneous implantation of the nude mice, the results revealed that the nHA and CS also enhanced the bone regeneration by nHA/CS/PLGA scaffolds seeded with hUCMSCs in the calvarial defects of the nude mice at early stage.

  7. Effect of ionic activity products on the structure and composition of mineral self assembled on three-dimensional poly(lactide-co-glycolide) scaffolds

    PubMed Central

    Shin, Kyungsup; Jayasuriya, Ambalangodage C.; Kohn, David H.

    2009-01-01

    A biomimetic approach involving the self-assembly of mineral within the pores of three-dimensional porous polymer scaffolds is a promising strategy to integrate advantages of inorganic and organic phases into a single material for hard tissue engineering. Such a material enhances the ability of progenitor cells to differentiate down an osteoblast lineage in vitro and in vivo, compared with polymer scaffolds. The mechanisms regulating mineral formation in this one-step process, however, are poorly understood, especially the effects of ionic activity products (IP) of the mineralizing solution and incubation time. The aims of this study were to define the structure and composition of mineral formed within the pores of biodegradable polymer scaffolds as a function of IP and time. Three-dimensional poly(lactide-co-glycolide) scaffolds were fabricated by solvent casting/particulate leaching and incubated for 4–16 days in six variants of simulated body fluid whose IPs were varied by adjusting ionic concentrations. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy demonstrated the formation of carbonated apatite with sub-micrometer sized crystals that grew into spherical globules extending out of the scaffold pore surfaces. As IP increased, more mineral grew on the scaffold pore surfaces, but the apatite became less crystalline and the Ca/P molar ratio decreased from 1.63 ± 0.005 to 1.51 ± 0.002. Since morphology, composition, and structure of mineral are factors that affect cell function, this study demonstrates that the IP of the mineralizing solution is an important modulator of material properties, potentially leading to enhanced control of cell function. PMID:17584901

  8. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour.

    PubMed

    Unger, Florian; Wittmar, Matthias; Morell, Frank; Kissel, Thomas

    2008-05-01

    Branched polyesters of the general structure poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide) have shown potential for nano- and micro-scale drug delivery systems. Here the in vitro degradation behaviour with a special emphasis on elucidating structure-property relationships is reported. Effects of type and degree of amine substitution as well as PLGA side chain length were considered. In a first set of experiment, the weight loss of solvent cast films of defined size from 19 polymers was measured as a function of incubation in phosphate buffer (pH 7.4) at 37 degrees C over a time of 21 days. A second study was initiated focusing on three selected polymers in a similar set up, but with additional observation of pH influences (pH 2 and pH 9) and determination of water uptake (swelling) and molecular weights during degradation. Scanning electron micrographs have been recorded at selected time points to characterize film specimens morphologically after degradation. Our investigations revealed the potential to influence the degradation of this polymer class by the degree of amine substitution, higher degrees leading to faster erosion. The erosion rate could further be influenced by the type of amine functionality, DEAPA-modified polyesters degrading as fast as or slightly faster than DMAPA-modified polyesters and these degrading faster than DEAEA-PVA-g-PLGA. As a third option the degradation rate could be modified by the PLGA side chain length, shorter side chains leading to faster erosion. As compared to linear PLGA, remarkably shorter degradation times could be achieved by grafting short PLGA side chains onto amine-modified PVA backbones. Erosion times from less than 5 days to more than 4 weeks could be realized by selecting the type of amine functionality, the degree of amine substitution and the PLGA side chain length at the time of synthesis. In addition, the pathway of hydrolytic degradation can be

  9. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-10-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  10. [BIOCOMPATIBILITY OF POLY-LACTIDE-CO-GLYCOLIDE/COLLAGEN TYPE I SCAFFOLD WITH RAT VAGINAL EPITHELIAL CELLS].

    PubMed

    Li, Yachai; Huang, Xianghua; Zhang, Mingle; Li, Yanan; Chen, Yexing; Jia, Jingfei

    2015-09-01

    To explore the biocompatibility of the poly-lactide-co-glycolide (PLGA)/collagen type I scaffold with rat vaginal epithelial cells, and the feasibility of using PLGA/collagen type I as scaffold to reconstruct vagina by the tissue engineering. PLGA/collagen type I scaffold was prepared with PLGA covered polylysine and collagen type I. The vaginal epithelial cells of Sprague Dawley rat of 10-12 weeks old were cultured by enzyme digestion method. The vaginal epithelial cells of passage 2 were cultured in the leaching liquor of scaffold for 48 hours to detect its cytotoxicity by MTT. The vaginal epithelial cells were inoculated on the PLGA/collagen type I scaffold (experimental group) and PLGA scaffold (control group) to calculate the cell adhesion rate. Epithelial cells-scaffold complexes were implanted subcutaneously on the rat back. At 2, 4, and 8 weeks after implantation, the epithelial cells-scaffold complexes were harvested to observe the cell growth by HE staining and immunohistochemical analysis. The epithelial cells-scaffold complexes were transplanted to reconstruct vagina in 6 rats with vaginal defect. After 3 and 6 months, the vaginal length was measured and the appearance was observed. The neovagina tissues were harvested for histological evaluation after 6 months. The epithelial cells grew and proliferated well in the leaching liquor of PLGA/collagen type I scaffold, and the cytotoxicity was at grade 1. The cell adhesion rate on the PLGA/collagen type I scaffold was 71.8%±9.2%, which significantly higher than that on the PLGA scaffold (63.4%±5.7%) (t=2.195, P=0.005). The epithelial cells could grow and adhere to the PLGA/collagen type I scaffolds. At 2 weeks after implanted subcutaneously, the epithelial cells grew and proliferated in the pores of scaffolds, and the fibroblasts were observed. At 4 weeks, 1-3 layers epithelium formed on the surface of scaffold. At 8 weeks, the epithelial cells increased and arranged regularly, which formed the membrane

  11. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganea, Gabriela M.; Fakayode, Sayo O.; Losso, Jack N.; van Nostrum, Cornelus F.; Sabliov, Cristina M.; Warner, Isiah M.

    2010-07-01

    Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100 mg PLGA, 15 mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200 nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mg ml - 1 TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 ± 0.002 mg ml - 1) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 ± 5.6% after 96 h.

  12. Controlled-release biodegradable nanoparticles: From preparation to vaginal applications.

    PubMed

    Martínez-Pérez, Beatriz; Quintanar-Guerrero, David; Tapia-Tapia, Melina; Cisneros-Tamayo, Ricardo; Zambrano-Zaragoza, María L; Alcalá-Alcalá, Sergio; Mendoza-Muñoz, Néstor; Piñón-Segundo, Elizabeth

    2018-03-30

    This study aimed to prepare poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with chitosan (CTS) surface modification to be used as a vaginal delivery system for antimycotic drugs. Clotrimazole was encapsulated with entrapment efficiencies of 86.1 and 68.9% into Clotrimazole-PLGA-NPs (CLT-PLGA-NPs) and PLGA-NPs with CTS-modified surface (CLT-PLGA-CTS-NPs), respectively. The later NPs exhibited a larger size and higher positive zeta potential (Z potential) in comparison to unmodified NPs. In vitro release kinetic studies indicated that Clotrimazole was released in percentages of >98% from both nanoparticulate systems after 18days. Antifungal activity and mucoadhesive properties of NPs were enhanced when CTS was added onto the surface. In summary, these results suggested that Clotrimazole loaded into PLGA-CTS-NPs has great potential for vaginal applications in treating vaginal infections generated by Candida albicans. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells

    PubMed Central

    Mura, Simona; Hillaireau, Herve; Nicolas, Julien; Le Droumaguet, Benjamin; Gueutin, Claire; Zanna, Sandrine; Tsapis, Nicolas; Fattal, Elias

    2011-01-01

    Background Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles displaying various surface properties on human bronchial Calu-3 cells. Methods Positively and negatively charged as well as neutral nanoparticles were tailored by coating their surface with chitosan, Poloxamer, or poly (vinyl alcohol), respectively. Nanoparticles were characterized in terms of size, zeta potential, and surface chemical composition, confirming modifications provided by hydrophilic polymers. Results Although nanoparticle internalization by lung cells was clearly demonstrated, the cytotoxicity of the nanoparticles was very limited, with an absence of inflammatory response, regardless of the surface properties of the PLGA nanoparticles. Conclusion These in vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines. PMID:22114491

  14. Cationic microparticle [poly(D,L-lactide-co-glycolide)]-coated DNA vaccination induces a long-term immune response against foot and mouth disease in guinea pigs.

    PubMed

    Reddy, Kotla S; Rashmi, Brabhi R; Dechamma, Hosur J; Gopalakrishna, Susarla; Banumathi, N; Suryanarayana, Veluvarthy V S; Reddy, Golla R

    2012-05-01

    Foot and mouth disease (FMD) can be controlled by regular vaccination and restriction of the movement of infected animals in the endemic countries. Although presently used, tissue culture inactivated vaccine gives protection, it has several limitations, including a short duration of immunity. DNA vaccine delivered through microparticles could comprise an alternative approach to conventional vaccine when aiming to circumvent these limitations. We constructed the expression plasmid (pVAC-1D) containing 1D gene FMD virus serotype Asia 1. Poly(D,L-lactide-co-glycolide) (PLG) microparticles were prepared and coated with the pVAC-1D plasmid. Guinea pigs were vaccinated with PLG-coated and naked DNA vaccine constructs intramuscularly. The humoral response was measured by an enzyme-linked immunosorbent assay (ELISA) and the serum neutralization test (SNT). Analysis of the persistence and the expression of pVAC-1D plasmid construct was carried out by quantitative polymerase chain reaction (qPCR). The humoral response lasted for 1 year, as measured by ELISA and SNT. Analysis of the persistence and the expression of pVAC-1D plasmid construct by qPCR has shown that pVAC-1D expression was seen for a longer duration compared to the naked DNA vaccine. Microparticles coated plasmid DNA-injected guinea pigs were protected when challenged with FMD virus. The present study has shown that the delivery of plasmid coated on cationic PLG microparticles enhance the duration of immunity of the DNA vaccine constructs. Copyright © 2012 John Wiley & Sons, Ltd.

  15. "Curcumin-loaded Poly (d, l-lactide-co-glycolide) nanovesicles induce antinociceptive effects and reduce pronociceptive cytokine and BDNF release in spinal cord after acute administration in mice".

    PubMed

    Pieretti, Stefano; Ranjan, Amalendu P; Di Giannuario, Amalia; Mukerjee, Anindita; Marzoli, Francesca; Di Giovannandrea, Rita; Vishwanatha, Jamboor K

    2017-10-01

    Given the poor bioavailability of curcumin, its antinociceptive effects are produced after chronic intravenous administration of high doses, while poly (d,l-lactide-co-glycolide)-loaded vesicles (PLGA) can improve drug delivery. This paper investigates the antinociceptive effects of curcumin-loaded PLGA nanovesicles (PLGA-CUR) administered via intravenous (i.v.) or intrathecal (i.t.) routes at low and high doses. The following models of pain were used: formalin test, zymosan-induced hyperalgesia and sciatic nerve ligation inducing neuropathic allodynia and hyperalgesia. PLGA-CUR administered intravenously was able to reduce the response to nociceptive stimuli in the formalin test and hyperalgesia induced by zymosan. Curcumin, instead, was inactive. Low-dose i.t. administration of PLGA-CUR significantly reduced allodynia produced by sciatic nerve ligation, whereas low doses of curcumin did not change the response to nociceptive stimuli. Long-lasting antinociceptive effects were observed when high doses of PLGA-CUR were administered intrathecally. At high doses, i.t. administration of curcumin only exerted rapid and transient antinociceptive effects. Measurement of cytokine and BDNF in the spinal cord of neuropathic mice demonstrate that the antinociceptive effects of PLGA-CUR depend on the reduction in cytokine release and BDNF in the spinal cord. The results demonstrate the effectiveness of PLGA-CUR and suggest that PLGA-CUR nanoformulation might be a new potential drug in the treatment of pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells

    PubMed Central

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Xu, Ronald X.; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2016-01-01

    Dual responsive nanoparticles are developed for co-delivery of multiple anticancer drugs to target the drug resistance mechanisms of cancer stem-like cells (CSCs). The nanoparticles consist of four polymers approved by the Food and Drug Administration (FDA) for medical use: Poly(D,L-lactide-co-glycolide) (PLGA), Pluronic F127 (PF127), chitosan, and hyaluronic acid (HA). By combining PLGA and PF127 together, more stable and uniform-sized nanoparticles can be obtained than using PLGA or PF127 alone. The HA is used for not only actively targeting CSCs to reduce their drug resistance due to dormancy (i.e., slow metabolism), but also replacing the commonly used poly(vinyl alcohol) as a stabilizing agent to synthesize the nanoparticles using the double-emulsion approach and to allow for acidic pH-triggered drug release and thermal responsiveness. Besides minimizing drug efflux from CSCs, the nanoparticles encapsulated with doxorubicin hydrochloride (DOX, hydrophilic) and irinotecan (CPT, hydrophobic) to inhibit the activity of topoisomerases II and I, respectively, can fight against the CSC drug resistance associated with their enhanced DNA repair and anti-apoptosis. Ultimately, the two drugs-laden nanoparticles can be used to efficiently destroy the CSCs both in vitro and in vivo with up to ~500 times of enhancement compared to the simple mixture of the two drugs. PMID:26344365

  17. Morphological characterization of microspheres, films and implants prepared from poly(lactide-co-glycolide) and ABA triblock copolymers: is the erosion controlled by degradation, swelling or diffusion?

    PubMed

    Witt, C; Kissel, T

    2001-05-01

    Erosion of biodegradable parenteral delivery systems (PDS) based on ABA copolymers consisting of poly(L-lactide-co-glycolide) (PLGA) A-blocks attached to polyethylene oxide (PEO) B-blocks, or PLGA is important for the release of macromolecular drugs. The degradation behavior of four types of PDS, namely extruded rods, tablets, films and microspheres, was studied with respect to molecular weight, mass, polymer composition and shape and microstructure of the PDS. For each device the onset time of bulk erosion (t(on)) and the apparent rate of mass loss (k(app)) were calculated. In the case of PLGA, the t(on) was 16.2 days for microspheres, 19.2 days for films and 30.1 days for cylindrical implants and tablets. The k(app) was 0.04 days(-1) for microspheres, 0.09 days(-1) for films, 0.11 days(-1) for implants and 0.10 days(-1) for tablets. The degradation rates were in the same range irrespective of the geometry and the micrographs of eroding PDS demonstrated pore formation; therefore, a complex pore diffusion mechanism seems to control the erosion of PLGA devices. In contrast, PDS based on ABA copolymers showed swelling, followed by a parallel process of molecular weight degradation and polymer erosion, independent of the geometry. The contact angles of ABA films increased either with decreasing PEO content or with increasing chain length of the PEO B-blocks. In summary, the insertion of a hydrophilic B-block leads to an erosion controlled by degradation of ABA copolymers, whereas for PLGA a complex pore diffusion of degradation products controls the rate of bulk erosion.

  18. Attachment of Poly(l-lactide) Nanoparticles to Plasma-Treated Non-Woven Polymer Fabrics Using Inkjet Printing.

    PubMed

    Ivanova, Tatiana V; Baier, Grit; Landfester, Katharina; Musin, Eduard; Al-Bataineh, Sameer A; Cameron, David C; Homola, Tomáš; Whittle, Jason D; Sillanpää, Mika

    2015-09-01

    Active dressings that based on fabric materials are an area of interest for the treatment of wounds. Poly(l-lactide) nanoparticles containing the antimicrobial agent octenidine can be controllably lysed by toxins released by pathogenic bacteria thus releasing antimicrobial material in response to the presence of the bacterial toxins and so counteracting the infection. We developed an integrated engineering solution that allows for the stable immobilisation of nanoparticles on non-woven fabrics. The process involves coating nanoparticles on non-woven polymer surfaces by using an inkjet printing process. In order to improve the adhesion and retention of the nanoparticles on the fabric, surface pretreatment of the non-woven fabric using plasma jet treatment can be applied to increase its surface energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems.

    PubMed

    Singh, Jasvinder; Pandit, Sreenivas; Bramwell, Vincent W; Alpar, H Oya

    2006-02-01

    Poly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles. The highest uptake mediated by the most hydrophobic nanoparticles using Caco-2 cells was mirrored in the in vivo studies following nasal administration. PCL nanoparticles induced DT serum specific IgG antibody responses significantly higher than PLGA. A significant positive correlation between hydrophobicity of the nanoparticles and the immune response was observed following intramuscular administration. The positive correlation between hydrophobicity of the nanoparticles and serum DT specific IgG antibody response was also observed after intranasal administration of the nanoparticles. The cytokine assays showed that the serum IgG antibody response induced is different according to the route of administration, indicated by the differential levels of IL-6 and IFN-gamma. The nanoparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-6 and IFN-gamma.

  20. On-chip synthesis of fine-tuned bone-seeking hybrid nanoparticles.

    PubMed

    Hasani-Sadrabadi, Mohammad Mahdi; Dashtimoghadam, Erfan; Bahlakeh, Ghasem; Majedi, Fatemeh S; Keshvari, Hamid; Van Dersarl, Jules J; Bertsch, Arnaud; Panahifar, Arash; Renaud, Philippe; Tayebi, Lobat; Mahmoudi, Morteza; Jacob, Karl I

    2015-01-01

    Here we report a one-step approach for reproducible synthesis of finely tuned targeting multifunctional hybrid nanoparticles (HNPs). A microfluidic-assisted method was employed for controlled nanoprecipitation of bisphosphonate-conjugated poly(D,L-lactide-co-glycolide) chains, while coencapsulating superparamagnetic iron oxide nanoparticles and the anticancer drug Paclitaxel. Smaller and more compact HNPs with narrower size distribution and higher drug loading were obtained at microfluidic rapid mixing regimen compared with the conventional bulk method. The HNPs were shown to have a strong affinity for hydroxyapatite, as demonstrated in vitro bone-binding assay, which was further supported by molecular dynamics simulation results. In vivo proof of concept study verified the prolonged circulation of targeted microfluidic HNPs. Biodistribution as well as noninvasive bioimaging experiments showed high tumor localization and suppression of targeted HNPs to the bone metastatic tumor. The hybrid bone-targeting nanoparticles with adjustable characteristics can be considered as promising nanoplatforms for various theragnostic applications.

  1. Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching.

    PubMed

    Trofymchuk, Kateryna; Prodi, Luca; Reisch, Andreas; Mély, Yves; Altenhöner, Kai; Mattay, Jochen; Klymchenko, Andrey S

    2015-06-18

    Photoswitching of bright fluorescent nanoparticles opens new possibilities for bioimaging with superior temporal and spatial resolution. However, efficient photoswitching of nanoparticles is hard to achieve using Förster resonance energy transfer (FRET) to a photochromic dye, because the particle size is usually larger than the Förster radius. Here, we propose to exploit the exciton diffusion within the FRET donor dyes to boost photoswitching efficiency in dye-doped polymer nanoparticles. To this end, we utilized bulky hydrophobic counterions that prevent self-quenching and favor communication of octadecyl rhodamine B dyes inside a polymer matrix of poly(D,L-lactide-co-glycolide). Among tested counterions, only perfluorinated tetraphenylborate that favors the exciton diffusion enables high photoswitching efficiency (on/off ratio ∼20). The switching improves with donor dye loading and requires only 0.1-0.3 wt % of a diphenylethene photochromic dye. Our nanoparticles were validated both in solution and at the single-particle level. The proposed concept paves the way to new efficient photoswitchable nanomaterials.

  2. The formulation and immunisation of oral poly(DL-lactide-co-glycolide) microcapsules containing a plasmid vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus).

    PubMed

    Tian, Jiyuan; Sun, Xiuqin; Chen, Xiguang; Yu, Juan; Qu, Lingyun; Wang, Lingchong

    2008-06-01

    Nucleic acid-based immunotherapy is a new treatment option for fish immunisation in intensive culture. However, DNA-based vaccines would be hydrolyzed or denaturized because of the existence of nucleases and severe gastrointestinal conditions. Poly(DL-lactide-co-glycolide) (PLGA) microcapsules, loaded with plasmid DNA (pDNA) against lymphocystis disease virus (LCDV), were prepared by modified water in oil in water (W/O/W) double emulsion method in our laboratory. Encapsulation efficiency, loading percent and diameter of microcapsules were 78-88%, 0.5-0.7% and less than 10 mum, respectively. In simulated gastric fluid (SGF), less than 10% of pDNA was released from microcapsules in 12 h, and about 6.5% of pDNA was released in 12 h in simulated intestinal fluid (SIF). The content of the supercoiled of pDNA in microcapsules and control was 80% and 89% respectively, which indicated that a little supercoiled pDNA degradation occurred during encapsulation. RT-PCR showed that lots of RNA containing information of MCP gene existed in all tissues of fish vaccinated with microcapsules 10-90 days after oral administration. SDS-PAGE and immunoblots, as well as immunofluorescence images, displayed that major capsid protein (MCP) of LCDV was expressed in tissues of fish vaccinated with pDNA-loaded microcapsules. In addition, indirect enzyme-linked immunosorbent assay (ELISA) showed that the immune responses of sera were positive (O.D> or =0.3) from week 1 to week 24 for fish vaccinated with microcapsules, in comparison with fish vaccinated with naked pDNA. Our results suggested that PLGA microcapsules were promising oral carriers for pDNA delivery. This encapsulation technique had potential for drug delivery applications due to its ease of operation and notable immunisation efficacy.

  3. Encapsulation of Alpha-1 antitrypsin in PLGA nanoparticles: In Vitro characterization as an effective aerosol formulation in pulmonary diseases

    PubMed Central

    2012-01-01

    Background Alpha 1- antitrypsin (α1AT) belongs to the superfamily of serpins and inhibits different proteases. α1AT protects the lung from cellular inflammatory enzymes. In the absence of α1AT, the degradation of lung tissue results to pulmonary complications. The pulmonary route is a potent noninvasive route for systemic and local delivery. The aerosolized α1AT not only affects locally its main site of action but also avoids remaining in circulation for a long period of time in peripheral blood. Poly (D, L lactide-co glycolide) (PLGA) is a biodegradable and biocompatible polymer approved for sustained controlled release of peptides and proteins. The aim of this work was to prepare a wide range of particle size as a carrier of protein-loaded nanoparticles to deposit in different parts of the respiratory system especially in the deep lung. Various lactide to glycolide ratio of the copolymer was used to obtain different release profile of the drug which covers extended and rapid drug release in one formulation. Results Nonaqueous and double emulsion techniques were applied for the synthesis of nanoparticles. Nanoparticles were characterized in terms of surface morphology, size distribution, powder X-ray diffraction (XRD), encapsulation efficiency, in vitro drug release, FTIR spectroscopy and differential scanning calorimetry (DSC). To evaluate the nanoparticles cytotoxicity, cell cytotoxicity test was carried out on the Cor L105 human epithelial lung cancer cell line. Nanoparticles were spherical with an average size in the range of 100 nm to 1μ. The encapsulation efficiency was found to be higher when the double emulsion technique was applied. XRD and DSC results indicated that α1AT encapsulated in the nanoparticles existed in an amorphous or disordered-crystalline status in the polymer matrix. The lactic acid to glycolic acid ratio affects the release profile of α1AT. Hence, PLGA with a 50:50 ratios exhibited the ability to release %60 of the drug within 8

  4. Development of poly(lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery.

    PubMed

    Park, Ju-Hwan; Lee, Jae-Young; Termsarasab, Ubonvan; Yoon, In-Soo; Ko, Seung-Hak; Shim, Jae-Seong; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-10-01

    A hyaluronic acid-ceramide (HACE) nanostructure embedded with docetaxel (DCT)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) was fabricated for tumor-targeted drug delivery. NPs with a narrow size distribution and negative zeta potential were prepared by embedding DCT-loaded PLGA NPs into a HACE nanostructure (DCT/PLGA/HACE). DCT-loaded PLGA and DCT/PLGA/HACE NPs were characterized by solid-state techniques, including Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). A sustained drug release pattern from the NPs developed was observed and negligible cytotoxicity was seen in NIH3T3 cells (normal fibroblast, CD44 receptor negative) and MDA-MB-231 cells (breast cancer cells, CD44 receptor positive). PLGA/HACE NPs containing coumarin 6, used as a fluorescent dye, exhibited improved cellular uptake efficiency, based on the HA-CD44 receptor interaction, compared to plain PLGA NPs. Cyanine 5.5 (Cy5.5)-labeled PLGA/HACE NPs were injected intravenously into a MDA-MB-231 tumor xenograft mouse model and demonstrated enhanced tumor targetability, compared with Cy5.5-PLGA NPs, according to a near-infrared fluorescence (NIRF) imaging study. Considering these experimental results, the DCT/PLGA/HACE NPs developed may be useful as a tumor-targeted drug delivery system. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations.

    PubMed

    Fasehee, Hamidreza; Dinarvand, Rassoul; Ghavamzadeh, Ardeshir; Esfandyari-Manesh, Mehdi; Moradian, Hanieh; Faghihi, Shahab; Ghaffari, Seyed Hamidollah

    2016-04-21

    A folate-receptor-targeted poly (lactide-co-Glycolide) (PLGA)-Polyethylene glycol (PEG) nanoparticle is developed for encapsulation and delivery of disulfiram into breast cancer cells. After a comprehensive characterization of nanoparticles, cell cytotoxicity, apoptosis induction, cellular uptake and intracellular level of reactive oxygen species are analyzed. In vivo acute and chronic toxicity of nanoparticles and their efficacy on inhibition of breast cancer tumor growth is studied. The folate-receptor-targeted nanoparticles are internalized into the cells, induce reactive oxygen species formation, induce apoptosis and inhibit cell proliferation more efficiently compared to the untargeted nanoparticles. The acute and toxicity test show the maximum dose of disulfiram equivalent of nanoparticles for intra-venous injection is 6 mg/kg while show significant decrease in the breast cancer tumor growth rate. It is believed that the developed formulation could be used as a potential vehicle for successful delivery of disulfiram, an old and inexpensive drug, into breast cancer cells and other solid tumors.

  6. In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma.

    PubMed

    Ray, Sayantan; Saha, Suman; Sa, Biswanath; Chakraborty, Jui

    2017-04-01

    Considering the existing drawbacks of methotrexate (MTX) with respect to its solubility and toxicity, we incorporated it in a nanoceramic matrix, Mg-Al-layered double hydroxide (LDH) to form LDH-MTX nanoparticles, and the same was in turn encapsulated in a nontoxic and biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), to arrest the initial burst release and dose-dumping-related toxicity, already reported by our group. Our present study was designed to evaluate the pharmacokinetics, tissue distribution, survival rate of the test animals, and antitumor efficacy of the PLGA-LDH-MTX nanoparticles and its counterpart without LDH, PLGA-MTX nanoparticles compared with bare MTX. The median lethal dose (LD 50 ) of the former was higher, compared with bare MTX, using Balb/c nude mice, indicating it to be completely safe for use. Also, a comparative pharmacokinetic and antitumour efficacy study using MTX, PLGA-MTX, and PLGA-LDH-MTX nanoparticles in osteosarcoma-induced Balb/c nude mice in vivo demonstrated superiority of PLGA-LDH-MTX as compared to PLGA-MTX and bare MTX. The results suggest that PLGA-LDH-MTX nanoparticles might exhibit potential advantages over the present-day chemotherapy over bare MTX, for the possibility of treatment of osteosarcoma.

  7. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Mandiwana, Vusani; Kalombo, Lonji; Venter, Kobus; Sathekge, Mike; Grobler, Anne; Zeevaart, Jan Rijn

    2015-09-01

    Developing nanoparticulate delivery systems that will allow easy movement and localization of a drug to the target tissue and provide more controlled release of the drug in vivo is a challenge in nanomedicine. The aim of this study was to evaluate the biodistribution of poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([153Sm]Sm2O3) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear reactor to produce radioactive 153Sm-loaded-PLGA nanoparticles. The nanoparticles were characterized for size, zeta potential, and morphology. The nanoparticles were orally and intravenously (IV) administered to rats in order to trace their uptake through imaging and biodistribution studies. The 153Sm-loaded-PLGA nanoparticles had an average size of 281 ± 6.3 nm and a PDI average of 0.22. The zeta potential ranged between 5 and 20 mV. The [153Sm]Sm2O3 loaded PLGA nanoparticles, orally administered were distributed to most organs at low levels, indicating that there was absorption of nanoparticles. While the IV injected [153Sm]Sm2O3-loaded PLGA nanoparticles exhibited the highest localization of nanoparticles in the spleen (8.63 %ID/g) and liver (3.07 %ID/g), confirming that nanoparticles are rapidly removed from the blood by the RES, leading to rapid uptake in the liver and spleen. From the biodistribution data obtained, it is clear that polymeric nanoscale delivery systems would be suitable for improving permeability and thus the bioavailability of therapeutic compounds.

  8. Poly(lactide)-block-poly([epsilon]-caprolactone-co-[epsilon]-decalactone)-block-poly(lactide) copolymer elastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneiderman, Deborah K.; Hill, Erin M.; Martello, Mark T.

    Batch ring opening transesterification copolymerization of ε-caprolactone and ε-decalactone was used to generate statistical copolymers over a wide range of compositions and molar masses. Reactivity ratios determined for this monomer pair, r CL = 5.9 and r DL = 0.03, reveal ε-caprolactone is added preferentially regardless of the propagating chain end. Relative to poly(ε-caprolactone) the crystallinity and melting point of these statistical copolymers were depressed by the addition of ε-decalactone; copolymers containing greater than 31 mol% (46 wt%) ε-decalactone were amorphous. Poly(lactide)-block-poly(ε-caprolactone-co-ε-decalactone)-block-poly(lactide) triblock polymers were also prepared and used to explore the influence of midblock composition on the temperature dependentmore » Flory-Huggins interaction parameter (χ). In addition, uniaxial extension tests were used to determine the effects of midblock composition, poly(lactide) content, and molar mass on the mechanical properties of these new elastomeric triblocks.« less

  9. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels.

    PubMed

    Qiao, Mingxi; Chen, Dawei; Ma, Xichen; Liu, Yanjun

    2005-04-27

    Injectable biodegradable temperature-responsive poly(DL-lactide-co-glycolide-b-ethylene glycol-b-DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers with DL-lactide/glycolide molar ratio ranging from 6/1 to 15/l were synthesized from monomers of DL-lactide, glycolide and polyethylene glycol and characterized by 1H NMR. The resulting copolymers are soluble in water to form free flowing fluid at room temperature but become hydrogels at body temperature. The hydrophobicity of the copolymer increased with the increasing of DL-lactide/glycolide molar ratio. In vitro dissolution studies with two different hydrophobic drugs (5-fluorouracil and indomethacin) were performed to study the effect of DL-lactide/glycolide molar ratio on drug release and to elucidate drug release mechanism. The release mechanism for hydrophilic 5-fluorouracil was diffusion-controlled, while hydrophobic indomethacin showed an biphasic profile comprising of an initial diffusion-controlled stage followed by the hydrogel erosion-dominated stage. The effect of DL-lactide/glycolide molar ratio on drug release seemed to be dependent on the drug release mechanism. It has less effect on the drug release during the diffusion-controlled stage, but significantly affected drug release during the hydrogel erosion-controlled stage. Compared with ReGel system, the synthesized copolymers showed a higher gelation temperature and longer period of drug release. The copolymers can solubilize the hydrophobic indomethacin and the solubility (13.7 mg/ml) was increased 3425-fold compared to that in water (4 microg/ml, 25 degrees C). Two methods of physical mixing method and solvent evaporation method were used for drug solubilization and the latter method showed higher solubilization efficiency.

  10. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.

    PubMed

    Thote, Amol J; Gupta, Ram B

    2005-03-01

    Our purpose was to produce nanoparticles of a hydrophilic drug with use of supercritical carbon dioxide (CO2), encapsulate the obtained nanoparticles into polymer microparticles with use of an anhydrous method and study their sustained in vitro drug release. The hydrophilic drug, dexamethasone phosphate, is dissolved in methanol and injected in supercritical CO2 with an ultrasonic field for enhanced molecular mixing (supercritical antisolvent technique with enhanced mass transfer [SAS-EM]). Supercritical CO2 rapidly extracts methanol leading to instantaneous precipitation of drug nanoparticles. The nanoparticles are then encapsulated in poly(lactide-co-glycolide) (PLGA) polymer by use of the anhydrous solid-oil-oil-oil technique. This results in a well-dispersed encapsulation of drug nanoparticles in polymer microspheres. In vitro drug release from these microparticles is studied. With supercritical CO2 used as an antisolvent, nanoparticles of dexamethasone phosphate were obtained in the range of 150 to 200 nm. On encapsulation in polylactide coglycolide, composite microspheres of approximately 70 microm were obtained. The in vitro drug release of these nanoparticles/microparticles composites shows sustained release of dexamethasone phosphate over a period of 700 hours with almost no initial burst release. Nanoparticles of dexamethasone phosphate can be produced with the SAS-EM technique. When microencapsulated, these particles can provide sustained drug release without initial burst release. Because the complete process is anhydrous, it can be easily extended to produce sustained release formulations of other hydrophilic drugs.

  11. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb Pro: formulation aspects and nanoparticle stability to nebulization.

    PubMed

    Beck-Broichsitter, Moritz; Kleimann, Pia; Gessler, Tobias; Seeger, Werner; Kissel, Thomas; Schmehl, Thomas

    2012-01-17

    Polymeric nanoparticles meet the increasing interest for drug delivery applications and hold great promise to improve controlled drug delivery to the lung. Here, we present a series of investigations that were carried out to understand the impact of formulation variables on the nebulization performance of novel biodegradable sildenafil-loaded nanoparticles designed for targeted aerosol therapy of life-threatening pulmonary arterial hypertension. Narrowly distributed poly(D,L-lactide-co-glycolide) nanoparticles (size: ∼200 nm) were prepared by a solvent evaporation technique using poly(vinyl alcohol) (PVA) as stabilizer. The aerodynamic and output characteristics using the Aeroneb Pro nebulizer correlated well with the dynamic viscosity of the employed fluids for nebulization. The nebulization performance was mainly affected by the amount of employed stabilizer, rather than by the applied nanoparticle concentration. Nanoparticles revealed physical stability against forces generated during aerosolization, what is attributed to the adsorbed PVA layer around the nanoparticles. Sildenafil was successfully encapsulated into nanoparticles (encapsulation efficiency: ∼80%). Size, size distribution and sildenafil content of nanoparticles were not affected by nebulization and the in vitro drug release profile demonstrated a sustained sildenafil release over ∼120 min. The current study suggests that the prepared sildenafil-loaded nanoparticles are a promising pharmaceutical for the therapy of pulmonary arterial hypertension. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Optical Imaging and Gene Therapy with Neuroblastoma-Targeting Polymeric Nanoparticles for Potential Theranostic Applications.

    PubMed

    Lee, Jangwook; Jeong, Eun Ju; Lee, Yeon Kyung; Kim, Kwangmeyung; Kwon, Ick Chan; Lee, Kuen Yong

    2016-03-02

    Recently, targeted delivery systems based on functionalized polymeric nanoparticles have attracted a great deal of attention in cancer diagnosis and therapy. Specifically, as neuroblastoma occurs in infancy and childhood, targeted delivery may be critical to reduce the side effects that can occur with conventional approaches, as well as to achieve precise diagnosis and efficient therapy. Thus, biocompatible poly(d,l-lactide-co-glycolide) (PLG) nanoparticles containing an imaging probe and therapeutic gene are prepared, followed by modification with rabies virus glycoprotein (RVG) peptide for neuroblastoma-targeting delivery. RVG peptide is a well-known neuronal targeting ligand and is chemically conjugated to PLG nanoparticles without changing their size or shape. RVG-modified nanoparticles are effective in specifically targeting neuroblastoma both in vitro and in vivo. RVG-modified nanoparticles loaded with a fluorescent probe are useful to detect the tumor site in a neuroblastoma-bearing mouse model, and those encapsulating a therapeutic gene cocktail (siMyc, siBcl-2, and siVEGF) significantly suppressed tumor growth in the mouse model. This approach to designing and tailoring of polymeric nanoparticles for targeted delivery may be useful in the development of multimodality systems for theranostic approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Spontaneous confocal Raman microscopy--a tool to study the uptake of nanoparticles and carbon nanotubes into cells

    NASA Astrophysics Data System (ADS)

    Romero, Gabriela; Rojas, Elena; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio Enrique

    2011-06-01

    Confocal Raman microscopy as a label-free technique was applied to study the uptake and internalization of poly(lactide- co-glycolide) (PLGA) nanoparticles (NPs) and carbon nanotubes (CNTs) into hepatocarcinoma human HepG2 cells. Spontaneous confocal Raman spectra was recorded from the cells exposed to oxidized CNTs and to PLGA NPs. The Raman spectra showed bands arising from the cellular environment: lipids, proteins, nucleic acids, as well as bands characteristic for either PLGA NPs or CNTs. The simultaneous generation of Raman bands from the cell and nanomaterials from the same spot proves internalization, and also indicates the cellular region, where the nanomaterial is located. For PLGA NPs, it was found that they preferentially co-localized with lipid bodies, while the oxidized CNTs are located in the cytoplasm.

  14. The effect of particle size on the in vivo degradation of poly(d,l-lactide-co-glycolide)/α-tricalcium phosphate micro- and nanocomposites.

    PubMed

    Bennett, Sarah M; Arumugam, Meera; Wilberforce, Samuel; Enea, Davide; Rushton, Neil; Zhang, Xiang C; Best, Serena M; Cameron, Ruth E; Brooks, Roger A

    2016-11-01

    This paper reports the effect of particle size within a resorbable composite on the in vivo degradation rate and host response. Resorbable composites based on poly(d,l-lactide-co-glycolide) (PLGA) reinforced with tricalcium phosphate (TCP) have shown suitable degradation, biological and mechanical properties for bone repair. Composites with nano-sized TCP particles degrade more homogenously in vitro than equivalent composites with micro-sized particles. In this study, PLGA and PLGA/TCP composites containing micro- or nano-sized α-TCP particles were implanted into an ovine distal femoral condyle defect and harvested at 6, 12, 18 and 24weeks. An intimate interface was observed between the new bone tissue and degrading implants. Visual scoring of histological images and semi-automated segmentation of X-ray images were used to quantify implant degradation and the growth of new bone tissue in the implant site. Bone growth into the implant site occurred at a similar rate for both composites and the PLGA control. However, the in vivo degradation rate of the nanocomposite was slower than that of the microcomposite and consequently more closely matched the rate of bone growth. For the first 6weeks, the rate of in vivo degradation matched that of in vitro degradation, but lagged significantly at longer time points. These results point to the potential use of ceramic particle size in controlling composite degradation whilst maintaining good bone formation. This paper concerns degradable composites for orthopaedic application. The effect of particle size on implant degradation in vivo is not yet well characterised and these results give the first opportunity to directly compare in vitro and in vivo degradation rates for composites with micro- and nano-sized particles. This type of data is vital for the validation of models of composite degradation behaviour, which will lead to the design and manufacture of composites with a tailored, predictable degradation profile. The

  15. PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles.

    PubMed

    Rescignano, N; Fortunati, E; Montesano, S; Emiliani, C; Kenny, J M; Martino, S; Armentano, I

    2014-01-01

    The formation of a new generation of hybrid bio-nanocomposites is reported: these are intended at modulating the mechanical, thermal and biocompatibility properties of the poly(vinyl alcohol) (PVA) by the combination of cellulose nanocrystals (CNC) and poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) loaded with bovine serum albumin fluorescein isothiocynate conjugate (FITC-BSA). CNC were synthesized from microcrystalline cellulose by hydrolysis, while PLGA nanoparticles were produced by a double emulsion with subsequent solvent evaporation. Firstly, binary bio-nanocomposites with different CNC amounts were developed in order to select the right content of CNC. Next, ternary PVA/CNC/NPs bio-nanocomposites were developed. The addition of CNC increased the elongation properties without compromising the other mechanical responses. Thermal analysis underlined the nucleation effect of the synergic presence of cellulose and nanoparticles. Remarkably, bio-nanocomposite films are suitable to vehiculate biopolymeric nanoparticles to adult bone marrow mesenchymal stem cells successfully, thus representing a new tool for drug delivery strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Folate-containing reduction-sensitive lipid-polymer hybrid nanoparticles for targeted delivery of doxorubicin.

    PubMed

    Wu, Bo; Yu, Ping; Cui, Can; Wu, Ming; Zhang, Yang; Liu, Lei; Wang, Cai-Xia; Zhuo, Ren-Xi; Huang, Shi-Wen

    2015-04-01

    The development and evaluation of folate-targeted and reduction-triggered biodegradable nanoparticles are introduced to the research on targeted delivery of doxorubicin (DOX). This type of folate-targeted lipid-polymer hybrid nanoparticles (FLPNPs) is comprised of a poly(D,L-lactide-co-glycolide) (PLGA) core, a soybean lecithin monolayer, a monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16) reduction-sensitive shell, and a folic acid-targeted ligand. FLPNPs exhibited high size stability but fast disassembly in a simulated cancer cell reductive environment. The experiments on the release process in vitro revealed that as a reduction-sensitive drug delivery system, FLPNPs released DOX faster in the presence of 10 mM dithiothreitol (DTT). Results from flow cytometry, confocal image and in vitro cytotoxicity assays revealed that FLPNPs further enhanced cell uptake and generated higher cytotoxicity against human epidermoid carcinoma in the oral cavity than non-targeted redox-sensitive and targeted redox-insensitive controls. Furthermore, in vivo animal experiments demonstrated that systemic administration of DOX-loaded FLPNPs remarkably reduced tumor growth. Experiments on biodistribution of DOX-loaded FLPNPs showed that an increasing amount of DOX accumulated in the tumor. Therefore, FLPNPs formulations have proved to be a stable, controllable and targeted anticancer drug delivery system.

  17. Structural Assessment of a Tissue Engineered Scaffold for Bone Repair

    DTIC Science & Technology

    2001-10-25

    lactide-co- glycolide) [ PLAGA ] have been evaluated for such uses. However, structural limitations may restrict the clinical use of these scaffolds...bone specific protein. Through this work, it was shown that an osteoconductive PLAGA scaffold with a pore system equivalent to the structure of...known as poly(lactide-co-glycolide) [ PLAGA ]. Our laboratory has conducted several studies evaluating the ability of PLAGA to promote osteoblast

  18. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells.

    PubMed

    Altındal, Damla Çetin; Gümüşderelioğlu, Menemşe

    2016-02-01

    Melatonin loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and microparticles in the diameter of ∼200 nm and 3.5 μm, respectively, were prepared by emulsion-diffusion-evaporation method. Melatonin entrapment into the particles was significantly improved with the addition of 0.2% (w/v) melatonin into the aqueous phase and encapsulation efficiencies were found as 14 and 27% for nanoparticles and microparticles, respectively. At the end of 40 days, ∼70% of melatonin was released from both of particles, with high burst release. Both blank and melatonin loaded PLGA nanoparticles caused toxic effect on the MG-63 cells due to their uptake by the cells. However, when 0.05 mg microparticle that is carrying ∼1.7 μg melatonin was added to the cm(2) of culture, inhibitory effect of melatonin on the cells were obviously observed. The results would provide an expectation about the usage of melatonin as an adjunct to the routine chemotherapy of osteosarcoma by encapsulating it into a polymeric carrier system.

  19. Influence of the test method on in vitro drug release from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (d,l-lactide-co-glycolide) or polycaprolactone.

    PubMed

    Stein, Sandra; Auel, Tobias; Kempin, Wiebke; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne

    2018-06-01

    Sustained intravitreal dexamethasone (DX) administration with the FDA and EMA approved Ozurdex® implant is indicated for the treatment of macular edema and non-infectious uveitis. Since drug release after intravitreal application cannot be determined in vivo in human eyes, the characterization of drug release in vitro in addition to animal models is of great importance. The aim of this study was to provide information about the influence of the test method on the in vitro drug release from intravitreal model implants. The following test methods were used: a shaking incubator experiment in reagent tubes, the small volume USP apparatus 7, the Vitreous Model (VM) and a system simulating the impact of movement on the VM (Eye Movement System, EyeMoS). Cylindrical model implants composed of DX and PLGA (poly (d,l-lactide-co-glycolide)) and additional polycaprolactone (PCL) implants containing fluorescein sodium (FS) as a model substance were produced by hot melt extrusion and were cut to a length of approximately 6 mm. Drug release was studied in ringer buffer pH 7.4 and in a modified polyacrylamide gel (PAAG) as vitreous substitute. In combination with the VM, the shape, the gel structure and a partial liquefaction (50%) were simulated in vitro. Swelling, disintegration, fragmentation, surface enlargement and changes in shape of the PLGA model implants were observed during the drug release study. We experienced that not each of the test methods and media were suitable for drug release studies of the PLGA implants. Marked differences in the release profiles were observed depending on the employed test method. These results emphasize the necessity to understand the underlying in vivo processes and to transfer the knowledge about the release determining factors into reliable in vitro test systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Brain-Targeted Delivery of Trans-Activating Transcriptor-Conjugated Magnetic PLGA/Lipid Nanoparticles

    PubMed Central

    Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian

    2014-01-01

    Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain. PMID:25187980

  1. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles.

    PubMed

    Wen, Xiangru; Wang, Kai; Zhao, Ziming; Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian

    2014-01-01

    Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.

  2. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine.

    PubMed

    Moon, James J; Suh, Heikyung; Polhemus, Mark E; Ockenhouse, Christian F; Yadava, Anjali; Irvine, Darrell J

    2012-01-01

    The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.

  3. Asymmetric flow field-flow fractionation (AF4) for the quantification of nanoparticle release from tablets during dissolution testing.

    PubMed

    Engel, A; Plöger, M; Mulac, D; Langer, K

    2014-01-30

    Nanoparticles composed of poly(DL-lactide-co-glycolide) (PLGA) represent promising colloidal drug carriers for improved drug targeting. Although most research activities are focused on intravenous application of these carriers the peroral administration is described to improve bioavailability of poorly soluble drugs. Based on these insights the manuscript describes a model tablet formulation for PLGA-nanoparticles and especially its analytical characterisation with regard to a nanosized drug carrier. Besides physico-chemical tablet characterisation according to pharmacopoeias the main goal of the study was the development of a suitable analytical method for the quantification of nanoparticle release from tablets. An analytical flow field-flow fractionation (AF4) method was established and validated which enables determination of nanoparticle content in solid dosage forms as well as quantification of particle release during dissolution testing. For particle detection a multi-angle light scattering (MALS) detector was coupled to the AF4-system. After dissolution testing, the presence of unaltered PLGA-nanoparticles was successfully proved by dynamic light scattering and scanning electron microscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages.

    PubMed

    Guedj, Anne-Sophie; Kell, Arnold J; Barnes, Michael; Stals, Sandra; Gonçalves, David; Girard, Denis; Lavigne, Carole

    2015-01-01

    Following infection, HIV establishes reservoirs within tissues that are inaccessible to optimal levels of antiviral drugs or within cells where HIV lies latent, thus escaping the action of anti-HIV drugs. Macrophages are a persistent reservoir for HIV and may contribute to the rebound viremia observed after antiretroviral treatment is stopped. In this study, we further investigate the potential of poly(lactic-co-glycolic) acid (PLGA)-based nanocarriers as a new strategy to enhance penetration of therapeutic molecules into macrophages. We have prepared stable PLGA nanoparticles (NPs) and evaluated their capacity to transport an active molecule into the human monocyte/macrophage cell line THP-1 using bovine serum albumin (BSA) as a proof-of-concept compound. Intracellular localization of fluorescent BSA molecules encapsulated into PLGA NPs was monitored in live cells using confocal microscopy, and cellular uptake was quantified by flow cytometry. In vitro and in vivo toxicological studies were performed to further determine the safety profile of PLGA NPs including inflammatory effects. The size of the PLGA NPs carrying BSA (PLGA-BSA) in culture medium containing 10% serum was ~126 nm in diameter, and they were negatively charged at their surface (zeta potential =-5.6 mV). Our confocal microscopy studies and flow cytometry data showed that these PLGA-BSA NPs are rapidly and efficiently taken up by THP-1 monocyte-derived macrophages (MDMs) at low doses. We found that PLGA-BSA NPs increased cellular uptake and internalization of the protein in vitro. PLGA NPs were not cytotoxic for THP-1 MDM cells, did not modulate neutrophil apoptosis in vitro, and did not show inflammatory effect in vivo in the murine air pouch model of acute inflammation. In contrast to BSA alone, BSA encapsulated into PLGA NPs increased leukocyte infiltration in vivo, suggesting the in vivo enhanced delivery and protection of the protein by the polymer nanocarrier. We demonstrated that PLGA

  5. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide) nanoparticles for protein delivery into macrophages

    PubMed Central

    Guedj, Anne-Sophie; Kell, Arnold J; Barnes, Michael; Stals, Sandra; Gonçalves, David; Girard, Denis; Lavigne, Carole

    2015-01-01

    Following infection, HIV establishes reservoirs within tissues that are inaccessible to optimal levels of antiviral drugs or within cells where HIV lies latent, thus escaping the action of anti-HIV drugs. Macrophages are a persistent reservoir for HIV and may contribute to the rebound viremia observed after antiretroviral treatment is stopped. In this study, we further investigate the potential of poly(lactic-co-glycolic) acid (PLGA)-based nanocarriers as a new strategy to enhance penetration of therapeutic molecules into macrophages. We have prepared stable PLGA nanoparticles (NPs) and evaluated their capacity to transport an active molecule into the human monocyte/macrophage cell line THP-1 using bovine serum albumin (BSA) as a proof-of-concept compound. Intracellular localization of fluorescent BSA molecules encapsulated into PLGA NPs was monitored in live cells using confocal microscopy, and cellular uptake was quantified by flow cytometry. In vitro and in vivo toxicological studies were performed to further determine the safety profile of PLGA NPs including inflammatory effects. The size of the PLGA NPs carrying BSA (PLGA-BSA) in culture medium containing 10% serum was ~126 nm in diameter, and they were negatively charged at their surface (zeta potential =−5.6 mV). Our confocal microscopy studies and flow cytometry data showed that these PLGA-BSA NPs are rapidly and efficiently taken up by THP-1 monocyte-derived macrophages (MDMs) at low doses. We found that PLGA-BSA NPs increased cellular uptake and internalization of the protein in vitro. PLGA NPs were not cytotoxic for THP-1 MDM cells, did not modulate neutrophil apoptosis in vitro, and did not show inflammatory effect in vivo in the murine air pouch model of acute inflammation. In contrast to BSA alone, BSA encapsulated into PLGA NPs increased leukocyte infiltration in vivo, suggesting the in vivo enhanced delivery and protection of the protein by the polymer nanocarrier. We demonstrated that PLGA

  6. ICAM-1 targeted catalase encapsulated PLGA-b-PEG nanoparticles against vascular oxidative stress.

    PubMed

    Sari, Ece; Tunc-Sarisozen, Yeliz; Mutlu, Hulya; Shahbazi, Reza; Ucar, Gulberk; Ulubayram, Kezban

    2015-01-01

    Targeted delivery of therapeutics is the favourable idea, whereas it is possible to distribute the therapeutically active drug molecule only to the site of action. For this purpose, in this study, catalase encapsulated poly(D,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles were developed and an endothelial target molecule (anti-ICAM-1) was conjugated to this carrier system in order to decrease the oxidative stress level in the target site. According to the enzymatic activity results, initial catalase activity of nanoparticles was increased from 27.39 U/mg to up to 45.66 U/mg by adding 5 mg/mL bovine serum albumin (BSA). After 4 h, initial catalase activity was preserved up to 46.98% while free catalase retained less than 4% of its activity in proteolytic environment. Furthermore, FITC labelled anti-ICAM-1 targeted catalase encapsulated nanoparticles (anti-ICAM-1/CatNPs) were rapidly taken up by cultured endothelial cells and concomitantly endothelial cells were resistant to H2O2 induced oxidative impairment.

  7. PLGA Biodegradable Nanoparticles Containing Perphenazine or Chlorpromazine Hydrochloride: Effect of Formulation and Release

    PubMed Central

    Halayqa, Mohammed; Domańska, Urszula

    2014-01-01

    In our study, poly(dl-lactide-co-glycolide) (PLGA) nanoparticles loaded with perphenazine (PPH) and chlorpromazine hydrochloride (CPZ-HCl) were formulated by emulsion solvent evaporation technique. The effect of various processing variables, including PLGA concentration, theoretical drug loading, poly(vinyl alcohol) (PVA) concentration and the power of sonication were assessed systematically to obtain higher encapsulation efficiency and to minimize the nanoparticles size. By the optimization formulation process, the nanoparticles were obtained in submicron size from 325.5 ± 32.4 to 374.3 ± 10.1 nm for nanoparticles loaded with PPH and CPZ-HCl, respectively. Nanoparticles observed by scanning electron microscopy (SEM) presented smooth surface and spherical shape. The encapsulation efficiency of nanoparticles loaded with PPH and CPZ-HCl were 83.9% and 71.0%, respectively. The drug loading were 51.1% and 39.4% for PPH and CPZ-HCl, respectively. Lyophilized nanoparticles with different PLGA concentration 0.8%, 1.3% and 1.6% (w/v) in formulation process were evaluated for in vitro release in phosphate buffered saline (pH = 7.4) by using dialysis bags. The release profile for both drugs have shown that the rate of PPH and CPZ-HCl release were dependent on a size and amount of drugs in the nanoparticles. PMID:25535080

  8. PLGA biodegradable nanoparticles containing perphenazine or chlorpromazine hydrochloride: effect of formulation and release.

    PubMed

    Halayqa, Mohammed; Domańska, Urszula

    2014-12-22

    In our study, poly(dl-lactide-co-glycolide) (PLGA) nanoparticles loaded with perphenazine (PPH) and chlorpromazine hydrochloride (CPZ-HCl) were formulated by emulsion solvent evaporation technique. The effect of various processing variables, including PLGA concentration, theoretical drug loading, poly(vinyl alcohol) (PVA) concentration and the power of sonication were assessed systematically to obtain higher encapsulation efficiency and to minimize the nanoparticles size. By the optimization formulation process, the nanoparticles were obtained in submicron size from 325.5 ± 32.4 to 374.3 ± 10.1 nm for nanoparticles loaded with PPH and CPZ-HCl, respectively. Nanoparticles observed by scanning electron microscopy (SEM) presented smooth surface and spherical shape. The encapsulation efficiency of nanoparticles loaded with PPH and CPZ-HCl were 83.9% and 71.0%, respectively. The drug loading were 51.1% and 39.4% for PPH and CPZ-HCl, respectively. Lyophilized nanoparticles with different PLGA concentration 0.8%, 1.3% and 1.6% (w/v) in formulation process were evaluated for in vitro release in phosphate buffered saline (pH = 7.4) by using dialysis bags. The release profile for both drugs have shown that the rate of PPH and CPZ-HCl release were dependent on a size and amount of drugs in the nanoparticles.

  9. Bioreactor Based Bone Tissue Engineering: Influence of Wall Collision on Osteoblast Cultured on Polymeric Microcarrier Scaffolds in Rotating Bioreactors

    DTIC Science & Technology

    2005-01-01

    heavier than water (HTW; density > I g/cm 3) scaffolds were fabricated by sintering HTW microspheres of 85:15 poly (lactide-co-glycolide) ( PLAGA ), and...mixed scaffolds were designed by mixing lighter than water (LTW; density < 1 g/cm 3) and HTW microspheres of PLAGA . We quantified average velocities of...differentiation. In previous studies, we have described the development of novel poly(lactide-co-glycolide) ( PLAGA ) microsphere based mixed scaffolds that

  10. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery.

    PubMed

    Cirpanli, Yasemin; Bilensoy, Erem; Lale Doğan, A; Caliş, Sema

    2009-09-01

    Camptothecin (CPT) is a potent anticancer agent. The clinical application of CPT is restricted by poor water solubility and instability under physiological conditions. Solubilization and stabilization of CPT were realized through nanoparticulate systems of amphiphilic cyclodextrins, poly(lactide-co-glycolide) (PLGA) or poly-epsilon-caprolactone (PCL). Nanoparticles were prepared with nanoprecipitation technique, whereas cyclodextrin nanoparticles were prepared from preformed inclusion complexes of CPT with amphiphilic cyclodextrins. Polymeric nanoparticles, on the other hand, were loaded with CPT:HP-beta-CD inclusion complex to solubilize and stabilize the drug. Mean particle sizes were under 275 nm, and polydispersity indices were lower than 0.2 for all formulations. Drug-loading values were significantly higher for amphiphilic cyclodextrin nanoparticles when compared with those for PLGA and PCL nanoparticles. Nanoparticle formulations showed a significant controlled release profile extended up to 12 days for amphiphilic cyclodextrin nanoparticles and 48h for polymeric nanoparticles. Anticancer efficacy of the nanoparticles was evaluated in comparison with CPT solution in dimethyl sulfoxide (DMSO) on MCF-7 breast adenocarcinoma cells. Amphiphilic cyclodextrin nanoparticles showed higher anticancer efficacy than PLGA or PCL nanoparticles loaded with CPT and the CPT solution in DMSO. These results indicated that CPT-loaded amphiphilic cyclodextrin nanoparticles might provide a promising carrier system for the effective delivery of this anticancer drug having bioavailability problems.

  11. The influence of the use of viscosifying agents as dispersion media on the drug release properties from PLGA nanoparticles.

    PubMed

    Dillen, Kathleen; Weyenberg, Wim; Vandervoort, Jo; Ludwig, Annick

    2004-11-01

    Poly(lactide-co-glycolide) nanoparticles incorporating ciprofloxacin HCl were prepared by means of a W/O/W emulsification solvent evaporation method. The physicochemical properties of these particles were evaluated by measuring particle size, zeta potential and drug loading efficiency. Gamma-sterilised nanoparticles were dispersed in different isoviscous polymer solutions, commonly used as vehicles in eye drops. The influence of gamma-irradiation of the viscosifying agents on the drug release properties of the dispersed nanoparticles was evaluated with respect to release in mannitol solution. The viscosity of the polymer solutions prepared was measured by flow rheometry and thereby the influence of temperature and sterilisation by autoclaving on viscosity was examined. Before and after freeze-drying and subsequent sterilisation by gamma-irradiation, the polymer solutions were also characterised by dynamic stress sweep and dynamic frequency sweep oscillation measurements to deduce possible structural changes. A possible relationship between the differences in ciprofloxacin release from the nanoparticles suspended in the various media and the network structure or rheological behaviour of the polymers was investigated.

  12. Synthesis of PEG-rich PLGA-PEG-PLGA for the PLGA-PEG-PLGA/laponite hydrogels with thermoresponsive sol-gel transitions

    NASA Astrophysics Data System (ADS)

    Tanimoto, Keishi; Maeda, Tomoki; Hotta, Atsushi

    Poly (D,L-lactide-co-glycolide)-b-poly (ethylene glycol)-b-poly (D,L-lactide-co-glycolide) (PLGA-PEG-PLGA) possesses moderate biocompatibility originating from the relatively shorter PEG block in its polymeric molecule. For the maximum utilization of the highly biocompatible PEG block, the PEG block should be relatively longer, and thus the PEG/PLGA ratio, the molecular weight ratio of PEG and PLGA, should be higher. In addition, for the wider use of PLGA-PEG-PLGA in the biological fields, the aqueous PLGA-PEG-PLGA solution should transfer from sol to gel states in response to the increase in temperature. It was reported, however, through the previous researches, that the PLGA-PEG-PLGA solution with a high PEG/PLGA ratio (above 0.5) would not exhibit thermoresponsive sol-gel transitions. In this work, PLGA-PEG-PLGAs with higher PEG/PLGA ratios were synthesized and the laponite, an inorganic nanoparticle, was added to the solutions to realize the thermoresponsive sol-gel transition. It was found that the PLGA-PEG-PLGA with the high PEG/PLGA ratio of 3.0 could exhibit the thermoresponsive sol-gel transition by adding laponite at 1.25 weight percent. The physical characteristics of the gel were also studied by the dynamic mechanical analysis (DMA) This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.

  13. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    PubMed

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release

    NASA Astrophysics Data System (ADS)

    Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong

    2017-06-01

    Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.

  15. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

    PubMed

    Pramual, Sasivimon; Lirdprapamongkol, Kriengsak; Svasti, Jisnuson; Bergkvist, Magnus; Jouan-Hureaux, Valérie; Arnoux, Philippe; Frochot, Céline; Barberi-Heyob, Muriel; Niamsiri, Nuttawee

    2017-08-01

    Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of diisocyanate linkers on the degradation characteristics of copolyester urethanes as potential drug carrier matrices.

    PubMed

    Mathew, Simi; Baudis, Stefan; Neffe, Axel T; Behl, Marc; Wischke, Christian; Lendlein, Andreas

    2015-09-01

    In this study, the effect of three aliphatic diisocyanate linkers, L-lysine diisocyanate ethyl ester (LDI), hexamethylene diisocyanate (HDI), and racemic 2,2,4-/2,4,4-trimethyl hexamethylene diisocyanate (TMDI), on the degradation of oligo[(rac-lactide)-co-glycolide] (64:36 mol%) based polyester urethanes (PEU) was examined. Samples were characterized for their molecular weight, mass loss, water uptake, sequence structure, and thermal and mechanical properties. Compared to non-segmented PLGA, the PEU showed higher water uptake and generally degraded faster. Interestingly, the rate of degradation was not directly correlating with the hydrophilicity of the diisocyanate moieties; instead, competing intra-/intermolecular hydrogen bonds in between urethane moieties appear to substantially decrease the rate of degradation for LDI-derived PEU. By comparing microparticles (μm) and films (mm) as matrices of different dimensions, it was shown that autocatalysis remains a contributor to degradation of the larger-sized PEU matrices as it is typical for non-segmented lactide/glycolide copolymers. The shown capacity of lactide/glycolide-based multiblock copolymers to degrade faster than PLGA and exhibit improved elastic properties could be of interest for medical implants and drug release systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment

    PubMed Central

    Wu, Bo; Lu, Shu-Ting; Zhang, Liu-Jie; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid–polymer hybrid nanoparticles (LPNPs) drug delivery system composed of monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16), soybean lecithin, and poly(D,L-lactide-co-glycolide) (PLGA) was used for codelivery of doxorubicin (DOX) and a Chinese herb extract triptolide (TPL). Hydrophobic DOX and TPL could be successfully loaded in LPNPs by self-assembly. More importantly, drug release and cellular uptake experiments demonstrated that the two drugs were reduction sensitive, released simultaneously from LPNPs, and taken up effectively by the tumor cells. DOX/TPL-coloaded LPNPs (DOX/TPL-LPNPs) exhibited a high level of synergistic activation with low combination index (CI) in vitro and in vivo. Moreover, the highest synergistic therapeutic effect was achieved at the ratio of 1:0.2 DOX/TPL. Further experiments showed that TPL enhanced the uptake of DOX by human oral cavity squamous cell carcinoma cells (KB cells). Overall, DOX/TPL-coencapsulated reduction-sensitive nanoparticles will be a promising strategy for cancer treatment. PMID:28331310

  18. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid-polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment.

    PubMed

    Wu, Bo; Lu, Shu-Ting; Zhang, Liu-Jie; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid-polymer hybrid nanoparticles (LPNPs) drug delivery system composed of monomethoxy-poly(ethylene glycol)- S - S -hexadecyl (mPEG- S - S -C 16 ), soybean lecithin, and poly(D,L-lactide-co-glycolide) (PLGA) was used for codelivery of doxorubicin (DOX) and a Chinese herb extract triptolide (TPL). Hydrophobic DOX and TPL could be successfully loaded in LPNPs by self-assembly. More importantly, drug release and cellular uptake experiments demonstrated that the two drugs were reduction sensitive, released simultaneously from LPNPs, and taken up effectively by the tumor cells. DOX/TPL-coloaded LPNPs (DOX/TPL-LPNPs) exhibited a high level of synergistic activation with low combination index (CI) in vitro and in vivo. Moreover, the highest synergistic therapeutic effect was achieved at the ratio of 1:0.2 DOX/TPL. Further experiments showed that TPL enhanced the uptake of DOX by human oral cavity squamous cell carcinoma cells (KB cells). Overall, DOX/TPL-coencapsulated reduction-sensitive nanoparticles will be a promising strategy for cancer treatment.

  19. Preparation and characterization of triclosan nanoparticles for periodontal treatment.

    PubMed

    Piñón-Segundo, E; Ganem-Quintanar, A; Alonso-Pérez, V; Quintanar-Guerrero, D

    2005-04-27

    The aim of this work was to produce and characterize triclosan-loaded nanoparticles (NPs) by the emulsification-diffusion process, in an attempt to obtain a novel delivery system adequate for the treatment of periodontal disease. The NPs were prepared using poly(D,L-lactide-co-glycolide) (PLGA), poly(D,L-lactide) (PLA) and cellulose acetate phthalate (CAP). Poly(vinyl alcohol) (PVAL) was used as stabilizer. Batches were prepared with different amounts of triclosan (TCS) in order to evaluate the influence of drug on NP properties. Solid NPs of less than 500 nm in diameter were obtained. Entrapment efficiencies were higher than 63.8%. The characterization by scanning electron microscopy and light scattering indicated that high concentrations of TCS seemingly caused the increase of NP mean size. A decrease in the PLGA glass transition temperature was observed by differential scanning calorimetry. This could indicate that TCS in PLGA-NPs behaves as a non-conventional plasticizer. Subsequently, in vitro release studies were carried out under sink conditions using a device designed in our laboratory to allow a direct contact between the particles and the dissolution medium. A fast release of TCS from NPs was detected. A preliminary in vivo study in dogs with induced periodontal defects suggested that TCS-loaded NPs penetrate through the junctional epithelium.

  20. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging.

    PubMed

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2018-02-20

    For poly (lactide-co-glycolide acid) (PLGA)-based in situ forming implants, the rate of implant formation plays an important role in determining the overall drug release kinetics. Currently, in vitro techniques capable of characterizing the processes of drug release and implant formation at the same time are not available. A hydrogel-based in vitro experimental setup was recently developed requiring only microliter of formulation and forming a closed system potentially suitable for interfacing with various spectroscopic techniques. The aim of the present proof-of-concept study was to investigate the feasibility of concomitant UV imaging, Vis imaging and light microscopy for detailed characterization of the behavior of in situ forming PLGA implants in the hydrogel matrix mimicking the subcutis. The model compounds, piroxicam and α-lactalbumin were added to PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin solutions. Upon bringing the PLGA-solvent-compound pre-formulation in contact with the hydrogel, Vis imaging and light microscopy were applied to visualize the depot formation and UV imaging was used to quantify drug transport in the hydrogel. As compared to piroxicam, the α-lactalbumin invoked an acceleration of phase separation and an increase of implant size. α-Lactalbumin was released faster from the PLGA-1-methyl-2-pyrrolidinone system than the PLGA-triacetin system opposite to the piroxicam release pattern. A linear relationship between the rate of implant formation and initial compound release within the first 4h was established for the PLGA-NMP systems. This implies that phase separation may be one of the controlling factors in drug release. The rate of implant formation may be an important parameter for predicting and tailoring drug release. The approach combining UV imaging, Vis imaging and light microscopy may facilitate understanding of release processes and holds potential for becoming a useful tool in formulation development of in situ forming

  1. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A.

    PubMed

    Sarti, Federica; Perera, Glen; Hintzen, Fabian; Kotti, Katerina; Karageorgiou, Vassilis; Kammona, Olga; Kiparissides, Costas; Bernkop-Schnürch, Andreas

    2011-06-01

    Although oral vaccination has numerous advantages over the commonly used parenteral route, degradation of vaccine and its low uptake in the lymphoid tissue of the gastrointestinal (GI) tract still impede their development. In this study, the model antigen ovalbumin (OVA) and the immunostimulant monophosphoryl lipid A (MPLA) were incorporated in polymeric nanoparticles based on poly(D,L-lactide-co-glycolide) (PLGA). These polymeric carriers were orally administered to BALB/c mice (Bagg albino, inbred strain of mouse) and the resulting time-dependent systemic and mucosal immune responses towards OVA were assessed by measuring the OVA-specific IgG and IgA titers using an enzyme-linked immunosorbent assay (ELISA). PLGA nanoparticles were spherical in shape, around 320 nm in size, negatively charged (around -20 mV) and had an OVA and MPLA payload of 9.6% and 0.86%, respectively. A single immunization with formulation containing (OVA + MPLA) incorporated in PLGA nanoparticles induced a stronger IgG immune response than that induced by OVA in PBS solution or OVA incorporated into PLGA nanoparticles. Moreover, significantly higher IgA titers were generated by administration of (OVA + MPLA)/PLGA nanoparticles compared to IgA stimulated by control formulations, proving the capability of inducing a mucosal immunity. These findings demonstrate that co-delivery of OVA and MPLA in PLGA nanoparticles promotes both systemic and mucosal immune responses and represents therefore a suitable strategy for oral vaccination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles.

    PubMed

    Liu, Lanxia; Ma, Pingchuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Song, Cunxian; Leng, Xigang; Kong, Deling; Ma, Guilei

    2016-03-10

    In this study, we used cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles as antigen delivery carriers to investigate how antigen-loading methods affect antigen exposure to the immune system and evaluated the resulting antigen-specific immune responses. We formulated three classes of antigen adsorbed and/or encapsulated cationic lipid-PLGA hybrid nanoparticles; we designated antigen-adsorbed (out), antigen-encapsulated (in), and antigen-adsorbed/encapsulated (both) nanoparticles. Our results demonstrate significantly more efficient lysosomal escape and cross-presentation of antigen from dendritic cells (DCs) that were exposed to "both" and "in" nanoparticles. In vivo experiments further revealed that "both" nanoparticles significantly more effectively provided not only adequate initial antigen exposure but also long-term antigen persistence at the injection site. Data from flow cytometry and ELISA analyses demonstrated elevated in vivo immune responses from mice that were immunized with nanoparticles-delivered OVA when compared with free OVA. In addition, "in" and "both" nanoparticles elicited significantly higher antigen-specific immune response than "out" nanoparticles and free OVA. These results suggest that the location of antigen entrapment is an important factor in modulating the immune responses of antigens delivered by nanoparticles. Overall, we propose here a promising approach for the future design of vaccines using cationic lipid-PLGA nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Novel one-pot facile technique for preparing nanoparticles modified with hydrophilic polymers on the surface via block polymer-assisted emulsification/evaporation process.

    PubMed

    Kanakubo, Yurie; Ito, Fuminori; Murakami, Yoshihiko

    2010-06-15

    In this paper, we describe the novel facile technique for preparing surface-modified nanoparticles via newly developed amphiphilic block polymer-assisted emulsification/evaporation process. The effects of both organic solvents (the dispersed phase) and stabilizer in the external continuous phase on the stability of o/w emulsion was firstly investigated to clarify the optimal conditions for stable emulsification/evaporation processes. We found that the organic solvent mixture having a density adjusted to be 1.00 g/cm(3) gave the highly stable o/w emulsion. Under the optimal conditions, the relatively monodisperse poly(ethylene glycol) (PEG)-modified poly(lactide-co-glycolide) (PLGA) nanoparticle was obtained and characterized. The introduction of PEG to the particle surface was suggested by the fact that the diameter and zeta potential of the particle increased as the amount of added block polymer increased. The facile method presented in this paper can be a universal tool for modifying the surface of nanoparticles, even though reactive groups are not present on the surface. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery.

    PubMed

    Zhou, Zilan; Badkas, Apurva; Stevenson, Max; Lee, Joo-Youp; Leung, Yuet-Kin

    2015-06-20

    A dual functional nano-scaled drug carrier, comprising of a targeting ligand and pH sensitivity, has been made in order to increase the specificity and efficacy of the drug delivery system. The nanoparticles are made of a tri-block copolymer, poly(d,l lactide-co-glycolide) (PLGA)-b-poly(l-histidine) (PHis)-b-polyethylene glycol (PEG), via nano-precipitation. To provide the nanoparticle feature of endolysosomal escape and pH sensitivity, poly(l-histidine) was chosen as a proton sponge polymer. Herceptin, which specifically binds to HER2 antigen, was conjugated to the nanoparticles through click chemistry. The nanoparticles were characterized via dynamic light scattering (DLS) and transmission electron microscopy (TEM). Both methods showed the sizes of about 100nm with a uniform size distribution. The pH sensitivity was assessed by drug releases and size changes at different pH conditions. As pH decreased from 7.4 to 5.2, the drug release rate accelerated and the size significantly increased. During in vitro tests against human breast cancer cell lines, MCF-7 and SK-BR-3 showed significantly increased uptake for Herceptin-conjugated nanoparticles, as compared to non-targeted nanoparticles. Herceptin-conjugated pH-sensitive nanoparticles showed the highest therapeutic effect, and thus validated the efficacy of a combined approach of pH sensitivity and active targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release.

    PubMed

    Bittner, B; Witt, C; Mäder, K; Kissel, T

    1999-08-05

    The aim of the present study was to investigate the influence of the chemical insertion of poly(ethylene oxide), PEO, into a poly(lactide-co-glycolide), PLG, backbone on the mechanisms of in vitro degradation and erosion of the polymer. For this purpose microspheres prepared by a modified W/O/W double emulsion technique using ABA triblock copolymers, consisting of PLG A-blocks attached to central PEO B-blocks were compared with microspheres prepared from PLG. Due to their molecular architecture the ABA triblock copolymers differed in their erosion and degradation behavior from PLG. Degradation occurred faster in the ABA polymers by cleavage of ester bonds inside the polymer backbone. Even erosion was shown to start immediately after incubation in different buffer media. By varying pH and ionic strength of the buffer it was found that both mass loss and molecular weight decay were accelerated in alkaline and acidic pH in the case of the ABA triblock copolymers. Although the pH of the medium had a moderate influence on the degradation of PLG, the molecular weight decay was not accompanied by a mass loss during the observation time. In a second set of experiments we prepared bovine serum albumin, BSA, loaded microspheres from both polymers. The release of BSA from ABA microspheres under in vitro conditions parallels the faster swelling and erosion rates. This could be confirmed by electron paramagnetic resonance, EPR, measurements with spin labeled albumin where an influx of buffer medium into the ABA microspheres was already observed within a few minutes. In contrast, PLG microspheres revealed a burst release without any erosion. The current study shows that the environmental conditions affected the degradation and erosion of the pure polymer microspheres in the same way as the release of the model protein. This leads to the conclusion that the more favorable degradation profile of the ABA triblock copolymers was responsible for the improvement of the release profile.

  6. Optimization of lipid-assisted nanoparticle for disturbing neutrophils-related inflammation.

    PubMed

    Liu, Yang; Cao, Zhi-Ting; Xu, Cong-Fei; Lu, Zi-Dong; Luo, Ying-Li; Wang, Jun

    2018-07-01

    Inflammation is closely related to the development of many diseases and is commonly characterized by abnormal infiltration of immune cells, especially neutrophils. The current therapeutics of inflammatory diseases give little attention to direct modulation of these diseases with respect to immune cells. Nanoparticles are applied for efficient drug delivery into the disease-related immune cells, but their performance is significantly affected by their surface properties. In this study, to optimize the properties of nanoparticles for modulating neutrophils-related inflammation, we prepared a library of poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-b-PLGA)-based cationic lipid-assisted nanoparticles (CLANs) with different surface PEG density and surface charge. Optimized CLANs for neutrophils targeting were screened in high-fat diet (HFD)-induced type 2 diabetes (T2D) mice. Then, a CRISPR-Cas9 plasmid expressing a guide RNA (gRNA) targeting neutrophil elastase (NE) was encapsulated into the optimized CLAN and denoted as CLAN pCas9/gNE . After intravenous injection, CLAN pCas9/gNE successfully disrupted the NE gene of neutrophils and mitigated the insulin resistance of T2D mice via reducing the inflammation in epididymal white adipose tissue (eWAT) and in the liver. This strategy provides an example of abating the inflammatory microenvironment by directly modulating immune cells with nanoparticles carrying genome editing tools. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Contrast Ultrasound Targeted Treatment of Gliomas in Mice via Drug-Bearing Nanoparticle Delivery and Microvascular Ablation

    PubMed Central

    Burke, Caitlin W.; Price, Richard J.

    2010-01-01

    We are developing minimally-invasive contrast agent microbubble based therapeutic approaches in which the permeabilization and/or ablation of the microvasculature are controlled by varying ultrasound pulsing parameters. Specifically, we are testing whether such approaches may be used to treat malignant brain tumors through drug delivery and microvascular ablation. Preliminary studies have been performed to determine whether targeted drug-bearing nanoparticle delivery can be facilitated by the ultrasound mediated destruction of "composite" delivery agents comprised of 100nm poly(lactide-co-glycolide) (PLAGA) nanoparticles that are adhered to albumin shelled microbubbles. We denote these agents as microbubble-nanoparticle composite agents (MNCAs). When targeted to subcutaneous C6 gliomas with ultrasound, we observed an immediate 4.6-fold increase in nanoparticle delivery in MNCA treated tumors over tumors treated with microbubbles co-administered with nanoparticles and a 8.5 fold increase over non-treated tumors. Furthermore, in many cancer applications, we believe it may be desirable to perform targeted drug delivery in conjunction with ablation of the tumor microcirculation, which will lead to tumor hypoxia and apoptosis. To this end, we have tested the efficacy of non-theramal cavitation-induced microvascular ablation, showing that this approach elicits tumor perfusion reduction, apoptosis, significant growth inhibition, and necrosis. Taken together, these results indicate that our ultrasound-targeted approach has the potential to increase therapeutic efficiency by creating tumor necrosis through microvascular ablation and/or simultaneously enhancing the drug payload in gliomas. PMID:21206463

  8. Contrast ultrasound targeted treatment of gliomas in mice via drug-bearing nanoparticle delivery and microvascular ablation.

    PubMed

    Burke, Caitlin W; Price, Richard J

    2010-12-15

    We are developing minimally-invasive contrast agent microbubble based therapeutic approaches in which the permeabilization and/or ablation of the microvasculature are controlled by varying ultrasound pulsing parameters. Specifically, we are testing whether such approaches may be used to treat malignant brain tumors through drug delivery and microvascular ablation. Preliminary studies have been performed to determine whether targeted drug-bearing nanoparticle delivery can be facilitated by the ultrasound mediated destruction of "composite" delivery agents comprised of 100nm poly(lactide-co-glycolide) (PLAGA) nanoparticles that are adhered to albumin shelled microbubbles. We denote these agents as microbubble-nanoparticle composite agents (MNCAs). When targeted to subcutaneous C6 gliomas with ultrasound, we observed an immediate 4.6-fold increase in nanoparticle delivery in MNCA treated tumors over tumors treated with microbubbles co-administered with nanoparticles and a 8.5 fold increase over non-treated tumors. Furthermore, in many cancer applications, we believe it may be desirable to perform targeted drug delivery in conjunction with ablation of the tumor microcirculation, which will lead to tumor hypoxia and apoptosis. To this end, we have tested the efficacy of non-theramal cavitation-induced microvascular ablation, showing that this approach elicits tumor perfusion reduction, apoptosis, significant growth inhibition, and necrosis. Taken together, these results indicate that our ultrasound-targeted approach has the potential to increase therapeutic efficiency by creating tumor necrosis through microvascular ablation and/or simultaneously enhancing the drug payload in gliomas.

  9. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    NASA Astrophysics Data System (ADS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  10. Controlled release of lovastatin from poly(lactic-co-glycolic acid) nanoparticles for direct pulp capping in rat teeth.

    PubMed

    Lin, Hung-Pin; Tu, Han-Ping; Hsieh, Yu-Ping; Lee, Bor-Shiunn

    2017-01-01

    Statin at appropriate concentrations has been shown to induce odontoblastic differentiation, dentinogenesis, and angiogenesis. However, using a carrier to control statin release might reduce toxicity and enhance its therapeutic effects. The aim of this study was to prepare poly(d,l-lactide- co -glycolide acid) (PLGA) nanoparticles that contain lovastatin for application in direct pulp capping. The PLGA-lovastatin particle size was determined using dynamic light scattering measurements and transmission electron microscopy. In addition, the release of lovastatin was quantified using a UV-Vis spectrophotometer. The cytotoxicity and alkaline phosphatase (ALP) activity of PLGA-lovastatin nanoparticles on human dental pulp cells were investigated. Moreover, a real-time polymerase chain reaction (PCR) assay, Western blot analysis, and an enzyme-linked immunosorbent assay (ELISA) were used to examine the osteogenesis gene and protein expression of dentin sialophosphoprotein (DSPP), dentin matrix acidic phosphoprotein 1 (DMP1), and osteocalcin (OCN). Finally, PLGA-lovastatin nanoparticles and mineral trioxide aggregate (MTA) were compared as direct pulp capping materials in Wistar rat teeth. The results showed that the median diameter of PLGA-lovastatin nanoparticles was 174.8 nm and the cumulative lovastatin release was 92% at the 44th day. PLGA-lovastatin nanoparticles demonstrated considerably a lower cytotoxicity than free lovastatin at 5, 9, and 13 days of culture. For ALP activity, the ALP amount of PLGA-lovastatin (100 μg/mL) was significantly higher than that of the other groups for 9 and 13 days of culture. The real-time PCR assay, Western blot analysis, and ELISA assay showed that PLGA-lovastatin (100 μg/mL) induced the highest mRNA and protein expression of DSPP, DMP1, and OCN in pulp cells. Histological evaluation of the animal studies revealed that MTA was superior to the PLGA-lovastatin in stimulating the formation of tubular dentin in an observation period

  11. Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma.

    PubMed

    Lee, Jangwook; Min, Hyun-Su; You, Dong Gil; Kim, Kwangmeyung; Kwon, Ick Chan; Rhim, Taiyoun; Lee, Kuen Yong

    2016-02-10

    The development of safe and efficient diagnostic/therapeutic agents for treating cancer in clinics remains challenging due to the potential toxicity of conventional agents. Although the annual incidence of neuroblastoma is not that high, the disease mainly occurs in children, a population vulnerable to toxic contrast agents and therapeutics. We demonstrate here that cancer-targeting, gas-generating polymeric nanoparticles are useful as a theranostic tool for ultrasound (US) imaging and treating neuroblastoma. We encapsulated calcium carbonate using poly(d,l-lactide-co-glycolide) and created gas-generating polymer nanoparticles (GNPs). These nanoparticles release carbon dioxide bubbles under acidic conditions and enhance US signals. When GNPs are modified using rabies virus glycoprotein (RVG) peptide, a targeting moiety to neuroblastoma, RVG-GNPs effectively accumulate at the tumor site and substantially enhance US signals in a tumor-bearing mouse model. Intravenous administration of RVG-GNPs also reduces tumor growth in the mouse model without the use of conventional therapeutic agents. This approach to developing theranostic agents with disease-targeting ability may provide useful strategy for the detection and treatment of cancers, allowing safe and efficient clinical applications with fewer side effects than may occur with conventional agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Development of biodegradable polymer based tamoxifen citrate loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in-vitro evaluation.

    PubMed

    Sahana, Basudev; Santra, Kousik; Basu, Sumit; Mukherjee, Biswajit

    2010-09-07

    The aim of the present study was to develop nanoparticles of tamoxifen citrate, a non-steroidal antiestrogenic drug used for the treatment of breast cancer. Biodegradable poly (D, L- lactide-co-glycolide)-85:15 (PLGA) was used to develop nanoparticles of tamoxifen citrate by multiple emulsification (w/o/w) and solvent evaporation technique. Drug-polymer ratio, polyvinyl alcohol concentrations, and homogenizing speeds were varied at different stages of preparation to optimize the desired size and release profile of drug. The characterization of particle morphology and shape was performed by field emission scanning electron microscope (FE-SEM) and particle size distribution patterns were studied by direct light scattering method using zeta sizer. In vitro drug release study showed that release profile of tamoxifen from biodegradable nanoparticles varied due to the change in speed of centrifugation for separation. Drug loading efficiency varied from 18.60% to 71.98%. The FE-SEM study showed that biodegradable nanoparticles were smooth and spherical in shape. The stability studies of tamoxifen citrate in the experimental nanoparticles showed the structural integrity of tamoxifen citrate in PLGA nanoparticles up to 60°C in the tested temperatures. Nanoparticles containing tamoxifen citrate could be useful for the controlled delivery of the drug for a prolonged period.

  13. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA

    PubMed Central

    Nair K, Lekha; Jagadeeshan, Sankar; Nair, S Asha; Kumar, GS Vinod

    2011-01-01

    Nanoscaled devices have great potential for drug delivery applications due to their small size. In the present study, we report for the first time the preparation and evaluation of antitumor efficacy of 5-fluorouracil (5-FU)-entrapped poly (D, L-lactic-co-glycolic acid) (PLGA) nanoparticles with dependence on the lactide/glycolide combination of PLGA. 5-FU-loaded PLGA nanoparticles with two different monomer combinations, 50-50 and 90-10 were synthesized using a modified double emulsion method, and their biological evaluation was done in glioma (U87MG) and breast adenocarcinoma (MCF7) cell lines. 5-FU-entrapped PLGA 50-50 nanoparticles showed smaller size with a high encapsulation efficiency of 66%, which was equivalent to that of PLGA 90-10 nanoparticles. Physicochemical characterization of nanoparticles using differential scanning calorimetry and X-ray diffraction suggested the presence of 5-FU in molecular dispersion form. In vitro release studies showed the prolonged and sustained release of 5-FU from nanoparticles with both the PLGA combinations, where PLGA 50-50 nanoparticles showed faster release. Nanoparticles with PLGA 50-50 combination exhibited better cytotoxicity than free drug in a dose- and time-dependent manner against both the tumor cell lines. The enhanced efficiency of PLGA 50-50 nanoparticles to induce apoptosis was indicated by acridine orange/ethidium bromide staining. Cell cycle perturbations studied using flow cytometer showed better S-phase arrest by nanoparticles in comparison with free 5-FU. All the results indicate that PLGA 50-50 nanoparticles possess better antitumor efficacy than PLGA 90-10 nanoparticles and free 5-FU. Since, studies have shown that long-term exposure of ailing tissues to moderate drug concentrations is more favorable than regular administration of higher concentration of the drug; our results clearly indicate the potential of 5-FU-loaded PLGA nanoparticles with dependence on carrier combination as controlled release

  14. In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers

    PubMed Central

    Li, Di; Ding, Jian Xun; Tang, Zhao Hui; Sun, Hai; Zhuang, Xiu Li; Xu, Jing Zhe; Chen, Xue Si

    2012-01-01

    Four monomethoxy poly(ethylene glycol)-poly(L-lactide-co-glycolide)2 (mPEG-P( LA-co-GA)2) copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with double hydroxyl functionalized mPEG (mPEG-(OH)2) as macroinitiator and stannous octoate as catalyst. The copolymers self-assembled into nanoscale micellar/vesicular aggregations in phosphate buffer at pH 7.4. Doxorubicin (DOX), an anthracycline anticancer drug, was loaded into the micellar/vesicular nanoparticles, yielding micellar/vesicular nanomedicines. The in vitro release behaviors could be adjusted by content of hydrophobic polyester and pH of the release medium. In vitro cell experiments showed that the intracellular DOX release could be adjusted by content of P(LA-co-GA), and the nanomedicines displayed effective proliferation inhibition against Henrietta Lacks’s cells with different culture times. Hemolysis tests indicated that the copolymers were hemocompatible, and the presence of copolymers could reduce the hemolysis ratio of DOX significantly. These results suggested that the novel anticancer nanomedicines based on DOX and amphiphilic Y-shaped copolymers were attractive candidates as tumor tissular and intracellular targeting drug delivery systems in vivo, with enhanced stability during circulation and accelerated drug release at the target sites. PMID:22701317

  15. Investigating an organ-targeting platform based on hydroxyapatite nanoparticles using a novel in situ method of radioactive ¹²⁵Iodine labeling.

    PubMed

    Ignjatović, Nenad; Vranješ Djurić, Sanja; Mitić, Zarko; Janković, Drina; Uskoković, Dragan

    2014-10-01

    In this study, we have investigated the synthesis of nanoparticles of hydroxyapatite (HAp) and hydroxyapatite coated with chitosan (HAp/Ch) and the chitosan-poly-d,l-lactide-co-glycolide polymer blend (HAp/Ch-PLGA) as an organ-targeting system. We have examined and defined the final destination, as well as the dynamics and the pathways of the synthesized particles following intravenous administration in vivo. The XRD, ZP, FT-IR and SEM analyses have confirmed that the hydroxyapatite nanoparticles with d50=72 nm are coated with polymers. Radioactive 125-Iodine ((125)I), a low energy gamma emitter, was used to develop a novel in situ method for the radiolabeling of particles and investigation of their biodistribution. (125)I-labeled particles exhibited high stability in saline and serum over the second day, which justified their use in the following in vivo studies. The biodistribution of (125)I-labeled particles after intravenous injection in rats differed significantly: HAp particles mostly targeted the liver, HAp/Ch the spleen and the liver, while HAp/Ch-PLGA targeted the lungs. Twenty-four hours post injection, HAp particles were excreted completely, while both (125)I-HAp/Ch and (125)I-HAp/Ch-PLGA were retained in the body for a prolonged period of time with more than 20% of radioactivity still found in different organs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases

    PubMed Central

    Bourdenx, Mathieu; Daniel, Jonathan; Genin, Emilie; Soria, Federico N.; Blanchard-Desce, Mireille; Bezard, Erwan; Dehay, Benjamin

    2016-01-01

    ABSTRACT Lysosomal impairment causes lysosomal storage disorders (LSD) and is involved in pathogenesis of neurodegenerative diseases, notably Parkinson disease (PD). Strategies enhancing or restoring lysosomal-mediated degradation thus appear as tantalizing disease-modifying therapeutics. Here we demonstrate that poly(DL-lactide-co-glycolide) (PLGA) acidic nanoparticles (aNP) restore impaired lysosomal function in a series of toxin and genetic cellular models of PD, i.e. ATP13A2-mutant or depleted cells or glucocerebrosidase (GBA)-mutant cells, as well as in a genetic model of lysosomal-related myopathy. We show that PLGA-aNP are transported to the lysosome within 24 h, lower lysosomal pH and rescue chloroquine (CQ)-induced toxicity. Re-acidification of defective lysosomes following PLGA-aNP treatment restores lysosomal function in different pathological contexts. Finally, our results show that PLGA-aNP may be detected after intracerebral injection in neurons and attenuate PD-related neurodegeneration in vivo by mechanisms involving a rescue of compromised lysosomes. PMID:26761717

  17. Development of Poly(lactide-co-glicolide) Nanoparticles Incorporating Morphine Hydrochloride to Prolong its Circulation in Blood.

    PubMed

    Gomez-Murcia, Victoria; Montalban, Mercedes Garcia; Gomez-Fernandez, Juan C; Almela, Pilar

    2017-01-01

    Formulations incorporating nanoparticles (NPs) are widely used to prolong drug release. In this regard, poly(lactide-co-glicolide) (PLGA) is often used in their preparation due to its high degree of biocompatibility and biodegradability. In the present study, morphine HCl is incorporated in PLGA-NPs and different preparation alternatives are evaluated for their effects on the properties, stability and capacity of encapsulation. NPs were prepared by a double emulsion solvent diffusion-ammonium loading (DESD-AL) or double emulsion solvent diffusion-traditional (DESD-T) technique. NP morphology, size, zeta potential and encapsulation efficiency were investigated. In vitro studies were performed in phosphate buffer pH 7.4 at 37 ºC and deionized water at 4ºC. Adult male Swiss mice were used to study the pharmacokinetic behavior in vivo. Our results show that DESD-AL provides a higher level of morphine entrapment and that increasing the sonication time reduces the size but does not appreciably reduce the entrapment percentage. It was also observed that NP stability was greater when Pluronic F68 was used rather than PVA, and that in vitro assays provided better results with low concentrations of both stabilizers. Lyophilized NPs, after rehydration showed properties that were only slightly different from those of the untreated ones, with no sign of precipitation or aggregation. Finally, the obtained NPs enhanced morphine bioavailability. In conclusion, a useful method for encapsulating morphine in order to obtain an extended delivery period is described and its effects are compared with those of the free drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Enzymatic degradation of poly(L-lactide) nanoparticles followed by the release of octenidine and their bactericidal effects.

    PubMed

    Baier, Grit; Cavallaro, Alex; Friedemann, Kathrin; Müller, Beate; Glasser, Gunnar; Vasilev, Krasimir; Landfester, Katharina

    2014-01-01

    The enzyme-triggered release of the antimicrobial agent octenidine out of poly(l-lactide)-based nanoparticles (PLLA-NPs) and their in vitro antibacterial activities in the presence of gram-positive and gram-negative bacteria are presented. The formation of the nanoparticles was achieved using a combination of the solvent evaporation and the miniemulsion approach. For the stabilization of the polymeric nanoparticles, non-ionic polymers (polyvinylalcohol [PVA], hydroxyethyl starch [HES], human serum albumin [HSA]) were successfully used for enzymatic degradation; ionic surfactants such as sodium dodecyl sulfate and cetyltrimethylammonium chloride inhibited the enzymatic degradation. The change in pH, size, size distribution and morphology during the degradation process of PLLA-NPs and the release of the antimicrobial agent was studied. The influence of the different amounts of octenidine and of the different stabilizers on the NPs' stability, size, size distribution, morphology, zeta potential and on the surface group's density is discussed. Fluorescently labeled HES-stabilized PLLA-NPs are immobilized by colloidal electrospinning. The observed data from HPLC measurements show that octenidine is released out of PLLA-NPs which are stabilized with PVA, HES or HSA. In bacteria tests the PLLA nanoparticles showed a greater ability to inhibit the growth of Staphylococcus aureus compared to Escherichia coli. This article discusses the enzyme-triggered release and antibacterial effects of octenidine from poly(l-lactide)-based nanoparticles demonstrating the viability of this approach for potential future antibacterial therapy. © 2013.

  19. Next generation radiotherapy biomaterials loaded with high-Z nanoparticles

    NASA Astrophysics Data System (ADS)

    Cifter, Gizem

    This research investigates the dosimetric feasibility of using high-Z nanoparticles as localized radiosensitizers to boost the dose to the residual tumor cells during accelerated partial breast irradiation while minimizing the dose to surrounding healthy tissue. Analytical microdosimetry calculations were carried out to calculate dose enhancement (DEF) in the presence of high-Z nanoparticles. It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. Prototype smart biomaterials were produced by incorporating the GNPs in poly (D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. In vitro release of GNPs was monitored over time by optical/spectroscopy methods as a function of various design parameters. The prototype smart biomaterials displayed sustained customizable release of NPs in-vitro, reaching a burst release profile approximately after 25 days. The results also show that customizable release profiles can be achievable by varying GNP concentrations that are embedded within smart biomaterials, as well as other design parameters. This would potentially allow customizable local dose boost resulting in diverse treatment planning opportunities for individual cases. Considered together, the results provide preliminary data for development of next generation of RT biomaterials, which can be employed at no additional inconvenience to RT patients.

  20. Biodistribution and Pharmacokinetic Analysis of Combination Lonidamine and Paclitaxel Delivery in an Orthotopic Animal Model of Multi-drug Resistant Breast Cancer Using EGFR-Targeted Polymeric Nanoparticles

    PubMed Central

    Milane, Lara; Duan, Zhen-feng; Amiji, Mansoor

    2011-01-01

    The aim of this study was to assess the biodistribution and pharmacokinetics of epidermal growth factor receptor (EGFR)-targeted polymer blend nanoparticles loaded with the anticancer drugs lonidamine and paclitaxel. Plasma, tumor, and tissue distribution profiles were quantified in an orthotopic animal model of multi-drug resistant (MDR) breast cancer and were compared to treatment with non-targeted nanoparticles and to treatment with drug solution. Poly(D,L-lactide-co-glycolide)/poly(ethylene glycol)/EGFR targeting peptide (PLGA/PEG/EFGR peptide) construct was synthesized for incorporation in poly(ε-caprolactone) (PCL) particles to achieve active EGFR targeting. An isocratic HPLC method was developed to quantify lonidamine and paclitaxel in mice plasma, tumors, and vital organs. The targeted nanoparticles demonstrated superior pharmacokinetic profile relative to drug solution and non-targeted nanoparticles, particularly for lonidamine delivery. The first target site of accumulation is the liver, followed by the kidneys, and then the tumor mass; maximal tumor accumulation occurs at 3 hours post-administration. Lonidamine/paclitaxel combination therapy administered via EGFR-targeted polymer blend nanocarriers may become a viable platform for the future treatment of MDR cancer. PMID:21220050

  1. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.

    PubMed

    Othman, Rahimah; Vladisavljević, Goran T; Thomas, Noreen L; Nagy, Zoltan K

    2016-05-01

    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells.

    PubMed

    Mo, Liqian; Hou, Lianbing; Guo, Dan; Xiao, Xiaoyan; Mao, Ping; Yang, Xixiao

    2012-10-15

    Many studies have demonstrated the uptake mechanisms of various nanoparticle delivery systems with different physicochemical properties in different cells. In this study, we report for the first time the preparation and characterization of teniposide (VM-26) poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) and their cellular uptake pathways in human glioblastoma U87MG cells. The nanoparticles prepared with oil-in-water (O/W) single-emulsion solvent evaporation method had a small particle size and spherical shape and provided effective protection against degradation of teniposide in PBS solution. Differential scanning calorimeter (DSC) thermograms concluded that VM-26 was dispersed as amorphous or disordered crystalline phase in the PLGA matrix. A cytotoxicity study revealed that, in a 24h period, blank PLGA NPs had no cytotoxicity, whereas teniposide-loaded PLGA NPs (VM-26-NPs) had U87MG cytotoxicity levels similar to free teniposide. Confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) images showed the distribution and degradation processes of nanoparticles in cells. An endocytosis inhibition test indicated that clathrin-mediated endocytosis and macropinocytosis were the primary modes of engulfment involved in the internalization of VM-26-NPs. Our findings suggest that PLGA nanoparticles containing a sustained release formula of teniposide may multiplex the therapeutic effect and ultimately degrade in lysosomal within human glioblastoma U87MG cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Pirfenidone Nanoparticles Improve Corneal Wound Healing and Prevent Scarring Following Alkali Burn

    PubMed Central

    Chowdhury, Sushovan; Guha, Rajdeep; Trivedi, Ruchit; Kompella, Uday B.; Konar, Aditya; Hazra, Sarbani

    2013-01-01

    Purpose To evaluate the effects of pirfenidone nanoparticles on corneal re-epithelialization and scarring, major clinical challenges after alkali burn. Methods Effect of pirfenidone on collagen I and α-smooth muscle actin (α-SMA) synthesis by TGFβ induced primary corneal fibroblast cells was evaluated by immunoblotting and immunocytochemistry. Pirfenidone loaded poly (lactide-co-glycolide) (PLGA) nanoparticles were prepared, characterized and their cellular entry was examined in primary corneal fibroblast cells by fluorescence microscopy. Alkali burn was induced in one eye of Sprague Dawley rats followed by daily topical treatment with free pirfenidone, pirfenidone nanoparticles or vehicle. Corneal re-epithelialization was assessed daily by flourescein dye test; absence of stained area indicated complete re-epithelialization and the time for complete re-epithelialization was determined. Corneal haze was assessed daily for 7 days under slit lamp microscope and graded using a standard method. After 7 days, collagen I deposition in the superficial layer of cornea was examined by immunohistochemistry. Results Pirfenidone prevented (P<0.05) increase in TGF β induced collagen I and α-SMA synthesis by corneal fibroblasts in a dose dependent manner. Pirfenidone could be loaded successfully within PLGA nanoparticles, which entered the corneal fibroblasts within 5 minutes. Pirfenidone nanoparticles but not free pirfenidone significantly (P<0.05) reduced collagen I level, corneal haze and the time for corneal re-epithelialization following alkali burn. Conclusion Pirfenidone decreases collagen synthesis and prevents myofibroblast formation. Pirfenidone nanoparticles improve corneal wound healing and prevent fibrosis. Pirfenidone nanoparticles are of potential value in treating corneal chemical burns and other corneal fibrotic diseases. PMID:23940587

  4. Preparation and in vitro evaluation of actively targetable nanoparticles for SN-38 delivery against HT-29 cell lines.

    PubMed

    Ebrahimnejad, Pedram; Dinarvand, Rassoul; Sajadi, Abolghasem; Jaafari, Mahmoud Reza; Nomani, Ali Reza; Azizi, Ebrahim; Rad-Malekshahi, Mazda; Atyabi, Fatemeh

    2010-06-01

    SN-38 (7-ethyl-10-hydroxycamptothecin) is the active metabolite of irinotecan, which is 100-to 1000-fold more cytotoxic than irinotecan. Nevertheless, extreme hydrophobicity of SN-38 has prevented its clinical use. One way of improving the solubility and stability of SN-38 is to formulate the drug into nanoparticles. Folic acid has been widely used as a targeting moiety for various anticancer drugs. For folate-receptor-targeted anticancer therapy, SN-38 nanoparticles were produced using poly-lactide-co-glycolide-polyethylene glycol-folate (PLGA-PEG-FOL) conjugate by emulsification/solvent evaporation method. The FOL-conjugated di-block copolymer was synthesized by coupling the PLGA-PEG-NH(2) di-block copolymer with an activated folic acid. The conjugates were used for the formation of SN-38 nanoparticles with an average size of 200 nm in diameter. The SN-38 targeted nanoparticles showed a greater cytotoxicity against HT-29 cancer cells than SN-38 nontargeted nanoparticles. These results suggested that folate-targeted nanoparticles could be a potentially useful delivery system for SN-38 as an anticancer agent. SN-38 is the active metabolite of the chemotherapy agent irinotecan, which is 100-1000 fold more cytotoxic than irinotecan, but its extreme hydrophobicity has prevented its clinical use. In this paper, the authors present a nanotechnology-based approach targeting the folate-receptor with SN-38 loaded nanoparticles, demonstrating stronger cytotoxicity against HT-29 cancer cells than with control nanoparticles.

  5. Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering.

    PubMed

    Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G

    2012-11-01

    The aim of this study was to fabricate a fibrous scaffold that closely resembled the micro-structural architecture and mechanical properties of collagen fibres found in the anterior cruciate ligament (ACL). To achieve this aim, fibrous scaffolds were made by electrospinning L-lactide based polymers. L-Lactide was chosen primarily due to its demonstrated biocompatibility, biodegradability and high modulus. The electrospun fibres were collected in tension on a rotating wire mandrel. Upon treating these fibres in a heated aqueous environment, they possessed a crimp-like pattern having a wavelength and amplitude similar to that of native ACL collagen. Of the polymer fibre scaffolds studied, those made from poly(L-lactide-co-D,L-lactide) PLDLA exhibited the highest modulus and were also the most resilient to in vitro hydrolytic degradation, undergoing a slight decrease in modulus compared to the other polymeric fibres over a 6 month period. Bovine fibroblasts seeded on the wavy, crimp-like PLDLA fibres attached, proliferated and deposited extracellular matrix (ECM) molecules on the surface of the fibrous scaffold. In addition, the deposited ECM exhibited bundle formation that resembled the fascicles found in native ACL. These findings demonstrate the importance of replicating the geometric microenvironment in developing effective tissue engineering scaffolds. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    NASA Astrophysics Data System (ADS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  7. Application of hydroxyapatite nanoparticles in development of an enhanced formulation for delivering sustained release of triamcinolone acetonide

    PubMed Central

    Koocheki, Saeid; Madaeni, Sayed Siavash; Niroomandi, Parisa

    2011-01-01

    We report an analysis of in vitro and in vivo drug release from an in situ formulation consisting of triamcinolone acetonide (TR) and poly(d,l-lactide-co-glycolide) (PLGA) and the additives glycofurol (GL) and hydroxyapatite nanoparticles (HA). We found that these additives enhanced drug release rate. We used the Taguchi method to predict optimum formulation variables to minimize the initial burst. This method decreased the burst rate from 8% to 1.3%. PLGA-HA acted as a strong buffer, thereby preventing tissue inflammation at the injection site caused by the acidic degradation products of PLGA. Characterization of the optimized formulation by a variety of techniques, including scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and Fourier transform near infrared spectroscopy, revealed that the crystalline structure of TR was converted to an amorphous form. Therefore, this hydrophobic agent can serve as an additive to modify drug release rates. Data generated by in vitro and in vivo experiments were in good agreement. PMID:21589650

  8. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study

    PubMed Central

    Lim, Jong-Min; Bertrand, Nicolas; Valencia, Pedro M.; Rhee, Minsoung; Langer, Robert; Jon, Sangyong; Farokhzad, Omid C.; Karnik, Rohit

    2014-01-01

    Microfluidic synthesis of nanoparticles (NPs) can enhance the controllability and reproducibility in physicochemical properties of NPs compared to bulk synthesis methods. However, applications of microfluidic synthesis are typically limited to in vitro studies due to low production rates. Herein, we report the parallelization of NP synthesis by 3D hydrodynamic flow focusing (HFF) using a multilayer microfluidic system to enhance the production rate without losing the advantages of reproducibility, controllability, and robustness. Using parallel 3D HFF, polymeric poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) NPs with sizes tunable in the range of 13–150 nm could be synthesized reproducibly with high production rate. As a proof of concept, we used this system to perform in vivo pharmacokinetic and biodistribution study of small (20 nm diameter) PLGA-PEG NPs that are otherwise difficult to synthesize. Microfluidic parallelization thus enables synthesis of NPs with tunable properties with production rates suitable for both in vitro and in vivo studies. PMID:23969105

  9. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo.

    PubMed

    Anand, Preetha; Nair, Hareesh B; Sung, Bokyung; Kunnumakkara, Ajaikumar B; Yadav, Vivek R; Tekmal, Rajeshwar R; Aggarwal, Bharat B

    2010-02-01

    Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with antioxidant, anti-inflammatory, antiproliferative, anticancer, antidiabetic, antirheumatic, and antiviral effects, but its optimum potential is limited by its lack of solubility in aqueous solvents and poor oral bioavailability. We employed a polymer-based nanoparticle approach to improve bioavailability. Curcumin was encapsulated with 97.5% efficiency in biodegradable nanoparticulate formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-5000. Dynamic laser light scattering and transmission electron microscopy indicated a particle diameter of 80.9 nm. This curcumin, renamed from hereon "as curcumin (NP)", was characterized for its biological activity. In vitro curcumin (NP) exhibited very rapid and more efficient cellular uptake than curcumin. Estrase staining revealed that curcumin (NP) was at least as potent as or more potent than curcumin in inducing apoptosis of leukemic cells and in suppressing proliferation of various tumor cell lines. When examined by electrophoretic gel shift mobility assay, curcumin (NP) was more active than curcumin in inhibiting TNF-induced NF-kappaB activation and in suppression of NF-kappaB-regulated proteins involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). In mice, curcumin (NP) was more bioavailable and had a longer half-life than curcumin. Overall we demonstrate that curcumin-loaded PLGA nanoparticles formulation has enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo over curcumin.

  10. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells.

    PubMed

    Zheng, Yu; Yu, Bo; Weecharangsan, Wanlop; Piao, Longzhu; Darby, Michael; Mao, Yicheng; Koynova, Rumiana; Yang, Xiaojuan; Li, Hong; Xu, Songlin; Lee, L James; Sugimoto, Yasuro; Brueggemeier, Robert W; Lee, Robert J

    2010-05-10

    Transferrin (Tf)-conjugated lipid-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles carrying the aromatase inhibitor, 7alpha-(4'-amino)phenylthio-1,4-androstadiene-3,17-dione (7alpha-APTADD), were synthesized by a solvent injection method. Formulation parameters including PLGA-to-lipid, egg PC-to-TPGS, and drug-to-PLGA ratios and aqueous-to-organic phase ratio at the point of synthesis were optimized to obtain nanoparticles with desired sizes and drug loading efficiency. The optimal formulation had a drug loading efficiency of 36.3+/-3.4%, mean diameter of 170.3+/-7.6nm and zeta potential of -18.9+/-1.5mV. The aromatase inhibition activity of the nanoparticles was evaluated in SKBR-3 breast cancer cells. IC(50) value of the Tf-nanoparticles was ranging from 0.77 to 1.21nM, and IC(50) value of the nanoparticles was ranging from 1.90 to 3.41nM (n=3). The former is significantly lower than the latter (p<0.05). These results suggested that the aromatase inhibition activity of the Tf-nanoparticles was enhanced relative to that of the non-targeted nanoparticles, which was attributable to Tf receptor (TfR) mediated uptake. In conclusion, Tf-conjugated lipid-coated PLGA nanoparticles are potential vehicles for improving the efficiency and specificity of therapeutic delivery of aromatase inhibitors. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Poly(lactide-co-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering.

    PubMed

    Sadiasa, Alexander; Kim, Min Sung; Lee, Byong Taek

    2013-09-01

    In this study, simvastatin (SIM) drug incorporated poly(D,L-lactic-co-glycolide) (PLGA)/biphasic calcium phosphate (BCP) composite material (SPB) was coated on the BCP/ZrO2 (SPB-BCP/ZrO2) scaffold to enhance the mechanical and bioactive properties of the BCP/ZrO2 scaffold for bone engineering applications. The composite coating was prepared by combining different ratios of PLGA and BCP (1:2, 1:1, 2:1). After completion of the coating process, the compressive strength of the scaffolds was shown to increase with an increase in PLGA concentration from 8.5 ± 0.52 MPa for the SPB1-BCP/ZrO2 (1:2) to 11 ± 0.65 MPa for SPB3-BCP/ZrO2 (2:1) scaffolds when PLGA concentration was increased. Furthermore, the increase of PLGA in the coating composition corresponds to a decrease in porosity, degradation rate and weight loss of the scaffolds after 4 weeks. SIM release study demonstrated sustained release of the drug for the three kinds of scaffolds with improved biocompatibility. The increase of PLGA concentration also resulted in a lower release rate of SIM. Thus, the lower release rate of SIM brought upon by the increase of PLGA concentration further enhanced the performance of the scaffold in vitro making it a promising approach in the field of bone tissue regeneration.

  12. Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity

    PubMed Central

    Rudolph, Andreas; Teske, Michael; Illner, Sabine; Kiefel, Volker; Sternberg, Katrin; Grabow, Niels; Wree, Andreas; Hovakimyan, Marina

    2015-01-01

    Purpose Drug-eluting stents (DES) based on permanent polymeric coating matrices have been introduced to overcome the in stent restenosis associated with bare metal stents (BMS). A further step was the development of DES with biodegradable polymeric coatings to address the risk of thrombosis associated with first-generation DES. In this study we evaluate the biocompatibility of biodegradable polymer materials for their potential use as coating matrices for DES or as materials for fully bioabsorbable vascular stents. Materials and Methods Five different polymers, poly(L-lactide) PLLA, poly(D,L-lactide) PDLLA, poly(L-lactide-co-glycolide) P(LLA-co-GA), poly(D,L-lactide-co-glycolide) P(DLLA-co-GA) and poly(L-lactide-co-ε-caprolactone), P(LLA-co-CL) were examined in vitro without and with surface modification. The surface modification of polymers was performed by means of wet-chemical (NaOH and ethylenediamine (EDA)) and plasma-chemical (O2 and NH3) processes. The biocompatibility studies were performed on three different cell types: immortalized mouse fibroblasts (cell line L929), human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC). The biocompatibility was examined quantitatively using in vitro cytotoxicity assay. Cells were investigated immunocytochemically for expression of specific markers, and morphology was visualized using confocal laser scanning (CLSM) and scanning electron (SEM) microscopy. Additionally, polymer surfaces were examined for their thrombogenicity using an established hemocompatibility test. Results Both endothelial cell types exhibited poor viability and adhesion on all five unmodified polymer surfaces. The biocompatibility of the polymers could be influenced positively by surface modifications. In particular, a reproducible effect was observed for NH3-plasma treatment, which enhanced the cell viability, adhesion and morphology on all five polymeric surfaces. Conclusion Surface modification of

  13. Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin

    NASA Astrophysics Data System (ADS)

    Andhariya, Nidhi; Chudasama, Bhupendra; Mehta, R. V.; Upadhyay, R. V.

    2011-04-01

    The use of nanoparticles as drug delivery systems for anticancer therapeutics has great potential to revolutionize the future of cancer therapy. The aim of this study is to construct a novel drug delivery platform comprising a magnetic core and biodegradable thermoresponsive shell of tri-block-copolymer. Oleic acid-coated Fe3O4 nanoparticles and hydrophilic anticancer drug "doxorubicin" are encapsulated with PEO-PLGA-PEO (polyethylene oxide-poly d, l lactide-co-glycolide-polyethylene oxide) tri-block-copolymer. Structural, magnetic, and physical properties of Fe3O4 core are determined by X-ray diffraction, vibrating sample magnetometer, and transmission electron microscopy techniques, respectively. The hydrodynamic size of composite nanoparticles is determined by dynamic light scattering and is found to be 36.4 nm at 25 °C. The functionalization of magnetic core with various polymeric chain molecules and their weight proportions are determined by Fourier transform infrared spectroscopy and thermogravimetric analysis, respectively. Encapsulation of doxorubicin into the polymeric magnetic nanoparticles, its loading efficiency, and kinetics of drug release are investigated by UV-vis spectroscopy. The loading efficiency of drug is 89% with a rapid release for the initial 7 h followed by the sustained release over a period of 36 h. The release of drug is envisaged to occur in response to the physiological temperature by deswelling of thermoresponsive PEO-PLGA-PEO block-copolymer. This study demonstrates that temperature can be exploited successfully as an external parameter to control the release of drug.

  14. Characterization of lysosome-destabilizing DOPE/PLGA nanoparticles designed for cytoplasmic drug release.

    PubMed

    Chhabra, Resham; Grabrucker, Andreas M; Veratti, Patrizia; Belletti, Daniela; Boeckers, Tobias M; Vandelli, Maria Angela; Forni, Flavio; Tosi, Giovanni; Ruozi, Barbara

    2014-08-25

    Polymeric nanoparticles (NPs) offer a promising approach for therapeutic intracellular delivery of proteins, conventionally hampered by short half-lives, instability and immunogenicity. Remarkably, NPs uptake occurs via endocytic internalization leading to NPs content's release within lysosomes. To overcome lysosomal degradation and achieve NPs and/or loaded proteins release into cytosol, we propose the formulation of hybrid NPs by adding 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as pH sensitive component in the formulation of poly-lactide-co-glycolide (PLGA) NPs. Hybrid NPs, featured by different DOPE/PLGA ratios, were characterized in terms of structure, stability and lipid organization within the polymeric matrix. Experiments on NIH cells and rat primary neuronal cultures highlighted the safety profile of hybrid NPs. Moreover, after internalization, NPs are able to transiently destabilize the integrity of lysosomes in which they are taken up, speeding their escape and favoring cytoplasmatic localization. Thus, these DOPE/PLGA-NPs configure themselves as promising carriers for intracellular protein delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    PubMed

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses.

  16. Stability and Ocular Pharmacokinetics of Celecoxib-Loaded Nanoparticles Topical Ophthalmic Formulations.

    PubMed

    Ibrahim, Mohammed Mostafa; Abd-Elgawad, Abd-Elgawad Helmy; Soliman, Osama Abd-Elazeem; Jablonski, Monica M

    2016-12-01

    A spontaneous emulsification and/or solvent diffusion method was used for the preparation of celecoxib-loaded nanoparticles (NPs) using polymers, including chitosan (CS), sodium alginate, poly-ε-caprolactone (PCL), poly-l-lactide, and poly-d,l-lactide-co-glycolide. NPs were incorporated into vehicles (eye drops, in situ gelling system, and gel). Formulations were subjected to an accelerated stability study by storing them at elevated temperatures of 30, 35, and 45°C for 6 months. Formulations were evaluated monthly for general appearance, pH, viscosity, particle size, polydispersity index, zeta potential, and drug content. Gels containing CS-NPs and PCL-NPs were selected for an ocular pharmacokinetics study using Sprague-Dawley rats due to their high stability and long shelf lives (24.56 and 33.76 months, respectively). The gel improved NP stability by keeping it inside its network structure, which protected them from aggregation and interacting with water. Our formulations improved celecoxib bioavailability due to their bioadhesivness, thus preventing their rapid removal. Also, NPs acted as drug reservoirs that adhered to eye surface and continuously released the drug. The availability of celecoxib in all eye tissues and its absence in plasma suggests that our formulation could be used for anterior eye disorders and also for treatment of diseases associated with the posterior eye with no systemic side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: factor influence study and in vitro efficacy evaluation.

    PubMed

    Van de Ven, H; Vermeersch, M; Matheeussen, A; Vandervoort, J; Weyenberg, W; Apers, S; Cos, P; Maes, L; Ludwig, A

    2011-11-25

    Colloidal carriers are known to improve the therapeutic index of the conventional drugs in the treatment of visceral leishmaniasis (VL) by decreasing their toxicity whilst maintaining or increasing therapeutic efficacy. This paper describes the development of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) for the antileishmanial saponin β-aescin. NPs were prepared by the W/O/W emulsification solvent evaporation technique and the influence of five preparation parameters on the NPs' size (Z(ave)), zeta potential and entrapment efficiency (EE%) was investigated using a 2(5-2) fractional factorial design. Cytotoxicity of aescin, aescin-loaded and blank PLGA NPs was evaluated in J774 macrophages and non-phagocytic MRC-5 cells, whereas antileishmanial activity was determined in the Leishmania infantum ex vivo model. The developed PLGA NPs were monodispersed with Z(ave)<500 nm and exhibited negative zeta potentials. The process variables 'surfactant primary emulsion', 'concentration aescin' and 'solvent evaporation rate' had a positive effect on EE%. Addition of Tween 80 to the inner aqueous phase rendered the primary emulsion more stable, which in its turn led to better saponin entrapment. The selectivity index (SI) towards the supporting host macrophages increased from 4 to 18 by treating the cells with aescin-loaded NPs instead of free β-aescin. In conclusion, the in vitro results confirmed our hypothesis. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation

    PubMed Central

    Mehdikhani-Nahrkhalaji, Mehdi; Fathi, Mohammad Hossein; Mortazavi, Vajihesadat; Mousavi, Sayed Behrouz; Akhavan, Ali; Haghighat, Abbas; Hashemi-Beni, Batool; Razavi, Sayed Mohammad; Mashhadiabbas, Fatemeh

    2015-01-01

    Background: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. Materials and Methods: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy. Mechanical stability of the prepared nanocomposite coatings was studied during intramedullary implantation of coated Kirschner wires (K-wires) into rabbit tibia. Titanium mini-screws coated with nanocomposite coatings and without coating were implanted intramedullary in rabbit tibia. Bone tissue interaction with the prepared nanocomposite coatings was evaluated 30 and 60 days after surgery. The non-parametric paired Friedman and Kruskal-Wallis tests were used to compare the samples. For all tests, the level of significance was P < 0.05. Results: The results showed that nanocomposite coatings remained stable on the K-wires with a minimum of 96% of the original coating mass. Tissue around the coated implants showed no adverse reactions to the coatings. Woven and trabecular bone formation were observed around the coated samples with a minimum inflammatory reaction. PBG nanocomposite coating induced more rapid bone healing than PBGHA nanocomposite coating and titanium without coating (P < 0.05). Conclusion: It was concluded that PBG nanocomposite coating provides an ideal surface for bone formation and it could be used as a candidate for coating dental and orthopedic implants. PMID:25709681

  19. Drug Synergy of Tenofovir and Nanoparticle-Based Antiretrovirals for HIV Prophylaxis

    PubMed Central

    Chaowanachan, Thanyanan; Krogstad, Emily; Ball, Cameron; Woodrow, Kim A.

    2013-01-01

    Background The use of drug combinations has revolutionized the treatment of HIV but there is no equivalent combination product that exists for prevention, particularly for topical HIV prevention. Strategies to combine chemically incompatible agents may facilitate the discovery of unique drug-drug activities, particularly unexplored combination drug synergy. We fabricated two types of nanoparticles, each loaded with a single antiretroviral (ARV) that acts on a specific step of the viral replication cycle. Here we show unique combination drug activities mediated by our polymeric delivery systems when combined with free tenofovir (TFV). Methodology/Principal Findings Biodegradable poly(lactide-co-glycolide) nanoparticles loaded with efavirenz (NP-EFV) or saquinavir (NP-SQV) were individually prepared by emulsion or nanoprecipitation techniques. Nanoparticles had reproducible size (d ∼200 nm) and zeta potential (-25 mV). The drug loading of the nanoparticles was approximately 7% (w/w). NP-EFV and NP-SQV were nontoxic to TZM-bl cells and ectocervical explants. Both NP-EFV and NP-SQV exhibited potent protection against HIV-1 BaL infection in vitro. The HIV inhibitory effect of nanoparticle formulated ARVs showed up to a 50-fold reduction in the 50% inhibitory concentration (IC50) compared to free drug. To quantify the activity arising from delivery of drug combinations, we calculated combination indices (CI) according to the median-effect principle. NP-EFV combined with free TFV demonstrated strong synergistic effects (CI50 = 0.07) at a 1∶50 ratio of IC50 values and additive effects (CI50 = 1.05) at a 1∶1 ratio of IC50 values. TFV combined with NP-SQV at a 1∶1 ratio of IC50 values also showed strong synergy (CI50 = 0.07). Conclusions ARVs with different physicochemical properties can be encapsulated individually into nanoparticles to potently inhibit HIV. Our findings demonstrate for the first time that combining TFV with either NP-EFV or NP

  20. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue.

    PubMed

    Zhang, Xuemei; Li, Xuejuan; Hua, Hongchen; Wang, Aiping; Liu, Wanhui; Li, Youxin; Fu, Fenghua; Shi, Yanan; Sun, Kaoxiang

    2017-01-01

    Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs). The cyclic hexapeptide c(RGDf(N-me) VK)-C (cHP) has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(d,l-lactide-co-glycolide) (PEG-PLGA) conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs) was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells. The targeted cHP/Cur-NPs, c(RGDf(N-me)VK)-C-modified Cur-NPs, exhibited improved binding, uptake, and penetration abilities than non-targeting NPs for glioma cells, cell spheres, and glioma tissue. In conclusion, c(RGDf(N-me)VK)-C can serve as an effective targeting ligand, and cHP/Cur-NPs can be exploited as a potential drug delivery system for targeting gliomas.

  1. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue

    PubMed Central

    Zhang, Xuemei; Li, Xuejuan; Hua, Hongchen; Wang, Aiping; Liu, Wanhui; Li, Youxin; Fu, Fenghua; Shi, Yanan; Sun, Kaoxiang

    2017-01-01

    Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs). The cyclic hexapeptide c(RGDf(N-me) VK)-C (cHP) has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(d,l-lactide-co-glycolide) (PEG-PLGA) conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs) was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells. The targeted cHP/Cur-NPs, c(RGDf(N-me)VK)-C-modified Cur-NPs, exhibited improved binding, uptake, and penetration abilities than non-targeting NPs for glioma cells, cell spheres, and glioma tissue. In conclusion, c(RGDf(N-me)VK)-C can serve as an effective targeting ligand, and cHP/Cur-NPs can be exploited as a potential drug delivery system for targeting gliomas. PMID:28848349

  2. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis.

    PubMed

    Takeuchi, Issei; Kobayashi, Shiori; Hida, Yukari; Makino, Kimiko

    2017-07-01

    Postmenopausal osteoporosis among older women, which occurs by an ovarian hormone deficiency, is one of the major public health problems. 17 β-estradiol (E2) is used to prevent and treat this disease as a drug of hormone replacement therapy. In oral administration, E2 is significantly affected by first-pass hepatic metabolism, and high dose administration must be needed to obtain drug efficacy. Therefore, alternative administration route is needed, and we have focused on the transdermal drug delivery system. In this study, we have prepared E2-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles for osteoporosis by using a combination of an antisolvent diffusion method with preferential solvation. The average particle diameter of the nanoparticles was 110.0±41.0nm and the surface charge number density was 82 times higher than that of conventional E2-loaded PLGA nanoparticles. Therapeutic evaluation of E2-loaded PLGA nanoparticles was carried out using ovariectomized female rats. Therapeutic efficacy was evaluated to measure bone mineral density of cancellous bone using an X-ray CT system. When the E2-loaded PLGA nanoparticles were administrated once a week, bone mineral density was significantly higher than that of the non-treated group at 60days after the start of treatment. Also, in the group administered this nanoparticle twice a week, the bone mineral density increased significantly at 45days after the start of treatment. From these results, it was revealed that E2-loaded PLGA nanoparticles with iontophoresis were useful to recover bone mineral density of cancellous bone, and it was also suggested that they extend the dosing interval of E2. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Investigation on hemolytic effect of poly(lactic co-glycolic) acid nanoparticles synthesized using continuous flow and batch processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libi, Sumit; Calenic, Bogdan; Astete, Carlos E.

    Abstract With the increasing interest in polymeric nanoparticles for biomedical applications, there is a need for continuous flow methodologies that allow for the precise control of nanoparticle synthesis. Poly(lactide-co-glycolic) acid (PLGA) nanoparticles with diameters of 220–250 nm were synthesized using a lab-on-a-chip, exploiting the precise flow control offered by a millifluidic platform. The association and the effect of PLGA nanoparticles on red blood cells (RBCs) were compared for fluorescent PLGA nanoparticles made by this novel continuous flow process using a millifluidic chip and smaller PLGA nanoparticles made by a batch method. Results indicated that all PLGA nanoparticles studied, independent ofmore » the synthesis method and size, adhered to the surface of RBCs but had no significant hemolytic effect at concentrations lower than 10 mg/ml.« less

  4. Co-precipitation of asiatic acid and poly( l-lactide) using rapid expansion of subcritical solutions into liquid solvents

    NASA Astrophysics Data System (ADS)

    Sane, Amporn; Limtrakul, Jumras

    2011-09-01

    Poly( l-lactide) (PLLA) nanoparticles loaded with asiatic acid (AA) were successfully produced by rapid expansion of a subcritical solution into an aqueous receiving solution containing a dispersing agent. A mixture of carbon dioxide (CO2) and ethanol (EtOH) with a weight ratio of 1:1 was used as the solvent for AA and PLLA. Two surfactants, Pluronic F127 and sodium dodecyl sulfate were employed. The former was found to be more effective for stabilizing AA-loaded PLLA nanoparticles, as a rapid expansion into a 0.1 wt% Pluronic F127 solution produced a stable nanosuspension consisting mainly of well-dispersed, individual nanoparticles. The effects of rapid expansion-processing conditions—AA to PLLA weight ratio and pre-expansion temperature (Tpre)—on the size and morphology of composite nanoparticles, and the loading capacity and entrapment efficiency of AA in PLLA nanoparticles, were systematically investigated. It was found that AA-loaded PLLA nanoparticles with a size range of 30-100 nm were consistently fabricated by rapid expansion at Tpre of 70-100 °C and AA to PLLA weight ratios of 1:2 and 1:4, and with a constant pre-expansion pressure of 330 bar. The Tpre and AA to PLLA weight ratio had no significant effects on the size of the nanoparticles. The AA to PLLA weight ratio is a controlling parameter for both the loading capacity and the entrapment efficiency of AA in PLLA nanoparticles. The loading capacity and entrapment efficiency increased from 8-11 to 16-21 wt%, and 38-57 to 50-62 wt%, respectively, when the AA to PLLA weight ratio changed from 1:4 to 1:2. However, increasing the Tpre from 70 to 100 °C decreased both the loading capacity and entrapment efficiency of AA in PLLA nanoparticles by 20-30%.

  5. Effect of CO2 laser micromachining on physicochemical properties of poly(L-lactide)

    NASA Astrophysics Data System (ADS)

    Antończak, Arkadiusz J.; Stepak, Bogusz; Szustakiewicz, Konrad; Wójcik, Michał; Kozioł, Paweł E.; Łazarek, Łukasz; Abramski, Krzysztof M.

    2014-08-01

    In this paper, we present some examples of micromachining of poly(L-lactide) with a CO2 laser and an analysis of changes in material properties in the heat affected HAZ induced by the fluence well above the ablation threshold. The complexity of the processes of decomposition implies the need for simultaneous use of many selective analytical techniques which complement each other to give a full image of the changes. Introduced changes were characterized using Differential Scanning Calorimetry (DSC), Gel Permeation Chromatography (GPC), X-ray Photoelectron Spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR). It turns out that CO2 laser processing of poly(L-lactide) mainly induces surface changes. However, oxidation of the surface was not observed. We recorded a bimodal distribution and some reduction in the molecular weight. Infrared spectroscopy in turn revealed the existence of absorption bands, characteristic for the vinyl groups (RCH=CH2). The appearance of these bands indicates that the decomposition of the polymer occurred, among others, by means of the cis-elimination reaction.

  6. Hyaluronan-decorated polymer nanoparticles targeting the CD44 receptor for the combined photo/chemo-therapy of cancer

    NASA Astrophysics Data System (ADS)

    Maiolino, Sara; Moret, Francesca; Conte, Claudia; Fraix, Aurore; Tirino, Pasquale; Ungaro, Francesca; Sortino, Salvatore; Reddi, Elena; Quaglia, Fabiana

    2015-03-01

    In the attempt to develop novel concepts in designing targeted nanoparticles for combination therapy of cancer, we propose here CD44-targeted hyaluronan-decorated double-coated nanoparticles (dcNPs) delivering the lipophilic chemotherapeutic docetaxel (DTX) and an anionic porphyrin (TPPS4). dcNPs are based on electrostatic interactions between a negative DTX-loaded nanoscaffold of poly(lactide-co-glycolide), a polycationic shell of polyethyleneimine entangling negatively-charged TPPS4 and finally decorated with hyaluronan (HA) to promote internalization through CD44 receptor-mediated endocytosis. DTX/TPPS4-dcNPs, prepared through layer-by-layer deposition, showed a hydrodynamic diameter of around 180 nm, negative zeta potential and efficient loading of both DTX and TPPS4. DTX/TPPS4-dcNPs were freeze-dried with trehalose giving a powder that could be easily dispersed in different media. Excellent stability of dcNPs in specific salt- and protein-containing media was found. Spectroscopic behavior of DTX/TPPS4-dcNPs demonstrated a face-to-face arrangement of the TPPS4 units in non-photoresponsive H-type aggregates accounting for an extensive aggregation of the porphyrin embedded in the shell. Experiments in MDA-MB-231 cells overexpressing the CD44 receptor demonstrated a 9.4-fold increase in the intracellular level of TPPS4 delivered from dcNPs as compared to free TPPS4. Light-induced death increased tremendously in cells that had been treated with a combination of TPPS4 and DTX delivered through dcNPs as compared with free drugs, presumably due to efficient uptake and co-localization inside the cells. In perspective, the strategy proposed here to target synergistic drug combinations through HA-decorated nanoparticles seems very attractive to improve the specificity and efficacy of cancer treatment.In the attempt to develop novel concepts in designing targeted nanoparticles for combination therapy of cancer, we propose here CD44-targeted hyaluronan-decorated double

  7. Molybdenum cluster loaded PLGA nanoparticles: An innovative theranostic approach for the treatment of ovarian cancer.

    PubMed

    Brandhonneur, N; Hatahet, T; Amela-Cortes, M; Molard, Y; Cordier, S; Dollo, G

    2018-04-01

    We evaluate poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles embedding inorganic molybdenum octahedral cluster for photodynamic therapy of cancer (PDT). Tetrabutyl ammonium salt of Mo 6 Br 14 cluster unit, (TBA) 2 Mo 6 Br 14 , presents promising photosensitization activity in the destruction of targeted cancer cells. Stable cluster loaded nanoparticles (CNPs) were prepared by solvent displacement method showing spherical shapes, zeta potential values around -30 mV, polydispersity index lower than 0.2 and sizes around 100 nm. FT-IR and DSC analysis revealed the lack of strong chemical interaction between the cluster and the polymer within the nanoparticles. In vitro release study showed that (TBA) 2 Mo 6 Br 14 was totally dissolved in 20 min, while CNPs were able to control the release of encapsulated cluster. In vitro cellular viability studies conducted on A2780 ovarian cancer cell line treated up to 72 h with cluster or CNPs did not show any sign of toxicity in concentrations up to 20 µg/ml. This concentration was selected for photo-activation test on A2780 cells and CNPs were able to generate oxygen singlet resulting in a decrease of the cellular viability up to 50%, respectively compared to non-activated conditions. This work presents (TBA) 2 Mo 6 Br 14 as a novel photosensitizer for PDT and suggests PLGA nanoparticles as an efficient delivery system intended for tumor targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Manufacturing Techniques and Surface Engineering of Polymer Based Nanoparticles for Targeted Drug Delivery to Cancer

    PubMed Central

    Wang, Yichao; Li, Puwang; Truong-Dinh Tran, Thao; Zhang, Juan; Kong, Lingxue

    2016-01-01

    The evolution of polymer based nanoparticles as a drug delivery carrier via pharmaceutical nano/microencapsulation has greatly promoted the development of nano- and micro-medicine in the past few decades. Poly(lactide-co-glycolide) (PLGA) and chitosan, which are biodegradable and biocompatible polymers, have been approved by both the Food & Drug Administration (FDA) and European Medicine Agency (EMA), making them ideal biomaterials that can be advanced from laboratory development to clinical oral and parental administrations. PLGA and chitosan encapsulated nanoparticles (NPs) have successfully been developed as new oral drug delivery systems with demonstrated high efficacy. This review aims to provide a comprehensive overview of the fabrication of PLGA and chitosan particulate systems using nano/microencapsulation methods, the current progress and the future outlooks of the nanoparticulate drug delivery systems. Especially, we focus on the formulations and nano/micro-encapsulation techniques using top-down techniques. It also addresses how the different phases including the organic and aqueous ones in the emulsion system interact with each other and subsequently influence the properties of the drug delivery system. Besides, surface modification strategies which can effectively engineer intrinsic physicochemical properties are summarised. Finally, future perspectives and potential directions of PLGA and chitosan nano/microencapsulated drug systems are outlined. PMID:28344283

  9. Theranostic nanoparticles for the treatment of cancer

    NASA Astrophysics Data System (ADS)

    Moore, Thomas Lee

    The main focus of this research was to evaluate the ability of a novel multifunctional nanoparticle to mediate drug delivery and enable a non-invasive approach to measure drug release kinetics in situ for the treatment of cancer. These goals were approached by developing a nanoparticle consisting of an inorganic core (i.e. gadolinium sulfoxide doped with europium ions or carbon nanotubes). This was coated with an external amphiphilic polymer shell comprised of a biodegradable polyester (i.e. poly(lactide) or poly(glycolide)), and poly(ethylene glycol) block copolymer. In this system, the inorganic core mediates the imaging aspect, the relatively hydrophobic polyester encapsulates hydrophobic anti-cancer drugs, and poly(ethylene glycol) stabilizes the nanoparticle in an aqueous environment. The synthesis of this nanoparticle drug delivery system utilized a simple one-pot room temperature ring-opening polymerization that neglected the use of potentially toxic catalysts and reduced the number of washing steps. This functionalization approach could be applied across a number of inorganic nanoparticle platforms. Coating inorganic nanoparticles with biodegradable polymer was shown to decrease in vitro and in vivo toxicity. Nanoparticles could be further coated with multiple polymer layers to better control drug release characteristics. Finally, loading polymer coated radioluminescent nanoparticles with photoactive drugs enabled a mechanism for measuring drug concentration in situ. The work presented here represents a step forward to developing theranostic nanoparticles that can improve the treatment of cancer.

  10. Novel Simvastatin-Loaded Nanoparticles Based on Cholic Acid-Core Star-Shaped PLGA for Breast Cancer Treatment.

    PubMed

    Wu, Yanping; Wang, Zhongyuan; Liu, Gan; Zeng, Xiaowei; Wang, Xusheng; Gao, Yongfeng; Jiang, Lijuan; Shi, Xiaojun; Tao, Wei; Huang, Laiqiang; Mei, Lin

    2015-07-01

    A novel nanocarrier system of cholic acid (CA) core, star-shaped polymer consisting of poly(D,L-lactide-co-glycolide) (PLGA) was developed for sustained and controlled delivery of simvastatin for chemotherapy of breast adenocarcinoma. The star-shaped polymer CA-PLGA with three branch arms was synthesized successfully through the core-first approach. The simvastatin-loaded star-shaped CA-PLGA nanoparticles were prepared through a modified nanoprecipitation method. The data showed that the fluorescence star-shaped CA-PLGA nanoparticles could be internalized into MDA-MB-231 and MDA-MB-468 human breast cancer cells. The simvastatin-loaded star-shaped CA-PLGA nanoparticles achieved significantly higher level of cytotoxicity than pristine simvastatin and simvastatin-loaded linear PLGA nanoparticles. Moreover, the expression of the cell cycle protein cyclin D1 was dramatically inhibited by simvastatin in both cells, with simvastatin-loaded star-shaped CA-PLGA nanoparticles having the greatest effect. MDA-MB-231 xenograft tumor model on BALB/c nude mice showed that simvastatin-loaded star-shaped CA-PLGA nanoformulations could effectively inhibit the growth of tumor over a longer period of time than pristine simvastatin and simvastatin-loaded linear PLGA nanoformulations at the same dose. In agreement with these, the nuclear expression of proliferation marker Ki-67 in simvastatin-loaded star-shaped CA-PLGA nanoparticles group was reduced to a most extent among four groups through tumor frozen section immunohistochemistry. In conclusion, the star-shaped CA-PLGA polymers could serve as a novel polymeric nanocarrier for breast cancer chemotherapy.

  11. Photoprotective effects of apple peel nanoparticles

    PubMed Central

    Bennet, Devasier; Kang, Se Chan; Gang, Jongback; Kim, Sanghyo

    2014-01-01

    Plants contain enriched bioactive molecules that can protect against skin diseases. Bioactive molecules become unstable and ineffective due to unfavorable conditions. In the present study, to improve the therapeutic efficacy of phytodrugs and enhance photoprotective capability, we used poly(D,L-lactide-co-glycolide) as a carrier of apple peel ethanolic extract (APETE) on permeation-enhanced nanoparticles (nano-APETE). The in vitro toxicity of nano-APETE-treated dermal fibroblast cells were studied in a bioimpedance system, and the results coincided with the viability assay. In addition, the continuous real-time evaluations of photodamage and photoprotective effect of nano-APETE on cells were studied. Among three different preparations of nano-APETE, the lowest concentration provided small, spherical, monodispersed, uniform particles which show high encapsulation, enhanced uptake, effective scavenging, and sustained intracellular delivery. Also, the nano-APETE is more flexible, allowing it to permeate through skin lipid membrane and release the drug in a sustained manner, thus confirming its ability as a sustained transdermal delivery. In summary, 50 μM nano-APETE shows strong synergistic photoprotective effects, thus demonstrating its higher activity on target sites for the treatment of skin damage, and would be of broad interest in the field of skin therapeutics. PMID:24379668

  12. Loteprednol Etabonate Nanoparticles: Optimization via Box-Behnken Design Response Surface Methodology and Physicochemical Characterization.

    PubMed

    Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Abstract: The objective of the present work was to prepare and optimize the loteprednoletabonate (LE) loaded poly (D,L-lactide co-glycolide) (PLGA) polymer based nanoparticle carrier. The review on recent patents (US9006241, US20130224302A1, US2012/0028947A1) assisted in the selection of drug and polymer for designing nanoparticles for ocular delivery applications. The nanoparticles were prepared by solvent evaporation followed by high speed homogenization. Biodegradable polymer PLGA (50:50) grade was utilized to develop various formulations with different drug:polymer ratio. A Box-Behnken design with 33 factorial design was selected for the present study and 17 runs were carried out in totality. The influence of various process variables (viz., polymer concentration, homogenization speed and sonication time) on the characteristics of nanoparticles including the in vitro drug release profile were studied. The nanoparticulate formulations were evaluated for mean spherical diameter, polydispersity index (PDI), zeta potential, surface morphology, drug entrapment and in-vitro drug release profile. The entrapment efficiency, drug loading and mean particle size were found to be 96.31±1.68 %, 35.46±0.35 % and 167.6±2.1 nm respectively. The investigated process and formulation variables were found to have significant effect on the particle size, drug loading (DL), entrapment efficiency (EE), and in vitro drug release profile. A biphasic in vitro drug release profile was apparent from the optimized nanoparticles (NPs) for 24 hours. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Improved Poly (D,L-lactide) nanoparticles-based formulation for hair follicle targeting.

    PubMed

    Fernandes, B; Silva, R; Ribeiro, A; Matamá, T; Gomes, A C; Cavaco-Paulo, A M

    2015-06-01

    Hair follicles are widely recognized as the preferential target and site of accumulation for nanoparticles after topical application. This feature is of particular importance for hair cosmetics, having the potential to refine the treatment of several hair follicle-related disorders. The aim of this work was to improve the preparation of Poly (D,L-lactide) (PLA) nanoparticles for in vivo follicular target and drug delivery. Envisaging a future industrial scale-up of the process, nanoprecipitation method was used to prepare PLA nanoparticles: the effect of several processing parameters on their properties was examined and the yield of nanoparticles formation determined. Encapsulation efficiencies and in vitro release profiles of lipophilic and hydrophilic model compounds were also assessed. In vitro cytotoxicity and ex vivo penetration studies were performed on a reference skin cell line (NCTC2455, human skin keratinocytes) and porcine skin, respectively. Using acetone : ethanol (50 : 50, v/v) as the solvent phase, 0.6% (w/w) of Pluronic(®) F68 as a surfactant agent and agitation to mix the solvent and non-solvent phases, a monodispersed population of non-cytotoxic spherical nanoparticles of approximately 150 nm was obtained. The yield of nanoparticles for this formulation was roughly 90%. After encapsulation of model compounds, no significant changes were found in the properties of particles and the entrapment efficiencies were above 80%. The release kinetics of dyes from PLA nanoparticles indicate an anomalous transport mechanism (diffusion and polymer degradation) for Nile Red (lipophilic) and a Fickian diffusion of first order for fluorescein 5(6)-isothiocyanate (hydrophilic). Ex vivo skin penetration studies confirmed the presence of nanoparticles along the entire follicular ducts. The optimized method allows the preparation of ideal PLA nanoparticles-based formulations for hair follicle targeting. PLA nanoparticles can effectively transport and release

  14. Design of Curcumin Loaded PLGA Nanoparticles Formulation with Enhanced Cellular Uptake, and Increased Bioactivity in vitro and Superior Bioavailability in vivo

    PubMed Central

    Anand, Preeta; Nair, Harish B.; Sung, Bokyung; Kunnumakkara, Ajaikumar B.; Yadav, Vivek R.; Tekmal, Rajeshwar R.; Aggarwal, Bharat B.

    2011-01-01

    Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with antioxidant, anti-inflammatory, anti-proliferative, anticancer, antidiabetic, antirheumatic, and antiviral effects, but its optimum potential is limited by its lack of solubility in aqueous solvents and poor oral bioavailability. We employed a polymer-based nanoparticle approach to improve bioavailability. Curcumin was encapsulated with 97.5% efficiency in biodegradable nanoparticulate formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-5000. Dynamic laser light scattering and transmission electron microscopy indicated a particle diameter of 80.9 nm. This curcumin, renamed from hereon “as curcumin (NP)”, was characterized for its biological activity. In vitro curcumin (NP) exhibited very rapid (2 h vs > 72 h) and more efficient cellular uptake then curcumin. Estrase staining revealed that curcumin (NP) was at least as potent as or more potent than curcumin in inducing apoptosis of leukemic cells and in suppressing proliferation of various tumor cell lines. When examined by electrophoretic gel shift mobility assay, curcumin (NP) was more active than curcumin in inhibiting TNF-induced NF-κB activation and in suppression of NF-κB-regulated proteins involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). In mice, curcumin (NP) was more bioavailable and had a longer half-life than curcumin. Overall we demonstrate that curcumin-loaded PLGA nanoparticles formulation has enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo over curcumin. PMID:19735646

  15. Enhanced Cellular Cytotoxicity and Antibacterial Activity of 18-β-Glycyrrhetinic Acid by Albumin-conjugated PLGA Nanoparticles.

    PubMed

    Darvishi, B; Manoochehri, S; Esfandyari-Manesh, M; Samadi, N; Amini, M; Atyabi, F; Dinarvand, R

    2015-12-01

    The aim of the present work was to encapsulate 18-β-Glycyrrhetinic acid (GLA) in albumin conjugated poly(lactide-co-glycolide) (PLGA) nanoparticles by a modified nanoprecipitation method. Nanoparticles (NPs) were prepared by different drug to polymer ratios, human serum albumin (HSA) content, dithiothreitol (as producer of free thiol groups) content, and acetone (as non-solvent in nanoprecipitation). NPs with a size ranging from 126 to 174 nm were achieved. The highest entrapment efficiency (89.4±4.2%) was achieved when the ratio of drug to polymer was 1:4. The zeta potential of NPs was fairly negative (-8 to -12). Fourier transform infrared spectroscopy and differential scanning calorimetry proved the conjugation of HSA to PLGA NPs. In vitro release profile of NPs showed 2 phases: an initial burst for 4 h (34-49%) followed by a slow release pattern up to the end. The antibacterial effects of NPs against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa were studied by microdilution method. The GLA-loaded NPs showed more antibacterial effect than pure GLA (2-4 times). The anticancer MTT test revealed that GLA-loaded NPs were approximately 9 times more effective than pure GLA in Hep G2 cells. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Adipose-derived stem cells cultivated on electrospun l-lactide/glycolide copolymer fleece and gelatin hydrogels under flow conditions - aiming physiological reality in hypodermis tissue engineering.

    PubMed

    Gugerell, Alfred; Neumann, Anne; Kober, Johanna; Tammaro, Loredana; Hoch, Eva; Schnabelrauch, Matthias; Kamolz, Lars; Kasper, Cornelia; Keck, Maike

    2015-02-01

    Generation of adipose tissue for burn patients that suffer from an irreversible loss of the hypodermis is still one of the most complex challenges in tissue engineering. Electrospun materials with their micro- and nanostructures are already well established for their use as extracellular matrix substitutes. Gelatin is widely used in tissue engineering to gain thickness and volume. Under conventional static cultivation methods the supply of nutrients and transport of toxic metabolites is controlled by diffusion and therefore highly dependent on size and porosity of the biomaterial. A widely used method in order to overcome these limitations is the medium perfusion of 3D biomaterial-cell-constructs. In this study we combined perfusion bioreactor cultivation techniques with electrospun poly(l-lactide-co-glycolide) (P(LLG)) and gelatin hydrogels together with adipose-derived stem cells (ASCs) for a new approach in soft tissue engineering. ASCs were seeded on P(LLG) scaffolds and in gelatin hydrogels and cultivated for 24 hours under static conditions. Thereafter, biomaterials were cultivated under static conditions or in a bioreactor system for three, nine or twelve days with a medium flow of 0.3ml/min. Viability, morphology and differentiation of cells was monitored. ASCs seeded on P(LLG) scaffolds had a physiological morphology and good viability and were able to migrate from one electrospun scaffold to another under flow conditions but not migrate through the mesh. Differentiated ASCs showed lipid droplet formations after 21 days. Cells in hydrogels were viable but showed rounded morphology. Under flow conditions, morphology of cells was more diffuse. ASCs could be cultivated on P(LLG) scaffolds and in gelatin hydrogels under flow conditions and showed good cell viability as well as the potential to differentiate. These results should be a next step to a physiological three-dimensional construct for soft tissue engineering and regeneration. Copyright © 2014

  17. The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to In Vitro Biocompatibility

    PubMed Central

    Orchel, Arkadiusz; Kasperczyk, Janusz; Marcinkowski, Andrzej; Pamula, Elzbieta; Orchel, Joanna; Bielecki, Ireneusz

    2013-01-01

    Because of the wide use of biodegradable materials in tissue engineering, it is necessary to obtain biocompatible polymers with different mechanical and physical properties as well as degradation ratio. Novel co- and terpolymers of various composition and chain microstructure have been developed and applied for cell culture. The aim of this study was to evaluate the adhesion and proliferation of human chondrocytes to four biodegradable copolymers: lactide-coglycolide, lactide-co-ε-caprolactone, lactide-co-trimethylene carbonate, glycolide-co-ε-caprolactone, and one terpolymer glycolide-colactide-co-ε-caprolactone synthesized with the use of zirconium acetylacetonate as a nontoxic initiator. Chain microstructure of the copolymers was analyzed by means of 1H and 13C NMR spectroscopy and surface properties by AFM technique. Cell adhesion and proliferation were determined by CyQUANT Cell Proliferation Assay Kit. After 4 h the chondrocyte adhesion on the surface of studied materials was comparable to standard TCPS. Cell proliferation occurred on all the substrates; however, among the studied polymers poly(L-lactide-coglycolide) 85 : 15 that characterized the most blocky structure best supported cell growth. Chondrocytes retained the cell membrane integrity evaluated by the LDH release assay. As can be summarized from the results of the study, all the studied polymers are well tolerated by the cells that make them appropriate for human chondrocytes growth. PMID:24062998

  18. The influence of surface integrin binding patterns on specific biomaterial-cell interactions

    NASA Astrophysics Data System (ADS)

    Beranek, Maggi Marie

    As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second

  19. Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo

    NASA Astrophysics Data System (ADS)

    Sun, Dongdong; Li, Nuan; Zhang, Weiwei; Yang, Endong; Mou, Zhipeng; Zhao, Zhiwei; Liu, Haiping; Wang, Weiyun

    2016-01-01

    Nanotechnology-based approaches have tremendous potential for enhancing efficacy against infectious diseases. PLGA-based nanoparticles as drug delivery carrier have shown promising potential, owing to their sizes and related unique properties. This article aims to develop nanosized poly ( d, l-lactide-co-glycolide) PLGA nanoparticle formulation loaded with quercetin (QT). QT is an antioxidant and antibacterial compound isolated from Chinese traditional medicine with low skin permeability and extreme water insolubility. The quercetin-loaded PLGA nanoparticles (PQTs) were synthesized by emulsion-solvent evaporation method and stabilized by coating with poly (vinyl alcohol). The characteristics of PQTs were analyzed by Fourier transform infrared spectroscopy, Ultraviolet-Visible spectroscopy, scanning electron microscope, transmission electron microscopy, and atomic force microscopy, respectively. The PQTs showed a spherical shape with an average size of 100-150 nm. We compared the antibacterial effects of PQTs against Escherichia coli ( E. coli) and Micrococcus tetragenus ( M. tetragenus).The PQTs produced stronger antibacterial activity to E. coli than that to M. tetragenus through disrupting bacterial cell wall integrity. The antibacterial ratio was increased with the increasing dosages and incubation time. Next, we tested the in vivo antibacterial activity in mice. No noticeable organ damage was captured from H&E-staining organ slices, suggesting the promise of using PQTs for in vivo applications. The results of this study demonstrated the interaction between bacteria and PLGA-based nanoparticles, providing encouragement for conducting further investigations on properties and antimicrobial activity of the PQTs in clinical application.

  20. Functionalised nanoscale coatings using layer-by-layer assembly for imparting antibacterial properties to polylactide-co-glycolide surfaces.

    PubMed

    Gentile, Piergiorgio; Frongia, Maria E; Cardellach, Mar; Miller, Cheryl A; Stafford, Graham P; Leggett, Graham J; Hatton, Paul V

    2015-07-01

    In order to achieve high local biological activity and reduce the risk of side effects of antibiotics in the treatment of periodontal and bone infections, a localised and temporally controlled delivery system is desirable. The aim of this research was to develop a functionalised and resorbable surface to contact soft tissues to improve the antibacterial behaviour during the first week after its implantation in the treatment of periodontal and bone infections. Solvent-cast poly(d,l-lactide-co-glycolide acid) (PLGA) films were aminolysed and then modified by Layer-by-Layer technique to obtain a nano-layered coating using poly(sodium4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) as polyelectrolytes. The water-soluble antibiotic, metronidazole (MET), was incorporated from the ninth layer. Infrared spectroscopy showed that the PSS and PAH absorption bands increased with the layer number. The contact angle values had a regular alternate behaviour from the ninth layer. X-ray Photoelectron Spectroscopy evidenced two distinct peaks, N1s and S2p, indicating PAH and PSS had been introduced. Atomic Force Microscopy showed the presence of polyelectrolytes on the surface with a measured roughness about 10nm after 20 layers' deposition. The drug release was monitored by Ultraviolet-visible spectroscopy showing 80% loaded-drug delivery in 14 days. Finally, the biocompatibility was evaluated in vitro with L929 mouse fibroblasts and the antibacterial properties were demonstrated successfully against the keystone periodontal bacteria Porphyromonas gingivalis, which has an influence on implant failure, without compromising in vitro biocompatibility. In this study, PLGA was successfully modified to obtain a localised and temporally controlled drug delivery system, demonstrating the potential value of LbL as a coating technology for the manufacture of medical devices with advanced functional properties. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd

  1. Selenium Nanoparticles Induce the Chemo-Sensitivity of Fluorouracil Nanoparticles in Breast and Colon Cancer Cells.

    PubMed

    Abd-Rabou, Ahmed A; Shalby, Aziza B; Ahmed, Hanaa H

    2018-05-11

    Drug resistance is a major challenge of breast and colon cancer therapies leading to treatment failure. The main objective of the current study is to investigate whether selenium nanoparticles (nano-Se) can induce the chemo-sensitivity of 5-fluorouracil (FU)-encapsulated poly (D, L-lactide-co-glycolide) nanoparticles (nano-FU) in breast and colon cancer cell lines. Nano-Se and nano-FU were synthesized and characterized, then applied individually or in combination upon MCF7, MDA-MB-231, HCT 116, and Caco-2 cancerous cell lines. Cytotoxicity, cellular glucose uptake, and apoptosis, as well as malondialdehyde (MDA), nitric oxide (NO), and zinc (Zn) levels, were investigated upon the different treatments. We have resulted that nano-FU induced cell death in MCF7 and Caco-2 more effectively than MDA-MB-231 and HCT 116 cell lines. Moreover, nano-FU plus nano-Se potentiate MCF7 and Caco-2 chemo-sensitivity were higher than MDA-MB-231 and HCT 116 cancerous cell lines. It is relevant to note that Se and FU nano-formulations inhibited cancer cell bioenergetics via glucose uptake slight blockage. Furthermore, nano-FU increased the levels of NO and MDA in media over cancer cells, while their combinations with nano-Se rebalance the redox status with Zn increment. We noticed that MCF7 cell line is sensitive, while MDA-MB-231 cell line is resistant to Se and nano-Se. This novel approach could be of great potential to enhance the chemo-sensitivity in breast and colon cancer cells.

  2. A microscopy method for scanning transmission electron microscopy imaging of the antibacterial activity of polymeric nanoparticles on a biofilm with an ionic liquid.

    PubMed

    Takahashi, Chisato; Muto, Shunsuke; Yamamoto, Hiromitsu

    2017-08-01

    In this study, we developed a scanning transmission electron microscopy (STEM) method for imaging the antibacterial activity of organic polymeric nanoparticles (NPs) toward biofilms formed by Staphylococcus epidermidis bacterial cells, for optimizing NPs to treat biofilm infections. The combination of sample preparation method using a hydrophilic ionic liquid (IL) and STEM observation using the cooling holder eliminates the need for specialized equipment and techniques for biological sample preparation. The annular dark-field STEM results indicated that the two types of biodegradable poly-(DL-lactide-co-glycolide) (PLGA) NPs: PLGA modified with chitosan (CS), and clarithromycin (CAM)-loaded + CS-modified PLGA, prepared by emulsion solvent diffusion exhibited different antibacterial activities in nanoscale. To confirm damage to the sample during STEM observation, we observed the PLGA NPs and the biofilm treated with PLGA NPs by both the conventional method and the newly developed method. The optimized method allows microstructure of the biofilm treated with PLGA NPs to be maintained for 25 min at a current flow of 40 pA. The developed simple sample preparation method would be helpful to understand the interaction of drugs with target materials. In addition, this technique could contribute to the visualization of other deformable composite materials at the nanoscale level. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1432-1437, 2017. © 2016 Wiley Periodicals, Inc.

  3. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles.

    PubMed

    Reis, Catarina Pinto; Gomes, Ana; Rijo, Patrícia; Candeias, Sara; Pinto, Pedro; Baptista, Marina; Martinho, Nuno; Ascensão, Lia

    2013-10-01

    Azelaic acid (AzA) is used in the treatment of acne. However, side effects and low compliance have been associated with several topical treatments with AzA. Nanotechnology presents a strategy that can overcome these problems. Polymeric nanoparticles can control drug release and targeting and reduce local drug toxicity. The aim of this study was to produce and evaluate an innovative topical treatment for acne with AzA-loaded poly-DL-lactide/glycolide copolymer nanoparticles. A soft white powder of nanoparticles was prepared. The mean size of loaded nanoparticles was < 400 nm and zeta potential was negative. Spherical nanoparticles were observed by scanning electron microscopy. Encapsulation efficiency was around 80% and a strong interaction between the polymer and the drug was confirmed by differential scanning calorimetric analysis. In vitro drug release studies suggested a controlled and pulsatile release profile. System efficacy tests suggested similar results between the loaded nanoparticles and the nonencapsulated drug against the most common bacteria associated with acne. Cytotoxicity of AzA-loaded nanoparticles was concentration dependent, although not pronounced. The occluded patch test seemed to indicate that the formulation excipients were safe and thus AzA-loaded nanoparticles appear to be an efficient and safe treatment for acne.

  4. Endostar-loaded PEG-PLGA nanoparticles: in vitro and in vivo evaluation.

    PubMed

    Hu, Sanyuan; Zhang, Yangde

    2010-11-24

    Endostar, a novel recombinant human endostatin, which was approved by the Chinese State Food and Drug Administration in 2005, has a broad spectrum of activity against solid tumors. In this study, we aimed to determine whether the anticancer effect of Endostar is increased by using a nanocarrier system. It is expected that the prolonged circulation of endostar will improve its anticancer activity. Endostar-loaded nanoparticles were prepared to improve controlled release of the drug in mice and rabbits, as well as its anticancer effects in mice with colon cancer. A protein release system could be exploited to act as a drug carrier. Nanoparticles were formulated from poly (ethylene glycol) modified poly (DL-lactide-co-glycolide) (PEG-PLGA) by a double emulsion technique. Physical and release characteristics of endostar-loaded nanoparticles in vitro were evaluated by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and micro bicinchoninic acid protein assay. The pharmacokinetic parameters of endostar nanoparticles in rabbit and mice plasma were measured by enzyme-linked immunosorbent assay. Western blot was used to detect endostatin in different tissues. To study the effects of endostar-loaded nanoparticles in vivo, nude mice in which tumor cells HT-29 were implanted, were subsequently treated with endostar or endostar-loaded PEG-PLGA nanoparticles. Using TEM and PCS, endostar-loaded PEG-PLGA nanoparticles were found to have a spherical core-shell structure with a diameter of 169.56 ± 35.03 nm. Drug-loading capacity was 8.22% ± 2.35% and drug encapsulation was 80.17% ± 7.83%. Compared with endostar, endostar-loaded PEG-PLGA nanoparticles had a longer elimination half-life and lower peak concentration, caused slower growth of tumor cell xenografts, and prolonged tumor doubling times. The nanoparticles changed the pharmacokinetic characteristics of endostar in mice and rabbits, thereby reinforcing anticancer activity. In conclusion, PEG

  5. Chemical synthesis of narrowly dispersed SmCo5 nanoparticles

    NASA Astrophysics Data System (ADS)

    Gu, Hongwei; Xu, Bing; Rao, Jiancun; Zheng, R. K.; Zhang, X. X.; Fung, K. K.; Wong, Catherine Y. C.

    2003-05-01

    In this article we report a chemical synthetic means for generating a high Ku magnetic material—narrowly dispersed nanoparticles of SmCo5. Using Co2(CO)8 and Sm(acac)3 as the precursors under air-free conditions, we produced SmCo5 nanoparticles according to the procedure reported by Sun et al. [Science 287, 1981 (2000)] but with some modifications. The nanoparticles, with diameters of 6-8 nm, have a SmCo5 composition, as indicated by transmission electron microscopy, electron diffraction, and x-ray photoelectron spectroscopy. The magnetization measurement of the nanoparticles, exhibits superparamagnetism, which is blocked for temperatures below ˜110 K, suggesting Ku to be ˜2.1×106 erg/cm3 for the as-prepared particles.

  6. Development and characterization of hyaluronic acid decorated PLGA nanoparticles for delivery of 5-fluorouracil.

    PubMed

    Yadav, Awesh K; Agarwal, Abhinav; Rai, Gopal; Mishra, Pradeep; Jain, Sanyog; Mishra, Anil K; Agrawal, Himanshu; Agrawal, Govind P

    2010-11-01

    The present investigation was aimed to develop and explore the prospective of engineered PLGA nanoparticles as vehicles for targeted delivery of 5-fluorouracil (5-FU). Nanoparticles of 5-FU-loaded hyaluronic acid-poly(ethylene glycol)-poly(lactide-co-glycolide) (HA-PEG-PLGA-FU) copolymer were prepared and characterized by FTIR, NMR, transmission electron microscopy, particle size analysis, DSC, and X-ray diffractometer measurement studies. The nanoparticulate formulation was evaluated for in vitro release, hemolytic toxicity, and hematological toxicity. Cytotoxicity studies were performed on Ehrlich ascites tumor (EAT) cell lines using MTT cell proliferation assay. Biodistribution studies of 99m Tc labeled formulation were conducted on EAT-bearing mice. The in vivo tumor inhibition study was also performed after i.v. administration of HA-PEG-PLGA-FU nanoparticles. The HA conjugated formulation was found to be less hemolytic but more cytotoxic as compared to free drug. The hematological data suggested that HA-PEG-PLGA-FU formulation was less immunogenic compared to plain drug. The tissue distribution studies displayed that HA-PEG-PLGA-FU were able to deliver a higher concentration of 5-FU in the tumor mass. In addition, the HA-PEG-PLGA-FU nanoparticles reduced tumor volume significantly in comparison with 5-FU. Thus, it was concluded that the conjugation of HA imparts targetability to the formulation, and enhanced permeation and retention effect ruled out its access to the non-tumor tissues, at the same time favored selective entry in tumors, thereby reducing the side-effects both in vitro and in vivo.

  7. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A.

    PubMed

    Jose, S; Sowmya, S; Cinu, T A; Aleykutty, N A; Thomas, S; Souto, E B

    2014-10-15

    The present paper focuses on the development and in vitro/in vivo characterization of nanoparticles composed of poly-(D,L)-Lactide-co-Glycolide (PLGA) loading Bacoside-A, as a new approach for the brain delivery of the neuroprotective drug for the treatment of neurodegenerative disorders (e.g. Alzheimer Disease). Bacoside-A-loaded PLGA nanoparticles were prepared via o/w emulsion solvent evaporation technique. Surface of the nanoparticles were modified by coating with polysorbate 80 to facilitate the crossing of the blood brain barrier (BBB), and the processing parameters (i.e. sonication time, the concentration of polymer (PLGA) and surfactant (polysorbate 80), and drug-polymer ratio) were optimized with the aim to achieve a high production yield. Brain targeting potential of the nanoparticles was evaluated by in vivo studies using Wistar albino rats. The nanoparticles produced by optimal formulation were within the nanosized range (70-200 nm) with relatively low polydispersity index (0.391 ± 1.2). The encapsulation efficiency of Bacoside-A in PLGA nanoparticles was 57.11 ± 7.11%, with a drug loading capacity of 20.5 ± 1.98%. SEM images showed the spherical shape of the PLGA nanoparticles, whereas their low crystallinity was demonstrated by X-ray studies, which also confirmed no chemical interactions between the drug and polymer molecules. The in vitro release of Bacoside-A from the PLGA nanoparticles followed a sustained release pattern with a maximum release of up to 83.04 ± 2.55% in 48 h. When compared to pure drug solution (2.56 ± 1.23 μg/g tissue), in vivo study demonstrated higher brain concentration of Bacoside-A (23.94 ± 1.74 μg/g tissue) suggesting a significant role of surface coated nanoparticles on brain targeting. The results indicate the potential of surface modified PLGA nanoparticles for the delivery of Bacoside-A to the brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The unusual magnetism of nanoparticle LaCoO3.

    PubMed

    Durand, A M; Belanger, D P; Hamil, T J; Ye, F; Chi, S; Fernandez-Baca, J A; Booth, C H; Abdollahian, Y; Bhat, M

    2015-05-08

    Bulk and nanoparticle powders of LaCoO3 (LCO) were synthesized and their magnetic and structural properties were studied using SQUID magnetometry and neutron diffraction. The bulk and large nanoparticles exhibit weak ferromagnetism (FM) below T ≈ 85 K and a crossover from strong to weak antiferromagnetic (AFM) correlations near a transition expressed in the lattice parameters, To≈40 K. This crossover does not occur in the smallest nanoparticles; instead, the magnetic behavior is predominantly ferromagnetic. The amount of FM in the nanoparticles depends on the amount of Co3O4 impurity phase, which induces tensile strain on the LCO lattice. A core-interface model is introduced, with the core region exhibiting the AFM crossover and with FM in the interface region near surfaces and impurity phases.

  9. The unusual magnetism of nanoparticle LaCoO 3

    DOE PAGES

    Durand, A. M.; Belanger, D. P.; Hamil, T. J.; ...

    2015-04-15

    Bulk and nanoparticle powders of LaCoO 3 (LCO) were synthesized and their magnetic and structural properties were studied using SQUID magnetometry and neutron diffraction. The bulk and large nanoparticles exhibit weak ferromagnetism (FM) below T≈85K and a crossover from strong to weak antiferromagnetic (AFM) correlations near a transition expressed in the lattice parameters, To ≈ 40 K. This crossover does not occur in the smallest nanoparticles; instead, the magnetic behavior is predominantly ferromagnetic. The amount of FM in the nanoparticles depends on the amount of Co 3O 4 impurity phase, which induces tensile strain on the LCO lattice. A core-interfacemore » model is introduced, with the core region exhibiting the AFM crossover and with FM in the interface region near surfaces and impurity phases.« less

  10. The unusual magnetism of nanoparticle LaCoO3

    NASA Astrophysics Data System (ADS)

    Durand, A. M.; Belanger, D. P.; Hamil, T. J.; Ye, F.; Chi, S.; Fernandez-Baca, J. A.; Booth, C. H.; Abdollahian, Y.; Bhat, M.

    2015-05-01

    Bulk and nanoparticle powders of LaCoO3 (LCO) were synthesized and their magnetic and structural properties were studied using SQUID magnetometry and neutron diffraction. The bulk and large nanoparticles exhibit weak ferromagnetism (FM) below T ≈ 85 K and a crossover from strong to weak antiferromagnetic (AFM) correlations near a transition expressed in the lattice parameters, To≈40 K. This crossover does not occur in the smallest nanoparticles; instead, the magnetic behavior is predominantly ferromagnetic. The amount of FM in the nanoparticles depends on the amount of Co3O4 impurity phase, which induces tensile strain on the LCO lattice. A core-interface model is introduced, with the core region exhibiting the AFM crossover and with FM in the interface region near surfaces and impurity phases.

  11. Anti-CRLF2 Antibody-Armored Biodegradable Nanoparticles for Childhood B-ALL.

    PubMed

    Raghunathan, Rekha; Mahesula, Swetha; Kancharla, Kranthi; Janardhanan, Preethi; Jadhav, Yeshwant L A; Nadeau, Robert; Villa, German P; Cook, Robert L; Witt, Colleen M; Gelfond, Jonathan A L; Forsthuber, Thomas G; Haskins, William E

    2013-04-01

    B-precursor acute lymphoblastic leukemia (B-ALL) lymphoblast (blast) internalization of anti-cytokine receptor-like factor 2 (CRLF2) antibody-armored biodegradable nanoparticles (AbBNPs) are investigated. First, AbBNPsaere synthesized by adsorbing anti-CRLF2 antibodies to poly(D,L-lactide- co -glycolide) (PLGA) nanoparticles of various sizes and antibody surface density (Ab/BNP) ratios. Second, AbBNPs are incubated with CRLF2-overexpressing (CRLF2+) or control blasts. Third, internalization of AbBNPs by blasts is evaluated by multicolor flow cytometry as a function of receptor expression, AbBNP size, and Ab/BNP ratio. Results from these experiments are con-firmed by electron microscopy, fluorescence microscopy, and Western blotting. The optimal size and Ab/BNP for internalization of AbBNPs by CRLF2+ blasts is 50 nm with 10 Ab/BNP and 100 nm with 25 Ab/BNP. These studies show that internalization of AbBNPs in childhood B-ALL blasts is AbBNP size-and Ab/BNP ratio-dependent. All AbBNP combinations are non-cytotoxic. It is also shown that CD47 is very slightly up-regulated by blasts exposed to AbBNPs. CD47 is "the marker of self" overexpressed by blasts to escape phagocytosis, or "cellular devouring", by beneficial macrophages. The results indicate that precise engineering of AbBNPs by size and Ab/BNP ratio may improve the internalization and selectivity of future biodegradable nanoparticles for the treatment of leukemia patients, including drug-resistant minority children and Down's syndrome patients with CRLF2+B-ALL.

  12. Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies.

    PubMed

    Alcalá-Alcalá, Sergio; Benítez-Cardoza, Claudia G; Lima-Muñoz, Enrique J; Piñón-Segundo, Elizabeth; Quintanar-Guerrero, David

    2015-07-15

    This work presents an evaluation of the adsorption/infiltration process in relation to the loading of a model protein, α-amylase, into an assembled biodegradable polymeric system, free of organic solvents and made up of poly(D,L-lactide-co-glycolide) acid (PLGA). Systems were assembled in a friendly aqueous medium by adsorbing and infiltrating polymeric nanoparticles into porous microspheres. These assembled systems are able to load therapeutic amounts of the drug through adsorption of the protein onto the large surface area characteristic of polymeric nanoparticles. The subsequent infiltration of nanoparticles adsorbed with the protein into porous microspheres enabled the controlled release of the protein as a function of the amount of infiltrated nanoparticles, since the surface area available on the porous structure is saturated at different levels, thus modifying the protein release rate. Findings were confirmed by both the BET technique (N2 isotherms) and in vitro release studies. During the adsorption process, the pH of the medium plays an important role by creating an environment that favors adsorption between the surfaces of the micro- and nano-structures and the protein. Finally, assays of α-amylase activity using 2-chloro-4-nitrophenyl-α-D-maltotrioside (CNP-G3) as the substrate and the circular dichroism technique confirmed that when this new approach was used no conformational changes were observed in the protein after release. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. CNA-loaded PLGA nanoparticles improve humoral response againstS. aureus-mediated infections in a mouse model: subcutaneous vs. nasal administration strategy.

    PubMed

    Genta, Ida; Colonna, Claudia; Conti, Bice; Caliceti, Paolo; Salmaso, Stefano; Speziale, Pietro; Pietrocola, Giampiero; Chiesa, Enrica; Modena, Tiziana; Dorati, Rossella

    2016-12-01

    The aim of this work was the assessment of the "in vivo" immune response of a poly(lactide-co-glycolide)-based nanoparticulate adjuvant for a sub-unit vaccine, namely, a purified recombinant collagen-binding bacterial adhesion fragment (CNA19), against Staphylococcus aureus-mediated infections. "In vivo" immunogenicity studies were performed on mice: immunisation protocols encompassed subcutaneous and intranasal administration of CNA19 formulated as nanoparticles (NPs) and furthermore, CNA19-loaded NPs formulated in a set-up thermosetting chitosan-β-glycerolphosphate (chitosan-β-GP) solution for intranasal route in order to extend antigen exposure to nasal mucosa. CNA19 loaded NPs (mean size of about 195 nm, 9.04 ± 0.37μg/mg as CNA19 loading capacity) confirmed as suitable vaccine for subcutaneous administration with a more pronounced adjuvant effect (about 3-fold higher) with respect to aluminium, recognised as "reference" adjuvant. CNA19 loaded NPs formulated in an optimised thermogelling chitosan-β-GP solution showed promising results for eliciting an effective humoral response and a good chance as intranasal boosting dose.

  14. Comparative examination of adsorption of serum proteins on HSA- and PLGA-based nanoparticles using SDS-PAGE and LC-MS.

    PubMed

    Gossmann, R; Fahrländer, E; Hummel, M; Mulac, D; Brockmeyer, J; Langer, K

    2015-06-01

    The behavior of nanosized drug carrier systems under cell culture conditions and therefore also the destiny in the body are highly influenced by the protein corona, which is formed upon entering a biological environment. Some of the adsorbed proteins, named opsonins, lead to a shortened plasma circulation half-life of the nanoparticles. Others are attributed to promote the transport of nanoparticles into other compartments of the body, just to mention two examples. Hence, detailed knowledge concerning the composition of the protein corona is of great importance. The aim of this work was to investigate the influence of the nanoparticle starting material and the surface modification on the composition of the adsorbed serum proteins in a cell culture environment. Therefore, positively charged nanoparticles based on the biodegradable polymer poly(dl-lactide-co-glycolide) (PLGA) stabilized with didodecyldimethylammonium bromide (DMAB) and negatively charged nanoparticles based on human serum albumin (HSA) were prepared and modified with hydrophilic polymers. By incubating the nanoparticles with fetal bovine serum (FBS) the adsorption of serum proteins on the colloidal system was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) a semi-quantitative analysis of the protein corona was performed and after enzymatic in-solution-digestion the adsorbed proteins were identified using high resolution LC-MS. Our study accentuates the influence of the core material, surface charge, and surface modification on the amount and nature of the adsorbed proteins. The combination of SDS-PAGE and LC-MS turns out to be a simple and reliable method to investigate the protein corona of nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer's disease mice.

    PubMed

    Huang, Na; Lu, Shuai; Liu, Xiao-Ge; Zhu, Jie; Wang, Yu-Jiong; Liu, Rui-Tian

    2017-10-06

    Alzheimer's disease (AD) is the most common form of dementia, characterized by the formation of extracellular senile plaques and neuronal loss caused by amyloid β (Aβ) aggregates in the brains of AD patients. Conventional strategies failed to treat AD in clinical trials, partly due to the poor solubility, low bioavailability and ineffectiveness of the tested drugs to cross the blood-brain barrier (BBB). Moreover, AD is a complex, multifactorial neurodegenerative disease; one-target strategies may be insufficient to prevent the processes of AD. Here, we designed novel kind of poly(lactide-co-glycolic acid) (PLGA) nanoparticles by loading with Aβ generation inhibitor S1 (PQVGHL peptide) and curcumin to target the detrimental factors in AD development and by conjugating with brain targeting peptide CRT (cyclic CRTIGPSVC peptide), an iron-mimic peptide that targets transferrin receptor (TfR), to improve BBB penetration. The average particle size of drug-loaded PLGA nanoparticles and CRT-conjugated PLGA nanoparticles were 128.6 nm and 139.8 nm, respectively. The results of Y-maze and new object recognition test demonstrated that our PLGA nanoparticles significantly improved the spatial memory and recognition in transgenic AD mice. Moreover, PLGA nanoparticles remarkably decreased the level of Aβ, reactive oxygen species (ROS), TNF-α and IL-6, and enhanced the activities of super oxide dismutase (SOD) and synapse numbers in the AD mouse brains. Compared with other PLGA nanoparticles, CRT peptide modified-PLGA nanoparticles co-delivering S1 and curcumin exhibited most beneficial effect on the treatment of AD mice, suggesting that conjugated CRT peptide, and encapsulated S1 and curcumin exerted their corresponding functions for the treatment.

  16. Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite.

    PubMed

    Elliott Donaghue, Irja; Shoichet, Molly S

    2015-10-01

    Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG

  17. Microencapsulated Dopamine (DA)-Induced Restitution of Function in 6-OHDA-Denervated Rat Striatum in vivo: Comparison Between Two Microsphere Excipients

    PubMed Central

    McRae, Amanda; Hjorth, Stephan; Mason, David W.; Dillon, Lynn; Tice, Thomas R.

    1991-01-01

    Biodegradable controlled-release microsphere systems made with the biocompatible biodegradable polyester excipient poly [DL lactide-co-glycolide] constitute an exciting new technology for drug delivery to the central nervous system (CNS). The present study describes functional observations indicating that implantation of dopamine (DA) microspheres encapsulated within two different polymer excipients into denervated- striatal tissue assures a prolonged release of the transmitter in vivo. Moreover, in this regard, the results show that there were clear cut temporal differences in the effect of the two DA microsphere formulations compared in this study, probably reflecting variations in the actual composition (i.e., lactide to glycolide ratio) of the two copolymer excipients examined. This technology has considerable potential for basic research with possible clinical application. PMID:1782252

  18. Preparation and in vitro characterization of 9-nitrocamptothecin-loaded long circulating nanoparticles for delivery in cancer patients.

    PubMed

    Derakhshandeh, Katayoun; Soheili, Marzieh; Dadashzadeh, Simin; Saghiri, Reza

    2010-08-09

    The purpose in this study was to investigate poly(ethylene glycol)-modified poly (d,l-lactide-co-glycolide) nanoparticles (PLGA-PEG-NPs) loading 9-nitrocamptothecin (9-NC) as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume) on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84), and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs) have a better physicochemical characterization and can be developed as a drug carrier in order to treat different malignancies.

  19. Preparation and in vitro characterization of 9-nitrocamptothecin-loaded long circulating nanoparticles for delivery in cancer patients

    PubMed Central

    Derakhshandeh, Katayoun; Soheili, Marzieh; Dadashzadeh, Simin; Saghiri, Reza

    2010-01-01

    The purpose in this study was to investigate poly(ethylene glycol)-modified poly (d,l-lactide-co-glycolide) nanoparticles (PLGA-PEG-NPs) loading 9-nitrocamptothecin (9-NC) as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume) on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84), and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs) have a better physicochemical characterization and can be developed as a drug carrier in order to treat different malignancies. PMID:20957168

  20. Determination of D-lactide content in lactide stereoisomeric mixture using gas chromatography-polarimetry.

    PubMed

    Feng, Lidong; Bian, Xinchao; Chen, Zhiming; Xiang, Sheng; Liu, Yanlong; Sun, Bin; Li, Gao; Chen, Xuesi

    2017-03-01

    An analytical method has been proposed to quantify the D-lactide content in a lactide stereoisomeric mixture using combined gas chromatography and polarimetry (GC- polarimetry). As for a lactide stereoisomeric mixture, meso-lactide can be determined quantitatively using GC, but D- and L-lactides cannot be separated by the given GC system. The composition of a lactide stereoisomeric mixture is directly relative to its specific optical rotation. The specific optical rotations of neat L-lactide were obtained in different solutions, which were -266.3° and -298.8° in dichloromethane (DCM) and toluene solutions at 20°C, respectively. Therefore, for a lactide sample, the D-lactide content could be calculated based on the meso-lactide content obtained from GC and the specific optical rotations of the sample and neat L-lactide obtained from polarimetry. The effects of impurities and temperature on the test results were investigated, respectively. When the total content of impurities was not more than 1.0%, the absolute error for determining D-lactide content was less than 0.10% in DCM and toluene solutions. When the D-lactide content was calculated according to the specific optical rotation of neat L-lactide at 20°C, the absolute error caused by the variation in temperature of 20±15°C was not more than 0.2 and 0.7% in DCM and toluene solutions, respectively, and thus usually could be ignored in a DCM solution. When toluene was used as a solvent for the determination of D-lactide content, a temperature correction for specific optical rotations could be introduced and would ensure the accuracy of results. This method is applicable to the determination of D-lactide content in lactide stereoisomeric mixtures. The standard deviation (STDEV) of the measurements is less than 0.5%, indicating that the precision is suitable for this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications.

    PubMed

    Thi Hiep, Nguyen; Chan Khon, Huynh; Dai Hai, Nguyen; Byong-Taek, Lee; Van Toi, Vo; Thanh Hung, Le

    2017-06-01

    In this study, biomimic porous polycaprolactone/poly (lactide-co-glycolide) loading biphasic tricalcium phosphate (PCL/PLGA-BCP) scaffolds were fabricated successfully by solvent evaporation method. The distribution of biphasic tricalcium phosphate (BCP) in polycaprolactone/poly (lactide-co-glycolide) (PCL/PLGA) scaffold was confirmed by micro-computed tomography (micro-CT) scanning, scanning electron microscope (SEM) observation and Energy-dispersive X-ray Spectroscopy (EDS) analysis. The hydrophilicity of the scaffolds was confirmed by contact angle measurement. In in vitro experiments, proliferation of human bone marrow mesenchymal stem cell (hBMSCs) and its osteoblastic differentiation on scaffold were assessed for 1, 2 and 3 weeks using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence observation, hematoxylin & eosin (H&E) staining and real-time polymerase chain reaction (RT-PCR). In in vivo experiments, ossification was observed using micro-CT analysis and histological staining.

  2. Targeted Imaging and Chemo-Phototherapy of Brain Cancer by a Multifunctional Drug Delivery System.

    PubMed

    Hao, Yongwei; Wang, Lei; Zhao, Yalin; Meng, Dehui; Li, Dong; Li, Haixia; Zhang, Bingxiang; Shi, Jinjin; Zhang, Hongling; Zhang, Zhenzhong; Zhang, Yun

    2015-11-01

    The aim of this study was to develop multifunctional poly lactide-co-glycolide (PLGA) nanoparticles with the ability to simultaneously deliver indocyanine green (ICG) and docetaxel (DTX) to the brain by surface decoration with the brain-targeting peptide angiopep-2 to achieve combined chemo-phototherapy for glioma under near-infrared (NIR) imaging. ICG was selected as a near-infrared imaging and phototherapy agent and DTX was employed as a chemotherapeutic agent. ICG and DTX were simultaneously incorporated into PLGA nanoparticles with higher stability. These nanoparticles were further decorated with angiopep-2 via the outer maleimide group of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000]-maleinimide incorporated in the nanoparticles. The NIR image-guided chemo-phototherapy of the angiopep-2 modified PLGA/DTX/ICG nanoparticles (ANG/PLGA/DTX/ICG NPs) not only highly induced U87MG cell death in vitro, but also efficiently prolonged the life span of the brain orthotopic U87MG glioma xenograft-bearing mice in vivo. Thus, this study suggests that ANG/PLGA/DTX/ICG NPs have the potential for combinatorial chemotherapy and phototherapy for glioma. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Antibiotic-loaded plaster of Paris implants coated with poly lactide-co-glycolide as a controlled release delivery system for the treatment of bone infections.

    PubMed

    Benoit, M A; Mousset, B; Delloye, C; Bouillet, R; Gillard, J

    1997-01-01

    Plaster of Paris implants containing vancomycin (60 mg/g of carrier) were prepared in order to be used as local delivery system for the treatment of bone infections. The regulation of the release rate was performed by coating the carrier with a polylactide-co-glycolide polymer composed by 10% (w/w) polyglycolic acid and 90% (w/w) racemic poly (D,L-lactic acid). The release of the antibiotic from the biodegradable matrix was evaluated in vitro. From this investigation, it is clear that the drug elution depends on the coating depth. After a burst effect occurring on the first day of the experiment, therapeutic concentrations were measured during one week when uncoated implants were used. The coating allowed decrease of the burst effect and extended efficient release to more than five weeks when the implants were embedded with six layers (162 microns) of PLA45GA10. This delivery system was implanted into the femoral condyle of rabbits. It was shown that the in vivo release was also closely regulated by the coating depth. In all bone tissues (bone marrow and cortical bone) surrounding the pellets, the drug concentration exceeded the Minimum Inhibitory Concentration for the common causative organisms of bone infections (Staphylococcus aureus) for at least four weeks without inducing serum toxic levels. Due to its cheapness, facility of use and sterilization, biocompatibility and biodegradability, plaster of Paris coated with PLA45GA10 polymer giving a controlled release of vancomycin appears to be a promising sustained release delivery system of antibiotics for the treatment of bone and joint infections.

  4. Ferrofluids based on Co-Fe-Si-B amorphous nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Bian, Xiufang; Yang, Chuncheng; Zhao, Shuchun; Yu, Mengchun

    2017-03-01

    Magnetic Co-Fe-Si-B amorphous nanoparticles were successfully synthesized by chemical reduction method. ICP, XRD, DSC, and TEM were used to investigate the composition, structure and morphology of Co-Fe-Si-B samples. The results show that the Co-Fe-Si-B samples are amorphous, which consist of nearly spherical nanoparticles with an average particle size about 23 nm. VSM results manifest that the saturation magnetization (Ms) of Co-Fe-Si-B samples ranges from 46.37 to 62.89 emu/g. Two kinds of ferrofluids (FFs) were prepared by dispersing Co-Fe-Si-B amorphous nanoparticles and CoFe2O4 nanoparticles in kerosene and silicone oil, respectively. The magnetic properties, stability and viscosity of the FFs were investigated. The FFs with Co-Fe-Si-B samples have a higher Ms and lower coercivity (Hc) than FFs with CoFe2O4 sample. Under magnetic field, the silicone oil-based FFs exhibit high stability. The viscosity of FFs under different applied magnetic fields was measured by a rotational viscometer, indicating that FFs with Co-Fe-Si-B particles present relative strong response to an external magnetic field. The metal-boride amorphous alloy nanoparticles have potential applications in the preparation of magnetic fluids with good stability and good magnetoviscous properties.

  5. Nanostructured delivery system for Suberoylanilide hydroxamic acid against lung cancer cells.

    PubMed

    Sankar, Renu; Karthik, Selvaraju; Subramanian, Natesan; Krishnaswami, Venkateshwaran; Sonnemann, Jürgen; Ravikumar, Vilwanathan

    2015-06-01

    With the objective to provide a potential approach for the treatment of lung cancer, nanotechnology based Suberoylanilide hydroxamic acid (SAHA)-loaded Poly-d, l-lactide-co glycolide (PLGA) nanoparticles have been formulated using the nanoprecipitation technique. The acquired nanoparticles were characterized by various throughput techniques and the analyses showed the presence of smooth and spherical shaped SAHA-loaded PLGA nanoparticles, with an encapsulation efficiency of 44.8% and a particle size of 208nm. The compatibility between polymer and drug in the formulation was tested using FT-IR, Micro-Raman spectrum and DSC thermogram analyses, revealing a major interaction between the drug and polymer. The in vitro drug release from the SAHA-loaded PLGA nanoparticles was found to be biphasic with an initial burst followed by a sustained release for up to 50h. In experiments using the lung cancer cell line A549, SAHA-loaded PLGA nanoparticles demonstrated a superior antineoplastic activity over free SAHA. In conclusion, SAHA-loaded PLGA nanoparticles may be a useful novel approach for the treatment of lung cancer. Copyright © 2015. Published by Elsevier B.V.

  6. Folate targeted polymeric 'green' nanotherapy for cancer

    NASA Astrophysics Data System (ADS)

    Narayanan, Sreeja; Binulal, N. S.; Mony, Ullas; Manzoor, Koyakutty; Nair, Shantikumar; Menon, Deepthy

    2010-07-01

    The concept of 'green' chemotherapy by employing targeted nanoparticle mediated delivery to enhance the efficacy of phytomedicines is reported. Poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating a well known nutraceutical namely, grape seed extract (GSE)—'NanoGSE'—was prepared by a nanoprecipitation technique. The drug-loaded nanoparticles of size ~ 100 nm exhibited high colloidal stability at physiological pH. Molecular receptor targeting of this nanophytomedicine against folate receptor over-expressing cancers was demonstrated in vitro by conjugation with a potential cancer targeting ligand, folic acid (FA). Fluorescence microscopy and flow cytometry data showed highly specific cellular uptake of FA conjugated NanoGSE on folate receptor positive cancer cells. Studies were also conducted to investigate the efficiency of targeted (FA conjugated) versus non-targeted (non-FA conjugated) nanoformulations in causing cancer cell death. The IC50 values were lowered by a factor of ~ 3 for FA-NanoGSE compared to the free drug, indicating substantially enhanced bioavailability to the tumor cells, sparing the normal ones. Receptor targeting of FA-NanoGSE resulted in a significant increase in apoptotic index, which was also quantified by flow cytometry and fluorescence microscopy. This in vitro study provides a basis for the use of nanoparticle mediated delivery of anticancer nutraceuticals to enhance bioavailability and effectively target cancer by a 'green' approach.

  7. Vitamin E-Oligo(methyl diglycol l-glutamate) as a Biocompatible and Functional Surfactant for Facile Preparation of Active Tumor-Targeting PLGA Nanoparticles.

    PubMed

    Wu, Jintian; Zhang, Jian; Deng, Chao; Meng, Fenghua; Zhong, Zhiyuan

    2016-07-11

    Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles have attracted an enormous interest for controlled drug delivery. Their clinical applications are, however, partly hindered by lack of biocompatible, biodegradable and functional surfactants. Here, we designed and developed a novel biocompatible surfactant based on amphiphilic vitamin E-oligo(methyl diglycol l-glutamate) (VEOEG) for facile fabrication of robust and tumor-targeting PLGA-based nanomedicines. VEOEG was prepared with controlled Mn of 1.7-2.6 kg/mol and low molecular weight distribution (Đ = 1.04-1.16) via polymerization of methyl diglycol l-glutamate N-carboxyanhydride using vitamin E-ethylenediamine derivative (VE-NH2) as an initiator. VEOEG had a hydrophile-lipophile balance data of 13.8-16.1 and critical micellar concentration of 189.3-203.8 mg/L depending on lengths of oligopeptide. Using VEOEG as a surfactant, PLGA nanoparticles could be obtained via nanoprecipitation method with a small and uniform hydrodynamic size of 135 nm and positive surface charge of +26.6 mV, in accordance with presence of amino groups at the surface. The resulting PLGA nanoparticles could be readily coated with hyaluronic acid (HA) to form highly stable, small-sized (143 nm), monodisperse, and negatively charged nanoparticles (HA-PLGA NPs). Notably, paclitaxel-loaded HA-PLGA NPs (PTX-HA-PLGA NPs) exhibited better antitumor effects in CD44-positive MCF-7 breast tumor cells than Taxol (a clinical paclitaxel formulation). The in vivo pharmacokinetics assay in nude mice displayed that PTX-HA-PLGA NPs possessed a long plasma half-life of 3.14 h. The in vivo biodistribution studies revealed that PTX-HA-PLGA NPs had a high tumor PTX level of 8.4% ID/g, about 6 times better than that of Taxol. Interestingly, therapeutic studies showed that PTX-HA-PLGA NPs caused significantly more effective tumor growth inhibition, better survival rate and lower adverse effect than Taxol. VEOEG has emerged as a versatile and functional

  8. Arginine-Glycine-Aspartic Acid-Modified Lipid-Polymer Hybrid Nanoparticles for Docetaxel Delivery in Glioblastoma Multiforme.

    PubMed

    Shi, Kairong; Zhou, Jin; Zhang, Qianyu; Gao, Huile; Liu, Yayuan; Zong, Taili; He, Qin

    2015-03-01

    Hybrid nanoparticles consisting of lipids and the biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), were developed for the targeted delivery of the anticancer drug, docetaxel. Transmission electron microscopic observations confirmed the presence of a lipid coating over the polymeric core. Using coumarin-6 as a fluorescent probe, the uptake efficacy of RGD conjugated lipid coated nanoparticles (RGD-L-P) by C6 cells was increased significantly, compared with that of lipid-polymer hybrid nanoparticles (L-P; 2.5-fold higher) or PLGA-nanoparticles (PLGA-P; 1.76-fold higher). The superior tumor spheroid penetration of RGD-L-P indicated that RGD-L-P could target effectively and specifically to C6 cells overexpressing integrin α(v)β3. The anti-proliferative activity of docetaxel-loaded RGD-L-P against C6 cells was increased 2.69- and 4.13-fold compared with L-P and PLGA-P, respectively. Regarding biodistribution, the strongest brain-localized fluorescence signals were detected in glioblastoma multiforme (GBM)-bearing rats treated with 1,10-Dioctadecyl-3,3,30,30-tetramethylindotricarb-ocyanine iodide (DiR)-loaded RGD-L-P, compared to rats treated with DiR-loaded L-P or PLGA-P. The median survival time of GBM-bearing rats treated with docetaxel-loaded RGD-L-P was 57 days, a fold increase of 1.43, 1.78, 3.35, and 3.56 compared with animals given L-P (P < 0.05), PLGA-P (P < 0.05), Taxotere (P < 0.01) and saline (P < 0.01), respectively. Collectively, these results support RGD-L-P as a promising drug delivery system for the specific targeting and the treatment of GBM.

  9. Robust aptamer-polydopamine-functionalized M-PLGA-TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy.

    PubMed

    Xu, Guojun; Yu, Xinghua; Zhang, Jinxie; Sheng, Yingchao; Liu, Gan; Tao, Wei; Mei, Lin

    2016-01-01

    One limitation of current biodegradable polymeric nanoparticles (NPs) is the contradiction between functional modification and maintaining formerly excellent bioproperties with simple procedures. Here, we reported a robust aptamer-polydopamine-functionalized mannitol-functionalized poly(lactide-co-glycolide) (M-PLGA)-D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) nanoformulation (Apt-pD-NPs) for the delivery of docetaxel (DTX) with enhanced cervical cancer therapy effects. The novel DTX-loaded Apt-pD-NPs possess satisfactory advantages: 1) increased drug loading content and encapsulation efficiency induced by star-shaped copolymer M-PLGA-TPGS; 2) significant active targeting effect caused by conjugated AS1411 aptamers; and 3) excellent long-term compatibility by incorporation of TPGS. Therefore, with simple preparation procedures and excellent bioproperties, the new functionalized Apt-pD-NPs could maximally increase the local effective drug concentration on tumor sites, achieving enhanced treatment effectiveness and minimizing side effects. In a word, the robust DTX-loaded Apt-pD-NPs could be used as potential nanotherapeutics for cervical cancer treatment, and the aptamer-polydopamine modification strategy could be a promising method for active targeting of cancer therapy with simple procedures.

  10. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release.

    PubMed

    Sasikala, Arathyram Ramachandra Kurup; Unnithan, Afeesh Rajan; Yun, Yeo-Heung; Park, Chan Hee; Kim, Cheol Sang

    2016-02-01

    The study describes the design and synthesis of an implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. This device is achieved using a two-component smart nanofiber matrix from monodisperse iron oxide nanoparticles (IONPs) as well as bortezomib (BTZ), a chemotherapeutic drug. The IONP-incorporated nanofiber matrix was developed by electrospinning a biocompatible and bioresorbable polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by exploiting mussel-inspired surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the borate-containing BTZ anticancer drug through a catechol metal binding in a pH-sensitive manner. Thus, an implantable smart magnetic nanofiber device can be exploited to both apply hyperthermia with an alternating magnetic field (AMF) and to achieve cancer cell-specific drug release to enable synergistic cancer therapy. These results confirm that the BTZ-loaded mussel-inspired magnetic nanofiber matrix (BTZ-MMNF) is highly beneficial not only due to the higher therapeutic efficacy and low toxicity towards normal cells but also, as a result of the availability of magnetic nanoparticles for repeated hyperthermia application and tumor-triggered controlled drug release. The current work report on the design and development of a smart nanoplatform responsive to a magnetic field to administer both hyperthermia and pH-dependent anticancer drug release for the synergistic anticancer treatment. The iron oxide nanoparticles (IONPs) incorporated nanofiber matrix was developed by electrospinning a biocompatible polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the boratecontaining anticancer drug bortezomib through a catechol metal binding in a p

  11. Nanoparticle transport across in vitro olfactory cell monolayers.

    PubMed

    Gartziandia, Oihane; Egusquiaguirre, Susana Patricia; Bianco, John; Pedraz, José Luis; Igartua, Manoli; Hernandez, Rosa Maria; Préat, Véronique; Beloqui, Ana

    2016-02-29

    Drug access to the CNS is hindered by the presence of the blood-brain barrier (BBB), and the intranasal route has risen as a non-invasive route to transport drugs directly from nose-to-brain avoiding the BBB. In addition, nanoparticles (NPs) have been described as efficient shuttles for direct nose-to-brain delivery of drugs. Nevertheless, there are few studies describing NP nose-to-brain transport. Thus, the aim of this work was (i) to develop, characterize and validate in vitro olfactory cell monolayers and (ii) to study the transport of polymeric- and lipid-based NPs across these monolayers in order to estimate NP access into the brain using cell penetrating peptide (CPPs) moieties: Tat and Penetratin (Pen). All tested poly(d,l-lactide-co-glycolide) (PLGA) and nanostructured lipid carrier (NLC) formulations were stable in transport buffer and biocompatible with the olfactory mucosa cells. Nevertheless, 0.7% of PLGA NPs was able to cross the olfactory cell monolayers, whereas 8% and 22% of NLC and chitosan-coated NLC (CS-NLC) were transported across them, respectively. Moreover, the incorporation of CPPs to NLC surface significantly increased their transport, reaching 46% of transported NPs. We conclude that CPP-CS-NLC represent a promising brain shuttle via nose-to-brain for drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Protein functionalized tramadol-loaded PLGA nanoparticles: preparation, optimization, stability and pharmacodynamic studies.

    PubMed

    Lalani, Jigar; Rathi, Mohan; Lalan, Manisha; Misra, Ambikanandan

    2013-06-01

    Poly (d,l-lactide-co-glycolide acid) (PLGA) Nanoparticles (NPs) with sustained drug release and enhanced circulation time presents widely explored non-invasive approach for drug delivery to brain. However, blood-brain barrier (BBB) limits the drug delivery to brain. This can be overcome by anchoring endogenous ligand like Transferrin (Tf) and Lactoferrin (Lf) on the surface of NPs, allowing efficient brain delivery via receptor-mediated endocytosis. The aim of the present investigation was preparation, optimization, characterization and comparative evaluation of targeting efficiency of Tf- vs. Lf-conjugated NPs. Tramadol-loaded PLGA NPs were prepared by nanoprecipitation techniques and optimized using 3(3) factorial design. The effect of polymer concentration, stabilizer concentration and organic:aqueous phase ratio were evaluated on particle size (PS) and entrapment efficiency (EE). The formulation was optimized based on desirability for lower PS (<150 nm) and higher EE (>70%). Optimized PLGA NPs were conjugated with Tf and Lf, characterized and evaluated for stability study. Pharmacodynamic study was performed in rat after intravenous administration. The optimized formulation had 100 mg of PLGA, 1% polyvinyl alcohol (PVA) and 1:2 acetone:water ratio. The Lf and Tf conjugation to PLGA NPs was estimated to 186 Tf and 185 Lf molecules per NPs. Lyophilization was optimized at 1:2 ratio of NPs:trehalose. The NPs were found stable for 6 months at refrigerated condition. Pharmacodynamic study demonstrated enhanced efficacy of ligand-conjugated NPs against unconjugated NPs. Conjugated NPs demonstrated significantly higher pharmacological effect over a period of 24 h. Furthermore Lf functionalized NPs exhibited better antinociceptive effect as compared to Tf functionalized NPs.

  13. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation.

    PubMed

    Zhao, Peiqi; Wang, Hanjie; Yu, Man; Liao, Zhenyu; Wang, Xianhuo; Zhang, Fei; Ji, Wei; Wu, Bing; Han, Jinghua; Zhang, Haichang; Wang, Huaqing; Chang, Jin; Niu, Ruifang

    2012-06-01

    A functional drug carrier comprised of folic acid modified lipid-shell and polymer-core nanoparticles (FLPNPs) including poly(D,L-lactide-co-glycolide) (PLGA) core, PEGylated octadecyl-quaternized lysine modified chitosan (PEG-OQLCS) as lipid-shell, folic acid as targeting ligand and cholesterol was prepared and evaluated for targeted delivery of paclitaxel (PTX). Confocal microscopy analysis confirmed the coating of the lipid-shell on the polymer-core. Physicochemical characterizations of FLPNPs, such as particle size, zeta potential, morphology, encapsulation efficiency, and in vitro PTX release, were also evaluated. The internalization efficiency and targeting ability of FLPNPs were demonstrated by flow cytometry and confocal microscopy. PTX loaded FLPNPs showed a significantly higher cytotoxicity than the commercial PTX formulation (Taxol®). The intravenous administration of PTX encapsulated FLPNPs led to tumor regression and improvement of animal survival in a murine model, compared with that observed with Taxol® and biodistribution study showed that PTX concentration in tumor for PTX encapsulated FLPNPs was higher than other PTX formulations. Our data indicate that PTX loaded FLPNPs are a promising nano-sized drug formulation for cancer therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Cationic PLGA/Eudragit RL nanoparticles for increasing retention time in synovial cavity after intra-articular injection in knee joint.

    PubMed

    Kim, Sung Rae; Ho, Myoung Jin; Lee, Eugene; Lee, Joon Woo; Choi, Young Wook; Kang, Myung Joo

    2015-01-01

    Positively surface-charged poly(lactide-co-glycolide) (PLGA)/Eudragit RL nanoparticles (NPs) were designed to increase retention time and sustain release profile in joints after intra-articular injection, by forming micrometer-sized electrostatic aggregates with hyaluronic acid, an endogenous anionic polysaccharide found in high amounts in synovial fluid. The cationic NPs consisting of PLGA, Eudragit RL, and polyvinyl alcohol were fabricated by solvent evaporation technique. The NPs were 170.1 nm in size, with a zeta potential of 21.3 mV in phosphate-buffered saline. Hyperspectral imaging (CytoViva(®)) revealed the formation of the micrometer-sized filamentous aggregates upon admixing, due to electrostatic interaction between NPs and the polysaccharides. NPs loaded with a fluorescent probe (1,1'-dioctadecyl-3,3,3',3' tetramethylindotricarbocyanine iodide, DiR) displayed a significantly improved retention time in the knee joint, with over 50% preservation of the fluorescent signal 28 days after injection. When DiR solution was injected intra-articularly, the fluorescence levels rapidly decreased to 30% of the initial concentration within 3 days in mice. From these findings, we suggest that PLGA-based cationic NPs could be a promising tool for prolonged delivery of therapeutic agents in joints selectively.

  15. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells

    PubMed Central

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-01-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells. PMID:28875004

  16. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.

    PubMed

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-04-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.

  17. Dexamethasone acetate encapsulation into Trojan particles.

    PubMed

    Gómez-Gaete, Carolina; Fattal, Elias; Silva, Lídia; Besnard, Madeleine; Tsapis, Nicolas

    2008-05-22

    We have combined the therapeutic potential of nanoparticles systems with the ease of manipulation of microparticles by developing a hybrid vector named Trojan particles. We aim to use this new delivery vehicle for intravitreal administration of dexamethasone. Initialy, dexamethasone acetate (DXA) encapsulation into biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was optimized. Then, Trojan particles were formulated by spray drying 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC), hyaluronic acid (HA) and different concentrations of nanoparticle suspensions. The effect of nanoparticles concentration on Trojan particle physical characteristics was investigated as well as the effect of the spray drying process on nanoparticles size. Finally, DXA in vitro release from nanoparticles and Trojan particles was evaluated under sink condition. SEM and confocal microscopy show that most of Trojan particles are spherical, hollow and possess an irregular surface due to the presence of nanoparticles. Neither Trojan particle tap density nor size distribution are significantly modified as a function of nanoparticles concentration. The mean nanoparticles size increase significantly after spray drying. Finally, the in vitro release of DXA shows that the excipient matrix provides protection to encapsulated nanoparticles by slowing drug release.

  18. PLGA/Ag nanocomposites: in vitro degradation study and silver ion release.

    PubMed

    Fortunati, E; Latterini, L; Rinaldi, S; Kenny, J M; Armentano, I

    2011-12-01

    New nanocomposite films based on a biodegradable poly (DL-Lactide-co-Glycolide) copolymer (PLGA) and different concentration of silver nanoparticles (Ag) were developed by solvent casting. In vitro degradation studies of PLGA/Ag nanocomposites were conducted under physiological conditions, over a 5 week period, and compared to the behaviour of the neat polymer. Furthermore the silver ions (Ag(+)) release upon degradation was monitored to obtain information on the properties of the nanocomposites during the incubation. The obtained results suggest that the PLGA film morphology can be modified introducing a small percentage of silver nanoparticles that do not affect the degradation mechanism of PLGA polymer in the nanocomposite. However results clearly evinced the stabilizing effect of the Ag nanoparticles in the PLGA polymer and the mineralization process induced by the combined effect of silver and nanocomposite surface topography. The Ag(+) release can be controlled by the polymer degradation processes, evidencing a prolonged antibacterial effect.

  19. Ex vivo permeation of carprofen from nanoparticles: A comprehensive study through human, porcine and bovine skin as anti-inflammatory agent.

    PubMed

    Parra, Alexander; Clares, Beatriz; Rosselló, Ana; Garduño-Ramírez, María L; Abrego, Guadalupe; García, María L; Calpena, Ana C

    2016-03-30

    The purpose of this study was the development of poly(d,l-lactide-co-glycolide) acid (PLGA) nanoparticles (NPs) for the dermal delivery of carprofen (CP). The developed nanovehicle was then lyophilized using hydroxypropyl-β-cyclodextrin (HPβCD) as cryoprotectant. The ex vivo permeation profiles were evaluated using Franz diffusion cells using three different types of skin membranes: human, porcine and bovine. Furthermore, biomechanical properties of skin (trans-epidermal water loss and skin hydration) were tested. Finally, the in vivo skin irritation and the anti-inflammatory efficacy were also assayed. Results demonstrated the achievement of NPs 187.32 nm sized with homogeneous distribution, negatively charged surface (-23.39 mV) and high CP entrapment efficiency (75.38%). Permeation studies showed similar diffusion values between human and porcine skins and higher for bovine. No signs of skin irritation were observed in rabbits. Topically applied NPs significantly decreased in vivo inflammation compared to the reference drug in a TPA-induced mouse ear edema model. Thus, it was concluded that NPs containing CP may be a useful tool for the dermal treatment of local inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    PubMed

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  1. Magnetic studies of SiO2 coated CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Singh, Shashi B.; Das, Raja; Poddar, Pankaj; Abyaneh, Majid K.; Kulkarni, Sulabha K.

    2017-11-01

    Oleic acid capped CoFe2O4 nanoparticles which exhibit a high coercivity of ∼9.47 kOe at room temperature were coated with a robust coating of SiO2. We have used chemical synthesis method to obtain SiO2 coated CoFe2O4 nanoparticles with different weight percentages of CoFe2O4 in SiO2 (1.5, 3.1 and 4.8 wt.%). The morphological investigation of the coated nanoparticles by transmission electron microscopy shows that the particles are spherical with average size ∼160 nm. Infrared spectroscopy reveals that oleic acid capping on the surface of CoFe2O4 nanoparticles is retained after silica coating process. The complete coating of SiO2 on CoFe2O4 nanoparticles is confirmed by X-ray photoelectron spectroscopy as there is no signature of cobalt or iron ions on the surface. Magnetic measurements show that coercivity of SiO2 coated CoFe2O4 particles remains more or less unaffected as in CoFe2O4 nanoparticles at room temperature. In addition, the temperature dependent magnetic measurements show that at 5 K the CoFe2O4 and SiO2 coated 1.5 wt.% CoFe2O4 samples exhibit a very high value of coercivity (∼20 kOe) which is more than twice as compared to room temperature coercivity value (∼9.47 kOe). We conclude that silica coating in our study does not significantly affect the coercivity of CoFe2O4 nanoparticles.

  2. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemicalmore » experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.« less

  3. Characterizing and optimizing poly-l-lactide-co-ε-caprolactone membranes for urothelial tissue engineering

    PubMed Central

    Sartoneva, Reetta; Haaparanta, Anne-Marie; Lahdes-Vasama, Tuija; Mannerström, Bettina; Kellomäki, Minna; Salomäki, Minna; Sándor, George; Seppänen, Riitta; Miettinen, Susanna; Haimi, Suvi

    2012-01-01

    Different synthetic biomaterials such as polylactide (PLA), polycaprolactone and poly-l-lactide-co-ε-caprolactone (PLCL) have been studied for urothelial tissue engineering, with favourable results. The aim of this research was to further optimize the growth surface for human urothelial cells (hUCs) by comparing different PLCL-based membranes: smooth (s) and textured (t) PLCL and knitted PLA mesh with compression-moulded PLCL (cPLCL). The effects of topographical texturing on urothelial cell response and mechanical properties under hydrolysis were studied. The main finding was that both sPLCL and tPLCL supported hUC growth significantly better than cPLCL. Interestingly, tPLCL gave no significant advantage to hUC attachment or proliferation compared with sPLCL. However, during the 14 day assessment period, the majority of cells were viable and maintained phenotype on all the membranes studied. The material characterization exhibited potential mechanical characteristics of sPLCL and tPLCL for urothelial applications. Furthermore, the highest elongation of tPLCL supports the use of this kind of texturing. In conclusion, in light of our cell culture results and mechanical characterization, both sPLCL and tPLCL should be further studied for urothelial tissue engineering. PMID:22896571

  4. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer's disease.

    PubMed

    Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid

    2016-09-20

    Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (<200nm) as determined by dynamic light scattering technique and transmission electron microscopy, assured transcellular transport across olfactory axons whose diameter was ≈200nm and then paving a direct path to brain. TFB-NPs and TFB-SLNs resulted in 64.11±2.21% and 57.81±5.32% entrapment efficiencies respectively which again asserted protection of drug from chemical and biological degradation in nasal cavity. In vitro release studies proved the sustained release of TFB from TFB-NPs and TFB-SLNs in comparison with pure drug, indicating prolonged residence times of drug at targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies

    PubMed Central

    Kumar, Vikas; Bhatt, Prakash Chandra; Rahman, Mahfoozur; Kaithwas, Gaurav; Choudhry, Hani; Al-Abbasi, Fahad A; Anwar, Firoz; Verma, Amita

    2017-01-01

    Umbelliferone β-D-galactopyranoside (UFG), isolated from plants, exhibits promising inhibitory action on numerous diseases. The present research was initiated to develop a suitable delivery system for UFG with an intention to enhance its therapeutic efficacy against diethyl nitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in Wistar rats. UFG-loaded polymeric nanoparticles prepared by sonication were scrutinized for average size, drug loading capacity, zeta potential, and drug release potency in animals. HCC cell lines HuH-7 and Hep G2 were used for in vitro cytotoxic investigation. Several hepatic, nonhepatic, antioxidant, and anti-inflammatory biochemical parameters were estimated to establish the anticancer potential of UFG nanoformulation. Microscopical and histopathological investigations were also undertaken to substantiate the results of our work. Umbelliferone β-D-galactopyranoside-loaded poly(d,l-lactide-co-glycolide) nanoparticles (UFG-PLGA-NP) with particle size of 187.1 nm and polydispersity index 0.16 were uniform in nature with 82.5% release of the total amount of drug after 48 h. Our study successfully established the development and characterization of UFG-PLGA-NP with noticeable effect against both in vivo and in vitro models. The anticancer potential of UFG-PLGA-NP was brought about by the management of DEN-induced reactive oxygen species generation, mitochondrial dysfunction, proinflammatory cytokines alteration, and induction of apoptosis. Positive zeta potential on the surface of UFG-PLGA-NP would have possibly offered higher hepatic accumulation of UFG, particularly in the electron-dense mitochondria organelles, and this was the take-home message from this study. Our results demonstrated that such polymer-loaded delivery systems of UFG can be a better option and can be further explored to improve the clinical outcomes against hepatic cancer. PMID:28932118

  6. In Vitro Degradation of Borosilicate Bioactive Glass and Poly(l-lactide-co-ε-caprolactone) Composite Scaffolds

    PubMed Central

    Tainio, Jenna; Paakinaho, Kaarlo; Ahola, Niina; Hannula, Markus; Hyttinen, Jari; Kellomäki, Minna

    2017-01-01

    Composite scaffolds were obtained by mixing various amounts (10, 30 and 50 weight % [wt %]) of borosilicate bioactive glass and poly(l-lactide-co-ε-caprolactone) (PLCL) copolymer. The composites were foamed using supercritical CO2. An increase in the glass content led to a decrease in the pore size and density. In vitro dissolution/reaction test was performed in simulated body fluid. As a function of immersion time, the solution pH increased due to the glass dissolution. This was further supported by the increasing amount of Ca in the immersing solution with increasing immersion time and glass content. Furthermore, the change in scaffold mass was significantly greater with increasing the glass content in the scaffold. However, only the scaffolds containing 30 and 50 wt % of glasses exhibited significant hydroxyapatite (HA) formation at 72 h of immersion. The compression strength of the samples was also measured. The Young’s modulus was similar for the 10 and 30 wt % glass-containing scaffolds whereas it increased to 90 MPa for the 50 wt % glass containing scaffold. Upon immersion up to 72 h, the Young’s modulus increased and then remained constant for longer immersion times. The scaffold prepared could have great potential for bone and cartilage regeneration. PMID:29113141

  7. Enhanced Therapeutic Potential of Nano-Curcumin Against Subarachnoid Hemorrhage-Induced Blood-Brain Barrier Disruption Through Inhibition of Inflammatory Response and Oxidative Stress.

    PubMed

    Zhang, Zong-Yong; Jiang, Ming; Fang, Jie; Yang, Ming-Feng; Zhang, Shuai; Yin, Yan-Xin; Li, Da-Wei; Mao, Lei-Lei; Fu, Xiao-Yan; Hou, Ya-Jun; Fu, Xiao-Ting; Fan, Cun-Dong; Sun, Bao-Liang

    2017-01-01

    Curcumin and nano-curcumin both exhibit neuroprotective effects in early brain injury (EBI) after experimental subarachnoid hemorrhage (SAH). However, the mechanism that whether curcumin and its nanoparticles affect the blood-brain barrier (BBB) following SAH remains unclear. This study investigated the effect of curcumin and the poly(lactide-co-glycolide) (PLGA)-encapsulated curcumin nanoparticles (Cur-NPs) on BBB disruption and evaluated the possible mechanism underlying BBB dysfunction in EBI using the endovascular perforation rat SAH model. The results indicated that Cur-NPs showed enhanced therapeutic effects than that of curcumin in improving neurological function, reducing brain water content, and Evans blue dye extravasation after SAH. Mechanically, Cur-NPs attenuated BBB dysfunction after SAH by preventing the disruption of tight junction protein (ZO-1, occludin, and claudin-5). Cur-NPs also up-regulated glutamate transporter-1 and attenuated glutamate concentration of cerebrospinal fluid following SAH. Moreover, inhibition of inflammatory response and microglia activation both contributed to Cur-NPs' protective effects. Additionally, Cur-NPs markedly suppressed SAH-mediated oxidative stress and eventually reversed SAH-induced cell apoptosis in rats. Our findings revealed that the strategy of using Cur-NPs could be a promising way in improving neurological function in EBI after experimental rat SAH.

  8. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier.

    PubMed

    Tosi, G; Bortot, B; Ruozi, B; Dolcetta, D; Vandelli, M A; Forni, F; Severini, G M

    2013-01-01

    Nanomedicine is certainly one of the scientific and technological challenges of the coming years. In particular, biodegradable nanoparticles formulated from poly (D,L-lactide-co-glycolide) (PLGA) have been extensively investigated for sustained and targeted delivery of different agents, including recombinant proteins, plasmid DNA, and low molecular weight compounds. PLGA NPs present some very attractive properties such as biodegradability and biocompatibility, protection of drug from degradation, possibility of sustained release, and the possibility to modify surface properties to target nanoparticles to specific organs or cells. Moreover, PLGA NPs have received the FDA and European Medicine Agency approval in drug delivery systems for parenteral administration, thus reducing the time for human clinical applications. This review in particular deals on surface modification of PLGA NPs and their possibility of clinical applications, including treatment for brain pathologies such as brain tumors and Lysosomal Storage Disorders with neurological involvement. Since a great number of pharmacologically active molecules are not able to cross the Blood-Brain Barrier (BBB) and reach the Central Nervous System (CNS), new brain targeted polymeric PLGA NPs modified with glycopeptides (g7- NPs) have been recently produced. In this review several in vivo biodistribution studies and pharmacological proof-of evidence of brain delivery of model drugs are reported, demonstrating the ability of g7-NPs to create BBB interaction and trigger an efficacious BBB crossing. Moreover, another relevant development of NPs surface engineering was achieved by conjugating to the surface of g7-NPs, some specific and selective antibodies to drive NPs directly to a specific cell type once inside the CNS parenchyma.

  9. 131I-Traced PLGA-Lipid Nanoparticles as Drug Delivery Carriers for the Targeted Chemotherapeutic Treatment of Melanoma

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Sheng, Weizhong

    2017-05-01

    Herein, folic acid (FA) conjugated Poly(d,l-lactide-co-glycolide) (PLGA)-lipid composites (FA-PL) were developed as nanocarriers for the targeted delivery of insoluble anti-cancer drug paclitaxel (PTX), resulting FA-PLP nanoparticles. Furthermore, 131I, as a radioactive tracer, was used to label FA-PLP nanoparticles (FA-PLP-131I) to evaluate their cell uptake activity, in vivo blood circulation, and biodistribution. The FA-PLP-131I nanoparticles had a spherical morphology with great stability, a narrow size distribution (165.6 and 181.2 nm), and -22.1 mV in average zeta potential. Confocal laser scanning microscopy indicated that the targeting molecule FA promotes PLP-131I uptake by melanoma B16F10 cells, which was further confirmed by the cell incorporation rate via 131I activity detection as measured by a gamma counter. FA-PLP-131I without PTX (FA-PL-131I) shows minor cytotoxicity, good biocompatibility, while FA-PLP-131I was demonstrated to have efficient cell viability suppression compared to free PTX and PLP-131I. Following intravenous injection, the blood circulation half-life of free PTX ( t 1/2 = 5.4 ± 0.23 h) was prolonged to 18.5 ± 0.5 h by FA-PLP-131I. Through FA targeting, the tumor uptake of FA-PLP-131I was approximately 4.41- and 12.8-fold higher compared to that of PLP-131I and free PTX-131I, respectively. Moreover, following 40 days of treatment, FA-PLP-131I showed an improved tumor inhibition effect compared to free PTX and PLP-131I, with no relapse and no remarkable systemic in vivo toxicity. The results demonstrate that the 131I-labeled PLGA-lipid nanoparticle can be simultaneously applied for targeted drug delivery and reliable tracking of drugs in vivo.

  10. Nanoformulation of D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for breast cancer therapy.

    PubMed

    Huang, Laiqiang; Chen, Hongbo; Zheng, Yi; Song, Xiaosong; Liu, Ranyi; Liu, Kexin; Zeng, Xiaowei; Mei, Lin

    2011-10-01

    The purpose of this research was to develop formulation of docetaxel-loaded biodegradable TPGS-b-(PCL-ran-PGA) nanoparticles for breast cancer chemotherapy. A novel diblock copolymer, d-α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) [TPGS-b-(PCL-ran-PGA)], was synthesized from ε-caprolactone, glycolide and d-α-tocopheryl polyethylene glycol 1000 succinate by ring-opening polymerization using stannous octoate as catalyst. The obtained copolymers were characterized by (1)H NMR, GPC and TGA. The docetaxel-loaded TPGS-b-(PCL-ran-PGA) nanoparticles were prepared and characterized. The data showed that the fluorescence TPGS-b-(PCL-ran-PGA) nanoparticles could be internalized by MCF-7 cells. The TPGS-b-(PCL-ran-PGA) nanoparticles achieved significantly higher level of cytotoxicity than commercial Taxotere®. MCF-7 xenograft tumor model on SCID mice showed that docetaxel formulated in the TPGS-b-(PCL-ran-PGA) nanoparticles could effectively inhibit the growth of tumor over a longer period of time than Taxotere® at the same dose. In conclusion, the TPGS-b-(PCL-ran-PGA) copolymer could be acted as a novel and potential biologically active polymeric material for nanoformulation in breast cancer chemotherapy. This journal is © The Royal Society of Chemistry 2011

  11. Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice

    NASA Astrophysics Data System (ADS)

    Trivedi, Ruchit; Redente, Elizabeth F.; Thakur, Ashish; Riches, David W. H.; Kompella, Uday B.

    2012-12-01

    Our purpose was to assess sustained delivery and enhanced efficacy of pirfenidone-loaded nanoparticles after intratracheal instillation. Poly(lactide-co-glycolide) nanoparticles containing pirfenidone (NPs) were prepared and characterized. Biodistribution of NPs and solution was assessed using LC-MS after intratracheal administration in C57Bl/6 mice at 3 and 24 h and 1 week post-administration. Efficacy was tested in C57Bl/6 mice in a bleomycin-induced pulmonary fibrosis model. Mice received 10 μg pirfenidone intratracheally in solution or NPs, once a week, for 3 weeks after bleomycin administration. Drug effects were monitored on day 28. Lung hydroxyproline content, total number of cells, and numbers of macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage (BAL) were assessed. Numbers of macrophages, lymphocytes, and neutrophils were assessed in the lung as well. NPs sustained significantly higher levels of pirfenidone in the lungs and BAL at 24 h and 1 week, compared to the solution group. Pirfenidone solution and NPs significantly reduced hydroxyproline levels by 57 and 81%, respectively, compared to bleomycin alone. At the end of 4 weeks, BAL cellularity was reduced by 25.4% and 56% with solution and NP treatment, respectively. The numbers of lymphocytes and neutrophils in the BAL were also reduced by 58.9 and 82.4% for solution and 74.5% and 89.7% for NPs, respectively. The number of inflammatory macrophages in the lung was reduced by 62.8% and the number of neutrophils was reduced by 59.1% in the NP group and by 37.7% and 44.5%, respectively, in the solution group, compared to bleomycin alone. In conclusion, nanoparticles sustain lung pirfenidone delivery and enhance its anti-fibrotic efficacy.

  12. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  13. Inorganic Nanoparticles/Metal Organic Framework Hybrid Membrane Reactors for Efficient Photocatalytic Conversion of CO2.

    PubMed

    Maina, James W; Schütz, Jürg A; Grundy, Luke; Des Ligneris, Elise; Yi, Zhifeng; Kong, Lingxue; Pozo-Gonzalo, Cristina; Ionescu, Mihail; Dumée, Ludovic F

    2017-10-11

    Photocatalytic conversion of carbon dioxide (CO 2 ) to useful products has potential to address the adverse environmental impact of global warming. However, most photocatalysts used to date exhibit limited catalytic performance, due to poor CO 2 adsorption capacity, inability to efficiently generate photoexcited electrons, and/or poor transfer of the photogenerated electrons to CO 2 molecules adsorbed on the catalyst surface. The integration of inorganic semiconductor nanoparticles across metal organic framework (MOF) materials has potential to yield new hybrid materials, combining the high CO 2 adsorption capacity of MOF and the ability of the semiconductor nanoparticles to generate photoexcited electrons. Herein, controlled encapsulation of TiO 2 and Cu-TiO 2 nanoparticles within zeolitic imidazolate framework (ZIF-8) membranes was successfully accomplished, using rapid thermal deposition (RTD), and their photocatalytic efficiency toward CO 2 conversion was investigated under UV irradiation. Methanol and carbon monoxide (CO) were found to be the only products of the CO 2 reduction, with yields strongly dependent upon the content and composition of the dopant semiconductor particles. CuTiO 2 nanoparticle doped membranes exhibited the best photocatalytic performance, with 7 μg of the semiconductor nanoparticle enhancing CO yield of the pristine ZIF-8 membrane by 233%, and methanol yield by 70%. This work opens new routes for the fabrication of hybrid membranes containing inorganic nanoparticles and MOFs, with potential application not only in catalysis but also in electrochemical, separation, and sensing applications.

  14. Polymeric nanocarriers for transport modulation across the pulmonary epithelium: dendrimers, polymeric nanoparticles, and their nanoblends.

    PubMed

    Bharatwaj, Balaji; Dimovski, Radovan; Conti, Denise S; da Rocha, Sandro R P

    2014-05-01

    The purpose of this study was to (a) Determine the cellular transport and uptake of amine-terminated generation 3 (G3) poly(amido amine) (PAMAM) dendrimers across an in vitro model of the pulmonary epithelium, and the ability to modulate their transport by forming nanoblends of the dendrimers with biodegradable solid polymeric nanoparticles (NPs) and (b) to formulate dendrimer nanocarriers in portable oral inhalation devices and evaluate their aerosol characteristics. To that end, fluorescein isothiocyanate (FITC)-labeled G3 PAMAM dendrimer nanocarriers (DNCs) were synthesized, and also encapsulated within poly lactide-co-glycolide nanoparticles (NPs). Transport and uptake of both DNCs encapsulated within NPs (nanoblends) and unencapsulated DNCs were tracked across polarized monolayers of airway epithelial cells, Calu-3. DNCs were also formulated as core-shell microparticles in pressurized metered-dose inhalers (pMDIs) and their aerodynamic properties evaluated by Andersen cascade impaction. The apparent permeability of DNCs across the airway epithelial model was similar to that of a paracellular marker of comparable molar mass--order of 10(-7) cm s(-1). The transport and cellular internalization of the DNCs can be modulated by formulating them as nanoblends. The transport of the DNCs across the lung epithelium was completely suppressed within the time of the experiment (5 h) when formulated as blends. The encapsulation also prevents saturation of the cellular internalization profile. Nanoblending may be a potential strategy to modulate the rate of transport and cellular uptake of DNCs, and thus be used as a design strategy to achieve enhanced local or systemic drug delivery.

  15. Transferrin-Modified Nanoparticles for Photodynamic Therapy Enhance the Antitumor Efficacy of Hypocrellin A

    PubMed Central

    Lin, Xi; Yan, Shu-Zhen; Qi, Shan-Shan; Xu, Qiao; Han, Shuang-Shuang; Guo, Ling-Yuan; Zhao, Ning; Chen, Shuang-Lin; Yu, Shu-Qin

    2017-01-01

    Photodynamic therapy (PDT) has emerged as a potent novel therapeutic modality that induces cell death through light-induced activation of photosensitizer. But some photosensitizers have characteristics of poor water-solubility and non-specific tissue distribution. These characteristics become main obstacles of PDT. In this paper, we synthesized a targeting drug delivery system (TDDS) to improve the water-solubility of photosensitizer and enhance the ability of targeted TFR positive tumor cells. TDDS is a transferrin-modified Poly(D,L-Lactide-co-glycolide (PLGA) and carboxymethyl chitosan (CMC) nanoparticle loaded with a photosensitizer hypocrellin A (HA), named TF-HA-CMC-PLGA NPs. Morphology, size distribution, Fourier transform infrared (FT-IR) spectra, encapsulation efficiency, and loading capacity of TF-HA-CMC-PLGA NPs were characterized. In vitro TF-HA-CMC-PLGA NPs presented weak dark cytotoxicity and significant photo-cytotoxicity with strong reactive oxygen species (ROS) generation and apoptotic cancer cell death. In vivo photodynamic antitumor efficacy of TF-HA-CMC-PLGA NPs was investigated with an A549 (TFR positive) tumor-bearing model in male athymic nude mice. TF-HA-CMC-PLGA NPs caused tumor delay with a remarkable tumor inhibition rate of 63% for 15 days. Extensive cell apoptosis in tumor tissue and slight side effects in normal organs were observed. The results indicated that TDDS has great potential to enhance PDT therapeutic efficacy. PMID:29209206

  16. Development of sulfadiazine-decorated PLGA nanoparticles loaded with 5-fluorouracil and cell viability.

    PubMed

    Guimarães, Pedro Pires Goulart; Oliveira, Sheila Rodrigues; de Castro Rodrigues, Gabrielle; Gontijo, Savio Morato Lacerda; Lula, Ivana Silva; Cortés, Maria Esperanza; Denadai, Ângelo Márcio Leite; Sinisterra, Rubén Dario

    2015-01-08

    The aim of this work was to synthesize sulfadiazine-poly(lactide-co-glycolide) (SUL-PLGA) nanoparticles (NPs) for the efficient delivery of 5-fluorouracil to cancer cells. The SUL-PLGA conjugation was assessed using FTIR, 1H-NMR, 13C-NMR, elemental analysis and TG and DTA analysis. The SUL-PLGA NPs were characterized using transmission and scanning electron microscopy and dynamic light scattering. Additionally, the zeta potential, drug content, and in vitro 5-FU release were evaluated. We found that for the SUL-PLGA NPs, Dh = 114.0 nm, ZP = -32.1 mV and the encapsulation efficiency was 49%. The 5-FU was released for up to 7 days from the NPs. Cytotoxicity evaluations of 5-FU-loaded NPs (5-FU-SUL-PLGA and 5-FU-PLGA) on two cancer cell lines (Caco-2, A431) and two normal cell lines (fibroblast, osteoblast) were compared. Higher cytotoxicity of 5-FU-SUL-PLGA NPs were found to both cancer cell lines when compared to normal cell lines, demonstrating that the presence of SUL could significantly enhance the cytotoxicity of the 5-FU-SUL-PLGA NPs when compared with 5-FU-PLGA NPs. Thus, the development of 5-FU-SUL-PLGA NPs to cancer cells is a promising strategy for the 5-FU antitumor formulation in the future.

  17. Safety Assessment of Commonly Used Nanoparticles in Biomedical Applications: Impact on Inflammatory Processes

    NASA Astrophysics Data System (ADS)

    Alnasser, Yossef

    Nanotechnology offers great promise in the biomedical field. Current knowledge of nanoparticles' (NPs) safety and possible mechanisms of various particle types' toxicity is insufficient. The role of particle properties and the route of particles administration in toxic reactions remain unexplored. In this thesis, we aimed to inspect the interrelationship between particle size, chemical composition and toxicological effects of four candidate NPs for drug delivery systems: gold (Au), chitosan, silica, and poly (lactide-co-glycolide) (PLGA). Mice model was combined with in vitro study to explore NPs' safety. We investigated mice survival, weight, behavior, and pro-inflammatory changes. NF-kappaB induction was assessed in vitro using the Luciferase Assay System. As observed in mice, Au NPs had a higher toxicity profile at a shorter duration than the other NPs. This was significantly in concordance with pro-inflammatory changes which may be the key routes of Au NPs toxicity. Although silica NPs induced NF-kappaB, they were less toxic to the mice than Au NPs and did not lead to the pro-inflammatory changes. Chitosan NPs were toxic to the mice but failed to cause significant NF-kappaB induction and pro-inflammatory changes. These findings indicate that chitosan NPs might not have the same pathophysiologic mechanism as the Au NPs. Comparative analysis in this model demonstrated that PLGA NPs is the safest drug delivery candidate to be administered subcutaneously.

  18. Co-delivery of paclitaxel and tetrandrine via iRGD peptide conjugated lipid-polymer hybrid nanoparticles overcome multidrug resistance in cancer cells

    PubMed Central

    Zhang, Jinming; Wang, Lu; Fai Chan, Hon; Xie, Wei; Chen, Sheng; He, Chengwei; Wang, Yitao; Chen, Meiwan

    2017-01-01

    One of the promising strategies to overcome tumor multidrug resistance (MDR) is to deliver anticancer drug along with P-glycoprotein (P-gp) inhibitor simultaneously. To enhance the cancer cellular internalization and implement the controlled drug release, herein an iRGD peptide-modified lipid-polymer hybrid nanosystem (LPN) was fabricated to coload paclitaxel (PTX) and tetrandrine (TET) at a precise combination ratio. In this co-delivery system, PTX was covalently conjugated to poly (D,L-lactide-co-glycolide) polymeric core by redox-sensitive disulfide bond, while TET was physically capsulated spontaneously for the aim to suppress P-gp in advance by the earlier released TET in cancer cells. As a result, the PTX+TET/iRGD LPNs with a core-shell structure possessed high drug loading efficiency, stability and redox-sensitive drug release profiles. Owing to the enhanced cellular uptake and P-gp suppression mediated by TET, significantly more PTX accumulated in A2780/PTX cells treated with PTX+TET/iRGD LPNs than either free drugs or non-iRGD modified LPNs. As expected, PTX+TET/iRGD LPNs presented the highest cytotoxicity against A2780/PTX cells and effectively promoted ROS production, enhanced apoptosis and cell cycle arrests particularly. Taken together, the co-delivery system demonstrated great promise as potential treatment for MDR-related tumors based on the synergistic effects of P-gp inhibition, enhanced endocytosis and intracellular sequentially drug release. PMID:28470171

  19. Osteogenesis and Trophic Factor Secretion are Influenced by the Composition of Hydroxyapatite/Poly(Lactide-Co-Glycolide) Composite Scaffolds

    PubMed Central

    He, Jiawei; Genetos, Damian C.

    2010-01-01

    The use of composite biomaterials for bone repair capitalizes on the beneficial aspects of individual materials while tailoring the mechanical properties of the composite. We hypothesized that substrate composition would modulate the osteogenic response and secretion of potent trophic factors by human mesenchymal stem cells (hMSCs). Composite scaffolds were prepared by combining nanosized hydroxyapatite (HA) and microspheres formed of poly(lactic-co-glycolic acid) (PLG) at varying ratios between 0:1 and 5:1. Scaffolds were seeded with hMSCs for culture in osteogenic conditions or subcutaneous implantation into nude rats. Compressive moduli increased with HA content in a near-linear fashion. The osteogenic differentiation of hMSCs increased in a dose-dependent manner as determined by alkaline phosphatase activity and osteopontin secretion after 4 weeks of culture. Further, endogenous secretion of vascular endothelial growth factor was sustained at significantly higher levels over 28 days for hMSCs seeded in 2.5:1 and 5:1 HA:PLG scaffolds. Eight weeks after implantation, scaffolds with higher HA:PLG ratios exhibited greater vascularization and more mineralized tissue. These data demonstrate that the mechanical properties, osteogenic differentiation, as well as the timing and duration of trophic factor secretion by hMSCs can be tailored through controlling the composition of the polymer–bioceramic composite. PMID:19642853

  20. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA.

    PubMed

    Jensen, Ditte Krohn; Jensen, Linda Boye; Koocheki, Saeid; Bengtson, Lasse; Cun, Dongmei; Nielsen, Hanne Mørck; Foged, Camilla

    2012-01-10

    Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local

  1. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line.

    PubMed

    Doggui, Sihem; Sahni, Jasjeet Kaur; Arseneault, Madeleine; Dao, Lé; Ramassamy, Charles

    2012-01-01

    Curcumin, a natural polyphenolic pigment present in the spice turmeric (Curcuma longa), is known to possess a pleiotropic activity such as antioxidant, anti-inflammatory, and anti-amyloid-β activities. However, these benefits of curcumin are limited by its poor aqueous solubility and oral bioavailability. In the present study, a polymer-based nanoparticle approach has been utilized to deliver drugs to neuronal cells. Curcumin was encapsulated in biodegradable poly (lactide-co-glycolide) (PLGA) based-nanoparticulate formulation (Nps-Cur). Dynamic laser light scattering and transmission electronic microscopy analysis indicated a particle diameter ranging from 80 to 120 nm. The entrapment efficiency was 31% with 15% drug-loading. In vitro release kinetics of curcumin from Nps-Cur revealed a biphasic pattern with an initial exponential phase followed by a slow release phase. Cellular internalization of Nps-Cur was confirmed by fluorescence and confocal microscopy with a wide distribution of the fluorescence in the cytoplasm and within the nucleus. The prepared nanoformulation was characterized for cellular toxicity and biological activity. Cytotoxicity assays showed that void PLGA-nanoparticles (Nps) and curcumin-loaded PLGA nanoparticles (Nps-Cur) were nontoxic to human neuroblastoma SK-N-SH cells. Moreover, Nps-Cur was able to protect SK-N-SH cells against H2O2 and prevent the elevation of reactive oxygen species and the consumption of glutathione induced by H2O2. Interestingly, Nps-Cur was also able to prevent the induction of the redox-sensitive transcription factor Nrf2 in the presence of H2O2. Taken together, these results suggest that Nps-Cur could be a promising drug delivery strategy to protect neurons against oxidative damage as observed in Alzheimer's disease.

  2. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    PubMed

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Copolymerization of Glycolide and ɛ-Caprolactone Using 12-Aminolauric Acid Modified Montmorillonite

    NASA Astrophysics Data System (ADS)

    Gallos, HAV; Reyes, LQ

    2017-09-01

    Poly(glycolide-co-ɛ-caprolactone) (PGLYCL) nanocomposites were prepared by copolymerization glycolide (GLY) and ɛ-caprolactone (ɛ-CL) in the presence of varying loadings 12-aminolauric acid (12-ALA)-modified montmorillonite. Copolymerization was successfully achieved based on the increase in polymer molecular weight after the reaction determined by gel permeation chromatography (GPC). The amount of the poly(glycolide) block and poly(ɛ-caprolactone) block units in the copolymer, identified by proton nuclear magnetic resonance (1H-NMR) spectroscopy, suggested that the increase in organo-clay loading cause a reduction GLYL: ɛ-CLL ratio. The arrangement of the monomers in the polymer products was elucidated to have an ABA triblock structure, where PCL block is the central block and the PGLY is found at both end of the copolymer. The presence of intercalated and exfoliated silicates in the nanocomposites were observed by x-ray diffraction (XRD) analysis. The biocompatibility of the nanocomposites with NCTC 292 mouse normal fibroblast was high relative to untreated cell cultures using tetrazolium bromide (MTT)-dye reduction assay.

  4. The Evaluation of the Possibilities of Using PLGA Co-Polymer and Its Composites with Carbon Fibers or Hydroxyapatite in the Bone Tissue Regeneration Process – in Vitro and in Vivo Examinations

    PubMed Central

    Cieślik, Magdalena; Mertas, Anna; Morawska-Chochólł, Anna; Sabat, Daniel; Orlicki, Rajmund; Owczarek, Aleksander; Król, Wojciech; Cieślik, Tadeusz

    2009-01-01

    Synthetic polymers belonging to the aliphatic polyester group have become highly promising biomaterials for reconstructive medicine. The purpose of the present work is a biological evaluation of lactide-glycolide co-polymer (PLGA) and its composites with carbon fibers (PLGA+CF) or hydroxyapatite (PLGA+HA). The cytotoxicity of the evaluated materials towards hFOB 1.19 human osteoblast-like cells was assessed. Moreover, during the one-year contact of the assessed materials with living osseous tissue, the progress of bone formation was analyzed and the accompanying process of the materials’ degradation was evaluated. The materials under evaluation proved to be biocompatible. PMID:19742134

  5. Microsphere-Based Scaffolds for Cartilage Tissue Engineering: Using Sub-critical CO2 as a Sintering Agentξ

    PubMed Central

    Singh, Milind; Sandhu, Brindar; Scurto, Aaron; Berkland, Cory; Detamore, Michael S.

    2009-01-01

    Shape-specific, macroporous tissue engineering scaffolds were fabricated and homogeneously seeded with cells in a single step. This method brings together CO2 polymer processing and microparticle-based scaffolds in a manner that allows each to solve the key limitation of the other. Specifically, microparticle-based scaffolds have suffered from the limitation that conventional microsphere sintering methods (e.g., heat, solvents) are not cytocompatible, yet we have shown that cell viability was sustained with sub-critical (i.e., gaseous) CO2 sintering of microspheres in the presence of cells at near-ambient temperatures. On the other hand, the fused microspheres provided the pore interconnectivity that has eluded supercritical CO2 foaming approaches. Here, fused poly(lactide-co-glycolide) microsphere scaffolds were seeded with human umbilical cord mesenchymal stromal cells to demonstrate the feasibility of utilizing these matrices for cartilage regeneration. We also demonstrated that the approach may be modified to produce thin cell-loaded patches as a promising alternative for skin tissue engineering applications. PMID:19660579

  6. MO-FG-BRA-05: Next Generation Radiotherapy Biomaterials Loaded With Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cifter, G; Ngwa, W; Univ Massachusetts Lowell, Lowell, MA

    2015-06-15

    Purpose: It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. In this work, we developed prototypes of such RT biomaterials and investigated the sustained release of GNPs from the biomaterials as a function of design parameters. Methods: Prototype smart biomaterials were produced by incorporating the GNPs in poly(D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. For comparison, commercially available spacers were also coated with a polymer film loaded with fluorescentmore » GNP. Optical/spectroscopy methods were used to monitor in vitro release of GNPs over time as a function of different design parameters: polymer weighting, type, and initial (loading) GNP concentrations. Inductively coupled plasma mass spectrometry was employed to verify GNP release. Results: Results showed that gold nanoparticles could be successfully loaded in the new RT biomaterial prototypes. Burst release of GNPs could be achieved within 1 to 25 days depending on the preparation approach. Burst release was followed by sustained release profile over time. The amount of released GNP increased with increasing loading concentration as expected. The release profiles could also be customized as a function of polymer weighting, or preparation approaches. Conclusion: Considered together, our results highlight potential for the development of next generation RT biomaterials loaded with GNPs customizable to different RT schedules. Such biomaterials could be employed as needed instead of currently used inert spacers/fiducials at no additional inconvenience to patients, to enhance RT.« less

  7. Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration.

    PubMed

    Pawar, Harish; Wankhade, Shrikant Rameshrao; Yadav, Dharmendra K; Suresh, Sarasija

    2016-09-01

    Technology for development of biodegradable nanoparticles encapsulating combinations for enhanced efficacy. To develop docetaxel (DTX) and curcumin (CRM) co-encapsulated biodegradable nanoparticles for parenteral administration with potential for prolonged release and decreased toxicity. Modified emulsion solvent-evaporation technique was employed in the preparation of the nanoparticles optimized by the face centered-central composite design (FC-CCD). The uptake potential was studied in MCF-7 cells, while the toxicity was evaluated by in vitro hemolysis test. In vivo pharmacokinetic was evaluated in male Wistar rats. Co-encapsulated nanoparticles were developed of 219 nm size, 0.154 PDI, -13.74 mV zeta potential and 67.02% entrapment efficiency. Efficient uptake was observed by the nanoparticles in MCF-7 cells with decreased toxicity in comparison with the commercial DTX intravenous injection, Taxotere®. The nanoparticles exhibited biphasic release with initial burst release followed by sustained release for 5 days. The nanoparticles displayed a 4.3-fold increase in AUC (391.10 ± 32.94 versus 89.77 ± 10.58 μg/ml min) in comparison to Taxotere® with a 6.2-fold increase in MRT (24.78 ± 2.36 versus 3.58 ± 0.21 h). The nanoparticles exhibited increased uptake, prolonged in vitro and in vivo release, with decreased toxicity thus exhibiting potential for enhanced efficacy.

  8. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2017-01-01

    Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  9. L-Cysteine conjugated poly L-lactide nanoparticles containing 5-fluorouracil: formulation, characterization, release and uptake by tissues in vivo.

    PubMed

    Mishra, Brijeshkunvar J; Kaul, Ankur; Trivedi, Piyush

    2015-02-01

    Targeted delivery of drugs is still a therapeutic challenge and numerous methods have been reported for the same. In this study, emphasis was placed on developing nanoparticles loaded with 5-fluorouracil (FU) and modifying the surface of the nanoparticles by conjugation with amino acid, to improve the distribution of 5-FU in the lungs. An emulsion solvent evaporation technique was used to formulate nanoparticles of FU using Poly L-lactide and Pluronic F-68. The nanoparticles were conjugated with L-Cysteine using EDC as the activator of COOH group and were evaluated for product yield, particle size, surface morphology, amount of conjugation by Ellman's method and in vitro drug release study. The results indicated 60-65% yield with an average particle size of 242.7 ± 37.11 nm for the cysteine conjugated nanoparticle (CNP) formulation and more than 70% conjugation of cysteine. The cumulative percentage of drug released over a period of 24 h was found to be 58%. An increase in distribution of the delivery system in lungs (11.4% ID after 1 h) in mice was found indicating the role of L-Cysteine in the transport mechanism to the lungs. In vivo kinetic studies in rats revealed higher circulation time of CNP as compared to pure FU solution. The study helps in designing a colloidal delivery system for increased distribution of drugs to the lungs and may be helpful in delivery of drugs in conditions like non-small cell lung carcinomas.

  10. Preparation, characterization, and in vitro testing of poly(lactide-co-glycolide) and dextran magnetic microspheres for in vivo applications

    NASA Astrophysics Data System (ADS)

    Leamy, Patrick J.

    Many research groups are investigating degradable magnetic particles for magnetic resonance imaging (MRI) contrast agents and as carriers for magnetic drug guidance. These particles are composite materials with a degradable polymer matrix and iron oxide nanoparticles for magnetic properties. The degradable polymer matrix acts to provide colloidal stability and, for drug delivery applications, provides a reservoir for the storage and release of drugs. Natural polymers, like albumin and dextran, which degrade by the action of enzymes; have been used for the polymer matrix. Iron oxide nanoparticles are used for magnetic properties since they can be digested in vivo and have low toxicities. Polylactic acid (PLA) and its copolymers with polyglycolic acid (PLGA) are versatile polymers that degrade by simple hydrolysis without the aid of enzymes. Microspheres are easily formed using the solvent extraction/evaporation method and a wide range of drugs can be encapsulated in them. Magnetic PLGA microspheres suitable for applications were synthesized for the first time in this dissertation. This was accomplished by coating iron oxide nanoparticles with oleic acid to make them dispersible in the organic solvents used in the extraction/evaporation microsphere preparation method. In addition to the magnetic PLGA microspheres, a novel all-aqueous method for preparing crosslinked dextran magnetic microspheres was developed in this dissertation. This method uses free radical polymerization for crosslinking and does not require the use of flammable and harmful solvents. For efficient MRI contrast and magnetic drug guidance, maximized iron oxide content of microspheres is desirable. The two different microsphere preparation methods were optimized for iron oxide content. The effect of iron oxide content on microsphere size and morphology was studied. In addition, an in vitro circulation model was used to evaluate the ability of magnetic microspheres to be guided at physiologic blood

  11. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice.

    PubMed

    Kozuka, Chisayo; Shimizu-Okabe, Chigusa; Takayama, Chitoshi; Nakano, Kaku; Morinaga, Hidetaka; Kinjo, Ayano; Fukuda, Kotaro; Kamei, Asuka; Yasuoka, Akihito; Kondo, Takashi; Abe, Keiko; Egashira, Kensuke; Masuzaki, Hiroaki

    2017-11-01

    Our previous works demonstrated that brown rice-specific bioactive substance, γ-oryzanol acts as a chaperone, attenuates exaggerated endoplasmic reticulum (ER) stress in brain hypothalamus and pancreatic islets, thereby ameliorating metabolic derangement in high fat diet (HFD)-induced obese diabetic mice. However, extremely low absorption efficiency from intestine of γ-oryzanol is a tough obstacle for the clinical application. Therefore, in this study, to overcome extremely low bioavailability of γ-oryzanol with super-high lipophilicity, we encapsulated γ-oryzanol in polymer poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Nano-Orz), and evaluated its metabolically beneficial impact in genetically obese-diabetic ob/ob mice, the best-known severest diabetic model in mice. To our surprise, Nano-Orz markedly ameliorated fuel metabolism with an unexpected magnitude (∼1000-fold lower dose) compared with regular γ-oryzanol. Furthermore, such a conspicuous impact was achievable by its administration once every 2 weeks. Besides the excellent impact on dysfunction of hypothalamus and pancreatic islets, Nano-Orz markedly decreased ER stress and inflammation in liver and adipose tissue. Collectively, nanotechnology-based developments of functional foods oriented toward γ-oryzanol shed light on the novel approach for the treatment of a variety of metabolic diseases in humans.

  12. Evaluation of poly(lactic-co-glycolic acid) and poly(dl-lactide-co-ε-caprolactone) electrospun fibers for the treatment of HSV-2 infection.

    PubMed

    Aniagyei, Stella E; Sims, Lee B; Malik, Danial A; Tyo, Kevin M; Curry, Keegan C; Kim, Woihwan; Hodge, Daniel A; Duan, Jinghua; Steinbach-Rankins, Jill M

    2017-03-01

    More diverse multipurpose prevention technologies are urgently needed to provide localized, topical pre-exposure prophylaxis against sexually transmitted infections (STIs). In this work, we established the foundation for a multipurpose platform, in the form of polymeric electrospun fibers (EFs), to physicochemically treat herpes simplex virus 2 (HSV-2) infection. To initiate this study, we fabricated different formulations of poly(lactic-co-glycolic acid) (PLGA) and poly(dl-lactide-co-ε-caprolactone) (PLCL) EFs that encapsulate Acyclovir (ACV), to treat HSV-2 infection in vitro. Our goals were to assess the release and efficacy differences provided by these two different biodegradable polymers, and to determine how differing concentrations of ACV affected fiber efficacy against HSV-2 infection and the safety of each platform in vitro. Each formulation of PLGA and PLCL EFs exhibited high encapsulation efficiency of ACV, sustained-delivery of ACV through one month, and in vitro biocompatibility at the highest doses of EFs tested. Additionally, all EF formulations provided complete and efficacious protection against HSV-2 infection in vitro, regardless of the timeframe of collected fiber eluates tested. This work demonstrates the potential for PLGA and PLCL EFs as delivery platforms against HSV-2, and indicates that these delivery vehicles may be expanded upon to provide protection against other sexually transmitted infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method

    NASA Astrophysics Data System (ADS)

    Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Ran, Fen

    2017-09-01

    Nano-Co3O4 decorated with gold nanoparticles is synthesized by a simple method of in-situ reduction of HAuCl4 by sodium citrate for energy storage application, and the effect of gold content in the product on electrochemical performance is investigated in detail. Introducing gold nanoparticles into nano-Co3O4 bulk would contribute to reduce internal resistance of charge transmission. The results show that after in-situ reduction reaction gold nanoparticles imbed uniformly into nano-Co3O4 with irregular nanoparticles. The gold nanoparticles decorated nano-Co3O4 exhibits specific capacitance of 681 F g-1 higher than that of pristine Co3O4 of 368 F g-1. It is interesting that a good cycle life with the specific capacitance retention of 83.1% is obtained after 13000 cycles at 5 A g-1, which recovers to initial specific capacitance value when the test current density is turned to 2 A g-1. In addition, the device of asymmetric supercapacitor, assembled with gold nanoparticles decorated nano-Co3O4 as the positive electrode and activated carbon as the negative electrode, exhibits good energy density of 25 Wh kg-1, which is comparable to the asymmetric device assembled with normal nano-Co3O4, or the symmetric device assembled just with activated carbon.

  14. Characterization of temperature and pH-responsive poly-N-isopropylacrylamide-co-polymer nanoparticles for the release of antimicrobials

    NASA Astrophysics Data System (ADS)

    Hill, Laura E.; Gomes, Carmen L.

    2014-09-01

    Chitosan and alginate are both pH-responsive biopolymers extracted from crustacean exoskeletons and brown algae, respectively. Poly-N-isopropylacrylamide (PNIPAAM) is a hydrogel that becomes hydrophobic at a lower-critical solution temperature. This study sought to combine pH- and temperature-responsive polymers via crosslinking, in order to create a dual-stimuli responsive polymer for hydrophobic antimicrobial compounds delivery, improving their antimicrobial effects. Cinnamon bark extract (CBE) was used as a model for hydrophobic antimicrobial. Two co-polymers were synthesized to create two nanoparticles types: chitosan-co-PNIPAAM and alginate-co-PNIPAAM. Nanoparticles were formed from the resulting co-polymers using a self-assembly top-down process followed by glutaraldehyde or calcium chloride crosslinking. These nanoparticles were then used as controlled delivery vehicles for CBE, whose rapid release could be triggered by specific external stimuli. For the same pH and temperature conditions, the chitosan-co-PNIPAAM nanoparticles were significantly more potent bacterial inhibitors against both pathogens and also exhibited a faster CBE release over time as well as slightly higher entrapment efficiency. The alginate-co-PNIPAAM nanoparticles were significantly smaller and exhibited a slow, gradual release over a long time period. Although both nanoparticles were able to effectively inhibit pathogen growth at lower (P < 0.05) concentration than free CBE, the chitosan-co-PNIPAAM nanoparticles were more effective in delivering a natural antimicrobial with controlled release against foodborne pathogens.

  15. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation.

    PubMed

    Jensen, Ditte Marie Krohn; Cun, Dongmei; Maltesen, Morten Jonas; Frokjaer, Sven; Nielsen, Hanne Mørck; Foged, Camilla

    2010-02-25

    Local delivery of small interfering RNA (siRNA) to the lungs constitutes a promising new area in drug delivery. The present study evaluated parameters of importance for spray drying of siRNA-loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) into nanocomposite microparticles intended for inhalation. The spray drying process was optimised using a statistical design of experiment and by evaluating powder characteristics upon systematic variation of the formulation parameters. Concentration, carbohydrate excipient (trehalose, lactose and mannitol) and the ratio of NP to excipient were varied to monitor the effects on moisture content, particle morphology, particle size and powder yield. The identified optimum conditions were applied for spray drying of siRNA-loaded nanocomposite microparticles, resulting in a product with a low water content (0.78% w/w) and an aerodynamic particle diameter considered suitable for inhalation. The use of mannitol in the formulation allowed a significantly lower moisture content than trehalose and lactose. The inclusion of 50% (w/w) or higher amounts of NPs resulted in a marked change in the surface morphology of the spray-dried particles. Importantly, the integrity and biological activity of the siRNA were preserved during the spray drying process. In conclusion, the present results show that spray drying is a suitable technique for producing nanocomposite microparticles comprising siRNA-containing PLGA NPs for potential use in inhalation therapy. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Size effects on the magnetic properties of LaCoO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wei, Q.; Zhang, T.; Wang, X. P.; Fang, Q. F.

    2012-02-01

    Magnetic properties of LaCoO3 nanoparticles prepared by a sol-gel method with average particle size (D) ranging from 20 to 500 nm are investigated. All samples exhibit obvious ferromagnetic transition. With decreasing particle size from 500 to 120 nm, the transition temperature Tc decreases slightly from 85 K, however Tc decreases dramatically when D ≤ 85 nm. Low-field magnetic moment at 10 K decreases with reduction of particle size, while the high-field magnetization exhibits a converse behavior, which is different with previous reports. The coercivity Hc decreases as the particle size is reduced. It is different with other nanosystems that no exchange bias effect is observed in nanosized LaCoO3 particles. These interesting results arise from the surface effect induced by sized effect and the structure change in LaCoO3 nanoparticles.

  17. Docetaxel immunonanocarriers as targeted delivery systems for HER 2-positive tumor cells: preparation, characterization, and cytotoxicity studies.

    PubMed

    Koopaei, Mona Noori; Dinarvand, Rassoul; Amini, Mohsen; Rabbani, Hojatollah; Emami, Shaghayegh; Ostad, Seyed Nasser; Atyabi, Fatemeh

    2011-01-01

    The objective of this study was to develop pegylated poly lactide-co-glycolide acid (PLGA) immunonanocarriers for targeting delivery of docetaxel to human breast cancer cells. The polyethylene glycol (PEG) groups on the surface of the PLGA nanoparticles were functionalized using maleimide groups. Trastuzumab, a monoclonal antibody against human epidermal growth factor receptor 2 (HER2) antigens of cancer cells, used as the targeting moiety, was attached to the maleimide groups on the surface of pegylated PLGA nanoparticles. Nanoparticles prepared by a nanoprecipitation method were characterized for their size, size distribution, surface charge, surface morphology, drug-loading, and in vitro drug release profile. The average size of the trastuzumab-decorated nanoparticles was 254 ± 16.4 nm and their zeta potential was -11.5 ± 1.4 mV. The average size of the nontargeted PLGA nanoparticles was 183 ± 22 nm and their zeta potential was -2.6 ± 0.34 mV. The cellular uptake of nanoparticles was studied using both HER2-positive (SKBR3 and BT-474) and HER2-negative (Calu-6) cell lines. The cytotoxicity of the immunonanocarriers against HER2-positive cell lines was significantly higher than that of nontargeted PLGA nanoparticles and free docetaxel.

  18. N-methyl pyrrolidone/bone morphogenetic protein-2 double delivery with in situ forming implants.

    PubMed

    Karfeld-Sulzer, Lindsay S; Ghayor, Chafik; Siegenthaler, Barbara; de Wild, Michael; Leroux, Jean-Christophe; Weber, Franz E

    2015-04-10

    Bone morphogenetic proteins (BMPs) are growth and differentiation factors involved during development in morphogenesis, organogenesis and later mainly in regeneration processes, in particular in bone where they are responsible for osteoinduction. For more than a decade, recombinant human (rh)BMP-2 has been used in the clinic for lumbar spinal fusion at non-physiological high dosages that appear to be causative for side effects, like male sterility. A possible strategy to reduce the effective amount of rhBMP-2 in the clinic is the co-delivery with an enhancer of BMPs' activity. In an earlier study, we showed that N-methylpyrrolidone (NMP) enhances BMP activity in vitro and in vivo. Here we report on the development of a slow and sustained double delivery of rhBMP-2 and NMP via an in situ forming implant based on poly(lactide-co-glycolide). The results showed that the release of NMP can be adjusted by varying the lactide/glycolide ratio and the polymer's molecular weight. The same applied to rhBMP-2, with release rates that could be sustained from two to three weeks. In the in vivo model of a critical size defect in the calvarial bone of rabbits, the implant containing 50mol% lactide performed better than the one having 75mol% lactide in terms of defect bridging and extent of bony regenerated area. In situ forming implants for the double delivery of the BMP enhancer NMP and rhBMP-2 appear to be promising delivery systems in bone regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A preliminary report on a novel electrospray technique for nanoparticle based biomedical implants coating: precision electrospraying.

    PubMed

    Kumbar, Sangamesh G; Bhattacharyya, Subhabrata; Sethuraman, Swaminathan; Laurencin, Cato T

    2007-04-01

    The compatibility and biological efficacy of biomedical implants can be enhanced by coating their surface with appropriate agents. For predictable functioning of implants in situ, it is often desirable to obtain an extremely uniform coating thickness without effects on component dimensions or functions. Conventional coating techniques require rigorous processing conditions and often have limited adhesion and composition properties. In the present study, the authors report a novel precision electrospraying technique that allows both degradable and nondegradable coatings to be placed. Thin metallic slabs, springs, and biodegradable sintered microsphere scaffolds were coated with poly(lactide-co-glycolide) (PLAGA) using this technique. The effects of process parameters such as coating material concentration and applied voltage were studied using PLAGA and poly(ethylene glycol) coatings. Morphologies of coated surfaces were qualitatively characterized by scanning electron microscopy. Qualitative observations suggested that the coatings were composed of particles of various size/shape and agglomerates with different porous architectures. PLAGA coatings of uniform thickness were observed on all surfaces. Spherical nanoparticle poly(ethylene glycol) coatings (462-930 nm) were observed at all concentrations studied. This study found that the precision electrospraying technique is elegant, rapid, and reproducible with precise control over coating thickness (mum to mm) and is a useful alternative method for surface modification of biomedical implants. (c) 2006 Wiley Periodicals, Inc.

  20. Solid nano-in-nanoparticles for potential delivery of siRNA.

    PubMed

    Amsalem, Orit; Nassar, Taher; Benhamron, Sandrine; Lazarovici, Philip; Benita, Simon; Yavin, Eylon

    2017-07-10

    siRNA-based therapeutics possess great potential to treat a wide variety of genetic disorders. However, they suffer from low cellular uptake and short half-lives in blood circulation; issues that remain to be addressed. This work is, to the best of our knowledge, the first to report the production of solid nano-in-nanoparticles, termed double nano carriers (DNCs) by means of the innovative technology of nano spray drying. DNCs (with a median size of 580-770nm) were produced by spraying at low temperatures (50°C) to prevent damage to heat-sensitive biomacromolecules like siRNA. DNCs consisting of Poly (d,l-lactide-co-glycolide) used as a wall material, encapsulating 20% human serum albumin primary nanoparticles (PNPs) loaded with siRNA, were obtained as a dry nanoparticulate powder with smooth spherical surfaces and a unique inner morphology. Incubation of pegylated or non-pegylated DNCs under sink conditions at 37°C, elicited a controlled release profile of the siRNA for up to 12 or 24h, respectively, with a minimal burst effect. Prolonged incubation of pegylated DNCs loaded with active siRNA (anti EGFR) in an A549 epithelial cell culture monolayer did not induce any apparent cytotoxicity. A slow degradation of the internalized DNCs by the cells was also observed resulting in the progressive release of the siRNA for up to 6days, as corroborated by laser confocal microscopy. The structural integrity and silencing activity of the double encapsulated siRNA were fully preserved, as demonstrated by HPLC, gel electrophoresis, and potent RNAi activity of siRNA extracted from DNCs. These results demonstrate the potential use of DNCs as a nano drug delivery system for systemic administration and controlled release of siRNA and potentially other sensitive bioactive macromolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects.

    PubMed

    Gao, Jianting; Huang, Guofeng; Liu, Guojun; Liu, Yan; Chen, Qi; Ren, Lei; Chen, Changqing; Ding, Zhenqi

    2016-08-01

    We fabricated a biodegradable antibiotic-eluting poly(d,l)-lactide-co-glycolide nanofiber-loaded deproteinized bone (ANDB) scaffold that provided sustained delivery of vancomycin to repair methicillin-resistant Staphylococcus aureus bone defects. To fabricate the biodegradable ANDB, poly(d,l)-lactide-co-glycolide and vancomycin were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propano. The solution was then electrospun to produce biodegradable antibiotic-eluting membranes that were deposited on the surface of bovine deproteinized cancellous bone. We used scanning electron microscopy to determine the properties of the scaffold. Both elution and high-performance liquid chromatography assays were used to evaluate the in vitro vancomycin release rate from the ANDB scaffold. Three types of scaffolds were co-cultured with bacteria to confirm the in vitro antibacterial activity. The infected bone defect rabbit model was induced by injecting 10(7) colony forming units of a methicillin-resistant Staphylococcus aureus strain into the radial defect of rabbits. Animals were then separated into treatment groups and implanted according to the following scheme: ANDB scaffold in group A, poly(d,l)-lactide-co-glycolide nanofiber-loaded deproteinized bone (NDB) scaffold with intravenous (i.v.) vancomycin in group B, and NDB scaffold alone in group C. Treatment efficacy was evaluated after eight weeks using radiological, microbiological, and histological examinations. In vitro results revealed that biodegradable ANDB scaffolds released concentrations of vancomycin that were greater than the minimum inhibitory concentration for more than four weeks. Bacterial inhibition tests also confirmed antibacterial efficacy lasted for approximately four weeks. Radiological and histological scores obtained in vivo revealed significant differences between groups A, B and C. Importantly, group A had significantly lower bacterial load and better bone regeneration when compared to either group B

  2. Catalytic Gas-Phase Production of Lactide from Renewable Alkyl Lactates.

    PubMed

    De Clercq, Rik; Dusselier, Michiel; Makshina, Ekaterina; Sels, Bert F

    2018-03-12

    A new route to lactide, which is a key building block of the bioplastic polylactic acid, is proposed involving a continuous catalytic gas-phase transesterification of renewable alkyl lactates in a scalable fixed-bed setup. Supported TiO 2 /SiO 2 catalysts are highly selective to lactide, with only minimal lactide racemization. The solvent-free process allows for easy product separation and recycling of unconverted alkyl lactates and recyclable lactyl intermediates. The catalytic activity of TiO 2 /SiO 2 catalysts was strongly correlated to their optical properties by DR UV/Vis spectroscopy. Catalysts with high band-gap energy of the supported TiO 2 phase, indicative of a high surface spreading of isolated Ti centers, show the highest turnover frequency per Ti site. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile

    PubMed Central

    Rafiei, Pedram; Haddadi, Azita

    2017-01-01

    Docetaxel is a highly potent anticancer agent being used in a wide spectrum of cancer types. There are important matters of concern regarding the drug’s pharmacokinetics related to the conventional formulation. Poly(lactide-co-glycolide) (PLGA) is a biocompatible/biodegradable polymer with variable physicochemical characteristics, and its application in human has been approved by the United States Food and Drug Administration. PLGA gives polymeric nanoparticles with unique drug delivery characteristics. The application of PLGA nanoparticles (NPs) as intravenous (IV) sustained-release delivery vehicles for docetaxel can favorably modify pharmacokinetics, biofate, and pharmacotherapy of the drug in cancer patients. Surface modification of PLGA NPs with poly(ethylene glycol) (PEG) can further enhance NPs’ long-circulating properties. Herein, an optimized fabrication approach has been used for the preparation of PLGA and PLGA–PEG NPs loaded with docetaxel for IV application. Both types of NP formulations demonstrated in vitro characteristics that were considered suitable for IV administration (with long-circulating sustained-release purposes). NP formulations were IV administered to an animal model, and docetaxel’s pharmacokinetic and biodistribution profiles were determined and compared between study groups. PLGA and PEGylated PLGA NPs were able to modify the pharmacokinetics and biodistribution of docetaxel. Accordingly, the mode of changes made to pharmacokinetics and biodistribution of docetaxel is attributed to the size and surface properties of NPs. NPs contributed to increased blood residence time of docetaxel fulfilling their role as long-circulating sustained-release drug delivery systems. Surface modification of NPs contributed to more pronounced docetaxel blood concentration, which confirms the role of PEG in conferring long-circulation properties to NPs. PMID:28184163

  4. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy.

    PubMed

    Yan, Jian; Peng, Xifeng; Cai, Yulian; Cong, Wendong

    2018-06-01

    The present anti-angiogenic therapies for neovascular age-related macular degeneration require effective drug delivery systems for transfer drug molecules. Ranibizumab is an active humanized monoclonal antibody that counteracts active forms of vascular endothelial growth factor A in the neovascular age-related macular degeneration therapy. The development of ranibizumab-related therapies, we have designed the effective drug career with engineered magnetic nanoparticles (Fe 3 O 4 ) as a facile platform of ranibizumab delivery for the treatment of neovascular age-related macular degeneration. Ranibizumab conjugated iron oxide (Fe 3 O 4 )/PEGylated poly lactide-co-glycolide (PEG-PLGA) was successfully designed and the synthesized materials are analyzed different analytical techniques. The microscopic techniques (Scanning Electron Microscopy (SEM) & Transmission Electron Microscopy (TEM)) are clearly displayed that spherical nanoparticles into the PEG-PLGA matrix and presence of elements and chemical interactions confirmed by the results of energy dispersive X-ray analysis (EDX) and Fourier trans-form infrared (FTIR) spectroscopic methods. The in vitro anti-angiogenic evaluation of Fe 3 O 4 /PEG-PLGA polymer nanomaterial efficiently inhibits the tube formation in the Matrigel-based assay method by using human umbilical vein endothelial cells. Ranibizumab treated Fe 3 O 4 /PEG-PLGA polymer nanomaterials not disturbed cell proliferation and the results could not display the any significant differences in human endothelial cells. The present investigated results describe that Fe 3 O 4 /PEG-PLGA polymer nanomaterials can be highly favorable and novel formulation for the treatment of neovascular age-related macular degeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles.

    PubMed

    Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing

    2013-04-01

    Lipid-polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid-polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid-polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification.

  6. Periadventitial Application of Rapamycin-Loaded Nanoparticles Produces Sustained Inhibition of Vascular Restenosis

    PubMed Central

    Guo, Lian-Wang; Si, Yi; Zhu, Men; Pilla, Srikanth; Liu, Bo; Gong, Shaoqin; Kent, K. Craig

    2014-01-01

    Open vascular reconstructions frequently fail due to the development of recurrent disease or intimal hyperplasia (IH). This paper reports a novel drug delivery method using a rapamycin-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs)/pluronic gel system that can be applied periadventitially around the carotid artery immediately following the open surgery. In vitro studies revealed that rapamycin dispersed in pluronic gel was rapidly released over 3 days whereas release of rapamycin from rapamycin-loaded PLGA NPs embedded in pluronic gel was more gradual over 4 weeks. In cultured rat vascular smooth muscle cells (SMCs), rapamycin-loaded NPs produced durable (14 days versus 3 days for free rapamycin) inhibition of phosphorylation of S6 kinase (S6K1), a downstream target in the mTOR pathway. In a rat balloon injury model, periadventitial delivery of rapamycin-loaded NPs produced inhibition of phospho-S6K1 14 days after balloon injury. Immunostaining revealed that rapamycin-loaded NPs reduced SMC proliferation at both 14 and 28 days whereas rapamycin alone suppressed proliferation at day 14 only. Moreover, rapamycin-loaded NPs sustainably suppressed IH for at least 28 days following treatment, whereas rapamycin alone produced suppression on day 14 with rebound of IH by day 28. Since rapamycin, PLGA, and pluronic gel have all been approved by the FDA for other human therapies, this drug delivery method could potentially be translated into human use quickly to prevent failure of open vascular reconstructions. PMID:24586612

  7. Boosting photocatalytic overall water splitting by Co doping into Mn3O4 nanoparticles as oxygen evolution cocatalysts.

    PubMed

    Yoshinaga, Taizo; Saruyama, Masaki; Xiong, Anke; Ham, Yeilin; Kuang, Yongbo; Niishiro, Ryo; Akiyama, Seiji; Sakamoto, Masanori; Hisatomi, Takashi; Domen, Kazunari; Teranishi, Toshiharu

    2018-06-14

    The effect of cobalt doping into a manganese oxide (tetragonal spinel Mn 3 O 4 ) nanoparticle cocatalyst up to Co/(Co + Mn) = 0.4 (mol/mol) on the activity of photocatalytic water oxidation was studied. Monodisperse ∼10 nm Co y Mn 1-y O (0 ≤y≤ 0.4) nanoparticles were uniformly loaded onto photocatalysts and converted to Co x Mn 3-x O 4 nanoparticles through calcination. 40 mol% cobalt-doped Mn 3 O 4 nanoparticle-loaded Rh@Cr 2 O 3 /SrTiO 3 photocatalyst exhibited 1.8 times-higher overall water splitting activity than that with pure Mn 3 O 4 nanoparticles. Investigation on the band structure and electrocatalytic water oxidation activity of Co x Mn 3-x O 4 nanoparticles revealed that the Co doping mainly contributes to the improvement of water oxidation kinetics on the surface of the cocatalyst nanoparticles.

  8. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery.

    PubMed

    Xin, Yu; Liu, Tie; Yang, Chenlong

    We have prepared novel poly(d,l-lactide- co -glycolide) (PLGA) lipid nanoparticles (PNPs) that covalently conjugate folic acid (FA) and indocyanine green (ICG), in addition to encapsulating resveratrol (RSV) (FA-RSV/ICG-PLGA-lipid NPs, abbreviated as FA-RIPNPs); these nanoparticles have been developed for simultaneous targeted delivery of anticancer drug and fluorescence imaging. The FA-RIPNPs, with an average particle size of 92.8±2.1 nm, were prepared by a facile self-assembly-and-nanoprecipitation method, and they showed excellent stability and biocompatibility characteristics. The FA-RIPNPs exhibited an RSV encapsulation efficiency of approximately 65.6%±4.7% and a maximum release ratio of 78.2%±4.1% at pH 5.0 and 37°C. Confocal fluorescence images showed that FA-RIPNPs may facilitate a high cellular uptake via FA receptor-mediated endocytosis. Furthermore, FA-RIPNPs (containing 50 μg/mL RSV) induced a 81.4%±2.1% U87 cell inhibition rate via apoptosis, a value that proved to be higher than what has been shown for free RSV (53.1%±1.1%, equivalent RSV concentration). With a formulated polyethylene glycol (PEG) shell around the PLGA core, FA-RIPNPs prolonged the blood circulation of both free RSV and ICG, which approximately increased 6.96- and 39.4-fold ( t 1/2 ), respectively. Regarding FA-RIPNP use as a near-infrared probe, in vivo fluorescence images indicated a highly efficient accumulation of FA-RIPNPs in the tumor tissue, which proved to be approximately 2.8- and 12.6-fold higher than the RIPNPs and free ICG, respectively. Intravenous injection of FA-RIPNPs into U87 tumor-bearing mice demonstrated the best tumor inhibition effect for all tested drugs, including free RSV and RIPNPs, with no relapse, showing high biocompatibility and with no significant systemic in vivo toxicity over the course of the treatment (1 month). The results obtained demonstrate the versatility of the NPs, featuring stable fluorescence and tumor-targeting characteristics, with

  9. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery

    PubMed Central

    Xin, Yu; Liu, Tie; Yang, Chenlong

    2016-01-01

    We have prepared novel poly(d,l-lactide-co-glycolide) (PLGA) lipid nanoparticles (PNPs) that covalently conjugate folic acid (FA) and indocyanine green (ICG), in addition to encapsulating resveratrol (RSV) (FA-RSV/ICG-PLGA-lipid NPs, abbreviated as FA-RIPNPs); these nanoparticles have been developed for simultaneous targeted delivery of anticancer drug and fluorescence imaging. The FA-RIPNPs, with an average particle size of 92.8±2.1 nm, were prepared by a facile self-assembly-and-nanoprecipitation method, and they showed excellent stability and biocompatibility characteristics. The FA-RIPNPs exhibited an RSV encapsulation efficiency of approximately 65.6%±4.7% and a maximum release ratio of 78.2%±4.1% at pH 5.0 and 37°C. Confocal fluorescence images showed that FA-RIPNPs may facilitate a high cellular uptake via FA receptor-mediated endocytosis. Furthermore, FA-RIPNPs (containing 50 μg/mL RSV) induced a 81.4%±2.1% U87 cell inhibition rate via apoptosis, a value that proved to be higher than what has been shown for free RSV (53.1%±1.1%, equivalent RSV concentration). With a formulated polyethylene glycol (PEG) shell around the PLGA core, FA-RIPNPs prolonged the blood circulation of both free RSV and ICG, which approximately increased 6.96- and 39.4-fold (t1/2), respectively. Regarding FA-RIPNP use as a near-infrared probe, in vivo fluorescence images indicated a highly efficient accumulation of FA-RIPNPs in the tumor tissue, which proved to be approximately 2.8- and 12.6-fold higher than the RIPNPs and free ICG, respectively. Intravenous injection of FA-RIPNPs into U87 tumor-bearing mice demonstrated the best tumor inhibition effect for all tested drugs, including free RSV and RIPNPs, with no relapse, showing high biocompatibility and with no significant systemic in vivo toxicity over the course of the treatment (1 month). The results obtained demonstrate the versatility of the NPs, featuring stable fluorescence and tumor-targeting characteristics, with

  10. Nanoparticle-Reinforced Associative Network Hydrogels

    PubMed Central

    Agrawal, Sarvesh K.; Sanabria-DeLong, Naomi; Tew, Gregory N.; Bhatia, Surita R.

    2009-01-01

    ABA triblock copolymers in solvents selective for the midblock are known to form associative micellar gels. We have modified the structure and rheology of ABA triblock copolymer gels comprising poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) through addition of a clay nanoparticle, laponite. Addition of laponite particles resulted in additional junction points in the gel via adsorption of the PEO corona chains onto the clay surfaces. Rheological measurements showed that this strategy led to a significant enhancement of the gel elastic modulus with small amounts of nanoparticles. Further characterization using SAXS and DLS confirmed that nanoparticles increase the intermicellar attraction and result in aggregation of PLA-PEO-PLA micelles. PMID:18947244

  11. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells.

    PubMed

    Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2015-08-01

    In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.

  12. Synthesis and characterization of injectable composites of poly[D,L-lactide-co-(ε-caprolactone)] reinforced with β-TCP and CaCO3 for intervertebral disk augmentation.

    PubMed

    López, Alejandro; Persson, Cecilia; Hilborn, Jöns; Engqvist, Håkan

    2010-10-01

    Degeneration of the intervertebral disk constitutes one of the major causes of low back pain in adults aged 20-50 years old. In this study, injectable, in situ setting, degradable composites aimed for intervertebral disk replacement were prepared. β-TCP and calcium carbonate particles were mixed into acrylic-terminated oligo[D,L-lactide-co-(ε-caprolactone)], which were crosslinked at room temperature. The structure of the oligomers was confirmed by 1H-NMR spectroscopy. The composites were examined via SEM, and the mechanical properties of the crosslinked networks were determined. The porous β-TCP particles showed good mechanical anchorage to the matrix due to polymer penetration into the pores. In vitro degradation tests showed that the composites containing β-TCP slowly degraded, whereas the composites containing CaCO3 exhibited apatite formation capacity. It was concluded that the surface area, morphology, and solubility of the fillers might be used to control the degradation properties. The incorporation of fillers also increased both the elastic modulus and the maximum compression strength of the composites, properties that were similar to those of the physiological disk. These materials have potential for long-term intervertebral disk replacement and regenerative scaffolds because of their low degradation rates, bioactivity, and mechanical properties.

  13. Synthesis of FeCoB amorphous nanoparticles and application in ferrofluids

    NASA Astrophysics Data System (ADS)

    Zhao, Shuchun; Bian, Xiufang; Yang, Chuncheng; Yu, Mengchun; Wang, Tianqi

    2018-03-01

    Magnetic FeCoB amorphous nanoparticles were successfully synthesized by borohydride reduction in water/n-hexane (W/He) microemulsions. The as-prepared FeCoB alloys are amorphous and spherical nanoparticles with an average particle size about 10.7 nm, compared to FeCoB alloys with an average particle size about 304.2 nm which were synthesized by a conventional aqua-solution method. Furthermore, three kinds of FeCoB ferrofluids (FFs) were prepared by dispersing FeCoB particles into W/He microemulsion, water and silicone oil respectively. Results show that the W/He-based FeCoB FFs are superparamagnetic with saturation magnetization (Ms) reaching to 12.4 emu/g. Besides, compared to water-based and silicone oil-based FFs, W/He-based FeCoB FFs exhibit high stability, with magnetic weights decreasing slightly even under the magnetic field intensity of H = 210 mT. In the W/He-based FeCoB FFs, interfacial tensions of water phase and oil phase are supposed to prevent the agglomeration and sedimentation of FeCoB nanoparticles dispersed in different water droplets of the microemulsion, compared to the current stabilizing method of directly modifying the surface of particles.

  14. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance.

    PubMed

    Liu, Yutao; Pan, Jie; Feng, Si-Shen

    2010-08-16

    This work developed a system of nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of anticancer drugs with paclitaxel as a model drug, in which the emphasis was given to the effects of the surfactant type and the optimization of the emulsifier amount used in the single emulsion solvent evaporation/extraction process for the nanoparticle preparation on the particle size, characters and in vitro performance. The drug loaded nanoparticles were characterized by laser light scattering (LLS) for size and size distribution, field-emission scanning electron microscopy (FESEM) for surface morphology, X-ray photoelectron spectroscopy (XPS) for surface chemistry, zetasizer for surface charge, and high performance liquid chromatography (HPLC) for drug encapsulation efficiency and in vitro drug release kinetics. MCF-7 breast cancer cells were employed to evaluate the cellular uptake and cytotoxicity. It was found that phospholipids of short chains such as 1,2-dilauroylphosphatidylocholine (DLPC) have great advantages over the traditional emulsifier poly(vinyl alcohol) (PVA), which is used most often in the literature, in preparation of nanoparticles of biodegradable polymers such as poly(D,L-lactide-co-glycolide) (PLGA) for desired particle size, character and in vitro cellular uptake and cytotoxicity. After incubation with MCF-7 cells at 0.250 mg/ml NP concentration, the coumarin-6 loaded PLGA NPs of DLPC shell showed more effective cellular uptake versus those of PVA shell. The analysis of IC(50), i.e. the drug concentration at which 50% of the cells are killed, demonstrated that our DLPC shell PLGA core NP formulation of paclitaxel could be 5.88-, 5.72-, 7.27-fold effective than the commercial formulation Taxol after 24, 48, 72h treatment, respectively. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Prolonged analgesic effect of PLGA-encapsulated bee venom on formalin-induced pain in rats.

    PubMed

    Jeong, Injae; Kim, Beom-Soo; Lee, Hyejung; Lee, Kang-Min; Shim, Insop; Kang, Sung-Keel; Yin, Chang-Shick; Hahm, Dae-Hyun

    2009-10-01

    To enhance the medicinal activity of bee venom (BV) acupuncture, bee venom was loaded into biodegradable poly(D,L-lactide-co-glycolide) nanoparticles (BV-PLGA-NPs) by a water-in-oil-in-water-emulsion/solvent-evaporation technique. Rat formalin tests were performed after subcutaneous injection of BV-PLGA-NPs to the Zusanli acupuncture point (ST36) at 0.5, 1, 2, 6, 12, 24, and 48 h before plantar injection of 2% formalin. BV-PLGA-NPs treatment showed comparable analgesic activity to typical BV acupuncture during the late phase, compared with saline-treated controls, and the analgesic effect lasted for 12h. PLGA-encapsulation was also effective in alleviating the edema induced by allergens in bee venom. These results indicate that PLGA-encapsulation provided a more prolonged effect of BV acupuncture treatment, while maintaining a comparable therapeutic effect.

  16. Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device.

    PubMed

    Abelha, T F; Phillips, T W; Bannock, J H; Nightingale, A M; Dreiss, C A; Kemal, E; Urbano, L; deMello, J C; Green, M; Dailey, L A

    2017-02-02

    This study compares the performance of a microfluidic technique and a conventional bulk method to manufacture conjugated polymer nanoparticles (CPNs) embedded within a biodegradable poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG 5K -PLGA 55K ) matrix. The influence of PEG 5K -PLGA 55K and conjugated polymers cyano-substituted poly(p-phenylene vinylene) (CN-PPV) and poly(9,9-dioctylfluorene-2,1,3-benzothiadiazole) (F8BT) on the physicochemical properties of the CPNs was also evaluated. Both techniques enabled CPN production with high end product yields (∼70-95%). However, while the bulk technique (solvent displacement) under optimal conditions generated small nanoparticles (∼70-100 nm) with similar optical properties (quantum yields ∼35%), the microfluidic approach produced larger CPNs (140-260 nm) with significantly superior quantum yields (49-55%) and tailored emission spectra. CPNs containing CN-PPV showed smaller size distributions and tuneable emission spectra compared to F8BT systems prepared under the same conditions. The presence of PEG 5K -PLGA 55K did not affect the size or optical properties of the CPNs and provided a neutral net electric charge as is often required for biomedical applications. The microfluidics flow-based device was successfully used for the continuous preparation of CPNs over a 24 hour period. On the basis of the results presented here, it can be concluded that the microfluidic device used in this study can be used to optimize the production of bright CPNs with tailored properties with good reproducibility.

  17. Structural control of co-continuous poly(L-lactide)/poly(butylene succinate)/clay nanocomposites.

    PubMed

    Zhao, Li; Li, Yongjin; Shimizu, Hiroshi

    2009-04-01

    Poly(L-lactide) (PLLA)/poly(butylene succinate) (PBS) (55/45 w/w) blends with different amounts of nanoclay loadings were prepared using a specially designed high-shear extruder, HSE3000mini, which can reach a maximum shear rate of 4400 sec(-1). The resulted co-continuous structural morphologies were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM observation revealed that through the combination of various amounts of nanoclay loadings and processing under various shear conditions, the phase size of co-continuous structures of PLLA/PBS blends can be controlled over a wide range from several tens of micrometers to submicrometers. TEM observation shows that all the nanoclays are selectively dispersed in the PBS phase. We also found that clays in low-shear processed sample were mainly located at the interface of PBS phase, while in high-shear sample, the clays were mainly located inside of the PBS phase. It was considered that the dependence of nanoclay location in the PBS phase on the shear conditions, as well as the changing of the viscosity ratio of PBS and PLLA phase with different amounts of clay loading, play important roles in controlling the phase size of the co-continuous structures of PLLA/PBS blends.

  18. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Qi, Chunling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhao, Aihua; Jia, Dianzeng

    2018-01-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in efficient energy conversion and storage solutions. Here, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures (denoted as Co@Co3O4/NCs) are prepared via a simple two-step and in situ approach by carbonization and subsequent oxidation of Co-MOF containing high contents of carbon and nitrogen. When evaluated as electrocatalyst towards both ORR and OER in a KOH electrolyte solution, the as-fabricated Co@Co3O4/NC-2 exhibits similar ORR catalytic activity to the commercial Pt/C catalyst, but superior stability and good methanol tolerance. Furthermore, the as-fabricated catalysts also show promising catalytic activity for OER. The effective catalytic activities originate from the synergistic effects between well wrapped Co@Co3O4 nanoparticles and nitrogen doped carbon structures.

  19. Thyrotropin-Releasing Hormone Loaded and Chitosan Engineered Polymeric Nanoparticles: Towards Effective Delivery of Neuropeptides.

    PubMed

    Kaur, Sarabjit; Bhararia, Avani; Sharma, Krishna; Mittal, Sherry; Jain, Rahul; Wangoo, Nishima; Sharma, Rohit K

    2016-05-01

    Thyrotropin-Releasing Hormone (TRH), a tripeptide amide with molecular formula L-pGlu-L-His-L- Pro-NH2, is used in the treatment of brain/spinal injury and certain central nervous system (CNS) disorders, including schizophrenia, Alzheimer's disease, epilepsy, depression, shock and ischemia due to its profound effects on the CNS. However, TRH's therapeutic activity is severely hampered because of instability and hydrophilicity owing to its peptidic nature which results into ineffective penetration into the blood brain barrier. In the present study, we report the synthesis and stability studies of novel chitosan engineered TRH encapsulated poly(lactide-co-glycolide) (PLGA) based nanoformulation. The aim of such an encapsulation is to allow effective delivery of TRH in biological systems as the peptidase degrade naked TRH. The synthesis of TRH was carried out manually in solution phase followed by its encapsulation using PLGA to form polymeric nanoparticles (NPs) via nanoprecipitation technique. Different parameters such as type of organic phase, concentration of stabilizer, ratio of organic phase and aqueous phase, rate of addition of organic phase were optimized, tested and evaluated for particle size, encapsulation efficiency, and stability of NPs. The TRH-PLGA NPs were then surface modified with chitosan to achieve positive surface charge rendering them potential membrane penetrating agents. PLGA, PLGA-TRH, Chitosan-PLGA and Chitosan-PLGA-TRH NPs were characterized and analyzed using Dynamic Light Scattering (DLS), Transmissiom Electron Microscopy (TEM) and Infra-red spectroscopic techniques.

  20. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.

    PubMed

    Chan, Juliana M; Zhang, Liangfang; Yuet, Kai P; Liao, Grace; Rhee, June-Wha; Langer, Robert; Farokhzad, Omid C

    2009-03-01

    Current approaches to encapsulate and deliver therapeutic compounds have focused on developing liposomal and biodegradable polymeric nanoparticles (NPs), resulting in clinically approved therapeutics such as Doxil/Caelyx and Genexol-PM, respectively. Our group recently reported the development of biodegradable core-shell NP systems that combined the beneficial properties of liposomal and polymeric NPs for controlled drug delivery. Herein we report the parameters that alter the biological and physicochemical characteristics, stability, drug release properties and cytotoxicity of these core-shell NPs. We further define scalable processes for the formulation of these NPs in a reproducible manner. These core-shell NPs consist of (i) a poly(D,L-lactide-co-glycolide) hydrophobic core, (ii) a soybean lecithin monolayer, and (iii) a poly(ethylene glycol) shell, and were synthesized by a modified nanoprecipitation method combined with self-assembly. Preparation of the NPs showed that various formulation parameters such as the lipid/polymer mass ratio and lipid/lipid-PEG molar ratio controlled NP physical stability and size. We encapsulated a model chemotherapy drug, docetaxel, in the NPs and showed that the amount of lipid coverage affected its drug release kinetics. Next, we demonstrated a potentially scalable process for the formulation, purification, and storage of NPs. Finally, we tested the cytotoxicity using MTT assays on two model human cell lines, HeLa and HepG2, and demonstrated the biocompatibility of these particles in vitro. Our data suggest that the PLGA-lecithin-PEG core-shell NPs may be a useful new controlled release drug delivery system.

  1. Poly(styrene)-b-poly(DL-lactide) copolymer-based nanoparticles for anticancer drug delivery

    PubMed Central

    Lee, Jae-Young; Kim, Jung Sun; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-01-01

    Poly(styrene)-b-poly(DL-lactide) (PS-PDLLA) copolymer-based nanoparticles (NPs) of a narrow size distribution, negative zeta potential, and spherical shape were fabricated for the delivery of docetaxel (DCT). The particle size was consistently maintained in serum for 24 hours and a sustained drug release pattern was observed for 10 days in the tested formulations. The cytotoxicity of the developed blank NPs was negligible in prostate cancer (PC-3) cells. Cellular uptake and distribution of the constructed NPs containing a hydrophobic fluorescent dye was monitored by confocal laser scanning microscopy (CLSM) for 24 hours. Anti-tumor efficacy of the PS-PDLLA/DCT NPs in PC-3 cells was significantly more potent than that of the group treated with commercially available DCT, Taxotere® (P<0.05). Blood biochemistry tests showed that no serious toxicity was observed with the blank NPs in the liver and kidney. In a pharmacokinetic study of DCT in rats, in vivo clearance of PS-PDLLA/DCT NPs decreased while the half-life in blood increased compared to the Taxotere-treated group (P<0.05). The PS-PDLLA NPs are expected to be a biocompatible and efficient nano-delivery system for anticancer drugs. PMID:24940058

  2. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ1-42-induced oxidative stress.

    PubMed

    Amin, Faiz Ul; Shah, Shahid Ali; Badshah, Haroon; Khan, Mehtab; Kim, Myeong Ok

    2017-02-07

    In order to increase the bioavailability of hydrophilic unstable drugs like anthocyanins, we employed a polymer-based nanoparticles approach due to its unique properties such as high stability, improved bioavailability and high water-soluble drug loading efficiency. Anthocyanins constitute a subfamily of flavonoids that possess anti-oxidative, anti-inflammatory and neuroprotective properties. However, anthocyanins are unstable because their phenolic hydroxyl groups are easily oxidized into quinones, causing a reduced biological activity. To overcome this drawback and improve the free radical scavenging capabilities of anthocyanins, in the current study we for the first time encapsulated the anthocyanins in biodegradable nanoparticle formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-2000. The biological activity and neuroprotective effect of anthocyanin loaded nanoparticles (An-NPs) were investigated in SH-SY5Y cell lines. Morphological examination under transmission electron microscopy (TEM) showed the formation of smooth spherically shaped nanoparticles. The average particle size and zeta potential of An-NPs were in the range of 120-165 nm and -12 mV respectively, with a low polydispersity index (0.4) and displayed a biphasic release profile in vitro. Anthocyanins encapsulation in PLGA@PEG nanoparticles (NPs) did not destroy its inherent properties and exhibit more potent neuroprotective properties. An-NPs were nontoxic to SH-SY5Y cells and increased their cell viability against Aβ 1-42 by its free radical scavenging characteristics and abrogated ROS generation via the p38-MAPK/JNK pathways accompanied by induction of endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Comparative to native bulk anthocyanins, An-NPs effectively attenuated Alzheimer's markers like APP (amyloid precursor protein), BACE-1 (beta-site amyloid precursor protein cleaving enzyme 1

  3. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    PubMed

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is

  4. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles.

    PubMed

    Chiesa, E; Dorati, R; Modena, T; Conti, B; Genta, I

    2018-01-30

    Design of Experiment-assisted evaluation of critical process (total flow rate, TFR, flow rate ratio, FRR) and formulation (polymer concentration and structure, drug:polymer ratio) variables in a novel microfluidics-based device, a staggered herringbone micromixer (SHM), for poly(lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (NPs) manufacturing was performed in order to systematically evaluate and mathematically describe their effects on NPs sizes and drug encapsulation; a small hydrophilic moiety, N-acetylcysteine, was chosen as challenging model drug. SHM-assisted nanoprecipitation method consistently yielded NPs with tailor made sizes (in the range of 100-900 nm) and polydispersity index range from 0.061 to 0.286. Significant effects on NPs sizes were highlighted for TFR and FRR: increasing TFR (from 5 to 15 mL/min) and decreasing FRR (from 1:1 to 1:5 v/v, acetonitrile: buffer) NPs with mean diameter <200 nm were obtained. SHM technique allowed for flexible, application-specific tuning of PLGA NPs size using organic solvents with relatively low toxicity (acetone, acetonitrile), varying aqueous phase composition (Tris buffer vs PVA aqueous solution) and PLGA characteristics (Mw ranging from 25-90 kDa, capped or un-capped PLGA, different lactide:glycolide molar ratio). A very satisfactory N-Ac encapsulation efficiency (more than 67%) and a prolonged release (by 168 h) were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Polymer nanoparticles for cross-presentation of exogenous antigens and enhanced cytotoxic T-lymphocyte immune response

    PubMed Central

    Song, Chanyoung; Noh, Young-Woock; Lim, Yong Taik

    2016-01-01

    Effective induction of an antigen-specific cytotoxic T lymphocyte (CTL) immune response is one of the key goals of cancer immunotherapy. We report the design and fabrication of polyethylenimine (PEI)-coated polymer nanoparticles (NPs) as efficient antigen-delivery carriers that can induce antigen cross-presentation and a strong CTL response. After synthesis of poly(d,l-lactide-co-glycolide) (PLGA) NPs containing ovalbumin (OVA) by the double-emulsion solvent-evaporation method, cationic-charged PLGA NPs were generated by coating them with PEI. In a methyl tetrazolium salt assay, no discernible cytotoxic effect of PEI-coated PLGA (OVA) NPs was observed. The capacity and mechanism of PEI-coated PLGA (OVA) NPs for antigen delivery and cross-presentation on dendritic cells (DCs) were determined by fluorescence microscopy and flow cytometry. PEI-coated PLGA (OVA) NPs were internalized efficiently via phagocytosis or macropinocytosis in DCs and induced efficient cross-presentation of the antigen on MHC class I molecules via both endosome escape and a lysosomal processing mechanism. The DCs treated with PEI-coated PLGA (OVA) NPs induced a release of IL-2 cytokine from OVA-specific CD8-OVA1.3 T cells more efficiently than DCs treated with PLGA (OVA) NPs. Therefore, the PEI-coated PLGA (OVA) NPs can induce antigen cross-presentation and are expected to be used for induction of a strong CTL immune response and for efficient anticancer immunotherapy. PMID:27540289

  6. Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zexing; Wang, Jie; Han, Lili

    2016-01-19

    Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement overmore » the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.« less

  7. Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles☆

    PubMed Central

    Tan, Junming; Shi, Jiangang; Shi, Guodong; Liu, Yanling; Liu, Xiaohong; Wang, Chaoyang; Chen, Dechun; Xing, Shunming; Shen, Lianbing; Jia, Lianshun; Ye, Xiaojian; He, Hailong; Li, Jiashun

    2013-01-01

    This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of intrathecal injection of brain-derived neurotrophic factor with 15 mg encapsulated biodegradable poly(lactide-co-glycolide) nanoparticles on this injury was then analyzed. Dorsal root ganglion cells (L7) of all experimental dogs were analyzed using hematoxylin-eosin staining and immunohistochemistry at 1, 2 and 4 weeks following model induction. Intrathecal injection of brain-derived neurotrophic factor can relieve degeneration and inflammation, and elevate the expression of brain-derived neurotrophic factor in sensory neurons of compressed dorsal root ganglion. Simultaneously, intrathecal injection of brain-derived neurotrophic factor obviously improved neurological function in the dog model of acute multiple cauda equina constriction. Results verified that sustained intraspinal delivery of brain-derived neurotrophic factor encapsulated in biodegradable nanoparticles promoted the repair of histomorphology and function of neurons within the dorsal root ganglia in dogs with acute and severe cauda equina syndrome. PMID:25206593

  8. Aspects of Microparticle Utilization for Potentiation of Novel Vaccines: Promises and Risks

    NASA Astrophysics Data System (ADS)

    Ilyinskii, P.

    Many recombinant vaccines against novel (HIV, HCV) or ever-changing (influenza) infectious agents require the presence of adjuvants/delivery vehicles to induce strong immune responses. The necessity of their improvement led to the major effort towards development of vaccine delivery systems that are generally particulate (e.g., nano- and microparticles) and have comparable dimensions to the pathogens (viruses or bacteria). The mode of action of these adjuvants is not fully understood but implies the stimulation of the innate or antigen-specific immune responses, and/or the increase of antigen uptake or processing by antigen-presenting cells (APC). Moreover, enhancement of adjuvant activity through the use of micro- and nanoparticulate delivery systems often resulted from the synergistic effects producing immune responses stronger than those elicited by the adjuvant or delivery system alone. Among particulate adjuvants, biodegradable micro- and nanoparticles of poly(D,L-lactide-co-glycoside) (PLGA) or poly(D,L-lactide) (PLA) have been reported to enhance both humoral and cellular immune responses against an encapsulated protein antigen. Cationic and anionic polylactide co-glycolide (PLG) microparticles have been successfully used to adsorb a variety of agents, which include plasmid DNA, recombinant proteins and adjuvant active oligonucleotides and are also currently tested in several vaccine applications. Another approach envisions specific targeting of APC, especially peripheral DC and exploitation of particulate systems that are small enough for lymphatic uptake (polystyrene nanobeads). Micro- and nanoparticles offer the possibility of enhancement of their uptake by appropriate cells through manipulation of their surface properties. Still, questions regarding toxicity and molecular interaction between micro- and nano-particles and immune cells, tissues and whole organisms remain to be addressed. These risks and other possible side effects should be assessed in

  9. Gentamicin Sulfate PEG-PLGA/PLGA-H Nanoparticles: Screening Design and Antimicrobial Effect Evaluation toward Clinic Bacterial Isolates

    PubMed Central

    Dorati, Rossella; DeTrizio, Antonella; Spalla, Melissa; Migliavacca, Roberta; Pagani, Laura; Pisani, Silvia; Chiesa, Enrica; Modena, Tiziana; Genta, Ida

    2018-01-01

    Nanotechnology is a promising approach both for restoring or enhancing activity of old and conventional antimicrobial agents and for treating intracellular infections by providing intracellular targeting and sustained release of drug inside infected cells. The present paper introduces a formulation study of gentamicin loaded biodegradable nanoparticles (Nps). Solid-oil-in water technique was studied for gentamicin sulfate nanoencapsulation using uncapped Polylactide-co-glycolide (PLGA-H) and Polylactide-co-glycolide-co-Polyethylenglycol (PLGA-PEG) blends. Screening design was applied to optimize: drug payload, Nps size and size distribution, stability and resuspendability after freeze-drying. PLGA-PEG concentration resulted most significant factor influencing particles size and drug content (DC): 8 w/w% DC and 200 nm Nps were obtained. Stirring rate resulted most influencing factor for size distribution (PDI): 700 rpm permitted to obtain homogeneous Nps dispersion (PDI = 1). Further experimental parameters investigated, by 23 screening design, were: polymer blend composition (PLGA-PEG and PLGA-H), Polyvinylalcohol (PVA) and methanol concentrations into aqueous phase. Drug content was increased to 10.5 w/w%. Nanoparticle lyophilization was studied adding cryoprotectants, polyvinypirrolidone K17 and K32, and sodiumcarboxymetylcellulose. Freeze-drying protocol was optimized by a mixture design. A freeze-dried Nps powder free resuspendable with stable Nps size and payload, was developed. The powder was tested on clinic bacterial isolates demonstrating that after encapsulation, gentamicin sulfate kept its activity. PMID:29329209

  10. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    PubMed

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites.

    PubMed

    Liu, Aixue; Hong, Zhongkui; Zhuang, Xiuli; Chen, Xuesi; Cui, Yang; Liu, Yi; Jing, Xiabin

    2008-07-01

    Novel bioactive glass (BG) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca=29:13:58 weight ratio) of about 40nm diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M(n)=9700Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility. When the filler loading reached around 4 wt.%, the tensile strength of the composite increased from 56.7 to 69.2MPa for the pure PLLA, and the impact strength energy increased from 15.8 to 18.0 kJ m(-2). The morphology of the tensile fracture surface of the composite showed surface-grafted bioactive glass particles (g-BG) to be dispersed homogeneously in the PLLA matrix. An in vitro bioactivity test showed that, compared to pure PLLA scaffold, the BG/PLLA nanocomposite demonstrated a greater capability to induce the formation of an apatite layer on the scaffold surface. The results of marrow stromal cell culture revealed that the composites containing either BG or g-BG particles have much better biocompatibility compared to pure PLLA material.

  12. Preparation of enhanced hydrophobic poly(L-lactide-co-ɛ-caprolactone) films surface and its blood compatibility

    NASA Astrophysics Data System (ADS)

    Kim, Seung Il; Lim, Jin Ik; Jung, Youngmee; Mun, Cho Hay; Kim, Ji Heung; Kim, Soo Hyun

    2013-07-01

    Hydrophobicity-enhanced poly(L-lactide-co-ɛ-caprolactone) (PLCL) (50:50) films were cast by using the solvent-nonsolvent casting method. PLCL (50:50) was synthesized by the well-known random copolymerization process and confirmed by 1H NMR analysis. The molecular weight of the synthesized PLCL was measured by gel permeation chromatography (GPC). Number-average (Mn), weight-average (Mw) molecular weights and polydispersity (Mw/Mn) were 7 × 104, 1.2 × 105, and 1.7, respectively. PLCL films were cast in vacuum condition with various nonsolvents and nonsolvent ratios. Tetrahydrofuran (THF) was used as the solvent and three different alcohols were used as the nonsolvent: methanol, ethanol, and isopropyl alcohol (IPA). Surface hydrophobicity was confirmed by water contact angle. The water contact angle was increased from 81° ± 2° to 107° ± 2°. Water contact angle was influenced by surface porosity and topography. The prepared film surfaces were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The change of crystalline property was characterized by X-ray diffraction (XRD). Platelet adhesion tests on the modified PLCL film surfaces were evaluated by platelet-rich plasma (PRP). The modified film surface exhibited enhanced hydrophobicity and reduced platelet adhesion ratio depending on the surface topography. One of the candidate products proposed as a potential blood compatible material showed a markedly reduced platelet adhesion property.

  13. Controlled Release of Antigens for One Dose Immunization

    DTIC Science & Technology

    1983-01-01

    microencapsulation of antigen coated alum or by microencapsulating clusters of smaller (᝺ microns) microcapsules . Microcapsules under 10 microns in... microencapsulation were studied to determine what criteria must be satisfied to provide a protective immune response to hepatitis B surface antigen... microencapsulated in poly (DL-lactide-co- glycolide) in a form that was too large to be phagocytized and had an antigen release profile similar to that achieved with

  14. A nano particle vector comprised of poly lactic-co-glycolic acid and monophosphoryl lipid A and recombinant Mycobacterium avium subsp paratuberculosis peptides stimulate a pro-immune profile in bovine macrophages.

    PubMed

    Souza, Cleverson D; Bannantine, John P; Brown, Wendy C; Norton, M Grant; Davis, William C; Hwang, Julianne K; Ziaei, Parissa; Abdellrazeq, Gaber S; Eren, Meaghan V; Deringer, James R; Laws, Elizabeth; Cardieri, Maria Clara D

    2017-05-14

    We evaluated the potential of a nanoparticle (NP) delivery system to improve methods of delivery of candidate peptide-based vaccines for Paratuberculosis in cattle. Peptides derived from Mycobacterium avium subsp. paratuberculosis (Map), and the pro-inflammatory monophosphoryl lipid A (MPLA) were incorporated in polymeric NPs based on poly (d,l-lactide-co-glycolide) (PLGA). The PLGA/MPLA NPs carriers were incubated with macrophages to examine their effects on survival and function. PLGA/MPLA NPs, with and without Map antigens, are efficiently phagocytized by macrophages with no evidence of toxicity. PLGA/MPLA NP formulations did not alter the level of expression of MHC I or II molecules. Expression of TNFα and IL12p40 was increased in Map-loaded NPs. T-cell proliferation studies using a model peptide from Anaplasma marginale demonstrated that a CD4 T-cell recall response could be elicited with macrophages pulsed with the peptide encapsulated in the PLGA/MPLA NP. These findings indicate PLGA/MPLA NPs can be used as a vehicle for delivery and testing of candidate peptide-based vaccines. These results will assist on more in depth studies on PLGA NP delivery systems that may lead to the development of a peptide-based vaccine for cattle. © 2017 The Society for Applied Microbiology.

  15. Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs.

    PubMed

    Araújo, Francisca; Shrestha, Neha; Shahbazi, Mohammad-Ali; Liu, Dongfei; Herranz-Blanco, Bárbara; Mäkilä, Ermei M; Salonen, Jarno J; Hirvonen, Jouni T; Granja, Pedro L; Sarmento, Bruno; Santos, Hélder A

    2015-08-25

    Multifunctional tailorable composite systems, specifically designed for oral dual-delivery of a peptide (glucagon-like peptide-1) and an enzymatic inhibitor (dipeptidyl peptidase 4 (DPP4)), were assembled through the microfluidics technique. Both drugs were coloaded into these systems for a synergistic therapeutic effect. The systems were composed of chitosan and cell-penetrating peptide modified poly(lactide-co-glycolide) and porous silicon nanoparticles as nanomatrices, further encapsulated in an enteric hydroxypropylmethylcellulose acetylsuccinate polymer. The developed multifunctional systems were pH-sensitive, inherited by the enteric polymer, enabling the release of the nanoparticles only in the simulated intestinal conditions. Moreover, the encapsulation into this polymer prevented the degradation of the nanoparticles' modifications. These nanoparticles showed strong and higher interactions with the intestinal cells in comparison with the nonmodified ones. The presence of DPP4 inhibitor enhanced the peptide permeability across intestinal cell monolayers. Overall, this is a promising platform for simultaneously delivering two drugs from a single formulation. Through this approach peptides are expected to increase their bioavailability and efficiency in vivo both by their specific release at the intestinal level and also by the reduced enzymatic activity. The use of this platform, specifically in combination of the two antidiabetic drugs, has clinical potential for the therapy of type 2 diabetes mellitus.

  16. Methyl trypsin loaded poly(D,L-lactide-coglycolide) nanoparticles for contact lens care.

    PubMed

    Jimenez, N; Galan, J; Vallet, A; Egea, M A; Garcia, M L

    2010-03-01

    The need of an enzymatic cleaner for soft contact lens care with an improved ocular safety and stability profile led us to evaluate the use of nanoparticles (NPs) of poly(D,L-lactide-coglycolide) (PLGA) and methyl trypsin (MT). NPs were prepared by double emulsion-solvent evaporation technique. A factorial design was performed to select the lactic acid proportion in the copolymer and conditions of the second sonication. The increment in proportion of lactic acid provided higher particle size results. When the time of second sonication was decreased, the entrapment efficiency (EE) increased. PLGA 50:50 NPs were chosen for further development since PLGA 50:50H NPs settled fast with different particle size in the sediment and PLGA 75:25 NPs led to form aggregates. The addition of glycerol to the NPs provided the highest EE of MT (>90%) while the addition of Tetronic 1304 promoted the fast release of enzyme initially and decreased the zeta potential (zeta) up to neutral values after gamma irradiation. NPs are expected to be effective as a lens care cleaner after 3 days or even longer with a very low quantity of enzyme released. Formulations showed an acceptable irritation ocular tolerance after in vitro HET-CAM test and in vivo Draize test. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  17. Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction.

    PubMed

    Chang, Ming-Yao; Yang, Yu-Jen; Chang, Chih-Han; Tang, Alan C L; Liao, Wei-Yin; Cheng, Fong-Yu; Yeh, Chen-Sheng; Lai, James J; Stayton, Patrick S; Hsieh, Patrick C H

    2013-09-10

    Recent developments in nanotechnology have created considerable potential toward diagnosis and cancer therapy. In contrast, the use of nanotechnology in tissue repair or regeneration remains largely unexplored. We hypothesized that intramyocardial injection of insulin-like growth factor (IGF)-1-complexed poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (PLGA-IGF-1 NPs) increases IGF-1 retention, induces Akt phosphorylation, and provides early cardioprotection after acute myocardial infarction (MI). We synthesized 3 different sizes of PLGA particles (60 nm, 200 nm, and 1 μm) which were complexed with IGF-1 using electrostatic force to preserve the biological function of IGF-1. Afterward, we injected PLGA-IGF-1 NPs in the heart after MI directly. Compared with the other two larger particles, the 60 nm-sized PLGA-IGF-1 NPs carried more IGF-1 and induced more Akt phosphorylation in cultured cardiomyocytes. PLGA-IGF-1 NPs also prolonged Akt activation in cardiomyocytes up to 24h and prevented cardiomyocyte apoptosis induced by doxorubicin in a dose-dependent manner. In vivo, PLGA-IGF-1 NP treatment significantly retained more IGF-1 in the myocardium than the IGF-1 alone treatment at 2, 6, 8, and 24 h. Akt phosphorylation was detected in cardiomyocytes 24h post-MI only in hearts receiving PLGA-IGF-1 NP treatment, but not in hearts receiving injection of PBS, IGF-1 or PLGA NPs. Importantly, a single intramyocardial injection of PLGA-IGF-1 NPs was sufficient to prevent cardiomyocyte apoptosis (P<0.001), reduce infarct size (P<0.05), and improve left ventricle ejection fraction (P<0.01) 21 days after experimental MI in mice. Our results not only demonstrate the potential of nanoparticle-based technology as a new approach to treating MI, but also have significant implications for translation of this technology into clinical therapy for ischemic cardiovascular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel.

    PubMed

    Zhang, Yanbo; Zhang, Jin; Chang, Fei; Xu, Weiguo; Ding, Jianxun

    2018-07-01

    Cartilage defect repair by hydrogel-based tissue engineering is becoming one of the most potential treatment strategies. In this work, a thermogel of triblock copolymer poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) was prepared as scaffold of bone marrow mesenchymal stem cells (BMMSCs) for repair of full-thickness articular cartilage defect. At first, the copolymer solution showed a reversible sol-gel transition at physiological temperature range, and the mechanical properties of such thermogel were high enough to support the repair of cartilage. Additionally, excellent biodegradability and biocompatibility of the thermogel were demonstrated. By implanting the BMMSC-encapsulated thermogel into the full-thickness articular cartilage defect (5.0 mm in diameter and 4.0 mm in depth) in the rabbit, it was found that the regenerated cartilage integrated well with the surrounding normal cartilage and subchondral bone at 12 weeks post-surgery. The upregulated expression of glycosaminoglycan and type II collagen in the repaired cartilage, and the comparable biomechanical properties with normal cartilage suggested that the cell-encapsulated PLGA-PEG-PLGA thermogel had great potential in serving as the promising scaffold for cartilage regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Size- and pressure-controlled ferromagnetism in LaCoO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Fita, I.; Markovich, V.; Mogilyansky, D.; Puzniak, R.; Wisniewski, A.; Titelman, L.; Vradman, L.; Herskowitz, M.; Varyukhin, V. N.; Gorodetsky, G.

    2008-06-01

    Magnetic properties of nanocrystalline LaCoO3 with particle size of 25, 30, 32, and 38 nm, prepared by the citrate method, were investigated in temperature range 2-320 K, magnetic field up to 50 kOe, and under hydrostatic pressure up to 11 kbar. All nanoparticles exhibit weak ferromagnetism below TC≈85K , in agreement with recent observation on LaCoO3 particles and tensile thin films. It was found that with decreasing particle size, i.e., with increasing the surface to volume ratio, the unit-cell volume increases monotonically due to the surface effect. The ferromagnetic moment increases as well, simultaneously with lattice expansion, whereas TC remains nearly unchanged. On the other hand, an applied hydrostatic pressure suppresses strongly the ferromagnetic phase leading to its full disappearance at 10 kbar, while the TC does not change visibly under pressure. It appears that the ferromagnetism in LaCoO3 nanoparticles is controlled by the unit-cell volume. This clear correlation suggests that the nature of ferromagnetic ground state of LaCoO3 is likely related to orbitally ordered Jahn-Teller active Co3+ ions with intermediate-spin (IS) state, which may persist in the expanded lattice at low temperatures. A robust orbital order presumed among the IS Co3+ species can explain the very stable TC observed for LaCoO3 samples prepared under different conditions: single crystal powders, nanoparticles, and thin films.

  20. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression.

    PubMed

    Luo, Cheng-Lin; Liu, Yu-Qiong; Wang, Peng; Song, Chun-Hua; Wang, Kai-Juan; Dai, Li-Ping; Zhang, Jian-Ying; Ye, Hua

    2016-08-01

    Cervical cancer is a cause of cancer death, making it as the one of the most common cause for death among women globally. Though many studies before have explored a lot for cervical cancer prevention and treatment, there are still a lot far from to know based on the molecular mechanisms. Janus kinase 2 (JAK2) has been reported to play an essential role in the progression of apoptosis, autophagy and proliferation for cells. We loaded gold-quercetin into poly (dl-lactide-co-glycolide) nanoparticles to cervical cancer cells due to the propertities of quercetin in ameliorating cellular processes and the easier absorbance of nanoparticles. Here, in our study, quercetin nanoparticles (NQ) were administrated to cells to investigate the underlying mechanism by which the cervical cancer was regulated. First, JAK2-inhibited carvical cancer cell lines were involved for our experiments in vitro and in vivo. Western blotting, quantitative RT-PCR (qRT-PCR), ELISA, Immunohistochemistry, and flow-cytometric analysis were used to determine the key signaling pathway regulated by JAK2 for cervical cancer progression. And the role of quercetin nanoparticles was determined during the process. Data here indicated that JAK2, indeed, expressed highly in cancer cell lines compared to the normal cervical cells. And apoptosis and autophagy were found in JAK2-inhibited cancer cells through activating Caspase-3, and suppressing Cyclin-D1 and mTOR regulated by Signal Transducer and Activator of Transcription (STAT) 3/5 and phosphatidylinositide 3-kinase/protein kinases (PI3K/AKT) signaling pathway. The cervical cancer cells proliferation was inhibited. Further, tumor size and weight were reduced by inhibition of JAK2 in vivo experiments. Notably, administration with quercetin nanoparticles displayed similar role with JAK2 suppression, which could inhibit cervical cancer cells proliferation, invasion and migration. In addition, autophogy and apoptosis were induced, promoting cervical cancer cell

  1. Materials to Engineer the Immune System

    DTIC Science & Technology

    2011-04-01

    alone (Lysate), or with GM-CSF and lysate (GM+Lys), and 14 days later 200,000 NT1 cells were injected into the mammary pad. Mice survival was...followed over time. Fig. 2. Therapeutic vaccination against NT1 transplantable tumors. NT1 cells (200,000) were injected into the mammary...Engineer the Immune System David Mooney Harvard College Cambridge, MA 02136 Dendritic cells , GM-CSF, CpG, poly(lactide-co-glycolide) The

  2. Enhancement of Antiviral Agents Through the Use of Controlled-Release Technology.

    DTIC Science & Technology

    DL-lactide-co-glycolide) to be used as the polymeric excipients in the microencapsulation work. In addition, we have actively pursued development and testing of poly(I.C) and Je vaccine microcapsule formulations....of this research program are a) To develop a programmed-release delivery system ( microcapsule system) designed to enhance the immunogenic potential of...release microcapsule delivery systems that will enhance the effects of the following immune modulators and antiviral agents: muramyl tripeptide (MTP

  3. Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide.

    PubMed

    Schäfer, Pascal M; Fuchs, Martin; Ohligschläger, Andreas; Rittinghaus, Ruth; McKeown, Paul; Akin, Enver; Schmidt, Maximilian; Hoffmann, Alexander; Liauw, Marcel A; Jones, Matthew D; Herres-Pawlis, Sonja

    2017-09-22

    New zinc guanidine complexes with N,O donor functionalities were prepared, characterized by X-Ray crystallography, and examined for their catalytic activity in the solvent-free ring-opening polymerization (ROP) of technical-grade rac-lactide at 150 °C. All complexes showed a high activity. The fastest complex [ZnCl 2 (DMEGasme)] (C1) produced colorless poly(lactide) (PLA) after 90 min with a conversion of 52 % and high molar masses (M w =69 100, polydispersity=1.4). The complexes were tested with different monomer-to-initiator ratios to determine the rate constant k p . Furthermore, a polymerization with the most active complex C1 was monitored by in situ Raman spectroscopy. Overall, conversion of up to 90 % can be obtained. End-group analysis was performed to clarify the mechanism. All four complexes combine robustness against impurities in the lactide with high polymerization rates, and they represent the fastest robust lactide ROP catalysts to date, opening new avenues to a sustainable ROP catalyst family for industrial use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO2.

    PubMed

    Jhong, Huei-Ru Molly; Tornow, Claire E; Kim, Chaerin; Verma, Sumit; Oberst, Justin L; Anderson, Paul S; Gewirth, Andrew A; Fujigaya, Tsuyohiko; Nakashima, Naotoshi; Kenis, Paul J A

    2017-11-17

    Multiple approaches will be needed to reduce the atmospheric CO 2 levels, which have been linked to the undesirable effects of global climate change. The electroreduction of CO 2 driven by renewable energy is one approach to reduce CO 2 emissions while producing chemical building blocks, but current electrocatalysts exhibit low activity and selectivity. Here, we report the structural and electrochemical characterization of a promising catalyst for the electroreduction of CO 2 to CO: Au nanoparticles supported on polymer-wrapped multiwall carbon nanotubes. This catalyst exhibits high selectivity for CO over H 2 : 80-92 % CO, as well as high activity: partial current density for CO as high as 160 mA cm -2 . The observed high activity, originating from a high electrochemically active surface area (23 m 2  g -1 Au), in combination with the low loading (0.17 mg cm -2 ) of the highly dispersed Au nanoparticles underscores the promise of this catalyst for efficient electroreduction of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide) nanofibrous membrane scaffolds.

    PubMed

    Inanç, Bülend; Arslan, Y Emre; Seker, Sükran; Elçin, A Eser; Elçin, Y Murat

    2009-07-01

    Periodontal tissue engineering is expected to overcome the limitations associated with the existing regenerative techniques for the treatment of periodontal defects involving alveolar bone, cementum, and periodontal ligament. Cell-based tissue engineering approaches involve the utilization of in vitro expanded cells with regenerative capacity and their delivery to the appropriate sites via biomaterial scaffolds. The aim of this study was to establish living periodontal ligament cell-containing structures on electrospun poly(DL-lactic-co-glycolic acid) (PLGA) nanofiber membrane scaffolds, assess their viability and characteristics, and engineer multilayered structures amenable to easy handling. Human periodontal ligament (hPDL) cells were expanded in explant culture and then characterized morphologically and immunohistochemically. PLGA nanofiber membranes were prepared by the electrospinning process; mechanical tensile properties were determined, surface topography, nanofiber size, and porosity status were investigated with SEM. Cells were seeded on the membranes at approximately 50,000 cell/cm(2) and cultured for 21 days either in expansion or in osteogenic induction medium. Cell adhesion and viability were demonstrated using SEM and MTT, respectively, and osteogenic differentiation was determined with IHC and immunohistomorphometric evaluation of osteopontin, osteocalcin, and bone sialoprotein marker expression. At days 3, 6, 9, and 12 additional cell/membrane layers were deposited on the existing ones and multilayered hybrid structures were established. Results indicate the feasibility of periodontal ligament cell-containing tissue-like structures engineering with PDL cells and electrospun nanofiber PLGA scaffolds supporting cell adhesion, viability and osteogenic differentiation properties of cells in hybrid structures amenable to macroscopic handling.

  6. Antitumor efficiency of D-alpha-tocopheryl polyethylene glycol 1000 succinate-b-poly(epsilon-caprolactone-ran-lactide) nanoparticle-based delivery of docetaxel in mice bearing cervical cancer.

    PubMed

    Wang, Zhongyuan; Zeng, Xiaowei; Ma, Yaping; Liu, Jian; Tang, Xiaolong; Gao, Yongfeng; Liu, Kewei; Zhang, Jinxie; Ming, Pinghong; Huang, Laiqiang; Mei, Lin

    2014-08-01

    Pharmaceutical nanotechnology holds potential in cancer chemotherapy. In this research, the docetaxel-loaded D-alpha-tocopheryl polyethylene glycol 1000 succinate-b-poly(epsilon-caprolactone-ran-lactide) (TPGS-b-(PCL-ran-PLA)) nanoparticles were prepared by a modified nanoprecipitation method and then the particle size, surface morphology, nanoparticle stability, in vitro drug release and cellular uptake of nanoparticles were characterized. Finally, we evaluated the therapeutic effects of nanoparticle formulation in comparison with Taxotere both in vitro and in vivo. The size of TPGS-b-(PCL-ran-PLA) nanoparticles was about 150 nm and much smaller than PCL nanoparticles (about 185 nm) and the absolute value of zeta potential was higher than PCL nanoparticles (16.49 mV vs. 13.17 mV). FESEM images further confirmed the morphology and size of nanoparticles. The drug-loaded nanoparticles were considered to be stable, showing no change in the particle size and surface charge during three-month storage of its aqueous solution. In vitro drug release of TPGS-b-(PCL-ran-PLA) nanoparticles was much faster than PCL and PCL-TPGS nanoparticles. The cumulative drug release of docetaxel-loaded TPGS-b-(PCL-ran-PLA), PCL-TPGS, and PCL NPs were 38.00%, 34.48% and 29.04%, respectively. TPGS-b-(PCL-ran-PLA) nanoparticles showed an obvious increase of cellular uptake. Due to the advantages of TPGS-b-(PCL-ran-PLA) nanoparticles, it could achieve significantly higher level of cytotoxicity in vitro and better inhibition effect of tumor growth on xenograft BALB/c nude mice tumor model than commercial Taxotere at the same dose (1.49-fold more effective). The TPGS-b-(PCL-ran-PLA) could be used as a novel and potential biodegradable polymeric material for nanoformulation in cervical cancer chemotherapy.

  7. Effect of shell thickness on the exchange bias blocking temperature and coercivity in Co-CoO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Reethu, K.; Thanveer, T.; Myint, M. T. Z.; Al-Harthi, S. H.

    2017-08-01

    The exchange bias blocking temperature distribution of naturally oxidized Co-CoO core-shell nanoparticles exhibits two distinct signatures. These are associated with the existence of two magnetic entities which are responsible for the temperature dependence of an exchange bias field. One is from the CoO grains which undergo thermally activated magnetization reversal. The other is from the disordered spins at the Co-CoO interface which exhibits spin-glass-like behavior. We investigated the oxide shell thickness dependence of the exchange bias effect. For particles with a 3 nm thick CoO shell, the predominant contribution to the temperature dependence of exchange bias is the interfacial spin-glass layer. On increasing the shell thickness to 4 nm, the contribution from the spin-glass layer decreases, while upholding the antiferromagnetic grain contribution. For samples with a 4 nm CoO shell, the exchange bias training was minimal. On the other hand, 3 nm samples exhibited both the training effect and a peak in coercivity at an intermediate set temperature Ta. This is explained using a magnetic core-shell model including disordered spins at the interface.

  8. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    PubMed

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  9. Cyclopropenimine superbases: Competitive initiation processes in lactide polymerization

    DOE PAGES

    Stukenbroeker, Tyler S.; Bandar, Jeffrey S.; Zhang, Xiangyi; ...

    2015-07-30

    Cyclopropenimine superbases were employed in this study to catalyze the ring-opening polymerization of lactide. Polymerization occurred readily in the presence and absence of alcohol initiators. Polymerizations in the absence of alcohol initiators revealed a competitive initiation mechanism involving deprotonation of lactide by the cyclopropenimine to generate an enolate. NMR and MALDI-TOF analysis of the poly(lactides) generated from cyclopropenimines in the absence of alcohol initiators showed acylated lactide and hydroxyl end groups. Finally, model studies and comparative experiments with guanidine and phosphazene catalysts revealed the subtle influence of the nature of the superbase on competitive initiation processes.

  10. Ferromagnetism in LaCoO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Shiming; Shi, Lei; Zhao, Jiyin; He, Laifa; Yang, Haipeng; Zhang, Shangming

    2007-11-01

    We have investigated the structural and magnetic properties of LaCoO3 nanoparticles prepared by a sol-gel method. A ferromagnetic order with TC˜85K has been observed in the nanoparticles. The infrared spectra give evidence for a stabilizing of higher spin state and a reduced Jahn-Teller distortion in the nanoparticles with respect to the bulk LaCoO3 , which is consistent with the recent reports in the strained films [Phys. Rev. B 75, 144402 (2007)] and proposed to be the possible origin of the observed ferromagnetic order in LaCoO3 .

  11. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility.

    PubMed

    Xiang, Yiming; Li, Jun; Liu, Xiangmei; Cui, Zhenduo; Yang, Xianjin; Yeung, K W K; Pan, Haobo; Wu, Shuilin

    2017-10-01

    Poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating were successfully prepared on the surface of Ti metallic implants using a hydrothermal method and subsequent spin-coating of mixtures of poly(lactic-co-glycolic acid) and silver nanoparticles. The poly(lactic-co-glycolic acid)/Ag/ZnO nanorods coating exhibited excellent antibacterial efficacy of over 96% against both Staphylococcus aureus and Escherichia coli when the initial content of Ag nanoparticles was over 3wt%. In addition, the release of both silver and zinc could last for over a hundred days due to the enwrapping of poly(lactic-co-glycolic acid). Proliferation of mouse calvarial cells exhibited minimal cytotoxicity on the poly(lactic-co-glycolic acid)/Ag/ZnO coating with an initial content of Ag nanoparticles of 1wt% and 3wt%, while it inhibited cell proliferation once this value was increased to 6wt%. The results revealed that this poly(lactic-co-glycolic acid)/Ag/ZnO composite could provide a long-lasting antibacterial approach and good cytocompatibility, thus exhibiting considerable potential for biomedical application in orthopedic and dental implants with excellent self-antibacterial activity and good biocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biodegradable Bone Repair Materials: Synthetic Polymers and Ceramics,

    DTIC Science & Technology

    1985-01-01

    Beasley used PLA sutures (O.35mm In diameter) for fixation of mandibular symphyseal fractures In Hacaca mulatta 17 (rhesus) monkeys. Cutright and his...proteolipid to 50:50 poly (DL-lactide-co-glycolide) for treatment of mandibular discontinuity defects in adult dogs .3 5 Radiographic and clinical evidence...Porous TCP has been ap- *Q plied in block form with some success in mandibular discontinui- 67 ties in dogs . The bloresorption of porous TCP Is assumed to

  13. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers

    NASA Technical Reports Server (NTRS)

    Luu, Y. K.; Kim, K.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M.; Hadjiargyou, M. (Principal Investigator)

    2003-01-01

    The present work utilizes electrospinning to fabricate synthetic polymer/DNA composite scaffolds for therapeutic application in gene delivery for tissue engineering. The scaffolds are non-woven, nano-fibered, membranous structures composed predominantly of poly(lactide-co-glycolide) (PLGA) random copolymer and a poly(D,L-lactide)-poly(ethylene glycol) (PLA-PEG) block copolymer. Release of plasmid DNA from the scaffolds was sustained over a 20-day study period, with maximum release occurring at approximately 2 h. Cumulative release profiles indicated amounts released were approximately 68-80% of the initially loaded DNA. Variations in the PLGA to PLA-PEG block copolymer ratio vastly affected the overall structural morphology, as well as both the rate and efficiency of DNA release. Results indicated that DNA released directly from these electrospun scaffolds was indeed intact, capable of cellular transfection, and successfully encoded the protein beta-galactosidase. When tested under tensile loads, the electrospun polymer/DNA composite scaffolds exhibited tensile moduli of approximately 35 MPa, with approximately 45% strain initially. These values approximate those of skin and cartilage. Taken together, this work represents the first successful demonstration of plasmid DNA incorporation into a polymer scaffold using electrospinning.

  14. Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass.

    PubMed

    Jarvis, Maria; Arnold, Michael; Ott, Jenna; Pant, Kapil; Prabhakarpandian, Balabhaskar; Mitragotri, Samir

    2017-09-01

    In vitro and in vivo assessment of safety and efficacy are the essential first steps in developing nanoparticle-based therapeutic systems. However, it is often challenging to use the knowledge gained from in vitro studies to predict the outcome of in vivo studies since the complexity of the in vivo environment, including the existence of flow and a multicellular environment, is often lacking in traditional in vitro models. Here, we describe a microfluidic co-culture model comprising 4T1 breast cancer cells and EA.hy926 endothelial cells under physiological flow conditions and its utilization to assess the penetration of therapeutic nanoparticles from the vascular compartment into a cancerous cell mass. Camptothecin nanocrystals (∼310 nm in length), surface-functionalized with PEG or folic acid, were used as a test nanocarrier. Camptothecin nanocrystals exhibited only superficial penetration into the cancerous cell mass under fluidic conditions, but exhibited cytotoxicity throughout the cancerous cell mass. This likely suggests that superficially penetrated nanocrystals dissolve at the periphery and lead to diffusion of molecular camptothecin deep into the cancerous cell mass. The results indicate the potential of microfluidic co-culture devices to assess nanoparticle-cancerous cell interactions, which are otherwise difficult to study using standard in vitro cultures.

  15. Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo.

    PubMed

    Das, Jayeeta; Das, Sreemanti; Paul, Avijit; Samadder, Asmita; Bhattacharyya, Soumya Sundar; Khuda-Bukhsh, Anisur Rahman

    2014-03-21

    Activation of signal transducer and activator of transcription3 (STAT3) is a hallmark of several types of cancer. Failure to inhibit STAT3 expression by injection of siRNA for STAT3 directly to Balb/c mice led us to adopt alternative means. We formulated nanoparticle-based encapsulation of siRNA (NsiRNA) with polyethylenimine (PEI) and poly(lactide-co-glycolide) (PLGA) and characterized them. The siRNA treated and NsiRNA-treated cells were subjected separately to different assay systems. We also checked if NsiRNA could cross the blood brain barrier (BBB). Cell viability reduced dramatically in A549 cells after NsiRNA administration (23.89% at 24 h), thereby implicating considerable silencing of STAT3 by NsiRNA, but not after siRNA administration. Compared to controls, a significant decrease in expression of IL-6 and the angiogenic factor (VEGF) and increase in Caspase 3 activity was observed with corresponding regression in tumor growth in mice treated with NsiRNA. NsiRNA induced apoptosis of cells and arrested cells at G1/G0 stage, both in vitro and in vivo. Apoptosis was also verified by Annexin-V-FITC/Propidium-iodide staining. NsiRNA could cross blood brain barrier. Overall results revealed PEI-PLGA to be a promising carrier for delivery of siRNA targeting STAT3 expression, which can be utilized as an effective strategy for cancer therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    PubMed Central

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  17. The inhibitory effect of disulfiram encapsulated PLGA NPs on tumor growth: Different administration routes.

    PubMed

    Fasehee, Hamidreza; Zarrinrad, Ghazaleh; Tavangar, Seyed Mohammad; Ghaffari, Seyed Hamidollah; Faghihi, Shahab

    2016-06-01

    The strong anticancer activity of disulfiram is hindered by its rapid degradation in blood system. A novel folate-receptor-targeted poly (lactide-co-glycolide) (PLGA)-polyethylene glycol (PEG) nanoparticle (NP) is developed for encapsulation and delivery of disulfiram into breast cancer tumor using passive (EPR effect) and active (folate receptor) targeting. The anticancer activity of disulfiram and its effect on caspase-3 activity and cell cycle are studied. The administration of encapsulated PLGA NPs using intra-peritoneal, intravenous and intra-tumor routes is investigated using animal model. Disulfiram shows strong cytotoxicity against MCF7 cell line. The activity of caspase-3 inhibited with disulfiram via dose dependent manner while the drug causes cell cycle arrest in G0/G1 and S phase time-dependently. The encapsulated disulfiram shows higher activity in apoptosis induction as compared to free drug. In nontoxic dose of encapsulated disulfiram, the highest and lowest efficacy of NPs in tumor growth inhibition is observed for intravenous injection and intraperitoneal injection. It is suggested that administration of disulfiram by targeted PLGA nanoparticles using intravenous injection would present an alternative therapeutic approach for solid tumor treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles.

    PubMed

    Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna

    2017-11-01

    Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

  19. Multilayered co-electrospun scaffold containing silver sulfadiazine as a prophylactic against osteomyelitis: Characterization and biological in vitro evaluations

    NASA Astrophysics Data System (ADS)

    Heo, Min; Lee, Sang Jin; Heo, Dong Nyoung; Lee, Donghyun; Lim, Ho-Nam; Moon, Ji-Hoi; Kwon, Il Keun

    2018-02-01

    Bone related-bacterial diseases including wound infections and osteomyelitis (OM) still remain a serious problem. In this study, a hybrid co-electrospun membrane consisting of gelatin (GE) and Poly(D,L-lactide-co-glycolide) (PLGA) fibrous sheets containing different concentrations (0, 0.1, 0.5, and 1 wt%) of silver sulfadiazine (AgSD) was designed to provide for improved antimicrobial effect and biocompatibility. Well-defined products were characterized by physicochemical analyses. For biological in vitro assessments, mouse osteoblastic MC3T3-E1 cells were cultured on the scaffolds. This test was done in order to assay for cytotoxicity by measuring cell proliferation. Antibacterial activity against gram-negative Pseudomonas aeruginosa (P. aeruginosa), gram-positive Staphylococcus aureus (S. aureus), and Methicillin-resistant Staphylococcus aureus (MRSA) was also tested. These biological tests showed that GE/PLGA-AgSD scaffolds had good cell viability, as well as effective antimicrobial activity. These remarkable results suggest that GE/PLGA-AgSD scaffolds possess great potential for the treatment of OM and can find many uses in the field of bone tissue engineering.

  20. Ridge Preservation After Maxillary Third Molar Extraction Using 30% Porosity PLGA/HA/β-TCP Scaffolds With and Without Simvastatin: A Pilot Randomized Controlled Clinical Trial.

    PubMed

    Noronha Oliveira, Miguel; Rau, Levy Hermes; Marodin, Aline; Corrêa, Márcio; Corrêa, Letícia Ruhland; Aragones, Aguedo; Magini, Ricardo de Souza

    2017-12-01

    To evaluate clinically and radiographically, in humans, the healing of maxillary third molars postextraction sockets after application of different ridge preservation techniques 3 months after tooth extraction. Twenty-six sockets (13 patients) were randomly assigned to 4 treatment modalities: deproteinized bovine bone mineral with 10% collagen (DBBM-C), poly(D,L-lactide-co-glycolide) with hydroxyapatite/β-TCP scaffold (PLGA/HA), PLGA/HA/β-TCP with 2.0% simvastatin scaffold (PLGA/HA/S), and spontaneous healing (control). Clinical complications were assessed, and cone-beam computed tomographies were taken in 5 patients 3 months after surgeries. For statistical purposes, the Fisher exact test was used (P < 0.05). After 3 months, 6 of 9 grafts from the PLGA/HA group were lost (P < 0.05). PLGA/HA/S' loss was only 2 of 8 (P > 0.05), but no loss was observed in the DBBM-C group. Pain was present in 3 of 8 sites that lost the graft (37.5%) (P > 0.05) and infection in 1 of 8 (12.5%) (P > 0.05), with these only occurring in the PLGA/HA group. Poly (D, L-lactide-co-glycolide) with hydroxyapatite/β-TCP (PLGA/HA/β-TCP) scaffolds, with and without simvastatin, failed to obtain the initial expected results and presented more complications. Scaffolds with simvastatin showed to be superior, with less clinical complications than scaffolds without simvastatin.

  1. Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel

    PubMed Central

    Ci, Tianyuan; Chen, Liang; Yu, Lin; Ding, Jiandong

    2014-01-01

    For cancer chemotherapy, a tumor regression without any surgical resection and severe side effects is greatly preferred to merely slowing down the growth of tumors. Here, we report a formulation composed of irinotecan (IRN) and poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA). IRN is a clinically used antitumor drug with active and inactive chemical forms in equilibrium, and the major form at physiological conditions is inactive but still has side effects. The aqueous solution of the PLGA-PEG-PLGA is a sol at room temperature and physically gels at body temperature, forming a thermogel. We successfully mixed this moderately soluble drug into the amphiphilic copolymer aqueous solution for the first time. The mixture was subcutaneously injected into nude mice with xenografted SW620 human colon tumors. Excellent in vivo antitumor efficacy was observed in the group that received the IRN-loaded thermogel. The tumor was significantly regressed after being treated with the IRN/thermogel, and the side effects (blood toxicity and body weight decrease) were very mild. These results might be attributed to the ideal sustained release profile and period of release of the drug from the thermogel and to the significant enhancement of the fraction of the active form of the drug by the thermogel. PMID:24980734

  2. Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel

    NASA Astrophysics Data System (ADS)

    Ci, Tianyuan; Chen, Liang; Yu, Lin; Ding, Jiandong

    2014-07-01

    For cancer chemotherapy, a tumor regression without any surgical resection and severe side effects is greatly preferred to merely slowing down the growth of tumors. Here, we report a formulation composed of irinotecan (IRN) and poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA). IRN is a clinically used antitumor drug with active and inactive chemical forms in equilibrium, and the major form at physiological conditions is inactive but still has side effects. The aqueous solution of the PLGA-PEG-PLGA is a sol at room temperature and physically gels at body temperature, forming a thermogel. We successfully mixed this moderately soluble drug into the amphiphilic copolymer aqueous solution for the first time. The mixture was subcutaneously injected into nude mice with xenografted SW620 human colon tumors. Excellent in vivo antitumor efficacy was observed in the group that received the IRN-loaded thermogel. The tumor was significantly regressed after being treated with the IRN/thermogel, and the side effects (blood toxicity and body weight decrease) were very mild. These results might be attributed to the ideal sustained release profile and period of release of the drug from the thermogel and to the significant enhancement of the fraction of the active form of the drug by the thermogel.

  3. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy

    PubMed Central

    Zhao, Yiqiao; Yu, Hua; Zhou, Haiyu; Chen, Meiwan

    2017-01-01

    Mitoxantrone (MIT) is an anticancer agent with photosensitive properties that is commonly used in various cancers. Multidrug resistance (MDR) effect has been an obstacle to using MIT for cancer therapy. Photochemical internalization, on account of photodynamic therapy, has been applied to improve the therapeutic effect of cancers with MDR effect. In this study, an MIT-poly(ε-caprolactone)-pluronic F68-poly(ε-caprolactone)/poly(d,l-lactide-co-glycolide)–poly(ethylene glycol)–poly(d,l-lactide-co-glycolide) (MIT-PFP/PPP) mixed micelles system was applied to reverse the effect of MDR in MCF-7/ADR cells via photochemical reaction when exposed to near-infrared light. MIT-PFP/PPP mixed micelles showed effective interaction with near-infrared light at the wavelength of 660 nm and exerted great cytotoxicity in MCF-7/ADR cells with irradiation. Furthermore, MIT-PFP/PPP mixed micelles could improve reactive oxygen species (ROS) levels, decrease P-glycoprotein activity, and increase the cellular uptake of drugs with improved intracellular drug concentrations, which induced cell apoptosis in MCF-7/ADR cells under irradiation, despite MDR effect, as indicated by the increased level of cleaved poly ADP-ribose polymerase. These findings suggested that MIT-PFP/PPP mixed micelles may become a promising strategy to effectively reverse the MDR effect via photodynamic therapy in breast cancer. PMID:28919756

  4. “Uncontrolled” Preparation of Disperse Poly(lactide)- block -poly(styrene)- block -poly(lactide) for Nanopatterning Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderlaan, Marie E.; Hillmyer, Marc A.

    We report the facile synthesis of well-defined ABA poly(lactide)-block-poly(styrene)-block-poly(lactide) (LSL) triblock copolymers having a disperse poly(styrene) midblock (Ð = 1.27–2.24). The direct synthesis of telechelic α,ω-hydroxypoly(styrene) (HO-PS-OH) midblocks was achieved using a commercially available difunctional free radical diazo initiator 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide]. Poly(lactide) (PLA) end blocks were subsequently grown from HO-PS-OH macroinitiators via ring-opening transesterification polymerization of (±)-lactide using the most common and prevalent catalyst system available, tin(II) 2-ethylhexanoate. Fourteen LSL triblock copolymers with total molar masses Mn,total = 24–181 kg/mol and PLA volume fractions fPLA = 0.15–0.68 were synthesized and thoroughly characterized. The self-assembly of symmetric triblocks was analyzed in themore » bulk using small-angle X-ray scattering and in thin films using grazing incidence small-angle X-ray scattering and atomic force microscopy. We demonstrate both the bulk and thin film self-assembly of LSL disperse triblocks gave well-organized nanostructures with uniform domain sizes suitable for nanopatterning applications.« less

  5. Characterization of rabies pDNA nanoparticulate vaccine in poloxamer 407 gel.

    PubMed

    Bansal, Amit; Wu, Xianfu; Olson, Victoria; D'Souza, Martin J

    2018-07-10

    Plasmid DNA (pDNA) vaccines have the potential for protection against a wide range of diseases including rabies but are rapid in degradation and poor in uptake by antigen-presenting cells. To overcome the limitations, we fabricated a pDNA nanoparticulate vaccine. The negatively charged pDNA was adsorbed onto the surface of cationic PLGA (poly (d, l-lactide-co-glycolide))-chitosan nanoparticles and were used as a delivery vehicle. To create a hydrogel for sustainable vaccine release, we dispersed the pDNA nanoparticles in poloxamer 407 gel which is liquid at 4 °C and turns into soft gels at 37 °C, providing ease of administration and preventing burst release of pDNA. Complete immobilization of pDNA to cationic nanoparticles was achieved at a pDNA to nanoparticles ratio (P/N) of 1/50. Cellular uptake of nanoparticles was both time and concentration dependent and followed a saturation kinetics with V max of 11.389 µg/mL h and K m of 139.48 µg/mL. The in vitro release studies showed the nanoparticulate vaccine has a sustained release for up to 24 days. In summary, pDNA PLGA-chitosan nanoparticles were non-cytotoxic, their buffering capacity and cell uptake were enhanced, and sustained the release of pDNA. We expect our pDNA vaccine's potency will be greatly improved in the animal studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Investigation of novel inverted NiO@NixCo1-xO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Hasan, Samiul; Mayanovic, R. A.; Benamara, Mourad

    2018-05-01

    Inverse core-shell nanoparticles, comprised of an antiferromagnetic (AFM) core covered by a ferromagnetic (FM) or ferrimagnetic (FiM) shell, are of current interest due to their different potential application and due to the tunability of their magnetic properties. The antiferromagnetic nature of NiO and high Néel temperature (523 K) makes this material well suited for inverse core-shell nanoparticle applications. Our primary objective in this project has been to synthesize and characterize inverted core-shell nanoparticles (CSNs) comprised of a NiO (AFM) core and a shell consisting of a NixCo1-xO (FiM) compound. The synthesis of the CSNs was made using a two-step process. The NiO nanoparticles were synthesized using a chemical reaction method. Subsequently, the NiO nanoparticles were used to grow the NiO@NixCo1-xO CSNs using our hydrothermal nano-phase epitaxy method. XRD structural characterization shows that the NiO@NixCo1-xO CSNs have the rock salt cubic crystal structure. SEM-EDS data indicates the presence of Co in the CSNs. Magnetic measurements show that the CSNs exhibit AFM/FiM characteristics with a small coercivity field of 30 Oe at 5 K. The field cooled vs zero field cooled hysteresis loop measurements show a magnetization axis shift which is attributed to the exchange bias effect between the AFM NiO core and an FiM NixCo1-xO shell of the CSNs. Our ab initio based calculations of the NixCo1-xO rock salt structure confirm a weak FiM character and a charge transfer insulator property of the compound.

  7. Thermal activation in Co/Sb nanoparticle-multilayer thin films

    NASA Astrophysics Data System (ADS)

    Madden, Michael R.

    Multilayer "Co" /"Sb" thin films created via electron-beam physical vapor deposition are known to exhibit thermally activated dynamics. Scanning tunneling microscopy has indicated that the "Co" forms nanoparticles within an "Sb" matrix during deposition and subsequently forms nanowires by way of NP migration within the interstices of the confining layers. The electrical resistance of these systems decays during this irreversible aging process in a manner well-modeled by an Arrhenius law. Presently, this phenomenon is shown to possess some degree of tunability with respect to "Co" layer thickness tCo as well as deposition temperature Tdep , whereby characteristic timescales increase with either parameter. Furthermore, fluctuation timescales and activation energies seem to decrease and increase respectively with increasing t Co. An easily calibrated, one-time-use, time-temperature switch based on such systems lies within the realm of plausibility. The results presented here can be considered to be part of an ongoing development of the concept.

  8. Current Progress in Gene Delivery Technology Based on Chemical Methods and Nano-carriers

    PubMed Central

    Jin, Lian; Zeng, Xin; Liu, Ming; Deng, Yan; He, Nongyue

    2014-01-01

    Gene transfer methods are promising in the field of gene therapy. Current methods for gene transfer include three major groups: viral, physical and chemical methods. This review mainly summarizes development of several types of chemical methods for gene transfer in vitro and in vivo by means of nano-carriers like; calcium phosphates, lipids, and cationic polymers including chitosan, polyethylenimine, polyamidoamine dendrimers, and poly(lactide-co-glycolide). This review also briefly introduces applications of these chemical methods for gene delivery. PMID:24505233

  9. Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Yan; Liu, Yanqin; Zhang, Zhe; Dong, Wenkui; Lei, Ziqiang

    2015-01-01

    To improve the electrocatalytic activity of Pd for ethanol oxidation, hybrid NiCoOx adjacent to Pd catalyst (Pd-NiCoOx/C) is successfully synthesized. Physical characterization shows NiCoOx is closely adjacent to Pd nanoparticles in Pd-NiCoOx/C catalyst, which leads to Strong Metal-Support Interactions (SMSI) between the NiCoOx and Pd nanoparticles, in favor of the electrocatalytic properties. The Pd-NiCoOx/C catalyst is estimated to own larger electrochemically active surface area than Pd/C and Pd-NiO/C catalysts. Moreover, compared to Pd/C catalyst, the onset potential of Pd-NiCoOx/C catalyst is negative 40 mV for ethanol oxidation. Noticeably, the current density of Pd-NiCoOx/C catalyst is 2.05 and 1.43 times higher contrasted to Pd/C and Pd-NiO/C catalysts accordingly. Importantly, the Pd-NiCoOx/C catalyst exhibits better stability during ethanol oxidation, which is a promising electrocatalyst for application in direct alkaline alcohol fuel cells.

  10. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    DOE PAGES

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; ...

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improvesmore » their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO 2 shell.« less

  11. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration

    PubMed Central

    Wang, Zi; Lin, Ming; Xie, Qing; Sun, Hao; Huang, Yazhuo; Zhang, DanDan; Yu, Zhang; Bi, Xiaoping; Chen, Junzhao; Wang, Jing; Shi, Wodong; Gu, Ping; Fan, Xianqun

    2016-01-01

    Background Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF) is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration. Methods Hybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs) were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated. Results The SF/PLCL (50/50) scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50) scaffold promoted the osteogenic differentiation of hADSCs by elevating the expression levels of osteogenic marker genes such as BSP, Ocn, Col1A1, and OPN and enhanced ECM mineralization. In vivo assays showed that SF/PLCL (50/50) scaffold improved the repair of the critical-sized calvarial defect in rats, resulting in increased bone volume, higher trabecular number, enhanced bone mineral density, and increased new bone areas, compared with the pure PLCL scaffold. Conclusion The SF/PLCL (50/50) nanofibrous scaffold facilitated hADSC proliferation and osteogenic differentiation in

  12. PLGA nanoparticles for the oral delivery of 5-Fluorouracil using high pressure homogenization-emulsification as the preparation method and in vitro/in vivo studies.

    PubMed

    Li, XueMing; Xu, YuanLong; Chen, GuoGuang; Wei, Ping; Ping, QiNeng

    2008-01-01

    The objective of the present study was to incorporate the hydrophilic anti-cancer drug 5-Fluorouracil(5-FU) into poly(lactide-co-glycolide) (PLGA) nanoparticles(NP) to improve the oral bioavailability. Owing to the high solubility of 5-FU in basic water, the water-in-oil-in-water (w/o/w) emulsification process has been chosen as one of the most appropriate method for the encapsulation of 5-FU, and the ammonia solution was used as the inner aqueous phase solvent to increase the solubility of 5-FU. In order to reach submicron size as well as increasing the grade of monodispersity compared to previous preparation techniques, we prepared 5-FU loaded PLGA-NP by a high-pressure emulsification-solvent evaporation process. The PLGA-NPs were characterized with respect to their morphology, particle size, size distribution, 5-FU encapsulation efficiency, in vitro and in vivo studies in rats. In vitro release of 5-FU from nanoparticles appeared to have two components with an initial rapid release due to the surface associated drug and followed by a slower exponential release of 5-FU, which was dissolved in the core. The in vivo research was studied in male Sprague-Dawley rats after an oral 5-FU dose of 45 mg/kg. Single oral administration of 5-FU loaded PLGA-NP to rats produced bioavailability, which was statistically higher than 5-FU solution as negative control. And the MRT (mean residence time) of 5-FU loaded PLGA-NP was significantly (P < 0.05) modified. Thus, it is possible to design a controlled drug delivery system for oral 5-FU delivery, improving therapy efficiency by possible reduction of time intervals between peroral administrations and reduction of local gastrointestinal side effects.

  13. Synthesis of FeCoNi nanoparticles by galvanostatic technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budi, Setia, E-mail: setiabudi@unj.ac.id; Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Negeri Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta 13220; Hafizah, Masayu Elita

    Soft magnetic nanoparticles of FeCoNi have been becoming interesting objects for many researchers due to its potential application in electronic devices. One of the most promising methods for material preparation is the electrodeposition which capable of growing nanoparticles alloy directly onto the substrate. In this paper, we report our electrodeposition studies on nanoparticles synthesis using galvanostatic electrodeposition technique. Chemical composition of the synthesized FeCoNi was successfully controlled through the adjustment of the applied currents. It is revealed that the content of each element, obtained from quantitative analysis using atomic absorption spectrometer (AAS), could be modified by the adjustment of currentmore » in which Fe and Co content decreased at larger applied currents, while Ni content increased. The nanoparticles of Co-rich FeCoNi and Ni-rich FeCoNi were obtained from sulphate electrolyte at the range of applied current investigated in this work. Broad diffracted peaks in the X-ray diffractograms indicated typical nanostructures of the solid solution of FeCoNi.« less

  14. Chalcone dendrimer stabilized core-shell nanoparticles—a comparative study on Co@TiO2, Ag@TiO2 and Co@AgCl nanoparticles for antibacterial and antifungal activity

    NASA Astrophysics Data System (ADS)

    Vanathi Vijayalakshmi, R.; Praveen Kumar, P.; Selvarani, S.; Rajakumar, P.; Ravichandran, K.

    2017-10-01

    A series of core@shell nanoparticles (Co@TiO2, Ag@TiO2 and Co@AgCl) stabilized with zeroth generation triazolylchalcone dendrimer was synthesized using reduction transmetalation method. The coordination of chalcone dendrimer with silver ions was confirmed by UV-vis spectroscopy. The NMR spectrum ensures the number of protons and carbon signals in the chalcone dendrimer. The prepared samples were structurally characterized by XRD, FESEM and HRTEM analysis. The SAED and XRD analyses exhibited the cubic structure with d hkl   =  2.2 Å, 1.9 Å and 1.38 Å. The antibacterial and antifungal activities of the dendrimer stabilized core@shell nanoparticles (DSCSNPs) were tested against the pathogens Bacillus subtilis, Proteus mirabilis, Candida albicans and Aspergillus nigir from which it is identified that the dendrimer stabilized core shell nanoparticles with silver ions at the shell (Co@AgCl) shows effectively high activity against the tested pathogen following the other core@shell nanoparticles viz Ag@TiO2 and Co@TiO2.

  15. Development and Characterization of Methylene Blue Oleate Salt-Loaded Polymeric Nanoparticles and their Potential Application as a Treatment for Glioblastoma

    PubMed Central

    Castañeda-Gill, JM; Ranjan, AP; Vishwanatha, JK

    2017-01-01

    Glioblastoma (GBM) is an aggressive, grade IV brain tumor that develops from astrocytes located within the cerebrum, resulting in poor prognosis and survival rates following an accepted treatment regimen of surgery, radiation, and temozolomide. Thus, development of new therapeutics is necessary. During the last two decades, methylene blue (MB) has received increased attention as a potential neurotherapeutic due to its duality in brain cancers and neurodegenerative diseases. While MB is capable of easily permeating the blood-brain barrier, its therapeutic concentrations in GBM are known to induce off-target cytotoxicity and thus, another mode of drug delivery must be considered. To this end, encapsulation of formerly unusable compounds into nanoparticles (NPs) made from the biodegradable/biocompatible, FDA approved co-polymer poly (lactide-co-glycolide) (PLGA) has been more commonplace when developing novel therapeutics. In this study, we formulated and characterized Pluronic F68-coated PLGA NPs containing a sodium oleate conjugate of MB (MBOS) via solvent displacement. Conjugation of sodium oleate to MB was shown to reduce its release from PLGA NPs compared to unmodified MB, leading to potential improvements in drug accumulation and therapeutic effectiveness. Our drug-loaded NP preparations, which were ~170 nm in size and had drug loading values of ~2%, were shown to reduce cell viability and cell compartment-specific, as well as overall cell, functions equivalenty, if not more so, when compared to free drug in two GBM cell lines. Following bio-distribution analysis of free MBOS compared to its nano-encapsulated counterpart, drug-loaded NPs were shown to more effectively permeate the BBB, which could lead to improvements in therapeutic effectiveness upon further examination in a tumor-bearing mouse model. Based on these results, we believe that the further development and eventual utilization of this nanoformulation could lead to an effective GBM therapy that could

  16. Field-assisted organization, substrate effects and magnetic behavior of Ag 30Co 70 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Angelakeris, M.; Simeonidis, K.; Tsiaoussis, I.; Crisan, O.

    2010-11-01

    In core-shell systems with non-magnetic core and magnetic shell, the electron transport and magnetic properties are expected to show enhanced behavior due to the particular morpho-structural features of the conductive and magnetic regions. This may lead to novel advanced GMR materials and spin valves. This is the case of core-shell Ag-Co colloidal nanoscale particles that organize into regular arrays. An insight on the structure and morphology of the newly synthesized Ag-Co nanoparticles deposited on different substrates will be presented. The influence of the substrate on different morphologies and organization dynamics is discussed. It is shown that the magnetic behavior of the Ag-Co nanoparticles is highly influenced by the corona-like morphology of Co shell, chemical environment of the magnetic atoms and by the fact that they exhibit strongly reduced coordination due to the surface states.

  17. Ordered Pt 3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao Xia; Hwang, Sooyeon; Pan, Yung-Tin

    Highly ordered Pt alloy structures are proved effective to improve their catalytic activity and stability for the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, we report a new approach to preparing ordered Pt 3Co intermetallic nanoparticles through a facile thermal treatment of Pt nanoparticles supported on Co-doped metal-organic framework (MOF)-derived carbon. In particular, the atomically dispersed Co sites, which are originally embedded into MOF-derived carbon, diffuse into Pt nanocrystals and form ordered Pt 3Co structures. It is very crucial for the formation of the ordered Pt 3Co to carefully control the doping content of Co intomore » the MOFs and the heating temperatures for Co diffusion. The optimal Pt 3Co nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential up to 0.92 V vs. RHE and only losing 12 mV after 30,000 potential cycling between 0.6 and 1.0 V. The highly ordered intermetallic structure was retained after the accelerated stress tests evidenced by atomic-scale elemental mapping. Fuel cell tests further verified the high intrinsic activity of the ordered Pt 3Co catalysts. Unlike the direct use of MOF-derived carbon supports for depositing Pt, we utilized MOF-derived carbon containing atomically dispersed Co sites as Co sources to prepare ordered Pt 3Co intermetallic catalysts. Finally, the new synthesis approach provides an effective strategy to develop active and stable Pt alloy catalysts by leveraging the unique properties of MOFs such as 3D structures, high surface areas, and controlled nitrogen doping.« less

  18. Ordered Pt 3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction

    DOE PAGES

    Wang, Xiao Xia; Hwang, Sooyeon; Pan, Yung-Tin; ...

    2018-06-06

    Highly ordered Pt alloy structures are proved effective to improve their catalytic activity and stability for the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, we report a new approach to preparing ordered Pt 3Co intermetallic nanoparticles through a facile thermal treatment of Pt nanoparticles supported on Co-doped metal-organic framework (MOF)-derived carbon. In particular, the atomically dispersed Co sites, which are originally embedded into MOF-derived carbon, diffuse into Pt nanocrystals and form ordered Pt 3Co structures. It is very crucial for the formation of the ordered Pt 3Co to carefully control the doping content of Co intomore » the MOFs and the heating temperatures for Co diffusion. The optimal Pt 3Co nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential up to 0.92 V vs. RHE and only losing 12 mV after 30,000 potential cycling between 0.6 and 1.0 V. The highly ordered intermetallic structure was retained after the accelerated stress tests evidenced by atomic-scale elemental mapping. Fuel cell tests further verified the high intrinsic activity of the ordered Pt 3Co catalysts. Unlike the direct use of MOF-derived carbon supports for depositing Pt, we utilized MOF-derived carbon containing atomically dispersed Co sites as Co sources to prepare ordered Pt 3Co intermetallic catalysts. Finally, the new synthesis approach provides an effective strategy to develop active and stable Pt alloy catalysts by leveraging the unique properties of MOFs such as 3D structures, high surface areas, and controlled nitrogen doping.« less

  19. Carbidopa/levodopa-loaded biodegradable microspheres: in vivo evaluation on experimental Parkinsonism in rats.

    PubMed

    Arica, Betül; Kaş, H Süheyla; Moghdam, Amir; Akalan, Nejat; Hincal, A Atilla

    2005-02-16

    The purpose of this study was to prepare and characterize injectable carbidopa (CD)/levodopa (LD)-loaded Poly(L-lactides) (L-PLA), Poly(D,L-lactides) (D,L-PLA) and Poly(D,L-lactide-co-glycolide) (PLAGA) microspheres for the intracerebral treatment of Parkinson's disease. The microspheres were prepared by solvent evaporation method. The polymers' (L-PLA, D,L-PLA and PLAGA) concentrations were 10% (w/w) in the organic phase; the emulsifiers [sodium carboxymethylcellulose (NaCMC):sodium oleate (SO) and Polyvinyl alcohol (PVA):SO mixture (4:1 w/v)] concentrations were 0.75% in the aqueous phase. Microspheres were analyzed for morphological characteristics, size distribution, drug loading and in vitro release. The release profile of CD/LD from microspheres was characterized in the range of 12-35% within the first hour of the in vitro release experiment. The efficiency of CD- and LD-encapsulated microspheres to striatal transplantation and the altering of apomorphine-induced rotational behavior in the 6-hydroxydopamine (6-OHDA) unilaterally lesioned rat model were also tested. 6-OHDA/CD-LD-loaded microsphere groups exhibited lower rotation scores than 6-OHDA/Blank microsphere groups as early as 1 week postlesion. These benefits continued throughout the entire experimental period and they were statistically significant during the 1, 2 and 8 weeks (p<0.05). CD/LD-loaded microspheres were specifically prepared to apply as an injectable dosage forms for brain implantation.

  20. Structure and magnetic properties of Fe-Co nanoparticles prepared by polyol method

    NASA Astrophysics Data System (ADS)

    Lam, Nguyen Mau; Thi, Tran Minh; Thanh, Pham Thi; Yen, Nguyen Hai; Dan, Nguyen Huy

    2018-03-01

    Fe100-xCox (x = 25 - 45) nanoparticles have been successfully prepared from FeCl2 and Co(C2H3O2)2 by thermal decomposition process in solution of polyethylene glycol and NaOH (polyol method). The influence of pH level and Co concentration on structure and magnetic properties of the Fe-Co nanoparticles were investigated. The X-Ray Diffraction (XRD) results confirm the formation of a body centered cubic single phase of the Fe(Co) nanoparticles. The Scanning Electron Microscopy (SEM) images show the grain size of the samples is about 60 nm. Saturation magnetization the Fe-Co nanoparticles strongly depends on the Co concentration and pH level in the fabrication process. The optimal pH level and Co concentration for the Fe-Co nanoparticles were found to be 7 and 35 at%, respectively. A quite high saturation magnetization of 228 emu/g has been achieved for the Fe-Co nanoparticles.

  1. Revealing the Atomic Restructuring of Pt–Co Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Huolin L.; Alayoglu, Selim; Tao, Runzhe

    2014-06-11

    We studied Pt-Co bimetallic nanoparticles during oxidation in O2 and reduction in H2 atmospheres using an aberration corrected environmental transmission electron microscope. During oxidation Co migrates to the nanoparticle surface forming a strained epitaxial CoO film. It subsequently forms islands via strain relaxation. The atomic restructuring is captured as a function of time. During reduction cobalt migrates back to the bulk, leaving a monolayer of platinum on the surface.

  2. Formulation of Anti-miR-21 and 4-Hydroxytamoxifen Co-loaded Biodegradable Polymer Nanoparticles and Their Antiproliferative Effect on Breast Cancer Cells

    PubMed Central

    2015-01-01

    Breast cancer is the second leading cause of cancer-related death in women. The majority of breast tumors are estrogen receptor-positive (ER+) and hormone-dependent. Neoadjuvant anti-estrogen therapy has been widely employed to reduce tumor mass prior to surgery. Tamoxifen is a broadly used anti-estrogen for early and advanced ER+ breast cancers in women and the most common hormone treatment for male breast cancer. 4-Hydroxytamoxifen (4-OHT) is an active metabolite of tamoxifen that functions as an estrogen receptor antagonist and displays higher affinity for estrogen receptors than that of tamoxifen and its other metabolites. MicroRNA-21 (miR-21) is a small noncoding RNA of 23 nucleotides that regulates several apoptotic and tumor suppressor genes and contributes to chemoresistance in numerous cancers, including breast cancer. The present study investigated the therapeutic potential of 4-OHT and anti-miR-21 coadministration in an attempt to combat tamoxifen resistance, a common problem often encountered in anti-estrogen therapy. A biodegradable poly(d,l-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG-COOH) copolymer was utilized as a carrier to codeliver 4-OHT and anti-miR-21 to ER+ breast cancer cells. 4-OHT and anti-miR-21 co-loaded PLGA-b-PEG nanoparticles (NPs) were developed using emulsion-diffusion evaporation (EDE) and water-in-oil-in-water (w/o/w) double emulsion methods. The EDE method was found to be best method for 4-OHT loading, and the w/o/w method proved to be more effective for coloading NPs with anti-miR-21 and 4-OHT. The optimal NPs, which were prepared using the double emulsion method, were evaluated for their antiproliferative and apoptotic effects against MCF7, ZR-75-1, and BT-474 human breast cancer cells as well as against 4T1 mouse mammary carcinoma cells. We demonstrated that PLGA-b-PEG NP encapsulation significantly extended 4-OHT’s stability and biological activity compared to that of free 4-OHT. MTT assays indicated that

  3. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses.

    PubMed

    Ma, Wenxue; Chen, Mingshui; Kaushal, Sharmeela; McElroy, Michele; Zhang, Yu; Ozkan, Cengiz; Bouvet, Michael; Kruse, Carol; Grotjahn, Douglas; Ichim, Thomas; Minev, Boris

    2012-01-01

    The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs) loaded with PLGA-NPs encapsulating tumor antigenic peptide(s). The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA). Antigen-specific cytotoxic T lymphocytes (CTLs) were generated and evaluated by CytoTox 96(®) Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI). The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund's adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of -15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs loaded with PLGA-NPs encapsulating peptide induced significantly stronger CTL cytotoxicity than those pulsed with free peptide, while human DCs loaded with PLGA-NPs encapsulating a three-peptide cocktail induced a significantly greater CTL response than those encapsulating a two-peptide cocktail. Most importantly, the peptide dose encapsulated in PLGA-NPs was 63 times less than that emulsified in incomplete Freund's adjuvant, but it induced a more powerful CTL response in vivo. These results demonstrate that the delivery of peptides encapsulated in PLGA-NPs is a promising approach to induce effective antitumor CTL

  4. Effects of Local Delivery of d-amino Acids from Biofilm-dispersive Scaffolds on Infection in Contaminated Rat Segmental Defects

    DTIC Science & Technology

    2013-07-05

    and L-isomers of amino acids (free base form), including alanine, isoleucine, leucine, methionine, phenylalanine , proline, tryptophan, tyrosine, and...lactide (T6C3G1L900) were synthesized using published techniques [33,34]. Appropriate amounts of dried glycerol and ε-caprolactone, glycolide, DL ...Hubbell JA. Rapidly degraded terpolymers of dl -lactide, glyco- lide, and epsilon-caprolactone with increased hydrophilicity by copolymeri- zation with

  5. Ionic liquid-assisted sonochemical preparation of CeO 2 nanoparticles for CO oxidation

    DOE PAGES

    Alammar, Tarek; Noei, Heshmat; Wang, Yuemin; ...

    2014-10-10

    CeO 2 nanoparticles were synthesized via a one-step ultrasound synthesis in different kinds of ionic liquids based on bis(trifluoromethanesulfonylamide, [Tf 2N] –, in combination with various cations including 1-butyl-3-methylimidazolium ([C 4mim] +), 1-ethyl-2,3-dimethylimidazolium ([Edimim] +), butyl-pyridinium([Py 4] +), 1-butyl-1-methyl-pyrrolidinium ([Pyrr 14] +), and 2-hydroxyethyl-trimethylammonium ([N 1112OH] +). Depending on synthetic parameters, such as ionic liquid, Ce(IV) precursor, heating method, and precipitator, formed ceria exhibits different morphologies, varying from nanospheres, nanorods, nanoribbons, and nanoflowers. The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-raymore » spectroscopy (EDX), Raman spectroscopy, and N2 adsorption. The structural and electronic properties of the as-prepared CeO 2 samples were probed by CO adsorption using IR spectroscopy under ultrahigh vacuum conditions. The catalytic activities of CeO 2 nanoparticles were investigated in the oxidation of CO. CeO 2 nanospheres obtained sonochemically in [C 4mim][Tf 2N] exhibit the best performance for low-temperature CO oxidation. As a result, the superior catalytic performance of this material can be related to its mesoporous structure, small particle size, large surface area, and high number of surface oxygen vacancy sites.« less

  6. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Koneracká, M.; Múčková, M.; Závišová, V.; Tomašovičová, N.; Kopčanský, P.; Timko, M.; Juríková, A.; Csach, K.; Kavečanský, V.; Lancz, G.

    2008-05-01

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  7. Biomimetic assembly of polypeptide-stabilized CaCO(3) nanoparticles.

    PubMed

    Zhang, Zhongping; Gao, Daming; Zhao, Hui; Xie, Chenggen; Guan, Guijian; Wang, Dapeng; Yu, Shu-Hong

    2006-05-04

    In this paper, we report a simple polypeptide-directed strategy for fabricating large spherical assembly of CaCO(3) nanoparticles. Stepwise growth and assembly of a large number of nanoparticles have been observed, from the formation of an amorphous liquidlike CaCO(3)-polypeptide precursor, to the crystallization and stabilization of polypeptide-capped nanoparticles, and eventually, the spherical assembly of nanoparticles. The "soft" poly(aspartate)-capping layer binding on a nanoparticle surface resulted in the unusual soft nature of nanoparticle assembly, providing a reservoir of primary nanoparticles with a moderate mobility, which is the basis of a new strategy for reconstructing nanoparticle assembly into complex nanoparticle architectures. Moreover, the findings of the secondary assembly of nanoparticle microspheres and the morphology transformation of nanoparticle assembly demonstrate a flexible and controllable pathway for manipulating the shapes and structures of nanoparticle assembly. In addition, the combination of the polypeptide with a double hydrophilic block copolymer (DHBC) allows it to possibly further control the shape and complexity of the nanoparticle assembly. A clear perspective is shown here that more complex nanoparticle materials could be created by using "soft" biological proteins or peptides as a mediating template at the organic-inorganic interface.

  8. Cryopreservation of tissue engineered constructs for bone.

    PubMed

    Kofron, Michelle D; Opsitnick, Natalie C; Attawia, Mohamed A; Laurencin, Cato T

    2003-11-01

    The large-scale clinical use of tissue engineered constructs will require provisions for its mass availability and accessibility. Therefore, it is imperative to understand the effects of low temperature (-196 degrees C) on the tissue engineered biological system. Initial studies used samples of the osteoblast-like cell line (SaOS-2) adhered to a two-dimensional poly(lactide-co-glycolide) thin film (2D-PLAGA) or a three-dimensional poly(lactide-co-glycolide) sintered microsphere matrix (3D-PLAGA) designed for bone tissue engineering. Experimental samples were tested for their ability to maintain cell viability, following low temperature banking for one week, in solutions of the penetrating cryoprotective agents, dimethylsulfoxide (DMSO), ethylene glycol, and glycerol. Results indicated the DMSO solution yielded the greatest percent cell survival for SaOS-2 cells adhered to both the 2D- and 3D-PLAGA scaffolds; therefore, DMSO was used to cryopreserve mineralizing primary rabbit osteoblasts cells adhered to 2D-PLAGA matrices for 35 days. Results indicated retention of the extracellular matrix architecture as no statistically significant difference in the pre- and post-thaw mineralized structures was measured. Percent cell viability of the mineralized constructs following low temperature storage was approximately 50%. These are the first studies to address the issue of preservation techniques for tissue engineered constructs. The ability to successfully cryopreserve mineralized tissue engineered matrices for bone may offer an unlimited and readily available source of bone-like materials for orthopaedic applications.

  9. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    PubMed

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  10. Hypocrellin B and nano silver loaded polymeric nanoparticles: Enhanced generation of singlet oxygen for improved photodynamic therapy.

    PubMed

    Natesan, Subramanian; Krishnaswami, Venkateshwaran; Ponnusamy, Chandrasekar; Madiyalakan, Madi; Woo, Thomas; Palanisamy, Rajaguru

    2017-08-01

    A nanoparticulate photodynamic approach was employed with an objective to achieve enhanced production of singlet oxygen ( 1 O 2 ), for the management of posterior segment eye diseases like age related macular degeneration. The hypocrellin B (HB) loaded poly lactide-co-glycolide nanoparticle formulations were incorporated with nano silver (HBS-NPs). The optimized HBS-NPs contained 2.60±0.06mg/mL of HB and showed (i) 135.6 to 828.2nm size range, and (ii) negative zeta potential with a narrow polydispersity index. The DSC thermograms suggested the amorphous nature of HB inside the HBS-NPs. With the average encapsulation efficiency of 92.9±1.79%, the drug release from the HBS-NPs followed a biphasic pattern with an initial burst of 3.50% during first 8h followed by a sustained release of 47.82% within 3days. The interaction between nano silver and HB as assessed by the increase in spectral intensity of Raman spectrum demonstrates that HB may be attached over the nano silver. Generation of reactive oxygen species (ROS) by HBS-NPs was significantly higher than that of HB/HB-NPs. The singlet oxygen generating efficiency assessed using EPR spectrometer follows the order of nano silver>HB-NPs>pure HB drug solution>HBS-NPs. The HBS-NPs had a concentration and time dependent phototoxicity on A549 (human adeno lung carcinoma) cells in the presence of light providing a superior phototoxic effect (82.2% at 50μM) at 2h irradiation. The CAM treated with HBS-NPs showed a significant anti-angiogenic effect compared to a blank formulation. In vivo biodistribution studies revealed that intravenous administration of HBS-NPs lead into significant exposure to the posterior segment of the eye. This proof of principle study demonstrates that HB based nanoparticles may be a valuable new tool for application in ocular photodynamic therapy for the treatment of AMD in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Preparation and evaluation of nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene.

    PubMed

    Ma, Tao; Jiang, Jin-Ling; Liu, Ying; Ye, Zheng-Bao; Zhang, Jun

    2014-09-01

    c-Myc plays a key role in glioma cancer stem cell maintenance. A drug delivery system, nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene (NPs-c-Myc-siRNA-pDNAs), for the treatment of glioma, has not previously been reported. NPs-c-Myc-siRNA-pDNAs were prepared and evaluated in vitro. Three kinds of c-Myc-siRNA fragments were separately synthesized and linked with empty siRNA expression vectors in the mole ratio of 3:1 by T4 DNA ligase. The linked products were then separately transfected into Escherichia coli. DH5α followed by extraction with Endofree plasmid Mega kit (Qiagen, Hilden, Germany) obtained c-Myc-siRNA-pDNAs. Finally, the recombinant c-Myc-siRNA3-pDNAs, generating the highest transfection efficiency and the greatest apoptotic ability, were chosen for encapsulation into NPs by the double-emulsion solvent-evaporation procedure, followed by stability, transfection efficiency, as well as qualitative and quantitative apoptosis evaluation. NPs-c-Myc-siRNA3-pDNAs were obtained with spherical shape in uniform size below 150 nm, with the zeta potential about -18 mV, the encapsulation efficiency and loading capacity as 76.3 ± 5.4% and 1.91 ± 0.06%, respectively. The stability results showed that c-Myc-siRNA3-pDNAs remained structurally and functionally stable after encapsulated into NPs, and NPs could prevent the loaded c-Myc-siRNA3-pDNAs from DNase degradation. The transfection efficiency of NPs-c-Myc-siRNA3-pDNAs was proven to be positive. Furthermore, NPs-c-Myc-siRNA3-pDNAs produced significant apoptosis with the apoptotic rate at 24.77 ± 5.39% and early apoptosis cells observed. Methoxy-poly-(ethylene-glycol)-poly-(lactide-co-glycolide) nanoparticles (MPEG-PLGA-NPs) are potential delivery carriers for c-Myc-siRNA3-pDNAs.

  12. Catalytic properties of Co3O4 nanoparticles for rechargeable Li/air batteries.

    PubMed

    Kim, Kwan Su; Park, Yong Joon

    2012-01-05

    Three types of Co3O4 nanoparticles are synthesized and characterized as a catalyst for the air electrode of a Li/air battery. The shape and size of the nanoparticles are observed using scanning electron microscopy and transmission electron microscopy analyses. The formation of the Co3O4 phase is confirmed by X-ray diffraction. The electrochemical property of the air electrodes containing Co3O4 nanoparticles is significantly associated with the shape and size of the nanoparticles. It appears that the capacity of electrodes containing villiform-type Co3O4 nanoparticles is superior to that of electrodes containing cube- and flower-type Co3O4 nanoparticles. This is probably due to the sufficient pore spaces of the villiform-type Co3O4 nanoparticles.

  13. Formation of methotrexate-PLLA-PEG-PLLA composite microspheres by microencapsulation through a process of suspension-enhanced dispersion by supercritical CO2

    PubMed Central

    Chen, Ai-Zheng; Wang, Guang-Ya; Wang, Shi-Bin; Li, Li; Liu, Yuan-Gang; Zhao, Chen

    2012-01-01

    Background The aim of this study was to improve the drug loading, encapsulation efficiency, and sustained-release properties of supercritical CO2-based drug-loaded polymer carriers via a process of suspension-enhanced dispersion by supercritical CO2 (SpEDS), which is an advanced version of solution-enhanced dispersion by supercritical CO2 (SEDS). Methods Methotrexate nanoparticles were successfully microencapsulated into poly (L-lactide)-poly(ethylene glycol)-poly(L-lactide) (PLLA-PEG-PLLA) by SpEDS. Methotrexate nanoparticles were first prepared by SEDS, then suspended in PLLA-PEG-PLLA solution, and finally microencapsulated into PLLA-PEG-PLLA via SpEDS, where an “injector” was utilized in the suspension delivery system. Results After microencapsulation, the composite methotrexate (MTX)-PLLA-PEG-PLLA microspheres obtained had a mean particle size of 545 nm, drug loading of 13.7%, and an encapsulation efficiency of 39.2%. After an initial burst release, with around 65% of the total methotrexate being released in the first 3 hours, the MTX-PLLA-PEG-PLLA microspheres released methotrexate in a sustained manner, with 85% of the total methotrexate dose released within 23 hours and nearly 100% within 144 hours. Conclusion Compared with a parallel study of the coprecipitation process, microencapsulation using SpEDS offered greater potential to manufacture drug-loaded polymer microspheres for a drug delivery system. PMID:22787397

  14. The Pharmacokinetics and Pharmacodynamics of Lidocaine-Loaded Biodegradable Poly(lactic-co-glycolic acid) Microspheres

    PubMed Central

    Liu, Jianming; Lv, Xin

    2014-01-01

    The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(d,l-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34 ± 0.3 μm. The poly disperse index was 0.21 ± 0.03, and the zeta potential was +0.34 ± 0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5% ± 4.3% and 11.2% ± 1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02–2.06-fold that of lidocaine injection (p < 0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency. PMID:25268618

  15. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization.

    PubMed

    Rentsch, Barbe; Hofmann, Andre; Breier, Annette; Rentsch, Claudia; Scharnweber, Dieter

    2009-10-01

    The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2-1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.

  16. Preparation of Poly-(Methyl vinyl ether-co-maleic Anhydride) Nanoparticles by Solution-Enhanced Dispersion by Supercritical CO2

    PubMed Central

    Chen, Ai-Zheng; Wang, Guang-Ya; Wang, Shi-Bin; Feng, Jian-Gang; Liu, Yuan-Gang; Kang, Yong-Qiang

    2012-01-01

    The supercritical CO2-based technologies have been widely used in the formation of drug and/or polymer particles for biomedical applications. In this study, nanoparticles of poly-(methyl vinyl ether-co-maleic anhydride) (PVM/MA) were successfully fabricated by a process of solution-enhanced dispersion by supercritical CO2 (SEDS). A 23 factorial experiment was designed to investigate and identify the significance of the processing parameters (concentration, flow and solvent/nonsolvent) for the surface morphology, particle size, and particle size distribution of the products. The effect of the concentration of PVM/MA was found to be dominant in the results regarding particle size. Decreasing the initial solution concentration of PVM/MA decreased the particle size significantly. After optimization, the resulting PVM/MA nanoparticles exhibited a good spherical shape, a smooth surface, and a narrow particle size distribution. Fourier transform infrared spectroscopy (FTIR) spectra demonstrated that the chemical composition of PVM/MA was not altered during the SEDS process and that the SEDS process was therefore a typical physical process. The absolute value of zeta potential of the obtained PVM/MA nanoparticles was larger than 40 mV, indicating the samples’ stability in aqueous suspension. Analysis of thermogravimetry-differential scanning calorimetry (TG-DSC) revealed that the effect of the SEDS process on the thermostability of PVM/MA was negligible. The results of gas chromatography (GC) analysis confirmed that the SEDS process could efficiently remove the organic residue.

  17. The study of poly(L-lactide) grafted silica nanoparticles on the film blowing of poly(L-lactide)

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Liu, Zhengying; Yang, Mingbo

    2015-05-01

    PLA nanocomposites are prepared by us, and to better develop the function of silica nanoparticle, the surface of silica nanoparticles are modified by introducing PLA chains via "grafting to" method in our research. According to the results of 1H NMR and TGA, it shows that the PLA grafted Silica nanoparticles are successfully synthesized by controlling the reaction condition, and the molecular weight of the grafted PLA chains is relatively as high as 22 400 g/mol. PLA Nanocomposites with modified nanoparticles are prepared using a convenient melt blending method to guarantee well-distribution of the particles. The well-dispersion state of silica nanospheres is confirmed by Scan Electrical Micrograph (SEM) technology. From the dynamic shear rheology tests, the strain and time sweep both reveal that stability networks are formed in these nanocomposites. And the frequency sweep shows that the nanoparticles with long grafted chains dramatically enhanced the storage and viscosity of the pure PLA. The rheology testing suggests that strong particle-matrix interactions between molecularly/nano-level dispersed grafted silica and PLA chains formed; and the elongational viscosity of PLA has been markedly improved with the addition of the nanoparticle. The effect of modified nanoparticles on the thermal properties of PLA has also been studied by us using Differential Scanning Calorimetry (DSC). It reveals that the crystallization rate of PLA has been improved as the long grafted chains play as the nucleation sites for PLA. Finally based on these rheology and crystallization researches, the nanocomposites are used to prepare PLA blowing films. Compared to pure PLA and PLA/unmodified silica nanocomposites, the results show that the stability of the film blowing has been greatly improved and the blow-up ratio has been increased with the addition of PLA grafted nanoparticles. The modified nanoparticles hold significant candidates to improve the thermal stability and the

  18. Structure Study of the Chiral Lactide Molecules by Chirped-Pulse Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Bialkowska-Jaworska, Ewa; Kisiel, Zbigniew

    2011-06-01

    Lactide is a six member cyclic diester with two chiral centers that forms from lactic acid in the presence of heat and an acid catalyst. It can form either a homo-chiral (RR) structure with both methyl groups equatorial or a hetero-chiral (RS) structure where one methyl group is equatorial and the other methyl group is axial. Structurally lactide is similar to lactic acid dimer; however, the kinked ring is covalently bonded and two waters are lost. And unlike lactic acid dimer, which has a very small dipole moment, the dipole moment of lactide is on the order of 3 Debye. Here the microwave spectra of the highly rigid homo- and hetero-chiral lactides are presented, which were first assigned in a heated lactic acid spectrum where the chemistry took place in the reservoir nozzles. Further isotopic information from a commercial sample of predominately homo-chiral lactide was obtained leading to a Kraitchman substitution structure of the homo-chiral lactide. Preliminary results of the cluster of homo-chiral lactide with one water molecule attached are also presented.

  19. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration.

    PubMed

    Yu, Ting; Xu, Bei; He, Lili; Xia, Shan; Chen, Yan; Zeng, Jun; Liu, Yongmei; Li, Shuangzhi; Tan, Xiaoyue; Ren, Ke; Yao, Shaohua; Song, Xiangrong

    2016-01-01

    Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely

  20. Organic molecules and nanoparticles in inorganic crystals: Vitamin C in CaCO3 as an ultraviolet absorber

    NASA Astrophysics Data System (ADS)

    Sato, H.; Ikeya, M.

    2004-03-01

    Organic molecules and nanoparticles embedded in inorganic crystalline lattices have been studied to add different properties and functions to composite materials. Calcium carbonate was precipitated by dropping an aqueous solution of CaCl2 into that of Na2CO3 containing dissolved vitamin C (ascorbic acid). The optical absorption ascribed to divalent ascorbate anions in the lattice was observed in the ultraviolet B (wavelength: 280-315 nm) region, while solid vitamin C exhibited absorption in the ultraviolet C (100-280 nm) region. The divalent ascorbate anion is only stable in CaCO3 due to the absence of oxygen molecules. Doping CaCO3 with nanoparticles of ZnO also enhanced the absorption in the ultraviolet A (315-380 nm) region. These composite materials are suggested for use as UV absorbers.

  1. Hollow fibers of poly(lactide-co-glycolide) and poly(ε-caprolactone) blends for vascular tissue engineering applications.

    PubMed

    Diban, Nazely; Haimi, Suvi; Bolhuis-Versteeg, Lydia; Teixeira, Sandra; Miettinen, Susanna; Poot, André; Grijpma, Dirk; Stamatialis, Dimitrios

    2013-05-01

    At present the manufacture of small-diameter blood vessels is one of the main challenges in the field of vascular tissue engineering. Currently available vascular grafts rapidly fail due to development of intimal hyperplasia and thrombus formation. Poly(lactic-co-glycolic acid) (PLGA) hollow fiber (HF) membranes have previously been proposed for this application, but as we show in the present work, they have an inhibiting effect on cell proliferation and rather poor mechanical properties. To overcome this we prepared HF membranes via phase inversion using blends of PLGA with poly(ε-caprolactone) (PCL). The influence of polymer composition on the HF physicochemical properties (topography, water transport and mechanical properties) and cell attachment and proliferation were studied. Our results show that only the ratio PCL/PLGA of 85/15 (PCL/PLGA85/15) yielded a miscible blend after processing. A higher PLGA concentration in the blend led to immiscible PCL/PLGA phase-separated HFs with an inhomogeneous morphology and variation in the cell culture results. In fact, the PCL/PLGA85/15 blend, which had the most homogeneous morphology and suitable pore structure, showed better human adipose stem cell (hASC) attachment and proliferation compared with the homopolymers. This, combined with the good mechanical and transport properties, makes them potentially useful for the development of small-caliber vascular grafts. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles

    PubMed Central

    Mert, Olcay; Lai, Samuel K.; Ensign, Laura; Yang, Ming; Wang, Ying-Ying; Wood, Joseph; Hanes, Justin

    2011-01-01

    Mucosal surfaces are protected by a highly viscoelastic and adhesive mucus layer that traps most foreign particles, including conventional drug and gene carriers. Trapped particles are eliminated on the order of seconds to hours by mucus clearance mechanisms, precluding sustained and targeted drug and nucleic acid delivery to mucosal tissues. We have previously shown that polymeric coatings that minimize adhesive interactions with mucus constituents lead to particles that rapidly penetrate human mucus secretions. Nevertheless, a particular challenge in formulating drug-loaded mucus penetrating particles (MPP) is that many commonly used surfactants are either mucoadhesive, or do not facilitate efficient drug encapsulation. We tested a novel surfactant molecule for particle formulation composed of Vitamin E conjugated to 5 kDa polyethylene glycol (VP5k). We show that VP5k-coated poly(lactide-co-glycolide) (PLGA) nanoparticles rapidly penetrate human cervicovaginal mucus, whereas PLGA nanoparticles coated with polyvinyl alcohol or Vitamin E conjugated to 1 kDa PEG were trapped. Importantly, VP5k facilitated high loading of paclitaxel, a frontline chemo drug, into PLGA MPP, with controlled release for at least 4 days and negligible burst release. Our results offer a promising new method for engineering biodegradable, drug-loaded MPP for sustained and targeted delivery of therapeutics at mucosal surfaces. PMID:21911015

  3. Effect of reducing atmosphere on the magnetism of Zn(1-x)Co(x)O (0≤x≤0.10) nanoparticles.

    PubMed

    Naeem, M; Hasanain, S K; Kobayashi, M; Ishida, Y; Fujimori, A; Buzby, Scott; Shah, S Ismat

    2006-05-28

    We report the crystal structure and magnetic properties of Zn(1-x)Co(x)O (0≤x≤0.10) nanoparticles synthesized by heating metal acetates in organic solvent. The nanoparticles were crystallized in the wurtzite ZnO structure after annealing in air and in a forming gas (Ar95% + H5%). The x-ray diffraction and x-ray photoemission spectroscopy (XPS) data for different Co content show clear evidence for the Co(2+) ions in tetrahedral symmetry, indicating the substitution of Co(2+) in the ZnO lattice. However, samples with x = 0.08 and higher cobalt content also indicate the presence of Co metal clusters. Only those samples annealed in the reducing atmosphere of the forming gas, that showed the presence of oxygen vacancies, exhibited ferromagnetism at room temperature. The air annealed samples remained non-magnetic down to 77 K. The essential ingredient in achieving room temperature ferromagnetism in these Zn(1-x)Co(x)O nanoparticles was found to be the presence of additional carriers generated by the presence of the oxygen vacancies.

  4. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-epsilon-caprolactone).

    PubMed

    Bramfeldt, Hanna; Sarazin, Pierre; Vermette, Patrick

    2007-11-01

    A series of three biocompatible P(CL-co-LA)-PEG-P(CL-co-LA) copolymers were synthesized using ring-opening polymerization and characterized by 1H-NMR, gel permeation chromatography, DSC, dynamic-mechanical analysis, and X-ray diffraction. The number of monomer units was kept constant, while the D,L-LA fraction was varied so as to constitute 0, 30, or 70% of the end segments. The molecular weights were sufficiently high to eventually permit 3D scaffold preparation. A degradation study was carried out over 26 weeks, and the effect of monomer composition on the rate of degradation as well as on changes in mechanical strength was investigated. Pure polycaprolactone (PCL)-poly(ethylene glycol) (PEG)-PCL copolymer, P(100/0), was a crystalline material displaying no measurable mass loss, a 30% reduction in mean molecular weight (Mn), and only very slight changes in tensile strength. The random incorporation of 30 and 70% D,L-LA into the end sections of the polymer chain, produced more and more amorphous materials, exhibiting increasingly high rates of degradation, mass loss, and loss of tensile strength. Compared with random P(CL-co-LA), the presence of the PEG block was found both to improve hydrophilicity and thus the rate of degradation and to infer a stabilizing quality, thereby pacing the decrease in tensile strength during degradation. The tested copolymers range from materials exhibiting low mechanical strength and high rate of degradation to slow-degrading materials with high mechanical strength suitable, e.g., for three-dimensional scaffolding. Copyright (c) 2007 Wiley Periodicals, Inc.

  5. Electrospinning nanofibers for controlled drug release

    NASA Astrophysics Data System (ADS)

    Banik, Indrani

    Electrospinning is the most widely studied technique for the synthesis of nanofibers. Electrospinning is considered as one of the technologies that can produce nanosized drugs incorporated in polymeric nanofibers. In vitro and in vivo studies have demonstrated that the release rates of drugs from these nanofiber formulations are enhanced compared to those from original drug substance. This technology has the potential for enhancing the oral delivery of poorly soluble drugs. The electrospun mats were made using Polycaprolactone/PCL, Poly(DL-lactide)/PDL 05 and Poly(DL-lactide-co-glycolide)/PLGA. The drugs incorporated in the electrospun fibers were 5-Fluorouracil and Rapamycin. The evidence of the drugs being embedded in the polymers was obtained by scanning electron microscopy (SEM), Raman and infrared spectroscopy. The release of 5-Fluorouracil and Rapamycin were followed by UV-VIS spectroscopy.

  6. Synthesis and characterization of nanocrystalline forsterite coated poly(L-lactide-co-β-malic acid) scaffolds for bone tissue engineering applications.

    PubMed

    Mozafari, M; Gholipourmalekabadi, M; Chauhan, N P S; Jalali, N; Asgari, S; Caicedoa, J C; Hamlekhan, A; Urbanska, A M

    2015-05-01

    In this research, after synthesizing poly(L-lactide-co-β-malic acid) (PLMA) copolymer, hybrid particles of ice and nanocrystalline forsterite (NF) as coating carriers were used to prepare NF-coated PLMA scaffolds. The porous NF-coated scaffolds were directly fabricated by a combined technique using porogen leaching and freeze-drying methods. The obtained results indicate that the scaffolds were structurally porous with NF particles on their surfaces. When compared to the uncoated scaffolds, the NF coating improved both mechanical properties as well as enhanced bioactivity of the scaffolds. In addition, in vitro biological response of the rat bone marrow stromal cells indicated that NF significantly increased the biocompatibility of NF-coated scaffolds compared with PLMA. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues

    PubMed Central

    Ignjatović, Nenad; Wu, Victoria; Ajduković, Zorica; Mihajilov-Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

    2016-01-01

    Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area. PMID:26706541

  8. Preparation and in vitro Antimicrobial Activity of Silver-Bearing Degradable Polymeric Nanoparticles of Polyphosphoester-block-Poly(L-lactide)

    PubMed Central

    Lim, Young H.; Tiemann, Kristin M.; Heo, Gyu Seong; Wagers, Patrick O.; Rezenom, Yohannes H.; Zhang, Shiyi; Zhang, Fuwu; Youngs, Wiley J.; Hunstad, David A.; Wooley, Karen L.

    2015-01-01

    The development of well-defined polymeric nanoparticles (NPs) as delivery carriers for antimicrobials targeting human infectious diseases requires rational design of the polymer template, an efficient synthetic approach and fundamental understanding of the developed NPs, e.g., drug loading/release, particle stability, and other characteristics. Herein, we developed and evaluated the in vitro antimicrobial activity of silver-bearing, fully biodegradable and functional polymeric NPs. A series of degradable polymeric nanoparticles (dNPs), composed of phosphoester and L-lactide and designed specifically for silver loading into the hydrophilic shell and/or the hydrophobic core, were prepared as potential delivery carriers for three different types of silver-based antimicrobials – silver acetate or one of two silver carbene complexes (SCCs). Silver-loading capacities of the dNPs were not influenced by the hydrophilic block chain length, loading site (i.e., core or shell), or type of silver compound, but optimization of the silver feed ratio was crucial to maximize the silver loading capacity of dNPs, up to ca. 12% (w/w). The release kinetics of silver-bearing dNPs revealed 50% release at ca. 2.5–5.5 h depending on the type of silver compound. In addition, we undertook a comprehensive evaluation of the rates of hydrolytic or enzymatic degradability and performed structural characterization of the degradation products. Interestingly, packaging of the SCCs in the dNP-based delivery system improved minimum inhibitory concentrations up to 70%, compared with the SCCs alone, as measured in vitro against ten contemporary epidemic strains of Staphylococcus aureus and eight uropathogenic strains of Escherichia coli. We conclude that these dNP-based delivery systems may be beneficial for direct epithelial treatment and/or prevention of ubiquitous bacterial infections, including those of the skin and urinary tract. PMID:25621868

  9. Preparation and in vitro antimicrobial activity of silver-bearing degradable polymeric nanoparticles of polyphosphoester-block-poly(L-lactide).

    PubMed

    Lim, Young H; Tiemann, Kristin M; Heo, Gyu Seong; Wagers, Patrick O; Rezenom, Yohannes H; Zhang, Shiyi; Zhang, Fuwu; Youngs, Wiley J; Hunstad, David A; Wooley, Karen L

    2015-02-24

    The development of well-defined polymeric nanoparticles (NPs) as delivery carriers for antimicrobials targeting human infectious diseases requires rational design of the polymer template, an efficient synthetic approach, and fundamental understanding of the developed NPs, e.g., drug loading/release, particle stability, and other characteristics. Herein, we developed and evaluated the in vitro antimicrobial activity of silver-bearing, fully biodegradable and functional polymeric NPs. A series of degradable polymeric nanoparticles (dNPs), composed of phosphoester and L-lactide and designed specifically for silver loading into the hydrophilic shell and/or the hydrophobic core, were prepared as potential delivery carriers for three different types of silver-based antimicrobials-silver acetate or one of two silver carbene complexes (SCCs). Silver-loading capacities of the dNPs were not influenced by the hydrophilic block chain length, loading site (i.e., core or shell), or type of silver compound, but optimization of the silver feed ratio was crucial to maximize the silver loading capacity of dNPs, up to ca. 12% (w/w). The release kinetics of silver-bearing dNPs revealed 50% release at ca. 2.5-5.5 h depending on the type of silver compound. In addition, we undertook a comprehensive evaluation of the rates of hydrolytic or enzymatic degradability and performed structural characterization of the degradation products. Interestingly, packaging of the SCCs in the dNP-based delivery system improved minimum inhibitory concentrations up to 70%, compared with the SCCs alone, as measured in vitro against 10 contemporary epidemic strains of Staphylococcus aureus and eight uropathogenic strains of Escherichia coli. We conclude that these dNP-based delivery systems may be beneficial for direct epithelial treatment and/or prevention of ubiquitous bacterial infections, including those of the skin and urinary tract.

  10. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound

    PubMed Central

    Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong

    2017-01-01

    In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA

  11. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound.

    PubMed

    Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong

    2017-04-13

    In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA

  12. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less

  13. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration.

    PubMed

    Brown, Justin L; Nair, Lakshmi S; Laurencin, Cato T

    2008-08-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from -8 to 41 degrees C and poly (lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 mum, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. (c) 2007 Wiley Periodicals, Inc.

  14. Solvent/Non-Solvent Sintering: A Novel Route to Create Porous Microsphere Scaffolds For Tissue Regeneration

    PubMed Central

    Brown, Justin L.; Nair, Lakshmi S.; Laurencin, Cato T.

    2009-01-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from −8°C to 41oC and poly(lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1µm respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. PMID:18161819

  15. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, G. S.; Sreedhara Reddy, P.

    2015-09-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  16. Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction.

    PubMed

    Ning, Rui; Tian, Jingqi; Asiri, Abdullah M; Qusti, Abdullah H; Al-Youbi, Abdulrahman O; Sun, Xuping

    2013-10-29

    In this Letter, for the first time, we demonstrated the preparation of a highly efficient electrocatalyst, spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide (CuCo2O4/N-rGO), for an oxygen reduction reaction (ORR) under alkaline media. The hybrid exhibits higher ORR catalytic activity than CuCo2O4 or N-rGO alone, the physical mixture of CuCo2O4 nanoparticles and N-rGO, and Co3O4/N-rGO. Moreover, such a hybrid affords superior durability to the commercial Pt/C catalyst.

  17. Optimized preparation of in situ forming microparticles for the parenteral delivery of vinpocetine.

    PubMed

    Li, Jizhong; Chen, Fei; Hu, Chanjuan; He, Ling; Yan, Keshu; Zhou, Liying; Pan, Weisan

    2008-06-01

    A spherical symmetric design-response surface methodology was applied to optimize the preparation of vinpocetine-loaded poly(D,L-lactide-co-glycolide) PLGA in situ forming microparticles (ISM system). The influence of the ratio of PLGA to vinpocetine (w/w), the concentration of Tween 80 (w/v) and the volume of propylene glycol on the burst release, medium particle diameter and size distribution was evaluated. Scan electron microscopy of the optimized in situ microparticles exhibited spherical shape, and vinpocetine-loading mainly inside the microparticles. The data showed that the release of vinpocetine from in situ microparticles in vitro and in vivo lasted about 40 d. In vivo pharmacokinetic characteristics of the optimized in situ microparticles was assessed after they were intramuscularly injected into rats. HPLC method was used to determine the plasma concentration of vinpocetine. The absolute bioavailability of vinpocetine in the microparticles was 27.6% in rats, which suggested that PLGA in situ microparticles were a valuable system for the delivery of vinpocetine.

  18. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  19. Modification of Ag nanoparticles on the surface of SrTiO3 particles and resultant influence on photoreduction of CO2

    NASA Astrophysics Data System (ADS)

    Shao, Kunjuan; Wang, Yanjie; Iqbal, Muzaffar; Lin, Lin; Wang, Kai; Zhang, Xuehua; He, Meng; He, Tao

    2018-03-01

    Modification of a wide-bandgap semiconductor with noble metals that can exhibit surface plasmon effect is an effective approach to make it responsive to the visible light. In this work, a series of cubic and all-edge-truncated SrTiO3 with and without thermal pretreatment in air are modified by Ag nanoparticles via photodeposition method. The crystal structure, morphology, loading amount of Ag nanoparticles, and optical properties of the obtained Ag-SrTiO3 nanomaterials are well characterized by powder X-ray diffraction, scanning microscope, transmission electron microscope, energy disperse X-ray spectroscopy, ICP-MS and UV-vis diffuse-reflection spectroscopy. The loading amount and size of the Ag nanoparticles can be controlled to some extent by tuning the photodeposition time via growth-dissolution mechanism. The Ag nanoparticles are inclined to deposit on different locations on the surface of cubic and truncated SrTiO3 with and without thermal pretreatment. The resultant SrTiO3 modified by Ag nanoparticles exhibits visible light activity for photocatalytic reduction of CO2, which is closely related to the oxygen vacancy induced by thermal pretreatment, size and amount of Ag nanoparticles. Accordingly, there is an optimized photodeposition time for the synthesis of the photocatalyst that exhibits the highest photocatalytic activity.

  20. Ni-Co nanoparticles immobilized on a 3D Ni foam template as a highly efficient catalyst for borohydride electrooxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Guo, Meisong; Cheng, Yu; Yu, Yanan; Hu, Jingbo

    2017-09-01

    Proton exchange membrane (PEM) fuel cells have drawn a great deal of attention due to the rapidly growing energy consumption. Recently, Ni- and Co-based materials have been considered as promising electorcatalysts owing to their multi-functionality. In this work, Ni and Co nanoparticles are directly immobilized on a three-dimensional Ni foam substrate (Ni-Co/NF) without any conductive agents or polymer binder by a facile ion implantation method. The structure and morphology of the Ni-Co/NF electrode were characterized by scanning electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. The performance of the Ni-Co/NF electrode in the electrochemical oxidation of NaBH4 is investigated by cyclic voltammetry and chronoamperometry. The Ni-Co/NF electrode exhibited excellent electrocatalytic activity and good stability during electrochemical reactions. These properties are attributed to the 3D porous structure of the Ni foam and the synergistic effect of Ni and Co nanoparticles. The enhanced electrocatalytic performance in NaBH4 electrooxidation compared with either Ni or Co nanoparticles alone suggests that the Ni-Co/NF is promising for fuel cell applications.

  1. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Deshpande, M. P.; Patel, Kamakshi; Gujarati, Vivek P.; Chaki, S. H.

    2016-05-01

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn2+ an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  2. Posterior lumbar interbody fusion using non resorbable poly-ether-ether-ketone versus resorbable poly-L-lactide-co-D,L-lactide fusion devices. Clinical outcome at a minimum of 2-year follow-up.

    PubMed

    Jiya, Timothy U; Smit, T; van Royen, B J; Mullender, M

    2011-04-01

    Previous papers on resorbable poly-L-lactide-co-D,L-lactide (PLDLLA) cages in spinal fusion have failed to report adequately on patient-centred clinical outcome measures. Also comparison of PLDLLA cage with a traditionally applicable counterpart has not been previously reported. This is the first randomized prospective study that assesses clinical outcome of PLDLLA cage compared with a poly-ether-ether-ketone (PEEK) implant. Twenty-six patients were randomly assigned to undergo instrumented posterior lumbar interbody fusion (PLIF) whereby either a PEEK cage or a PLDLLA cage was implanted. Clinical outcome based on visual analogue scale scores for leg pain and back pain, as well as Oswestry Disability Index (ODI) and SF-36 questionnaires were documented and analysed. When compared with preoperative values, all clinical parameters have significantly improved in the PEEK group at 2 years after surgery with the exception of SF-36 general health, SF-36 mental health and SF-36 role emotional scores. No clinical parameter showed significant improvement at 2 years after surgery compared with preoperative values in the PLDLLA patient group. Only six patients (50%) in the PLDLLA group showed improvement in the VAS scores for leg and back pain as well as the ODI, as opposed to 10 patients (71%) in the PEEK group. One-third of the patients in the PLDLLA group actually reported worsening of their pain scores and ODI. Three cases of mild to moderate osteolysis were seen in the PLDLLA group. Following up on our preliminary report, these 2-year results confirm the superiority of the PEEK implant to the resorbable PLDLLA implant in aiding spinal fusion and alleviating symptoms following PLIF in patients with degenerative spondylolisthesis associated with either canal stenosis or foramen stenosis or both and emanating from a single lumbar segment.

  3. Improved Mesenchymal Stem Cells Attachment and In Vitro Cartilage Tissue Formation on Chitosan-Modified Poly(l-Lactide-co-Epsilon-Caprolactone) Scaffold

    PubMed Central

    Wu, Yingnan; Li, Chao; Zhang, Tianting; Zou, Yu; Hui, James H.P.; Lee, Eng Hin

    2012-01-01

    Considering the load-bearing physiological requirement of articular cartilage, scaffold for cartilage tissue engineering should exhibit appropriate mechanical responses as natural cartilage undergoing temporary deformation on loading with little structural collapse, and recovering to the original geometry on unloading. A porous elastomeric poly l-lactide-co-ɛ-caprolactone (PLCL) was generated and crosslinked at the surface to chitosan to improve its wettability. Human bone marrow derived mesenchymal stem cells (MSC) attachment, morphological change, proliferation and in vitro cartilage tissue formation on the chitosan-modified PLCL scaffold were compared with the unmodified PLCL scaffold. Chitosan surface promoted more consistent and even distribution of the seeded MSC within the scaffold. MSC rapidly adopted a distinct spread-up morphology on attachment on the chitosan-modified PLCL scaffold with the formation of F-actin stress fiber which proceeded to cell aggregation; an event much delayed in the unmodified PLCL. Enhanced cartilage formation on the chitosan-modified PLCL was shown by real-time PCR analysis, histological and immunochemistry staining and biochemical assays of the cartilage extracellular matrix components. The Young's modulus of the derived cartilage tissues on the chitosan-modified PLCL scaffold was significantly increased and doubled that of the unmodified PLCL. Our results show that chitosan modification of the PLCL scaffold improved the cell compatibility of the PLCL scaffold without significant alteration of the physical elastomeric properties of PLCL and resulted in the formation of cartilage tissue of better quality. PMID:21902611

  4. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation.

    PubMed

    Dai, Lei; Sun, Cuixia; Li, Ruirui; Mao, Like; Liu, Fuguo; Gao, Yanxiang

    2017-12-15

    Curcumin (Cur) exhibits a range of bioactive properties, but its application is restrained due to its poor water solubility and sensitivity to environmental stresses. In this study, zein-lecithin composite nanoparticles were fabricated by antisolvent co-precipitation technique for delivery of Cur. The result showed that the encapsulation efficiency of Cur was significantly enhanced from 42.03% in zein nanoparticles to 99.83% in zein-lecithin composite nanoparticles. The Cur entrapped in the nanoparticles was in an amorphous state confirmed by differential scanning calorimetry and X-ray diffraction. Fourier transform infrared analysis revealed that hydrogen bonding, electrostatic interaction and hydrophobic attraction were the main interactions among zein, lecithin, and Cur. Compared with single zein and lecithin nanoparticles, zein-lecithin composite nanoparticles significantly improved the stability of Cur against thermal treatment, UV irradiation and high ionic strength. Therefore, zein-lecithin composite nanoparticles could be a potential delivery system for water-insoluble bioactive compounds with enhanced encapsulation efficiency and chemical stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Benzocaine-loaded polymeric nanocapsules: study of the anesthetic activities.

    PubMed

    De Melo, Nathalie Ferreira Silva; De Araújo, Daniele Ribeiro; Grillo, Renato; Moraes, Carolina Morales; De Matos, Angélica Prado; de Paula, Eneida; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2012-03-01

    This paper describes a comparison of different polymeric nanocapsules (NCs) prepared with the polymers poly(D,L-lactide-co-glycolide), poly(L-lactide) (PLA), and poly(ε-caprolactone) and used as carrier systems for the local anesthetic (LA) benzocaine (BZC). The systems were characterized and their anesthetic activities investigated. The results showed particle size distributions with polydispersity indices below 0.135, average diameters up to 120 nm, zeta potentials up to -30 mV, and entrapment efficiencies around 70%. Formulations of BZC using the polymeric NCs presented slower release profiles, compared with that of free BZC. Slowest release (release constant, k = 0.0016 min(-1)) was obtained using the PLA NC system. Pharmacological evaluation showed that encapsulation of BZC in PLA NCs prolonged its anesthetic action. This new formulation could potentially be used in future applications involving the gradual release of local anesthetics (LAs). Copyright © 2011 Wiley Periodicals, Inc.

  6. Hybrid of Co(3)Sn(2)@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode.

    PubMed

    Mahmood, Nasir; Zhang, Chenzhen; Liu, Fei; Zhu, Jinghan; Hou, Yanglong

    2013-11-26

    A facile strategy was designed for the fabrication of hybrid of Co3Sn2@Co nanoparticles (NPs) and nitrogen-doped graphene (NG) sheets through a hydrothermal synthesis, followed by annealing process. Core-shell architecture of Co3Sn2@Co pin on NG is designed for the dual encapsulation of Co3Sn2 with adaptable ensembles of Co and NG to address the structural and interfacial stability concerns facing tin-based anodes. In the resulted unique architecture of Co3Sn2@Co-NG hybrid, the sealed cobalt cover prevents the direct exposer of Sn with electrolyte because of encapsulated structure and keeps the structural and interfacial integrity of Co3Sn2. However, the elastically strong, flexible and conductive NG overcoat accommodates the volume changes and therefore brings the structural and electrical stabilization of Co3Sn2@Co NPs. As a result, Co3Sn2@Co-NG hybrid exhibits extraordinary reversible capacity of 1615 mAh/g at 250 mA/g after 100 cycles with excellent capacity retention of 102%. The hybrid bears superior rate capability with reversible capacity of 793.9 mAh/g at 2500 mA/g and Coulombic efficiency nearly 100%.

  7. Synthesis of isotactic-heterotactic stereoblock (hard-soft) poly(lactide) with tacticity control through immortal coordination polymerization.

    PubMed

    Zhao, Wei; Wang, Yang; Liu, Xinli; Chen, Xuesi; Cui, Dongmei

    2012-10-01

    A one-pot method for the preparation of a new family of PLA materials is reported that combines heterotactic (soft) and isotactic stereoblocks (hard). The ring-opening polymerization of rac-lactide with a salan-rare-earth-metal-alkyl complex in the presence of excess triethanolamine was performed in an immortal mode to give three-armed heterotactic poly(lactide) (soft) with excellent end-hydroxy fidelity. The in situ addition of a salen-aluminum-alkyl precursor to the above polymerization system under any monomer-conversion conditions activated the "dormant" hydroxy-ended PLA chains to propagate through the incorporation of the remaining rac-lactide monomer, but with isospecific selectivity (hard). The resultant PLA had a three-armed architecture with controlled molecular weight and extremely narrow molecular-weight distribution (PDI<1.08). More strikingly, each side-arm simultaneously possessed highly heterotactic (soft) and highly isotactic (hard) segments and the ratio of these two stereoregular sequences could be swiftly adjusted by tuning the addition time of the salen-aluminum-alkyl precursor to the polymerization system. Therefore, star-shaped hard-soft stereoblock poly(lactide)s with various P(m) values and crystallinity were achieved in a single reactor for the first time. This strategy should be applicable to the synthesis of a series of new types of stereoblock polyesters by using an immortal-polymerization process and a proper choice of specific, selective metal-based catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    NASA Astrophysics Data System (ADS)

    Liu, Xianqiao; Kaminski, Michael D.; Riffle, Judy S.; Chen, Haitao; Torno, Michael; Finck, Martha R.; Taylor, LaToyia; Rosengart, Axel J.

    2007-04-01

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly( D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 μm) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres.

  9. Multifunctional nanoplatform for enhanced photodynamic cancer therapy and magnetic resonance imaging.

    PubMed

    Hao, Yongwei; Zhang, Bingxiang; Zheng, Cuixia; Niu, Mengya; Guo, Haochen; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Wang, Lei; Zhang, Yun

    2017-03-01

    Co-delivery of photosensitizers and synergistic agents by one single nanoplatform is interesting for enhancing photodynamic therapy (PDT) of cancer. Here, a multifunctional nanoplatform for enhanced photodynamic therapy and magnetic resonance imaging of cancer was constructed. The poly (lactide-co-glycolide) (PLGA) nanoparticles (NPs) loaded with hematoporphyrin monomethyl ether (HMME) were coated with multifunctional manganese dioxide (MnO 2 ) shells, which were designed as PLGA/HMME@MnO 2 NPs. Once the NPs were effectively taken up by tumor cells, the intracellular H 2 O 2 was catalysed by the MnO 2 shells to generate O 2 . Meanwhile, the higher glutathione (GSH) promoted the degradation of MnO 2 into Mn 2+ ions with the ability of magnetic resonance (MR) imaging. After the degradation of outer layer, the release of photosensitizer was promoted. Under irradiation, the released HMME produced cytotoxic reactive oxygen species (ROS) to damage the tumor cells when the O 2 was generated in the hypoxic tumor site. Furthermore, the decreased GSH level further inhibited the consumption of the produced ROS, which greatly enhanced the PDT efficacy. Therefore, this study suggested that this multifunctional system has the potential for enhanced photodynamic therapy and magnetic resonance imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Study of poly(L-lactide) microparticles based on supercritical CO2.

    PubMed

    Chen, Ai-Zheng; Pu, Xi-Ming; Kang, Yun-Qing; Liao, Li; Yao, Ya-Dong; Yin, Guang-Fu

    2007-12-01

    Poly(L-lactide) (PLLA) microparticles were prepared in supercritical anti-solvent process. The effects of several key factors on surface morphology, and particle size and particle size distribution were investigated. These factors included initial drops size, saturation ratio of PLLA solution, pressure, temperature, concentration of the organic solution, the flow rate of the solution and molecular weight of PLLA. The results indicated that the saturation ratio of PLLA solution, concentration of the organic solution and flow rate of the solution played important roles on the properties of products. Various microparticles with the mean particle size ranging from 0.64 to 6.64 microm, could be prepared by adjusting the operational parameters. Fine microparticles were obtained in a process namely solution-enhanced dispersion by supercritical fluids (SEDS) process with dichloromethane/acetone mixture as solution.

  11. Hydrogel Nanoparticles from Supercritical Technology for Pharmaceutical and Seismological Applications

    NASA Astrophysics Data System (ADS)

    Hemingway, Melinda Graham

    This research focuses on hydrogel nanoparticle formation using miniemulsion polymerization and supercritical carbon dioxide. Hydrogel nanopowder is produced by a novel combination of inverse miniemulsion polymerization and supercritical drying (MPSD) methods. Three drying methods of miniemulsions are examined: (1) a conventional freeze drying technique, and (2) two supercritical drying techniques: (2a) supercritical fluid injection into miniemulsions, and (2b) the polymerized miniemulsion injection into supercritical fluid. Method 2b can produce non-agglomerated hydrogel nanoparticles that are free of solvent or surfactant (Chapter 2). The optimized MPSD method was applied for producing an extended release drug formulation with mucoadhesive properties. Drug nanoparticles of mesalamine, were produced using supercritical antisolvent technology and encapsulation within two hydrogels, polyacrylamide and poly(acrylic acid-co-acrylamide). The encapsulation efficiency and release profile of drug nanoparticles is compared with commercial ground mesalamine particles. The loading efficiency is influenced by morphological compatibility (Chapter 3). The MPSD method was extended for encapsulation of zinc oxide nanoparticles for UV protection in sunscreens (Chapter 4). ZnO was incorporated into the inverse miniemulsion during polymerization. The effect of process parameters are examined on absorbency of ultraviolet light and transparency of visible light. For use of hydrogel nanoparticles in a seismological application, delayed hydration is needed. Supercritical methods extend MPSD so that a hydrophobic coating can be applied on the particle surface (Chapter 5). Multiple analysis methods and coating materials were investigated to elucidate compatibility of coating material to polyacrylamide hydrogel. Coating materials of poly(lactide), poly(sulphone), poly(vinyl acetate), poly(hydroxybutyrate), Geluice 50-13, Span 80, octadecyltrichlorosilane, and perfluorobutane sulfate (PFBS

  12. Co@Co3 O4 @PPD Core@bishell Nanoparticle-Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction.

    PubMed

    Wang, Zhijuan; Li, Bing; Ge, Xiaoming; Goh, F W Thomas; Zhang, Xiao; Du, Guojun; Wuu, Delvin; Liu, Zhaolin; Andy Hor, T S; Zhang, Hua; Zong, Yun

    2016-05-01

    Durable electrocatalysts with high catalytic activity toward oxygen reduction reaction (ORR) are crucial to high-performance primary zinc-air batteries (ZnABs) and direct methanol fuel cells (DMFCs). An efficient composite electrocatalyst, Co@Co3 O4 core@shell nanoparticles (NPs) embedded in pyrolyzed polydopamine (PPD) is reported, i.e., in Co@Co3 O4 @PPD core@bishell structure, obtained via a three-step sequential process involving hydrothermal synthesis, high temperature calcination under nitrogen atmosphere, and gentle heating in air. With Co@Co3 O4 NPs encapsulated by ultrathin highly graphitized N-doped carbon, the catalyst exhibits excellent stability in aqueous alkaline solution over extended period and good tolerance to methanol crossover effect. The integration of N-doped graphitic carbon outer shell and ultrathin nanocrystalline Co3 O4 inner shell enable high ORR activity of the core@bishell NPs, as evidenced by ZnABs using catalyst of Co@Co3 O4 @PPD in air-cathode which delivers a stable voltage profile over 40 h at a discharge current density of as high as 20 mA cm(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.

    PubMed

    Cha, Kook Jin; Lih, Eugene; Choi, Jiyeon; Joung, Yoon Ki; Ahn, Dong Jun; Han, Dong Keun

    2014-05-01

    Specific biodegradable polymers having shape-memory properties through "polymer-blend" method are investigated and their shape-switching in body temperature (37 °C) is characterized. Poly(L-lactide-co-caprolactone) (PLCL) and poly(L-lactide-co-glycolide) (PLGA) are dissolved in chloroform and the films of several blending ratios of PLCL/PLGA are prepared by solvent casting. The shape-memory properties of films are also examined using dynamic mechanical analysis (DMA). Among the blending ratios, the PLCL50/PLGA50 film shows good performance of shape-fixity and shape-recovery based on glass transition temperature. It displays that the degree of shape recovery is 100% at 37 °C and the shape recovery proceeds within only 15 s. In vitro biocompatibility studies are shown to have good blood compatibility and cytocompatibility for the PLCL50/PLGA50 films. It is expected that this blended biodegradable polymer can be potentially used as a material for blood-contacting medical devices such as a self-expended vascular polymer stents and vascular closure devices in biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tracking targeted bimodal nanovaccines: immune responses and routing in cells, tissue, and whole organism.

    PubMed

    Cruz, Luis J; Tacken, Paul J; Zeelenberg, Ingrid S; Srinivas, Mangala; Bonetto, Fernando; Weigelin, Bettina; Eich, Christina; de Vries, I Jolanda; Figdor, Carl G

    2014-12-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs), involved in the induction of immunity and currently exploited for antitumor immunotherapies. An optimized noninvasive imaging modality capable of determining and quantifying DC-targeted nanoparticle (NP) trajectories could provide valuable information regarding therapeutic vaccine outcome. Here, targeted poly(d,l-lactide-co-glycolide) nanoparticles (PLGA NPs) recognizing DC receptors were equipped with superparamagnetic iron oxide particles (SPIO) or gold nanoparticles with fluorescently labeled antigen. The fluorescent label allowed for rapid analysis and quantification of DC-specific uptake of targeted PLGA NPs in comparison to uptake by other cells. Transmission electron microscopy (TEM) showed that a fraction of the encapsulated antigen reached the lysosomal compartment of DCs, where SPIO and gold were already partially released. However, part of the PLGA NPs localized within the cytoplasm, as confirmed by confocal microscopy. DCs targeted with NPs carrying SPIO or fluorescent antigen were detected within lymph nodes as early as 1 h after injection by magnetic resonance imaging (MRI). Despite the fact that targeting did not markedly affect PLGA NP biodistribution on organism and tissue level, it increased delivery of NPs to DCs residing in peripheral lymph nodes and resulted in enhanced T cell proliferation. In conclusion, two imaging agents within a single carrier allows tracking of targeted PLGA NPs at the subcellular, cellular, and organismal levels, thereby facilitating the rational design of in vivo targeted vaccination strategies.

  15. CO2 to methanol conversion using hydride terminated porous silicon nanoparticles.

    PubMed

    Dasog, M; Kraus, S; Sinelnikov, R; Veinot, J G C; Rieger, B

    2017-03-09

    Porous silicon nanoparticles (Si-NPs) prepared via magnesiothermic reduction were used to convert carbon dioxide (CO 2 ) into methanol. The hydride surface of the silicon nanoparticles acted as a CO 2 reducing reagent without any catalyst at temperatures above 100 °C. The Si nanoparticles were reused up to four times without significant loss in methanol yields. The reduction process was monitored using in situ FT-IR and the materials were characterized using SEM, TEM, NMR, XPS, and powder XRD techniques. The influence of reaction temperature, pressure, and Si-NP concentration on CO 2 reduction were also investigated. Finally, Si particles produced directly from sand were used to convert CO 2 to methanol.

  16. Development of subcutaneous sustained release nanoparticles encapsulating low molecular weight heparin

    PubMed Central

    Jogala, Satheesh; Rachamalla, Shyam Sunder; Aukunuru, Jithan

    2015-01-01

    The objective of the present research work was to prepare and evaluate sustained release subcutaneous (s.c.) nanoparticles of low molecular weight heparin (LMWH). The nanoparticles were prepared by water–in-oil in-water (w/o/w) emulsion and evaporation method using different grades of polylactide co-glycolide (50:50, 85:15), and different concentrations of polyvinyl alcohol (0.1%, 0.5%, 1%) aqueous solution as surfactant. The fabricated nanoparticles were evaluated for size, shape, zeta potential, encapsulation efficiency, in vitro drug release, and in vivo biological activity (anti-factor Xa activity) using the standard kit. The drug and excipient compatibility was analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The formation of nanoparticles was confirmed by scanning electron microscopy; nanoparticles were spherical in shape. The size of prepared nanoparticles was found between 195 nm and 251 nm. The encapsulation efficiency of the nanoparticles was found between 46% and 70%. In vitro drug, release was about 16–38% for 10 days. In vivo drug, release shows the sustained release of drug for 10 days in rats. FTIR studies indicated that there was no loss in chemical integrity of the drug upon fabrication into nanoparticles. DSC and XRD results demonstrated that the drug was changed from the crystalline form to the amorphous form in the formulation during the fabrication process. The results of this study revealed that the s.c. nanoparticles were suitable candidates for sustained delivery of LMWH. PMID:25878975

  17. Electromagnetic properties of Fe-Co granular composite materials containing acicular nanoparticles

    NASA Astrophysics Data System (ADS)

    Kasagi, Teruhiro; Massango, Herieta; Tsutaoka, Takanori; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2018-03-01

    Electromagnetic properties of acicular (needle-like) Fe76Co24 nanoparticle composite materials have been studied in microwave frequency range up to 20 GHz. The Fe76Co24 particles are commercially available acicular Fe76Co24 nanoparticles with an approximate length and diameter of 100 and 25 nm, respectively. The Fe76Co24 nanocomposites were prepared by embedding the Fe76Co24 nanoparticle in an appropriate resin. Since the metallic Fe76Co24 nanoparticles have an oxidized surface, even high particle content composites at 78 vol.%, which is in the percolated state, does not show metallic conduction; a low frequency plasmonic state with the negative permittivity spectrum was not observed. Meanwhile, the negative permeability spectrum caused by the magnetic resonance in Fe76Co24 alloy was obtained in the high particle content composites. From the measurement of the complex permeability spectra under the external dc magnetic field, it was clarified that the gyromagnetic spin rotation mainly contributes to the permeability spectrum of nanocomposites due to extremely small quantity of domain walls in the acicular nanoparticles. This result suggests that the negative permeability spectrum was caused by the gyromagnetic spin resonance. By the comparison of the complex permeability spectrum between the acicular Fe76Co24 nanocomposite and the spherical Fe50Co50 microcomposite, the gyromagnetic spin resonance frequency of the acicular nanocomposite tends to locate higher than that of the spherical microcomposite owing to the demagnetizing field effect. Therefore, it can be concluded that the negative permeability frequency band of the acicular nanocomposite is higher than that of the spherical microcomposite at the same particle content.

  18. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.

    PubMed

    Li, Da; Liao, Haoyan; Kikuchi, Hiroaki; Liu, Tong

    2017-12-27

    Excellent magnetic features make Co-based materials promising candidates as high-performance microwave absorbers. However, it is still a significant challenge for Co-based absorbers to possess high-intensity and broadband absorption simultaneously, owing to the lack of dielectric loss and impedance matching. Herein, microporous Co@C nanoparticles (NPs) with carbon shell thicknesses ranging from 1.8-4.9 nm have been successfully synthesized by dealloying CoAl@C precursors. All of the samples exhibit high microwave absorption performance. The microporous Co@C sample possessing a carbon shell of 1.8 nm exhibits the highest absorption intensity among these samples with a minimum reflection loss (RL) of -141.1 dB, whose absorption bandwidth for RL ≤ -10 dB is 7.3 GHz. As the thickness of the carbon shell increases, the absorption bandwidth of the NPs becomes wider. For the sample with the carbon shell thickness of 4.9 nm, the absorption bandwidth for RL ≤ -10 dB reaches a record high of 13.2 GHz. The outstanding microwave attenuation properties are attributed to the dielectric loss of the carbon shell, the magnetic loss of the Co core, and the cooperation of the core-shell structure and microporous morphology. The strong wideband microwave absorption of the carbon-coated microporous Co NPs highlights their potential applications in microwave absorbing systems.

  19. Template-Free Synthesis of Hollow-Structured Co 3 O 4 Nanoparticles as High-Performance Anodes for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Deli; Yu, Yingchao; He, Huan

    2015-02-24

    We have developed a template-free procedure to synthesize Co3O4 hollow-structured nanoparticles on a Vulcan XC-72 carbon support. The material was synthesized via an impregnation–reduction method followed by air oxidation. In contrast to spherical particles, the hollow-structured Co3O4 nanoparticles exhibited excellent lithium storage capacity, rate capability, and cycling stability when used as the anode material in lithium-ion batteries. Electrochemical testing showed that the hollow-structured Co3O4 particles delivered a stable reversible capacity of about 880 mAh/g (near the theoretical capacity of 890 mAh/g) at a current density of 50 mA/g after 50 cycles. The superior electrochemical performance is attributed to its uniquemore » hollow structure, which combines nano- and microscale properties that facilitate electron transfer and enhance structural robustness.« less

  20. Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.

    PubMed

    Zhong, Justin X; Clegg, John R; Ander, Eric W; Peppas, Nicholas A

    2018-06-01

    Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018. © 2018 Wiley Periodicals, Inc.

  1. Structural, magnetic, and dielectric properties of multiferroic Co1-xMgxCr2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamran, M.; Ullah, A.; Rahman, S.; Tahir, A.; Nadeem, K.; Anis ur Rehman, M.; Hussain, S.

    2017-07-01

    We examined the structural, magnetic, and dielectric properties of Co1-xMgxCr2O4 nanoparticles with composition x = 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1 in detail. X-ray diffraction (XRD) revealed normal spinel structure for all the samples. Rietveld refinement fitting results of the XRD showed no impurity phases which signifies the formation of single phase Co1-xMgxCr2O4 nanoparticles. The average crystallite size showed a peak behaviour with maxima at x = 0.6. Raman and Fourier transform infrared (FTIR) spectroscopy also confirmed the formation of single phase normal spinel for all the samples and exhibited dominant vibrational changes for x ≥ 0.6. For x = 0 (CoCr2O4), zero field cooled/field cooled (ZFC/FC) magnetization curves showed paramagnetic (PM) to ferrimagnetic (FiM) transition at Tc = 97 K and a conical spiral magnetic order at Ts = 30 K. The end members CoCr2O4 (x = 0) and MgCr2O4 (x = 1) are FiM and antiferromagnetic (AFM), respectively. Tc and Ts showed decreasing trend with increasing x, followed by an additional AFM transition at TN = 15 K for x = 0.6. The system finally stabilized and changed to highly frustrated AFM structure at x = 1 due to formation of pure MgCr2O4. High field FC curves (5T) depicted nearly no effect on spiral magnetic state, which is attributed to strong exchange B-B magnetic interactions at low temperatures. Dielectric parameters showed a non-monotonous behaviour with Mg concentration and were explained with the help of Maxwell-Wagner model and Koop's theory. Dielectric properties were improved for nanoparticles with x = 0.6 and is attributed to their larger average crystallite size. In summary, Mg doping has significantly affects the structural, magnetic, and dielectric properties of CoCr2O4 nanoparticles, which can be attributed to variations in local magnetic exchange interactions and variation in average crystallite size of these chromite nanoparticles.

  2. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction.

    PubMed

    Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng

    2018-02-28

    Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.

  3. Facile synthesis of nickel-doped Co9S8 hollow nanoparticles with large surface-controlled pseudocapacitive and fast sodium storage

    NASA Astrophysics Data System (ADS)

    Zhou, Hepeng; Cao, Yijun; Ma, Zilong; Li, Shulei

    2018-05-01

    Transition metal sulfides are considered to be promising candidates as anodes for sodium ion batteries (SIBs). However, their further applications are limited by poor electrical conductivity and sluggish electrochemical kinetics. We report, for the first time, nickel-doped Co9S8 hollow nanoparticles as SIB anodes with enhanced electrical conductivity and a large pseudocapacitive effect, leading to fast kinetics. This compound exhibits excellent sodium storage performance, including a high capacity of 556.7 mA h g-1, a high rate capability of 2000 mA g-1 and an excellent stability up to 200 cycles. The results demonstrate that nickel-doped Co9S8 hollow nanoparticles are a promising anode material for SIBs.

  4. Facile synthesis of nickel-doped Co9S8 hollow nanoparticles with large surface-controlled pseudocapacitive and fast sodium storage.

    PubMed

    Zhou, Hepeng; Cao, Yijun; Ma, Zilong; Li, Shulei

    2018-05-11

    Transition metal sulfides are considered to be promising candidates as anodes for sodium ion batteries (SIBs). However, their further applications are limited by poor electrical conductivity and sluggish electrochemical kinetics. We report, for the first time, nickel-doped Co 9 S 8 hollow nanoparticles as SIB anodes with enhanced electrical conductivity and a large pseudocapacitive effect, leading to fast kinetics. This compound exhibits excellent sodium storage performance, including a high capacity of 556.7 mA h g -1 , a high rate capability of 2000 mA g -1 and an excellent stability up to 200 cycles. The results demonstrate that nickel-doped Co 9 S 8 hollow nanoparticles are a promising anode material for SIBs.

  5. Superparamagnetic MFe2O 4 (M = Ni, Co, Zn, Mn) nanoparticles: synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications.

    PubMed

    Sabale, Sandip; Jadhav, Vidhya; Khot, Vishwajeet; Zhu, Xiaoli; Xin, Meiling; Chen, Hongxia

    2015-03-01

    Superparamagnetic nanoferrites are prepared by simple and one step refluxing in polyol synthesis. The ferrite nanoparticles prepared by this method exhibit particle sizes below 10 nm and high degree of crystallinity. These ferrite nanoparticles are compared by means of their magnetic properties, induction heating and cell viability studies for its application in magnetic fluid hyperthermia. Out of all studied nanoparticles in present work, only ZnFe2O4 and CoFe2O4 MNPs are able to produce threshold hyperthermia temperature. This rise in temperature is discussed in detail in view of their magneto-structural properties. Therefore ZnFe2O4 and CoFe2O4 MNPs with improved stability, magnetic induction heating and cell viability are suitable candidates for magnetic hyperthermia.

  6. Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium.

    PubMed

    Farias, Manuel J S; Busó-Rogero, Carlos; Vidal-Iglesias, Francisco J; Solla-Gullón, José; Camara, Giuseppe A; Feliu, Juan M

    2017-01-31

    The knowledge about how CO occupies and detaches from specific surface sites on well-structured Pt surfaces provides outstanding information on both dynamics/mobility of CO ads and oxidation of this molecule under electrochemical conditions. This work reports how the potentiostatic growth of different coverage CO adlayers evolves with time on both cubic and octahedral Pt nanoparticles in acidic medium. Data suggest that during the growth of the CO adlayer, CO ads molecules slightly shift toward low coordination sites only on octahedral Pt nanoparticles, so that these undercoordinated sites are the first filled on octahedral Pt nanoparticles. Conversely, on cubic Pt nanoparticles, adsorbed CO behaves as an immobile species, and low coordinated sites as well as (100) terraces are apparently filled uniformly and simultaneously. However, once the adlayer is complete, irrespectively of whether the CO is oxidized in a single step or in a sequence of different potential steps, results suggest that CO ads behaves as an immobile species during its oxidation on both octahedral and cubic Pt nanoparticles.

  7. Knot Security of 5 Metric (USP 2) Sutures: Influence of Knotting Technique, Suture Material, and Incubation Time for 14 and 28 Days in Phosphate Buffered Saline and Inflamed Equine Peritoneal Fluid.

    PubMed

    Sanders, Ruth E; Kearney, Clodagh M; Buckley, Conor T; Jenner, Florien; Brama, Pieter A

    2015-08-01

    To evaluate knot security for 3 knot types created in 3 commonly used 5 metric suture materials incubated in physiological and pathological fluids. In vitro mechanical study. Knotted suture loops (n = 5/group). Loops of 3 different suture materials (glycolide/lactide copolymer; polyglactin 910; polydioxanone) were created around a 20 mm rod using 3 knot types (square [SQ], surgeon's [SK], and triple knot [TK]) and were tested to failure in distraction (6 mm/min) after tying (day 0) and after being incubated for 14 and 28 days in phosphate buffered saline (PBS) or inflamed peritoneal fluid. Failure load (N) and mode were recorded and compared. For polydioxanone, significant differences in force to knot failure were found between SQ and SK/TK but not between SK and TK. The force required to break all constructs increased after incubation in phosphate buffered saline (PBS). With glycolide/lactide copolymer no differences in force to knot failure were observed. With polyglactin 910, a significant difference between SQ and TK was observed, which was not seen between the other knot types. Incubation in inflamed peritoneal fluid caused a larger and more rapid decrease in force required to cause knot failure than incubation in PBS. Mechanical properties of suture materials have significant effects on knot security. For polydioxanone, SQ is insufficient to create a secure knot. Additional wraps above a SK confer extra stability in some materials, but this increase may not be clinically relevant or justifiable. Glycolide/lactide copolymer had excellent knot security. © Copyright 2015 by The American College of Veterinary Surgeons.

  8. Effect of Co doping, capping agent and optical-structural studies of ZnO:Co2+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Taheri Otaqsara, S. M.

    2011-08-01

    Co2+ doped ZnO nanoparticles (NPs) using PEG as a capping agent were prepared by colloidal wet-chemical method. The structure, morphology and characteristics of as-prepared samples were investigated. X-ray diffraction patterns studies revealed wurtzite crystal phase. STM-TEM micrographs show a spherical shape and nearly well distribution with an average particle size of ~15-20 nm. UV-VIS spectra show the presence of exciton peak at 349 nm which can be effectively tuned versus cobalt doping and PEG concentration. PL studies were done under the excitation of 347 nm, which exhibited a UV (~386 nm) and visible (blue-orange) emission peak because of free-exciton recombination and oxygen vacancy.

  9. Synthesis and characterization of L-lactide and polylactic acid (PLA) from L-lactic acid for biomedical applications

    NASA Astrophysics Data System (ADS)

    Rahmayetty, Sukirno, Prasetya, Bambang; Gozan, Misri

    2017-02-01

    Lactide is the monomer for the polymer polylactic acid (PLA) from lactic acid through polycondensation and depolymerization process. The properties of PLA strongly depend on the quality of the lactide monomer from which it is synthesized. Optical purity of lactide produced in depolymerization process confirmed to be L-lactide. The highest yield of crude lactide was 38.5% at temperature 210 °C with average molecular weight (Mn) of oligomer was 2389. Ring opening polymerization of lactide using Candida rugosa lipase as biocatalyst to PLLA synthesis has been achieved to generate useful biomedical materials free from heavy metal.

  10. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    NASA Astrophysics Data System (ADS)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  11. Gyroscopic behavior exhibited by the optical Kerr effect in bimetallic Au-Pt nanoparticles suspended in ethanol

    NASA Astrophysics Data System (ADS)

    Fernández-Valdés, D.; Torres-Torres, C.; Martínez-González, C. L.; Trejo-Valdez, M.; Hernández-Gómez, L. H.; Torres-Martínez, R.

    2016-07-01

    The modification in the third-order nonlinear optical response exhibited by rotating bimetallic Au-Pt nanoparticles in an ethanol solution was analyzed. The samples were prepared by a sol-gel processing route. The anisotropy associated to the elemental composition of the nanoparticles was confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. The size of the nanoparticles varies in the range from 9 to 13 nm, with an average size of 11 nm. Changes in the spatial orientation of the nanomaterials automatically generated a variation in their plasmonic response evaluated by UV-Vis spectroscopy. A two-wave mixing experiment was conducted to explore an induced birefringence at 532 nm wavelength with nanosecond pulses interacting with the samples. A strong optical Kerr effect was identified to be the main responsible effect for the third-order nonlinear optical phenomenon exhibited by the nanoparticles. It was estimated that the rotation of inhomogeneous nanostructures can provide a remarkable change in the participation of different surface plasmon resonances, if they correspond to multimetallic nanoparticles. Potential applications for developing low-dimensional gyroscopic systems can be contemplated.

  12. Dispersion polymerization of L-lactide utilizing ionic liquids as reaction medium

    NASA Astrophysics Data System (ADS)

    Fahmiati, Sri; Minami, Hideto; Haryono, Agus; Adilina, Indri B.

    2017-11-01

    Dispersion polymerization of L-lactide was proceeded in various ionic liquids. Ionic liquids as 1-Hexyl-3-methylimidazolium bis (trifluormethylsulfonyl) imide, [HMIM] [TFSI], 1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, [BMP] [TFSI], and N,N,N-Trimethyl-N-Propylammonium Bis (trifloromethanesulfonyl) imide, [TMPA] [TFSI], were employed as reaction medium that dissolved both of lactide and stabilizer (polyvinylprrolidone). Sn-supported on bentonite was used as a ring opening catalyst of L-lactide. Gel Permeation Chromatography result showed that poly-(L-lactic acid) were formed in ionic liquids [HMIM] [TFSI] and [BMP] [TFSI] with molecular weight as 19390 and 20844, respectively.

  13. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses

    PubMed Central

    Ma, Wenxue; Chen, Mingshui; Kaushal, Sharmeela; McElroy, Michele; Zhang, Yu; Ozkan, Cengiz; Bouvet, Michael; Kruse, Carol; Grotjahn, Douglas; Ichim, Thomas; Minev, Boris

    2012-01-01

    The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs) loaded with PLGA-NPs encapsulating tumor antigenic peptide(s). The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA). Antigen-specific cytotoxic T lymphocytes (CTLs) were generated and evaluated by CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI). The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund’s adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of −15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs loaded with PLGA-NPs encapsulating peptide induced significantly stronger CTL cytotoxicity than those pulsed with free peptide, while human DCs loaded with PLGA-NPs encapsulating a three-peptide cocktail induced a significantly greater CTL response than those encapsulating a two-peptide cocktail. Most importantly, the peptide dose encapsulated in PLGA-NPs was 63 times less than that emulsified in incomplete Freund’s adjuvant, but it induced a more powerful CTL response in vivo. These results demonstrate that the delivery of peptides encapsulated in PLGA-NPs is a promising approach to induce effective antitumor

  14. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting?

    PubMed

    Tayton, Edward; Purcell, M; Aarvold, A; Smith, J O; Kalra, S; Briscoe, A; Shakesheff, K; Howdle, S M; Dunlop, D G; Oreffo, R O C

    2012-05-01

    Disease transmission, availability and cost of allografts have resulted in significant efforts to find an alternative for use in impaction bone grafting (IBG). Recent studies identified two polymers with both structural strength and biocompatibility characteristics as potential replacements. The aim of this study was to assess whether increasing the polymer porosity further enhanced the mechanical and cellular compatibility characteristics for use as an osteogenic biomaterial alternative to allografts in IBG. Solid and porous poly(DL-lactide) (P(DL)LA) and poly(DL-lactide-co-glycolide) (P(DL)LGA) scaffolds were produced via melt processing and supercritical CO(2) foaming, and the differences characterized using scanning electron microscopy (SEM). Mechanical testing included milling and impaction, with comparisons made using a shear testing rig as well as a novel agitation test for cohesion. Cellular compatibility tests for cell number, viability, and osteogenic differentiation using WST-1 assays, fluorostaining, and ALP assays were determined following 14 day culture with skeletal stem cells. SEM showed excellent porosity throughout both of the supercritical-foam-produced polymer scaffolds, with pores between 50 and 200 μm. Shear testing showed that the porous polymers exceeded the shear strength of allograft controls (P<0.001). Agitation testing showed greater cohesion between the particles of the porous polymers (P<0.05). Cellular studies showed increased cell number, viability, and osteogenic differentiation on the porous polymers compared to solid block polymers (P<0.05). The use of supercritical CO(2) to generate porous polymeric biodegradable scaffolds significantly improves the cellular compatibility and cohesion observed compared to non-porous counterparts, without substantial loss of mechanical shear strength. These improved characteristics are critical for clinical translation as a potential osteogenic composite for use in IBG. Copyright © 2012 Acta

  15. Preclinical animal study and human clinical trial data of co-electrospun poly(l-lactide-co-caprolactone) and fibrinogen mesh for anterior pelvic floor reconstruction

    PubMed Central

    Wu, Xujun; Wang, Yuru; Zhu, Cancan; Tong, Xiaowen; Yang, Ming; Yang, Li; Liu, Zhang; Huang, Weihong; Wu, Feng; Zong, Honghai; Li, Huaifang; He, Hongbing

    2016-01-01

    Synthetic and biological materials are commonly used for pelvic floor reconstruction. In this study, host tissue response and biomechanical properties of mesh fabricated from co-electrospun poly(l-lactide-co-caprolactone) (PLCL) and fibrinogen (Fg) were compared with those of polypropylene mesh (PPM) in a canine abdominal defect model. Macroscopic, microscopic, histological, and biomechanical evaluations were performed over a 24-week period. The results showed that PLCL/Fg mesh had similar host tissue responses but better initial vascularization and graft site tissue organization than PPM. The efficacy of the PLCL/Fg mesh was further examined in human pelvic floor reconstruction. Operation time, intraoperative blood loss, and pelvic organ prolapse quantification during 6-month follow-up were compared for patients receiving PLCL/Fg mesh versus PPM. According to the pelvic organ prolapse quantification scores, the anterior vaginal wall 3 cm proximal to the hymen point (Aa point), most distal edge of the cervix or vaginal cuff scar point (C point), and posterior fornix point (D point) showed significant improvement (P<0.01) at 1, 3, and 6 months for both groups compared with preoperatively. At 6 months, improvements at the Aa point in the PLCL/Fg group were significantly more (P<0.005) than the PPM group, indicating that, while both materials improve the patient symptoms, PLCL/Fg mesh resulted in more obvious improvement. PMID:26893556

  16. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization.

    PubMed

    Park, Youngjune; Decatur, John; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa

    2011-10-28

    Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature of the grafted polymeric canopy allows for enhanced CO(2) capture capacity and selectivity via the enthalpic intermolecular interactions between CO(2) and the task-specific functional groups, such as amines. Interestingly, for the same amount of CO(2) loading NOHMs have also exhibited significantly different swelling behavior compared to that of the corresponding polymers, indicating a potential structural effect during CO(2) capture. If the frustrated canopy species favor spontaneous ordering due to steric and/or entropic effects, the inorganic cores of NOHMs could be organized into unusual structural arrangements. Likewise, the introduction of small gaseous molecules such as CO(2) could reduce the free energy of the frustrated canopy. This entropic effect, the result of unique structural nature, could allow NOHMs to capture CO(2) more effectively. In order to isolate the entropic effect, NOHMs were synthesized without the task-specific functional groups. The relationship between their structural conformation and the underlying mechanisms for the CO(2) absorption behavior were investigated by employing NMR and ATR FT-IR spectroscopies. The results provide fundamental information needed for evaluating and developing novel liquid-like CO(2) capture materials and give useful insights for designing and synthesizing NOHMs for more effective CO(2) capture. This journal is © the Owner Societies 2011

  17. Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking

    PubMed Central

    Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.

    2013-01-01

    Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825

  18. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    PubMed

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Current Strategies in the Modification of PLGA-based Gene Delivery System.

    PubMed

    Ramezani, Mohammad; Ebrahimian, Mahboubeh; Hashemi, Maryam

    2017-01-01

    Successful gene therapy has been limited by safe and efficient delivery of nucleic acid to the target cells. Poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) are able to deliver drugs and genes efficiently. This formulation has several advantages in comparison with other formulations including improvement in solubility, stability, controlling of degradation and release of the entrapped agents. For application of PLGA as a gene carrier, there exist many challenges. PLGA NPs could protect the encapsulated DNA from in vivo degradation but the DNA release is slow and the negative charge acts as a barrier to DNA incorporation and delivery. Also, during the preparation process, DNA could be exposed to high shear stress and organic solvents which could result in its inactivation. Moreover, PLGA NPs could be modified with different agents to reduce cytotoxicity, to enhance delivery efficiency and to target specific tissues/cells. This review summarizes different methods used for the preparation of PLGA NPs as gene carriers and recent strategies for the modification of PLGA particles applied in gene therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  1. Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles.

    PubMed

    Bai, Shuxing; Shao, Qi; Wang, Pengtang; Dai, Qiguang; Wang, Xingyi; Huang, Xiaoqing

    2017-05-24

    Carbon dioxide (CO 2 ) hydrogenation to ethanol (C 2 H 5 OH) is considered a promising way for CO 2 conversion and utilization, whereas desirable conversion efficiency remains a challenge. Herein, highly active, selective and stable CO 2 hydrogenation to C 2 H 5 OH was enabled by highly ordered Pd-Cu nanoparticles (NPs). By tuning the composition of the Pd-Cu NPs and catalyst supports, the efficiency of CO 2 hydrogenation to C 2 H 5 OH was well optimized with Pd 2 Cu NPs/P25 exhibiting high selectivity to C 2 H 5 OH of up to 92.0% and the highest turnover frequency of 359.0 h -1 . Diffuse reflectance infrared Fourier transform spectroscopy results revealed the high C 2 H 5 OH production and selectivity of Pd 2 Cu NPs/P25 can be ascribed to boosting *CO (adsorption CO) hydrogenation to *HCO, the rate-determining step for the CO 2 hydrogenation to C 2 H 5 OH.

  2. Multi-functional nanoparticles as theranostic agents for the treatment & imaging of pancreatic cancer.

    PubMed

    Jaidev, L R; Chellappan, David Raj; Bhavsar, Dhiraj Vasanth; Ranganathan, Ravi; Sivanantham, Banudevi; Subramanian, Anuradha; Sharma, Uma; Jagannathan, Narnamangalam R; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2017-02-01

    Theranostics has received considerable attention since both therapy and imaging modalities can be integrated into a single nanocarrier. In this study, fluorescent iron oxide (FIO) nanoparticles and gemcitabine (G) encapsulated poly(lactide-co-glycolide) (PLGA) nanospheres (PGFIO) conjugated with human epidermal growth factor receptor 2, (HER-2) antibody (HER-PGFIO) were prepared and characterized. HER-PGFIO showed the magnetic moment of 10emu/g, relaxivity (r 2 ) of 773mM -1 s -1 and specific absorption rate (SAR) of 183W/g. HER-PGFIO showed a sustained release of gemcitabine for 11days in PBS (pH 7.4). In vitro cytotoxicity evaluation of HER-PGFIO in 3D MIAPaCa-2 cultures showed 50% inhibitory concentration (IC 50 ) of 0.11mg/mL. Subcutaneous tumor xenografts of MIAPaCa-2 in SCID mice were developed and the tumor regression study at the end of 30days showed significant tumor regression (86±3%) in the HER-PGFIO with magnetic hyperthermia (MHT) treatment group compared to control group. In vivo MRI imaging showed the enhanced contrast in HER-PGFIO+MHT treated group compared to control. HER-PGFIO showed significant tumor regression and enhanced MRI in treatment groups, which could be an effective nanocarrier system for the treatment of pancreatic cancer. Combination therapies are best suitable to treat pancreatic cancer. Theranostics are the next generation therapeutics with both imaging and treatment agents encapsulated in a single nanocarrier. The novelty of the present work is the development of targeted nanocarrier that provides chemotherapy, thermotherapy and MRI imaging properties. The present work is the next step in developing the nanocarriers for pancreatic cancer treatment. Different treatment modalities embedding into a single nanocarrier is the biggest challenge that was achieved without compromising the functionality of each other. The surface modification of polymeric nanocarriers for antibody binding and their multifunctional abilities will appeal to

  3. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    PubMed

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  4. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance.

    PubMed

    Cheng, Tao; Xiao, Hai; Goddard, William A

    2017-08-30

    Recent experiments show that the grain boundaries (GBs) of copper nanoparticles (NPs) lead to an outstanding performance in reducing CO 2 and CO to alcohol products. We report here multiscale simulations that simulate experimental synthesis conditions to predict the structure of a 10 nm Cu NP (158 555 atoms). To identify active sites, we first predict the CO binding at a large number of sites and select four exhibiting CO binding stronger than the (211) step surface. Then, we predict the formation energy of the *OCCOH intermediate as a descriptor for C-C coupling, identifying two active sites, both of which have an under-coordinated surface square site adjacent to a subsurface stacking fault. We then propose a periodic Cu surface (4 by 4 supercell) with a similar site that substantially decreases the formation energy of *OCCOH, by 0.14 eV.

  5. Magnetic polymer nanospheres for anticancer drug targeting

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Koneracká, M.; Závišová, V.; Múčková, M.; Tomašovičová, N.; Lancz, G.; Kopčanský, P.; Timko, M.; Miškuf, J.

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  6. The synergistic effects of carbon coating and micropore structure on the microwave absorption properties of Co/CoO nanoparticles.

    PubMed

    Xie, Xiubo; Pang, Yu; Kikuchi, Hiroaki; Liu, Tong

    2016-11-09

    25 nm carbon-coated microporous Co/CoO nanoparticles (NPs) were synthesized by integrating chemical de-alloying and chemical vapor deposition (CVD) methods. The NPs possess micropores of 0.8-1.5 nm and display a homogeneous carbon shell of about 4 nm in thickness with a low graphitization degree. The saturation magnetization (M S ) and coercivity (H C ) of the NPs were 70.3 emu g -1 and 398.4 Oe, respectively. The microporous Co/CoO/C NPs exhibited enhanced microwave absorption performance with a minimum reflection coefficient (RC) of -78.4 dB and a wide absorption bandwidth of 8.1 GHz (RC ≤ -10 dB), larger than those of the nonporous counterparts of -68.3 dB and 5.8 GHz. The minimum RC values of the microporous Co/CoO/C NPs at different thicknesses were much smaller than the nonporous counterparts. The high microwave absorption mechanism of the microporous Co/CoO/C nanocomposite can be interpreted in terms of the interfacial polarization relaxation of the core/shell and micropore structures, the effective permittivity modification of the air in the micropores and the polarization relaxation of the defects in the low-graphitization carbon shell and the porous Co NPs. Our study demonstrates that the microporous Co/CoO/C nanocomposite is an efficient microwave absorber with high absorption intensity and wide absorption bandwidth.

  7. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.

    PubMed

    Budi, Canggih Setya; Wu, Hung-Chi; Chen, Ching-Shiun; Saikia, Diganta; Kao, Hsien-Ming

    2016-09-08

    Ni nanoparticles (around 4 nm diameter) were successfully supported on cage-type mesoporous silica SBA-16 (denoted as Ni@SBA-16) via wet impregnation at pH 9, followed by the calcination-reduction process. The Ni@SBA-16 catalyst with a very high Ni loading amount (22.9 wt %) exhibited exceptionally high CH4 selectivity for CO2 hydrogenation. At a nearly identical loading amount, the Ni@SBA-16 catalysts with smaller particle size of Ni NPs surprisingly exhibited a higher catalytic activity of CO2 hydrogenation and also led to a higher selectivity on CH4 formation than the Ni@SiO2 catalysts. This enhanced activity of the Ni@SBA-16 catalyst is suggested to be an accumulative result of the advantageous structural properties of the support SBA-16 and the well confined Ni NPs within the support; both induced a favorable reaction pathway for high selectivity of CH4 in CO2 hydrogenation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Photochemical Fabrication of Transition Metal Nanoparticles Using CdS Template and Their Co-Catalysis Effects for TiO2 Photocatalysis

    NASA Astrophysics Data System (ADS)

    Badhwar, Nidhi; Gupta, Nidhi; Pal, Bonamali

    2013-09-01

    Transition metal nanoparticles were prepared by chemical dissolution of CdS template from metal photodeposited CdS nanorod (length = 70-85 nm and width = 5-6 nm) heterocomposites. Size (9-10 nm) of metal nanoparticles obtained after CdS removal was larger than the size (4-6 nm) of metal nanodeposits over CdS template. The obtained Au nanoparticles displayed a broad red shifted absorption band at 660 nm, whereas Pt, Pd and Rh nanoparticles exhibit featureless absorption spectra. Elemental analysis confirms the complete removal of CdS template from Au-CdS (Au — 2.65 at.%) and Ag-CdS (Ag — 2.06 at.%) composites showing no Cd peak. These metal nanoparticles imparted dissimilar co-catalytic activity of TiO2 for photocatalytic degradation of salicylic acid in the order Au > Pt > Pd > Ag > Rh as a function of their nature, electronegativity, redox potential and work function.

  9. One-step engineered self-assembly Co3O4 nanoparticles to nanocubes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Nagajyothi, P. C.; Pandurangan, M.; Sreekanth, T. V. M.; Shim, Jaesool

    2018-02-01

    Tricobalt tetraoxide or cobalt oxide (Co3O4) nanocubes (NCs) were synthesized from the self-assemblies of Co3O4 nanoparticles (NPs) via a simple one-step hydrothermal method. X-ray diffraction analysis confirmed the cubic crystal structure of Co3O4 NCs. The surface properties were investigated by x-ray photoelectron spectroscopy, which suggests the co-existence of Co in +2 and +3 states. The self-assemblies of aggregation of NPs to NCs were inspected using scanning electron microscopy, which is supported by transmission electron microscopy. The electrochemical properties of Co3O4 NCs were carried out by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) curves and impedance analysis. The areal capacitance of 3.04 mF cm-2 was obtained at current density of 10 μA cm-2. The Co3O4 NCs electrode exhibits good long-cyclic stability with 92.1% capacitance retention over 3000 cycles. The CV, GCD and impedance curves of Co3O4 NCs were recorded after cyclic test, which are similar to the curves recorded before the test. Therefore, the Co3O4 NCs serves good candidate as positive electrode materials for asymmetric supercapacitors.

  10. Optical, colloidal and biological properties of up-converting nanoparticles embedded in polyester nanocarriers

    NASA Astrophysics Data System (ADS)

    Wawrzyńczyk, Dominika; Kulbacka, Julita; Bazylińska, Urszula

    2017-08-01

    We have investigated the change in optical properties and biocompatibility of up-converting NaYF4 nanoparticles (NPs) upon encapsulation inside the polyester nanocarriers (NCs) stabilized by Crempophor RH40 (CRH40), poly(D,L-lactide) (PLA), Pluronic P123 (P123). NaYF4:Er3+,Yb3+ NPs showed intense green and red emission, and upon encapsulation the increase of red band in respect to green one was observed, with no luminescence lifetime shortening. Obtained NCs showed prolonged colloidal stability and protective effect of the polymer shell simultaneously preserving the high emission efficiency of nanoparticles embedded within the silicon oil (SO) core. Based on emission spectra, kinetic measurements and cytotoxicity studies upon human malignant melanoma Me45 cell line we have shown the advantages of using polyester NCs as containers for the up-converting NPs. Due to the possibility of co-encapsulation of photosensitizers the obtained nanocarriers showed potential for application in theranostics.

  11. Effect of solvents on the enzyme mediated degradation of copolymers

    NASA Astrophysics Data System (ADS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-09-01

    The biodegradation of polycaprolactone (PCL), polylactic acid (PLA), polyglycolide (PGA) and their copolymers, poly (lactide-co-glycolide) and poly (D, L-lactide-co-caprolactone) (PLCL) was investigated. The influence of different solvents on the degradation of these polymers at 37 °C in the presence of two different lipases namely Novozym 435 and the free lipase of porcine pancreas was investigated. The rate coefficients for the polymer degradation and enzyme deactivation were determined using continuous distribution kinetics. Among the homopolymers, the degradation of PGA was nearly an order of magnitude lower than that for PCL and PLA. The overall rate coefficients of the copolymers were higher than their respective homopolymers. Thus, PLCL degraded faster than either PCL or PLA. The degradation was highly dependent on the viscosity of the solvent used with the highest degradation observed in acetone. The degradation of the polymers in acetone was nearly twice that observed in dimethyl sulfoxide indicating that the degradation decreases with increase in the solvent viscosity. The degradation of the polymers in water-solvent mixtures indicated an optimal water content of 2.5 wt% of water.

  12. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    NASA Astrophysics Data System (ADS)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  13. Toxicity of PEG-Coated CoFe2O4 Nanoparticles with Treatment Effect of Curcumin

    NASA Astrophysics Data System (ADS)

    Akhtar, Shahnaz; An, Wenzhen; Niu, Xiaoying; Li, Kang; Anwar, Shahzad; Maaz, Khan; Maqbool, Muhammad; Gao, Lan

    2018-02-01

    In this work, CoFe2O4 nanoparticles coated with polyethylene glycol (PEG) were successfully synthesized via a hydrothermal technique. Morphological studies of the samples confirmed the formation of polycrystalline pure-phase PEG-CoFe2O4 nanoparticles with sizes of about 24 nm. Toxicity induced by CoFe2O4 nanoparticles was investigated, and biological assays were performed to check the toxicity effects of CoFe2O4 nanoparticles. Moreover, the healing effect of toxicity induced in living organisms was studied using curcumin and it was found that biochemical indexes detoxified and improved to reach its normal level after curcumin administration. Thus, PEG-coated CoFe2O4 synthesized through a hydrothermal method can be utilized in biomedical applications and curcumin, which is a natural chemical with no side effects, can be used for the treatment of toxicity induced by the nanoparticles in living organisms.

  14. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications.

    PubMed

    Rahmani, Sahar; Villa, Carlos H; Dishman, Acacia F; Grabowski, Marika E; Pan, Daniel C; Durmaz, Hakan; Misra, Asish C; Colón-Meléndez, Laura; Solomon, Michael J; Muzykantov, Vladimir R; Lahann, Joerg

    2015-01-01

    Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I(125) radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site.

  15. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications

    PubMed Central

    Rahmani, Sahar; Villa, Carlos H.; Dishman, Acacia F.; Grabowski, Marika E.; Pan, Daniel C.; Durmaz, Hakan; Misra, Asish C; Colón-Meléndez, Laura; Solomon, Michael J.; Muzykantov, Vladimir R.; Lahann, Joerg

    2016-01-01

    Background Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. Purpose Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. Methods EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I125 radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. Results and discussion Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. Conclusion EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site. PMID:26453170

  16. Pseudocapacitance of Co doped NiO nanoparticles and its room temperature ferromagnetic behavior

    NASA Astrophysics Data System (ADS)

    Bharathy, G.; Raji, P.

    2018-02-01

    Co doped NiO nanoparticles CoxNi1-xO (x = 0.0, 0.1, 0.2, 0.3, 0.4) were synthesized by the Sol-gel technique. The impact of Co doping concentration on structural, functional and magnetic properties of NiO nanoparticles was analyzed by X-ray diffraction (XRD), FESEM with EDAX, FTIR and VSM. The average crystallite size was measured to be 34 nm and 11 nm for NiO and Co doped NiO nanoparticles respectively. FESEM reveals that particles are spherical in shape with average size around 30 nm. The elemental composition was analyzed by EDAX. FTIR spectra reveal the existence of NiO peaks in the prepared samples, room temperature ferromagnetism was observed for pure and Co doped NiO nanoparticles by VSM. Pure NiO particles shows ferromagnetic behavior with low coercivity and it increases gradually when doping ratio increases. Higher saturation magnetization was obtained for the sample 0.1 M of Co doped NiO nanoparticle as 22.09 emu/gm. An attempt has been made to study the pseudocapacitance behavior of pure and Co doped NiO nano particles in various scan rates. Electrochemical studies show that 0.4 M Co doped sample gives better charge storage capacity with maximum specific capacitance of 379 Fg-1 at a scan rate of 20 mVs-1. It reveals that it is a promising electrode material for super capacitor applications.

  17. Highlighting the Importance of Surface Grafting in Combination with a Layer-by-Layer Approach for Fabricating Advanced 3D Poly(l-lactide) Microsphere Scaffolds

    PubMed Central

    2016-01-01

    A combined surface treatment (i.e., surface grafting and a layer-by-layer (LbL) approach) is presented to create advanced biomaterials, i.e., 3D poly(l-lactide) (PLLA) microsphere scaffolds, at room temperature. The grafted surface plays a crucial role in assembling polyelectrolyte multilayers (PEMs) onto the surface of the microspheres, thus improving the physicochemical properties of the 3D microsphere scaffolds. The grafted surface of the PLLA microspheres demonstrates much better PEM adsorption, improved surface coverage at low pH, and smoother surfaces at high pH compared with those of nongrafted surfaces of PLLA microspheres during the assembly of PEMs. They induce more swelling than nongrafted surfaces after the assembly of the PEMs and exhibit blue emission after functionalization of the microsphere surface with a fluorescent dye molecule. The 3D scaffolds functionalized with and without nanosheets not only exhibit good mechanical performance similar to the compressive modulus of cancellous bone but also exhibit the porosity required for cancellous bone regeneration. The magnetic nanoparticle-functionalized 3D scaffolds result in an electrical conductivity in the high range of semiconducting materials (i.e., 1–250 S cm–1). Thus, these 3D microsphere scaffolds fabricated by surface grafting and the LbL approach are promising candidates for bone tissue engineering. PMID:29503506

  18. Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle co-assembly.

    PubMed

    Gu, Yibei; Dorin, Rachel M; Wiesner, Ulrich

    2013-01-01

    A facile method for forming asymmetric organic-inorganic hybrid membranes for selective separation applications is developed. This approach combines co-assembly of block copolymer (BCP) and inorganic nanoparticles (NPs) with non-solvent induced phase separation. The method is successfully applied to two distinct molar mass BCPs with different fractions of titanium dioxide (TiO2) NPs. The resulting hybrid membranes exhibit structural asymmetry with a thin nanoporous surface layer on top of a macroporous fingerlike support layer. Key parameters that dictate membrane surface morphology include the fraction of inorganics used and the length of time allowed for surface layer development. The resulting membranes exhibit both good selectivity and high permeability (3200 ± 500 Lm(-2) h(-1) bar(-1)). This fast and straightforward synthesis method for asymmetric hybrid membranes provides a new self-assembly platform upon which multifunctional and high-performance organic-inorganic hybrid membranes can be formed.

  19. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation.

    PubMed

    Mehdikhani-Nahrkhalaji, M; Fathi, M H; Mortazavi, V; Mousavi, S B; Hashemi-Beni, B; Razavi, S M

    2012-02-01

    This study aimed at preparation and in vitro and in vivo evaluation of novel bioactive, biodegradable, and antibacterial nanocomposite coating for the improvement of stem cells attachment and antibacterial activity as a candidate for dental implant applications. Poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) nanocomposite coating was prepared via solvent casting process. The nanoparticle amounts of 10, 15, and 20 weight percent (wt%) were chosen in order to determine the optimum amount of nanoparticles suitable for preparing an uniform coating. Bioactivity and degradation of the coating with an optimum amount of nanoparticles were evaluated by immersing the prepared samples in simulated body fluid and phosphate buffer saline (PBS), respectively. The effect of nanocomposite coating on the attachment and viability of human adipose-derived stem cells (hASCs) was investigated. Kirschner wires (K-wires) of stainless steel were coated with the PBGHA nanocomposite coating, and mechanical stability of the coating was studied during intramedullary implantation into rabbit tibiae. The results showed that using 10 wt% nanoparticles (5 wt% HA and 5 wt% BG) in the nanocomposite could provide the desired uniform coating. The study of in vitro bioactivity showed rapid formation of bone-like apatite on the PBGHA coating. It was degraded considerably after about 60 days of immersion in PBS. The hASCs showed excellent attachment and viability on the coating. PBGHA coating remained stable on the K-wires with a minimum of 96% of the original coating mass. It was concluded that PBGHA nanocomposite coating provides an ideal surface for the stem cells attachment and viability. In addition, it could induce antibacterial activity, simultaneously.

  20. Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles.

    PubMed

    Oh, Yunok; Moorthy, Madhappan Santha; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Oh, Junghwan

    2017-02-01

    Magnetic iron oxide nanoparticles (MNPs) have been extensively utilized in a wide range of biomedical applications including magnetic hyperthermia agent. To improve the efficiency of the MNPs in therapeutic applications, in this study, we have synthesized CoFe 2 O 4 nanoparticles and its surface was further functionalized with meso-2,3-dimercaptosuccinic acid (DMSA). The anticancer agent, Doxorubucin (DOX) was conjugated with CoFe 2 O 4 @DMSA nanoparticle to evaluate the combined effects of thermotherapy and chemotherapy. The drug delivery efficiency of the DOX loaded CoFe 2 O 4 @DMSA nanoparticles were examined based on magnetically triggered delivery of DOX into the subcellular level of cancer cells by using MDA-MB-231 cell line. The amine part of the DOX molecules were effectively attached through an electrostatic interactions and/or hydrogen bonding interactions with the carboxylic acid groups of the DMSA functionalities present onto the surface of the CoFe 2 O 4 nanoparticles. The DOX loaded CoFe 2 O 4 @DMSA nanoparticles can effectively uptake with cancer cells via typical endocytosis process. After endocytosis, DOX release from CoFe 2 O 4 nanoparticles was triggered by intracellular endosomal/lysosomal acidic environments and the localized heat can be generated under an alternating magnetic field (AMF). In the presence of AMF, the released DOX molecules were accumulated with high concentrations into the subcellular level at a desired sites and exhibited a synergistic effect of an enhanced cell cytotoxicity by the combined effects of thermal-chemotherapy. Importantly, pH- and thermal-responsive Dox-loaded CoFe 2 O 4 nanoparticles induced significant cellular apoptosis more efficiently mediated by active mitochondrial membrane and ROS generation than the free Dox. Thus, the Dox-loaded CoFe 2 O 4 @DMSA nanoparticles can be used as a potential therapeutic agent in cancer therapy by combining the thermo-chemotherapy techniques. Copyright © 2016. Published by