Sample records for lactin acid-pyruvic alt

  1. Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate

    NASA Astrophysics Data System (ADS)

    Barb, A. W.; Hekmatyar, S. K.; Glushka, J. N.; Prestegard, J. H.

    2013-03-01

    Hyperpolarized metabolites offer a tremendous sensitivity advantage (>104 fold) when measuring flux and enzyme activity in living tissues by magnetic resonance methods. These sensitivity gains can also be applied to mechanistic studies that impose time and metabolite concentration limitations. Here we explore the use of hyperpolarization by dissolution dynamic nuclear polarization (DNP) in mechanistic studies of alanine transaminase (ALT), a well-established biomarker of liver disease and cancer that converts pyruvate to alanine using glutamate as a nitrogen donor. A specific deuterated, 13C-enriched analog of pyruvic acid, 13C3D3-pyruvic acid, is demonstrated to have advantages in terms of detection by both direct 13C observation and indirect observation through methyl protons introduced by ALT-catalyzed H-D exchange. Exchange on injecting hyperpolarized 13C3D3-pyruvate into ALT dissolved in buffered 1H2O, combined with an experimental approach to measure proton incorporation, provided information on mechanistic details of transaminase action on a 1.5 s timescale. ALT introduced, on average, 0.8 new protons into the methyl group of the alanine produced, indicating the presence of an off-pathway enamine intermediate. The opportunities for exploiting mechanism-dependent molecular signatures as well as indirect detection of hyperpolarized 13C3-pyruvate and products in imaging applications are discussed.

  2. Atmospheric measurements of pyruvic and formic acid

    NASA Technical Reports Server (NTRS)

    Andreae, Meinrat O.; Li, Shao-Meng; Talbot, Robert W.

    1987-01-01

    Pyruvic acid, a product of the atmospheric oxidation of cresols and probably of isoprene, has been determined together with formic acid in atmospheric aerosols and rain as well as in the vapor phase. Both acids are present predominantly as vapor; only about 10-20 percent of the total atmospheric pyruvate and 1-2 percent of the total formate are in the particulate phase. The concentrations of pyruvic and formic acid are highly correlated, with typical formic-to-pyruvic ratios of 10-30 in the gas phase, 20-30 in rain, and 2-10 in aerosols. The gas-phase and rain ratios are comparable to those predicted to result from isoprene oxidation. Pyruvic acid levels were similar in the eastern United States (during summer) and the Amazon Basin, suggesting that natural processes, particularly the photochemical oxidation of isoprene, could account for most of the pyruvic acid present in the atmosphere.

  3. Production and Recovery of Pyruvic Acid: Recent Advances

    NASA Astrophysics Data System (ADS)

    Pal, Dharm; Keshav, Amit; Mazumdar, Bidyut; Kumar, Awanish; Uslu, Hasan

    2017-12-01

    Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.

  4. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  5. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  6. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  7. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  8. 21 CFR 862.1655 - Pyruvic acid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... treatment of acid-base and electrolyte disturbances or anoxia (the reduction of oxygen in body tissues). (b... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pyruvic acid test system. 862.1655 Section 862....1655 Pyruvic acid test system. (a) Identification. A pyruvic acid test system is a device intended to...

  9. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  10. Underestimation of pyruvic acid concentrations by fructose and cysteine in 2,4-dinitrophenylhydrazine-mediated onion pungency test.

    PubMed

    Yoo, Kil Sun; Lee, Eun Jin; Patil, Bhimanagouda S

    2011-10-01

    Onion pungency has been routinely measured by determining pyruvic acid concentration in onion juice by reacting with 2,4-dinitrophenylhydrazine (DNPH) since 1961. However, the absorbency of the color adduct of the reaction rapidly decreased in onion samples as compared to that of the pyruvic acid standards, resulting in underestimations of the pyruvic acid concentrations. By measuring the absorbency at 1 min, we have demonstrated that accuracy could be substantially improved. As a continuation, the causes of degradation of the color adduct after the reaction and pyruvic acid itself before the reaction were examined in this study. Alliinase action in juice (fresh or cooked) and bulb colors did not influence the degradation. Some organic acids indigenously found in onion, such as ascorbic acid, proline, and glutamic acid, did not reduce the absorbency. However, fructose within the onion juice or supplemented caused the degradation of the color adduct, whereas sucrose and glucose had a lesser effect. Degradation rates increased proportionally as fructose concentrations increased up to 70 mg/mL. Cysteine was found to degrade the pyruvic acid itself before the pyruvic acid could react with DNPH. Approximately 90% of the pyruvic acid was degraded after 60 min in samples of 7 mM pyruvic acid supplemented with 10 mg/mL cysteine. Spectral comparisons of onion juice containing fructose naturally and pyruvic acid solution with supplemented fructose indicated identical patterns and confirmed that the color-adduct degradation was caused by fructose. Our study elucidated that fructose, a major sugar in onion juice, caused the degradation of color adduct in the onion pungency test and resulted in underestimation of the pyruvic acid concentration. © 2011 Institute of Food Technologists®

  11. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    PubMed Central

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  12. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites.

    PubMed

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-08-23

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a "one pot" suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using (13)C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems.

  13. A new pyruvate oxidase biosensor based on 3-mercaptopropionic acid/6-aminocaproic acid modified gold electrode.

    PubMed

    Bayram, Ezgi; Akyilmaz, Erol

    2014-12-01

    In the biosensor construction, 3-mercaptopropionic acid (3-MPA) and 6-aminocaproic acid (6-ACA) were used for forming self-assembled monolayer (SAM) on a gold disc electrode and pyruvate oxidase was immobilized on the modified electrode surface by using glutaraldehyde. Biosensor response is linearly related to pyruvate concentration at 2.5-50 μM, detection limit is 1.87 μM and response time of the biosensor is 6 s for differential pulse voltammograms. From the repeatability studies (n = 6) for 30.0 μM pyruvate revealed that the average value ([Formula: see text]), standard deviation (S.D) and coefficient of variation (CV %) were calculated to be 31.02 μM, ± 0.1914 μM and 0.62%, respectively.

  14. Chemoselective amide formation using O-(4-nitrophenyl)hydroxylamines and pyruvic acid derivatives.

    PubMed

    Kumar, Sonali; Sharma, Rashi; Garcia, Megan; Kamel, Joseph; McCarthy, Caroline; Muth, Aaron; Phanstiel, Otto

    2012-12-07

    A series of O-(4-nitrophenyl)hydroxylamines were synthesized from their respective oximes using a pulsed addition of excess NaBH(3)CN at pH 3 in 65-75% yield. Steric hindrance near the oxime functional group played a key role in both the ease by which the oxime could be reduced and the subsequent reactivity of the respective hydroxylamine. Reaction of the respective hydroxylamines with pyruvic acid derivatives generated the desired amides in good yields. A comparison of phenethylamine systems bearing different leaving groups revealed significant differences in the rates of these systems and suggested that the leaving group ability of the N-OR substituent plays an important role in determining their reactivity with pyruvic acid. Competition experiments (in 68% DMSO/phosphate buffered saline) using 1 equiv of N-phenethyl-O-(4-nitrophenyl)hydroxylamine and 2 equiv of pyruvic acid in the presence of other nucleophiles such as glycine, cysteine, phenol, hexanoic acid, and lysine demonstrated that significant chemoselectivity is present in this reaction. The results suggest that this chemoselective reaction can occur in the presence of excess α-amino acids, phenols, acids, thiols, and amines.

  15. Sunlight-initiated chemistry of aqueous pyruvic acid: building complexity in the origin of life.

    PubMed

    Griffith, Elizabeth C; Shoemaker, Richard K; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  16. Redirection of pyruvate flux toward desired metabolic pathways through substrate channeling between pyruvate kinase and pyruvate-converting enzymes in Saccharomyces cerevisiae.

    PubMed

    Kim, Sujin; Bae, Sang-Jeong; Hahn, Ji-Sook

    2016-04-07

    Spatial organization of metabolic enzymes allows substrate channeling, which accelerates processing of intermediates. Here, we investigated the effect of substrate channeling on the flux partitioning at a metabolic branch point, focusing on pyruvate metabolism in Saccharomyces cerevisiae. As a platform strain for the channeling of pyruvate flux, PYK1-Coh-Myc strain was constructed in which PYK1 gene encoding pyruvate kinase is tagged with cohesin domain. By using high-affinity cohesin-dockerin interaction, the pyruvate-forming enzyme Pyk1 was tethered to heterologous pyruvate-converting enzymes, lactate dehydrogenase and α-acetolactate synthase, to produce lactic acid and 2,3-butanediol, respectively. Pyruvate flux was successfully redirected toward desired pathways, with a concomitant decrease in ethanol production even without genetic attenuation of the ethanol-producing pathway. This pyruvate channeling strategy led to an improvement of 2,3-butanediol production by 38%, while showing a limitation in improving lactic acid production due to a reduced activity of lactate dehydrogenase by dockerin tagging.

  17. Single Sodium Pyruvate Ingestion Modifies Blood Acid-Base Status and Post-Exercise Lactate Concentration in Humans

    PubMed Central

    Olek, Robert A.; Kujach, Sylwester; Wnuk, Damian; Laskowski, Radoslaw

    2014-01-01

    This study examined the effect of a single sodium pyruvate ingestion on a blood acid-base status and exercise metabolism markers. Nine active, but non-specifically trained, male subjects participated in the double-blind, placebo-controlled, crossover study. One hour prior to the exercise, subjects ingested either 0.1 g·kg−1 of body mass of a sodium pyruvate or placebo. The capillary blood samples were obtained at rest, 60 min after ingestion, and then three and 15 min after completing the workout protocol to analyze acid-base status and lactate, pyruvate, alanine, glucose concentrations. The pulmonary gas exchange, minute ventilation and the heart rate were measured during the exercise at a constant power output, corresponding to ~90% O2max. The blood pH, bicarbonate and the base excess were significantly higher after sodium pyruvate ingestion than in the placebo trial. The blood lactate concentration was not different after the ingestion, but the post-exercise was significantly higher in the pyruvate trial (12.9 ± 0.9 mM) than in the placebo trial (10.6 ± 0.3 mM, p < 0.05) and remained elevated (nonsignificant) after 15 min of recovery. The blood pyruvate, alanine and glucose concentrations, as well as the overall pulmonary gas exchange during the exercise were not affected by the pyruvate ingestion. In conclusion, the sodium pyruvate ingestion one hour before workout modified the blood acid-base status and the lactate production during the exercise. PMID:24841105

  18. A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans

    PubMed Central

    Bricker, Daniel K.; Taylor, Eric B.; Schell, John C.; Orsak, Thomas; Boutron, Audrey; Chen, Yu-Chan; Cox, James E.; Cardon, Caleb M.; Van Vranken, Jonathan G.; Dephoure, Noah; Redin, Claire; Boudina, Sihem; Gygi, Steven P.; Brivet, Michèle; Thummel, Carl S.; Rutter, Jared

    2013-01-01

    Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier. PMID:22628558

  19. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne.

    PubMed

    Jaffary, Fariba; Faghihi, Gita; Saraeian, Sara; Hosseini, Sayed Mohsen

    2016-01-01

    Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen) were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI) was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant ( P < 0.001) in the course of treatment. However, it was not significant regarding the number of pustules ( P = 0.09). None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients ( P = 0.015). Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  20. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne

    PubMed Central

    Jaffary, Fariba; Faghihi, Gita; Saraeian, Sara; Hosseini, Sayed Mohsen

    2016-01-01

    Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. Materials and Methods: In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen) were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI) was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. Results: In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant (P < 0.001) in the course of treatment. However, it was not significant regarding the number of pustules (P = 0.09). None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid – treated patients (P = 0.015). Conclusion: Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects. PMID:27904577

  1. Regulation of pyruvate metabolism and human disease.

    PubMed

    Gray, Lawrence R; Tompkins, Sean C; Taylor, Eric B

    2014-07-01

    Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.

  2. Beta-oxidation as channeled reaction linked to citric acid cycle: evidence from measurements of mitochondrial pyruvate oxidation during fatty acid degradation.

    PubMed

    Förster, M E; Staib, W

    1992-07-01

    1. The kinetics of mitochondrial mammalian pyruvate dehydrogenase multienzyme complex (PDHC) is studied by the formation of CO2 using tracer amounts of [1-14C]pyruvate. It is found that the Hill plot results in a (pseudo-)cooperativity with a transition of n-1----3 at a pyruvate concentration about Ks. 2. Addition of L-carnitine, octanoate, palmitoyl-CoA or palmitate + L-carnitine + fatty acid-binding protein results in a Hill coefficient of n = 2 following the kinetics of pyruvate oxidation. 3. Addition of fatty acid-binding protein to an assay system oxidizing palmitate in presence of L-carnitine alters the pattern of the kinetics in the Hill plot so that an apparently lower level of L-carnitine is necessary for the reaction course of beta-degradation. 4. It is concluded that beta-degradation is a coordinated, multienzyme-complex based mechanism tightly linked to citric acid cycle and it is proposed that L-carnitine is actively involved into the reaction and not only functioning as carrier-molecule for transmembrane transport.

  3. Assessing inflammatory liver injury in an acute CCl4 model using dynamic 3D metabolic imaging of hyperpolarized [1-(13)C]pyruvate.

    PubMed

    Josan, Sonal; Billingsley, Kelvin; Orduna, Juan; Park, Jae Mo; Luong, Richard; Yu, Liqing; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2015-12-01

    To facilitate diagnosis and staging of liver disease, sensitive and non-invasive methods for the measurement of liver metabolism are needed. This study used hyperpolarized (13)C-pyruvate to assess metabolic parameters in a CCl4 model of liver damage in rats. Dynamic 3D (13)C chemical shift imaging data from a volume covering kidney and liver were acquired from 8 control and 10 CCl4-treated rats. At 12 time points at 5 s temporal resolution, we quantified the signal intensities and established time courses for pyruvate, alanine, and lactate. These measurements were compared with standard liver histology and an alanine transaminase (ALT) enzyme assay using liver tissue from the same animals. All CCl4-treated but none of the control animals showed histological liver damage and elevated ALT enzyme levels. In agreement with these results, metabolic imaging revealed an increased alanine/pyruvate ratio in liver of CCl4-treated rats, which is indicative of elevated ALT activity. Similarly, lactate/pyruvate ratios were higher in CCl4-treated compared with control animals, demonstrating the presence of inflammation. No significant differences in metabolite ratios were observed in kidney or vasculature. Thus this work shows that metabolic imaging using (13)C-pyruvate can be a successful tool to non-invasively assess liver damage in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  4. The role of the mitochondrial pyruvate carrier in substrate regulation

    PubMed Central

    Vacanti, Nathaniel M.; Divakaruni, Ajit S.; Green, Courtney R.; Parker, Seth J.; Henry, Robert R.; Ciaraldi, Theodore P.; Murphy, Anne N.; Metallo, Christian M.

    2014-01-01

    SUMMARY Pyruvate lies at a central biochemical node connecting carbohydrate, amino acid, and fatty acid metabolism, and the regulation of pyruvate flux into mitochondria represents a critical step in intermediary metabolism impacting numerous diseases. To characterize changes in mitochondrial substrate utilization in the context of compromised mitochondrial pyruvate transport, we applied 13C metabolic flux analysis (MFA) to cells after transcriptional or pharmacological inhibition of the mitochondrial pyruvate carrier (MPC). Despite profound suppression of both glucose and pyruvate oxidation, cell growth, oxygen consumption, and tricarboxylic acid (TCA) metabolism were surprisingly maintained. Oxidative TCA flux was achieved through enhanced reliance on glutaminolysis through malic enzyme and pyruvate dehydrogenase (PDH) as well as fatty acid and branched chain amino acid oxidation. Thus, in contrast to inhibition of complex I or PDH, suppression of pyruvate transport induces a form of metabolic flexibility associated with use of lipids and amino acids as catabolic and anabolic fuels. PMID:25458843

  5. Recovery of Pyruvic Acid using Tri-n-butylamine Dissolved in Non-Toxic Diluent (Rice Bran Oil)

    NASA Astrophysics Data System (ADS)

    Pal, Dharm; Keshav, Amit

    2016-04-01

    An attempt has been made to investigate the effectiveness of the vegetable oil based biocompatible solvent for the separation of pyruvic acid from fermentation broth, by using rice bran oil as natural, non-toxic diluent. Reactive extraction of pyruvic acid (0.1-0.5 k mol/m3) from aqueous solutions has been studied using tri-n-butylamine (TBA; 10-70 %) as an extractant dissolved in non toxic rice bran oil at T = 30 ± 1 °C. Results were presented in terms of distribution coefficient (Kd), extraction efficiency (E %), loading ratio (Z), and complexation constant (\\varphi_{α β }). Extraction equilibrium was interpreted using mass action modeling approach. Based on the extent of loading (Z < 0.5) only (1:1), pyruvic acid: TBA complex was proposed. Equilibrium complexation constant was evaluated to 1.22 m3/k mol. Results obtained are useful in understanding the extraction mechanism.

  6. omega-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of beta-amino acids and amines.

    PubMed

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-04-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.

  7. ω-Amino Acid:Pyruvate Transaminase from Alcaligenes denitrificans Y2k-2: a New Catalyst for Kinetic Resolution of β-Amino Acids and Amines

    PubMed Central

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-01-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and Vmax for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and Vmax for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion. PMID:15066855

  8. Enhanced pyruvate production in Candida glabrata by carrier engineering.

    PubMed

    Luo, Zhengshan; Liu, Song; Du, Guocheng; Xu, Sha; Zhou, Jingwen; Chen, Jian

    2018-02-01

    Pyruvate is an important organic acid that plays a key role in the central metabolic pathway. Manipulating transporters is an efficient strategy to enhance production of target organic acids and a means to understand the effects of altered intracellular pyruvate content on global metabolic networks. Efforts have been made to manipulate mitochondrial pyruvate carrier (MPC) to transport pyruvate into different subcellular compartments in Candida glabrata to demonstrate the effects of the subcellular distribution of pyruvate on central carbon metabolism. By increasing the mitochondrial pyruvate content through enhancing the rate of pyruvate transport into mitochondria, a high central carbon metabolism rate, specific growth rate and specific pyruvate production rate were obtained. Comparing the intracellular pyruvate content of engineered and control strains showed that higher intracellular pyruvate levels were not conducive to improving pyruvate productivity or central carbon metabolism. Plasma membrane expression of MPCs significantly increased the expression levels of key rate-limiting glycolytic enzymes. Moreover, pyruvate production of CGΔura3-Sp-MPC1, CGΔura3-Sp-MPC2, and CGΔura3-Sp-MPC1-Sp-MPC2 increased 134.4%, 120.3%, and 30.0%, respectively. In conclusion, lower intracellular pyruvate content enhanced central carbon metabolism and provided useful clues for improving the production of other organic acids in microorganisms. © 2017 Wiley Periodicals, Inc.

  9. Photochemistry of aqueous pyruvic acid

    PubMed Central

    Griffith, Elizabeth C.; Carpenter, Barry K.; Shoemaker, Richard K.; Vaida, Veronica

    2013-01-01

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols. PMID:23821751

  10. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products.

    PubMed

    Dad, Azra; Jeong, Clara H; Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J

    2013-10-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) > chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs. Copyright © 2013 Wiley Periodicals, Inc.

  11. Pyruvate metabolism in castor-bean mitochondria.

    PubMed Central

    Brailsford, M A; Thompson, A G; Kaderbhai, N; Beechey, R B

    1986-01-01

    We report the isolation of mitochondria from the endosperm of castor beans (Ricinus communis). These mitochondria oxidized succinate, external NADH, malate and pyruvate with respiratory-control and ADP/O ratios consistent with those found previously with mitochondria from other plant sources. The mitochondria exhibited considerable sensitivity to the electron-transport-chain inhibitors antimycin A and cyanide when oxidizing succinate and external NADH. Pyruvate-dependent O2 uptake was relatively insensitive to these inhibitors, although the residual O2 uptake could be inhibited by salicylhydroxamic acid. We conclude that a cyanide-insensitive alternative terminal oxidase is functional in these mitochondria. However, electrons from the succinate dehydrogenase or external NADH dehydrogenase seem to have no access to this pathway. There is little interconnection between the salicylhydroxamic acid-sensitive and cyanide-sensitive pathways of electron transport. alpha-Cyanocinnamate and its analogues, compound UK5099 [alpha-cyano-beta-(1-phenylindol-3-yl)acrylate] and alpha-cyano-4-hydroxycinnamate, were all found to be potent non-competitive inhibitors of pyruvate oxidation in castor-bean mitochondria. The accumulation of pyruvate by castor-bean mitochondria was determined by using a silicone-oil-centrifugation technique. The accumulation was shown to observe Michaelis-Menten kinetics, with a Km for pyruvate of 0.10 mM and a Vmax. of 0.95 nmol/min per mg of mitochondrial protein. However, the observed rates of pyruvate accumulation were insufficient to account for the pyruvate oxidation rates found in the oxygen-electrode studies. We were able to demonstrate that this is due to the immediate export of the accumulated radiolabel in the form of malate and citrate. Compound UK5099 inhibited the accumulation of [2-14C]pyruvate by castor-bean mitochondria at concentrations similar to those required to inhibit pyruvate oxidation. PMID:3814077

  12. Loss of Mitochondrial Pyruvate Carrier 2 in Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling

    PubMed Central

    McCommis, Kyle S.; Chen, Zhouji; Fu, Xiaorong; McDonald, William G.; Colca, Jerry R.; Kletzien, Rolf F.; Burgess, Shawn C.; Finck, Brian N.

    2015-01-01

    SUMMARY Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite step for gluconeogenesis in hepatocytes, which is important for maintenance of normoglycemia during prolonged food deprivation, but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2−/−) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte pyruvate metabolism, labelled pyruvate conversion to TCA cycle intermediates and glucose, and glucose production from pyruvate. Unbiased metabolomic analyses of livers from fasted LS-Mpc2−/− mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2−/− hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import. PMID:26344101

  13. Mitochondrial pyruvate transport in working guinea-pig heart. Work-related vs. carrier-mediated control of pyruvate oxidation.

    PubMed

    Bünger, R; Mallet, R T

    1993-09-19

    Myocardial pyruvate oxidation is work- or calcium-load-related, but control of pyruvate dehydrogenase (PDH) by the specific mitochondrial pyruvate transporter has also been proposed. To test the transport hypothesis distribution of pyruvate across the cell membrane as well as rates of mitochondrial pyruvate net transport plus oxidation were examined in isolated perfused but stable and physiologically working guinea-pig hearts. 150 microM-1.2 mM alpha-cyanohydroxycinnamate proved to specifically block mitochondrial pyruvate uptake in these hearts. When perfusate glucose as cytosolic pyruvate precursor was supplied in combination with octanoate (0.2 or 0.5 mM) as diffusible alternative fatty acid substrate, alpha-cyanohydroxycinnamate produced up to 20- and 3-fold increases in pyruvate and lactate efflux, respectively. Cinnamates did not alter myocardial hemodynamics nor sarcolemmal pyruvate and lactate export. In contrast the tested concentrations of cinnamate produced reversible, dose-dependent decreases in 14CO2 production from [1-14C]pyruvate or [U-14C]glucose by inhibiting mitochondrial pyruvate uptake. Linear least-squares estimates of available cinnamate-sensitive total pyruvate transport potential yielded rates close to 110 mumol/min per g dry mass at S0.5 approximately 120 microM, which compared reasonably well with literature values from isolated cardiac mitochondria. This transport potential was severalfold larger than total extractable myocardial PDH activity of approximately 32 mumol/min per g dry mass at 37 degrees C. Even when cytosolic pyruvate levels were in the lower physiologic range of about 90 microM, pyruvate oxidation readily kept pace with mitochondrial respiration over a wide range of workload and inotropism. Furthermore, dichloroacetate, a selective activator of PDH, stimulated pyruvate oxidation without affecting myocardial O2 consumption, regardless of the metabolic or inotropic state of the hearts. Consequently, little or no regulatory

  14. Paralogous ALT1 and ALT2 Retention and Diversification Have Generated Catalytically Active and Inactive Aminotransferases in Saccharomyces cerevisiae

    PubMed Central

    Peñalosa-Ruiz, Georgina; Aranda, Cristina; Ongay-Larios, Laura; Colon, Maritrini; Quezada, Hector; Gonzalez, Alicia

    2012-01-01

    Background Gene duplication and the subsequent divergence of paralogous pairs play a central role in the evolution of novel gene functions. S. cerevisiae possesses two paralogous genes (ALT1/ALT2) which presumably encode alanine aminotransferases. It has been previously shown that Alt1 encodes an alanine aminotransferase, involved in alanine metabolism; however the physiological role of Alt2 is not known. Here we investigate whether ALT2 encodes an active alanine aminotransferase. Principal Findings Our results show that although ALT1 and ALT2 encode 65% identical proteins, only Alt1 displays alanine aminotransferase activity; in contrast ALT2 encodes a catalytically inert protein. ALT1 and ALT2 expression is modulated by Nrg1 and by the intracellular alanine pool. ALT1 is alanine-induced showing a regulatory profile of a gene encoding an enzyme involved in amino acid catabolism, in agreement with the fact that Alt1 is the sole pathway for alanine catabolism present in S. cerevisiae. Conversely, ALT2 expression is alanine-repressed, indicating a role in alanine biosynthesis, although the encoded-protein has no alanine aminotransferase enzymatic activity. In the ancestral-like yeast L. kluyveri, the alanine aminotransferase activity was higher in the presence of alanine than in the presence of ammonium, suggesting that as for ALT1, LkALT1 expression could be alanine-induced. ALT2 retention poses the questions of whether the encoded protein plays a particular function, and if this function was present in the ancestral gene. It could be hypotesized that ALT2 diverged after duplication, through neo-functionalization or that ALT2 function was present in the ancestral gene, with a yet undiscovered function. Conclusions ALT1 and ALT2 divergence has resulted in delegation of alanine aminotransferase activity to Alt1. These genes display opposed regulatory profiles: ALT1 is alanine-induced, while ALT2 is alanine repressed. Both genes are negatively regulated by the Nrg1

  15. Effects of insulin combined with ethyl pyruvate on inflammatory response and oxidative stress in multiple-organ dysfunction syndrome rats with severe burns.

    PubMed

    Wang, Zhanke; Chen, Rongjian; Zhu, Zhongzhen; Zhang, Xiaoyun; Wang, Shiliang

    2016-11-01

    Inflammation response and oxidative stress promote the occurrence and development of multiple-organ dysfunction syndrome (MODS). Eighty MODS rats with third-degree burns were divided randomly into 4 groups: insulin, ethyl pyruvate (EP), insulin combined with EP, and control. Blood levels of glucose, alanine aminotransferase (ALT), creatine (CRE), creatine kinase (CK), tumor necrosis factor α (TNF-α), high-mobility group box 1 (HMGB-1), malondialdehyde (MDA), and total antioxidant capacity (TAC) before as well as 1, 3, 5, and 7 days after burns were measured. Blood levels of ALT, CRE, CK, TNF-α, HMGB-1, and MDA in INS, EP, and INS+EP groups at different time points were significantly lower, and TAC was significantly higher than that in the control group (C) (P<.01). These parameters in the INS+EP group were significantly lower, and TAC was significantly higher than that in INS and EP groups (P<.01). Blood levels of TNF-α, HMGB-1, and TAC in the INS group at different time points after burns were significantly lower, and MDA was significantly higher than that in the EP group (P<.01). Insulin combined with EP can effectively reduce the inflammatory response, oxidative stress, and main organ dysfunctions in MODS rats after severe burns. The therapeutic effect of insulin combined with EP is superior to single-agent treatment. The insulin anti-inflammatory effect is better than that of pyruvic acid ethyl ester, and the ethyl pyruvate antioxidation effect is better than that of insulin. The insulin can treat inflammation, whereas EP can reduce oxidative stress in MODS rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling.

    PubMed

    McCommis, Kyle S; Chen, Zhouji; Fu, Xiaorong; McDonald, William G; Colca, Jerry R; Kletzien, Rolf F; Burgess, Shawn C; Finck, Brian N

    2015-10-06

    Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite for gluconeogenesis in hepatocytes, which is important for the maintenance of normoglycemia during prolonged food deprivation but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2(-/-)) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte conversion of labeled pyruvate to TCA cycle intermediates and glucose. Unbiased metabolomic analyses of livers from fasted LS-Mpc2(-/-) mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for the loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2(-/-) hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Mitochondrial pyruvate transport: a historical perspective and future research directions

    PubMed Central

    McCommis, Kyle S.; Finck, Brian N.

    2015-01-01

    Pyruvate is the end-product of glycolysis, a major substrate for oxidative metabolism, and a branching point for glucose, lactate, fatty acid and amino acid synthesis. The mitochondrial enzymes that metabolize pyruvate are physically separated from cytosolic pyruvate pools and rely on a membrane transport system to shuttle pyruvate across the impermeable inner mitochondrial membrane (IMM). Despite long-standing acceptance that transport of pyruvate into the mitochondrial matrix by a carrier-mediated process is required for the bulk of its metabolism, it has taken almost 40 years to determine the molecular identity of an IMM pyruvate carrier. Our current understanding is that two proteins, mitochondrial pyruvate carriers MPC1 and MPC2, form a hetero-oligomeric complex in the IMM to facilitate pyruvate transport. This step is required for mitochondrial pyruvate oxidation and carboxylation – critical reactions in intermediary metabolism that are dysregulated in several common diseases. The identification of these transporter constituents opens the door to the identification of novel compounds that modulate MPC activity, with potential utility for treating diabetes, cardiovascular disease, cancer, neurodegenerative diseases, and other common causes of morbidity and mortality. The purpose of the present review is to detail the historical, current and future research investigations concerning mitochondrial pyruvate transport, and discuss the possible consequences of altered pyruvate transport in various metabolic tissues. PMID:25748677

  18. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    PubMed

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  19. Pyruvate Decarboxylase Catalyzes Decarboxylation of Branched-Chain 2-Oxo Acids but Is Not Essential for Fusel Alcohol Production by Saccharomyces cerevisiae

    PubMed Central

    ter Schure, Eelko G.; Flikweert, Marcel T.; van Dijken, Johannes P.; Pronk, Jack T.; Verrips, C. Theo

    1998-01-01

    The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production. PMID:9546164

  20. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis

    NASA Astrophysics Data System (ADS)

    Coggins, Adam J.; Powner, Matthew W.

    2017-04-01

    Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions.

  1. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  2. Pyruvate transport by thermogenic-tissue mitochondria.

    PubMed

    Proudlove, M O; Beechey, R B; Moore, A L

    1987-10-15

    1. Mitochondria isolated from the thermogenic spadices of Arum maculatum and Sauromatum guttatum plants oxidized external NADH, succinate, citrate, malate, 2-oxoglutarate and pyruvate without the need to add exogenous cofactors. 2. Oxidation of substrates was virtually all via the alternative oxidase, the cytochrome pathway constituting only 10-20% of the total activity, depending on the stage of spadix development. 3. During later stages of spadix development, pyruvate oxidation was enhanced by the addition of aspartate. This was caused by acetyl-CoA condensing with oxaloacetate, produced from pyruvate/aspartate transamination, and so decreasing feedback inhibition of pyruvate dehydrogenase. 4. Pyruvate oxidation was inhibited by the long-chain acid maleimides AM5-11, but not by those with shorter polymethylene side groups, AM1-4. 5. The alpha-cyanocinnamate derivatives UK5099 [alpha-cyano-beta-(1-phenylindol-3-yl)acrylate] and CHCA [alpha-cyano-4-hydroxycinnamate] inhibited pyruvate-dependent O2 consumption and the carrier-mediated uptake of pyruvate across the mitochondrial inner membrane. Characteristics of non-competitive inhibition were observed for CHCA, whereas for UK5099 the results were more complex, suggesting a very low rate of dissociation of the inhibitor-carrier complex. 6. A comparison of the values of Vmax. and Km for oxidation and transport suggested that it was the latter which controls the overall rate of pyruvate oxidation by mitochondria from both tissues.

  3. Reactivity landscape of pyruvate under simulated hydrothermal vent conditions

    PubMed Central

    Novikov, Yehor; Copley, Shelley D.

    2013-01-01

    Pyruvate is an important “hub” metabolite that is a precursor for amino acids, sugars, cofactors, and lipids in extant metabolic networks. Pyruvate has been produced under simulated hydrothermal vent conditions from alkyl thiols and carbon monoxide in the presence of transition metal sulfides at 250 °C [Cody GD et al. (2000) Science 289(5483):1337–1340], so it is plausible that pyruvate was formed in hydrothermal systems on the early earth. We report here that pyruvate reacts readily in the presence of transition metal sulfide minerals under simulated hydrothermal vent fluids at more moderate temperatures (25–110 °C) that are more conducive to survival of biogenic molecules. We found that pyruvate partitions among five reaction pathways at rates that depend upon the nature of the mineral present; the concentrations of H2S, H2, and NH4Cl; and the temperature. In most cases, high yields of one or two primary products are found due to preferential acceleration of certain pathways. Reactions observed include reduction of ketones to alcohols and aldol condensation, both reactions that are common in extant metabolic networks. We also observed reductive amination to form alanine and reduction to form propionic acid. Amino acids and fatty acids formed by analogous processes may have been important components of a protometabolic network that allowed the emergence of life. PMID:23872841

  4. Self-healing pH-sensitive poly[(methyl vinyl ether)-alt-(maleic acid)]-based supramolecular hydrogels formed by inclusion complexation between cyclodextrin and adamantane.

    PubMed

    Ma, Xiaoe; Zhou, Naizhen; Zhang, Tianzhu; Hu, Wanjun; Gu, Ning

    2017-04-01

    Self-healing materials are of interest for drug delivery, cell and gene therapy, tissue engineering, and other biomedical applications. In this work, on the base of biocompatible polymer poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)), host polymer β-cyclodextrin-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-β-CD) and guest polymer adamantane-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-Ad) were first prepared. Then through taking advantage of the traditional host-guest interaction of β-cyclodextrin and adamantane, a novel self-healing pH-sensitive physical P(MVE-alt-MA)-g-β-CD/P(MVE-alt-MA)-g-Ad supramolecular hydrogels were obtained after simply mixing the aqueous solution of host polymer and guest polymer. This kind of supramolecular hydrogels not only possess pH-sensitivity, but also possess the ability to repair themselves after being damaged. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Mechanism of Decarboxylation of Pyruvic Acid in the Presence of Hydrogen Peroxide

    PubMed Central

    Lopalco, Antonio; Dalwadi, Gautam; Niu, Sida; Schowen, Richard L.; Douglas, Justin; Stella, Valentino J.

    2015-01-01

    The purpose of this work was to probe the rate and mechanism of rapid decarboxylation of pyruvic acid in the presence of hydrogen peroxide (H2O2) to acetic acid and carbon dioxide over the pH range 2 – 9 at 25°C, utilizing UV spectrophotometry, high performance liquid chromatography (HPLC), and proton and carbon nuclear magnetic resonance spectrometry (1H, 13C-NMR). Changes in UV absorbance at 220 nm were used to determine the kinetics since the reaction was too fast to follow by HPLC or NMR in much of the pH range. The rate constants for the reaction were determined in the presence of molar excess of H2O2 resulting in pseudo first order kinetics. No buffer catalysis was observed. The calculated second order rate constants for the reaction followed a sigmoidal shape with pH independent regions below pH 3 and above pH 7 but increased between pH 4 and 6. Between pH 4 and 9, the results were in agreement with a change from rate determining nucleophilic attack of the deprotonated peroxide species, HOO−, on the α-carbonyl group followed by rapid decarboxylation at pH values below 6 to rate-determining decarboxylation above pH 7. The addition of H2O2 to ethyl pyruvate was also characterized. PMID:26422524

  6. Supplementation of pyruvate prevents palmitate-induced impairment of glucose uptake in C2 myotubes.

    PubMed

    Jung, Jong Gab; Choi, Sung-E; Hwang, Yoon-Jung; Lee, Sang-A; Kim, Eun Kyoung; Lee, Min-Seok; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2011-10-15

    Elevated fatty acid levels have been thought to contribute to insulin resistance. Repression of the glucose transporter 4 (GLUT4) gene as well as impaired GLUT4 translocation may be a mediator for fatty acid-induced insulin resistance. This study was initiated to determine whether palmitate treatment repressed GLUT4 expression, whether glucose/fatty acid metabolism influenced palmitate-induced GLUT4 gene repression (PIGR), and whether attempts to prevent PIGR restored palmitate-induced impairment of glucose uptake (PIIGU) in C2 myotubes. Not only stimulators of fatty acid oxidation, such as bezafibrate, AICAR, and TOFA, but also TCA cycle substrates, such as pyruvate, leucine/glutamine, and α-ketoisocaproate/monomethyl succinate, significantly prevented PIGR. In particular, supplementing with pyruvate through methyl pyruvate resulted in nearly complete prevention of PIIGU, whereas palmitate treatment reduced the intracellular pyruvate level. These results suggest that pyruvate depletion plays a critical role in PIGR and PIIGU; thus, pyruvate supplementation may help prevent obesity-induced insulin resistance in muscle cells. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  7. An innovative alt-alt telescope for small observatories and amateur astronomers

    NASA Astrophysics Data System (ADS)

    Riva, M.; Basso, S.; Canestrari, R.; Conconi, P.; Fugazza, D.; Ghigo, M.; Landoni, M.; Pareschi, G.; Spanó, P.; Tomelleri, R.; Zerbi, F. M.

    2012-09-01

    This paper want to show an innovative amateur oriented telescope with an unconventional alt-alt conguration. The goal is to make a telescope with good optical quality reducing production costs by adopting a gimbal based mounting to develop an alt-alt conguration suitable for a telescope. Reduce costs while preserving the optical quality is a necessary condition to allow small groups of amateur astronomers, schools and cultural clubs, with reduced economic resources, to acquire an astronomical instrument that encourages learning and advancing astrophysical knowledge. This unconventional mechanism for the realization of a telescope alt-alt provides signicant advantages. The traditional rotary motors coupled with expensive precision bearings are replaced with two simple linear actuators coupled to a properly preloaded gimbal joint and the cell becomes the primary structure of the telescope. A second advantage would be secured by mechanical simplicity evident in the easy portability of the instrument. The frame alt-alt has some limitations on the horizon pointing but does not show the zenith blind spot of the alt-az mount. A dedicated alt-alt pointing and tracking model is under development to be compatible with commercial telescope softwares and with the proposed new mounting.

  8. Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production.

    PubMed

    Melo, Nadiele T M; Mulder, Kelly C L; Nicola, André Moraes; Carvalho, Lucas S; Menino, Gisele S; Mulinari, Eduardo; Parachin, Nádia S

    2018-02-16

    Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris , a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris . To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.

  9. Twenty-seven Years of Cerebral Pyruvate Recycling.

    PubMed

    Cerdán, Sebastián

    2017-06-01

    Cerebral pyruvate recycling is a metabolic pathway deriving carbon skeletons and reducing equivalents from mitochondrial oxaloacetate and malate, to the synthesis of mitochondrial and cytosolic pyruvate, lactate and alanine. The pathway allows both, to provide the tricarboxylic acid cycle with pyruvate molecules produced from alternative substrates to glucose and, to generate reducing equivalents necessary for the operation of NADPH requiring processes. At the cellular level, pyruvate recycling involves the activity of malic enzyme, or the combined activities of phosphoenolpyruvate carboxykinase and pyruvate kinase, as well as of those transporters of the inner mitochondrial membrane exchanging the corresponding intermediates. Its cellular localization between the neuronal or astrocytic compartments of the in vivo brain has been controversial, with evidences favoring either a primarily neuronal or glial localizations, more recently accepted to occur in both environments. This review provides a brief history on the detection and characterization of the pathway, its relations with the early developments of cerebral high resolution 13 C NMR, and its potential neuroprotective functions under hypoglycemic conditions or ischemic redox stress.

  10. Cerebrospinal fluid acid-base status and lactate and pyruvate concentrations after convulsions of varied duration and aetiology in children.

    PubMed Central

    Simpson, H; Habel, A H; George, E L

    1977-01-01

    Twenty-two infants and children were studied after convulsions of varied cause and duration. Arterial and CSF acid-base variables, lactate and pyruvate concentrations, and lactate/pyruvate ratios were measured between 3 and 18 hours after convulsive episodes. Biochemical signs of cerebral hypoxia were found in 7 patients with prolonged (greater than 30 minutes) or recurrent short convulsions. These signs were absent in patients with single short convulsions. These findings indicate that cerebral hypoxia and possible brain damage is a hazard of prolonged or rapidly recurring short convulsions. PMID:23078

  11. Haloacetic Acid Water Disinfection Byproducts Affect Pyruvate Dehydrogenase Activity and Disrupt Cellular Metabolism.

    PubMed

    Dad, Azra; Jeong, Clara H; Wagner, Elizabeth D; Plewa, Michael J

    2018-02-06

    The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.

  12. Mitochondrial uncoupling protein may participate in futile cycling of pyruvate and other monocarboxylates.

    PubMed

    Jezek, P; Borecký, J

    1998-08-01

    The physiological role of monocarboxylate transport in brown adipose tissue mitochondria has been reevaluated. We studied pyruvate, alpha-ketoisovalerate, alpha-ketoisocaproate, and phenylpyruvate uniport via the uncoupling protein (UCP1) as a GDP-sensitive swelling in K+ salts induced by valinomycin or by monensin and carbonyl cyanide-p-(trifluoromethoxy)phenylhydrazone in Na+ salts. We have demonstrated that this uniport is inhibited by fatty acids. GDP inhibition in K+ salts was not abolished by an uncoupler, indicating a negligible monocarboxylic acid penetration via the lipid bilayer. In contrast, the electroneutral pyruvate uptake (swelling in ammonium pyruvate or potassium pyruvate induced by change in pH) mediated by the pyruvate carrier was inhibited by its specific inhibitor alpha-cyano-4-hydroxycinnamate but not by fatty acids. Moreover, alpha-cyano-4-hydroxycinnamate enhanced the energization of brown adipose tissue mitochondria, which was monitored fluorometrically by 2-(4-dimethylaminostyryl)-1-methylpyridinium iodide and safranin O. Consequently, we suggest that UCP1 might participate in futile cycling of unipolar ketocarboxylates under certain physiological conditions while expelling these anions from the matrix. The cycle is completed on their return via the pyruvate carrier in an H+ symport mode.

  13. Mitochondrial Pyruvate Carrier Function and Cancer Metabolism

    PubMed Central

    Rauckhorst, Adam J.

    2016-01-01

    Metabolic reprograming in cancer supports the increased biosynthesis required for unchecked proliferation. Increased glucose utilization is a defining feature of many cancers that is accompanied by altered pyruvate partitioning and mitochondrial metabolism. Cancer cells also require mitochondrial tricarboxylic acid cycle activity and electron transport chain function for biosynthetic competency and proliferation. Recent evidence demonstrates that mitochondrial pyruvate carrier (MPC) function is abnormal in some cancers and that increasing MPC activity may decrease cancer proliferation. Here we examine recent findings on MPC function and cancer metabolism. Special emphasis is placed on the compartmentalization of pyruvate metabolism and the alternative routes of metabolism that maintain the cellular biosynthetic pools required for unrestrained proliferation in cancer. PMID:27269731

  14. TRIIODOTHYRONINE INCREASES MYOCARDIAL FUNCTION AND PYRUVATE ENTRY INTO THE CITRIC ACID CYCLE AFTER REPERFUSION IN A MODEL OF INFANT CARDIOPULMONARY BYPASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Aaron; Bouchard, Bertrand; Ning, Xue-Han

    We utilized a translational model of infant CPB to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC) thereby providing the energy support for improved cardiac function after ischemia-reperfusion. Methods and Results: Neonatal piglets received intracoronary [2-13Carbon(13C)]-pyruvate for 40 minutes (8 mM) during control aerobic conditions (Cont) or immediately after reperfusion (IR) from global hypothermic ischemia. A third group (IR-Tr) received T3 (1.2 ug/kg) during reperfusion. We assessed absolute CAC intermediate levels (aCAC) and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC ) and anaplerotic carboxylation (PC; ) using 13C-labeled pyruvate and isotopomermore » analysis by gas and liquid chromatography-mass spectrometry and 13C NMR. Neither IR nor IR-Tr modified aCAC. However, compared to IR, T3 (group IR-Tr) increased cardiac power and oxygen consumption after CPB while elevating both PDC and PC (~ four-fold). T3 inhibited IR induced reductions in CAC intermediate molar percent enrichment (MPE) and oxaloacetate(citrate)/malate MPE ratio; an index of aspartate entry into the CAC. Conclusions: T3 markedly enhances PC and PDC thereby providing substrate for elevated cardiac function and work after reperfusion. The increases in pyruvate flux occur with preservation of the CAC intermediate pool. Additionally, T3 inhibition of reductions in CAC intermediate MPEs indicates that T3 reduces the reliance on amino acids (AA) for anaplerosis after reperfusion. Thus, AA should be more available for other functions such as protein synthesis.« less

  15. Cerebrospinal fluid acid-base status and lactate and pyruvate concentrations after short (less than 30 minutes) first febrile convulsions in children.

    PubMed Central

    Simpson, H; Habel, A H; George, E L

    1977-01-01

    Twenty-nine infants and children with short (less than 30 minutes) first febrile convulsions were studied between 3 and 22 hours after convulsive episodes. Arterial and CSF acid-base variables, lactate and pyruvate concentrations, and lactate/pyruvate ratios were measured. Biochemical signs of cerebral hypoxia were found in only 2 patients, one of whom had short, repeated convulsions. Our findings indicate that hypoxic damage is unlikely to result from a short-duration febrile convulsion. PMID:23077

  16. Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia. II - Wet season

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Andreae, M. O.; Berresheim, H.; Jacob, D. J.; Beecher, K. M.

    1990-01-01

    Potential sources and sinks of formic, acetic, and pyruvic acids over the Amazon forest were investigated using a photochemical model and data collected on gas phase concentrations of these acids in the forest canopy, boundary layer, and free troposphere over the central Amazon Basin during the 1987 wet season. It was found that the atmospheric reactions previously suggested in the literature as sources of carboxylic acids (i.e., the gas phase decomposition of isoprene, the reaction between CH3CO3 and a peroxide, and aqueous phase oxidation of CH2O) appear to be too slow to explain the observed concentrations, suggesting that other atmospheric reactions, so far unidentified, could make a major contribution to the carboxylic acid budgets.

  17. Low-field thermal mixing in [1-(13)C] pyruvic acid for brute-force hyperpolarization.

    PubMed

    Peat, David T; Hirsch, Matthew L; Gadian, David G; Horsewill, Anthony J; Owers-Bradley, John R; Kempf, James G

    2016-07-28

    We detail the process of low-field thermal mixing (LFTM) between (1)H and (13)C nuclei in neat [1-(13)C] pyruvic acid at cryogenic temperatures (4-15 K). Using fast-field-cycling NMR, (1)H nuclei in the molecule were polarized at modest high field (2 T) and then equilibrated with (13)C nuclei by fast cycling (∼300-400 ms) to a low field (0-300 G) that activates thermal mixing. The (13)C NMR spectrum was recorded after fast cycling back to 2 T. The (13)C signal derives from (1)H polarization via LFTM, in which the polarized ('cold') proton bath contacts the unpolarised ('hot') (13)C bath at a field so low that Zeeman and dipolar interactions are similar-sized and fluctuations in the latter drive (1)H-(13)C equilibration. By varying mixing time (tmix) and field (Bmix), we determined field-dependent rates of polarization transfer (1/τ) and decay (1/T1m) during mixing. This defines conditions for effective mixing, as utilized in 'brute-force' hyperpolarization of low-γ nuclei like (13)C using Boltzmann polarization from nearby protons. For neat pyruvic acid, near-optimum mixing occurs for tmix∼ 100-300 ms and Bmix∼ 30-60 G. Three forms of frozen neat pyruvic acid were tested: two glassy samples, (one well-deoxygenated, the other O2-exposed) and one sample pre-treated by annealing (also well-deoxygenated). Both annealing and the presence of O2 are known to dramatically alter high-field longitudinal relaxation (T1) of (1)H and (13)C (up to 10(2)-10(3)-fold effects). Here, we found smaller, but still critical factors of ∼(2-5)× on both τ and T1m. Annealed, well-deoxygenated samples exhibit the longest time constants, e.g., τ∼ 30-70 ms and T1m∼ 1-20 s, each growing vs. Bmix. Mixing 'turns off' for Bmix > ∼100 G. That T1m≫τ is consistent with earlier success with polarization transfer from (1)H to (13)C by LFTM.

  18. Anaplerotic roles of pyruvate carboxylase in mammalian tissues.

    PubMed

    Jitrapakdee, S; Vidal-Puig, A; Wallace, J C

    2006-04-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate. PC serves an anaplerotic role for the tricarboxylic acid cycle, when intermediates are removed for different biosynthetic purposes. In liver and kidney, PC provides oxaloacetate for gluconeogenesis. In adipocytes PC is involved in de novo fatty acid synthesis and glyceroneogenesis, and is regulated by the peroxisome proliferator-activated receptor-gamma, suggesting that PC is involved in the metabolic switch controlling fuel partitioning toward lipogenesis. In islets, PC is necessary for glucose-induced insulin secretion by providing oxaloacetate to form malate that participates in the 'pyruvate/malate cycle' to shuttle 3C or 4C between mitochondria and cytoplasm. Hyperglycemia and hyperlipidemia impair this cycle and affect glucose-stimulated insulin release. In astrocytes, PC is important for de novo synthesis of glutamate, an important excitatory neurotransmitter supplied to neurons. Transcriptional studies of the PC gene pinpoint some transcription factors that determine tissue-specific expression.

  19. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export.

    PubMed

    Zelle, Rintze M; de Hulster, Erik; van Winden, Wouter A; de Waard, Pieter; Dijkema, Cor; Winkler, Aaron A; Geertman, Jan-Maarten A; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2008-05-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO(2)-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)(-1). A previously engineered glucose-tolerant, C(2)-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter(-1) at a malate yield of 0.42 mol (mol glucose)(-1). Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on (13)C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.

  20. PDK4 Inhibits Cardiac Pyruvate Oxidation in Late Pregnancy.

    PubMed

    Liu, Laura X; Rowe, Glenn C; Yang, Steven; Li, Jian; Damilano, Federico; Chan, Mun Chun; Lu, Wenyun; Jang, Cholsoon; Wada, Shogo; Morley, Michael; Hesse, Michael; Fleischmann, Bernd K; Rabinowitz, Joshua D; Das, Saumya; Rosenzweig, Anthony; Arany, Zoltan

    2017-12-08

    Pregnancy profoundly alters maternal physiology. The heart hypertrophies during pregnancy, but its metabolic adaptations, are not well understood. To determine the mechanisms underlying cardiac substrate use during pregnancy. We use here 13 C glucose, 13 C lactate, and 13 C fatty acid tracing analyses to show that hearts in late pregnant mice increase fatty acid uptake and oxidation into the tricarboxylic acid cycle, while reducing glucose and lactate oxidation. Mitochondrial quantity, morphology, and function do not seem altered. Insulin signaling seems intact, and the abundance and localization of the major fatty acid and glucose transporters, CD36 (cluster of differentiation 36) and GLUT4 (glucose transporter type 4), are also unchanged. Rather, we find that the pregnancy hormone progesterone induces PDK4 (pyruvate dehydrogenase kinase 4) in cardiomyocytes and that elevated PDK4 levels in late pregnancy lead to inhibition of PDH (pyruvate dehydrogenase) and pyruvate flux into the tricarboxylic acid cycle. Blocking PDK4 reverses the metabolic changes seen in hearts in late pregnancy. Taken together, these data indicate that the hormonal environment of late pregnancy promotes metabolic remodeling in the heart at the level of PDH, rather than at the level of insulin signaling. © 2017 American Heart Association, Inc.

  1. A novel membrane-integrated fermentation reactor system: application to pyruvic acid production in continuous culture by Torulopsis glabrata.

    PubMed

    Sawai, Hideki; Mimitsuka, Takashi; Minegishi, Shin-Ichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu

    2011-08-01

    This paper describes the performance of a novel bio-reactor system, the membrane-integrated fermentation reactor (MFR), for efficient continuous fermentation. The MFR, equipped with an autoclavable polyvinylidene difluoride membrane, has normally been used for biological wastewater treatment. The productivity of the MFR system, applied to the continuous production of pyruvic acid by the yeast Torulopsis glabrata, was remarkably high. The volumetric productivity of pyruvic acid increased up to 4.2 g/l/h, about four times higher than that of batch fermentation. Moreover, the membrane was able to filter fermentation broth for more than 300 h without fouling even though the cell density of the fermentation broth reached 600 as OD(660). Transmembrane pressure, used as an indicator of membrane fouling, remained below 5 kPa throughout the continuous fermentation. These results clearly indicate that the MFR system is a simple and highly efficient system that is applicable to the fermentative production of a range of biochemicals.

  2. Pyruvate ingestion for 7 days does not improve aerobic performance in well-trained individuals

    NASA Technical Reports Server (NTRS)

    Morrison, M. A.; Spriet, L. L.; Dyck, D. J.

    2000-01-01

    The purposes of the present studies were to test the hypotheses that lower dosages of oral pyruvate ingestion would increase blood pyruvate concentration and that the ingestion of a commonly recommended dosage of pyruvate (7 g) for 7 days would enhance performance during intense aerobic exercise in well-trained individuals. Nine recreationally active subjects (8 women, 1 man) consumed 7, 15, and 25 g of pyruvate and were monitored for a 4-h period to determine whether blood metabolites were altered. Pyruvate consumption failed to significantly elevate blood pyruvate, and it had no effect on indexes of carbohydrate (blood glucose, lactate) or lipid metabolism (blood glycerol, plasma free fatty acids). As a follow-up, we administered 7 g/day of either placebo or pyruvate, for a 1-wk period to seven, well-trained male cyclists (maximal oxygen consumption, 62.3 +/- 3.0 ml. kg(-1). min(-1)) in a randomized, double-blind, crossover trial. Subjects cycled at 74-80% of their maximal oxygen consumption until exhaustion. There was no difference in performance times between the two trials (placebo, 91 +/- 9 min; pyruvate, 88 +/- 8 min). Measured blood parameters (insulin, peptide C, glucose, lactate, glycerol, free fatty acids) were also unaffected. Our results indicate that oral pyruvate supplementation does not increase blood pyruvate content and does not enhance performance during intense exercise in well-trained cyclists.

  3. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier

    PubMed Central

    Divakaruni, Ajit S.; Wiley, Sandra E.; Rogers, George W.; Andreyev, Alexander Y.; Petrosyan, Susanna; Loviscach, Mattias; Wall, Estelle A.; Yadava, Nagendra; Heuck, Alejandro P.; Ferrick, David A.; Henry, Robert R.; McDonald, William G.; Colca, Jerry R.; Simon, Melvin I.; Ciaraldi, Theodore P.; Murphy, Anne N.

    2013-01-01

    Facilitated pyruvate transport across the mitochondrial inner membrane is a critical step in carbohydrate, amino acid, and lipid metabolism. We report that clinically relevant concentrations of thiazolidinediones (TZDs), a widely used class of insulin sensitizers, acutely and specifically inhibit mitochondrial pyruvate carrier (MPC) activity in a variety of cell types. Respiratory inhibition was overcome with methyl pyruvate, localizing the effect to facilitated pyruvate transport, and knockdown of either paralog, MPC1 or MPC2, decreased the EC50 for respiratory inhibition by TZDs. Acute MPC inhibition significantly enhanced glucose uptake in human skeletal muscle myocytes after 2 h. These data (i) report that clinically used TZDs inhibit the MPC, (ii) validate that MPC1 and MPC2 are obligatory components of facilitated pyruvate transport in mammalian cells, (iii) indicate that the acute effect of TZDs may be related to insulin sensitization, and (iv) establish mitochondrial pyruvate uptake as a potential therapeutic target for diseases rooted in metabolic dysfunction. PMID:23513224

  4. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass

    PubMed Central

    Olson, Aaron K.; Bouchard, Bertrand; Ning, Xue-Han; Isern, Nancy; Rosiers, Christine Des

    2012-01-01

    Triiodothyronine (T3) supplementation improves clinical outcomes in infants after cardiac surgery using cardiopulmonary bypass by unknown mechanisms. We utilized a translational model of infant cardiopulmonary bypass to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC), thereby providing the energy support for improved cardiac function after ischemia-reperfusion (I/R). Neonatal piglets received intracoronary [2-13Carbon(13C)]pyruvate for 40 min (8 mM) during control aerobic conditions (control) or immediately after reperfusion (I/R) from global hypothermic ischemia. A third group (I/R-Tr) received T3 (1.2 μg/kg) during reperfusion. We assessed absolute CAC intermediate levels and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC) and anaplerotic carboxylation (PC) using [2-13C]pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectroscopy. When compared with I/R, T3 (group I/R-Tr) increased cardiac power and oxygen consumption after I/R while elevating flux of both PDC and PC (∼4-fold). Although neither I/R nor I/R-Tr modified absolute CAC levels, T3 inhibited I/R-induced reductions in their molar percent enrichment. Furthermore, 13C-labeling of CAC intermediates suggests that T3 may decrease entry of unlabeled carbons at the level of oxaloacetate through anaplerosis or exchange reaction with asparate. T3 markedly enhances PC and PDC fluxes, thereby providing potential substrate for elevated cardiac function after reperfusion. This T3-induced increase in pyruvate fluxes occurs with preservation of the CAC intermediate pool. Our labeling data raise the possibility that T3 reduces reliance on amino acids for anaplerosis after reperfusion. PMID:22180654

  5. Metabolism of pyruvate and malate by isolated fat-cell mitochondria.

    PubMed

    Martin, B R; Denton, R M

    1971-11-01

    1. Metabolism of pyruvate and malate by isolated fat-cell mitochondria incubated in the presence of ADP and phosphate has been studied by measuring rates of pyruvate uptake, malate utilization or production, citrate production and oxygen consumption. From these measurements calculations of the flow rates through pyruvate carboxylase, pyruvate dehydrogenase and citrate cycle have been made under various conditions. 2. In the presence of bicarbonate, pyruvate was largely converted into citrate and malate and only about 10% was oxidized by the citrate cycle; citrate and malate outputs were linear after lag periods of 6-9min and 3min respectively, and no other end products of pyruvate metabolism were detected. On the further addition of malate or hydroxymalonate, the lag in the rate of citrate output was less marked but no net malate disappearance was detected. If, however, bicarbonate was omitted then net malate uptake was observed. Addition of butyl malonate was found to greatly inhibit the metabolism of pyruvate to citrate and malate in the presence of bicarbonate. 3. These results are in agreement with earlier conclusions that in adipose tissue acetyl units for fatty acid synthesis are transferred to the cytoplasm as citrate and that this transfer requires malate presumably for counter transport. They also support the view that oxaloacetate for citrate synthesis is preferentially formed from pyruvate through pyruvate carboxylase rather than malate through malate dehydrogenase and that the mitochondrial metabolism of citrate in fat-cells is restricted. The possible consequences of these conclusions are discussed. 4. Studies on the effects of additions of adenine nucleotides to pyruvate metabolism by isolated fat-cell mitochondria are consistent with inhibition of pyruvate carboxylase in the presence of ADP and pyruvate dehydrogenase in the presence of ATP.

  6. The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors.

    PubMed

    Halestrap, A P

    1975-04-01

    pyruvate transport at higher temperatures to be made. The activation energy of mitochondrial pyruvate transport was found to be 113 kJ (27 kcal)/mol and by extrapolation the rate of transport of pyruvate at 37 degrees C to be 42 nmol/min per mg of protein. The possibility that pyruvate transport into mitochondria may be rate limiting and involved in the regulation of gluconegenesis is discussed. 6. The transport of various monocarboxylic acids into mitochondria was studied by monitoring proton influx. The transport of dichloroacetate, difluoroacetate and oxamate appeared to be largely dependent on the pyruvate carrier and could be inhibited by pyruvate-transport inhibitors. However, many other halogenated and 2-oxo acids which could exchange with pyruvate on the carrier entered freely even in the presence of inhibitor.

  7. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis*

    PubMed Central

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E.; Rhee, Kyu Y.; Jacobs, William R.; Berney, Michael; Blanchard, John S.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests that Mtb relies mainly on fatty acid catabolism in the host. However, Mtb also maintains a functional glycolytic pathway and its role in the cellular metabolism of Mtb has yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and the Mtb genome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show that pykA encodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion of pykA prevents Mtb growth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism in Mtb. PMID:26858255

  8. Optimized method for the quantification of pyruvic acid in onions by microplate reader and confirmation by high resolution mass spectra.

    PubMed

    Metrani, Rita; Jayaprakasha, G K; Patil, Bhimanagouda S

    2018-03-01

    The present study describes the rapid microplate method to determine pyruvic acid content in different varieties of onions. Onion juice was treated with 2,4-dinitrophenylhydrazine to obtain hydrazone, which was further treated with potassium hydroxide to get stable colored complex. The stability of potassium complex was enhanced up to two hours and the structures of hydrazones were confirmed by LC-MS for the first time. The developed method was optimized by testing different bases, acids with varying concentrations of dinitrophenyl hydrazine to get stable color and results were comparable to developed method. Repeatability and precision showed <9% relative standard deviation. Moreover, sweet onion juice was stored for four weeks at different temperatures for the stability; the pyruvate remained stable at all temperatures except at 25°C. Thus, the developed method has good potential to determine of pungency in large number of onions in a short time using minimal amount of reagents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of anoxia on the extra- and intracellular acid-base status in the land snail helix lucorum (L.): lack of evidence for a relationship between pyruvate kinase down-regulation and acid-base status

    PubMed

    Michaelidis; Pallidou; Vakouftsi

    1999-06-01

    The aims of the present study were to describe a possible correlation between the regulation of the key glycolytic enzyme pyruvate kinase and the acid-base status in the haemolymph and in several other tissues of land snails during anoxia. To illustrate whether such a relationship exists, we determined (i) the acid-base variables in the haemolymph and tissues of the land snail Helix lucorum, (ii) the kinetic properties of pyruvate kinase from several tissues and (iii) the levels of the anaerobic end-products d-lactate and succinate in the haemolymph and tissues of aerobic and anoxic Helix lucorum. The results showed that the pH of haemolymph (pHe) decreased significantly over the first 20 h of anoxia and then recovered slowly towards control values. A similar pattern was observed for intracellular pH (pHi), which decreased significantly over the first 16 h of anoxia and slowly returned towards control levels. The reduction and recovery of pHi and pHe seem to reflect the rate of anaerobic metabolism. The main anaerobic end-products, d-lactate and succinate, accumulated rapidly during the initial stages of anoxia and more slowly as anoxia progressed. The decrease in the rate of accumulation of anaerobic end-products during prolonged anoxia was due to the conversion of tissue pyruvate kinase to a less active form. The results demonstrate a correlation between pyruvate kinase down-regulation and the recovery of acid-base status in the haemolymph and the tissues of land snails during anoxia.

  10. Selective modification of the pyruvate dehydrogenase kinase isoform profile in skeletal muscle in hyperthyroidism: implications for the regulatory impact of glucose on fatty acid oxidation.

    PubMed

    Sugden, M C; Lall, H S; Harris, R A; Holness, M J

    2000-11-01

    The pyruvate dehydrogenase kinases (PDK1-4) regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Immunoblot analysis with antibodies raised against recombinant PDK isoforms demonstrated changes in PDK isoform expression in response to experimental hyperthyroidism (100 microg/100 g body weight; 3 days) that was selective for fast-twitch vs slow-twitch skeletal muscle in that PDK2 expression was increased in the fast-twitch skeletal muscle (the anterior tibialis) (by 1. 6-fold; P<0.05) but not in the slow-twitch muscle (the soleus). PDK4 protein expression was increased by experimental hyperthyroidism in both muscle types, there being a greater response in the anterior tibialis (4.2-fold increase; P<0.05) than in the soleus (3.2-fold increase; P<0.05). The hyperthyroidism-associated up-regulation of PDK4 expression was observed in conjunction with suppression of skeletal-muscle PDC activity, but not suppression of glucose uptake/phosphorylation, as measured in vivo in conscious unrestrained rats (using the 2-[(3)H]deoxyglucose technique). We propose that increased PDK isoform expression contributes to the pathology of hyperthyroidism and to PDC inactivation by facilitating the operation of the glucose --> lactate --> glucose (Cori) and glucose --> alanine --> glucose cycles. We also propose that enhanced relative expression of the pyruvate-insensitive PDK isoform (PDK4) in skeletal muscle in hyperthyroidism uncouples glycolytic flux from pyruvate oxidation, sparing pyruvate for non-oxidative entry into the tricarboxylic acid (TCA) cycle, and thereby supporting entry of acetyl-CoA (derived from fatty acid oxidation) into the TCA cycle.

  11. Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.

  12. Inhibition of Pyruvate Dehydrogenase Kinase 2 Protects Against Hepatic Steatosis Through Modulation of Tricarboxylic Acid Cycle Anaplerosis and Ketogenesis.

    PubMed

    Go, Younghoon; Jeong, Ji Yun; Jeoung, Nam Ho; Jeon, Jae-Han; Park, Bo-Yoon; Kang, Hyeon-Ji; Ha, Chae-Myeong; Choi, Young-Keun; Lee, Sun Joo; Ham, Hye Jin; Kim, Byung-Gyu; Park, Keun-Gyu; Park, So Young; Lee, Chul-Ho; Choi, Cheol Soo; Park, Tae-Sik; Lee, W N Paul; Harris, Robert A; Lee, In-Kyu

    2016-10-01

    Hepatic steatosis is associated with increased insulin resistance and tricarboxylic acid (TCA) cycle flux, but decreased ketogenesis and pyruvate dehydrogenase complex (PDC) flux. This study examined whether hepatic PDC activation by inhibition of pyruvate dehydrogenase kinase 2 (PDK2) ameliorates these metabolic abnormalities. Wild-type mice fed a high-fat diet exhibited hepatic steatosis, insulin resistance, and increased levels of pyruvate, TCA cycle intermediates, and malonyl-CoA but reduced ketogenesis and PDC activity due to PDK2 induction. Hepatic PDC activation by PDK2 inhibition attenuated hepatic steatosis, improved hepatic insulin sensitivity, reduced hepatic glucose production, increased capacity for β-oxidation and ketogenesis, and decreased the capacity for lipogenesis. These results were attributed to altered enzymatic capacities and a reduction in TCA anaplerosis that limited the availability of oxaloacetate for the TCA cycle, which promoted ketogenesis. The current study reports that increasing hepatic PDC activity by inhibition of PDK2 ameliorates hepatic steatosis and insulin sensitivity by regulating TCA cycle anaplerosis and ketogenesis. The findings suggest PDK2 is a potential therapeutic target for nonalcoholic fatty liver disease. © 2016 by the American Diabetes Association.

  13. STUDIES ON MAMMALIAN AND HUMAN PYRUVATE AND ALPHA-KETOGLUTARATE DEHYDROGENATION COMPLEXES.

    DTIC Science & Technology

    Enzyme systems that catalyze a coenzyme A- and nicotinamide adenine dinucleotide-linked oxidative decarboxylation of pyruvate and alpha - ketoglutarate ...The pig heart pyruvate dehydrogenase complex was strongly inhibited by EDTA at low concentration, but the pig heart alpha - ketoglutarate ...On the oxidative decarboxylation of alpha -keto acids in pig heart complexes, Ca(2+) was strongly stimulatory to the same or more extent than Mg(2

  14. Renal Cortical Pyruvate Depletion during AKI

    PubMed Central

    Johnson, Ali C.M.; Becker, Kirsten

    2014-01-01

    Pyruvate is a key intermediary in energy metabolism and can exert antioxidant and anti-inflammatory effects. However, the fate of pyruvate during AKI remains unknown. Here, we assessed renal cortical pyruvate and its major determinants (glycolysis, gluconeogenesis, pyruvate dehydrogenase [PDH], and H2O2 levels) in mice subjected to unilateral ischemia (15–60 minutes; 0–18 hours of vascular reflow) or glycerol-induced ARF. The fate of postischemic lactate, which can be converted back to pyruvate by lactate dehydrogenase, was also addressed. Ischemia and glycerol each induced persistent pyruvate depletion. During ischemia, decreasing pyruvate levels correlated with increasing lactate levels. During early reperfusion, pyruvate levels remained depressed, but lactate levels fell below control levels, likely as a result of rapid renal lactate efflux. During late reperfusion and glycerol-induced AKI, pyruvate depletion corresponded with increased gluconeogenesis (pyruvate consumption). This finding was underscored by observations that pyruvate injection increased renal cortical glucose content in AKI but not normal kidneys. AKI decreased PDH levels, potentially limiting pyruvate to acetyl CoA conversion. Notably, pyruvate therapy mitigated the severity of AKI. This renoprotection corresponded with increases in cytoprotective heme oxygenase 1 and IL-10 mRNAs, selective reductions in proinflammatory mRNAs (e.g., MCP-1 and TNF-α), and improved tissue ATP levels. Paradoxically, pyruvate increased cortical H2O2 levels. We conclude that AKI induces a profound and persistent depletion of renal cortical pyruvate, which may induce additional injury. PMID:24385590

  15. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved.

  16. Pyruvate dehydrogenase deficiency and epilepsy.

    PubMed

    Prasad, Chitra; Rupar, Tony; Prasad, Asuri N

    2011-11-01

    The pyruvate dehydrogenase complex (PDHc) is a mitochondrial matrix multienzyme complex that provides the link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the conversion of pyruvate into acetyl-CoA. PDHc deficiency is one of the commoner metabolic disorders of lactic acidosis presenting with neurological phenotypes that vary with age and gender. In this mini-review, we postulate mechanisms of epilepsy in the setting of PDHc deficiency using two illustrative cases (one with pyruvate dehydrogenase complex E1-alpha polypeptide (PDHA1) deficiency and the second one with pyruvate dehydrogenase complex E1-beta subunit (PDHB) deficiency (a rare subtype of PDHc deficiency)) and a selected review of published case series. PDHc plays a critical role in the pathway of carbohydrate metabolism and energy production. In severe deficiency states the resulting energy deficit impacts on brain development in utero resulting in structural brain anomalies and epilepsy. Milder deficiency states present with variable manifestations that include cognitive delay, ataxia, and seizures. Epileptogenesis in PDHc deficiency is linked to energy failure, development of structural brain anomalies and abnormal neurotransmitter metabolism. The use of the ketogenic diet bypasses the metabolic block, by providing a direct source of acetyl-CoA, leading to amelioration of some symptoms. Genetic counseling is essential as PDHA1 deficiency (commonest defect) is X-linked although females can be affected due to unfavorable lyonization, while PDHB and PDH phosphatase (PDP) deficiencies (much rarer defects) are of autosomal recessive inheritance. Research is in progress for looking into animal models to better understand pathogenesis and management of this challenging disorder. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Fatty Acid Synthesis and Pyruvate Metabolism Pathways Remain Active in Dihydroartemisinin-Induced Dormant Ring Stages of Plasmodium falciparum

    PubMed Central

    Chen, Nanhua; LaCrue, Alexis N.; Teuscher, Franka; Waters, Norman C.; Gatton, Michelle L.; Kyle, Dennis E.

    2014-01-01

    Artemisinin (ART)-based combination therapy (ACT) is used as the first-line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action, there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART-induced ring-stage dormancy and recovery have been implicated as possible causes of recrudescence; however, little is known about the characteristics of dormant parasites, including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA)-induced dormancy and recovery. Transcription analysis showed an immediate downregulation for 10 genes following exposure to DHA but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly of genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, was also maintained. Additions of inhibitors for biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively, following DHA treatment. Our results demonstrate that most metabolic pathways are downregulated in DHA-induced dormant parasites. In contrast, fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment. PMID:24913167

  18. Fatty acid synthesis and pyruvate metabolism pathways remain active in dihydroartemisinin-induced dormant ring stages of Plasmodium falciparum.

    PubMed

    Chen, Nanhua; LaCrue, Alexis N; Teuscher, Franka; Waters, Norman C; Gatton, Michelle L; Kyle, Dennis E; Cheng, Qin

    2014-08-01

    Artemisinin (ART)-based combination therapy (ACT) is used as the first-line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action, there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART-induced ring-stage dormancy and recovery have been implicated as possible causes of recrudescence; however, little is known about the characteristics of dormant parasites, including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA)-induced dormancy and recovery. Transcription analysis showed an immediate downregulation for 10 genes following exposure to DHA but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly of genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, was also maintained. Additions of inhibitors for biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively, following DHA treatment. Our results demonstrate that most metabolic pathways are downregulated in DHA-induced dormant parasites. In contrast, fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae

    PubMed Central

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved. PMID:26588105

  20. ALT-114 and ALT-118 Alternative Approaches to NIST ...

    EPA Pesticide Factsheets

    In 2016, US EPA approved two separate alternatives (ALT 114 and ALT 118) for the preparation and certification of Hydrogen Chloride (HCl) and Mercury (Hg) cylinder reference gas standards that can serve as EPA Protocol gases where EPA Protocol are required, but unavailable. The alternatives were necessary due to the unavailability of NIST reference materials (SRM, NTRM, CRM or RGM) or VSL reference materials (VSL PRM or VSL CRM), reference materials identified in EPA’s Green Book as necessary to establish the traceability of EPA protocol gases. ALT 114 and ALT 118 provides a pathway for gas vendors to prepare and certify traceable gas cylinder standards for use in certifying Hg and HCl CEMS. In this presentation, EPA will describe the mechanics and requirements of the performance-based approach, provide an update on the availability of these gas standards and also discuss the potential for producing and certifying gas standards for other compounds using this approach. This presentation discusses the importance of NIST-traceable reference gases relative to regulatory source compliance emissions monitoring. Specifically this presentation discusses 2 new approaches for making necessary reference gases available in the absence of NIST reference materials. Moreover, these approaches provide an alternative approach to rapidly make available new reference gases for additional HAPS regulatory compliance emissions measurement and monitoring.

  1. Inhibition of Mitochondrial Pyruvate Transport by Zaprinast Causes Massive Accumulation of Aspartate at the Expense of Glutamate in the Retina*

    PubMed Central

    Du, Jianhai; Cleghorn, Whitney M.; Contreras, Laura; Lindsay, Ken; Rountree, Austin M.; Chertov, Andrei O.; Turner, Sally J.; Sahaboglu, Ayse; Linton, Jonathan; Sadilek, Martin; Satrústegui, Jorgina; Sweet, Ian R.; Paquet-Durand, François; Hurley, James B.

    2013-01-01

    Transport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain. This metabolic effect of Zaprinast does not depend on inhibition of phosphodiesterase activity. By providing 13C-labeled glucose and glutamine as fuels, we found that the metabolic profile of the Zaprinast effect is nearly identical to that of inhibitors of the mitochondrial pyruvate carrier. Both stimulate oxidation of glutamate and massive accumulation of aspartate. Moreover, Zaprinast inhibits pyruvate-driven O2 consumption in brain mitochondria and blocks mitochondrial pyruvate carrier in liver mitochondria. Inactivation of the aspartate glutamate carrier in retina does not attenuate the metabolic effect of Zaprinast. Our results show that Zaprinast is a potent inhibitor of mitochondrial pyruvate carrier activity, and this action causes aspartate to accumulate at the expense of glutamate. Our findings show that Zaprinast is a specific mitochondrial pyruvate carrier (MPC) inhibitor and may help to elucidate the roles of MPC in amino acid metabolism and hypoglycemia. PMID:24187136

  2. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer.

    PubMed

    Stacpoole, Peter W

    2017-11-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. ALT-114 and ALT-118 Alternative Approaches to NIST-Traceable Reference Gases

    EPA Science Inventory

    In 2016, US EPA approved two separate alternatives (ALT 114 and ALT 118) for the preparation and certification of Hydrogen Chloride (HCl) and Mercury (Hg) cylinder reference gas standards that can serve as EPA Protocol gases where EPA Protocol are required, but unavailable. The a...

  4. An allostatic mechanism for M2 pyruvate kinase as an amino-acid sensor.

    PubMed

    Yuan, Meng; McNae, Iain W; Chen, Yiyuan; Blackburn, Elizabeth A; Wear, Martin A; Michels, Paul A M; Fothergill-Gilmore, Linda A; Hupp, Ted; Walkinshaw, Malcolm D

    2018-05-10

    We have tested the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase (M2PYK) and show that within physiologically relevant concentrations, phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors while histidine and serine act as activators. Size exclusion chromatography has been used to show that all amino acids, whether activators or inhibitors, stabilise the tetrameric form of M2PYK. In the absence of amino-acid ligands an apparent tetramer-monomer dissociation K d is estimated to be ~0.9 µM with a slow dissociation rate (t 1/2 ~ 15 min). X-ray structures of M2PYK complexes with alanine, phenylalanine, and tryptophan show the M2PYK locked in an inactive T-state conformation, while activators lock the M2PYK tetramer in the active R-state conformation. Amino-acid binding in the allosteric pocket triggers rigid body rotations (11°) stabilising either T or R-states. The opposing inhibitory and activating effects of the non-essential amino acids serine and alanine suggest that M2PYK could act as a rapid-response nutrient sensor to rebalance cellular metabolism. This competition at a single allosteric site between activators and inhibitors provides a novel regulatory mechanism by which M2PYK activity is finely tuned by the relative (but not absolute) concentrations of activator and inhibitor amino acids. Such 'allostatic' regulation may be important in metabolic reprogramming and influencing cell fate. ©2018 The Author(s).

  5. An allostatic mechanism for M2 pyruvate kinase as an amino-acid sensor

    PubMed Central

    McNae, Iain W.; Chen, Yiyuan; Blackburn, Elizabeth A.; Wear, Martin A.; Hupp, Ted

    2018-01-01

    We have tested the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase (M2PYK) and show that, within physiologically relevant concentrations, phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors, while histidine and serine act as activators. Size exclusion chromatography has been used to show that all amino acids, whether activators or inhibitors, stabilise the tetrameric form of M2PYK. In the absence of amino-acid ligands an apparent tetramer–monomer dissociation Kd is estimated to be ∼0.9 µM with a slow dissociation rate (t1/2 ∼ 15 min). X-ray structures of M2PYK complexes with alanine, phenylalanine, and tryptophan show the M2PYK locked in an inactive T-state conformation, while activators lock the M2PYK tetramer in the active R-state conformation. Amino-acid binding in the allosteric pocket triggers rigid body rotations (11°) stabilising either T or R states. The opposing inhibitory and activating effects of the non-essential amino acids serine and alanine suggest that M2PYK could act as a rapid-response nutrient sensor to rebalance cellular metabolism. This competition at a single allosteric site between activators and inhibitors provides a novel regulatory mechanism by which M2PYK activity is finely tuned by the relative (but not absolute) concentrations of activator and inhibitor amino acids. Such ‘allostatic’ regulation may be important in metabolic reprogramming and influencing cell fate. PMID:29748232

  6. Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes

    PubMed Central

    Bender, Tom; Pena, Gabrielle; Martinou, Jean-Claude

    2015-01-01

    At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by MPC1, MPC2, and MPC3 in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPCFERM and MPCOX. By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPCOX has a higher transport activity than MPCFERM, which is dependent on the C-terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability. PMID:25672363

  7. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    PubMed

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.

  8. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium.

    PubMed

    Plaga, W; Lottspeich, F; Oesterhelt, D

    1992-04-01

    An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.

  9. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa

    PubMed Central

    Hereng, T.H.; Elgstøen, K.B.P.; Cederkvist, F.H.; Eide, L.; Jahnsen, T.; Skålhegg, B.S.; Rosendal, K.R.

    2011-01-01

    BACKGROUND There has been an ongoing debate in the reproductive field about whether mammalian spermatozoa rely on glycolysis, oxidative phosphorylation or both for their energy production. Recent studies have proposed that human spermatozoa depend mainly on glucose for motility and fertilization but the mechanism behind an efficient glycolysis in human spermatozoa is not well understood. Here, we demonstrate how human spermatozoa utilize exogenous pyruvate to enhance glycolytic ATP production, motility, hyperactivation and capacitation, events that are crucial for male fertility. METHODS Purified human spermatozoa from healthy donors were incubated under capacitating conditions (including albumin, bicarbonate and glucose) and tested for changes in ATP levels, motility, hyperactivation and tyrosine phosphorylation after treatment with pyruvate. The experiments were repeated in the presence of sodium cyanide in order to assess the contribution from mitochondrial respiration. The metabolism of 13C labeled glucose and pyruvate was traced by a combination of liquid chromatography and mass spectrometry. RESULTS The treatment of human spermatozoa with exogenous pyruvate increased intracellular ATP levels, progressive motility and hyperactivation by 56, 21 and 130%, respectively. In addition, added pyruvate induced a significant increase in tyrosine phosphorylation levels. Blocking of the electron transport chain did not markedly affect the results, indicating that the mechanism is independent of oxidative phosphorylation. However, the observed effects could be counteracted by oxamate, an inhibitor of lactate dehydrogenase (LDH). Metabolic tracing experiments revealed that the observed rise in ATP concentration resulted from an enhanced glycolytic flux, which was increased by more than 50% in the presence of exogenous pyruvate. Moreover, all consumed 13C labeled pyruvate added was converted to lactate rather than oxidized in the tricarboxylic acid cycle. CONCLUSIONS Human

  10. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa.

    PubMed

    Hereng, T H; Elgstøen, K B P; Cederkvist, F H; Eide, L; Jahnsen, T; Skålhegg, B S; Rosendal, K R

    2011-12-01

    There has been an ongoing debate in the reproductive field about whether mammalian spermatozoa rely on glycolysis, oxidative phosphorylation or both for their energy production. Recent studies have proposed that human spermatozoa depend mainly on glucose for motility and fertilization but the mechanism behind an efficient glycolysis in human spermatozoa is not well understood. Here, we demonstrate how human spermatozoa utilize exogenous pyruvate to enhance glycolytic ATP production, motility, hyperactivation and capacitation, events that are crucial for male fertility. Purified human spermatozoa from healthy donors were incubated under capacitating conditions (including albumin, bicarbonate and glucose) and tested for changes in ATP levels, motility, hyperactivation and tyrosine phosphorylation after treatment with pyruvate. The experiments were repeated in the presence of sodium cyanide in order to assess the contribution from mitochondrial respiration. The metabolism of (13)C labeled glucose and pyruvate was traced by a combination of liquid chromatography and mass spectrometry. The treatment of human spermatozoa with exogenous pyruvate increased intracellular ATP levels, progressive motility and hyperactivation by 56, 21 and 130%, respectively. In addition, added pyruvate induced a significant increase in tyrosine phosphorylation levels. Blocking of the electron transport chain did not markedly affect the results, indicating that the mechanism is independent of oxidative phosphorylation. However, the observed effects could be counteracted by oxamate, an inhibitor of lactate dehydrogenase (LDH). Metabolic tracing experiments revealed that the observed rise in ATP concentration resulted from an enhanced glycolytic flux, which was increased by more than 50% in the presence of exogenous pyruvate. Moreover, all consumed (13)C labeled pyruvate added was converted to lactate rather than oxidized in the tricarboxylic acid cycle. Human spermatozoa seem to rely mainly, if

  11. Homology modeling and in silico site directed mutagenesis of pyruvate ferredoxin oxidoreductase from Clostridium thermocellum.

    PubMed

    Saranyah, Kannuchamy; Kalva, Sukesh; Mukund, Nisha; Singh, Sanjeev Kumar; Saleena, Lilly M

    2015-01-01

    Pyruvate ferredoxin oxidoreductase is the crucial enzyme that involves in bioethanol synthesis pathway of Clostridium thermocellum. It is an ethanologenic organism but has been investigated less on its enzyme structure. The amino acid sequence of Pyruvate ferredoxin oxidoreductase was derived from UNIPROT and the screened crystal structure was taken as the template for homology modeling using MODELLER 9V11. The model was loop refined and was validated using RMSD, ProSA and PROCHECK. The docking and per residue interaction studies were carried out to elucidate the interaction energies of amino acid residues with pyruvate. To enhance the binding of pyruvate with the enzyme, mutation studies were carried out by replacing Thr31 as it had a less interaction energy. Out of 10 mutants, T31N, T31Q and T31G were selected using potential energy and the residual energy calculations. Five nanoseconds explicit MD simulations were run for apo, wild type and mutants T31N, T31Q and T31G using Desmond. RMSD, RMSF, distance plots and H-bonds analysis proved T31G to be a favorable mutant for binding of pyruvate. Thus, modeling PFOR would help in profound understanding of its structural clefts and mutation studies would aid in improving the enzyme efficiency.

  12. Superior Cardiac Function Via Anaplerotic Pyruvate in the Immature Swine Heart After Cardiopulmonary Bypass and Reperfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Aaron; Hyyti, Outi M.; Cohen, Gordon A.

    2008-12-01

    Pyruvate produces inotropic responses in the adult reperfused heart. Pyruvate oxidation and anaplerotic entry into the citric acid cycle (CAC) via carboxylation are linked to stimulation of contractile function. The goals of this study were to determine if these metabolic pathways operate and are maintained in the developing myocardium after reperfusion. Immature male swine (age 10-18 days) were subjected to cardiopulmonary bypass (CPB). Intracoronary infusion of [2]-13C-pyruvate (to achieve a final concentration of 8 mM) was given for 35 minutes starting either during weaning (Group I), after discontinuation (Group II) or without (Control) CPB. Hemodynamic data was collected. 13C NMRmore » spectroscopy was used to determine the fraction of pyruvate entering the CAC via pyruvate carboxylation (PC) to total CAC entry (PC plus decarboxlyation via pyruvate dehydrogenase). Liquid chromatography-mass spectrometry was used to determine total glutamate enrichment.« less

  13. STUDIES ON MAMMALIAN AND HUMAN PYRUVATE AND ALPHA-KETOGLUTARATE DEHYDROGENATION COMPLEXES

    DTIC Science & Technology

    bound lipoic acid and 17 moles of bound FAD. Alpha -ketoglutarate dehydrogenase complex contains approximately 10 moles of protein-bound lipoic acid , 9...typical metal activators of oxidative decarboxylation reaction of alpha -keto acid . These activating effects were in good agreement with the results of...A coenzyme A- and NAD-linked pyruvate and alpha -ketoglutarate dehydrogenase complexes have been isolated from pig heart muscle as multienzyme units

  14. Effect of hyperthyroidism on the transport of pyruvate in rat-heart mitochondria.

    PubMed

    Paradies, G; Ruggiero, F M

    1988-08-17

    A comparative study of the transport of pyruvate in heart mitochondria from normal and triiodothyronine-treated rats has been carried out. It has been found that the rate of carrier-mediated (alpha-cyanocinnamate-sensitive) pyruvate uptake is significantly enhanced in mitochondria from triiodothyronine-treated rats as compared with mitochondria from control rats. The kinetic parameters of the pyruvate uptake indicate that only the Vmax of this process is enhanced whilst there is no change in the Km value. The enhanced rate of pyruvate uptake is not dependent on the increase of the transmembrane delta pH value (both mitochondria from normal and triiodothyronine-treated rats exhibit the same delta pH value) neither does it depend on the increase of the pyruvate carrier molecules (titration of these last with alpha-cyanocinnamate gives the same total number of binding sites). the pyruvate-dependent oxygen uptake is stimulated by 35-40% in mitochondria from hyperthyroid rats when compared with mitochondria from control rats. There is, however, no difference in either the respiratory control ratios or in the ADP/O ratios between these two types of mitochondria. The heart mitochondrial phospholipid composition is altered significantly in hyperthyroid rats; in particular, negatively charged phospholipid such as cardiolipin and phosphatidylserine were found to increase by more than 50%. Minor alterations were found in the pattern of fatty acids with an increase of 20:4/18:2 ratio. It is suggested that the changes in the kinetic parameters of pyruvate transport in mitochondria from hyperthyroid rats involve hormone-mediated changes in the lipid composition of the mitochondrial membranes which in turn modulate the activity of the pyruvate carrier.

  15. Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart: ROLE OF MITOCHONDRIAL PYRUVATE CARRIER 2 (MPC2) ACETYLATION.

    PubMed

    Vadvalkar, Shraddha S; Matsuzaki, Satoshi; Eyster, Craig A; Giorgione, Jennifer R; Bockus, Lee B; Kinter, Caroline S; Kinter, Michael; Humphries, Kenneth M

    2017-03-17

    Alterations in mitochondrial function contribute to diabetic cardiomyopathy. We have previously shown that heart mitochondrial proteins are hyperacetylated in OVE26 mice, a transgenic model of type 1 diabetes. However, the universality of this modification and its functional consequences are not well established. In this study, we demonstrate that Akita type 1 diabetic mice exhibit hyperacetylation. Functionally, isolated Akita heart mitochondria have significantly impaired maximal (state 3) respiration with physiological pyruvate (0.1 mm) but not with 1.0 mm pyruvate. In contrast, pyruvate dehydrogenase activity is significantly decreased regardless of the pyruvate concentration. We found that there is a 70% decrease in the rate of pyruvate transport in Akita heart mitochondria but no decrease in the mitochondrial pyruvate carriers 1 and 2 (MPC1 and MPC2). The potential role of hyperacetylation in mediating this impaired pyruvate uptake was examined. The treatment of control mitochondria with the acetylating agent acetic anhydride inhibits pyruvate uptake and pyruvate-supported respiration in a similar manner to the pyruvate transport inhibitor α-cyano-4-hydroxycinnamate. A mass spectrometry selective reactive monitoring assay was developed and used to determine that acetylation of lysines 19 and 26 of MPC2 is enhanced in Akita heart mitochondria. Expression of a double acetylation mimic of MPC2 (K19Q/K26Q) in H9c2 cells was sufficient to decrease the maximal cellular oxygen consumption rate. This study supports the conclusion that deficient pyruvate transport activity, mediated in part by acetylation of MPC2, is a contributor to metabolic inflexibility in the diabetic heart. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. PdhR, the pyruvate dehydrogenase repressor, does not regulate lipoic acid synthesis.

    PubMed

    Feng, Youjun; Cronan, John E

    2014-01-01

    Lipoic acid is a covalently-bound enzyme cofactor required for central metabolism all three domains of life. In the last 20 years the pathway of lipoic acid synthesis and metabolism has been established in Escherichia coli. Expression of the genes of the lipoic acid biosynthesis pathway was believed to be constitutive. However, in 2010 Kaleta and coworkers (BMC Syst. Biol. 4:116) predicted a binding site for the pyruvate dehydrogenase operon repressor, PdhR (referred to lipA site 1) upstream of lipA, the gene encoding lipoic acid synthase and concluded that PdhR regulates lipA transcription. We report in vivo and in vitro evidence that lipA is not controlled by PdhR and that the putative regulatory site deduced by the prior workers is nonfunctional and physiologically irrelevant. E. coli PdhR was purified to homogeneity and used for electrophoretic mobility shift assays. The lipA site 1 of Kaleta and coworkers failed to bind PdhR. The binding detected by these workers is due to another site (lipA site 3) located far upstream of the lipA promoter. Relative to the canonical PdhR binding site lipA site 3 is a half-palindrome and as expected had only weak PdhR binding ability. Manipulation of lipA site 3 to construct a palindrome gave significantly enhanced PdhR binding affinity. The native lipA promoter and the version carrying the artificial lipA3 palindrome were transcriptionally fused to a LacZ reporter gene to directly assay lipA expression. Deletion of pdhR gave no significant change in lipA promoter-driven β-galactosidase activity with either the native or constructed palindrome upstream sequences, indicating that PdhR plays no physiological role in regulation of lipA expression. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells.

    PubMed

    Ozden, Ozkan; Park, Seong-Hoon; Wagner, Brett A; Song, Ha Yong; Zhu, Yueming; Vassilopoulos, Athanassios; Jung, Barbara; Buettner, Garry R; Gius, David

    2014-11-01

    Pyruvate dehydrogenase E1α (PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321), and a PDHA1 mutant mimicking a deacetylated lysine (PDHA1(K321R)) increases PDH activity, compared to the K321 acetylation mimic (PDHA1(K321Q)) or wild-type PDHA1. Finally, PDHA1(K321Q) exhibited a more transformed in vitro cellular phenotype compared to PDHA1(K321R). These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyllysine, suggesting that the acetylome, as well as the kinome, links glycolysis to respiration. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death

    PubMed Central

    Wallace, Martina; Buren, Caodu; Martyniuk, Kelly; Andreyev, Alexander Y.; Li, Edward; Fields, Jerel A.; Cordes, Thekla; Reynolds, Ian J.; Bloodgood, Brenda L.; Metallo, Christian M.

    2017-01-01

    Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity. PMID:28254829

  19. Inhibition of Pyruvate Dehydrogenase Kinase as a Therapeutic Strategy against Cancer.

    PubMed

    Sradhanjali, Swatishree; Reddy, Mamatha M

    2018-05-22

    Cancer cells alter their metabolism to support the uninterrupted supply of biosynthetic molecules required for continuous proliferation. Glucose metabolism is frequently reprogrammed in several tumors in addition to fatty acid, amino acid and glutamine metabolism. Pyruvate dehydrogenase kinase (PDK) is a gatekeeper enzyme involved in altered glucose metabolism in tumors. There are four isoforms of PDK (1 to 4) in humans. PDK phosphorylates E1α subunit of pyruvate dehydrogenase complex (PDC) and inactivates it. PDC decarboxylates pyruvate to acetyl CoA, which is further metabolized in mitochondria. Overexpression of PDK was observed in several tumors and is frequently associated with chemotherapy related drug resistance, invasion and metastasis. Elevated expression of PDK leads to a shift in glucose metabolism towards glycolysis instead of oxidative phosphorylation. This review summarizes recent literature related to the role of PDKs in cancer and their inhibition as a strategy. In particular, we discuss the role of PDK in tumor progression, metabolic reprogramming in stem cells, and their regulation by miRNAs and lncRNAs, oncogenes and tumor suppressors. Further, we review strategies aimed at targeting PDK to halt tumor growth and progression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Growth of Campylobacter incubated aerobically in fumarate-pyruvate media or media supplemented with dairy, meat, or soy extracts and peptones.

    PubMed

    Hinton, Arthur

    2016-09-01

    The ability of Campylobacter to grow aerobically in media supplemented with fumarate-pyruvate or with dairy, meat, or soy extracts or peptones was examined. Optical densities (OD) of Campylobacter cultured in basal media, media supplemented with fumarate-pyruvate or with 1.0, 2.5, 5.0, or 7.5% beef extract was measured. Growth was also compared in media supplemented with other extracts or peptones. Finally, cfu/mL of Campylobacter recovered from basal media or media supplemented with fumarate-pyruvate, casamino acids, beef extract, soytone, or beef extract and soytone was determined. Results indicated that OD of cultures grown in media supplemented with fumarate-pyruvate or with 5.0 or 7.5% beef extract were higher than OD of isolates grown in basal media or media supplemented with lower concentrations of beef extract. Highest OD were produced by isolates grown in media supplemented with beef extract, peptone from meat, polypeptone, proteose peptone, or soytone. Also, more cfu/mL were recovered from media with fumarate-pyruvate, beef extract, soytone, or beef extract-soytone than from basal media or media with casamino acids. Findings indicate that media supplemented with organic acids, vitamins, and minerals and media supplemented with extracts or peptones containing these metabolites can support aerobic growth of Campylobacter. Published by Elsevier Ltd.

  1. Seed-Specific Overexpression of the Pyruvate Transporter BASS2 Increases Oil Content in Arabidopsis Seeds

    PubMed Central

    Lee, Eun-Jung; Oh, Minwoo; Hwang, Jae-Ung; Li-Beisson, Yonghua; Nishida, Ikuo; Lee, Youngsook

    2017-01-01

    Seed oil is important not only for human and animal nutrition, but also for various industrial applications. Numerous genetic engineering strategies have been attempted to increase the oil content per seed, but few of these strategies have involved manipulating the transporters. Pyruvate is a major source of carbon for de novo fatty acid biosynthesis in plastids, and the embryo's demand for pyruvate is reported to increase during active oil accumulation. In this study, we tested our hypothesis that oil biosynthesis could be boosted by increasing pyruvate flux into plastids. We expressed the known plastid-localized pyruvate transporter BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2 (BASS2) under the control of a seed-specific soybean (Glycine max) glycinin-1 promoter in Arabidopsis thaliana. The resultant transgenic Arabidopsis plants (OEs), which expressed high levels of BASS2, produced seeds that were larger and heavier and contained 10–37% more oil than those of the wild type (WT), but were comparable to the WT seeds in terms of protein and carbohydrate contents. The total seed number did not differ significantly between the WT and OEs. Therefore, oil yield per plant was increased by 24–43% in the OE lines compared to WT. Taken together, our results demonstrate that seed-specific overexpression of the pyruvate transporter BASS2 promotes oil production in Arabidopsis seeds. Thus, manipulating the level of specific transporters is a feasible approach for increasing the seed oil content. PMID:28265278

  2. Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses

    PubMed Central

    Li, Xiaoli; Li, Yaqing; Han, Gaoyang; Li, Xiaoran; Ji, Yasai; Fan, Zhirui; Zhong, Yali; Cao, Jing; Zhao, Jing; Mariusz, Goscinski; Zhang, Mingzhi; Wen, Jianguo; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Pyruvate plays a critical role in the mitochondrial tricarboxylic acid (TCA) cycle, and it is the center product for the synthesis of amino acids, carbohydrates and fatty acids. Pyruvate transported across the inner mitochondrial membrane appears to be essential in anabolic and catabolic intermediary metabolism. The mitochondrial pyruvate carrier (MPC) mounted in the inner membrane of mitochondria serves as the channel to facilitate pyruvate permeating. In mammals, the MPC is formed by two paralogous subunits, MPC1 and MPC2. It is known that complete ablation of MPC2 in mice causes death on the 11th or 12th day of the embryonic period. However, MPC1 deletion and the knowledge of gene function in vivo are lacking. Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings. Only one line with homozygous 27 bases deletion in the first exon was established, but no offsprings could be obtained after four months of mating experiments, indicating infertility of the mice with such homozygous deletion. The other line of MPC1 knockout (KO) mice was only heterozygous, which mutated in the first exon with a terminator shortly afterwards. These two lines of MPC1 KO mice showed lower fertility and significantly higher bodyweight in the females. We concluded that heterozygous MPC1 KO weakens fertility and influences the metabolism of glucose and fatty acid and bodyweight in mice. PMID:27835892

  3. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death.

    PubMed

    Divakaruni, Ajit S; Wallace, Martina; Buren, Caodu; Martyniuk, Kelly; Andreyev, Alexander Y; Li, Edward; Fields, Jerel A; Cordes, Thekla; Reynolds, Ian J; Bloodgood, Brenda L; Raymond, Lynn A; Metallo, Christian M; Murphy, Anne N

    2017-04-03

    Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity. © 2017 Divakaruni et al.

  4. Reconstitution of the Escherichia coli pyruvate dehydrogenase complex.

    PubMed Central

    Reed, L J; Pettit, F H; Eley, M H; Hamilton, L; Collins, J H; Oliver, R M

    1975-01-01

    The binding of pyruvate dehydrogenase and dihydrolipoyl dehydrogenase (flavoprotein) to dihydrolipoyl transacetylase, the core enzyme of the E. coli pyruvate dehydrogenase complex [EC 1.2.4.1:pyruvate:lipoate oxidoreductase (decaryboxylating and acceptor-acetylating)], has been studied using sedimentation equilibrium analysis and radioactive enzymes in conjunction with gel filtration chromatography. The results show that the transacetylase, which consists of 24 apparently identical polypeptide chains organized into a cube-like structure, has the potential to bind 24 pyruvate dehydrogenase dimers in the absence of flavoprotein and 24 flavoprotein dimers in the absence of pyruvate dehydrogenase. The results of reconstitution experiments, utilizing binding and activity measurements, indicate that the transacetylase can accommodate a total of only about 12 pyruvate dehydrogenase dimers and six flavoprotein dimers and that this stoichiometry, which is the same as that of the native pyruvate dehydrogenase complex, produces maximum activity. It appears that steric hindrance between the relatively bulky pyruvate dehydrogenase and flavoprotein molecules prevents the transacetylase from binding 24 molecules of each ligand. A structural model for the native and reconstituted pyruvate dehydrogenase complexes is proposed in which the 12 pyruvate dehydrogenase dimers are distributed symmetrically on the 12 edges of the transacetylase cube and the six flavoprotein dimers are distributed in the six faces of the cube. Images PMID:1103138

  5. Functional characteristics of pyruvate transport in Phycomyces blakesleeanus.

    PubMed

    Marcos, J A; de Arriaga, D; Busto, F; Soler, J

    1998-12-01

    A saturable and accumulative transport system for pyruvate has been detected in Phycomyces blakesleeanus NRRL 1555(-) mycelium. It was strongly inhibited by alpha-cyano-4-hydroxycinnamate. l-Lactate and acetate were competitive inhibitors of pyruvate transport. The initial pyruvate uptake velocity and accumulation ratio was dependent on the external pH. The Vmax of transport greatly decreased with increasing pH, whereas the affinity of the carrier for pyruvate was not affected. The pyruvate transport system mediated its homologous exchange, which was essentially pH independent, and efflux, which increased with increasing external pH. The uptake of pyruvate was energy dependent and was strongly inhibited by inhibitors of oxidative phosphorylation and of the formation of proton gradients. Glucose counteracted the inhibitory effect of the pyruvate transport produced by inhibitors of mitochondrial ATP synthesis. Our results are consistent with a pyruvate/proton cotransport in P. blakesleeanus probably driven by an electrochemical gradient of H+ generated by a plasma membrane H+-ATPase. Copyright 1998 Academic Press.

  6. The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases.

    PubMed

    Sun, Wanqing; Liu, Quan; Leng, Jiyan; Zheng, Yang; Li, Ji

    2015-01-15

    The regulation of mammalian myocardial carbohydrate metabolism is complex; many factors such as arterial substrate and hormone levels, coronary flow, inotropic state and the nutritional status of the tissue play a role in regulating mammalian myocardial carbohydrate metabolism. The Pyruvate Dehydrogenase Complex (PDHc), a mitochondrial matrix multienzyme complex, plays an important role in energy homeostasis in the heart by providing the link between glycolysis and the tricarboxylic acid (TCA) cycle. In TCA cycle, PDHc catalyzes the conversion of pyruvate into acetyl-CoA. This review determines that there is altered cardiac glucose in various pathophysiological states consequently causing PDC to be altered. This review further summarizes evidence for the metabolism mechanism of the heart under normal and pathological conditions including ischemia, diabetes, hypertrophy and heart failure. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A re-evaluation of the role of mitochondrial pyruvate transport in the hormonal control of rat liver mitochondrial pyruvate metabolism.

    PubMed Central

    Halestrap, A P; Armston, A E

    1984-01-01

    The inhibitor of mitochondrial pyruvate transport alpha-cyano-beta-(1-phenylindol-3-yl)-acrylate was used to inhibit progressively pyruvate carboxylation by liver mitochondria from control and glucagon-treated rats. The data showed that, contrary to our previous conclusions [Halestrap (1978) Biochem. J. 172, 389-398], pyruvate transport could not regulate metabolism under these conditions. This was confirmed by measuring the intramitochondrial pyruvate concentration, which almost equilibrated with the extramitochondrial pyruvate concentration in control mitochondria, but was significantly decreased in mitochondria from glucagon-treated rats, where rates of pyruvate metabolism were elevated. Computer-simulation studies explain how this is compatible with linear Dixon plots of the inhibition of pyruvate metabolism by alpha-cyano-4-hydroxycinnamate. Parallel measurements of the mitochondrial membrane potential by using [3H]triphenylmethylphosphonium ions showed that it was elevated by about 3 mV after pretreatment of rats with both glucagon and phenylephrine. There was no significant change in the transmembrane pH gradient. It is shown that the increase in pyruvate metabolism can be explained by a stimulation of the respiratory chain, producing an elevation in the protonmotive force and a consequent rise in the intramitochondrial ATP/ADP ratio, which in turn increases pyruvate carboxylase activity. Mild inhibition of the respiratory chain with Amytal reversed the effects of hormone treatment on mitochondrial pyruvate metabolism and ATP concentrations, but not on citrulline synthesis. The significance of these observations for the hormonal regulation of gluconeogenesis from L-lactate in vivo is discussed. PMID:6095807

  8. Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph

    PubMed Central

    2012-01-01

    Background Our previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later. Results Injection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity. Conclusions These findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals. PMID:23137391

  9. The Positive Inotropic Effect of Pyruvate Involves an Increase in Myofilament Calcium Sensitivity

    PubMed Central

    Torres, Carlos A. A.; Varian, Kenneth D.; Canan, Cynthia H.; Davis, Jonathan P.; Janssen, Paul M. L.

    2013-01-01

    Pyruvate is a metabolic fuel that is a potent inotropic agent. Despite its unique inotropic and antioxidant properties, the molecular mechanism of its inotropic mechanism is still largely unknown. To examine the inotropic effect of pyruvate in parallel with intracellular calcium handling under near physiological conditions, we measured pH, myofilament calcium sensitivity, developed force, and calcium transients in ultra thin rabbit heart trabeculae at 37 °C loaded iontophoretically with the calcium indicator bis-fura-2. By contrasting conditions of control versus sarcoplasmic reticulum block (with either cyclopiazonic acid and ryanodine or with thapsigargin) we were able to characterize and isolate the effects of pyruvate on sarcoplasmic reticulum calcium handling and developed force. A potassium contracture technique was subsequently utilized to assess the force-calcium relationship and thus the myofilament calcium sensitivity. Pyruvate consistently increased developed force whether or not the sarcoplasmic reticulum was blocked (16.8±3.5 to 24.5±5.1 vs. 6.9±2.6 to 12.5±4.4 mN/mm2, non-blocked vs. blocked sarcoplasmic reticulum respectively, p<0.001, n = 9). Furthermore, the sensitizing effect of pyruvate on the myofilaments was demonstrated by potassium contractures (EC50 at baseline versus 20 minutes of pyruvate infusion (peak force development) was 701±94 vs. 445±65 nM, p<0.01, n = 6). This study is the first to demonstrate that a leftward shift in myofilament calcium sensitivity is an important mediator of the inotropic effect of pyruvate. This finding can have important implications for future development of therapeutic strategies in the management of heart failure. PMID:23691074

  10. Saccharomyces cerevisiae Differential Functionalization of Presumed ScALT1 and ScALT2 Alanine Transaminases Has Been Driven by Diversification of Pyridoxal Phosphate Interactions

    PubMed Central

    Rojas-Ortega, Erendira; Aguirre-López, Beatriz; Reyes-Vivas, Horacio; González-Andrade, Martín; Campero-Basaldúa, Jose C.; Pardo, Juan P.; González, Alicia

    2018-01-01

    Saccharomyces cerevisiae arose from an interspecies hybridization (allopolyploidiza-tion), followed by Whole Genome Duplication. Diversification analysis of ScAlt1/ScAlt2 indicated that while ScAlt1 is an alanine transaminase, ScAlt2 lost this activity, constituting an example in which one of the members of the gene pair lacks the apparent ancestral physiological role. This paper analyzes structural organization and pyridoxal phosphate (PLP) binding properties of ScAlt1 and ScAlt2 indicating functional diversification could have determined loss of ScAlt2 alanine transaminase activity and thus its role in alanine metabolism. It was found that ScAlt1 and ScAlt2 are dimeric enzymes harboring 67% identity and intact conservation of the catalytic residues, with very similar structures. However, tertiary structure analysis indicated that ScAlt2 has a more open conformation than that of ScAlt1 so that under physiological conditions, while PLP interaction with ScAlt1 allows the formation of two tautomeric PLP isomers (enolimine and ketoenamine) ScAlt2 preferentially forms the ketoenamine PLP tautomer, indicating a modified polarity of the active sites which affect the interaction of PLP with these proteins, that could result in lack of alanine transaminase activity in ScAlt2. The fact that ScAlt2 forms a catalytically active Schiff base with PLP and its position in an independent clade in “sensu strictu” yeasts suggests this protein has a yet undiscovered physiological function. PMID:29867852

  11. ALT Blood Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... https://medlineplus.gov/labtests/altbloodtest.html ALT Blood Test To use the sharing features on this page, please enable JavaScript. What is an ALT Blood Test? ALT, which stands for alanine transaminase, is an ...

  12. Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485

    DOE PAGES

    Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.; ...

    2015-09-15

    We report that Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30–70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. We found that that pyruvate ferredoxin oxidoreductase enzymemore » (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.« less

  13. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... form that cells can use. The pyruvate dehydrogenase complex converts a molecule called pyruvate, which is formed from the breakdown of carbohydrates, into another molecule called acetyl-CoA. This conversion ...

  14. Crystallization and preliminary X-ray diffraction analysis of ω-amino acid:pyruvate transaminase from Chromobacterium violaceum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayer, Christopher; Isupov, Michail N.; Littlechild, Jennifer A., E-mail: j.a.littlechild@exeter.ac.uk

    2007-02-01

    An ω-amino acid:pyruvate transaminase from C. violaceum has been purified and crystallized in two crystal forms. The structure has been solved using molecular replacement. The enzyme ω-transaminase catalyses the conversion of chiral ω-amines to ketones. The recombinant enzyme from Chromobacterium violaceum has been purified to homogeneity. The enzyme was crystallized from PEG 4000 using the microbatch method. Data were collected to 1.7 Å resolution from a crystal belonging to the triclinic space group P1, with unit-cell parameters a = 58.9, b = 61.9, c = 63.9 Å, α = 71.9, β = 87.0, γ = 74.6°. Data were also collectedmore » to 1.95 Å from a second triclinic crystal form. The structure has been solved using the molecular-replacement method.« less

  15. The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by alpha-Cyano-4-hydroxycinnamate and related compounds.

    PubMed

    Halestrap, A P; Denton, R M

    1975-04-01

    1. Effects of alpha-cyano-4-hydroxycinnamate and alpha-cyanocinnamate on a number of enzymes involved in pyruvate metabolism have been investigated. Little or no inhibition was observed of any enzyme at concentrations that inhibit completely mitochondrial pyruvate transport. At much higher concentrations (1 mM) some inhibition of pyruvate carboxylase was apparent. 2. Alpha-Cyano-4-hydroxycinnamate (1-100 muM) specifically inhibited pyruvate oxidation by mitochondria isolated from rat heart, brain, kidney and from blowfly flight muscle; oxidation of other substrates in the presence or absence of ADP was not affected. Similar concentrations of the compound also inhibited the carboxylation of pyruvate by rat liver mitochondria and the activation by pyruvate of pyruvate dehydrogenase in fat-cell mitochondria. These findings imply that pyruvate dehydrogenase, pyruvate dehydrogenase kinase and pyruvate carboxylase are exposed to mitochondrial matrix concentrations of pyruvate rather than to cytoplasmic concentrations. 3. Studies with whole-cell preparations incubated in vitro indicate that alpha-cyano-4-hydroxycinnamate or alpha-cyanocinnamate (at concentrations below 200 muM) can be used to specifically inhibit mitochondrial pyruvate transport within cells and thus alter the metabolic emphasis of the preparation. In epididymal fat-pads, fatty acid synthesis from glucose and fructose, but not from acetate, was markedly inhibited. No changes in tissue ATP concentrations were observed. The effects on fatty acid synthesis were reversible. In kidney-cortex slices, gluconeogenesis from pyruvate and lactate but not from succinate was inhibited. In the rat heart perfused with medium containing glucose and insulin, addition of alpha-cyanocinnamate (200 muM) greatly increased the output and tissue concentrations of lactate plus pyruvate but decreased the lactate/pyruvate ratio. 4. The inhibition by cyanocinnamate derivatives of pyruvate transport across the cell membrane of human

  16. Hormonal stimulation of mitochondrial pyruvate carboxylation in filipin-treated hepatocytes.

    PubMed Central

    Allan, E H; Chisholm, A B; Titheradge, M A

    1983-01-01

    A method is described for measuring rates of mitochondrial pyruvate carboxylation in hepatocytes treated with the polyene antibiotic, filipin, to render the plasma membrane permeable to substrates. With this approach it was possible to demonstrate that treatment of cells with glucagon or catecholamines results in a stimulation of mitochondrial CO2 fixation measured in situ comparable with that observed in the isolated mitochondria, in terms of time of onset of the response, hormone selectivity and sensitivity. In addition, angiotensin II and vasopressin were shown to enhance the activity of pyruvate carboxylase in both the intact mitochondria and filipin-treated cells, thus strengthening the postulate that this site is a major locus of hormone action in the control of gluconeogenesis. Addition of 3-mercaptopicolinic acid, to inhibit gluconeogenesis at the level of phosphoenolpyruvate carboxykinase, had no significant effect on the stimulation of pyruvate carboxylation by adrenaline, suggesting that the effect of the hormone at this site is independent of changes in activity of other enzymes further on in the pathway. The data presented preclude the possibility that acute effects of hormones on mitochondrial metabolism are solely artifacts of the preparation procedure. PMID:6411066

  17. Transport of pyruvate and lactate in yeast mitochondria.

    PubMed

    Briquet, M

    1977-02-07

    Evidence for the existence of mediated transport of pyruvate and lactate in isolated mitochondria of Saccharomyces cerevisiae is presented. 1. The mitochondrial oxidation of pyruvate is specifically inhibited by the monocarboxylic oxoacids alpha-ketoisocaproate and by alpha-cyano-3-hydroxycinnamate, while pyruvate and malate dehydrogenases activities are not inhibited. 2. The stimulation of the mitochondrial oxidations of succinate, alpha-ketoglutarate and citrate by pyruvate are also inhibited by alpha-cyano-3-hydroxycinnamate. 3. The [14C]pyruvate uptake by yeast mitochondria follows saturation kinetics and is completely inhibited by alpha-cyano-3-hydroxycinnamate. 4. Large amplitude passive swellings of mitochondria of the wild type and of cytoplasmic rho- and rho-n mutants are induced by isoosmotic ammonium pyruvate and lactate. These pH-dependent swellings are inhibited by alpha-cyano-3-hydroxycinnamate suggesting that the carrier system is not coded by mitochondrial DNA.

  18. Direct measurement of backflux between oxaloacetate and fumarate following pyruvate carboxylation.

    PubMed

    Brekke, Eva; Walls, Anne B; Nørfeldt, Lasse; Schousboe, Arne; Waagepetersen, Helle S; Sonnewald, Ursula

    2012-01-01

    Pyruvate carboxylation (PC) is thought to be the major anaplerotic reaction for the tricarboxylic acid cycle and is necessary for de novo synthesis of amino acid neurotransmitters. In the brain, the main enzyme involved is pyruvate carboxylase, which is predominantly located in astrocytes. Carboxylation leads to the formation of oxaloacetate, which condenses with acetyl coenzyme A to form citrate. However, oxaloacetate may also be converted to malate and fumarate before being regenerated. This pathway is termed the oxaloacetate-fumarate-flux or backflux. Carbon isotope-based methods for quantification of activity of PC lead to underestimation when backflux is not taken into account and critical errors have been made in the interpretation of results from metabolic studies. This study was conducted to establish the degree of backflux after PC in cerebellar and neocortical astrocytes. Astrocyte cultures from cerebellum or neocortex were incubated with either [3-(13) C] or [2-(13) C]glucose, and extracts were analyzed using mass spectrometry or nuclear magnetic resonance spectroscopy. Substantial PC compared with pyruvate dehydrogenase activity was observed, and extensive backflux was demonstrated in both types of astrocytes. The extent of backflux varied between the metabolites, reaffirming that metabolism is highly compartmentalized. By applying our calculations to published data, we demonstrate the existence of backflux in vivo in cat, rat, mouse, and human brain. Thus, backflux should be taken into account when calculating the magnitude of PC to allow for a more precise evaluation of cerebral metabolism. Copyright © 2011 Wiley Periodicals, Inc.

  19. Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart

    PubMed Central

    Vadvalkar, Shraddha S.; Matsuzaki, Satoshi; Eyster, Craig A.; Giorgione, Jennifer R.; Bockus, Lee B.; Kinter, Caroline S.; Kinter, Michael

    2017-01-01

    Alterations in mitochondrial function contribute to diabetic cardiomyopathy. We have previously shown that heart mitochondrial proteins are hyperacetylated in OVE26 mice, a transgenic model of type 1 diabetes. However, the universality of this modification and its functional consequences are not well established. In this study, we demonstrate that Akita type 1 diabetic mice exhibit hyperacetylation. Functionally, isolated Akita heart mitochondria have significantly impaired maximal (state 3) respiration with physiological pyruvate (0.1 mm) but not with 1.0 mm pyruvate. In contrast, pyruvate dehydrogenase activity is significantly decreased regardless of the pyruvate concentration. We found that there is a 70% decrease in the rate of pyruvate transport in Akita heart mitochondria but no decrease in the mitochondrial pyruvate carriers 1 and 2 (MPC1 and MPC2). The potential role of hyperacetylation in mediating this impaired pyruvate uptake was examined. The treatment of control mitochondria with the acetylating agent acetic anhydride inhibits pyruvate uptake and pyruvate-supported respiration in a similar manner to the pyruvate transport inhibitor α-cyano-4-hydroxycinnamate. A mass spectrometry selective reactive monitoring assay was developed and used to determine that acetylation of lysines 19 and 26 of MPC2 is enhanced in Akita heart mitochondria. Expression of a double acetylation mimic of MPC2 (K19Q/K26Q) in H9c2 cells was sufficient to decrease the maximal cellular oxygen consumption rate. This study supports the conclusion that deficient pyruvate transport activity, mediated in part by acetylation of MPC2, is a contributor to metabolic inflexibility in the diabetic heart. PMID:28154187

  20. 21 CFR 862.1650 - Pyruvate kinase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....1650 Pyruvate kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells...). The device is exempt from the premarket notification procedures in subpart E of part 807 of this...

  1. 21 CFR 862.1650 - Pyruvate kinase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....1650 Pyruvate kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells...). The device is exempt from the premarket notification procedures in subpart E of part 807 of this...

  2. 21 CFR 862.1650 - Pyruvate kinase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1650 Pyruvate kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells...). The device is exempt from the premarket notification procedures in subpart E of part 807 of this...

  3. 21 CFR 862.1650 - Pyruvate kinase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....1650 Pyruvate kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells...). The device is exempt from the premarket notification procedures in subpart E of part 807 of this...

  4. 21 CFR 862.1650 - Pyruvate kinase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....1650 Pyruvate kinase test system. (a) Identification. A pyruvate kinase test system is a device intended to measure the activity of the enzyme pyruvate kinase in erythrocytes (red blood cells...). The device is exempt from the premarket notification procedures in subpart E of part 807 of this...

  5. Requirement for the Mitochondrial Pyruvate Carrier in Mammalian Development Revealed by a Hypomorphic Allelic Series

    PubMed Central

    Bowman, Caitlyn E.; Hartung, Thomas

    2016-01-01

    Glucose and oxygen are two of the most important molecules transferred from mother to fetus during eutherian pregnancy, and the metabolic fates of these nutrients converge at the transport and metabolism of pyruvate in mitochondria. Pyruvate enters the mitochondrial matrix through the mitochondrial pyruvate carrier (MPC), a complex in the inner mitochondrial membrane that consists of two essential components, MPC1 and MPC2. Here, we define the requirement for mitochondrial pyruvate metabolism during development with a progressive allelic series of Mpc1 deficiency in mouse. Mpc1 deletion was homozygous lethal in midgestation, but Mpc1 hypomorphs and tissue-specific deletion of Mpc1 presented as early perinatal lethality. The allelic series demonstrated that graded suppression of MPC resulted in dose-dependent metabolic and transcriptional changes. Steady-state metabolomics analysis of brain and liver from Mpc1 hypomorphic embryos identified compensatory changes in amino acid and lipid metabolism. Flux assays in Mpc1-deficient embryonic fibroblasts also reflected these changes, including a dramatic increase in mitochondrial alanine utilization. The mitochondrial alanine transaminase GPT2 was found to be necessary and sufficient for increased alanine flux upon MPC inhibition. These data show that impaired mitochondrial pyruvate transport results in biosynthetic deficiencies that can be mitigated in part by alternative anaplerotic substrates in utero. PMID:27215380

  6. A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate

    NASA Astrophysics Data System (ADS)

    Cernak, Paul; Sen, Dipankar

    2013-11-01

    Vitamins are hypothesized to be relics of an RNA world, and were probably participants in RNA-mediated primordial metabolism. If catalytic RNAs, or ribozymes, could harness vitamin cofactors to aid their function in a manner similar to protein enzymes, it would enable them to catalyse a much larger set of chemical reactions. The cofactor thiamin diphosphate, a derivative of vitamin B1 (thiamin), is used by enzymes to catalyse difficult metabolic reactions, including decarboxylation of stable α-keto acids such as pyruvate. Here, we report a ribozyme that uses free thiamin to decarboxylate a pyruvate-based suicide substrate (LnkPB). Thiamin conjugated to biotin was used to isolate catalytic individuals from a pool of random-sequence RNAs attached to LnkPB. Analysis of a stable guanosine adduct obtained via digestion of an RNA sequence (clone dc4) showed the expected decarboxylation product. The discovery of a prototypic thiamin-utilizing ribozyme has implications for the role of RNA in orchestrating early metabolic cycles.

  7. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Jennifer L.; Zhang, Xiaolin

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  8. Transport of pyruvate into mitochondria is involved in methylmercury toxicity

    PubMed Central

    Lee, Jin-Yong; Ishida, Yosuke; Takahashi, Tsutomu; Naganuma, Akira; Hwang, Gi-Wook

    2016-01-01

    We have previously demonstrated that the overexpression of enzymes involved in the production of pyruvate, enolase 2 (Eno2) and D-lactate dehydrogenase (Dld3) renders yeast highly sensitive to methylmercury and that the promotion of intracellular pyruvate synthesis may be involved in intensifying the toxicity of methylmercury. In the present study, we showed that the addition of pyruvate to culture media in non-toxic concentrations significantly enhanced the sensitivity of yeast and human neuroblastoma cells to methylmercury. The results also suggested that methylmercury promoted the transport of pyruvate into mitochondria and that the increased pyruvate concentrations in mitochondria were involved in intensifying the toxicity of methylmercury without pyruvate being converted to acetyl-CoA. Furthermore, in human neuroblastoma cells, methylmercury treatment alone decreased the mitochondrial membrane potential, and the addition of pyruvate led to a further significant decrease. In addition, treatment with N-acetylcysteine (an antioxidant) significantly alleviated the toxicity of methylmercury and significantly inhibited the intensification of methylmercury toxicity by pyruvate. Based on these data, we hypothesize that methylmercury exerts its toxicity by raising the level of pyruvate in mitochondria and that mitochondrial dysfunction and increased levels of reactive oxygen species are involved in the action of pyruvate. PMID:26899208

  9. Glycolysis without pyruvate kinase in Clostridium thermocellum

    DOE PAGES

    Olson, Daniel G.; Horl, Manuel; Fuhrer, Tobias; ...

    2016-12-01

    The metabolism of Clostridium thermocellum is notable in that it assimilates sugar via the EMP pathway but does not possess a pyruvate kinase enzyme. In the wild type organism, there are three proposed pathways for conversion of phosphoenolpyruvate (PEP) to pyruvate, which differ in their cofactor usage. One path uses pyruvate phosphate dikinase (PPDK), another pathway uses the combined activities of PEP carboxykinase (PEPCK) and oxaloacetate decarboxylase (ODC). Yet another pathway, the malate shunt, uses the combined activities of PEPCK, malate dehydrogenase and malic enzyme. First we showed that there is no flux through the ODC pathway by enzyme assay.more » Flux through the remaining two pathways (PPDK and malate shunt) was determined by dynamic 13C labeling. In the wild-type strain, the malate shunt accounts for about 33 ± 2% of the flux to pyruvate, with the remainder via the PPDK pathway. Deletion of the ppdk gene resulted in a redirection of all pyruvate flux through the malate shunt. Lastly, this provides the first direct evidence of the in-vivo function of the malate shunt.« less

  10. Mitochondrial pyruvate import and its effects on homeostasis.

    PubMed

    Vanderperre, Benoît; Bender, Tom; Kunji, Edmund R S; Martinou, Jean-Claude

    2015-04-01

    Pyruvate metabolism plays a pivotal role in cell homeostasis and energy production. Pyruvate, the end product of glycolysis, is either catabolized in the cytosol, or enters into mitochondria to promote oxidative phosphorylation. The import of pyruvate into mitochondria requires a specific carrier in the inner mitochondrial membrane, the mitochondrial pyruvate carrier (MPC), whose identity was only recently discovered. Here we report our current knowledge of the structure and function of the MPC and we describe how dysfunction of the MPC could participate in various pathologies, including type 2 diabetes and cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A pre-marketing ALT signal predicts post-marketing liver safety.

    PubMed

    Moylan, Cynthia A; Suzuki, Ayako; Papay, Julie I; Yuen, Nancy A; Ames, Michael; Hunt, Christine M

    2012-08-01

    Drug induced liver injury during drug development is evidenced by a higher incidence of serum alanine aminotransferase (ALT) elevations in treated versus placebo populations and termed an "ALT signal". We sought to quantify whether an ALT signal in pre-marketing clinical trials predicted post-marketing hepatotoxicity. Incidence of ALT elevations (ALT ≥ 3 times upper limits normal [× ULN]) for drug and placebo of new chemical entities and approved drugs associated with hepatotoxicity was calculated using the Food and Drug Administration (FDA) website. Post-marketing liver safety events were identified using the FDA Adverse Event Reporting System (AERS). The association of FDA AERS signal score (EB05 ≥ 2) and excess risk of pre-marketing ALT elevation (difference in incidence of ALT ≥ 3× ULN in treated versus placebo) was examined. An ALT signal of ≥ 1.2% was significantly associated with a post-marketing liver safety signal (p ≤ 0.013) and a 71.4% positive predictive value. An absent ALT signal was associated with a high likelihood of post-marketing liver safety; negative predictive value of 89.7%. Daily drug dose information improved the prediction of post-marketing liver safety. A cut-off of 1.2% increase in ALT ≥ 3× ULN in treated versus placebo groups provides an easily calculated method for predicting post-marketing liver safety. Published by Elsevier Inc.

  12. Pyruvate:Ferredoxin Oxidoreductase Is Coupled to Light-independent Hydrogen Production in Chlamydomonas reinhardtii*

    PubMed Central

    Noth, Jens; Krawietz, Danuta; Hemschemeier, Anja; Happe, Thomas

    2013-01-01

    In anaerobiosis, the green alga Chlamydomonas reinhardtii evolves molecular hydrogen (H2) as one of several fermentation products. H2 is generated mostly by the [Fe-Fe]-hydrogenase HYDA1, which uses plant type ferredoxin PETF/FDX1 (PETF) as an electron donor. Dark fermentation of the alga is mainly of the mixed acid type, because formate, ethanol, and acetate are generated by a pyruvate:formate lyase pathway similar to Escherichia coli. However, C. reinhardtii also possesses the pyruvate:ferredoxin oxidoreductase PFR1, which, like pyruvate:formate lyase and HYDA1, is localized in the chloroplast. PFR1 has long been suggested to be responsible for the low but significant H2 accumulation in the dark because the catalytic mechanism of pyruvate:ferredoxin oxidoreductase involves the reduction of ferredoxin. With the aim of proving the biochemical feasibility of the postulated reaction, we have heterologously expressed the PFR1 gene in E. coli. Purified recombinant PFR1 is able to transfer electrons from pyruvate to HYDA1, using the ferredoxins PETF and FDX2 as electron carriers. The high reactivity of PFR1 toward oxaloacetate indicates that in vivo, fermentation might also be coupled to an anaerobically active glyoxylate cycle. Our results suggest that C. reinhardtii employs a clostridial type H2 production pathway in the dark, especially because C. reinhardtii PFR1 was also able to allow H2 evolution in reaction mixtures containing Clostridium acetobutylicum 2[4Fe-4S]-ferredoxin and [Fe-Fe]-hydrogenase HYDA. PMID:23258532

  13. Alt a 1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure.

    PubMed

    Hong, Soon Gyu; Cramer, Robert A; Lawrence, Christopher B; Pryor, Barry M

    2005-02-01

    A gene for the Alternaria major allergen, Alt a 1, was amplified from 52 species of Alternaria and related genera, and sequence information was used for phylogenetic study. Alt a 1 gene sequences evolved 3.8 times faster and contained 3.5 times more parsimony-informative sites than glyceraldehyde-3-phosphate dehydrogenase (gpd) sequences. Analyses of Alt a 1 gene and gpd exon sequences strongly supported grouping of Alternaria spp. and related taxa into several species-groups described in previous studies, especially the infectoria, alternata, porri, brassicicola, and radicina species-groups and the Embellisia group. The sonchi species-group was newly suggested in this study. Monophyly of the Nimbya group was moderately supported, and monophyly of the Ulocladium group was weakly supported. Relationships among species-groups and among closely related species of the same species-group were not fully resolved. However, higher resolution could be obtained using Alt a 1 sequences or a combined dataset than using gpd sequences alone. Despite high levels of variation in amino acid sequences, results of in silico prediction of protein secondary structure for Alt a 1 demonstrated a high degree of structural similarity for most of the species suggesting a conservation of function.

  14. Association of ALT and the metabolic syndrome among Mexican children.

    PubMed

    Elizondo-Montemayor, Leticia; Ugalde-Casas, Patricia A; Lam-Franco, Lorena; Bustamante-Careaga, Humberto; Serrano-González, Mónica; Gutiérrez, Norma G; Martínez, Ubaldo

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is emerging as a component of the metabolic syndrome (MetS); Hispanics being particularly predisposed. Alanine aminotransferase (ALT) is considered a marker of NAFLD. The aim of this study was to determine the prevalence and associations between ALT elevations and MetS in normal-weight, overweight and obese Mexican children and adolescents, since data in Mexico is scarce. Body mass index (BMI), waist circumference (WC), percentage body fat, blood pressure, glucose, lipid profiles, ALT and aspartate aminotransferase (AST) were measured in 236, 6-12yo normal-weight, overweight and obese Mexicans from eight public schools. The results showed that elevated ALT (>40 IU/L) was found in 17.7% of the obese and overweight population, with no gender difference. The prevalence of elevated ALT increased linearly across BMI categories (p = 0.001), from 0.0% for the normal-weight group (95%CI 0.0-€“8.0) to 22.4% for the obese one (95%CI 16.2-€“30.2). AST/ALT ratio <1 also increased linearly, as did the prevalence of MetS (p = 0.001), from 0.0% for the normal-weight group to 40.3% for the obese one. The prevalence of MetS was strongly associated with elevated ALT (p = 0.002), 50% in the elevated ALT group (95%CI 34.1-€“65.9) and 24.1% in the normal ALT one (95%CI 18.1-€“31.3). There was also a strong association between MetS and an AST/ALT ratio <1. WC was the best predictor of elevated ALT (AOR = 7.13). Pearson correlation showed that MetS components were significantly correlated with elevated ALT. Therefore elevated ALT levels were highly prevalent and strongly associated with MetS in Mexican children, it should be screened in overweight and obese children. © 2014 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.

  15. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.

    PubMed

    Yang, Chendong; Ko, Bookyung; Hensley, Christopher T; Jiang, Lei; Wasti, Ajla T; Kim, Jiyeon; Sudderth, Jessica; Calvaruso, Maria Antonietta; Lumata, Lloyd; Mitsche, Matthew; Rutter, Jared; Merritt, Matthew E; DeBerardinis, Ralph J

    2014-11-06

    Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport

    PubMed Central

    Yang, Chendong; Ko, Bookyung; Hensley, Christopher T.; Jiang, Lei; Wasti, Ajla T.; Kim, Jiyeon; Sudderth, Jessica; Calvaruso, Maria Antonietta; Lumata, Lloyd; Mitsche, Matthew; Rutter, Jared; Merritt, Matthew E.; DeBerardinis, Ralph J.

    2014-01-01

    Summary Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and re-routes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria. PMID:25458842

  17. Pyruvate production and excretion by the luminous marine bacteria.

    PubMed Central

    Ruby, E G; Nealson, K H

    1977-01-01

    During aerobic growth on glucose, several species of luminous marine bacteria exhibited an imcomplete oxidative catabolism of substrate. Pyruvate, one of the products of glucose metabolism, was excreted into the medium during exponential growth and accounted for up to 50% of the substrate carbon metabolized. When glucose was depleted from the medium, the excreted pyruvate was promptly utilized, demonstrating that the cells are capable of pyruvate catabolism. Pyruvate excretion is not a general phenomenon of carbohydrate metabolism since it does not occur during the utilization of glycerol or maltose. When cells pregrown on glycerol were exposed to glucose, they began to excrete pyruvate, even if protein synthesis was blocked with chloramphenicol. Glucose thus appears to have an effect on the activity of preexisting catabolic enzymes. PMID:303077

  18. Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor

    DOEpatents

    Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL

    2008-02-05

    The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.

  19. Pioglitazone inhibits mitochondrial pyruvate metabolism and glucose production in hepatocytes

    PubMed Central

    Shannon, Christopher E.; Daniele, Giuseppe; Galindo, Cynthia; Abdul-Ghani, Muhammad A.; DeFronzo, Ralph A.; Norton, Luke

    2017-01-01

    Pioglitazone is used globally for the treatment of type 2 diabetes mellitus (T2DM) and is one of the most effective therapies for improving glucose homeostasis and insulin resistance in T2DM patients. However, its mechanism of action in the tissues and pathways that regulate glucose metabolism are incompletely defined. Here we investigated the direct effects of pioglitazone on hepatocellular pyruvate metabolism and the dependency of these observations on the purported regulators of mitochondrial pyruvate transport, MPC1 and MPC2. In cultured H4IIE hepatocytes, pioglitazone inhibited [2-14C]-pyruvate oxidation and pyruvate-driven oxygen consumption and, in mitochondria isolated from both hepatocytes and human skeletal muscle, pioglitazone selectively and dose-dependently inhibited pyruvate-driven ATP synthesis. Pioglitazone also suppressed hepatocellular glucose production (HGP), without influencing the mRNA expression of key HGP regulatory genes. Targeted siRNA silencing of MPC1 and 2 caused a modest inhibition of pyruvate oxidation and pyruvate-driven ATP synthesis, but did not alter pyruvate-driven HGP and, importantly, it did not influence the actions of pioglitazone on either pathway. In summary, these findings outline a novel mode of action of pioglitazone relevant to the pathogenesis of T2DM and suggest that targeting pyruvate metabolism may lead to the development of effective new T2DM therapies. PMID:27987376

  20. Modification of Cys-418 of pyruvate formate-lyase by methacrylic acid, based on its radical mechanism.

    PubMed

    Plaga, W; Vielhaber, G; Wallach, J; Knappe, J

    2000-01-21

    The recently determined crystal structure of pyruvate formate-lyase (PFL) suggested a new view of the mechanism of this glycyl radical enzyme, namely that intermediary thiyl radicals of Cys-418 and Cys-419 participate in different ways [Becker, A. et al. (1999) Nat. Struct. Biol. 6, 969-975]. We report here a suicide reaction of PFL that occurs with the substrate-analog methacrylate with retention of the protein radical (K(I)=0.42 mM, k(i)=0.14 min(-1)). Using [1-(14)C]methacrylate (synthesized via acetone cyanhydrin), the reaction end-product was identified by peptide mapping and cocrystallization experiments as S-(2-carboxy-(2S)-propyl) substituted Cys-418. The stereoselectivity of the observed Michael addition reaction is compatible with a radical mechanism that involves Cys-418 thiyl as nucleophile and Cys-419 as H-atom donor, thus supporting the functional assignments of these catalytic amino acid residues derived from the protein structure.

  1. Cerebrospinal fluid lactate and pyruvate concentrations and their ratio.

    PubMed

    Zhang, Wan-Ming; Natowicz, Marvin R

    2013-05-01

    Determinations of cerebrospinal fluid (CSF) lactate and pyruvate concentrations and CSF lactate:pyruvate (L/P) ratios are important in several clinical settings, yet published normative data have significant limitations. We sought to determine a large dataset of stringently-defined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios. We evaluated data from 627 patients who had determinations of CSF lactate and/or CSF pyruvate from 2001 to 2011 at the Cleveland Clinic. Inclusion in the normal reference population required normal CSF cell counts, glucose and protein and routine serum chemistries and absence of progressive brain disorder, epilepsy, or seizure within 24h. Brain MRI, if done, showed no evidence of tumor, acute changes or basal ganglia abnormality. CSF cytology, CSF alanine and immunoglobulin levels, and oligoclonal band analysis were required to be normal, if done. Various inclusion/exclusion criteria were compared. 92 patients fulfilled inclusion/exclusion criteria for a reference population. The 95% central intervals (2.5%-97.5%) for CSF lactate and pyruvate levels were 1.01-2.09mM and 0.03-0.15mM, respectively, and 9.05-26.37 for CSF L/P. There were no significant gender-related differences of CSF lactate or pyruvate concentrations or of CSF L/P. Weak positive correlations between the concentration of CSF lactate or pyruvate and age were noted. Using stringent inclusion/exclusion criteria, we determined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios in a large, well-characterized reference population. Normalcy of routine CSF and blood analytes are the most important parameters in determining reference intervals for CSF lactate and pyruvate. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Differences between magnesium-activated and manganese-activated pyruvate kinase from the muscle of Concholepas concholepas.

    PubMed

    González, R; Carvajal, N; Morán, A

    1984-01-01

    In contrast to the Mg2+-activated enzyme, in the presence of Mn2+ pyruvate kinase exhibits hyperbolic kinetics with respect to the substrate phosphoenolpyruvate and is insensitive to fructose 1,6-biphosphate, phenylalanine and alanine. However, with both metal activated species inhibition by excess ADP is observed. In contrast with Mg2+, which affords significant protection against inactivation caused by 5,5'-dithiobis (2-nitrobenzoic acid), the rate of inactivation by this reagent is increased in the presence of Mn2+. Differences in conformational changes induced by combination of pyruvate kinase with Mg2+ or Mn2+ were indicated by u.v. difference spectra.

  3. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1–RAGE and AKT pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Ping; Dai, Weiqi; Wang, Fan

    2014-01-24

    Highlights: • Ethyl pyruvate inhibits liver cancer. • Promotes apoptosis. • Decreased the expression of HMGB1, p-Akt. - Abstract: Ethyl pyruvate (EP) was recently identified as a stable lipophilic derivative of pyruvic acid with significant antineoplastic activities. The high mobility group box-B1 (HMGB1)–receptor for advanced glycation end-products (RAGE) and the protein kinase B (Akt) pathways play a crucial role in tumorigenesis and development of many malignant tumors. We tried to observe the effects of ethyl pyruvate on liver cancer growth and explored its effects in hepatocellular carcinoma model. In this study, three hepatocellular carcinoma cell lines were treated with ethylmore » pyruvate. An MTT colorimetric assay was used to assess the effects of EP on cell proliferation. Flow cytometry and TUNEL assays were used to analyze apoptosis. Real-time PCR, Western blotting and immunofluorescence demonstrated ethyl pyruvate reduced the HMGB1–RAGE and AKT pathways. The results of hepatoma orthotopic tumor model verified the antitumor effects of ethyl pyruvate in vivo. EP could induce apoptosis and slow the growth of liver cancer. Moreover, EP decreased the expression of HMGB1, RAGE, p-AKT and matrix metallopeptidase-9 (MMP9) and increased the Bax/Bcl-2 ratio. In conclusion, this study demonstrates that ethyl pyruvate induces apoptosis and cell-cycle arrest in G phase in hepatocellular carcinoma cells, plays a critical role in the treatment of cancer.« less

  4. APPROACH & LANDING TEST (ALT) - SHUTTLE PATCH

    NASA Image and Video Library

    1976-11-01

    S76-30340 (1976) --- This circular, red, white and blue emblem has been chosen as the official insignia for the Space Shuttle Approach and Landing Test (ALT) flights. A picture of the Orbiter 101 "Enterprise" is superimposed over a red triangle, which in turn is superimposed over a large inner circle of dark blue. The surnames of the members of the two ALT crews are in white in the field of blue. The four crew men are astronauts Fred W. Haise Jr., commander of the first crew; Joe H. Engle, commander of the second crew; and Richard H. Truly, pilot of the second crew. ALT is a series of flights with a modified Boeing 747 Shuttle Carrier Aircraft (SCA) as a ferry aircraft and airborne launch platform for the 67,300 kilogram (75-ton) "Enterprise". The Shuttle Orbiter atmospheric testing is in preparation for the first Earth-orbital flights scheduled in 1979.

  5. Role of the mitochondrial metabolism of pyruvate on the regulation of ketogenesis in rat hepatocytes.

    PubMed

    Demaugre, F; Buc, H; Girard, J; Leroux, J P

    1983-01-01

    In hepatocytes isolated from fed rats the inhibition of lipogenesis (-80%) by 5-tetradecyloxy-2-furoate (an inhibitor of acetylCoA carboxylase) and alpha-cyano-3-hydroxycinnamate (an inhibitor of pyruvate entry into mitochondria) increases the oxidation of 0.35 mM oleate respectively by 70% and 90%. 5-tetradecyloxy-2-furoate increases ketone body production from oleate only by 30% and has no effect on ketogenesis from octanoate, whereas alpha-cyano-3-hydroxycinnamate mimics the effects of fasting on ketone body production: It increases ketogenesis from 0.35 mM oleate by 90%, from 0.78 mM oleate by 25% and from 1.57 mM butyrate by 37%. alpha-cyano-3-hydroxycinnamate also decreases the activity of tricarboxylic acid cycle and the production of malate and citrate. In hepatocytes from fasted rats, alpha-cyano-3-hydroxycinnamate does not modify ketogenesis from oleate, unless cells are incubated with a mixture of lactate and pyruvate. A lactate and pyruvate mixture decreases ketogenesis from oleate and octanoate and increases citrate and malate production without modifying the uptake of fatty acids. This effect is potentiated by 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase. The results cannot be interpreted only by the effects of malonylCoA on carnitine acyltransferase. They are discussed with respect to the possible involvement of mitochondrial oxaloacetate concentration in the regulation of ketogenesis.

  6. Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by Its Structure

    NASA Technical Reports Server (NTRS)

    Korotchkina, Lioubov G.; Ciszak, E.; Patel, M.

    2004-01-01

    Pyruvate dehydrogenase (E1), an alpha 2 beta 2 tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of beta W135, alpha P188, alpha M181, alpha H15 and alpha R349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: beta W135 is the center residue in the hydrophobic interaction between beta and beta' subunits; alpha P188 and alpha M181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alpha H15, is necessary for the organization of the N-terminus of alpha and alpha'; subunits and alpha R349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.

  7. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalanotti, C.; Dubini, A.; Subramanian, V.

    2012-02-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a doublemore » mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.« less

  8. A pyruvate-proton symport and an H+-ATPase regulate the intracellular pH of Trypanosoma brucei at different stages of its life cycle.

    PubMed

    Vanderheyden, N; Wong, J; Docampo, R

    2000-02-15

    Regulation of intracellular pH (pH(i)) and H(+) efflux were investigated in Trypanosoma brucei bloodstream and procyclic trypomastigotes using the fluorescent dyes 2', 7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) acetoxymethyl ester and free BCECF respectively. pH(i) in bloodstream and procyclic trypomastigotes was 7.47+/-0.06 and 7. 53+/-0.07 respectively. Differences in the mechanisms for the regulation of pH(i) were noted between bloodstream and procyclic forms. Procyclic trypomastigotes maintained their pH(i) at neutral over a wide range of external pH values from 6 to 8, and in the absence of K(+) or Na(+). The H(+)-ATPase inhibitors N, N'-dicyclohexylcarbodi-imide (DCCD), diethylstilboestrol and N-ethylmaleimide substantially decreased the steady-state pH(i) and inhibited its recovery from acidification. The rate of H(+) efflux in these forms was determined to be 62+/-6.5 nmol/min per mg of protein, and was substantially decreased by H(+)-ATPase inhibitors. The data support the presence of an H(+)-ATPase as the major regulator of pH(i) in procyclic trypomastigotes. In contrast, bloodstream trypomastigotes were unable to maintain a neutral pH under acidic conditions, and their steady-state pH(i) and recovery from acidification were unaffected by H(+)-ATPase inhibitors, except for DCCD (100 microM). Their steady-state pH(i) was markedly decreased in glucose-free buffer or by >/=10 mM pyruvate, whereas procyclic trypomastigotes were unaffected by similar treatments. The rate of H(+) efflux in bloodstream trypomastigotes was 534+/-38 nmol/min per mg of protein, and was decreased in the absence of glucose and by the addition of pyruvate or DCCD. Pyruvate efflux in these forms was calculated to be 499+/-34 nmol/min per mg of protein, and was significantly inhibited by DCCD, 4, 4'-di-isothiocyanatodihydrostilbene-2,2'-disulphonic acid and alpha-cyanohydroxycinnamic acid. The pyruvate analogues beta-hydroxypyruvate, 3-bromopyruvate, 3-oxoglutarate

  9. Extraction, partial purification and functional reconstitution of two mitochondrial carriers transporting keto acids: 2-oxoglutarate and pyruvate.

    PubMed

    Nałecz, M J; Nałecz, K A; Broger, C; Bolli, R; Wojtczak, L; Azzi, A

    1986-02-17

    Bovine heart submitochondrial particles were treated with a medium containing Triton X-114 and cardiolipin. The extract was subjected to hydroxyapatite chromatography. Only a few major polypeptides of similar molecular masses were found in the eluate, as shown by electrophoresis in an SDS-polyacrylamide gel stained with silver. The eluate was reconstituted into liposomes and was shown to catalyse two different transport activities: 2-oxoglutarate-2-oxoglutarate exchange sensitive to phthalonate and phenylsuccinate and pyruvate-pyruvate exchange sensitive to 2-cyano-4-hydroxycinnamate. Since both activities were found to have characteristics similar to those described for intact mitochondria, it was concluded that at least two of the polypeptides found in the hydroxyapatite eluate correspond to the two mitochondrial carriers.

  10. The ALTE mysteries: who's to blame?

    PubMed

    Wickham, Sara

    2016-02-01

    In this column, Sara Wickham takes a sideways look at issues relevant to midwives, students, women and families, inviting us to sit down with a cup of tea and ponder what we think we know. A recent paper on apparent life-threatening events (ALTEs) in newborn babies brought to mind an experience from practice, the cause of which remains a mystery. As many similar events are unexplained, is it acceptable that there is a tendency in the literature to claim that skin-to-skin contact and breastfeeding are risk factors for ALTEs?

  11. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis.

    PubMed

    Eler, Gabrielle Jacklin; Santos, Israel Souza; de Moraes, Amarilis Giaretta; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2015-04-01

    The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n-propyl gallate, n-pentyl gallate, and n-octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n-octyl gallate > n-pentyl gallate > n-propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects. © 2014 Wiley Periodicals, Inc.

  12. Determining In Vivo Regulation of Cardiac Pyruvate Dehydrogenase Based on Label Flux from Hyperpolarized [1-13C]Pyruvate

    PubMed Central

    Heather, Lisa C.; Griffin, Julian L.; Clarke, Kieran; Radda, George K.; Tyler, Damian J.

    2015-01-01

    Background Pyruvate dehydrogenase (PDH) is a key regulator of cardiac substrate selection and is regulated by both pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation and feedback inhibition. The extent to which chronic upregulation of PDK protein levels, acutely increased PDK activity and acute feedback inhibition limit PDH flux remains unclear because existing in vitro assessment methods inherently disrupt the enzyme complex. We have previously demonstrated that hyperpolarized 13C-labelled metabolic tracers with magnetic resonance spectroscopy (MRS) can monitor flux through PDH in vivo. The aim of this study was to determine the relative contributions of acute and chronic changes in PDK and PDH activities to in vivo myocardial PDH flux. Methodology/Principal Findings We examined both fed and fasted rats with either hyperpolarized [1-13C]pyruvate alone or hyperpolarized [1-13C]pyruvate co-infused with malate (to modulate mitochondrial NADH/NAD+ and acetyl-CoA/CoA ratios, which alter both PDH activity and flux). To confirm the metabolic fate of infused malate, we performed in vitro 1H NMR spectroscopy on cardiac tissue extracts. We observed that in fed rats, where PDH activity was high, the presence of malate increased PDH flux by 27%, whereas in the fasted state, malate infusion had no effect on PDH flux. Conclusions/Significance These observations suggest that pyruvate oxidation is limited by feedback inhibition from acetyl-CoA only when PDH activity is high. Therefore, in the case of PDH, and potentially other enzymes, hyperpolarized 13C MR can be used to non-invasively assess enzymatic regulation. PMID:21387444

  13. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a highmore » cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.« less

  14. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate.

    PubMed

    Yin, Chengqian; He, Dan; Chen, Shuyang; Tan, Xiaoling; Sang, Nianli

    2016-07-26

    Molecular oxygen is the final electron acceptor in cellular metabolism but cancer cells often become adaptive to hypoxia, which promotes resistance to chemotherapy and radiation. The reduction of endogenous glycolytic pyruvate to lactate is known as an adaptive strategy for hypoxic cells. Whether exogenous pyruvate is required for hypoxic cell proliferation by either serving as an electron acceptor or a biosynthetic substrate remains unclear. By using both hypoxic and ρ0 cells defective in electron transfer chain, we show that exogenous pyruvate is required to sustain proliferation of both cancer and non-cancer cells that cannot utilize oxygen. Particularly, we show that absence of pyruvate led to glycolysis inhibition and AMPK activation along with decreased NAD+ levels in ρ0 cells; and exogenous pyruvate increases lactate yield, elevates NAD+/NADH ratio and suppresses AMPK activation. Knockdown of lactate dehydrogenase significantly inhibits the rescuing effects of exogenous pyruvate. In contrast, none of pyruvate-derived metabolites tested (including acetyl-CoA, α-ketoglutarate, succinate and alanine) can replace pyruvate in supporting ρ0 cell proliferation. Knockdown of pyruvate carboxylase, pyruvate dehydrogenase and citrate synthase do not impair exogenous pyruvate to rescue ρ0 cells. Importantly, we show that exogenous pyruvate relieves ATP insufficiency and mTOR inhibition and promotes proliferation of hypoxic cells, and that well-oxygenated cells release pyruvate, providing a potential in vivo source of pyruvate. Taken together, our data support a novel pyruvate cycle model in which oxygenated cells release pyruvate for hypoxic cells as an oxygen surrogate. The pyruvate cycle may be targeted as a new therapy of hypoxic cancers.

  15. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate

    PubMed Central

    Yin, Chengqian; He, Dan; Chen, Shuyang; Tan, Xiaoling; Sang, Nianli

    2016-01-01

    Molecular oxygen is the final electron acceptor in cellular metabolism but cancer cells often become adaptive to hypoxia, which promotes resistance to chemotherapy and radiation. The reduction of endogenous glycolytic pyruvate to lactate is known as an adaptive strategy for hypoxic cells. Whether exogenous pyruvate is required for hypoxic cell proliferation by either serving as an electron acceptor or a biosynthetic substrate remains unclear. By using both hypoxic and ρ0 cells defective in electron transfer chain, we show that exogenous pyruvate is required to sustain proliferation of both cancer and non-cancer cells that cannot utilize oxygen. Particularly, we show that absence of pyruvate led to glycolysis inhibition and AMPK activation along with decreased NAD+ levels in ρ0 cells; and exogenous pyruvate increases lactate yield, elevates NAD+/NADH ratio and suppresses AMPK activation. Knockdown of lactate dehydrogenase significantly inhibits the rescuing effects of exogenous pyruvate. In contrast, none of pyruvate-derived metabolites tested (including acetyl-CoA, α-ketoglutarate, succinate and alanine) can replace pyruvate in supporting ρ0 cell proliferation. Knockdown of pyruvate carboxylase, pyruvate dehydrogenase and citrate synthase do not impair exogenous pyruvate to rescue ρ0 cells. Importantly, we show that exogenous pyruvate relieves ATP insufficiency and mTOR inhibition and promotes proliferation of hypoxic cells, and that well-oxygenated cells release pyruvate, providing a potential in vivo source of pyruvate. Taken together, our data support a novel pyruvate cycle model in which oxygenated cells release pyruvate for hypoxic cells as an oxygen surrogate. The pyruvate cycle may be targeted as a new therapy of hypoxic cancers. PMID:27374086

  16. Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoforms.

    PubMed

    Liu, Jia; Wu, Ning; Ma, Leina; Liu, Ming; Liu, Ge; Zhang, Yuyan; Lin, Xiukun

    2014-01-01

    Warburg effect, one of the hallmarks for cancer cells, is characterized by metabolic switch from mitochondrial oxidative phosphorylation to aerobic glycolysis. In recent years, increased expression level of pyruvate kinase M2 (PKM2) has been found to be the culprit of enhanced aerobic glycolysis in cancer cells. However, there is no agent inhibiting aerobic glycolysis by targeting PKM2. In this study, we found that Oleanolic acid (OA) induced a switch from PKM2 to PKM1, and consistently, abrogated Warburg effect in cancer cells. Suppression of aerobic glycolysis by OA is mediated by PKM2/PKM1 switch. Furthermore, mTOR signaling was found to be inactivated in OA-treated cancer cells, and mTOR inhibition is required for the effect of OA on PKM2/PKM1 switch. Decreased expression of c-Myc-dependent hnRNPA1 and hnRNPA1 was responsible for OA-induced switch between PKM isoforms. Collectively, we identified that OA is an antitumor compound that suppresses aerobic glycolysis in cancer cells and there is potential that PKM2 may be developed as an important target in aerobic glycolysis pathway for developing novel anticancer agents.

  17. Impaired mitochondrial pyruvate importation in a patient and a fetus at risk.

    PubMed

    Brivet, M; Garcia-Cazorla, A; Lyonnet, S; Dumez, Y; Nassogne, M C; Slama, A; Boutron, A; Touati, G; Legrand, A; Saudubray, J M

    2003-03-01

    The patient was the first child of healthy consanguineous parents. She presented at birth with hypotonia, mild facial dysmorphism, periventricular cysts, marked metabolic acidosis, hyperlactacidemia with normal lactate/pyruvate molar ratios, normoglycemia, and normal ammonia. Hyperlactacidemia was severe (5-14 mmol/l) and not corrected with bicarbonate, thiamine (10 mg/d), 2-chloropropionate (100 mg/kg/d) and a ketogenic diet. Pyruvate dehydrogenase (PDHC) activity was normal in lymphocytes and fibroblasts. Functional assays were performed in digitonin-permeabilized fibroblasts to measure oxidation rates from radiolabeled pyruvate and malate. The production of [14C]acetylcarnitine or [14C]citric cycle intermediates derived from [2-14C]pyruvate as well as the release of 14CO(2) from [1-14C]pyruvate was severely impaired, whereas decarboxylation of [U-14C]malate was normal. With increasing concentrations of [1-14C]pyruvate, the patient's fibroblasts behave like control fibroblasts incubated in the presence of alpha-cyano-4-hydroxycinnamate, a specific inhibitor of mitochondrial pyruvate uptake: a progressive increase in 14CO(2) production was observed, likely due to passive diffusion of [1-14C]pyruvate through the mitochondrial membranes. Our results are consistent with a defect of mitochondrial pyruvate transport in the patient. Mutational analysis was precluded as the cDNA sequence of the pyruvate carrier has not been identified as yet in any organism. An affected fetus was recognized in a subsequent dichorionic twin pregnancy using the coupled assay measuring [2-14C]pyruvate oxidation rates on digitonin-permeabilized trophoblasts. After selective feticide, the pregnancy was uncomplicated with delivery at 37w of a healthy female, who is currently 2-month old. Copyright 2003 Elsevier Science (USA)

  18. Structural Studies of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.

  19. Variability in spectrophotometric pyruvate analyses for predicting onion pungency and nutraceutical value.

    PubMed

    Beretta, Vanesa H; Bannoud, Florencia; Insani, Marina; Galmarini, Claudio R; Cavagnaro, Pablo F

    2017-06-01

    Onion pyruvate concentration is used as a predictor of flavor intensity and nutraceutical value. The protocol of Schwimmer and Weston (SW) (1961) is the most widespread methodology for estimating onion pyruvate. Anthon and Barret (AB) (2003) proposed modifications to this procedure. Here, we compared these spectrophotometry-based procedures for pyruvate analysis using a diverse collection of onion cultivars. The SW method always led to over-estimation of pyruvate levels in colored, but not in white onions, by up to 65%. Identification of light-absorbance interfering compounds was performed by spectrophotometry and HPLC analysis. Interference by quercetin and anthocyanins, jointly, accounted for more than 90% of the over-estimation of pyruvate. Pyruvate determinations according to AB significantly reduced absorbance interference from compounds other than pyruvate. This study provides evidence about the mechanistic basis underlying differences between the SW and AB methods for indirect assessment of onion flavor and nutraceutical value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Retinoic acids and trichostatin A (TSA), a histone deacetylase inhibitor, induce human pyruvate dehydrogenase kinase 4 (PDK4) gene expression.

    PubMed

    Kwon, Hye-Sook; Huang, Boli; Ho Jeoung, Nam; Wu, Pengfei; Steussy, Calvin N; Harris, Robert A

    2006-01-01

    Induction of pyruvate dehydrogenase kinase 4 (PDK4) conserves glucose and substrates for gluconeogenesis and thereby helps regulate blood glucose levels during starvation. We report here that retinoic acids (RA) as well as Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC), regulate PDK4 gene expression. Two retinoic acid response elements (RAREs) to which retinoid X receptor alpha (RXRalpha) and retinoic acid receptor alpha (RARalpha) bind and activate transcription are present in the human PDK4 (hPDK4) proximal promoter. Sp1 and CCAAT box binding factor (CBF) bind to the region between two RAREs. Mutation of either the Sp1 or the CBF site significantly decreases basal expression, transactivation by RXRalpha/RARalpha/RA, and the ability of TSA to stimulate hPDK4 gene transcription. By the chromatin immunoprecipitation assay, RA and TSA increase acetylation of histones bound to the proximal promoter as well as occupancy of CBP and Sp1. Interaction of p300/CBP with E1A completely prevented hPDK4 gene activation by RXRalpha/RARalpha/RA and TSA. The p300/CBP may enhance acetylation of histones bound to the hPDK4 promoter and cooperate with Sp1 and CBF to stimulate transcription of the hPDK4 gene in response to RA and TSA.

  1. Catalytic-site mapping of pyruvate formate lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate).

    PubMed

    Plaga, W; Frank, R; Knappe, J

    1988-12-15

    Pyruvate formate-lyase of Escherichia coli cells, a homodimeric protein of 2 x 85 kDa, is distinguished by the property of containing a stable organic free radical (g = 2.0037) in its resting state. The enzyme (E-SH) achieves pyruvate conversion to acetyl-CoA via two distinct half-reactions (E-SH + pyruvate in equilibrium E-S-acetyl + formate; E-S-acetyl + CoA in equilibrium E-SH + acetyl-CoA), the first of which has been proposed to involve reversible homolytic carbon-carbon bond cleavage [J. Knappe et al. (1984) Proc. Natl Acad. Sci. USA 81, 1332-1335]. Present studies identified Cys-419 as the covalent-catalytic cysteinyl residue via CNBr fragmentation of E-S-[14C]acetyl and radio-sequencing of the isolated peptide CB-Ac (amino acid residues 406-423). Reaction of the formate analogue hypophosphite with E-S-acetyl was investigated and found to produce 1-hydroxyethylphosphonate with a thioester linkage to the adjacent Cys-418. The structure was determined from the chymotryptic peptide CH-P (amino acid residues 415-425), using 31P-NMR spectroscopy (delta = 44 ppm) and by chemical characterisation through degradation into 1-hydroxyethylphosphonate with phosphodiesterase or bromine. This novel P-C-bond synthesis involves the enzyme-based free radical and is proposed to resemble the physiological C-C-bond synthesis (pyruvate production) from formate and E-S-acetyl. These findings are interpreted as proof of a radical mechanism for the action of pyruvate formate-lyase. The central Cys-418/Cys-419 pair of the active site shows a distinctive thiolate property even in the inactive (nonradical) form of the enzyme, as determined using an iodoacetate probe.

  2. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  3. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  4. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  5. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  6. Alanine transaminase (ALT) blood test

    MedlinePlus

    ... the levels of substances checked by other liver blood tests have also increased. An increased ALT level may be due to any of the following: Scarring of the liver ( cirrhosis ) Death of liver tissue Swollen and inflamed liver ( ...

  7. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects.

    PubMed

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Chung, S P; Diem, T H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-02-01

    Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1-18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H(2)O(2) scavenging effect to exogenous H(2)O(2), while lactate had no scavenging effect. 3BP induced H(2)O(2) production. Pyruvate protected against H(2)O(2)-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner.

  8. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  9. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study.

    PubMed

    Atherton, Helen J; Dodd, Michael S; Heather, Lisa C; Schroeder, Marie A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-06-07

    Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy to investigate the rate and regulation of in vivo pyruvate dehydrogenase flux in the hyperthyroid heart and to establish whether modulation of flux through pyruvate dehydrogenase would alter cardiac hypertrophy. Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (0.2 mg x kg(-1) x d(-1)). In vivo pyruvate dehydrogenase flux, assessed with hyperpolarized magnetic resonance spectroscopy, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 versus 0.0055 ± 0.0005 second(-1); P=0.0003), and this reduction was completely reversed by both short- and long-term delivery of dichloroacetic acid, a pyruvate dehydrogenase kinase inhibitor. Hyperpolarized [2-(13)C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine magnetic resonance imaging showed that long-term dichloroacetic acid treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 versus 200 ± 30 mg; P=0.04) despite no change in the increase observed in cardiac output. This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is mediated by pyruvate dehydrogenase kinase. Relieving this inhibition can increase the metabolic

  10. An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation.

    PubMed

    Peng, Shengjuan; Cao, Qing; Qin, Yuqi; Li, Xuezhi; Liu, Guodong; Qu, Yinbo

    2017-05-01

    Efficient deconstruction of lignocellulose is achieved by the synergistic action of various hydrolytic and oxidative enzymes. However, the aldonolactones generated by oxidative enzymes have inhibitory effects on some cellulolytic enzymes. In this work, D-glucono-1,5-lactone was shown to have a much stronger inhibitory effect than D-glucose and D-gluconate on β-glucosidase, a vital enzyme during cellulose degradation. AltA, a secreted enzyme from Penicillium oxalicum, was identified as an aldonolactonase which can catalyze the hydrolysis of D-glucono-1,5-lactone to D-gluconic acid. In the course of lignocellulose saccharification conducted by cellulases from P. oxalicum or Trichoderma reesei, supplementation of AltA was able to relieve the decrease of β-glucosidase activity obviously with a stimulation of glucose yield. This boosting effect disappeared when sodium azide and ethylenediaminetetraacetic acid (EDTA) were added to the saccharification system to inhibit the activities of oxidative enzymes. In summary, we describe the first heterologous expression of a fungal secreted aldonolactonase and its application as an efficient supplement of cellulolytic enzyme system for lignocellulose biodegradation.

  11. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    PubMed

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  12. Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.

    PubMed

    Cheng, Xingqun; Redanz, Sylvio; Cullin, Nyssa; Zhou, Xuedong; Xu, Xin; Joshi, Vrushali; Koley, Dipankar; Merritt, Justin; Kreth, Jens

    2018-01-15

    Commensal Streptococcus sanguinis and Streptococcus gordonii are pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H 2 O 2 , which is crucial for inhibiting competing biofilm members, especially the cariogenic species Streptococcus mutans H 2 O 2 production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H 2 O 2 production by S. sanguinis and S. gordonii S. sanguinis H 2 O 2 production was not found to be affected by moderate changes in environmental pH, whereas S. gordonii H 2 O 2 production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H 2 O 2 or lactic acid production, revealed increased lactic acid levels for S. gordonii at pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival of S. gordonii at low pH and seems to constitute part of the acid tolerance response of S. gordonii Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H 2 O 2 IMPORTANCE Oral biofilms are subject to frequent and dramatic changes in pH. S. sanguinis and S. gordonii can compete with caries- and periodontitis-associated pathogens by generating H 2 O 2 Therefore, it is crucial to understand how S. sanguinis and S. gordonii adapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival

  13. Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate.

    PubMed

    San Martín, Alejandro; Ceballo, Sebastián; Baeza-Lehnert, Felipe; Lerchundi, Rodrigo; Valdebenito, Rocío; Contreras-Baeza, Yasna; Alegría, Karin; Barros, L Felipe

    2014-01-01

    Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function.

  14. Imaging Mitochondrial Flux in Single Cells with a FRET Sensor for Pyruvate

    PubMed Central

    Baeza-Lehnert, Felipe; Lerchundi, Rodrigo; Valdebenito, Rocío; Contreras-Baeza, Yasna; Alegría, Karin; Barros, L. Felipe

    2014-01-01

    Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function. PMID:24465702

  15. STUDIES ON MAMMALIAN AND HUMAN PYRUVATE AND ALPHA-KETOGLUTARATE DEHYDROGENATION COMPLEXES.

    DTIC Science & Technology

    The pig heart pyruvate and alpha - ketoglutarate dehydrogenase complex were isolated in highly purified state as multienzyme units with molecular...weights of approximately 9 million and 2.8 million, respectively. The aims were to resolve the pig heart pyruvate and alpha - ketoglutarate dehydrogenase...complexes was isolated from three sources; (1) pyruvate dehydrogenase complex, (2) alpha - ketoglutarate dehydrogenase, and (3) amber-color extract free

  16. A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity*

    PubMed Central

    Gray, Lawrence R.; Rauckhorst, Adam J.; Taylor, Eric B.

    2016-01-01

    The discovery that the MPC1 and MPC2 genes encode the protein components of the mitochondrial pyruvate carrier (MPC) has invigorated studies of mitochondrial pyruvate transport and its regulation in normal and disease states. Indeed, recent reports have demonstrated MPC involvement in the control of cell fate in cancer and gluconeogenesis in models of type 2 diabetes. Biochemical measurements of MPC activity are foundational for understanding the role of pyruvate transport in health and disease. We developed a 96-well scaled method of [14C]pyruvate uptake that markedly decreases sample requirements and increases throughput relative to previous techniques. This method was applied to determine the mouse liver MPC Km (28.0 ± 3.9 μm) and Vmax (1.08 ± 0.05 nmol/min/mg), which have not previously been reported. Km and Vmax of the rat liver MPC were found to be 71.2 ± 17 μm and 1.42 ± 0.14 nmol/min/mg, respectively. Additionally, we performed parallel pyruvate uptake and oxidation experiments with the same biological samples and show differential results in response to fasting, demonstrating the continued importance of a direct MPC activity assay. We expect this method will be of value for understanding the contribution of the MPC activity to health and disease states where pyruvate metabolism is expected to play a prominent role. PMID:26823462

  17. Inhibition, by 2-oxo acids that accumulate in maple-syrup-urine disease, of lactate, pyruvate, and 3-hydroxybutyrate transport across the blood-brain barrier.

    PubMed

    Cremer, J E; Teal, H M; Cunningham, V J

    1982-09-01

    Data are presented in support of the transport of (-)-D-3-hydroxybutyrate across the blood-brain barrier (BBB) being a carrier-mediated process. The kinetic parameters in 21-day-old pentobarbital-anaesthetized rats were Vmax 2.0 mumol.g-1.min-1, Km 29 mM, and KD 0.024 ml.g-1.min-1. The value for Vmax was the same as that for L-lactate and pyruvate transport in animals of the same age. The transport of all three substrates was sensitive to inhibition by low concentrations of either 2-oxo-3-methylbutanoate or 2-oxo-4-methylpentanoate, the 2-oxo acids that can accumulate in patients with maple-syrup-urine disease. The Ki values for the 2-oxo acids were severalfold lower than the respective Km values. 2-Oxo-3-phenylpropionate was a poor inhibitor. The relative affinities of the various monocarboxylic acids for the transport system of the BBB distinguished it from similar systems described in brain, heart, and liver mitochondria; human erythrocytes; and Ehrlich ascites-tumour cells.

  18. Characterisation of a flavonoid ligand of the fungal protein Alt a 1

    PubMed Central

    Garrido-Arandia, María; Silva-Navas, Javier; Ramírez-Castillejo, Carmen; Cubells-Baeza, Nuria; Gómez-Casado, Cristina; Barber, Domingo; Pozo, Juan C.; Melendi, Pablo G.; Pacios, Luis F.; Díaz-Perales, Araceli

    2016-01-01

    Spores of pathogenic fungi are virtually ubiquitous and cause human disease and severe losses in crops. The endophytic fungi Alternaria species produce host-selective phytotoxins. Alt a 1 is a strongly allergenic protein found in A. alternata that causes severe asthma. Despite the well-established pathogenicity of Alt a 1, the molecular mechanisms underlying its action and physiological function remain largely unknown. To gain insight into the role played by this protein in the pathogenicity of the fungus, we studied production of Alt a 1 and its activity in spores. We found that Alt a 1 accumulates inside spores and that its release with a ligand is pH-dependent, with optimum production in the 5.0–6.5 interval. The Alt a 1 ligand was identified as a methylated flavonoid that inhibits plant root growth and detoxifies reactive oxygen species. We also found that Alt a 1 changes its oligomerization state depending on the pH of the surrounding medium and that these changes facilitate the release of the ligand. Based on these results, we propose that release of Alt a 1 should be a pathogenic target in approaches used to block plant defenses and consequently to favor fungal entry into the plant. PMID:27633190

  19. Characterisation of a flavonoid ligand of the fungal protein Alt a 1.

    PubMed

    Garrido-Arandia, María; Silva-Navas, Javier; Ramírez-Castillejo, Carmen; Cubells-Baeza, Nuria; Gómez-Casado, Cristina; Barber, Domingo; Pozo, Juan C; Melendi, Pablo G; Pacios, Luis F; Díaz-Perales, Araceli

    2016-09-16

    Spores of pathogenic fungi are virtually ubiquitous and cause human disease and severe losses in crops. The endophytic fungi Alternaria species produce host-selective phytotoxins. Alt a 1 is a strongly allergenic protein found in A. alternata that causes severe asthma. Despite the well-established pathogenicity of Alt a 1, the molecular mechanisms underlying its action and physiological function remain largely unknown. To gain insight into the role played by this protein in the pathogenicity of the fungus, we studied production of Alt a 1 and its activity in spores. We found that Alt a 1 accumulates inside spores and that its release with a ligand is pH-dependent, with optimum production in the 5.0-6.5 interval. The Alt a 1 ligand was identified as a methylated flavonoid that inhibits plant root growth and detoxifies reactive oxygen species. We also found that Alt a 1 changes its oligomerization state depending on the pH of the surrounding medium and that these changes facilitate the release of the ligand. Based on these results, we propose that release of Alt a 1 should be a pathogenic target in approaches used to block plant defenses and consequently to favor fungal entry into the plant.

  20. Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation.

    PubMed

    Agrimi, Gennaro; Mena, Maria C; Izumi, Kazuki; Pisano, Isabella; Germinario, Lucrezia; Fukuzaki, Hisashi; Palmieri, Luigi; Blank, Lars M; Kitagaki, Hiroshi

    2014-03-01

    Although the decrease in pyruvate secretion by brewer's yeasts during fermentation has long been desired in the alcohol beverage industry, rather little is known about the regulation of pyruvate accumulation. In former studies, we developed a pyruvate under-secreting sake yeast by isolating a strain (TCR7) tolerant to ethyl α-transcyanocinnamate, an inhibitor of pyruvate transport into mitochondria. To obtain insights into pyruvate metabolism, in this study, we investigated the mitochondrial activity of TCR7 by oxigraphy and (13) C-metabolic flux analysis during aerobic growth. While mitochondrial pyruvate oxidation was higher, glycerol production was decreased in TCR7 compared with the reference. These results indicate that mitochondrial activity is elevated in the TCR7 strain with the consequence of decreased pyruvate accumulation. Surprisingly, mitochondrial activity is much higher in the sake yeast compared with CEN.PK 113-7D, the reference strain in metabolic engineering. When shifted from aerobic to anaerobic conditions, sake yeast retains a branched mitochondrial structure for a longer time than laboratory strains. The regulation of mitochondrial activity can become a completely novel approach to manipulate the metabolic profile during fermentation of brewer's yeasts. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast.

    PubMed

    Timón-Gómez, Alba; Proft, Markus; Pascual-Ahuir, Amparo

    2013-01-01

    Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance.

  2. Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.

    PubMed

    Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon

    2011-02-01

    A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).

  3. Telomere sequence content can be used to determine ALT activity in tumours

    PubMed Central

    Lee, Michael; Teber, Erdahl T; Holmes, Oliver; Nones, Katia; Patch, Ann-Marie; Dagg, Rebecca A; Lau, Loretta M S; Lee, Joyce H; Napier, Christine E; Arthur, Jonathan W; Grimmond, Sean M; Hayward, Nicholas K; Johansson, Peter A; Mann, Graham J; Scolyer, Richard A; Wilmott, James S; Reddel, Roger R; Pearson, John V; Waddell, Nicola; Pickett, Hilda A

    2018-01-01

    Abstract The replicative immortality of human cancer cells is achieved by activation of a telomere maintenance mechanism (TMM). To achieve this, cancer cells utilise either the enzyme telomerase, or the Alternative Lengthening of Telomeres (ALT) pathway. These distinct molecular pathways are incompletely understood with respect to activation and propagation, as well as their associations with clinical outcomes. We have identified significant differences in the telomere repeat composition of tumours that use ALT compared to tumours that do not. We then employed a machine learning approach to stratify tumours according to telomere repeat content with an accuracy of 91.6%. Importantly, this classification approach is applicable across all tumour types. Analysis of pathway mutations that were under-represented in ALT tumours, across 1,075 tumour samples, revealed that the autophagy, cell cycle control of chromosomal replication, and transcriptional regulatory network in embryonic stem cells pathways are involved in the survival of ALT tumours. Overall, our approach demonstrates that telomere sequence content can be used to stratify ALT activity in cancers, and begin to define the molecular pathways involved in ALT activation. PMID:29718321

  4. Maximization of orbiter altitude at ALT interface airspeed, mission planning, mission analysis and software

    NASA Technical Reports Server (NTRS)

    Glenn, G. M.

    1976-01-01

    The determination of the separation initial conditions (i.e. incidence angle) that maximize orbiter altitude at the ALT interface airspeed is considered. Optimum altitude airspeed profiles are generated for each orbiter incidence angle and tailcone configuration. Results show that the highest separation altitude does not result in the highest altitude at ALT interface airspeed. The altitude attainable at ALT interface airspeed should therefore be considered in the selection of the initial conditions (i.e. incidence angle). Without violating any known constraints, the incidence angles that maximize orbiter altitude at the ALT interface airspeeds are 7.0 deg for ALT free flight 1 and 5.5 deg for ALT free flight 6.

  5. Photolysis of α-KETO Acids in Model Atmospheric Water

    NASA Astrophysics Data System (ADS)

    Eugene, A. J.; Guzman, M. I.

    2017-12-01

    Recent work has reported the potential of aqueous-phase photochemistry to promote secondary organic aerosol (SOA) formation. New aqueous photochemical SOA sources may contribute to bridging the gap between field measurements of SOA and models of SOA formation. The ubiquitous α-ketocarboxylic acids pyruvic and glyoxylic acid are known products of the atmospheric oxidation of polycyclic aromatic hydrocarbons (PAHs) as well as of biogenic volatile organic compounds (VOCs). The combination of a carbonyl chromophore (absorbing at wavelengths λ ≥ 300 nm) and hydrophilic functional groups makes these acids likely candidates for forming aqueous SOA by direct sunlight photolysis. We use a variety of analytical techniques including: 2,4-dinitrophenylhydrazine (DNPH) derivatization; ultra-high performance liquid chromatography (UHPLC) and ion chromatography (IC) coupled to mass spectrometry;1H and 13C NMR; and 13C gCOSY NMR to probe the kinetics and mechanisms of the direct photolysis of model solutions of pyruvic acid and glyoxylic acid. The results indicate that despite the structural similarity between the two acids, they each react via very different primary photochemical pathways. Pyruvic acid undergoes a proton-coupled electron transfer (PCET) mechanism with radical recombination, resulting in CO2 and 6-8 carbon organic acids. In contrast, glyoxylic acid primarily undergoes α-cleavage to generate CO, CO2, and glyoxal which is a key species in SOA formation. This work demonstrates that aqueous photolysis is a very competitive atmospheric sink for both pyruvic and glyoxylic acid, indicating that these photoreactions are capable of contributing substantially to SOA formation.

  6. Alteration of pyruvate metabolism in African trypanosomes during differentiation from bloodstream into insect forms.

    PubMed

    Barnard, J P; Pedersen, P L

    1994-08-15

    In the presence of glucose and ample oxygen, insect form African trypanosomes release pyruvate more than 100-fold more slowly than do bloodstream forms. This rate decrease could not be accounted for simply by an increased mitochondrial pyruvate oxidation rate as inhibiting mitochondrial respiration increases pyruvate efflux to rates only 2-3% of that observed for bloodstream form trypanosomes. Alternatively, decreased pyruvate efflux from insect form trypanosomes could not be accounted for by decreased pyruvate transporter activity, which, surprisingly, was nearly as high in insect form trypanosomes as reported by us earlier for bloodstream forms (J.P. Barnard, B. Reynafarje, and P.L. Pedersen (1993) J. Biol. Chem. 268, 3654-3661). Rather, the low pyruvate efflux rate appears to be due primarily to reduced levels of the enzyme pyruvate kinase, which, in contrast to conclusions of an earlier study, is readily detected in insect form trypanosomes in the absence of added activators at an activity level about 4% of that found in bloodstream forms. Insect form pyruvate kinase seems to be located in the cytosol and exhibits kinetic profiles and constants nearly identical to those reported by us earlier for the bloodstream form enzyme (J.P. Barnard, and P.L. Pedersen (1988) Mol. Biochem. Parasitol. 31, 141-148). It is suggested that the reduced levels of pyruvate kinase, and hence the reduced pyruvate efflux rates, in insect form trypanosomes result from down regulation of the gene encoding the cytosolic enzyme.

  7. Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302.

    PubMed

    Wojtkowiak, Jonathan W; Cornnell, Heather C; Matsumoto, Shingo; Saito, Keita; Takakusagi, Yoichi; Dutta, Prasanta; Kim, Munju; Zhang, Xiaomeng; Leos, Rafael; Bailey, Kate M; Martinez, Gary; Lloyd, Mark C; Weber, Craig; Mitchell, James B; Lynch, Ronald M; Baker, Amanda F; Gatenby, Robert A; Rejniak, Katarzyna A; Hart, Charles; Krishna, Murali C; Gillies, Robert J

    2015-01-01

    Hypoxic niches in solid tumors harbor therapy-resistant cells. Hypoxia-activated prodrugs (HAPs) have been designed to overcome this resistance and, to date, have begun to show clinical efficacy. However, clinical HAPs activity could be improved. In this study, we sought to identify non-pharmacological methods to acutely exacerbate tumor hypoxia to increase TH-302 activity in pancreatic ductal adenocarcinoma (PDAC) tumor models. Three human PDAC cell lines with varying sensitivity to TH-302 (Hs766t > MiaPaCa-2 > SU.86.86) were used to establish PDAC xenograft models. PDAC cells were metabolically profiled in vitro and in vivo using the Seahorse XF system and hyperpolarized (13)C pyruvate MRI, respectively, in addition to quantitative immunohistochemistry. The effect of exogenous pyruvate on tumor oxygenation was determined using electroparamagnetic resonance (EPR) oxygen imaging. Hs766t and MiaPaCa-2 cells exhibited a glycolytic phenotype in comparison to TH-302 resistant line SU.86.86. Supporting this observation is a higher lactate/pyruvate ratio in Hs766t and MiaPaCa xenografts as observed during hyperpolarized pyruvate MRI studies in vivo. Coincidentally, response to exogenous pyruvate both in vitro (Seahorse oxygen consumption) and in vivo (EPR oxygen imaging) was greatest in Hs766t and MiaPaCa models, possibly due to a higher mitochondrial reserve capacity. Changes in oxygen consumption and in vivo hypoxic status to pyruvate were limited in the SU.86.86 model. Combination therapy of pyruvate plus TH-302 in vivo significantly decreased tumor growth and increased survival in the MiaPaCa model and improved survival in Hs766t tumors. Using metabolic profiling, functional imaging, and computational modeling, we show improved TH-302 activity by transiently increasing tumor hypoxia metabolically with exogenous pyruvate. Additionally, this work identified a set of biomarkers that may be used clinically to predict which tumors will be most responsive to

  8. The crystal structure of dihydrodipicolinate synthase from Escherichia coli with bound pyruvate and succinic acid semialdehyde: unambiguous resolution of the stereochemistry of the condensation product.

    PubMed

    Boughton, Berin A; Dobson, Renwick C J; Hutton, Craig A

    2012-08-01

    The crystal structure of Escherichia coli dihydrodipicolinate synthase with pyruvate and substrate analogue succinic acid semialdehyde condensed with the active site lysine-161 was solved to a resolution of 2.3 Å. Comparative analysis to a previously reported structure both resolves the configuration at the aldol addition center, where the final addition product clearly displays the (S)-configuration, and the final conformation of the adduct within the active site. Direct comparison to two other crystal structures found in the Protein Data Bank, 1YXC, and 3DU0, demonstrates significant similarity between the active site residues of these structures. Copyright © 2012 Wiley Periodicals, Inc.

  9. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder.

    PubMed

    Yoshimi, Noriko; Futamura, Takashi; Kakumoto, Keiji; Salehi, Alireza M; Sellgren, Carl M; Holmén-Larsson, Jessica; Jakobsson, Joel; Pålsson, Erik; Landén, Mikael; Hashimoto, Kenji

    2016-06-01

    Bipolar disorder (BD) is a severe and debilitating psychiatric disorder. However, the precise biological basis remains unknown, hampering the search for novel biomarkers. We performed a metabolomics analysis to discover novel peripheral biomarkers for BD. We quantified serum levels of 116 metabolites in mood-stabilized male BD patients (n = 54) and age-matched male healthy controls (n = 39). After multivariate logistic regression, serum levels of pyruvate, N-acetylglutamic acid, α-ketoglutarate, and arginine were significantly higher in BD patients than in healthy controls. Conversely, serum levels of β-alanine, and serine were significantly lower in BD patients than in healthy controls. Chronic (4-weeks) administration of lithium or valproic acid to adult male rats did not alter serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, or arginine, but lithium administration significantly increased serum levels of α-ketoglutarate. The metabolomics analysis demonstrated altered serum levels of pyruvate, N-acetylglutamic acid, β-alanine, serine, and arginine in BD patients. The present findings suggest that abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism play a role in the pathogenesis of BD.

  10. Cloning and sequence determination of the gene coding for the pyruvate phosphate dikinase of Entamoeba histolytica.

    PubMed

    Saavedra-Lira, E; Pérez-Montfort, R

    1994-05-16

    We isolated three overlapping clones from a DNA genomic library of Entamoeba histolytica strain HM1:IMSS, whose translated nucleotide (nt) sequence shows similarities of 51, 48 and 47% with the amino acid (aa) sequences reported for the pyruvate phosphate dikinases from Bacteroides symbiosus, maize and Flaveria trinervia, respectively. The reading frame determined codes for a protein of 886 aa.

  11. l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum▿

    PubMed Central

    Blombach, Bastian; Schreiner, Mark E.; Holátko, Jiří; Bartek, Tobias; Oldiges, Marco; Eikmanns, Bernhard J.

    2007-01-01

    Corynebacterium glutamicum was engineered for the production of l-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the l-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum ΔaceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, l-alanine, and l-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum ΔaceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and l-alanine towards l-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum ΔaceE(pJC4ilvBNCE) produced up to 210 mM l-valine with a volumetric productivity of 10.0 mM h−1 (1.17 g l−1 h−1) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose. PMID:17293513

  12. Post-test navigation data analysis techniques for the shuttle ALT

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Postflight test analysis data processing techniques for shuttle approach and landing tests (ALT) navigation data are defined. Postfight test processor requirements are described along with operational and design requirements, data input requirements, and software test requirements. The postflight test data processing is described based on the natural test sequence: quick-look analysis, postflight navigation processing, and error isolation processing. Emphasis is placed on the tradeoffs that must remain open and subject to analysis until final definition is achieved in the shuttle data processing system and the overall ALT plan. A development plan for the implementation of the ALT postflight test navigation data processing system is presented. Conclusions are presented.

  13. Identification of a canine model of pyruvate dehydrogenase phosphatase 1 deficiency.

    PubMed

    Cameron, Jessie M; Maj, Mary C; Levandovskiy, Valeriy; MacKay, Neviana; Shelton, G Diane; Robinson, Brian H

    2007-01-01

    Exercise intolerance syndromes are well known to be associated with inborn errors of metabolism affecting glycolysis (phosphorylase and phosphofructokinase deficiency) and fatty acid oxidation (palmitoyl carnitine transferase deficiency). We have identified a canine model for profound exercise intolerance caused by a deficit in PDP1 (EC 3.1.3.43), the phosphatase enzyme that activates the pyruvate dehydrogenase complex (PDHc). The Clumber spaniel breed was originated in 1760 by the Duc de Noailles, as a hunting dog with a gentle temperament suitable for the 'elderly gentleman'. Here we report that 20% of the current Clumber and Sussex spaniel population are carriers for a null mutation in PDP1, and that homozygosity produces severe exercise intolerance. Human pyruvate dehydrogenase phosphatase deficiency was recently characterized at the molecular level. However, the nature of the human mutation (loss of a single amino acid altering PDP1 activity) made it impossible to discern the role of the second phosphatase isoform, PDP2, in the deficient phenotype. Here we show that the null mutation in dogs provides a valuable animal model with which to study the effects of dysregulation of the PDHc. Knowledge of the molecular defect has allowed for the institution of a rapid restriction enzyme test for the canine mutation that will allow for selective breeding and has led to a suggested dietary therapy for affected dogs that has proven to be beneficial. Pharmacological and genetic therapies for PDP1 deficiency can now be investigated and the role of PDP2 can be fully characterized.

  14. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid

    PubMed Central

    Zhai, Zhengyuan; An, Haoran; Wang, Guohong; Luo, Yunbo; Hao, Yanling

    2015-01-01

    Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5′-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5′-TGTAAGCCCTAACA-3′) upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network. PMID:26581248

  15. Metabolic networks to generate pyruvate, PEP and ATP from glycerol in Pseudomonas fluorescens.

    PubMed

    Alhasawi, Azhar; Thomas, Sean C; Appanna, Vasu D

    2016-04-01

    Glycerol is a major by-product of the biodiesel industry. In this study we report on the metabolic networks involved in its transformation into pyruvate, phosphoenolpyruvate (PEP) and ATP. When the nutritionally-versatile Pseudomonas fluorescens was exposed to hydrogen peroxide (H2O2) in a mineral medium with glycerol as the sole carbon source, the microbe reconfigured its metabolism to generate adenosine triphosphate (ATP) primarily via substrate-level phosphorylation (SLP). This alternative ATP-producing stratagem resulted in the synthesis of copious amounts of PEP and pyruvate. The production of these metabolites was mediated via the enhanced activities of such enzymes as pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPC). The high energy PEP was subsequently converted into ATP with the aid of pyruvate phosphate dikinase (PPDK), phosphoenolpyruvate synthase (PEPS) and pyruvate kinase (PK) with the concomitant formation of pyruvate. The participation of the phospho-transfer enzymes like adenylate kinase (AK) and acetate kinase (ACK) ensured the efficiency of this O2-independent energy-generating machinery. The increased activity of glycerol dehydrogenase (GDH) in the stressed bacteria provided the necessary precursors to fuel this process. This H2O2-induced anaerobic life-style fortuitously evokes metabolic networks to an effective pathway that can be harnessed into the synthesis of ATP, PEP and pyruvate. The bioconversion of glycerol to pyruvate will offer interesting economic benefit. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The genetic architecture of liver enzyme levels: GGT, ALT and AST.

    PubMed

    van Beek, Jenny H D A; de Moor, Marleen H M; de Geus, Eco J C; Lubke, Gitta H; Vink, Jacqueline M; Willemsen, Gonneke; Boomsma, Dorret I

    2013-07-01

    High levels of liver enzymes GGT, ALT and AST are predictive of disease and all-cause mortality and can reflect liver injury, fatty liver and/or oxidative stress. Variation in GGT, ALT and AST levels is heritable. Moderation of the heritability of these liver enzymes by age and sex has not often been explored, and it is not clear to what extent non-additive genetic and shared environmental factors may play a role. To examine the genetic architecture of GGT, ALT and AST, plasma levels were assessed in a large sample of twins, their siblings, parents and spouses (N = 8,371; age range 18-90). For GGT and ALT, but not for AST, genetic structural equation modeling showed evidence for quantitative sex differences in the genetic architecture. There was no evidence for qualitative sex differences, i.e. the same genes were expressed in males and females. Both additive and non-additive genetic factors were important for GGT in females (total heritability h(2) 60 %) and AST in both sexes (total h(2) 43 %). The heritability of GGT in males and ALT for both sexes was due to additive effects only (GGT males 30 %; ALT males 40 %, females 22 %). Evidence emerged for shared environmental factors influencing GGT in the male offspring generation (variance explained 28 %). Thus, the same genes influence liver enzyme levels across sex and age, but their relative contribution to the variation in GGT and ALT differs in males and females and for GGT across age. Given adequate sample sizes these results suggest that genome-wide association studies may result in the detection of new susceptibility loci for liver enzyme levels when pooling results over sex and age.

  17. Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogues

    PubMed Central

    Lietzan, Adam D.; St. Maurice, Martin

    2014-01-01

    Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates. PMID:24157795

  18. Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort Marchantia polymorpha[OPEN

    PubMed Central

    Eklund, D. Magnus; Ishizaki, Kimitsune; Flores-Sandoval, Eduardo; Kikuchi, Saya; Takebayashi, Yumiko; Tsukamoto, Shigeyuki; Hirakawa, Yuki; Nonomura, Maiko; Kato, Hirotaka; Kouno, Masaru; Bhalerao, Rishikesh P.; Lagercrantz, Ulf; Kasahara, Hiroyuki; Kohchi, Takayuki; Bowman, John L.

    2015-01-01

    The plant hormone auxin (indole-3-acetic acid [IAA]) has previously been suggested to regulate diverse forms of dormancy in both seed plants and liverworts. Here, we use loss- and gain-of-function alleles for auxin synthesis- and signaling-related genes, as well as pharmacological approaches, to study how auxin regulates development and dormancy in the gametophyte generation of the liverwort Marchantia polymorpha. We found that M. polymorpha possess the smallest known toolkit for the indole-3-pyruvic acid (IPyA) pathway in any land plant and that this auxin synthesis pathway mainly is active in meristematic regions of the thallus. Previously a Trp-independent auxin synthesis pathway has been suggested to produce a majority of IAA in bryophytes. Our results indicate that the Trp-dependent IPyA pathway produces IAA that is essential for proper development of the gametophyte thallus of M. polymorpha. Furthermore, we show that dormancy of gemmae is positively regulated by auxin synthesized by the IPyA pathway in the apex of the thallus. Our results indicate that auxin synthesis, transport, and signaling, in addition to its role in growth and development, have a critical role in regulation of gemmae dormancy in M. polymorpha. PMID:26036256

  19. The helicase domain of Polθ counteracts RPA to promote alt-NHEJ.

    PubMed

    Mateos-Gomez, Pedro A; Kent, Tatiana; Deng, Sarah K; McDevitt, Shane; Kashkina, Ekaterina; Hoang, Trung M; Pomerantz, Richard T; Sfeir, Agnel

    2017-12-01

    Mammalian polymerase theta (Polθ) is a multifunctional enzyme that promotes error-prone DNA repair by alternative nonhomologous end joining (alt-NHEJ). Here we present structure-function analyses that reveal that, in addition to the polymerase domain, Polθ-helicase activity plays a central role during double-strand break (DSB) repair. Our results show that the helicase domain promotes chromosomal translocations by alt-NHEJ in mouse embryonic stem cells and also suppresses CRISPR-Cas9- mediated gene targeting by homologous recombination (HR). In vitro assays demonstrate that Polθ-helicase activity facilitates the removal of RPA from resected DSBs to allow their annealing and subsequent joining by alt-NHEJ. Consistent with an antagonistic role for RPA during alt-NHEJ, inhibition of RPA1 enhances end joining and suppresses recombination. Taken together, our results reveal that the balance between HR and alt-NHEJ is controlled by opposing activities of Polθ and RPA, providing further insight into the regulation of repair-pathway choice in mammalian cells.

  20. Additive effects of clofibric acid and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) deficiency on hepatic steatosis in mice fed a high-saturated fat diet

    PubMed Central

    Hwang, Byounghoon; Wu, Pengfei; Harris, Robert A.

    2012-01-01

    SUMMARY Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) might prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it might induce detrimental effects by inhibiting fatty acid oxidation. PPARα agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment with a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild type and PDK4 knockout mice fed a high fat diet. As expected, treatment of wild type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, lowered blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid and a reduction in the capacity for fatty acid synthesis by PDK4 deficiency. PMID:22429297

  1. “Scanning mutagenesis” of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    USDA-ARS?s Scientific Manuscript database

    The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1alpha subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated...

  2. Stimulation of pyruvate transport in metabolizing mitochondria through changes in the transmembrane pH gradient induced by glucagon treatment of rats.

    PubMed

    Halestrap, A P

    1978-06-15

    Glucagon treatment of rats allowed the isolation of liver mitochondria with enhanced rates of pyruvate metabolism measured in either sucrose or KCl media. No change in the activity of the pyruvate carrier itself was apparent, but under metabolizing conditions, use of the inhibitor of pyruvate transport, alpha-cyano-4-hydroxycinnamate, demonstrated that pyruvate transport limited the rate of pyruvate metabolism. The maximum rate of transport under metabolizing conditions was enhanced by glucagon treatment. Problems involved in measuring the transmembrane pH gradient under metabolizing conditions are discussed and a variety of techniques are used to estimate the matrix pH. From the distribution of methylamine, ammonia and D-lactate and the Ki for inhibition by alpha-cyano-4-hydroxycinnamate it is concluded that the matrix is more acid than the medium and that the pH of the matrix rises after glucagon treatment. The increase in matrix pH stimulates pyruvate transport. The membrane potential, ATP concentration and O2 uptake were also increased under metabolizing conditions in glucagon-treated mitochondria. These changes were correlated with a stimulation of the respiratory chain which can be observed in uncoupled mitochondria [Yamazaki (1975) J. Biol. Chem. 250, 7924--7930]. The mitochondrial Mg2+ content (mean +/- S.E.M.) was increased from 38.8 +/- 1.2 (n = 26) to 47.5 +/- 2.0 (n = 26) ng-atoms/mg by glucagon and the K+ content from 126.7 +/- 10.3 (n = 19) ng-atoms/mg. This may represent a change in membrane potential induced by glucagon in vivo. The physiological significance of these results in the control of gluconeogenesis is discussed.

  3. Randomized, Placebo-Controlled Phase 2 Trial of a Lactobacillus crispatus Probiotic Given Intravaginally for Prevention of Recurrent Urinary Tract Infection

    PubMed Central

    Au-Yeung, Melissa; Hooton, Thomas M.; Fredricks, David N.; Roberts, Pacita L.; Czaja, Christopher A.; Yarova-Yarovaya, Yuliya; Fiedler, Tina; Cox, Marsha; Stamm, Walter E.

    2011-01-01

    Background. Urinary tract infections (UTIs) are common among women and frequently recur. Depletion of vaginal lactobacilli is associated with UTI risk, which suggests that repletion may be beneficial. We conducted a double-blind placebo-controlled trial of a Lactobacillus crispatus intravaginal suppository probiotic (Lactin-V; Osel) for prevention of recurrent UTI in premenopausal women. Methods. One hundred young women with a history of recurrent UTI received antimicrobials for acute UTI and then were randomized to receive either Lactin-V or placebo daily for 5 d, then once weekly for 10 weeks. Participants were followed up at 1 week and 10 weeks after intervention and for UTIs; urine samples for culture and vaginal swabs for real-time quantitative 16S ribosomal RNA gene polymerase chain reaction for L. crispatus were collected. Results. Recurrent UTI occurred in 7/48 15% of women receiving Lactin-V compared with 13/48 27% of women receiving placebo (relative risk [RR], .5; 95% confidence interval, .2–1.2). High-level vaginal colonization with L. crispatus (≥106 16S RNA gene copies per swab) throughout follow-up was associated with a significant reduction in recurrent UTI only for Lactin-V (RR for Lactin-V, .07; RR for placebo, 1.1; P < .01). Conclusions. Lactin-V after treatment for cystitis is associated with a reduction in recurrent UTI. Larger efficacy trials of this novel preventive method for recurrent UTI are warranted. Clinical Trials Registration. NCT00305227. PMID:21498386

  4. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection.

    PubMed

    Stapleton, Ann E; Au-Yeung, Melissa; Hooton, Thomas M; Fredricks, David N; Roberts, Pacita L; Czaja, Christopher A; Yarova-Yarovaya, Yuliya; Fiedler, Tina; Cox, Marsha; Stamm, Walter E

    2011-05-01

    Urinary tract infections (UTIs) are common among women and frequently recur. Depletion of vaginal lactobacilli is associated with UTI risk, which suggests that repletion may be beneficial. We conducted a double-blind placebo-controlled trial of a Lactobacillus crispatus intravaginal suppository probiotic (Lactin-V; Osel) for prevention of recurrent UTI in premenopausal women. One hundred young women with a history of recurrent UTI received antimicrobials for acute UTI and then were randomized to receive either Lactin-V or placebo daily for 5 d, then once weekly for 10 weeks. Participants were followed up at 1 week and 10 weeks after intervention and for UTIs; urine samples for culture and vaginal swabs for real-time quantitative 16S ribosomal RNA gene polymerase chain reaction for L. crispatus were collected. Recurrent UTI occurred in 7/48 15% of women receiving Lactin-V compared with 13/48 27% of women receiving placebo (relative risk [RR], .5; 95% confidence interval, .2-1.2). High-level vaginal colonization with L. crispatus (≥10(6) 16S RNA gene copies per swab) throughout follow-up was associated with a significant reduction in recurrent UTI only for Lactin-V (RR for Lactin-V, .07; RR for placebo, 1.1; P < .01). Lactin-V after treatment for cystitis is associated with a reduction in recurrent UTI. Larger efficacy trials of this novel preventive method for recurrent UTI are warranted. CLINICAL TRIALS REGISTRATION. NCT00305227.

  5. Ethyl pyruvate inhibits hypoxic pulmonary vasoconstriction and attenuates pulmonary artery cytokine expression

    PubMed Central

    Tsai, Ben M.; Lahm, Tim; Morrell, Eric D.; Crisostomo, Paul R.; Markel, Troy; Wang, Meijing; Meldrum, Daniel R.

    2009-01-01

    Hypoxic pulmonary vasoconstriction is a common consequence of acute lung injury and may be mediated by increased local production of proinflammatory cytokines. Ethyl pyruvate is a novel anti-inflammatory agent that has been shown to downregulate proinflammatory genes following hemorrhagic shock; however, its effects on hypoxic pulmonary vasoconstriction are unknown. We hypothesized that ethyl pyruvate would inhibit hypoxic pulmonary vasoconstriction and downregulate pulmonary artery cytokine expression during hypoxia. To study this, isometric force displacement was measured in isolated rat pulmonary artery rings (n=8/group) during hypoxia (95% N2/5% CO2) with or without prior ethyl pyruvate (10 mM) treatment. Following 60 minutes of hypoxia, pulmonary artery rings were analyzed for TNF-α and IL-1 mRNA via RT-PCR. Ethyl pyruvate inhibited hypoxic pulmonary artery contraction (4.49±2.32% vs. 88.80±5.68% hypoxia alone) and attenuated the hypoxic upregulation of pulmonary artery TNF and IL-1 mRNA (p<0.05). These data indicate that: 1) hypoxia increases pulmonary artery vasoconstriction and proinflammatory cytokine gene expression; 2) ethyl pyruvate decreases hypoxic pulmonary vasoconstriction and downregulates hypoxia-induced pulmonary artery proinflammatory cytokine gene expression; and 3) ethyl pyruvate may represent a novel therapeutic adjunct in the treatment of acute lung injury. PMID:17574585

  6. Activation of the ALT pathway for telomere maintenance can affect other sequences in the human genome.

    PubMed

    Jeyapalan, Jennie N; Varley, Helen; Foxon, Jenny L; Pollock, Raphael E; Jeffreys, Alec J; Henson, Jeremy D; Reddel, Roger R; Royle, Nicola J

    2005-07-01

    Immortal human cells maintain telomere length by the expression of telomerase or through the alternative lengthening of telomeres (ALT). The ALT mechanism involves a recombination-like process that allows the rapid elongation of shortened telomeres. However, it is not known whether activation of the ALT pathway affects other sequences in the genome. To address this we have investigated, in ALT-expressing cell lines and tumours, the stability of tandem repeat sequences known to mutate via homologous recombination in the human germline. We have shown extraordinary somatic instability in the human minisatellite MS32 (D1S8) in ALT-expressing (ALT+) but not in normal or telomerase-expressing cell lines. The MS32 mutation frequency varied across 15 ALT+ cell lines and was on average 55-fold greater than in ALT- cell lines. The MS32 minisatellite was also highly unstable in three of eight ALT+ soft tissue sarcomas, indicating that somatic destabilization occurs in vivo. The MS32 mutation rates estimated for two ALT+ cell lines were similar to that seen in the germline. However, the internal structures of ALT and germline mutant alleles are very different, indicating differences in the underlying mutation mechanisms. Five other hypervariable minisatellites did not show elevated instability in ALT-expressing cell lines, indicating that minisatellite destabilization is not universal. The elevation of MS32 instability upon activation of the ALT pathway and telomere length maintenance suggests there is overlap between the underlying processes that may be tractable through analysis of the D1S8 locus.

  7. Interaction of ethacrynic acid with control sites of renal glucose metabolism.

    PubMed

    Fúlgraff, G; Dingler-Núnemann, H

    1975-01-01

    Ethacrynic acid stimulates in vitro concentration dependent renal gluconeogenesis from substrates which enter the gluconeogenic pathway at the level of the triosephosphates like glycerol or fructose or from substrates which have to pass the oxaloacetate shuttle like pyruvate or from intermediary products of fatty acid oxydation or citrate cycle. Our results suggest that a site of action of ethacrynic acid in this metabolic aspect is the enzyme system fructose diphosphatase/frutose-6-phosphate kinase and eventually additionally pyruvate carboxylase.

  8. Roles of pyruvate dehydrogenase and branched-chain α-keto acid dehydrogenase in branched-chain membrane fatty acid levels and associated functions in Staphylococcus aureus.

    PubMed

    Singh, Vineet K; Sirobhushanam, Sirisha; Ring, Robert P; Singh, Saumya; Gatto, Craig; Wilkinson, Brian J

    2018-04-01

    Membrane fluidity to a large extent is governed by the presence of branched-chain fatty acids (BCFAs). Branched-chain α-keto acid dehydrogenase (BKD) is the key enzyme in BCFA synthesis. A Staphylococcus aureus BKD-deficient strain still produced substantial levels of BCFAs. Pyruvate dehydrogenase (PDH) with structural similarity to BKD has been speculated to contribute to BCFAs in S. aureus. This study was carried out using BKD-, PDH- and BKD : PDH-deficient derivatives of methicillin-resistant S. aureus strain JE2. Differences in growth kinetics were evaluated spectrophotometrically, membrane BCFAs using gas chromatography and membrane fluidity by fluorescence polarization. Carotenoid levels were estimated by measuring A465 of methanol extracts from 48 h cultures. MIC values were determined by broth microdilution.Results/Key findings. BCFAs made up 50 % of membrane fatty acids in wild-type but only 31 % in the BKD-deficient mutant. BCFA level was ~80 % in the PDH-deficient strain and 38 % in the BKD : PDH-deficient strain. BKD-deficient mutant showed decreased membrane fluidity, the PDH-deficient mutant showed increased membrane fluidity. The BKD- and PDH-deficient strains grew slower and the BKD : PDH-deficient strain grew slowest at 37 °C. However at 20 °C, the BKD- and BKD : PDH-deficient strains grew only a little followed by autolysis of these cells. The BKD-deficient strain produced higher levels of staphyloxanthin. The PDH-deficient and BKD : PDH-deficient strains produced very little staphyloxanthin. The BKD-deficient strain showed increased susceptibility to daptomycin. The BCFA composition of the cell membrane in S. aureus seems to significantly impact cell growth, membrane fluidity and resistance to daptomycin.

  9. HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma.

    PubMed

    Pellegrini, Laura; Xue, Jiaming; Larson, David; Pastorino, Sandra; Jube, Sandro; Forest, Kelly H; Saad-Jube, Zeyana Salim; Napolitano, Andrea; Pagano, Ian; Negi, Vishal S; Bianchi, Marco E; Morris, Paul; Pass, Harvey I; Gaudino, Giovanni; Carbone, Michele; Yang, Haining

    2017-04-04

    Human malignant mesothelioma (MM) is an aggressive cancer linked to asbestos and erionite exposure. We previously reported that High-Mobility Group Box-1 protein (HMGB1), a prototypic damage-associated molecular pattern, drives MM development and sustains MM progression. Moreover, we demonstrated that targeting HMGB1 inhibited MM cell growth and motility in vitro, reduced tumor growth in vivo, and prolonged survival of MM-bearing mice. Ethyl pyruvate (EP), the ethyl ester of pyruvic acid, has been shown to be an effective HMGB1 inhibitor in inflammation-related diseases and several cancers. Here, we studied the effect of EP on the malignant phenotype of MM cells in tissue culture and on tumor growth in vivo using an orthotopic MM xenograft model. We found that EP impairs HMGB1 secretion by MM cells leading to reduced RAGE expression and NF-κB activation. As a consequence, EP impaired cell motility, cell proliferation, and anchorage-independent growth of MM cells. Moreover, EP reduced HMGB1 serum levels in mice and inhibited the growth of MM xenografts.Our results indicate that EP effectively hampers the malignant phenotype of MM, offering a novel potential therapeutic approach to patients afflicted with this dismal disease.

  10. Genetics Home Reference: pyruvate kinase deficiency

    MedlinePlus

    ... glucose is broken down to produce adenosine triphosphate (ATP), the cell's main energy source. PKLR gene mutations ... pyruvate kinase enzyme function, causing a shortage of ATP in red blood cells and increased levels of ...

  11. Carrier detection of pyruvate carboxylase deficiency in fibroblasts and lymphocytes.

    PubMed

    Atkin, B M

    1979-10-01

    Pyruvate carboxylase (E.C. 6.4.1.1) activity was determined in the circulating peripheral lymphocytes and cultured skin fibroblasts from the family of a patient with hepatic, cerebral, renal cortical, leukocyte, and fibroblast pyruvate carboxylase deficiency (PC Portland deficiency). Lymphocyte activities were: mother, 33--39%; father, 11--29%; brother, 82--103%; and sister, 38--48% of the lowest normal. Fibroblasts from the patient's mother and father had 42 and 34%, respectively, of the activity of the lowest normal. These data demonstrate that the disease is inherited in an autosomal recessive manner and that lymphocytes and fibroblasts can be used to detect carriers. Neither pyruvate carboxylase nor mitochondrial PEPCK activity in lymphocytes was increased by a 21-hr fast.

  12. Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm

    USDA-ARS?s Scientific Manuscript database

    Pyruvate phosphate dikinase reversibly converts AMP, pyrophosphate and phosphoenolpyruvate (PEP) to ATP, orthophosphate and pyruvate. Maize PPDK functions in mesophyll in C4 photosynthesis, yet also is highly abundant in starchy endosperm during grain fill where its function is unknown. To investiga...

  13. Propionate stimulates pyruvate oxidation in the presence of acetate.

    PubMed

    Purmal, Colin; Kucejova, Blanka; Sherry, A Dean; Burgess, Shawn C; Malloy, Craig R; Merritt, Matthew E

    2014-10-15

    Flux through pyruvate dehydrogenase (PDH) in the heart may be reduced by various forms of injury to the myocardium, or by oxidation of alternative substrates in normal heart tissue. It is important to distinguish these two mechanisms because imaging of flux through PDH based on the appearance of hyperpolarized (HP) [(13)C]bicarbonate derived from HP [1-(13)C]pyruvate has been proposed as a method for identifying viable myocardium. The efficacy of propionate for increasing PDH flux in the setting of PDH inhibition by an alternative substrate was studied using isotopomer analysis paired with exams using HP [1-(13)C]pyruvate. Hearts from C57/bl6 mice were supplied with acetate (2 mM) and glucose (8.25 mM). (13)C NMR spectra were acquired in a cryogenically cooled probe at 14.1 Tesla. After addition of hyperpolarized [1-(13)C]pyruvate, (13)C NMR signals from lactate, alanine, malate, and aspartate were easily detected, in addition to small signals from bicarbonate and CO2. The addition of propionate (2 mM) increased appearance of HP [(13)C]bicarbonate >30-fold without change in O2 consumption. Isotopomer analysis of extracts from the freeze-clamped hearts indicated that acetate was the preferred substrate for energy production, glucose contribution to energy production was minimal, and anaplerosis was stimulated in the presence of propionate. Under conditions where production of acetyl-CoA is dominated by the availability of an alternative substrate, acetate, propionate markedly stimulated PDH flux as detected by the appearance of hyperpolarized [(13)C]bicarbonate from metabolism of hyperpolarized [1-(13)C]pyruvate. Copyright © 2014 the American Physiological Society.

  14. Pig liver pyruvate carboxylase. The reaction pathway for the decarboxylation of oxaloacetate

    PubMed Central

    Warren, Graham B.; Tipton, Keith F.

    1974-01-01

    1. The reaction pathway for the decarboxylation of oxaloacetate, catalysed by pig liver pyruvate carboxylase, was studied in the presence of saturating concentrations of K+ and acetyl-CoA. 2. Free Mg2+ binds to the enzyme in an equilibrium fashion and remains bound during all further catalytic cycles. MgADP− and Pi bind randomly, at equilibrium, followed by the binding of oxaloacetate. Pyruvate is released before the ordered steay-state release of HCO3− and MgATP2−. 3. These results are entirely consistent with studies on the carboxylation of pyruvate presented in the preceding paper (Warren & Tipton, 1974b) and together they allow a quantitative description of the reaction mechanism of pig liver pyruvate carboxylase. 4. In the absence of other substrates of the back reaction pig liver pyruvate carboxylase will decarboxylate oxaloacetate in a manner that is not inhibited by avidin. 5. Reciprocal plots involving oxaloacetate are non-linear curves, which suggest a negatively co-operative interaction between this substrate and the enzyme. PMID:4447613

  15. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni.

    PubMed

    Hoffman, Paul S; Sisson, Gary; Croxen, Matthew A; Welch, Kevin; Harman, W Dean; Cremades, Nunilo; Morash, Michael G

    2007-03-01

    Nitazoxanide (NTZ) exhibits broad-spectrum activity against anaerobic bacteria and parasites and the ulcer-causing pathogen Helicobacter pylori. Here we show that NTZ is a noncompetitive inhibitor (K(i), 2 to 10 microM) of the pyruvate:ferredoxin/flavodoxin oxidoreductases (PFORs) of Trichomonas vaginalis, Entamoeba histolytica, Giardia intestinalis, Clostridium difficile, Clostridium perfringens, H. pylori, and Campylobacter jejuni and is weakly active against the pyruvate dehydrogenase of Escherichia coli. To further mechanistic studies, the PFOR operon of H. pylori was cloned and overexpressed in E. coli, and the multisubunit complex was purified by ion-exchange chromatography. Pyruvate-dependent PFOR activity with NTZ, as measured by a decrease in absorbance at 418 nm (spectral shift from 418 to 351 nm), unlike the reduction of viologen dyes, did not result in the accumulation of products (acetyl coenzyme A and CO(2)) and pyruvate was not consumed in the reaction. NTZ did not displace the thiamine pyrophosphate (TPP) cofactor of PFOR, and the 351-nm absorbing form of NTZ was inactive. Optical scans and (1)H nuclear magnetic resonance analyses determined that the spectral shift (A(418) to A(351)) of NTZ was due to protonation of the anion (NTZ(-)) of the 2-amino group of the thiazole ring which could be generated with the pure compound under acidic solutions (pK(a) = 6.18). We propose that NTZ(-) intercepts PFOR at an early step in the formation of the lactyl-TPP transition intermediate, resulting in the reversal of pyruvate binding prior to decarboxylation and in coordination with proton transfer to NTZ. Thus, NTZ might be the first example of an antimicrobial that targets the "activated cofactor" of an enzymatic reaction rather than its substrate or catalytic sites, a novel mechanism that may escape mutation-based drug resistance.

  16. Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation.

    PubMed

    Shetty, Pavan K; Sadgrove, Matthew P; Galeffi, Francesca; Turner, Dennis A

    2012-01-01

    The use of energy substrates, such as lactate and pyruvate, has been shown to improve synaptic function when administered during glucose deprivation. In the present study, we investigated whether prolonged incubation with monocarboxylate (pyruvate or lactate) prior rather than during glucose deprivation can also sustain synaptic and metabolic function. Pyruvate pre-incubation(3-4h) significantly prolonged (>25 min) the tolerance of rat hippocampal slices to delayed glucose deprivation compared to control and lactate pre-incubated slices, as revealed by field excitatory post synaptic potentials (fEPSPs); pre-incubation with pyruvate also reduced the marked decrease in NAD(P)H fluorescence resulting from glucose deprivation. Moreover, pyruvate exposure led to the enhancement of glycogen stores with time, compared to glucose alone (12 μmol/g tissue at 4h vs. 3.5 μmol/g tissue). Prolonged resistance to glucose deprivation following exogenous pyruvate incubation was prevented by glycogenolysis inhibitors, suggesting that enhanced glycogen mediates the delay in synaptic activity failure. The application of an adenosine A1 receptor antagonist enhanced glycogen utilization and prolonged the time to synaptic failure, further confirming this hypothesis of the importance of glycogen. Moreover, tissue levels of ATP were also significantly maintained during glucose deprivation in pyruvate pretreated slices compared to control and lactate. In summary, these experiments indicate that pyruvate exposure prior to glucose deprivation significantly increased the energy buffering capacity of hippocampal slices, particularly by enhancing internal glycogen stores, delaying synaptic failure during glucose deprivation by maintaining ATP levels, and minimizing the decrease in the levels of NAD(P)H. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The activity of pyruvate carrier in a reconstituted system: substrate specificity and inhibitor sensitivity.

    PubMed

    Nałecz, K A; Kamińska, J; Nałecz, M J; Azzi, A

    1992-08-15

    The pyruvate carrier, of molecular mass 34 kDa, was purified from mitochondria isolated from rat liver, rat brain, and bovine heart, by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate. Its activity after reconstitution in phosphatidylcholine vesicles was measured either as uptake of [1-14C]pyruvate or as exchange with different 2-oxoacids. All preparations exhibited similar apparent Km values for pyruvate, but somewhat different V(max) values. The ability to exchange different anions of physiological significance, including branched-chain 2-oxoacids, confirmed the known substrate specificity described for the pyruvate carrier in mitochondria. The sensitivity of pyruvate transport toward phenylglyoxal suggested an important role of arginyl residues in the transport activity, while a role of lysyl and histidyl residues was not confirmed.

  18. Pyruvate stabilizes electrocardiographic and hemodynamic function in pigs recovering from cardiac arrest

    PubMed Central

    Cherry, Brandon H; Nguyen, Anh Q; Hollrah, Roger A; Williams, Arthur G; Hoxha, Besim; Olivencia-Yurvati, Albert H

    2015-01-01

    Cardiac electromechanical dysfunction may compromise recovery of patients who are initially resuscitated from cardiac arrest, and effective treatments remain elusive. Pyruvate, a natural intermediary metabolite, energy substrate, and antioxidant, has been found to protect the heart from ischemia-reperfusion injury. This study tested the hypothesis that pyruvate-enriched resuscitation restores hemodynamic, metabolic, and electrolyte homeostasis following cardiac arrest. Forty-two Yorkshire swine underwent pacing-induced ventricular fibrillation and, after 6 min pre-intervention arrest, 4 min precordial compressions followed by transthoracic countershocks. After defibrillation and recovery of spontaneous circulation, the pigs were monitored for another 4 h. Sodium pyruvate or NaCl were infused i.v. (0.1 mmol·kg−1·min−1) throughout precordial compressions and the first 60 min recovery. In 8 of the 24 NaCl-infused swine, the first countershock converted ventricular fibrillation to pulseless electrical activity unresponsive to subsequent countershocks, but only 1 of 18 pyruvate-treated swine developed pulseless electrical activity (relative risk 0.17; 95% confidence interval 0.13–0.22). Pyruvate treatment also lowered the dosage of vasoconstrictor phenylephrine required to maintain systemic arterial pressure at 15–60 min recovery, hastened clearance of excess glucose, elevated arterial bicarbonate, and raised arterial pH; these statistically significant effects persisted up to 3 h after sodium pyruvate infusion, while infusion-induced hypernatremia subsided. These results demonstrate that pyruvate-enriched resuscitation achieves electrocardiographic and hemodynamic stability in swine during the initial recovery from cardiac arrest. Such metabolically based treatment may offer an effective strategy to support cardiac electromechanical recovery immediately after cardiac arrest. PMID:26088865

  19. Additive effects of clofibric acid and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) deficiency on hepatic steatosis in mice fed a high saturated fat diet.

    PubMed

    Hwang, Byounghoon; Wu, Pengfei; Harris, Robert A

    2012-05-01

    Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) may prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it may have detrimental effects by inhibiting fatty acid oxidation. Peroxisome proliferator-activated receptor α (PPARα) agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment using a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild-type and PDK4 knockout mice fed a high-fat diet. As expected, treatment of wild-type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, reduced blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid, and a reduction in the capacity for fatty acid synthesis as a result of PDK4 deficiency. Journal compilation © 2012 FEBS. No claim to original US government works.

  20. Blood-brain barrier transport of the alpha-keto acid analogs of amino acids.

    PubMed

    Steele, R D

    1986-06-01

    A number of alpha-keto acid analogs of amino acids have been found to penetrate the blood-brain barrier (BBB). Pyruvate, alpha-ketobutyrate, alpha-ketoisocaproate, and alpha-keto-gamma-methiolbutyrate all cross the BBB by a carrier-mediated process and by simple diffusion. Under normal physiological conditions, diffusion accounts for roughly 15% or less of total transport. Aromatic alpha-keto acids, phenylpyruvate, and p-hydroxyphenylpyruvate do not penetrate the BBB, nor do they inhibit the transport of other alpha-keto acids. Evidence based primarily on inhibition studies indicates that the carrier-mediated transport of alpha-keto acids occurs via the same carrier demonstrated previously for propionate, acetoacetate, and beta-hydroxybutyrate transport, commonly referred to as the monocarboxylate carrier. As a group, the alpha-keto acid analogs of the amino acids have the highest affinity for the carrier, followed by propionate and beta-hydroxybutyrate. Starvation for 4 days induces transport of alpha-keto acids, but transport is suppressed in rats fed commercial laboratory rations and subjected to portacaval shunts. The mitochondrial pyruvate translocator inhibitor alpha-cyanocinnamate has no effect on the BBB transport of alpha-keto acids.

  1. Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation.

    PubMed

    Mayr, Johannes A; Zimmermann, Franz A; Fauth, Christine; Bergheim, Christa; Meierhofer, David; Radmayr, Doris; Zschocke, Johannes; Koch, Johannes; Sperl, Wolfgang

    2011-12-09

    Lipoic acid is an essential prosthetic group of four mitochondrial enzymes involved in the oxidative decarboxylation of pyruvate, α-ketoglutarate, and branched chain amino acids and in the glycine cleavage. Lipoic acid is synthesized stepwise within mitochondria through a process that includes lipoic acid synthetase. We identified the homozygous mutation c.746G>A (p.Arg249His) in LIAS in an individual with neonatal-onset epilepsy, muscular hypotonia, lactic acidosis, and elevated glycine concentration in plasma and urine. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate and decreased pyruvate dehydrogenase complex activity. A pronounced reduction of the prosthetic group lipoamide was found in lipoylated proteins. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Phase 2a study assessing colonization efficiency, safety, and acceptability of Lactobacillus crispatus CTV-05 in women with bacterial vaginosis.

    PubMed

    Hemmerling, Anke; Harrison, William; Schroeder, Adrienne; Park, Jeanna; Korn, Abner; Shiboski, Stephen; Foster-Rosales, Anne; Cohen, Craig R

    2010-12-01

    Bacterial vaginosis (BV) is a common vaginal infection caused by a lack of endogenous lactobacilli and overgrowth of pathogens that frequently recurs following antibiotic treatment. A phase 2a study assessed colonization efficiency, safety, tolerability, and acceptability of Lactobacillus crispatus CTV-05 (LACTIN-V) administered by a vaginal applicator. Twenty-four women with BV were randomized in a 3:1 ratio of active product to placebo. Participants used LACTIN-V at 2 × 10 colony-forming units (cfu)/dose or placebo for 5 initial consecutive days, followed by a weekly application over 2 weeks. They returned for follow-up on Days 10 and 28. Sixty-one percent of the 18 women randomized to the LACTIN-V group were colonized with L. crispatus CTV-05 at Day 10 or Day 28. Among LACTIN-V users with complete adherence to the study regimen, 78% were colonized at Day 10 or Day 28. Of the 120 adverse events (AEs) that occurred, 108 (90%) and 12 (10%) were of mild and moderate severity, respectively. AEs were evenly distributed between the LACTIN-V and placebo group. Of the total AEs, 93 (78%) were genitourinary in origin. The most common genitourinary AEs included vaginal discharge (46%), abdominal pain (46%), dysuria (21%), pollakiuria (21%), vaginal odor (21%), and genital pruritus (17%). No grade 3 or 4 AEs or serious AEs occurred and no deep epithelial disruption was seen during colposcopic evaluation. The product was well tolerated and accepted. LACTIN-V colonized well, and was safe and acceptable in women treated for BV.

  3. Understanding and Targeting the ALT Pathway in Human Breast Cancer

    DTIC Science & Technology

    2013-09-01

    in human cancers. The genetic basis for activation of ALT is not known, but recent data have identified mutations and loss of ATRX protein as being...hallmarks of ALT- immortalized cell lines and tumors. Our efforts to understand the mechanism by which loss of ATRX facilitates telomere recombination...nucleosomal organization as being relevant mechanisms contributing to this phenotype. I have also determined that ATRX does not function in the known

  4. The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chenhui; Jia, Pingping; Chastain, Megan

    Maintaining functional telomeres is important for long-term proliferation of cells. About 15% of cancer cells are telomerase-negative and activate the alternative-lengthening of telomeres (ALT) pathway to maintain their telomeres. Recent studies have shown that the human CTC1/STN1/TEN1 complex (CST) plays a multi-faceted role in telomere maintenance in telomerase-expressing cancer cells. However, the role of CST in telomere maintenance in ALT cells is unclear. Here, we report that human CST forms a functional complex localizing in the ALT-associated PML bodies (APBs) in ALT cells throughout the cell cycle. Suppression of CST induces telomere instabilities including telomere fragility and elevates telomeric DNAmore » recombination, leading to telomere dysfunction. In addition, CST deficiency significantly diminishes the abundance of extrachromosomal circular telomere DNA known as C-circles and t-circles. Suppression of CST also results in multinucleation in ALT cells and impairs cell proliferation. Our findings imply that the CST complex plays an important role in regulating telomere maintenance in ALT cells. - Highlights: • CST localizes at telomeres and ALT-associated PML bodies in ALT cells throughout the cell cycle. • CST is important for promoting telomeric DNA replication in ALT cells. • CST deficiency decreases ECTR formation and increases T-SCE. • CST deficiency impairs ALT cell proliferation and results in multinucleation.« less

  5. Neuroprotective effect of pyruvate and oxaloacetate during pilocarpine induced status epilepticus in rats.

    PubMed

    Carvalho, Andrezza Sossai Rodrigues; Torres, Laila Brito; Persike, Daniele Suzete; Fernandes, Maria José Silva; Amado, Debora; Naffah-Mazzacoratti, Maria da Graça; Cavalheiro, Esper Abrão; da Silva, Alexandre Valotta

    2011-02-01

    Recent research data have shown that systemic administration of pyruvate and oxaloacetate causes an increased brain-to-blood glutamate efflux. Since increased release of glutamate during epileptic seizures can lead to excitotoxicity and neuronal cell death, we tested the hypothesis that glutamate scavenging mediated by pyruvate and oxaloacetate systemic administration could have a neuroprotective effect in rats subjected to status epilepticus (SE). SE was induced by a single dose of pilocarpine (350mg/kgi.p.). Thirty minutes after SE onset, a single dose of pyruvate (250mg/kgi.p.), oxaloacetate (1.4mg/kgi.p.), or both substances was administrated. Acute neuronal loss in hippocampal regions CA1 and hilus was quantitatively determined five hours after SE onset, using the optical fractionator method for stereological cell counting. Apoptotic cascade in the hippocampus was also investigated seven days after SE using caspase-1 and -3 activity assays. SE-induced neuronal loss in CA1 was completely prevented in rats treated with pyruvate plus oxaloacetate. The SE-induced caspase-1 activation was significantly reduced when rats were treated with oxaloacetate or pyruvate plus oxaloacetate. The treatment with pyruvate and oxaloacetate caused a neuroprotective effect in rats subjected to pilocarpine-induced SE. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Value of acid metabolic products in identification of certain corynebacteria.

    PubMed Central

    Reddy, C A; Kao, M

    1978-01-01

    Acid metabolic products of 23 strains of human and animal pathogenic corynebacteria, representing eight different species, were determined by gas chromatography. The results showed that the species examined were metabolically heterogeneous and could be presumptively identified based on the acid products produced. Corynebacterium equi did not produce any acids; C. renale produced lactate; and C. pyogenes produced major amounts of lactate, variable amounts of acetate, and minor amounts of succinate and pyruvate. C. kutscheri produced propionate and lactate as major products and pyruvate and oxalacetate as minor products. C. diphtheriae and C. pseudotuberculosis produced major amounts of propionate, acetate, and formate. In addition, C. pseudotuberculosis produced major amounts of pyruvate and minor amounts of succinate, lactate, and oxalacetate, whereas C. diphtheriae strains produced minor but variable amounts of lactate, succinate, fumarate, pyruvate, and oxalacetate. C. bovis produced aicd products similar to those of C. pyogenes but was readily distinguishable from the latter by the lack of hemolysis on blood agar, colony morphology, catalase reaction, and biochemicals. C. suis characteristically produced major amounts of ethanol, acetate, and formate and minor amounts of lactate and succinate but no propionate. PMID:96126

  7. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    PubMed

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  8. Molecular Structure of the Pyruvate Dehydrogenase Complex from Escherichia coli K-12

    PubMed Central

    Vogel, Otto; Hoehn, Barbara; Henning, Ulf

    1972-01-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 × 106. All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This “excess” component is bound differently than are the eight dimers in the core complex. Images PMID:4556465

  9. The effect of diet composition on weight gain and pyruvate dehydrogenase activity in heart muscle in the gold thioglucose obese mouse.

    PubMed

    Steinbeck, K; Caterson, I D; Astbury, L; Turtle, J R

    1987-01-01

    Pyruvate dehydrogenase complex activity is the major determinant of glucose oxidation in animal cells. Tissue glucose oxidation is reduced in obesity and states of insulin resistance and alternate fuels are utilized for energy and pyruvate dehydrogenase activity is reduced in cardiac muscle in obesity. The effect of four different diets (standard laboratory chow, high-carbohydrate, high-protein and high-fat) on weight gain, cardiac pyruvate dehydrogenase activity (PDHa) and serum insulin, glucose and free fatty acids was studied in the gold thioglucose obese mouse. All four diets produced significant weight gain in the gold thioglucose injected animal. Cardiac PDHa was influenced by both obesity and diet composition. The obese chow-fed animals had significantly reduced PDHa. On high-carbohydrate and high-protein feeding lean controls had a significant decrease in cardiac PDHa compared to chow-fed controls, but only in high-carbohydrate-fed animals was this further reduced by obesity. High-fat feeding produced a rapid and almost complete suppression of PDHa in both lean and obese animals. Serum insulin, glucose and free fatty acids were also affected by diet as well as obesity. The highest serum insulins were found in chow-fed obese animals whereas the highest serum glucoses were in high-carbohydrate-fed obese animals. Hyperinsulinaemia did not develop in the high-fat-fed obese animal, but the highest serum free fatty acids were found in high-fat feeding. It is concluded that both diet composition and obesity affect cardiac PDHa and therefore glucose utilization in this tissue. Insulin resistance in the acute stages of obesity development is also affected by diet composition.

  10. Activation of Pyruvate Dehydrogenase by Sodium Dichloroacetate Shifts Metabolic Consumption from Amino Acids to Glucose in IPEC-J2 Cells and Intestinal Bacteria in Pigs.

    PubMed

    An, Rui; Tang, Zhiru; Li, Yunxia; Li, Tiejun; Xu, Qingqing; Zhen, Jifu; Huang, Feiru; Yang, Jing; Chen, Cheng; Wu, Zhaoliang; Li, Mao; Sun, Jiajing; Zhang, Xiangxin; Chen, Jinchao; Wu, Liuting; Zhao, Shengjun; Qingyan, Jiang; Zhu, Weiyun; Yin, Yulong; Sun, Zhihong

    2018-04-18

    The extensive metabolism of amino acids (AA) as fuel is an important reason for the low use efficiency of protein in pigs. In this study, we investigated whether regulation of the pyruvate dehydrogenase kinase (PDK)/pyruvate dehydrogenase alpha 1 (PDHA1) pathway affected AA consumption by porcine intestinal epithelial (IPEC-J2) cells and intestinal bacteria in pigs. The effects of knockdown of PDHA1 and PDK1 with small interfering RNA (siRNA) on nutrient consumption by IPEC-J2 cells were evaluated. IPEC-J2 cells were then cultured with sodium dichloroacetate (DCA) to quantify AA and glucose consumption and nutrient oxidative metabolism. The results showed that knockdown of PDHA1 using siRNA decreased glucose consumption but increased total AA (TAA) and glutamate (Glu) consumption by IPEC-J2 cells ( P < 0.05). Opposite effects were observed using siRNA targeting PDK1 ( P < 0.05). Additionally, culturing IPEC-J2 cells in the presence of 5 mM DCA markedly increased the phosphorylation of PDHA1 and PDH phosphatase 1, but inhibited PDK1 phosphorylation ( P < 0.05). DCA treatment also reduced TAA and Glu consumption and increased glucose depletion ( P < 0.05). These results indicated that PDH was the regulatory target for shifting from AA metabolism to glucose metabolism and that culturing cells with DCA decreased the consumption of AAs by increasing the depletion of glucose through PDH activation.

  11. Some Features of "Alt" Texts Associated with Images in Web Pages

    ERIC Educational Resources Information Center

    Craven, Timothy C.

    2006-01-01

    Introduction: This paper extends a series on summaries of Web objects, in this case, the alt attribute of image files. Method: Data were logged from 1894 pages from Yahoo!'s random page service and 4703 pages from the Google directory; an img tag was extracted randomly from each where present; its alt attribute, if any, was recorded; and the…

  12. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of Pseudomonas aeruginosa Catalyze Pyocyanin and Phenazine-1-carboxylic Acid Reduction via the Subunit Dihydrolipoamide Dehydrogenase*

    PubMed Central

    Glasser, Nathaniel R.; Wang, Benjamin X.; Hoy, Julie A.; Newman, Dianne K.

    2017-01-01

    Phenazines are a class of redox-active molecules produced by diverse bacteria and archaea. Many of the biological functions of phenazines, such as mediating signaling, iron acquisition, and redox homeostasis, derive from their redox activity. Although prior studies have focused on extracellular phenazine oxidation by oxygen and iron, here we report a search for reductants and catalysts of intracellular phenazine reduction in Pseudomonas aeruginosa. Enzymatic assays in cell-free lysate, together with crude fractionation and chemical inhibition, indicate that P. aeruginosa contains multiple enzymes that catalyze the reduction of the endogenous phenazines pyocyanin and phenazine-1-carboxylic acid in both cytosolic and membrane fractions. We used chemical inhibitors to target general enzyme classes and found that an inhibitor of flavoproteins and heme-containing proteins, diphenyleneiodonium, effectively inhibited phenazine reduction in vitro, suggesting that most phenazine reduction derives from these enzymes. Using natively purified proteins, we demonstrate that the pyruvate and α-ketoglutarate dehydrogenase complexes directly catalyze phenazine reduction with pyruvate or α-ketoglutarate as electron donors. Both complexes transfer electrons to phenazines through the common subunit dihydrolipoamide dehydrogenase, a flavoprotein encoded by the gene lpdG. Although we were unable to co-crystallize LpdG with an endogenous phenazine, we report its X-ray crystal structure in the apo-form (refined to 1.35 Å), bound to NAD+ (1.45 Å), and bound to NADH (1.79 Å). In contrast to the notion that phenazines support intracellular redox homeostasis by oxidizing NADH, our work suggests that phenazines may substitute for NAD+ in LpdG and other enzymes, achieving the same end by a different mechanism. PMID:28174304

  13. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of Pseudomonas aeruginosa Catalyze Pyocyanin and Phenazine-1-carboxylic Acid Reduction via the Subunit Dihydrolipoamide Dehydrogenase.

    PubMed

    Glasser, Nathaniel R; Wang, Benjamin X; Hoy, Julie A; Newman, Dianne K

    2017-03-31

    Phenazines are a class of redox-active molecules produced by diverse bacteria and archaea. Many of the biological functions of phenazines, such as mediating signaling, iron acquisition, and redox homeostasis, derive from their redox activity. Although prior studies have focused on extracellular phenazine oxidation by oxygen and iron, here we report a search for reductants and catalysts of intracellular phenazine reduction in Pseudomonas aeruginosa Enzymatic assays in cell-free lysate, together with crude fractionation and chemical inhibition, indicate that P. aeruginosa contains multiple enzymes that catalyze the reduction of the endogenous phenazines pyocyanin and phenazine-1-carboxylic acid in both cytosolic and membrane fractions. We used chemical inhibitors to target general enzyme classes and found that an inhibitor of flavoproteins and heme-containing proteins, diphenyleneiodonium, effectively inhibited phenazine reduction in vitro , suggesting that most phenazine reduction derives from these enzymes. Using natively purified proteins, we demonstrate that the pyruvate and α-ketoglutarate dehydrogenase complexes directly catalyze phenazine reduction with pyruvate or α-ketoglutarate as electron donors. Both complexes transfer electrons to phenazines through the common subunit dihydrolipoamide dehydrogenase, a flavoprotein encoded by the gene lpdG Although we were unable to co-crystallize LpdG with an endogenous phenazine, we report its X-ray crystal structure in the apo-form (refined to 1.35 Å), bound to NAD + (1.45 Å), and bound to NADH (1.79 Å). In contrast to the notion that phenazines support intracellular redox homeostasis by oxidizing NADH, our work suggests that phenazines may substitute for NAD + in LpdG and other enzymes, achieving the same end by a different mechanism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledee, Dolena R.; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO, although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we closely examined the role of prolonged systemic pyruvate supplementation in modifying metabolic parameters during the unique conditions of ventricular unloading provided by ECMO. Twelve male mixed breed Yorkshire piglets (age 30-49 days) received systemic infusion of either normal saline (Group C) or pyruvate (Group P) during ECMO for 8 hours. Over themore » final hour piglets received [2-13C] pyruvate, and [13C6]-L-leucine, as an indicator for oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of all measured CAC intermediates. Group P showed greater anaplerotic flux through pyruvate carboxylation although pyruvate oxidation relative to citrate synthase flux was similar to Group C. The groups demonstrated similar leucine fractional contributions to acetyl-CoA and fractional protein synthesis rates. Pyruvate also promoted an increase in the phosphorylation state of several nutrient sensitive enzymes, such as AMPK and ACC, and promoted O-GlcNAcylation through the hexosamine biosynthetic pathway (HBP). In conclusion, prolonged pyruvate supplementation during ECMO modified anaplerotic pyruvate flux and elicited changes in important nutrient and energy sensitive pathways, while preserving protein synthesis. Therefore, the observed results support the further study of nutritional supplementation and its downstream effects on cardiac adaptation during ventricular unloading.« less

  15. Cerebral Developmental Abnormalities in a Mouse with Systemic Pyruvate Dehydrogenase Deficiency

    PubMed Central

    Pliss, Lioudmila; Hausknecht, Kathryn A.; Stachowiak, Michal K.; Dlugos, Cynthia A.; Richards, Jerry B.; Patel, Mulchand S.

    2013-01-01

    Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH−. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice. PMID:23840713

  16. Impact of ethyl pyruvate on Adriamycin-induced cardiomyopathy in rats

    PubMed Central

    Liu, Menglin; Wang, Menglong; Liu, Jianfang; Luo, Zhen; Shi, Lei; Feng, Ying; Li, Li; Xu, Lin; Wan, Jun

    2016-01-01

    Ethyl pyruvate (EP), a derivative of pyruvic acid, is known to have protective effects against ischemic cardiomyopathy and other disorders. However, little is known about its role in Adriamycin (ADR)-induced cardiomyopathy. The present study was designed to investigate the impact of EP on ADR-induced cardiomyopathy in an animal model. Sixty male Sprague-Dawley (SD) rats were divided into four groups: Normal control, EP, ADR and ADR + EP groups (n=15/group). Rats in the ADR and ADR + EP groups were treated with ADR (2.5 mg/kg/week intraperitoneally) for 6 weeks. From the eighth week, rats in the EP and ADR + EP groups received EP via gastric lavage at a dose of 50 mg/kg/day for 30 days. After completing the EP treatment, cardiac function was assessed by echocardiography and then rats were sacrificed. Hearts were harvested for subsequent analysis. Compared with rats in the normal control and EP groups (without ADR treatment), rats in the ADR and ADR + EP groups showed significant impairments in terms of cardiac function, apoptosis, severe oxidative stress and fibrosis in the heart. However, these impairments were alleviated by EP treatment in the ADR + EP group. Upon EP treatment, cardiac function was significantly improved. The levels of oxidative stress, fibrosis and apoptosis in the myocardial tissues were also significantly reduced. These findings indicated that EP treatment attenuated, at least partially, ADR-induced cardiomyopathy in rats. PMID:27882138

  17. β-Cell-specific pyruvate dehydrogenase deficiency impairs glucose-stimulated insulin secretion

    PubMed Central

    Srinivasan, Malathi; Choi, Cheol S.; Ghoshal, Pushpankur; Pliss, Lioudmila; Pandya, Jignesh D.; Hill, David; Cline, Gary

    2010-01-01

    Glucose-stimulated insulin secretion (GSIS) by β-cells requires the generation of ATP from oxidation of pyruvate as well as generation of coupling factors involving three different pyruvate cycling shuttles. The roles of several key enzymes involved in pyruvate cycling in β-cells have been documented using isolated islets and β-cell clonal lines. To investigate the role of the pyruvate dehydrogenase (PDH) complex (PDC) in GSIS, a murine model of β-cell-specific PDH deficiency (β-PDHKO) was created. Pancreatic insulin content was decreased in 1-day-old β-PDHKO male pups and adult male mice. The plasma insulin levels were decreased and blood glucose levels increased in β-PDHKO male mice from neonatal life onward. GSIS was reduced in isolated islets from β-PDHKO male mice with about 50% reduction in PDC activity. Impairment in a glucose tolerance test and in vivo insulin secretion during hyperglycemic clamp was evident in β-PDHKO adults. No change in the number or size of islets was found in pancreata from 4-wk-old β-PDHKO male mice. However, an increase in the mean size of individual β-cells in islets of these mice was observed. These findings show a key role of PDC in GSIS by pyruvate oxidation. This β-PDHKO mouse model represents the first mouse model in which a mitochondrial oxidative enzyme deletion by gene knockout has been employed to demonstrate an altered GSIS by β-cells. PMID:20841503

  18. Exploring the ionic strength effects on the photochemical degradation of pyruvic acid in atmospheric deliquescent aerosol particles

    NASA Astrophysics Data System (ADS)

    Mekic, Majda; Brigante, Marcello; Vione, Davide; Gligorovski, Sasho

    2018-07-01

    There is increasing evidence that aqueous-phase atmospheric chemistry is an important source of secondary organic aerosols (SOA), but the related processes are currently not adequately represented in atmospheric chemistry models. Here we show that the absorption spectrum of pyruvic acid (PA) exhibits both an increase of the absorption intensity and a red shift of 13 nm while going from a dilute aqueous phase to a solution containing the inert salt sodium perchlorate (5M NaClO4). If this phenomenon turns out to be more general, many compounds that do not absorb actinic light in clouds and fog could become light absorbers at elevated salt concentrations in aerosol deliquescent particles. Compared to the direct photolysis of PA in dilute aqueous solution, the photolysis rate is increased by three times at high ionic strength (5M NaClO4). Such a considerable enhancement can be rationalized in the framework of the Debye-McAulay approach for reactions of ionic + neutral (or neutral + neutral) species, considering that the PA direct photolysis likely involves interaction between the photogenerated triplet state and water. This is, to our knowledge, the first report of a significant effect of the ionic strength on the rate of an atmospheric photochemical reaction. The phenomenon has important implications for the fate of PA and, potentially, of other organic compounds in atmospheric aerosol deliquescent particles.

  19. The Role of Pyruvate in Protecting 661W Photoreceptor-Like Cells Against Light-Induced Cell Death.

    PubMed

    Natoli, Riccardo; Rutar, Matt; Lu, Yen-Zhen; Chu-Tan, Joshua A; Chen, Yuwei; Saxena, Kartik; Madigan, Michele; Valter, Krisztina; Provis, Jan M

    2016-11-01

    Light is a requirement for the function of photoreceptors in visual processing. However, prolonged light exposure can be toxic to photoreceptors, leading to increased reactive oxygen species (ROS), lipid peroxidation, and photoreceptor cell death. We used the 661W mouse cone photoreceptor-like cell line to study the effects of pyruvate in protecting these cells from light-induced toxicity. 661W cells were exposed to 15,000 lux continuous bright light for 5 hours and incubated in Dulbecco's modified eagle medium (DMEM) with various concentrations of pyruvate. Following light damage, cells were assessed for changes in morphology, cell toxicity, viability, and ROS production. Mitochondrial respiration and anaerobic glycolysis were also assessed using a Seahorse Xfe96 extracellular flux analyzer. We found that cell death caused by light damage in 661W cells was dramatically reduced in the presence of pyruvate. Cells with pyruvate-supplemented media also showed attenuation of oxidative stress and maintained normal levels of ATP. We also found that alterations in the concentrations of pyruvate had no effect on mitochondrial respiration or glycolysis in light-damaged cells. Taken together, the results show that pyruvate is protective against light damage but does not alter the metabolic output of the cells, indicating an alternative role for pyruvate in reducing oxidative stress. Thus, sodium pyruvate is a possible candidate for the treatment against the oxidative stress component of retinal degenerations.

  20. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  1. Optimisation of dynamic nuclear polarisation of [1-13C] pyruvate by addition of gadolinium-based contrast agents

    NASA Astrophysics Data System (ADS)

    Friesen-Waldner, Lanette; Chen, Albert; Mander, Will; Scholl, Timothy J.; McKenzie, Charles A.

    2012-10-01

    Dynamic nuclear polarisation (DNP) of carbon-13 (13C) enriched endogenous compounds provides a novel means for magnetic resonance imaging and spectroscopy of biological processes. Adding small amounts of gadolinium-based contrast agents (GBCAs) to the 13C-enriched substrate matrix increases the amount of hyperpolarisation that can be achieved, but also may decrease the longitudinal relaxation time (T1) of the 13C nucleus in solution. This study examined the effects of five different GBCA at concentrations of 0.5, 1, 2, and 3 mM on [1-13C]-enriched pyruvic acid. It was found that contrast agents with an open chain structure (Gadobenate dimeglumine, Gadopentetate dimeglumine, Gadodiamide) caused the largest enhancement (up to 82%) in solid state polarisation relative to solutions without GBCA. In the liquid state, T1 of pyruvate decreased by as much as 62% and polarisation was much lower (70%) relative to solutions without GBCA added. Conversely, for GBCA with macrocyclic structures (Gadoterate meglumine, Gadoteridol), the solid state polarisation enhancement was only slightly less than the open chain GBCA, but enhanced polarisation was retained much better in the liquid state with minimal decrease in T1 (25% at the highest GBCA concentrations). Near maximum polarisation in the solid state was obtained at a GBCA concentration of 2 mM, with a higher concentration of 3 mM producing minimal improvement. These results indicate that the macrocyclic contrast agents provide the best combination of high solid state and liquid state polarisations with minimal loss of T1 in experiments with hyperpolarised 13C-enriched pyruvate. This suggests that macrocyclic contrast agents should be the GBCA of choice for maximising signal in experiments with hyperpolarised 13C-enriched pyruvate, particularly for in vivo measurements where shortened substrate T1 is especially problematic.

  2. Human mitochondrial pyruvate carrier 2 as an autonomous membrane transporter.

    PubMed

    Nagampalli, Raghavendra Sashi Krishna; Quesñay, José Edwin Neciosup; Adamoski, Douglas; Islam, Zeyaul; Birch, James; Sebinelli, Heitor Gobbi; Girard, Richard Marcel Bruno Moreira; Ascenção, Carolline Fernanda Rodrigues; Fala, Angela Maria; Pauletti, Bianca Alves; Consonni, Sílvio Roberto; de Oliveira, Juliana Ferreira; Silva, Amanda Cristina Teixeira; Franchini, Kleber Gomes; Leme, Adriana Franco Paes; Silber, Ariel Mariano; Ciancaglini, Pietro; Moraes, Isabel; Dias, Sandra Martha Gomes; Ambrosio, Andre Luis Berteli

    2018-02-22

    The active transport of glycolytic pyruvate across the inner mitochondrial membrane is thought to involve two mitochondrial pyruvate carrier subunits, MPC1 and MPC2, assembled as a 150 kDa heterotypic oligomer. Here, the recombinant production of human MPC through a co-expression strategy is first described; however, substantial complex formation was not observed, and predominantly individual subunits were purified. In contrast to MPC1, which co-purifies with a host chaperone, we demonstrated that MPC2 homo-oligomers promote efficient pyruvate transport into proteoliposomes. The derived functional requirements and kinetic features of MPC2 resemble those previously demonstrated for MPC in the literature. Distinctly, chemical inhibition of transport is observed only for a thiazolidinedione derivative. The autonomous transport role for MPC2 is validated in cells when the ectopic expression of human MPC2 in yeast lacking endogenous MPC stimulated growth and increased oxygen consumption. Multiple oligomeric species of MPC2 across mitochondrial isolates, purified protein and artificial lipid bilayers suggest functional high-order complexes. Significant changes in the secondary structure content of MPC2, as probed by synchrotron radiation circular dichroism, further supports the interaction between the protein and ligands. Our results provide the initial framework for the independent role of MPC2 in homeostasis and diseases related to dysregulated pyruvate metabolism.

  3. Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Bacillus subtilis.

    PubMed

    Charbonnier, Teddy; Le Coq, Dominique; McGovern, Stephen; Calabre, Magali; Delumeau, Olivier; Aymerich, Stéphane; Jules, Matthieu

    2017-10-03

    At the heart of central carbon metabolism, pyruvate is a pivotal metabolite in all living cells. Bacillus subtilis is able to excrete pyruvate as well as to use it as the sole carbon source. We herein reveal that ysbAB (renamed pftAB ), the only operon specifically induced in pyruvate-grown B. subtilis cells, encodes a hetero-oligomeric membrane complex which operates as a facilitated transport system specific for pyruvate, thereby defining a novel class of transporter. We demonstrate that the LytST two-component system is responsible for the induction of pftAB in the presence of pyruvate by binding of the LytT response regulator to a palindromic region upstream of pftAB We show that both glucose and malate, the preferred carbon sources for B. subtilis , trigger the binding of CcpA upstream of pftAB , which results in its catabolite repression. However, an additional CcpA-independent mechanism represses pftAB in the presence of malate. Screening a genome-wide transposon mutant library, we find that an active malic enzyme replenishing the pyruvate pool is required for this repression. We next reveal that the higher the influx of pyruvate, the stronger the CcpA-independent repression of pftAB , which suggests that intracellular pyruvate retroinhibits pftAB induction via LytST. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry. Overall, we provide evidence for a complete system of sensors, feed-forward and feedback controllers that play a major role in environmental growth of B. subtilis IMPORTANCE Pyruvate is a small-molecule metabolite ubiquitous in living cells. Several species also use it as a carbon source as well as excrete it into the environment. The bacterial systems for pyruvate import/export have yet to be discovered. Here, we identified in the model bacterium Bacillus subtilis the first import

  4. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    PubMed

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  5. Cultivation of parasitic leptospires: effect of pyruvate.

    PubMed

    Johnson, R C; Walby, J; Henry, R A; Auran, N E

    1973-07-01

    Sodium pyruvate (100 mug/ml) is a useful addition to the Tween 80-albumin medium for the cultivation of parasitic serotypes. It is most effective in promoting growth from small inocula and growth of the nutritionally fastidious serotypes.

  6. Army AL&T, July-September 2008

    DTIC Science & Technology

    2008-09-01

    Technology , and Logistics (AT&L) Workforce and will summarize best practices , specific initiatives, and relevant accomplishments of DOD and the...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Acquisition, Logistics & Technology (AT&L...logistics, and technology (AL&T) community. We have a vast number of programs that range from developing transformational technologies for our

  7. Plant mitochondrial pyruvate dehydrogenase complex: purification and identification of catalytic components in potato.

    PubMed Central

    Millar, A H; Knorpp, C; Leaver, C J; Hill, S A

    1998-01-01

    The pyruvate dehydrogenase complex (mPDC) from potato (Solanum tuberosum cv. Romano) tuber mitochondria was purified 40-fold to a specific activity of 5.60 micromol/min per mg of protein. The activity of the complex depended on pyruvate, divalent cations, NAD+ and CoA and was competitively inhibited by both NADH and acetyl-CoA. SDS/PAGE revealed the complex consisted of seven polypeptide bands with apparent molecular masses of 78, 60, 58, 55, 43, 41 and 37 kDa. N-terminal sequencing revealed that the 78 kDa protein was dihydrolipoamide transacetylase (E2), the 58 kDa protein was dihydrolipoamide dehydrogenase (E3), the 43 and 41 kDa proteins were alpha subunits of pyruvate dehydrogenase, and the 37 kDa protein was the beta subunit of pyruvate dehydrogenase. N-terminal sequencing of the 55 kDa protein band yielded two protein sequences: one was another E3; the other was similar to the sequence of E2 from plant and yeast sources but was distinctly different from the sequence of the 78 kDa protein. Incubation of the mPDC with [2-14C]pyruvate resulted in the acetylation of both the 78 and 55 kDa proteins. PMID:9729464

  8. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.

    PubMed

    Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru

    In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CS L ), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPC R ), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPC R (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CS L (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CS L mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD 660 ) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.

  9. Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis

    PubMed Central

    Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola

    2014-01-01

    Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562

  10. Structure-Derived Proton-Transfer Mechanism of Action Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2003-01-01

    The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of pyruvate dehydrogenase (E1p) that is involved in decarboxylation of pyruvate followed by reductive acetylation of lipoic acid covalently bound to a lysine residue of dihydrolipoamide acetyltransferase. The structure of E1p recently determined in our laboratory revealed patterns of association of foul subunits and specifics of two TPP binding sites. The mechanism of action in part includes a conserved hydrogen bond between the N1' atom of the aminopyrimidine ring of the cofactor and the carboxylate group of Glu59 from the beta subunits, and a V-conformation of the cofactor that brings the N4' atom of the aminopyrimidine ring to the distance of the intramolecular hydrogen bond formed with the C2-atom of the thiazolium moiety. The carboxylate group of Glu59 is the local proton acceptor that enables proton translocation within the aminopyrimidine ring and stabilization of the rare N4' - iminopyrimidine tautomer. Based on the analysis of E1p structure, we postulate that the protein environment drives N4' - amino/N4' - imino dynamics resulting in a concerted shuttle-like movement of the subunits. We also propose that this movement of the subunits is strictly coordinated with the two enzymatic reactions carried out in E1p by each of the two cofactor sites. It is proposed that these reactions are in alternating phases such that when one active site is involved in decarboxylation, the other is involved in acetylation of lipoyl noiety.

  11. Effects of Eliminating Pyruvate Node Pathways and of Coexpression of Heterogeneous Carboxylation Enzymes on Succinate Production by Enterobacter aerogenes

    PubMed Central

    Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji

    2014-01-01

    Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production. PMID:25416770

  12. Influence of pyruvate on economy of contraction in isolated rabbit myocardium.

    PubMed

    Keweloh, Boris; Janssen, Paul M L; Siegel, Ulf; Datz, Nicolin; Zeitz, Oliver; Hermann, Hans-Peter

    2007-08-01

    Treatment of acute heart failure frequently requires positive-inotropic stimulation. However, there is still no inotropic agent available, which combines a favourable haemodynamic profile with low expenditure for energy metabolism. Pyruvate exhibits positive inotropic effects in vitro and in patients with heart failure. The effect on myocardial energy metabolism however remains unclear, but is meaningful in light of a clinical application. We investigated the influence of pyruvate on contractility and oxygen consumption in isolated isometric contracting rabbit myocardium compared to beta-adrenergic stimulation with isoproterenol. Pyruvate (30 mM) increased developed force from 18.7+/-4.1 to 50.8+/-12.1 mN/mm2 (n=10, p<0.01). Force-time integral (FTI) increased by 329%, oxygen consumption assessed by diffusion-microelectrode technique increased from 2.86+/-0.30 mlO2/min*100 g to 6.28+/-1.28 mlO2/min*100 g (n=7, p<0.05). Economy of myocardial contraction calculated as the ratio of total FTI to oxygen consumption remained unchanged. In contrast, while isoproterenol (10 microM) produced a comparable increase in developed force from 21.4+/-8.3 to 67.3+/-15 mN/mm2 (n=7, p<0.01), FTI increased only by 260% and MVO2 increased from 2.96+/-0.43 to 6.12+/-1.01 mlO2/min*100 g (n=7, p<0.01); thus, economy decreased by 23% (n=7, p<0.05). Pyruvate does not impair economy of myocardial contraction while isoproterenol decreases economy. Regarding energy expenditure, pyruvate appears superior to isoproterenol for the purpose of positive inotropic stimulation.

  13. IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer

    PubMed Central

    Felices, M.; Chu, S.; Kodal, B.; Bendzick, L.; Ryan, C.; Lenvik, A.J.; Boylan, K.L.M.; Wong, H.C.; Skubitz, A.P.N.; Miller, J.S.; Geller, M.A.

    2017-01-01

    Objective Natural killer (NK) cells represent a powerful immunotherapeutic target as they lyse tumors directly, do not require differentiation, and can elicit potent inflammatory responses. The objective of these studies was to use an IL-15 super-agonist complex, ALT-803 (Altor BioScience Corporation), to enhance the function of both normal and ovarian cancer patient derived NK cells by increasing cytotoxicity and cytokine production. Methods NK cell function from normal donor peripheral blood mononuclear cells (PBMCs) and ovarian cancer patient ascites was assessed using flow cytometry and chromium release assays +/− ALT-803 stimulation. To evaluate the ability of ALT-803 to enhance NK cell function in vivo against ovarian cancer, we used a MA148-luc ovarian cancer NOD scid gamma (NSG) xenogeneic mouse model with transferred human NK cells. Results ALT-803 potently enhanced functionality of NK cells against all ovarian cancer cell lines with significant increases seen in CD107a, IFNγ and TNFα expression depending on target cell line. Function was also rescued in NK cells derived from ovarian cancer patient ascites. Finally, only animals treated with intraperitoneal ALT-803 displayed an NK dependent significant decrease in tumor. Conclusions ALT-803 enhances NK cell cytotoxicity against ovarian cancer in vitro and in vivo and is able to rescue functionality of NK cells derived from ovarian cancer patient ascites. These findings suggest that ALT-803 has the potential to enhance NK-cell-based immunotherapeutic approaches for the treatment of ovarian cancer. PMID:28236454

  14. Pyruvate dose response studies targeting the vital signs following hemorrhagic shock

    PubMed Central

    Sharma, Pushpa; Vyacheslav, Makler; Carissa, Chalut; Vanessa, Rodriguez; Bodo, Mike

    2015-01-01

    Objectives: To determine the optimal effective dose of sodium pyruvate in maintaining the vital signs following hemorrhagic shock (HS) in rats. Materials and Methods: Anesthetized, male Sprague-Dawley rats underwent computer-controlled HS for 30 minute followed by fluid resuscitation with either hypertonic saline, or sodium pyruvate solutions of 0.5 M, 1.0 M, 2.0 M, and 4.0 M at a rate of 5ml/kg/h (60 minute) and subsequent blood infusion (60 minute). The results were compared with sham and non- resuscitated groups. The animals were continuously monitored for mean arterial pressure, systolic and diastolic pressure, heart rate, pulse pressure, temperature, shock index and Kerdo index (KI). Results: The Sham group remained stable throughout the experiment. Non-resuscitated HS animals did not survive for the entire experiment due to non-viable vital signs and poor shock and KI. All fluids were effective in normalizing the vital signs when shed blood was used adjunctively. Sodium pyruvate 2.0 M was most effective, and 4.0 M solution was least effective in improving the vital signs after HS. Conclusions: Future studies should be directed to use 2.0 M sodium pyruvate adjuvant for resuscitation on multiorgan failure and survival rate in HS. PMID:26229300

  15. Cultivation of Parasitic Leptospires: Effect of Pyruvate

    PubMed Central

    Johnson, R. C.; Walby, J.; Henry, R. A.; Auran, N. E.

    1973-01-01

    Sodium pyruvate (100 μg/ml) is a useful addition to the Tween 80-albumin medium for the cultivation of parasitic serotypes. It is most effective in promoting growth from small inocula and growth of the nutritionally fastidious serotypes. Images PMID:4580191

  16. Pulmonary fatty acid synthesis. I. Mitochondrial acetyl transfer by rat lung in vitro.

    PubMed

    Evans, R M; Scholz, R W

    1977-04-01

    Incorporation of tritiated water into fatty acids by rat adipose tissue and lung tissue slices incubated with 5 mM glucose indicated a level of fatty acid synthesis in rat lung approximately 15% that observed in adipose tissue in vitro. (-)-Hydroxycitrate, and inhibitor of ATP citrate lyase, markedly reduced tritiated water incorporation into fatty acids by lung tissue slices. The effects of (-)-hydroxycitrate and n-butymalonate on the incorporation of 14C-labeled glucose, pyruvate, acetate, and citrate suggested that citrate is a major acetyl carrier for de novo fatty acid synthesis in lung tissue. Alternative mechanisms to citrate as an acetyl carrier were also considered. Lung mitochondrial preparations formed significant levels of acetylcarnitine in the presence of pyruvate and carnitine. However, the effect of carnitine on the incorporation of 14C-labeled glucose, pyruvate, acetate, and citrate into fatty acids by lung tissue slices indicated that acetylcarnitine may not be a significant acetyl carrier for fatty acid synthesis but may serve as an acetyl "buffer" in the control of mitochondrial acetyl-CoA levels. Additionally, it appears unlikely that either acetylaspartate or acetoacetate are of major importance in acetyl transfer in lung tissue.

  17. Purification and functional characterisation of the pyruvate (monocarboxylate) carrier from baker's yeast mitochondria (Saccharomyces cerevisiae).

    PubMed

    Nałecz, M J; Nałecz, K A; Azzi, A

    1991-08-09

    Isolated yeast mitochondria were subjected to solubilization by Triton X-114 and the detergent extract was subsequently chromatrographed on dry hydroxyapatite. Purification of the yeast monocarboxylate (pyruvate) carrier was achieved by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate, as described previously for bovine heart mitochondria (Bolli, R., Nałecz K.A. and Azzi, A. (1989) J. Biol. Chem. 264 18024-18030). The final preparation contained two polypeptides of apparent molecular mass 26 and 50 kDa. The yeast carrier appeared to be less abundant, but more active, than the analogous protein from higher eukaryotes. The carrier was able to catalyse the pyruvate / pyruvate and pyruvate / acetoacetate exchange reactions, both reactions being sensitive to cyanocinnamate and its derivatives, to phenylpyruvate and to mersalyl and p-chloromercuribenzoate. In the pyruvate / acetoacetate exchange reaction (200 mM internal acetoacetate, enzymatic assay), the Km value for external pyruvate was found to be 0.8 mM and the Vmax 135 mumol/min per mg protein. Among other substrates of the yeast carrier, all transported with similar affinity and identical maximal velocity against acetoacetate, we identified 2-oxoisocaproate, 2-oxoisovalerate and 2-oxo-3-methylvalerate. Lactate was not translocated by this carrier with a measurable rate, neither were di- or tricarboxylates.

  18. Pyruvate cycling and implications for regulation of gluconeogenesis in the insect, Manduca sexta L.

    PubMed

    Thompson, S N

    2000-08-11

    Pyruvate cycling was examined in the insect Manduca sexta L. (2-(13)C)pyruvate was injected into 5th instar larvae maintained on a semisynthetic high sucrose, low sucrose, or sucrose-free diet. Pyruvate cycling and gluconeogenesis were determined from the distribution of (13)C in blood metabolites, including trehalose, the blood sugar of insects, and alanine. Pyruvate cycling was evident from the (13)C enrichment of alanine C3, synthesized by transamination of pyruvate following carboxylation to oxaloacetate and cycling through phosphoenolpyruvate. Based on the relative (13)C enrichments of alanine C2 and C3, insects maintained on the high sucrose diet displayed higher levels of cycling than insects on the other diets. Insects on all the diets, when subsequently starved, displayed low levels of cycling. Gluconeogenesis was evident in insects on sucrose-free or low sucrose diets from the selective (13)C enrichment in trehalose. The level of gluconeogenesis relative to glycolysis was indicated by the (13)C enrichment of trehalose C6 and alanine C3, both enrichments metabolically derived in the same manner. Insects starved after maintenance on the sucrose-free or low sucrose diets remained glucogenic. Insects on the high sucrose diet were not glucogenic, and subsequent starvation did not induce gluconeogenesis. The results indicate that pyruvate kinase plays a critical role in regulating the gluconeogenic/glycolytic balance, and that inhibition of pyruvate kinase is a principal regulatory event during induction of de novo trehalose synthesis. Gluconeogenesis failed to maintain homeostatic levels of blood trehalose, supporting the conclusion that blood sugar level may be important for mediating nutrient intake. Possible factors involved in the regulation of gluconeogenesis in insects are discussed. Copyright 2000 Academic Press.

  19. The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells.

    PubMed

    Huang, Chenhui; Jia, Pingping; Chastain, Megan; Shiva, Olga; Chai, Weihang

    2017-06-15

    Maintaining functional telomeres is important for long-term proliferation of cells. About 15% of cancer cells are telomerase-negative and activate the alternative-lengthening of telomeres (ALT) pathway to maintain their telomeres. Recent studies have shown that the human CTC1/STN1/TEN1 complex (CST) plays a multi-faceted role in telomere maintenance in telomerase-expressing cancer cells. However, the role of CST in telomere maintenance in ALT cells is unclear. Here, we report that human CST forms a functional complex localizing in the ALT-associated PML bodies (APBs) in ALT cells throughout the cell cycle. Suppression of CST induces telomere instabilities including telomere fragility and elevates telomeric DNA recombination, leading to telomere dysfunction. In addition, CST deficiency significantly diminishes the abundance of extrachromosomal circular telomere DNA known as C-circles and t-circles. Suppression of CST also results in multinucleation in ALT cells and impairs cell proliferation. Our findings imply that the CST complex plays an important role in regulating telomere maintenance in ALT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Pyruvate Administration Reduces Recurrent/Moderate Hypoglycemia-Induced Cortical Neuron Death in Diabetic Rats

    PubMed Central

    Choi, Bo Young; Kim, Jin Hee; Kim, Hyun Jung; Yoo, Jin Hyuk; Song, Hong Ki; Sohn, Min; Won, Seok Joon; Suh, Sang Won

    2013-01-01

    Recurrent/moderate (R/M) hypoglycemia is common in type 1 diabetes patients. Moderate hypoglycemia is not life-threatening, but if experienced recurrently it may present several clinical complications. Activated PARP-1 consumes cytosolic NAD, and because NAD is required for glycolysis, hypoglycemia-induced PARP-1 activation may render cells unable to use glucose even when glucose availability is restored. Pyruvate, however, can be metabolized in the absence of cytosolic NAD. We therefore hypothesized that pyruvate may be able to improve the outcome in diabetic rats subjected to insulin-induced R/M hypoglycemia by terminating hypoglycemia with glucose plus pyruvate, as compared with delivering just glucose alone. In an effort to mimic juvenile type 1 diabetes the experiments were conducted in one-month-old young rats that were rendered diabetic by streptozotocin (STZ, 50mg/kg, i.p.) injection. One week after STZ injection, rats were subjected to moderate hypoglycemia by insulin injection (10U/kg, i.p.) without anesthesia for five consecutive days. Pyruvate (500mg/kg) was given by intraperitoneal injection after each R/M hypoglycemia. Three hours after last R/M hypoglycemia, zinc accumulation was evaluated. Three days after R/M hypoglycemia, neuronal death, oxidative stress, microglial activation and GSH concentrations in the cerebral cortex were analyzed. Sparse neuronal death was observed in the cortex. Zinc accumulation, oxidative injury, microglial activation and GSH loss in the cortex after R/M hypoglycemia were all reduced by pyruvate injection. These findings suggest that when delivered alongside glucose, pyruvate may significantly improve the outcome after R/M hypoglycemia by circumventing a sustained impairment in neuronal glucose utilization resulting from PARP-1 activation. PMID:24278448

  1. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters.

    PubMed

    Nancolas, Bethany; Guo, Lili; Zhou, Rong; Nath, Kavindra; Nelson, David S; Leeper, Dennis B; Blair, Ian A; Glickson, Jerry D; Halestrap, Andrew P

    2016-04-01

    Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitizing tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, whereas indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). In the present study, we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki2.5 μM) and co-operatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevisoocytes with K0.5 and Hill coefficient values of 36-40 μM and 1.65-1.85 respectively. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50~ 7 μM) than other substrates including glutamate (IC50~ 20 μM). In isolated DB-1 melanoma cells 1-10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output whereas increasing intracellular [L-lactate] > 5-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND onL-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate (CHC). © 2016 Authors; published by Portland Press Limited.

  2. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters

    PubMed Central

    Nancolas, Bethany; Guo, Lili; Zhou, Rong; Nath, Kavindra; Nelson, David S.; Leeper, Dennis B.; Blair, Ian A.; Glickson, Jerry D.; Halestrap, Andrew P.

    2016-01-01

    Lonidamine (LND) is an anti-tumour drug particularly effective at selectively sensitising tumours to chemotherapy, hyperthermia and radiotherapy, although its precise mode of action remains unclear. It has been reported to perturb the bioenergetics of cells by inhibiting glycolysis and mitochondrial respiration, while indirect evidence suggests it may also inhibit L-lactic acid efflux from cells mediated by members of the proton-linked monocarboxylate transporter (MCT) family and also pyruvate uptake into the mitochondria by the mitochondrial pyruvate carrier (MPC). Here we test these possibilities directly. We demonstrate that LND potently inhibits MPC activity in isolated rat liver mitochondria (Ki 2.5 μM) and cooperatively inhibits L-lactate transport by MCT1, MCT2 and MCT4 expressed in Xenopus laevis oocytes with K0.5 and Hill Coefficient values of 36–40 μM and 1.65–1.85. In rat heart mitochondria LND inhibited the MPC with similar potency and uncoupled oxidation of pyruvate was inhibited more effectively (IC50 ~7 μM) than other substrates including glutamate (IC50 ~20 μM). In isolated DB-1 melanoma cells 1–10 μM LND increased L-lactate output, consistent with MPC inhibition, but higher concentrations (150 μM) decreased L-lactate output while increasing intracellular [L-lactate] > five-fold, consistent with MCT inhibition. We conclude that MPC inhibition is the most sensitive anti-tumour target for LND, with additional inhibitory effects on MCT-mediated L-lactic acid efflux and glutamine/glutamate oxidation. Together these actions can account for published data on the selective tumour effects of LND on L-lactate, intracellular pH (pHi) and ATP levels that can be partially mimicked by the established MPC and MCT inhibitor α-cyano-4-hydroxycinnamate. PMID:26831515

  3. [Characterization of D-lactate dehydrogenase isozymes from a D-lactic acid producing bacterium Sporolactobacillus inulinus].

    PubMed

    Zhang, Danru; Zheng, Lu; Wu, Bin; He, Bingfang

    2016-11-04

    Sporolactobacillus inulinus, a typical homofermentative lactic acid bacterium, is an efficient D-lactic acid producer. Various environment factors affect the productivity of S. inulinus. Glucokinase, phosphofructokinase, pyruvate kinase and lactic dehydrogenase are the key enzymes of D-lactic acid production from glucose by S. inulinus. The characteristics of these enzymes are important in controlling and regulating the fermentation process. According to the genome bioinformatics analysis of S. inulinus CASD, three putative D-lactate dehydrogenases were identified, among which the bifunctional protein had been reported. In this study, we provided insights into the characteristics of the other two D-lactate dehydrogenase isozymes. S. inulinus Y2-8 genome was used as the template to amplify D-lactate dehydrogenase gene (dldh) and D-isomer specific 2-hydroxyacid dehydrogenase gene (dhdh). The two recombinant strains E-pET-28a/dldh and E-pET-28a/dhdh were constructed for enzyme expression. Both recombinants DLDH and DHDH could convert pyruvic acid into D-lactic acid. Enzymes expressed by recombinant strains were purified by Ni-NTA chromatography. The apparent molecular mass of DLDH was approximately 37 kDa by SDS-PAGE analysis, and DLDH showed a high affinity to pyruvate with the Km value of (0.58±0.04) mmol/L. The optimal reaction temperature and pH for DLDH was 35℃ and 6.5, respectively. The apparent molecular mass of DHDH was approximately 39 kDa, and the Km of DHDH toward pyruvate was (1.70±0.08) mmol/L. The optimum catalysis temperature and pH of DHDH were 30℃ and 7.5, respectively. According to the Km and optimal reaction pH, DLDH was suggested as the main catalyst in formation D-lactic acid from pyruvate during the fermentation. The enzymatic properties would contribute to the regulation of the fermentation of S. inulinus.

  4. Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Bacillus subtilis

    PubMed Central

    Charbonnier, Teddy; Le Coq, Dominique; McGovern, Stephen; Calabre, Magali; Delumeau, Olivier; Aymerich, Stéphane

    2017-01-01

    ABSTRACT At the heart of central carbon metabolism, pyruvate is a pivotal metabolite in all living cells. Bacillus subtilis is able to excrete pyruvate as well as to use it as the sole carbon source. We herein reveal that ysbAB (renamed pftAB), the only operon specifically induced in pyruvate-grown B. subtilis cells, encodes a hetero-oligomeric membrane complex which operates as a facilitated transport system specific for pyruvate, thereby defining a novel class of transporter. We demonstrate that the LytST two-component system is responsible for the induction of pftAB in the presence of pyruvate by binding of the LytT response regulator to a palindromic region upstream of pftAB. We show that both glucose and malate, the preferred carbon sources for B. subtilis, trigger the binding of CcpA upstream of pftAB, which results in its catabolite repression. However, an additional CcpA-independent mechanism represses pftAB in the presence of malate. Screening a genome-wide transposon mutant library, we find that an active malic enzyme replenishing the pyruvate pool is required for this repression. We next reveal that the higher the influx of pyruvate, the stronger the CcpA-independent repression of pftAB, which suggests that intracellular pyruvate retroinhibits pftAB induction via LytST. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry. Overall, we provide evidence for a complete system of sensors, feed-forward and feedback controllers that play a major role in environmental growth of B. subtilis. PMID:28974613

  5. The beneficial metabolic effects of insulin sensitizers are not attenuated by mitochondrial pyruvate carrier 2 hypomorphism.

    PubMed

    Vigueira, Patrick A; McCommis, Kyle S; Hodges, Wesley T; Schweitzer, George G; Cole, Serena L; Oonthonpan, Lalita; Taylor, Eric B; McDonald, William G; Kletzien, Rolf F; Colca, Jerry R; Finck, Brian N

    2017-08-01

    What is the central question of this study? The antidiabetic effects of thiazolidinedione (TZD) drugs may be mediated in part by a molecular interaction with the constituent proteins of the mitochondrial pyruvate carrier complex (MPC1 and MPC2). We examined the ability of a mutant mouse strain expressing an N-terminal truncation of MPC2 (Mpc2Δ16 mice) to respond to TZD treatment. What is the main finding and its importance? The response of Mpc2Δ16 mice to TZD treatment was not significantly different from that of wild-type C57BL6/J control animals, suggesting that the 16 N-terminal amino acids of MPC2 are dispensable for the effects of TZD treatment. Rosiglitazone and pioglitazone are thiazolidinedione (TZD) compounds that have been used clinically as insulin-sensitizing drugs and are generally believed to mediate their effects via activation of the peroxisome proliferator-activated receptor γ (PPARγ). Recent work has shown that it is possible to synthesize TZD compounds with potent insulin-sensitizing effects and markedly diminished affinity for PPARγ. Both clinically used TZDs and investigational PPARγ-sparing TZDs, such as MSDC-0602, interact with the mitochondrial pyruvate carrier (MPC) and inhibit its activity. The MPC complex is composed of two proteins, MPC1 and MPC2. Herein, we used mice expressing a hypomorphic MPC2 protein missing 16 amino acids in the N-terminus (Mpc2Δ16 mice) to determine the effects of these residues in mediating the insulin-sensitizing effects of TZDs in diet-induced obese mice. We found that both pioglitazone and MSDC-0602 elicited their beneficial metabolic effects, including improvement in glucose tolerance, attenuation of hepatic steatosis, reduction of adipose tissue inflammation and stimulation of adipocyte browning, in both wild-type and Mpc2Δ16 mice after high-fat diet feeding. In addition, truncation of MPC2 failed to attenuate the interaction between TZDs and the MPC in a bioluminescence resonance energy

  6. Predictive value of serum ALT and T-cell receptor beta variable chain for HBeAg seroconversion in chronic hepatitis B patients during tenofovir treatment.

    PubMed

    Yang, Jiezuan; Yan, Dong; Guo, Renyong; Chen, Jiajia; Li, Yongtao; Fan, Jun; Fu, Xuyan; Yao, Xinsheng; Diao, Hongyan; Li, Lanjuan

    2017-03-01

    Effective antiviral therapy plays a key role in slowing the progression of chronic hepatitis B (CHB). Identification of serum indices, including hepatitis B e antigen (HBeAg) expression and seroconversion, will facilitate evaluation of the efficacy of antiviral therapy in HBeAg-positive CHB patients. The biochemical, serological, virological parameters, and the frequency of circulating CD4CD25 regulatory T cell (Treg) in 32 patients were measured at baseline and every 12 weeks during 96 weeks of tenofovir disoproxil fumarate (TDF) treatment. The relationship between the hepatitis B virus (HBV) deoxyribonucleic acid (DNA) and Treg and alanine aminotransferase (ALT) levels was analyzed, respectively. The molecular profiles of T-cell receptor beta variable chain (TRBV) were determined using gene melting spectral pattern. For the seroconverted 12 patients, ALT declined to normal levels by week 24 and remained at this level in subsequent treatment; moreover, the predictive cutoff value of ALT for HBeAg seroconversion (SC) was 41.5 U/L at week 24. The positive correlation between HBV DNA and Treg and ALT was significant in SC patients, but not in non-SC patients. Six TRBV families (BV3, BV11, BV12, BV14, BV20, and BV24) were predominantly expressed in SC patients at baseline. The decline of ALT could be used to predict HBeAg seroconversion for CHB patients during TDF treatment. In addition, the profile of Tregs and TRBVs may be associated with HBeAg seroconversion and could also be a potential indicator for predicting HBeAg SC and treatment outcome for CHB patients.

  7. Structural properties of pyruvate carboxylases from chicken liver and other sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barden, R.E.; Taylor, B.L.; Isohashi, F.

    1975-11-01

    Varieties of pyruvate carboxylase (pyruvate: CO/sub 2/ ligase (ADP-forming), EC 6.4.1.1) obtained from the livers of several species of vertebrates, including humans, all show the same basic structure. They are composed of large polypeptide chains of molecular weights ranging from 1.2 to 1.3 x 10/sup 5/ for the different varieties of the enzyme. The native form of the enzyme appears to be a tetramer with a molecular weight of about 5 x 10/sup 5/. In the case of pyruvate carboxylase from chicken liver each polypeptide chain contains a biotin moiety, thus supporting the thesis that the tetramer contains four identicalmore » polypeptide chains. Pyruvate carboxylase from yeast appears to be basically similar to those from the vertebrate species and has a tetrameric structure. Each protomer contains a single polypeptide chain with a molecular weight of 1.25 x 10/sup 5/. In contrast, pyruvate carboxylase from two bacterial species, Pseudomonas citronellolis and Azotobacter vinelandii, appears to be a dimer with a molecular weight (2.5 x 10/sup 5/) about half that of the animal and yeast species. As a further difference, each of the protomers of the bacterial enzymes contain two polypeptides of 6.5 and 5.4 x 10/sup 5/ molecular weight in the case of the Pseudomonas enzyme. The larger of the two polypeptides contains the biotin moiety. The functional units of the bacterial enzyme thus appear to contain two polypeptides while that of the liver and yeast enzymes is made up of a single chain. Neither of these arrangements corresponds with those of other biotin enzymes whose structure has been extensively studied (acetyl-CoA carboxylases from liver or Escherichia coli, and transcarboxylase from Propionibacterium). (auth)« less

  8. Cloning and characterization of pyruvate carboxylase gene responsible for calcium malate overproduction in Penicillium viticola 152 and its expression analysis.

    PubMed

    Khan, Ibrar; Qayyum, Sadia; Ahmed, Shehzad; Maqbool, Farhana; Tauseef, Isfahan; Haleem, Kashif Syed; Chi, Zhen-Ming

    2017-03-20

    In this study, a pyruvate carboxylase gene (PYC) from a marine fungus Penicillium viticola 152 isolated from marine algae was cloned and characterized by using Genome Walking method. An open reading frame (ORF) of The PYC gene (accession number: KM593097) had 3582bp encoding 1193 amino acid protein (isoelectric point: 5.01) with a calculated molecular weight of 131.2757kDa. A putative promoter (intronless) of the gene was located at -666bp and contained a TATA box, several CAAT boxes, the 5'-SYGGRG-3' and a 5'-HGATAR-3' sequences. A consensus polyadenylation site (AATAAA) was also observed at +10bp downstream of the ORF. The protein deduced from the PYC gene had no signal peptide, was a homotetramer (4), and had the four functional domains. Furthermore, PYC protein also had three potential N-linked glycosylation sites, among them, -N-S-T-I- at 36 amino acid, -N-G-T-V- at 237 amino acid, and -N-G-S-S- at 517 amino acid were the most possible N-glycosylation sites. After expression of the PYC gene of P. viticola 152 in medium supplemented with CSL and biotin, it was found that the specific pyruvate carboxylase activity in MA production medium supplemented with CSL was much higher (0.5U/mg) than in MA medium supplemented with biotin (0.3U/mg), suggesting that optimal concentration of CSL is required for increased expression of the PYC gene, which is responsible for high level production of malic acid in P. viticola 152 strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone.

    PubMed

    Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C

    2003-02-01

    Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or

  10. ImmunoPET imaging of tissue factor expression in pancreatic cancer with 89Zr-Df-ALT-836.

    PubMed

    Hernandez, Reinier; England, Christopher G; Yang, Yunan; Valdovinos, Hector F; Liu, Bai; Wong, Hing C; Barnhart, Todd E; Cai, Weibo

    2017-10-28

    Overexpression of tissue factor (TF) has been associated with increased tumor growth, tumor angiogenesis, and metastatic potential in many malignancies, including pancreatic cancer. Additionally, high TF expression was shown to strongly correlate with poor prognoses and decreased survival in pancreatic cancer patients. Herein, we exploited the potential targeting of TF for positron emission tomography (PET) imaging of pancreatic cancer. The TF-targeted tracer was developed through radiolabeling of the anti-human TF monoclonal antibody (ALT-836) with 89 Zr. The tracer was characterized by fluorescence microscopy and flow cytometry assays in BXPC-3 and PANC-1 cells, two pancreatic cancer cell lines with high and low TF expression levels, respectively. Non-invasive PET scans were acquired in tumor-bearing mice injected with 89 Zr-Df-ALT-836. Additionally, ex vivo biodistribution, blocking, and histological studies were performed to establish the affinity and specificity of 89 Zr-Df-ALT-836 for TF in vivo. 89 Zr-labeling of Df-ALT-836 was achieved in high yield and good specific activity. Flow cytometry and microscopy studies revealed no detectable difference in TF-binding affinity between ALT-836 and Df-ALT-836 in vitro. Longitudinal PET scans unveiled a lasting and prominent 89 Zr-Df-ALT-836 uptake in BXPC-3 tumors (peak at 31.5±6.0%ID/g at 48h post-injection; n=3), which was significantly abrogated (2.3±0.5%ID/g at 48h post-injection; n=3) when mice were pre-injected with a blocking dose (50mg/kg) of unlabeled ALT-836. Ex vivo biodistribution data confirmed the accuracy of the PET results, and histological analysis correlated high tumor uptake with in situ TF expression. Taken together, these results attest to the excellent affinity and TF-specificity of 89 Zr-Df-ALT-836. With elevated, persistent, and specific accumulation in TF-positive BXPC-3 tumors, PET imaging using 89 Zr-Df-ALT-836 promises to open new avenues for improving future diagnosis, stratification

  11. Evidence for alternative lengthening of telomeres in liposarcomas in the absence of ALT-associated PML bodies.

    PubMed

    Jeyapalan, Jennie N; Mendez-Bermudez, Aaron; Zaffaroni, Nadia; Dubrova, Yuri E; Royle, Nicola J

    2008-06-01

    Immortalized and cancer cells maintain their telomeres by activation of a telomere maintenance mechanism (TMM). In approximately 85% of cancers telomerase is activated (TA) but in some tumours, in particular sarcomas, an alternative lengthening of telomeres (ALT) pathway is used. Liposarcomas are the most common soft-tissue sarcoma in adults and they activate ALT or telomerase with equal frequency, however no TMM has been identified in approximately 50% of liposarcomas. In our study, we have shown that instability at the minisatellite MS32, usually associated with ALT activation, aids the identification of liposarcomas that have recombination-like activity at telomeres in absence of ALT associated PML-bodies (APBs). Furthermore, using single molecule telomere analysis, we have detected complex telomere mutations directly in ALT positive liposarcomas and interestingly in some liposarcomas with an unknown TMM but high MS32 instability. We have shown by sequence analysis that some of these complex telomere mutations must arise by an inter-molecular recombination-like process rather than by deletion caused by t-loop excision or by unequal telomere-sister-chromatid-exchange (T-SCE), which is known to be elevated in ALT cell lines. Preliminary evidence also suggests that inter-molecular recombination events may be processed differently in liposarcomas with APBs compared to those without. In conclusion, we have shown for the first time, that some telomerase negative liposarcomas without APBs have other features associated with ALT, indicating that the incidence of ALT in these tumours has previously been under-estimated. This has major implications for the use of cancer treatments targeted at TMMs. (c) 2008 Wiley-Liss, Inc.

  12. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate

    PubMed Central

    Nelson, Sarah J.; Kurhanewicz, John; Vigneron, Daniel B.; Larson, Peder E. Z.; Harzstark, Andrea L.; Ferrone, Marcus; van Criekinge, Mark; Chang, Jose W.; Bok, Robert; Park, Ilwoo; Reed, Galen; Carvajal, Lucas; Small, Eric J.; Munster, Pamela; Weinberg, Vivian K.; Ardenkjaer-Larsen, Jan Henrik; Chen, Albert P.; Hurd, Ralph E.; Odegardstuen, Liv-Ingrid; Robb, Fraser J.; Tropp, James; Murray, Jonathan A.

    2014-01-01

    This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials. PMID:23946197

  13. Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques

    PubMed Central

    Huang, Xing-Jiu; Choi, Yang-Kyu; Im, Hyung-Soon; Yarimaga, Oktay; Yoon, Euisik; Kim, Hak-Sung

    2006-01-01

    The levels of aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) in serum can help people diagnose body tissues especially the heart and the liver are injured or not. This article provides a comprehensive review of research activities that concentrate on AST/GOT and ALT/GPT detection techniques due to their clinical importance. The detection techniques include colorimetric, spectrophotometric, chemiluminescence, chromatography, fluorescence and UV absorbance, radiochemical, and electrochemical techniques. We devote the most attention on experimental principle. In some methods a few representative devices and important conclusions are presented.

  14. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    PubMed Central

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-01-01

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism. PMID:22922757

  15. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes.

    PubMed

    Tajima, Yoshinori; Yamamoto, Yoko; Fukui, Keita; Nishio, Yousuke; Hashiguchi, Kenichi; Usuda, Yoshihiro; Sode, Koji

    2015-02-01

    Lowering the pH in bacterium-based succinate fermentation is considered a feasible approach to reduce total production costs. Newly isolated Enterobacter aerogenes strain AJ110637, a rapid carbon source assimilator under weakly acidic (pH 5.0) conditions, was selected as a platform for succinate production. Our previous work showed that the ΔadhE/PCK strain, developed from AJ110637 with inactivated ethanol dehydrogenase and introduced Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PCK), generated succinate as a major product of anaerobic mixed-acid fermentation from glucose under weakly acidic conditions (pH <6.2). To further improve the production of succinate by the ΔadhE/PCK strain, metabolically engineered strains were designed based on the elimination of pathways that produced undesirable products and the introduction of two carboxylation pathways from phosphoenolpyruvate and pyruvate to oxaloacetate. The highest production of succinate was observed with strain ES04/PCK+PYC, which had inactivated ethanol, lactate, acetate, and 2,3-butanediol pathways and coexpressed PCK and Corynebacterium glutamicum pyruvate carboxylase (PYC). This strain produced succinate from glucose with over 70% yield (gram per gram) without any measurable formation of ethanol, lactate, or 2,3-butanediol under weakly acidic conditions. The impact of lowering the pH from 7.0 to 5.5 on succinate production in this strain was evaluated under pH-controlled batch culture conditions and showed that the lower pH decreased the succinate titer but increased its yield. These findings can be applied to identify additional engineering targets to increase succinate production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. New Insights on the Mechanism of the K+-Independent Activity of Crenarchaeota Pyruvate Kinases

    PubMed Central

    De la Vega-Ruíz, Gustavo; Domínguez-Ramírez, Lenin; Riveros-Rosas, Héctor; Guerrero-Mendiola, Carlos; Torres-Larios, Alfredo; Hernández-Alcántara, Gloria; García-Trejo, José J.; Ramírez-Silva, Leticia

    2015-01-01

    Eukarya pyruvate kinases have glutamate at position 117 (numbered according to the rabbit muscle enzyme), whereas in Bacteria have either glutamate or lysine and in Archaea have other residues. Glutamate at this position makes pyruvate kinases K+-dependent, whereas lysine confers K+-independence because the positively charged residue substitutes for the monovalent cation charge. Interestingly, pyruvate kinases from two characterized Crenarchaeota exhibit K+-independent activity, despite having serine at the equivalent position. To better understand pyruvate kinase catalytic activity in the absence of K+ or an internal positive charge, the Thermofilum pendens pyruvate kinase (valine at the equivalent position) was characterized. The enzyme activity was K+-independent. The kinetic mechanism was random order with a rapid equilibrium, which is equal to the mechanism of the rabbit muscle enzyme in the presence of K+ or the mutant E117K in the absence of K+. Thus, the substrate binding order of the T. pendens enzyme was independent despite lacking an internal positive charge. Thermal stability studies of this enzyme showed two calorimetric transitions, one attributable to the A and C domains (Tm of 99.2°C), and the other (Tm of 105.2°C) associated with the B domain. In contrast, the rabbit muscle enzyme exhibits a single calorimetric transition (Tm of 65.2°C). The calorimetric and kinetic data indicate that the B domain of this hyperthermophilic enzyme is more stable than the rest of the protein with a conformation that induces the catalytic readiness of the enzyme. B domain interactions of pyruvate kinases that have been determined in Pyrobaculum aerophilum and modeled in T. pendens were compared with those of the rabbit muscle enzyme. The results show that intra- and interdomain interactions of the Crenarchaeota enzymes may account for their higher B domain stability. Thus the structural arrangement of the T. pendens pyruvate kinase could allow charge

  17. Incremental Predictive Value of Serum AST-to-ALT Ratio for Incident Metabolic Syndrome: The ARIRANG Study

    PubMed Central

    Ahn, Song Vogue; Baik, Soon Koo; Cho, Youn zoo; Koh, Sang Baek; Huh, Ji Hye; Chang, Yoosoo; Sung, Ki-Chul; Kim, Jang Young

    2016-01-01

    Aims The ratio of aspartate aminotransferase (AST) to alanine aminotransferase (ALT) is of great interest as a possible novel marker of metabolic syndrome. However, longitudinal studies emphasizing the incremental predictive value of the AST-to-ALT ratio in diagnosing individuals at higher risk of developing metabolic syndrome are very scarce. Therefore, our study aimed to evaluate the AST-to-ALT ratio as an incremental predictor of new onset metabolic syndrome in a population-based cohort study. Material and Methods The population-based cohort study included 2276 adults (903 men and 1373 women) aged 40–70 years, who participated from 2005–2008 (baseline) without metabolic syndrome and were followed up from 2008–2011. Metabolic syndrome was defined according to the harmonized definition of metabolic syndrome. Serum concentrations of AST and ALT were determined by enzymatic methods. Results During an average follow-up period of 2.6-years, 395 individuals (17.4%) developed metabolic syndrome. In a multivariable adjusted model, the odds ratio (95% confidence interval) for new onset of metabolic syndrome, comparing the fourth quartile to the first quartile of the AST-to-ALT ratio, was 0.598 (0.422–0.853). The AST-to-ALT ratio also improved the area under the receiver operating characteristic curve (AUC) for predicting new cases of metabolic syndrome (0.715 vs. 0.732, P = 0.004). The net reclassification improvement of prediction models including the AST-to-ALT ratio was 0.23 (95% CI: 0.124–0.337, P<0.001), and the integrated discrimination improvement was 0.0094 (95% CI: 0.0046–0.0143, P<0.001). Conclusions The AST-to-ALT ratio independently predicted the future development of metabolic syndrome and had incremental predictive value for incident metabolic syndrome. PMID:27560931

  18. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes.

    PubMed

    Sofou, Kalliopi; Dahlin, Maria; Hallböök, Tove; Lindefeldt, Marie; Viggedal, Gerd; Darin, Niklas

    2017-03-01

    Our aime was to study the short- and long-term effects of ketogenic diet on the disease course and disease-related outcomes in patients with pyruvate dehydrogenase complex deficiency, the metabolic factors implicated in treatment outcomes, and potential safety and compliance issues. Pediatric patients diagnosed with pyruvate dehydrogenase complex deficiency in Sweden and treated with ketogenic diet were evaluated. Study assessments at specific time points included developmental and neurocognitive testing, patient log books, and investigator and parental questionnaires. A systematic literature review was also performed. Nineteen patients were assessed, the majority having prenatal disease onset. Patients were treated with ketogenic diet for a median of 2.9 years. All patients alive at the time of data registration at a median age of 6 years. The treatment had a positive effect mainly in the areas of epilepsy, ataxia, sleep disturbance, speech/language development, social functioning, and frequency of hospitalizations. It was also safe-except in one patient who discontinued because of acute pancreatitis. The median plasma concentration of ketone bodies (3-hydroxybutyric acid) was 3.3 mmol/l. Poor dietary compliance was associated with relapsing ataxia and stagnation of motor and neurocognitive development. Results of neurocognitive testing are reported for 12 of 19 patients. Ketogenic diet was an effective and safe treatment for the majority of patients. Treatment effect was mainly determined by disease phenotype and attainment and maintenance of ketosis.

  19. Kinetic and molecular characterization of the pyruvate phosphate dikinase from Trypanosoma cruzi.

    PubMed

    González-Marcano, Eglys; Acosta, Héctor; Mijares, Alfredo; Concepción, Juan Luis

    2016-06-01

    Trypanosoma cruzi, like other trypanosomatids analyzed so far, can use both glucose and amino acids as carbon and energy source. In these parasites, glycolysis is compartmentalized in glycosomes, authentic but specialized peroxisomes. The major part of this pathway, as well as a two-branched glycolytic auxiliary system, are present in these organelles. The first enzyme of one branch of this auxiliary system is the PPi-dependent pyruvate phosphate dikinase (PPDK) that converts phosphoenolpyruvate (PEP), inorganic pyrophosphate (PPi) and AMP into pyruvate, inorganic phosphate (Pi) and ATP, thus contributing to the ATP/ADP balance within the glycosomes. In this work we cloned, expressed and purified the T. cruzi PPDK. It kinetic parameters were determined, finding KM values for PEP, PPi and AMP of 320, 70 and 17 μM, respectively. Using molecular exclusion chromatography, two native forms of the enzyme were found with estimated molecular weights of 200 and 100 kDa, corresponding to a homodimer and monomer, respectively. It was established that T. cruzi PPDK's specific activity can be enhanced up to 2.6 times by the presence of ammonium in the assay mixture. During growth of epimastigotes in batch culture an apparent decrease in the specific activity of PPDK was observed. However, when its activity is normalized for the presence of ammonium in the medium, no significant modification of the enzyme activity per cell in time was found. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Combination Therapy of All-Trans Retinoic Acid With Ursodeoxycholic Acid in Patients With Primary Sclerosing Cholangitis: A Human Pilot Study.

    PubMed

    Assis, David N; Abdelghany, Osama; Cai, Shi-Ying; Gossard, Andrea A; Eaton, John E; Keach, Jill C; Deng, Yanhong; Setchell, Kenneth D R; Ciarleglio, Maria; Lindor, Keith D; Boyer, James L

    2017-02-01

    To perform an exploratory pilot study of all-trans retinoic acid (ATRA) combined with ursodeoxycholic acid (UDCA) in patients with primary sclerosing cholangitis (PSC). PSC is a progressive disorder for which there is no accepted therapy. Studies in human hepatocyte cultures and in animal models of cholestasis indicate that ATRA might have beneficial effects in cholestatic disorders. ATRA (45 mg/m/d, divided and given twice daily) was combined with moderate-dose UDCA in patients with PSC who had incomplete response to UDCA monotherapy. The combination was administered for 12 weeks, followed by a 12-week washout in which patients returned to UDCA monotherapy. We measured alkaline phosphatase (ALP), alanine aminotransferase (ALT), bilirubin, cholesterol, bile acids, and the bile acid intermediate 7α-hydroxy-4-cholesten-3-one (C4) at baseline, week 12, and after washout. Fifteen patients completed 12 weeks of therapy. The addition of ATRA to UDCA reduced the median serum ALP levels (277±211 to 243±225 U/L, P=0.09) although this, the primary endpoint, did not reach significance. In contrast, median serum ALT (76±55 to 46±32 U/L, P=0.001) and C4 (9.8±19 to 7.9±11 ng/mL, P=0.03) levels significantly decreased. After washout, ALP and C4 levels nonsignificantly increased, whereas ALT levels significantly increased (46±32 to 74±74, P=0.0006), returning to baseline. In this human pilot study, the combination of ATRA and UDCA did not achieve the primary endpoint (ALP); however, it significantly reduced ALT and the bile acid intermediate C4. ATRA appears to inhibit bile acid synthesis and reduce markers of inflammation, making it a potential candidate for further study in PSC (NCT 01456468).

  1. Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase

    PubMed Central

    2013-01-01

    Background Synthesis and apoenzyme attachment of lipoic acid have emerged as a new complex metabolic pathway. Mutations in several genes involved in the lipoic acid de novo pathway have recently been described (i.e., LIAS, NFU1, BOLA3, IBA57), but no mutation was found so far in genes involved in the specific process of attachment of lipoic acid to apoenzymes pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (α-KGDHc) and branched chain α-keto acid dehydrogenase (BCKDHc) complexes. Methods Exome capture was performed in a boy who developed Leigh disease following a gastroenteritis and had combined PDH and α-KGDH deficiency with a unique amino acid profile that partly ressembled E3 subunit (dihydrolipoamide dehydrogenase / DLD) deficiency. Functional studies on patient fibroblasts were performed. Lipoic acid administration was tested on the LIPT1 ortholog lip3 deletion strain yeast and on patient fibroblasts. Results Exome sequencing identified two heterozygous mutations (c.875C > G and c.535A > G) in the LIPT1 gene that encodes a mitochondrial lipoyltransferase which is thought to catalyze the attachment of lipoic acid on PDHc, α-KGDHc, and BCKDHc. Anti-lipoic acid antibodies revealed absent expression of PDH E2, BCKDH E2 and α-KGDH E2 subunits. Accordingly, the production of 14CO2 by patient fibroblasts after incubation with 14Cglucose, 14Cbutyrate or 14C3OHbutyrate was very low compared to controls. cDNA transfection experiments on patient fibroblasts rescued PDH and α-KGDH activities and normalized the levels of pyruvate and 3OHbutyrate in cell supernatants. The yeast lip3 deletion strain showed improved growth on ethanol medium after lipoic acid supplementation and incubation of the patient fibroblasts with lipoic acid decreased lactate level in cell supernatants. Conclusion We report here a putative case of impaired free or H protein-derived lipoic acid attachment due to LIPT1 mutations as a cause of PDH and α-KGDH deficiencies. Our

  2. Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase.

    PubMed

    Soreze, Yohan; Boutron, Audrey; Habarou, Florence; Barnerias, Christine; Nonnenmacher, Luc; Delpech, Hélène; Mamoune, Asmaa; Chrétien, Dominique; Hubert, Laurence; Bole-Feysot, Christine; Nitschke, Patrick; Correia, Isabelle; Sardet, Claude; Boddaert, Nathalie; Hamel, Yamina; Delahodde, Agnès; Ottolenghi, Chris; de Lonlay, Pascale

    2013-12-17

    Synthesis and apoenzyme attachment of lipoic acid have emerged as a new complex metabolic pathway. Mutations in several genes involved in the lipoic acid de novo pathway have recently been described (i.e., LIAS, NFU1, BOLA3, IBA57), but no mutation was found so far in genes involved in the specific process of attachment of lipoic acid to apoenzymes pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (α-KGDHc) and branched chain α-keto acid dehydrogenase (BCKDHc) complexes. Exome capture was performed in a boy who developed Leigh disease following a gastroenteritis and had combined PDH and α-KGDH deficiency with a unique amino acid profile that partly ressembled E3 subunit (dihydrolipoamide dehydrogenase / DLD) deficiency. Functional studies on patient fibroblasts were performed. Lipoic acid administration was tested on the LIPT1 ortholog lip3 deletion strain yeast and on patient fibroblasts. Exome sequencing identified two heterozygous mutations (c.875C > G and c.535A > G) in the LIPT1 gene that encodes a mitochondrial lipoyltransferase which is thought to catalyze the attachment of lipoic acid on PDHc, α-KGDHc, and BCKDHc. Anti-lipoic acid antibodies revealed absent expression of PDH E2, BCKDH E2 and α-KGDH E2 subunits. Accordingly, the production of 14CO2 by patient fibroblasts after incubation with 14Cglucose, 14Cbutyrate or 14C3OHbutyrate was very low compared to controls. cDNA transfection experiments on patient fibroblasts rescued PDH and α-KGDH activities and normalized the levels of pyruvate and 3OHbutyrate in cell supernatants. The yeast lip3 deletion strain showed improved growth on ethanol medium after lipoic acid supplementation and incubation of the patient fibroblasts with lipoic acid decreased lactate level in cell supernatants. We report here a putative case of impaired free or H protein-derived lipoic acid attachment due to LIPT1 mutations as a cause of PDH and α-KGDH deficiencies. Our study calls for renewed efforts to

  3. Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019.

    PubMed

    Luo, Zhengshan; Liu, Song; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2017-06-01

    Candida glabrata has great potential for the accumulation of pyruvate as a preferred strain in pyruvate production by fermentation. However, its substrate conversion rate is relatively low. In this study, a novel polysaccharide containing α-1,4-glucosidic bonds was observed accidentally in screening a high-titer pyruvate strain by atmospheric and room temperature plasma mutagenesis of C. glabrata. Chemical analysis of the partially purified polysaccharide S 4-C10 showed the main components were 1.2% (w/w) protein and 94.2% (w/w) total sugar. Fourier transform infrared and molecular mass distribution analysis indicated that the main component (PSG-2) of S 4-C10 was a small molecular homogeneous protein-bound polysaccharide. Monosaccharide analysis of PSG-2 showed it consisted of glucose, mannose, and fructose. By optimizing the vitamin mix content, 77.6 g L -1 S 4-C10 polysaccharide could be obtained after 72 h fermentation at 30 °C in 500-mL flasks. RT-qPCR analysis showed that transcriptional level of some key genes related to polysaccharide biosynthesis was upregulated compared to that of wild-type strain. By knocking out two most significantly upregulated genes, CAGL0H02695g and CAGL0K10626g, in the wild-type strain, the pyruvate consumption rate was significantly reduced in late pyruvate fermentation phase, while the titer of polysaccharides was reduced by 18.0%. Besides the potential applications of the novel identified polysaccharide, this study provided clues for increasing the conversion ratio of glucose to pyruvate in C. glabrata by further decreasing the accumulation of polysaccharides.

  4. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    PubMed

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  5. The 'donations for decreased ALT (D4D)' prosocial behavior incentive scheme for NAFLD patients.

    PubMed

    Sumida, Yoshio; Yoshikawa, Toshikazu; Tanaka, Saiyu; Taketani, Hiroyoshi; Kanemasa, Kazuyuki; Nishimura, Tekeshi; Yamaguchi, Kanji; Mitsuyoshi, Hironori; Yasui, Kohichiroh; Minami, Masahito; Naito, Yuji; Itoh, Yoshito

    2014-12-01

    Physicians often experience difficulties in motivating patients with non-alcoholic fatty liver disease (NAFLD) to undergo lifestyle changes. The aim of this study is to examine whether 'Donations for Decreased alanine aminotransferase (ALT)' (D4D) prosocial behavior incentive can serve as an effective intrinsic motivational factor in comparison with conventional dietary and exercise intervention alone for NAFLD patients. Twenty-five NAFLD patients with elevated ALT were randomly assigned to a control group that received conventional dietary and exercise intervention alone, or a donation group whereby, as an incentive, we would make a monetary donation to the United Nations World Food Programme (WFP) based on the decrease in their ALT levels achieved over 12 weeks, in addition to receiving control intervention. In a donation group, we would donate US$1 to the WFP for every 1 IU/l of decrease in their ALT levels. There were no differences of pre-treatment clinical characteristics between the two groups. Significant reductions of ALT levels were achieved only in a donation group, although post-treatment ALT levels were not different between the two groups. These patients raised a total of $316 for the WFP. Promoting patients' intrinsic motivation by incorporating 'D4D' prosocial behavior incentive into conventional dietary and exercise intervention may provide a means to improve NAFLD. © The Author 2013. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  7. Some Lactobacillus l-Lactate Dehydrogenases Exhibit Comparable Catalytic Activities for Pyruvate and Oxaloacetate

    PubMed Central

    Arai, Kazuhito; Kamata, Takeo; Uchikoba, Hiroyuki; Fushinobu, Shinya; Matsuzawa, Hiroshi; Taguchi, Hayao

    2001-01-01

    The nonallosteric and allosteric l-lactate dehydrogenases of Lactobacillus pentosus and L. casei, respectively, exhibited broad substrate specificities, giving virtually the same maximal reaction velocity and substrate Km values for pyruvate and oxaloacetate. Replacement of Pro101 with Asn reduced the activity of the L. pentosus enzyme toward these alternative substrates to a greater extent than the activity toward pyruvate. PMID:11114942

  8. Army AL&T, April-June 2008

    DTIC Science & Technology

    2008-06-01

    IR )/laser designator (LD)/laser range finder (LRF) sensor. The Class I UAS consists of a Class I UAV, a cen- tralized controller and a minimal set...utility of a backpackable, affordable, easy-to- operate and responsive reconnais- sance and surveillance system through experimentation. • Use EO/ IR ...ARMY AL&T 33APRIL - JUNE 2008 • “The IR sensor pinpointed the enemy even after the sun went down. We could have really used this in Iraq.” • “The UAV

  9. A New Technique for Precision Photometry Using Alt/Az Telescopes

    NASA Astrophysics Data System (ADS)

    Kirkaptrick, Colin; Stacey, Piper; Swift, Jonathan

    2018-06-01

    We present and test a new method for flat field calibration of images obtained on telescopes with altitude-azimuth (Alt-Az) mounts. Telescopes using Alt-Az mounts typically employ a field “de-rotator” to account for changing parallactic angles of targets observed across the sky, or for long exposures of a single target. This “de-rotation” results in a changing orientation of the telescope optics with respect to the camera. This, in turn, can result in a flat field that is a function of camera orientation due to, for example, vignetting. In order to account for these changes we develop and test a new flat field technique using the observations of known transiting exoplanets.

  10. Kinetics and methane gas yields of selected C1 to C5 organic acids in anaerobic digestion.

    PubMed

    Yang, Yu; Chen, Qian; Guo, Jialiang; Hu, Zhiqiang

    2015-12-15

    Volatile fatty acids (VFAs) and other short-chain organic acids such as lactic and pyruvic acids are intermediates in anaerobic organic degradation. In this study, anaerobic degradation of seven organic acids in salt form was investigated, including formate (C1), acetate (C2), propionate (C3), pyruvate (C3), lactate (C3), butyrate (C4), and valerate (C5). Microbial growth kinetics on these organic acids were determined individually at 37 °C through batch anaerobic digestion tests by varying substrate concentrations from 250 to 4000 mg COD/L. The cumulative methane generation volume was determined real-time by respirometry coupled with gas chromatographic analysis while methane yield and related kinetics were calculated. The methane gas yields (fe, mg CH4 COD/mg substrate COD) from anaerobic degradation of formate, acetate, propionate, pyruvate, lactate, butyrate, and valerate were 0.44 ± 0.27, 0.58 ± 0.05, 0.53 ± 0.18, 0.24 ± 0.05, 0.17 ± 0.05, 0.43 ± 0.15, 0.49 ± 0.11, respectively. Anaerobic degradation of formate showed self-substrate inhibition at the concentrations above 3250 mg COD/L. Acetate, propionate, pyruvate, butyrate, lactate, and valerate did not inhibit methane production at the highest concentrations tested (i.e., 4000 mg COD/L). Microbes growing on acetate had the highest overall specific growth rate (0.30 d(-1)) in methane production. For comparison, the specific microbial growth rates on formate, propionate, pyruvate, butyrate, lactate, and valerate for methane production were 0.10, 0.06, 0.08, 0.07, 0.05, 0.15 d(-1), respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The inhibition of pyruvate transport across the plasma membrane of the bloodstream form of Trypanosoma brucei and its metabolic implications.

    PubMed

    Wiemer, E A; Michels, P A; Opperdoes, F R

    1995-12-01

    The pyruvate produced by glycolysis in the bloodstream form of the trypanosome is excreted into the host bloodstream by a facilitated diffusion carrier. The sensitivity of pyruvate transport for alpha-cyano-4-hydroxycinnamate and the compound UK5099 [alpha-cyano-beta-(1-phenylindol-3-yl)acrylate], which are known to be selective inhibitors of pyruvate (monocarboxylate) transporters present in mitochondria and the plasma membrane of eukaryotic cells, was examined. The trypanosomal pyruvate carrier was found to be rather insensitive to inhibition by alpha-cyano-4-hydroxycinnamate (Ki = 17 mM) but could be completely blocked by UK5099 (Ki = 49 microM). Inhibition of pyruvate transport resulted in the retention, and concomitant accumulation, of pyruvate within the trypanosomes, causing acidification of the cytosol and osmotic destabilization of the cells. Our results indicate that this physiological state has serious metabolic consequences and ultimately leads to cell death; thereby identifying the pyruvate carrier as a possible target for chemotherapeutic intervention.

  12. Effect of bicarbonate concentration on aerobic growth of campylobacter in a fumarate-pyruvate medium

    USDA-ARS?s Scientific Manuscript database

    The purpose of the present study was to examine the effect of sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium. Fumarate-pyruvate broth medium was supplemented with 0.00 to 0.10% NaHCO3 and inoculated with Campylobacter coli 33559, Campyloba...

  13. Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome

    PubMed Central

    Mella, Olav; Bruland, Ove; Risa, Kristin; Dyrstad, Sissel E.; Alme, Kine; Rekeland, Ingrid G.; Sapkota, Dipak; Røsland, Gro V.; Fosså, Alexander; Ktoridou-Valen, Irini; Lunde, Sigrid; Sørland, Kari; Lien, Katarina; Herder, Ingrid; Thürmer, Hanne; Gotaas, Merete E.; Baranowska, Katarzyna A.; Bohnen, Louis M.L.J.; Schäfer, Christoph; McCann, Adrian; Sommerfelt, Kristian; Helgeland, Lars; Ueland, Per M.; Dahl, Olav

    2016-01-01

    Myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is a debilitating disease of unknown etiology, with hallmark symptoms including postexertional malaise and poor recovery. Metabolic dysfunction is a plausible contributing factor. We hypothesized that changes in serum amino acids may disclose specific defects in energy metabolism in ME/CFS. Analysis in 200 ME/CFS patients and 102 healthy individuals showed a specific reduction of amino acids that fuel oxidative metabolism via the TCA cycle, mainly in female ME/CFS patients. Serum 3-methylhistidine, a marker of endogenous protein catabolism, was significantly increased in male patients. The amino acid pattern suggested functional impairment of pyruvate dehydrogenase (PDH), supported by increased mRNA expression of the inhibitory PDH kinases 1, 2, and 4; sirtuin 4; and PPARδ in peripheral blood mononuclear cells from both sexes. Myoblasts grown in presence of serum from patients with severe ME/CFS showed metabolic adaptations, including increased mitochondrial respiration and excessive lactate secretion. The amino acid changes could not be explained by symptom severity, disease duration, age, BMI, or physical activity level among patients. These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion. PMID:28018972

  14. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues

    PubMed Central

    Shrivastava, Priyanka; Navratna, Vikas; Silla, Yumnam; Dewangan, Rikeshwer P.; Pramanik, Atreyi; Chaudhary, Sarika; Rayasam, GeethaVani; Kumar, Anuradha; Gopal, Balasubramanian; Ramachandran, Srinivasan

    2016-01-01

    The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å2 are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA. PMID:27501775

  15. The ASCUS/LSIL Triage Study for Cervical Cancer (ALTS) | Division of Cancer Prevention

    Cancer.gov

    ALTS was a clinical trial to find the best way to help women and their doctors decide what to do about the mildly abnormal and very common Pap test results known as ASCUS and LSIL. | ALTS was a clinical trial to find the best way to help women and their doctors decide what to do about the mildly abnormal and very common Pap test results known as ASCUS and LSIL.

  16. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.

    2012-08-26

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface,more » a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. This data supports the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.« less

  17. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons.

    PubMed

    Halim, Nader D; Mcfate, Thomas; Mohyeldin, Ahmed; Okagaki, Peter; Korotchkina, Lioubov G; Patel, Mulchand S; Jeoung, Nam Ho; Harris, Robert A; Schell, Michael J; Verma, Ajay

    2010-08-01

    Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH alpha). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorylated PDH alpha. Dephosphorylation of astrocytic PDH alpha restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. (c) 2010 Wiley-Liss, Inc.

  18. Heterologous expression of the filarial nematode alt gene products reveals their potential to inhibit immune function

    PubMed Central

    Gomez-Escobar, Natalia; Bennett, Clare; Prieto-Lafuente, Lidia; Aebischer, Toni; Blackburn, Clare C; Maizels, Rick M

    2005-01-01

    Background Parasites exploit sophisticated strategies to evade host immunity that require both adaptation of existing genes and evolution of new gene families. We have addressed this question by testing the immunological function of novel genes from helminth parasites, in which conventional transgenesis is not yet possible. We investigated two such novel genes from Brugia malayi termed abundant larval transcript (alt), expression of which reaches ~5% of total transcript at the time parasites enter the human host. Results To test the hypothesis that ALT proteins modulate host immunity, we adopted an alternative transfection strategy to express these products in the protozoan parasite Leishmania mexicana. We then followed the course of infection in vitro in macrophages and in vivo in mice. Expression of ALT proteins, but not a truncated mutant, conferred greater infectivity of macrophages in vitro, reaching 3-fold higher parasite densities. alt-transfected parasites also caused accelerated disease in vivo, and fewer mice were able to clear infection of organisms expressing ALT. alt-transfected parasites were more resistant to IFN-γ-induced killing by macrophages. Expression profiling of macrophages infected with transgenic L. mexicana revealed consistently higher levels of GATA-3 and SOCS-1 transcripts, both associated with the Th2-type response observed in in vivo filarial infection. Conclusion Leishmania transfection is a tractable and informative approach to determining immunological functions of single genes from heterologous organisms. In the case of the filarial ALT proteins, our data suggest that they may participate in the Th2 bias observed in the response to parasite infection by modulating cytokine-induced signalling within immune system cells. PMID:15788098

  19. Ethyl pyruvate protects against experimental acute-on-chronic liver failure in rats

    PubMed Central

    Wang, Lu-Wen; Wang, Li-Kun; Chen, Hui; Fan, Cheng; Li, Xun; He, Can-Ming; Gong, Zuo-Jiong

    2012-01-01

    AIM: To investigate the protective effects of ethyl pyruvate (EP) on acute-on-chronic liver failure (ACLF) in rats. METHODS: An ACLF model was established in rats, and animals were randomly divided into normal, model and EP treatment groups. The rats in EP treatment group received EP (40 mg/kg) at 3 h, 6 h, 12 h and 24 h after induction of ACLF. Serum endotoxin, high mobility group box-1 (HMGB1), alanine transaminase (ALT), tumor necrosis factor-α (TNF-α), interferon-α (IFN-γ), interleukin (IL)-10 and IL-18 levels, changes of liver histology and HMGB1 expressions in liver tissues were detected at 48 h after induction of ACLF. The effects of EP on the survival of ACLF rats were also observed. RESULTS: Serum levels of endotoxin (0.394 ± 0.066 EU/mL vs 0.086 ± 0.017 EU/mL, P < 0.001), HMGB1 (35.42 ± 10.86 μg/L vs 2.14 ± 0.27 μg/L, P < 0.001), ALT (8415.87 ± 3567.54 IU/L vs 38.64 ± 8.82 IU/L, P < 0.001), TNF-α (190.77 ± 12.34 ng/L vs 124.40 ± 4.12 ng/L, P < 0.001), IFN-γ (715.38 ± 86.03 ng/L vs 398.66 ± 32.91 ng/L, P < 0.001), IL-10 (6.85 ± 0.64 ng/L vs 3.49 ± 0.24 ng/L, P < 0.001) and IL-18 (85.19 ± 3.49 ng/L vs 55.38 ± 1.25 ng/L, P < 0.001) were significantly increased, and liver tissues presented severe pathological injury in the model group compared with the normal group. However, EP administration significantly improved hepatic histopathology and reduced the serum levels of endotoxin (0.155 ± 0.045 EU/mL vs 0.394 ± 0.066 EU/mL, P < 0.001) and inflammatory cytokines (11.13 ± 2.58 μg/L vs 35.42 ± 10.86 μg/L for HMGB1, 3512.86 ± 972.67 IU/L vs 8415.87 ± 3567.54 IU/L for ALT, 128.55 ± 5.76 ng/L vs 190.77 ± 12.34 ng/L for TNF-α, 438.16 ± 38.10 ng/L vs 715.38 ± 86.03 ng/L for IFN-γ, 3.55 ± 0.36 ng/L vs 6.85 ± 0.64 ng/L for IL-10, and 60.35 ± 1.63 ng/L vs 85.19 ± 3.49 ng/L for IL-18, respectively, P < 0.001), and the levels of HMGB1 in liver tissues regardless of treatment time after induction of ACLF. EP treatment at the four time

  20. Pyruvate transport in isolated cardiac mitochondria from two species of amphibian exhibiting dissimilar aerobic scope: Bufo marinus and Rana catesbeiana.

    PubMed

    Duerr, Jeffrey M; Tucker, Kristina

    2007-08-01

    Cardiac mitochondria were isolated from Bufo marinus and Rana catesbeiana, two species of amphibian whose cardiovascular systems are adapted to either predominantly aerobic or glycolytic modes of locomotion. Mitochondrial oxidative capacity was compared using VO2 max and respiratory control ratios in the presence of a variety of substrates including pyruvate, lactate, oxaloacetate, beta-hydroxybutyrate, and octanoyl-carnitine. B. marinus cardiac mitochondria exhibited VO2 max values twice that of R. catesbeiana cardiac mitochondria when oxidizing carbohydrate substrates. Pyruvate transport was measured via a radiolabeled-tracer assay in isolated B. marinus and R. catesbeiana cardiac mitochondria. Time-course experiments described both alpha-cyano-4-hydroxycinnamate-sensitive (MCT-like) and phenylsuccinate-sensitive pyruvate uptake mechanisms in both species. Pyruvate uptake by the MCT-like transporter was enhanced in the presence of a pH gradient, whereas the phenylsuccinate-sensitive transporter was inhibited. Notably, anuran cardiac mitochondria exhibited activities of lactate dehydrogenase and pyruvate carboxylase. The presence of both transporters on the inner mitochondrial membrane affords the net uptake of monocarboxylates including pyruvate, beta-hydroxybutyrate, and lactate; the latter potentially indicating the presence of a lactate/pyruvate shuttle allowing oxidation of extramitochondrial NADH. Intramitochondrial lactate dehydrogenase and pyruvate carboxylase enables lactate to be oxidized to pyruvate or converted to anaplerotic oxaloacetate. Kinetics of the MCT-like transporter differed significantly between the two species, suggesting differences in aerobic scope may be in part attributable to differences in mitochondrial carbohydrate utilization. (c) 2007 Wiley-Liss, Inc.

  1. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate.

    PubMed

    Kawasaki, Kosei; Kamagata, Yoichi

    2017-11-01

    Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O

  2. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate

    PubMed Central

    Kamagata, Yoichi

    2017-01-01

    ABSTRACT Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H2O2) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659–7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H2O2 formation in agar. The H2O2 formation was pH dependent: H2O2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H2O2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H2O2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H2O2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H2O2 from PT medium, these observations indicate that although H2O2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H2O2 levels in media

  3. Efficacy of telbivudine in HBeAg-positive chronic hepatitis B patients with high baseline ALT levels

    PubMed Central

    Lv, Guo-Cai; Ma, Wen-Jiang; Ying, Lin-Jung; Jin, Xi; Zheng, Lin; Yang, Yi-Da

    2010-01-01

    AIM: To evaluate the efficacy and safety of telbivudine (LDT) in hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) patients who have high baseline alanine aminotransferase (ALT) levels between 10 and 20 times the upper limit of normal. METHODS: Forty HBeAg-positive CHB patients with high baseline ALT levels between 10 and 20 times the upper limit of normal were enrolled and received LDT monotherapy for 52 wk. Another forty patients with baseline ALT levels between 2 and 10 times the upper limit of normal were included as controls. We compared the virological, biochemical, serological and side effect profiles between the two groups at 52 wk. RESULTS: By week 52, the mean decrease in hepatitis B virus (HBV) DNA level compared with baseline was 7.03 log10 copies/mL in the high baseline ALT group and 6.17 log10 copies/mL in the control group, respectively (P < 0.05). The proportion of patients in whom serum HBV DNA levels were undetectable by polymerase chain reaction assay was 72.5% in the high baseline ALT group and 60% in the control group, respectively (P < 0.05). In addition, 45.0% of patients in the high baseline ALT group and 27.5% of controls became HBeAg-negative, and 37.5% of those in the high baseline group and 22.5% of controls, respectively, had HBeAg seroconversion (P < 0.05) at week 52. Moreover, in the high baseline group, 4 out of 40 patients (10%) became hepatitis B surface antigen (HBsAg)-negative and 3 (7.5%) of them seroconverted (became HBsAg-positive). Only 1 patient in the control group became HBsAg-negative, but had no seroconversion. The ALT normalization rate, viral breakthrough, genotypic resistance to LDT, and elevations in creatine kinase levels were similar in the two groups over the 52 wk. CONCLUSION: High baseline ALT level is a strong predictor for optimal results during LDT treatment. PMID:20731026

  4. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate.

    PubMed

    Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young

    2016-08-01

    Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.

  5. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    ERIC Educational Resources Information Center

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  6. Modeling non‐linear kinetics of hyperpolarized [1‐13C] pyruvate in the crystalloid‐perfused rat heart

    PubMed Central

    Mariotti, E.; Orton, M. R.; Eerbeek, O.; Ashruf, J. F.; Zuurbier, C. J.; Southworth, R.

    2016-01-01

    Hyperpolarized 13C MR measurements have the potential to display non‐linear kinetics. We have developed an approach to describe possible non‐first‐order kinetics of hyperpolarized [1‐13C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second‐order model for conversion of [1‐13C] pyruvate to bicarbonate, lactate and alanine was well described in the isolated rat heart perfused with Krebs buffer containing glucose as sole energy substrate, or glucose supplemented with pyruvate. Second‐order modeling yielded significantly improved fits of pyruvate–bicarbonate kinetics compared with the more traditionally used first‐order model and suggested time‐dependent decreases in pyruvate–bicarbonate flux. Second‐order modeling gave time‐dependent changes in forward and reverse reaction kinetics of pyruvate–lactate exchange and pyruvate–alanine exchange in both groups of hearts during the infusion of pyruvate; however, the fits were not significantly improved with respect to a traditional first‐order model. The mechanism giving rise to second‐order pyruvate dehydrogenase (PDH) kinetics was explored experimentally using surface fluorescence measurements of nicotinamide adenine dinucleotide reduced form (NADH) performed under the same conditions, demonstrating a significant increase of NADH during pyruvate infusion. This suggests a simultaneous depletion of available mitochondrial NAD+ (the cofactor for PDH), consistent with the non‐linear nature of the kinetics. NADH levels returned to baseline following cessation of the pyruvate infusion, suggesting this to be a transient effect. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26777799

  7. AltText: A Showcase of User Centred Design in the Netherlands

    NASA Astrophysics Data System (ADS)

    Asjes, Kathleen

    In the information processing chain many documents are produced that are inaccessible to the reading impaired. The altText project aims to increase the accessibility of this content by: a) raising awareness among content providers about content adaption; b) allowing content providers to deliver content in a way that suits the needs of the information receiver; c) developing an online service that converts written text into several accessible formats (Braille, synthetic speech, large print or DaisyXML). The name of this service is the altText conversion portal. The paper argues that user centred innovation will be crucial to the success of this project.

  8. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils.

    PubMed

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti, Marcos; Viana, Joao Herbert Moreira; Menezes, Cicero Bezerra; Silva, Lidianne Assis; Guimaraes, Claudia Teixeira; Coelho, Antonio Marcos; Kochian, Leon V; van Eeuwijk, Fred A; Magalhaes, Jurandir Vieira

    2015-12-17

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL) mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha(-1) grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha(-1) independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries. Copyright © 2016 Carvalho et al.

  9. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes.

    PubMed Central

    Edlund, G L; Halestrap, A P

    1988-01-01

    Time courses of L-lactate and pyruvate uptake into isolated rat hepatocytes were measured in a citrate-based medium to generate a pH gradient (alkaline inside), by using the silicone-oil-filtration technique at 0 degrees C to minimize metabolism. At low concentrations of lactate and pyruvate (0.5 mM), transport was inhibited by over 95% by 5 mM-alpha-cyano-4-hydroxycinnamate, whereas at higher concentrations (greater than 10 mM) a significant proportion of transport could not be inhibited. The rate of this non-inhibitable transport was linearly related to the substrate concentration, was less with pyruvate than with L-lactate, and appeared to be due to diffusion of undissociated acid. Uptake of D-lactate was not inhibited by alpha-cyano-4-hydroxycinnamate and occurred only by diffusion. Kinetic parameters for the carrier-mediated transport process were obtained after correction of the initial rates of uptake of lactate and pyruvate in the absence of 5 mM-alpha-cyano-4-hydroxycinnamate by that in the presence of inhibitor. Under the conditions used, the Km values for L-lactate and pyruvate were 2.4 and 0.6 mM respectively and the Ki for alpha-cyano-4-hydroxycinnamate as a competitive inhibitor was 0.11 mM. Km values for the transport of L-lactate and pyruvate into rat erythrocytes under similar conditions were 3.0 and 0.96 mM. The Vmax. of lactate and pyruvate transport into hepatocytes at 0 degrees C was 3 nmol/min per mg of protein. Carrier-mediated transport of 0.5 mM-L-lactate was inhibited by 0.2 mM-p-chloromercuribenzenesulphonate (greater than 90%), 0.5 mM-quercetin (80%), 0.6 mM-isobutylcarbonyl-lactyl anhydride (70%) and 0.5 mM-4,4'-di-isothiocyanostilbene-2,2'-disulphonate (50%). A similar pattern of inhibition of lactate transport is seen in erythrocytes. It is suggested that the same or a similar carrier protein exists in both tissues. The results also show that L-lactate transport into rat hepatocytes is very rapid at physiological temperatures and is

  10. Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k/sup 12//k/sup 13/ = 1.0334 +/- 0.0005 and a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9799 +/- 0.0006 at pH 4.8, 37/sup 0/C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D/sub 2/O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capablemore » of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.« less

  11. Metabolic effects of p-coumaric acid in the perfused rat liver.

    PubMed

    Lima, Leonardo C N; Buss, Gisele D; Ishii-Iwamoto, Emy L; Salgueiro-Pagadigorria, Clairce; Comar, Jurandir Fernando; Bracht, Adelar; Constantin, Jorgete

    2006-01-01

    The p-coumaric acid, a phenolic acid, occurs in several plant species and, consequently, in many foods and beverages of vegetable origin. Its antioxidant activity is well documented, but there is also a single report about an inhibitory action on the monocarboxylate carrier, which operates in the plasma and mitochondrial membranes. The latter observation suggests that p-coumaric acid could be able to inhibit gluconeogenesis and related parameters. The present investigation was planned to test this hypothesis in the isolated and hemoglobin-free perfused rat liver. Transformation of lactate and alanine into glucose (gluconeogenesis) in the liver was inhibited by p-coumaric acid (IC50 values of 92.5 and 75.6 microM, respectively). Transformation of fructose into glucose was inhibited to a considerably lower degree (maximally 28%). The oxygen uptake increase accompanying gluconeogenesis from lactate was also inhibited. Pyruvate carboxylation in isolated intact mitochondria was inhibited (IC50 = 160.1 microM); no such effect was observed in freeze-thawing disrupted mitochondria. Glucose 6-phosphatase and fructose 1,6-bisphosphatase were not inhibited. In isolated intact mitochondria, p-coumaric acid inhibited respiration dependent on pyruvate oxidation but was ineffective on respiration driven by succinate and beta-hydroxybutyrate. It can be concluded that inhibition of pyruvate transport into the mitochondria is the most prominent primary effect of p-coumaric acid and also the main cause for gluconeogenesis inhibition. The existence of additional actions of p-coumaric acid, such as enzyme inhibitions and interference with regulatory mechanisms, cannot be excluded. 2006 Wiley Periodicals, Inc.

  12. Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria.

    PubMed

    Paradies, G; Ruggiero, F M

    1990-04-05

    The effect of aging on the activity of the pyruvate translocator and on the lipid composition in rat-heart mitochondria has been investigated. It has been found that the rate of pyruvate transport in mitochondria from aged rats (28 months old) is markedly reduced (38%) as compared with that obtained with mitochondria from young adults rats (4 months old). Kinetic analysis of the pyruvate transport shows that only the Vmax of this process is decreased, while there is no change in the Km values. The age-related decrement in the activity of the pyruvate carrier is not due to a decrease in the transmembrane delta pH value, neither does it depend on a decrease in the total number of the pyruvate carrier molecules, titrated with radioactive alpha-cyanocinnamate. The lower activity of the pyruvate translocator in mitochondria from aged rats is associated to a parallel decrement of the rate of pyruvate-dependent oxygen uptake. There is, however no appreciable difference in either the respiratory control ratios or in the ADP/O ratios between these two types of mitochondrion. The Arrhenius plot characteristics differ for pyruvate transport activity in mitochondria from aged rats as compared with young rats in that the break point of the biphasic plot is shifted to a higher temperature. The heart mitochondrial lipid composition is significantly altered in aged rats. The total cholesterol increases (43%), the phospholipids decrease (15%) and the cholesterol/phospholipid molar ratio increases (68%). Among phospholipids, cardiolipin shows the greatest alteration (28% decrease in aged rats). The lower activity of the pyruvate carrier in mitochondria from aged rats may be ascribed to changes in the lipid domain surrounding the carrier molecule in the membrane.

  13. FORMATE—PYRUVATE EXCHANGE REACTION IN STREPTOCOCCUS FAECALIS II.

    PubMed Central

    Oster, M. O.; Wood, N. P.

    1964-01-01

    Oster, M. O. (A. & M. College of Texas, College Station), and N. P. Wood. Formate-pyruvate exchange reaction in Streptococcus faecalis. II. Reaction conditions for cell extracts. J. Bacteriol. 87:104–113. 1964.—In contrast to intact cells of Streptococcus faecalis, no stimulation of the formate-pyruvate exchange reaction was observed in cell extracts when yeast extract was added to the reaction mixture. A heated extract of Micrococcus lactilyticus, vitamin K5, ferrous sulfate, and ferrous ammonium sulfate stimulated an active exchange by protecting the system from oxygen. Tetrahydrofolate, 2,3-dimercaptopropanol, and sodium sulfide provided partial protection, whereas ascorbate, glutathione, sodium hydrosulfite, ammonium sulfide, and sodium bisulfite gave insufficient protection or were inhibitory. Oxidation-reduction (O-R) indicators were not inhibitory and were used to estimate the O-R potentials of reaction mixtures. A potential at least as negative as −125 mv was estimated to be necessary to preserve or initiate formate-pyruvate exchange activity. The reaction operated over a narrow pH range when strict anaerobic conditions were not maintained but, when the system was suitably poised, the pH range was broader. The influence of high phosphate concentrations was less under strictly anaerobic conditions, and orthophosphate could be replaced by small amounts of pyrophosphate. Effect of temperature, time, and amount of extract is presented. Addition of reduced benzyl viologen and hydrogen-saturated palladium in the buffer during 8 hr of dialysis prevented inactivation of extracts. Recovery of activity could be obtained after ammonium sulfate treatment when a combination of palladium chloride, neutral red, and hydrogen bubbling were used. PMID:14102842

  14. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    PubMed

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-09

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.

  15. NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting

    PubMed Central

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T.; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L. Felipe

    2015-01-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K+ as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4+, a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4+ with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4+ and in the somatosensory cortex of anesthetized mice in response to i.v. NH4+. Unexpectedly, NH4+ had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4+ diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4+ is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4+ behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes. PMID:26286989

  16. NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting.

    PubMed

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L Felipe

    2015-09-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.

  17. The mitochondrial pyruvate carrier in health and disease: To carry or not to carry?

    PubMed

    Bender, Tom; Martinou, Jean-Claude

    2016-10-01

    Mitochondria play a key role in energy metabolism, hosting the machinery for oxidative phosphorylation, the most efficient cellular pathway for generating ATP. A major checkpoint in this process is the transport of pyruvate produced by cytosolic glycolysis into the mitochondrial matrix, which is accomplished by the recently identified mitochondrial pyruvate carrier (MPC). As the gatekeeper for pyruvate entry into mitochondria, the MPC is thought to be of fundamental importance in establishing the metabolic programming of a cell. This is especially relevant in the context of the aerobic glycolysis, also known as the Warburg effect, which is a hallmark in many types of cancer, and MPC loss of function promotes cancer growth. Moreover, mitochondrial pyruvate uptake is needed for efficient hepatic gluconeogenesis and the regulation of blood glucose levels. In this review we discuss recent advances in our knowledge of the MPC, and we argue that it may offer a promising target in diseases like cancer and type 2 diabetes. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The role of biotin and oxamate in the carboxyl transferase reaction of pyruvate carboxylase

    PubMed Central

    Lietzan, Adam D.; Lin, Yi; St. Maurice, Martin

    2014-01-01

    Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. During catalysis, carboxybiotin is translocated to the carboxyltransferase domain where the carboxyl group is transferred to the acceptor substrate, pyruvate. Many studies on the carboxyltransferase domain of PC have demonstrated an enhanced oxaloacetate decarboxylation activity in the presence of oxamate and it has been shown that oxamate accepts a carboxyl group from carboxybiotin during oxaloacetate decarboxylation. The X-ray crystal structure of the carboxyltransferase domain from Rhizobium etli PC reveals that oxamate is positioned in the active site in an identical manner to the substrate, pyruvate, and kinetic data are consistent with the oxamate-stimulated decarboxylation of oxaloacetate proceeding through a simple ping-pong bi bi mechanism in the absence of the biotin carboxylase domain. Additionally, analysis of truncated PC enzymes indicates that the BCCP domain devoid of biotin does not contribute directly to the enzymatic reaction and conclusively demonstrates a biotin-independent oxaloacetate decarboxylation activity in PC. These findings advance the description of catalysis in PC and can be extended to the study of related biotin-dependent enzymes. PMID:25157442

  19. Staphylococcus aureus Responds to the Central Metabolite Pyruvate To Regulate Virulence.

    PubMed

    Harper, Lamia; Balasubramanian, Divya; Ohneck, Elizabeth A; Sause, William E; Chapman, Jessica; Mejia-Sosa, Bryan; Lhakhang, Tenzin; Heguy, Adriana; Tsirigos, Aristotelis; Ueberheide, Beatrix; Boyd, Jeffrey M; Lun, Desmond S; Torres, Victor J

    2018-01-23

    Staphylococcus aureus is a versatile bacterial pathogen that can cause significant disease burden and mortality. Like other pathogens, S. aureus must adapt to its environment to produce virulence factors to survive the immune responses evoked by infection. Despite the importance of environmental signals for S. aureus pathogenicity, only a limited number of these signals have been investigated in detail for their ability to modulate virulence. Here we show that pyruvate, a central metabolite, causes alterations in the overall metabolic flux of S. aureus and enhances its pathogenicity. We demonstrate that pyruvate induces the production of virulence factors such as the pore-forming leucocidins and that this induction results in increased virulence of community-acquired methicillin-resistant S. aureus (CA-MRSA) clone USA300. Specifically, we show that an efficient "pyruvate response" requires the activation of S. aureus master regulators AgrAC and SaeRS as well as the ArlRS two-component system. Altogether, our report further establishes a strong relationship between metabolism and virulence and identifies pyruvate as a novel regulatory signal for the coordination of the S. aureus virulon through intricate regulatory networks. IMPORTANCE Delineation of the influence of host-derived small molecules on the makeup of human pathogens is a growing field in understanding host-pathogen interactions. S. aureus is a prominent pathogen that colonizes up to one-third of the human population and can cause serious infections that result in mortality in ~15% of cases. Here, we show that pyruvate, a key nutrient and central metabolite, causes global changes to the metabolic flux of S. aureus and activates regulatory networks that allow significant increases in the production of leucocidins. These and other virulence factors are critical for S. aureus to infect diverse host niches, initiate infections, and effectively subvert host immune responses. Understanding how

  20. [CaCO3 stimulates alpha-ketoglutarate accumulation during pyruvate fermentation by Torulopsis glabrata].

    PubMed

    Liu, Li-Ming; Li, Yin; Du, Guo-Cheng; Chen, Jian

    2003-11-01

    A large amount of alpha-ketoglutarate (alpha-KG) (6.8 g/L) was accumulated in flask culture when CaCO3 was used as a buffering agent in the production of pyruvate by multi-vitamin auxotrophic yeast Torulopsis glabrata CCTCC M202019. In a 5 L jar-fermentor, less alpha-KG (1.3 g/L) was produced when NaOH was used to adjust the pH, while more alpha-KG (11.5 g/L) detected when CaCO3 was used as the buffer. In the latter case, the molar carbon ratio of pyruvate to alpha-KG (C(PYR)/ CalphaKG) was similar to that obtained in flask culture, suggesting the accumulation of alpha-ketoglutarate was related to the addition of CaCO3. Furthermore, it was found that: (1) delaying the addition time of CaCO3 decreased the a-ketoglutarate formation but increased C(PYR)/ C(alphaKG); and (2) under vitamin limitation conditions increasing the concentration of CaCO3 led to an increased a-KG accumulation at the expenses of pyruvate. To study which ions in CaCO3 was responsible for the accumulation of alpha-KG, the effects of different pH buffers on the a-KG accumulation were studied. The level of alpha-KG was found to correlate with the levels of both Ca2+ and CO3(2-), with Ca2+ played a dominant role and CO3(2-) played a minor role. To find out which pathway was responsible for the accumulation of alpha-KG, the effects of biotin and thiamine on alpha-KG accumulation was investigated. The increase in biotin concentration led to an increase in alpha-KG accumulation and a decrease in C(PYR)/ C(alpha-KG), while the levels of alpha-KG and C(PYR)/C(alphaKG) were not affected by thiamine concentration. The activity of pyruvate carboxylase was increased as much as 40% when the medium was supplemented with Ca2+ . On the other hand, the activity of the pyruvate dehydrogenase complex was unaffected by the presence of Ca2+. To conclude, the higher level of a-KG was caused by higher activity of pyruvate carboxylase stimulated by Ca2+, with CO3(2-) served as the substrate of the reaction.

  1. Serum enzymes levels and influencing factors in three indigenous Ethiopian goat breeds.

    PubMed

    Tibbo, M; Jibril, Y; Woldemeskel, M; Dawo, F; Aragaw, K; Rege, J E O

    2008-12-01

    Serum enzymes were studied in 163 apparently healthy goats from three indigenous goat breeds of Ethiopia. The effect of breed, age, sex and season on alanine aminotransferase (ALT) / glutamic pyruvic transaminase (GPT), aspartate aminotransferase (AST) / glutamic oxalacetic transaminases (GOT), alkaline phosphatase (ALP) and acid phosphatase (AcP) levels was assessed. The mean serum enzymes levels of the indigenous Arsi-Bale, Central Highland and Long-eared Somali goat breeds ranged from 14.0-20.2 iu L(-1) for ALT/GPT, from 43.2-49.3 iu L(-1) for AST/GOT, from 83.7-98.8 iu L(-1) for ALP, and from 2.99-4.23 iu L(-1) for AcP, were within the normal range for goats elsewhere. Breed had significant influence on AST/GOT values. Sex had significant effect on ALT/GPT for Arsi-Bale goats with higher values in males than females. Age was significant on all serum enzymes studied in the Arsi-Bale goats and on ALP in the Central Highland goats. Season had significant influence on all serum enzymes except for ALT/GPT in the Arsi-Bale goats. The serum enzyme levels of these indigenous goat breeds can be used as normal reference values for Ethiopian goat breeds adapted to similar agro-ecology and production system.

  2. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria.

    PubMed

    Su, Yu-Bin; Peng, Bo; Li, Hui; Cheng, Zhi-Xue; Zhang, Tian-Tuo; Zhu, Jia-Xin; Li, Dan; Li, Min-Yi; Ye, Jin-Zhou; Du, Chao-Chao; Zhang, Song; Zhao, Xian-Liang; Yang, Man-Jun; Peng, Xuan-Xian

    2018-02-13

    The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.

  3. Expression and characterization of recombinant pyruvate phosphate dikinase from Entamoeba histolytica.

    PubMed

    Saavedra-Lira, E; Ramirez-Silva, L; Perez-Montfort, R

    1998-01-15

    The parasite Entamoeba histolytica is an organism whose main energetic source comes from glycolysis. It has the singularity that several of its glycolytic enzymes use pyrophosphate as an alternative phosphate donor. Thus, pyruvate phosphate dikinase (PPDK), an inorganic pyrophosphate (PPi)-dependent enzyme, substitutes pyruvate kinase present in humans. We previously cloned and sequenced the gene that codifies for PPDK in E. histolytica. We now report its expression in a bacterial system and its purification to 98% homogeneity. We determined its K(m) for phosphoenolpyruvate, AMP and PPi (21, < 5 and 100 microM, respectively). Unlike PPDK from maize and bacteria and pyruvate kinase from other cells, EhPPDk is dependent on divalent cations but does not require monovalent cations for activity. The enzyme has an optimum pH of 6.0, it is labile to low temperatures and has a tetrameric structure. Since EhPPDK is a PPi-dependent enzyme, we also tested the effect of some pyrophosphate analogs as inhibitors of activity. Studies on the function and structure of this enzyme may be important for therapeutic research in several parasitic diseases, since it has no counterpart in humans.

  4. Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    PubMed

    Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok

    2011-12-01

    Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Dynamic metabolic imaging of hyperpolarized [2-(13) C]pyruvate using spiral chemical shift imaging with alternating spectral band excitation.

    PubMed

    Josan, Sonal; Hurd, Ralph; Park, Jae Mo; Yen, Yi-Fen; Watkins, Ron; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2014-06-01

    In contrast to [1-(13) C]pyruvate, hyperpolarized [2-(13) C]pyruvate permits the ability to follow the (13) C label beyond flux through pyruvate dehydrogenase complex and investigate the incorporation of acetyl-coenzyme A into different metabolic pathways. However, chemical shift imaging (CSI) with [2-(13) C]pyruvate is challenging owing to the large spectral dispersion of the resonances, which also leads to severe chemical shift displacement artifacts for slice-selective acquisitions. This study introduces a sequence for three-dimensional CSI of [2-(13) C]pyruvate using spectrally selective excitation of limited frequency bands containing a subset of metabolites. Dynamic CSI data were acquired alternately from multiple frequency bands in phantoms for sequence testing and in vivo in rat heart. Phantom experiments verified the radiofrequency pulse design and demonstrated that the signal behavior of each group of resonances was unaffected by excitation of the other frequency bands. Dynamic three-dimensional (13) C CSI data demonstrated the sequence capability to image pyruvate, lactate, acetylcarnitine, glutamate, and acetoacetate, enabling the analysis of organ-specific spectra and metabolite time courses. The presented method allows CSI of widely separated resonances without chemical shift displacement artifact, acquiring multiple frequency bands alternately to obtain dynamic time-course information. This approach enables robust imaging of downstream metabolic products of acetyl-coenzyme A with hyperpolarized [2-(13) C]pyruvate. Copyright © 2013 Wiley Periodicals, Inc.

  6. A method for simultaneous echo planar imaging of hyperpolarized 13C pyruvate and 13C lactate

    NASA Astrophysics Data System (ADS)

    Reed, Galen D.; Larson, Peder E. Z.; von Morze, Cornelius; Bok, Robert; Lustig, Michael; Kerr, Adam B.; Pauly, John M.; Kurhanewicz, John; Vigneron, Daniel B.

    2012-04-01

    A rapid echo planar imaging sequence for dynamic imaging of [1-13C] lactate and [1-13C] pyruvate simultaneously was developed. Frequency-based separation of these metabolites was achieved by spatial shifting in the phase-encoded direction with the appropriate choice of echo spacing. Suppression of the pyruvate-hydrate and alanine resonances is achieved through an optimized spectral-spatial RF waveform. Signal sampling efficiency as a function of pyruvate and lactate excitation angle was simulated using two site exchange models. Dynamic imaging is demonstrated in a transgenic mouse model, and phantom validations of the RF pulse frequency selectivity were performed.

  7. Filarial Abundant Larval Transcript Protein ALT-2: An Immunomodulatory Therapeutic Agent for Type 1 Diabetes.

    PubMed

    Reddy, Sridhar M; Reddy, Pooja M; Amdare, Nitin; Khatri, Vishal; Tarnekar, Aaditya; Goswami, Kalyan; Reddy, Maryada Venkata Rami

    2017-03-01

    Type 1 diabetes (T1D) that accounts for about 5-10 % of all diabetes cases results from the autoimmune destruction of the insulin-producing beta cells in the pancreas. It is characterized by severe inflammatory reaction mediated by pronounced T helper type-1 response. Parasitic infections having the ability to skew the host immune responses towards type-2 type as a part of their defense mechanism are able to induce protection against autoimmune diseases like T1D. Hence, the present study is undertaken to explore a recombinant abundant larval transcript protein of the human lymphatic filarial parasite Brugia malayi ( rBm ALT-2), a known anti-inflammatory molecule for its therapeutic effect on streptozotocin (STZ)-induced T1D in mice. The diabetic mice on treatment with r Bm ALT-2 showed a significant ( p  < 0.0005) decrease in their fasting blood glucose levels. By the end of the second week after the initiation of treatment with the r Bm ALT-2, 28 % of the diabetic mice became normal and none of them were diabetic by the end of 5th week. The anti-diabetic effect of r Bm ALT-2 significantly correlated with the concomitant redressal of the pancreatic histopathological damage caused by STZ assault (rho = 0.87; p  < 0.0005). The sera of r Bm ALT-2 treated diabetic mice had increased levels of IgG1 antibodies associated with decreased IgG2a antibodies against the principal autoantigen insulin. The splenocyte proliferative response and the cytokine release in the treated mice showed marked bias against inflammation skewing the immune response to Th-2 type. From this study, it can be envisaged that that filarial proteins like r Bm ALT-2 with effective immunomodulatory activity and anti-diabetic effect are promising alternative therapeutic agents for T1D.

  8. Lipoic acid metabolism and mitochondrial redox regulation.

    PubMed

    Solmonson, Ashley D; DeBerardinis, Ralph J

    2017-11-30

    Lipoic acid is an essential cofactor for mitochondrial metabolism and is synthesized de novo using intermediates from mitochondrial fatty acid synthesis type II, S-adenosylmethionine and iron-sulfur clusters. This cofactor is required for catalysis by multiple mitochondrial 2-ketoacid dehydrogenase complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and branched-chain ketoacid dehydrogenase. Lipoic acid also plays a critical role in stabilizing and regulating these multi-enzyme complexes.  Many of these dehydrogenases are regulated by reactive oxygen species, mediated through the disulfide bond of the prosthetic lipoyl moiety.  Collectively, its functions explain why lipoic acid is required for cell growth, mitochondrial activity and coordination of fuel metabolism. Lipoic acid is an essential cofactor for mitochondrial metabolism and is synthesized de novo using intermediates from mitochondrial fatty acid synthesis type II, S-adenosylmethionine and iron-sulfur clusters. This cofactor is required for catalysis by multiple mitochondrial 2-ketoacid dehydrogenase complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and branched-chain ketoacid dehydrogenase. Lipoic acid also plays a critical role in stabilizing and regulating these multi-enzyme complexes.  Many of these dehydrogenases are regulated by reactive oxygen species, mediated through the disulfide bond of the prosthetic lipoyl moiety.  Collectively, its functions explain why lipoic acid is required for cell growth, mitochondrial activity and coordination of fuel metabolism. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  9. Environmental Stress Induces Trinucleotide Repeat Mutagenesis in Human Cells by Alt-Nonhomologous End Joining Repair.

    PubMed

    Chatterjee, Nimrat; Lin, Yunfu; Yotnda, Patricia; Wilson, John H

    2016-07-31

    Multiple pathways modulate the dynamic mutability of trinucleotide repeats (TNRs), which are implicated in neurodegenerative disease and evolution. Recently, we reported that environmental stresses induce TNR mutagenesis via stress responses and rereplication, with more than 50% of mutants carrying deletions or insertions-molecular signatures of DNA double-strand break repair. We now show that knockdown of alt-nonhomologous end joining (alt-NHEJ) components-XRCC1, LIG3, and PARP1-suppresses stress-induced TNR mutagenesis, in contrast to the components of homologous recombination and NHEJ, which have no effect. Thus, alt-NHEJ, which contributes to genetic mutability in cancer cells, also plays a novel role in environmental stress-induced TNR mutagenesis. Published by Elsevier Ltd.

  10. Mn²⁺/Mg ²⁺-dependent pyruvate kinase from a D-lactic acid-producing bacterium Sporolactobacillus inulinus: characterization of a novel Mn²⁺-mediated allosterically regulated enzyme.

    PubMed

    Zheng, Lu; Xu, Tingting; Bai, Zhongzhong; He, Bingfang

    2014-02-01

    Sporolactobacillus inulinus has attracted scientific and commercial interest due to its high efficiency in D-lactic acid production. Pyruvate kinase (PYK) is one of the key regulatory points in glycolysis, and well-activated PYK can improve D-lactic acid production. A novel Mn(2+)/Mg(2+)-dependent PYK from S. inulinus was expressed in Escherichia coli and purified to homogeneity. Kinetic characterization demonstrated that the S. inulinus PYK had drastically higher activity and affinity toward substrates in the presence of Mn(2+) compared to those of the common PYK cofactor Mg(2+), and the circular dichroism spectra of the S. inulinus PYK suggested a Mn(2+)-mediated allosteric activation. The S. inulinus PYK was also allosterically regulated by ribose-5-phosphate or AMP activation and inorganic phosphate or ATP inhibition. The inhibition could be marked reduced or fully eliminated in the presence of activators. The result of fermentations by S. inulinus Y2-8 showed that the extracellular-added MnSO₄ and KH₂PO₄ significantly affected glycolysis flux and D-lactic acid production, which is consistent with the allosteric regulation of Mn(2+) and inorganic phosphate on PYK. The sophisticated regulatory role of PYK would establish the foundation of substantial disturbance or restructuring of cellular metabolism for improving the S. inulinus D-lactic acid production.

  11. Association of Alanine Aminotransferase Levels (ALT) with the Hepatic Insulin Resistance Index (HIRI): a cross-sectional study.

    PubMed

    Gómez-Sámano, Miguel Angel; Cuevas-Ramos, Daniel; Mehta, Roopa; Brau-Figueroa, Hasan; Meza-Arana, Clara Elena; Gulias-Herrero, Alfonso

    2012-09-04

    The association between serum alanine aminotransferase (ALT) levels and hepatic insulin resistance (IR) has been evaluated with the hyperinsulinemic-euglycemic clamp. However, there is no information about the association of ALT with the Hepatic Insulin Resistance Index (HIRI). The aim of this study was to evaluate the association between serum ALT levels and HIRI in subjects with differing degrees of impaired glucose metabolism. This cross-sectional study included subjects that had an indication for testing for type 2 diabetes mellitus (T2DM) with an oral glucose tolerance test (OGTT). Clinical and biochemical evaluations were carried out including serum ALT level quantification. HIRI was calculated for each participant. Correlation analyses and lineal regression models were used to evaluate the association between ALT levels and HIRI. A total of 324 subjects (37.6% male) were included. The mean age was 40.4 ± 14.3 years and the mean body mass index (BMI) was 32.0 ± 7.3 kg/m2. Individuals were divided into 1 of 5 groups: without metabolic abnormalities (n = 113, 34.8%); with the metabolic syndrome (MetS, n = 179, 55.2%), impaired fasting glucose (IFG, n = 85, 26.2%); impaired glucose tolerance (IGT, n = 91, 28.0%), and T2DM (n = 23, 7.0%). The ALT (p < 0.001) and HOMA2-IR (p < 0.001) values progressively increased with HIRI quartiles, while ISI-Matsuda (p < 0.001) progressively decreased. After adjustment for sex, age, and BMI, we identified a significant correlation between HIRI and ALT in persons with the MetS (r = 0.22, p = 0.003), IFG (r = 0.33, p < 0.001), IGT (r = 0.37, p < 0.001), and T2DM (r = 0.72, p < 0.001). Lineal regression analysis adjusting for age, HDL-C, TG and waist circumference (WC) showed an independent association between ALT and HIRI in subjects with the MetS (beta = 0.07, p = 0.01), IFG (beta = 0.10, p = 0.02), IGT (beta = 0.09, p = 0

  12. ALT1, a Snf2 Family Chromatin Remodeling ATPase, Negatively Regulates Alkaline Tolerance through Enhanced Defense against Oxidative Stress in Rice

    PubMed Central

    Guo, Mingxin; Wang, Ruci; Wang, Juan; Hua, Kai; Wang, Yueming; Liu, Xiaoqiang; Yao, Shanguo

    2014-01-01

    Alkaline salt stress adversely affects rice growth, productivity and grain quality. However, the mechanism underlying this process remains elusive. We characterized here an alkaline tolerant mutant, alt1 in rice. Map-based cloning revealed that alt1 harbors a mutation in a chromatin remodeling ATPase gene. ALT1-RNAi transgenic plants under different genetic background mimicked the alt1 phenotype, exhibiting tolerance to alkaline stress in a transcript dosage-dependent manner. The predicted ALT1 protein belonged to the Ris1 subgroup of the Snf2 family and was localized in the nucleus, and transcription of ALT1 was transiently suppressed after alkaline treatment. Although the absorption of several metal ions maintained well in the mutant under alkaline stress, expression level of the genes involved in metal ions homeostasis was not altered in the alt1 mutant. Classification of differentially expressed abiotic stress related genes, as revealed by microarray analysis, found that the majority (50/78) were involved in ROS production, ROS scavenging, and DNA repair. This finding was further confirmed by that alt1 exhibited lower levels of H2O2 under alkaline stress and tolerance to methyl viologen treatment. Taken together, these results suggest that ALT1 negatively functions in alkaline tolerance mainly through the defense against oxidative damage, and provide a potential two-step strategy for improving the tolerance of rice plants to alkaline stress. PMID:25473841

  13. Structural Basis for Flip-Flop Action of Thiamin Pyrophosphate-dependent Enzymes Revealed by Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa M.; Korotchkina, Lioubov G.; Dominiak, Paulina M.; Sidhu, Sukdeep; Patel, Mulchand S.

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate, is a cofactor of enzymes performing catalysis in pathways of energy production. In alpha (sub 2) beta (sub 2)-heterotetrameric human pyruvate dehydrogenase, this cofactor is used to cleave the C(sup alpha) -C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites has not yet been understood. To understand the mechanism of action of this enzyme, we determined the crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95-Angstrom resolution. We propose a model for the flip-flop action of this enzyme through a concerted approximately 2-Angstrom shuttle-like motion of its heterodimers. Similarity of thiamin pyrophosphate binding in human pyruvate dehydrogenase with functionally related enzymes suggests that this newly defined shuttle-like motion of domains is common to the family of thiamin pyrophosphate-dependent enzymes.

  14. Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight

    PubMed Central

    Corbet, Cyril

    2018-01-01

    Normal and cancer stem cells (CSCs) share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism. PMID:29403375

  15. Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate.

    PubMed

    Tyzio, Roman; Allene, Camille; Nardou, Romain; Picardo, Michel A; Yamamoto, Sumii; Sivakumaran, Sudhir; Caiati, Maddalena D; Rheims, Sylvain; Minlebaev, Marat; Milh, Mathieu; Ferré, Pascal; Khazipov, Rustem; Romette, Jean-Louis; Lorquin, Jean; Cossart, Rosa; Khalilov, Ilgam; Nehlig, Astrid; Cherubini, Enrico; Ben-Ari, Yehezkel

    2011-01-05

    GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 μM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.

  16. Serum ALT levels as a surrogate marker for serum HBV DNA levels in HBeAg-negative pregnant women.

    PubMed

    Sangfelt, Per; Von Sydow, Madeleine; Uhnoo, Ingrid; Weiland, Ola; Lindh, Gudrun; Fischler, Björn; Lindgren, Susanne; Reichard, Olle

    2004-01-01

    In Stockholm, Sweden, the majority of pregnant women positive for hepatitis B surface antigen (HBsAg) are hepatitis Be antigen (HBeAg) negative. Newborns to HBeAg positive mothers receive vaccination and hepatitis B immunoglobulin (HBIg). Newborns to HBeAg negative mothers receive vaccine and HBIg only if the mothers have elevated ALT levels. The aim of this study was to retrospectively evaluate ALT levels as a surrogate marker for HBV DNA levels in HBeAg negative carrier mothers. Altogether 8947 pregnant women were screened for HBV markers from 1999 to 2001 at the Virology Department, Karolinska Hospital. Among mothers screened 192 tested positive for HBsAg (2.2%). 13 of these samples could not be retrieved. Of the remaining 179 sera, 8 (4%) tested positive for HBeAg and 171 (95.5%) were HBeAg negative. Among the HBeAg negative mothers, 9 had HBV DNA levels > 10(5) copies/ml, and of these 7 had normal ALT levels indicating low sensitivity of an elevated ALT level as a surrogate marker for high HBV DNA level. Furthermore, no correlation was found between ALT and HBV DNA levels. Hence, it is concluded that the use of ALT as a surrogate marker for high viral replication in HBeAg negative mothers could be questioned.

  17. A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate.

    PubMed

    Jia, Xiaojing; Liu, Ying; Han, Yejun

    2017-06-28

    Acetoin (3-hydroxy-2-butanone) is an important bio-based platform chemical with wide applications. In vitro enzyme catalysed synthesis exhibits great feasibility in the production of chemicals with high purity. In the present work, a synthetic pathway involving a two-step continuous reaction was constructed in vitro for acetoin production from pyruvate at improved temperature. Thermostable candidates, acetolactate synthase (coAHASL1 and coAHASL2 from Caldicellulosiruptor owensensis OL) and α-acetolactate decarboxylase (bsALDC from Bacillus subtilis IPE5-4) were cloned, heterologously expressed, and characterized. All the enzymes showed maximum activities at 65-70 °C and pH of 6.5. Enzyme kinetics analysis showed that coAHASL1 had a higher activity but lower affinity against pyruvate than that of coAHASL2. In addition, the activities of coAHASL1 and bsALDC were promoted by Mn 2+ and NADPH. The cascade enzymatic reaction was optimized by using coAHASL1 and bsALDC based on their kinetic properties. Under optimal conditions, a maximum concentration of 3.36 ± 0.26 mM acetoin was produced from 10 mM pyruvate after reaction for 24 h at 65 °C. The productivity of acetoin was 0.14 mM h -1 , and the yield was 67.80% compared with the theoretical value. The results confirmed the feasibility of synthesis of acetoin from pyruvate with a cell-free enzyme catalysed system at improved temperature.

  18. Effector analogues detect varied allosteric roles for conserved protein-effector interactions in pyruvate kinase isozymes†

    PubMed Central

    Alontaga, Aileen Y.; Fenton, Aron W.

    2011-01-01

    The binding site for allosteric inhibitor (amino acid) is highly conserved between human liver pyruvate kinase (hL-PYK) and the rabbit muscle isozyme (rM1-PYK). To detail similarities/differences in the allosteric function of these two homologs, we quantified the binding of 45 amino acid analogues to hL-PYK and their allosteric impact on affinity for the substrate, phosphoenolpyruvate (PEP). This complements a similar study previously completed for rM1-PYK. In hL-PYK, the minimum chemical requirements for effector binding are the same as those identified for rM1-PYK (i.e. the L-2-aminopropanaldehyde substructure of the effector is primarily responsible for binding). However different regions of the effector determine the magnitude of the allosteric response in hL-PYK vs. rM1-PYK. This finding is inconsistent with the idea that allosteric pathways are conserved between homologs of a protein family. PMID:21261284

  19. Synthesis, characterization and biological evaluation of poly [LA-co-(Glc-alt-Lys)] for nerve regeneration scaffold

    NASA Astrophysics Data System (ADS)

    Yin, Yi-Xia; Yi, Ji-Ling; Xie, Li-Juan; Yan, Qiong-Jiao; Dai, Hong-Lian; Li, Shi-Pu

    2014-03-01

    A novel nerve repairing material poly [LA-co-(Glc-alt-Lys)] (PLGL) was synthesized. The viability and growth of Schwann cells (SCs) co-cultured with poly (D, Llactic acid) (PDLLA) films (control group) and PLGL films were evaluated by MTTassay and SEM observation. Then, contact angle measurement, histological assessment and enzyme-linked immunosorbent assay (ELISA) testing on inflammatory-related cytokines such as IL-10 and TGF-β1 were performed. The results showed that, compared with PDLLA, PLGL films possesses better hydrophilicity, biocompatibility, degradation property and less inflammatory reaction. The present study indicated that PLGL scaffolds would meet the requirements of artificial nerve scaffold and have a potential application in the fields of nerve regeneration.

  20. Effect of Glycine, Pyruvate, and Resveratrol on the Regeneration Process of Postischemic Intestinal Mucosa

    PubMed Central

    Brencher, Lisa; Petrat, Frank; Stych, Katrin; Hamburger, Tim

    2017-01-01

    Background Intestinal ischemia is often caused by a malperfusion of the upper mesenteric artery. Since the intestinal mucosa is one of the most rapidly proliferating organs in human body, this tissue can partly regenerate itself after the onset of ischemia and reperfusion (I/R). Therefore, we investigated whether glycine, sodium pyruvate, and resveratrol can either support or potentially harm regeneration when applied therapeutically after reperfusion injury. Methods I/R of the small intestine was initiated by occluding and reopening the upper mesenteric artery in rats. After 60 min of ischemia and 300 min of reperfusion, glycine, sodium pyruvate, or resveratrol was administered intravenously. Small intestine regeneration was analyzed regarding tissue damage, activity of saccharase, and Ki-67 positive cells. Additionally, systemic parameters and metabolic ones were obtained at selected periods. Results Resveratrol failed in improving the outcome after I/R, while glycine showed a partial beneficial effect. Sodium pyruvate ameliorated metabolic acidosis, diminished histopathologic tissue injury, and increased cell proliferation in the small intestine. Conclusion While glycine could improve in part regeneration but not proliferation, sodium pyruvate seems to be a possible therapeutic agent to facilitate proliferation and to support mucosal regeneration after I/R injury to the small intestine. PMID:29201896

  1. The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage.

    PubMed

    Boyko, Matthew; Melamed, Israel; Gruenbaum, Benjamin Fredrick; Gruenbaum, Shaun Evan; Ohayon, Sharon; Leibowitz, Akiva; Brotfain, Evgeny; Shapira, Yoram; Zlotnik, Alexander

    2012-07-01

    Blood glutamate scavengers have been shown to effectively reduce blood glutamate concentrations and improve neurological outcome after traumatic brain injury and stroke in rats. This study investigates the efficacy of blood glutamate scavengers oxaloacetate and pyruvate in the treatment of subarachnoid hemorrhage (SAH) in rats. Isotonic saline, 250 mg/kg oxaloacetate, or 125 mg/kg pyruvate was injected intravenously in 60 rats, 60 minutes after induction of SAH at a rate of 0.1 ml/100 g/min for 30 minutes. There were 20 additional rats that were used as a sham-operated group. Blood samples were collected at baseline and 90 minutes after SAH. Neurological performance was assessed at 24 h after SAH. In half of the rats, glutamate concentrations in the cerebrospinal fluid were measured 24 h after SAH. For the remaining half, the blood brain barrier permeability in the frontal and parieto-occipital lobes was measured 48 h after SAH. Blood glutamate levels were reduced in rats treated with oxaloacetate or pyruvate at 90 minutes after SAH (p < 0.001). Cerebrospinal fluid glutamate was reduced in rats treated with pyruvate (p < 0.05). Neurological performance was significantly improved in rats treated with oxaloacetate (p < 0.05) or pyruvate (p < 0.01). The breakdown of the blood brain barrier was reduced in the frontal lobe in rats treated with pyruvate (p < 0.05) and in the parieto-occipital lobes in rats treated with either pyruvate (p < 0.01) or oxaloacetate (p < 0.01). This study demonstrates the effectiveness of blood glutamate scavengers oxaloacetate and pyruvate as a therapeutic neuroprotective strategy in a rat model of SAH.

  2. Beneficial effect of pyruvate therapy on Leigh syndrome due to a novel mutation in PDH E1α gene.

    PubMed

    Koga, Yasutoshi; Povalko, Nataliya; Katayama, Koujyu; Kakimoto, Noriko; Matsuishi, Toyojiro; Naito, Etsuo; Tanaka, Masashi

    2012-02-01

    Leigh syndrome (LS) is a progressive untreatable degenerating mitochondrial disorder caused by either mitochondrial or nuclear DNA mutations. A patient was a second child of unconsanguineous parents. On the third day of birth, he was transferred to neonatal intensive care units because of severe lactic acidosis. Since he was showing continuous lactic acidosis, the oral supplementation of dichloroacetate (DCA) was introduced on 31st day of birth at initial dose of 50 mg/kg, followed by maintenance dose of 25 mg/kg/every 12 h. The patient was diagnosed with LS due to a point mutation of an A-C at nucleotide 599 in exon 6 in the pyruvate dehydrogenase E1α gene, resulting in the substitution of aspartate for threonine at position 200 (N200T). Although the concentrations of lactate and pyruvate in blood were slightly decreased, his clinical conditions were deteriorating progressively. In order to overcome the mitochondrial or cytosolic energy crisis indicated by lactic acidosis as well as clinical symptoms, we terminated the DCA and administered 0.5 g/kg/day TID of sodium pyruvate orally. We analyzed the therapeutic effects of DCA or sodium pyruvate in the patient, and found that pyruvate therapy significantly decreased lactate, pyruvate and alanine levels, showed no adverse effects such as severe neuropathy seen in DCA, and had better clinical response on development and epilepsy. Though the efficacy of pyruvate on LS will be evaluated by randomized double-blind placebo-controlled study design in future, pyruvate therapy is a possible candidate for therapeutic choice for currently incurable mitochondrial disorders such as LS. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Modeling of the pyruvate production with Escherichia coli: comparison of mechanistic and neural networks-based models.

    PubMed

    Zelić, B; Bolf, N; Vasić-Racki, D

    2006-06-01

    Three different models: the unstructured mechanistic black-box model, the input-output neural network-based model and the externally recurrent neural network model were used to describe the pyruvate production process from glucose and acetate using the genetically modified Escherichia coli YYC202 ldhA::Kan strain. The experimental data were used from the recently described batch and fed-batch experiments [ Zelić B, Study of the process development for Escherichia coli-based pyruvate production. PhD Thesis, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, July 2003. (In English); Zelić et al. Bioproc Biosyst Eng 26:249-258 (2004); Zelić et al. Eng Life Sci 3:299-305 (2003); Zelić et al Biotechnol Bioeng 85:638-646 (2004)]. The neural networks were built out of the experimental data obtained in the fed-batch pyruvate production experiments with the constant glucose feed rate. The model validation was performed using the experimental results obtained from the batch and fed-batch pyruvate production experiments with the constant acetate feed rate. Dynamics of the substrate and product concentration changes was estimated using two neural network-based models for biomass and pyruvate. It was shown that neural networks could be used for the modeling of complex microbial fermentation processes, even in conditions in which mechanistic unstructured models cannot be applied.

  4. Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"

    NASA Astrophysics Data System (ADS)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2015-01-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified

  5. [Impact analysis of shuxuetong injection on abnormal changes of ALT based on generalized boosted models propensity score weighting].

    PubMed

    Yang, Wei; Yi, Dan-Hui; Xie, Yan-Ming; Yang, Wei; Dai, Yi; Zhi, Ying-Jie; Zhuang, Yan; Yang, Hu

    2013-09-01

    To estimate treatment effects of Shuxuetong injection on abnormal changes on ALT index, that is, to explore whether the Shuxuetong injection harms liver function in clinical settings and to provide clinical guidance for its safe application. Clinical information of traditional Chinese medicine (TCM) injections is gathered from hospital information system (HIS) of eighteen general hospitals. This is a retrospective cohort study, using abnormal changes in ALT index as an outcome. A large number of confounding biases are taken into account through the generalized boosted models (GBM) and multiple logistic regression model (MLRM) to estimate the treatment effects of Shuxuetong injections on abnormal changes in ALT index and to explore possible influencing factors. The advantages and process of application of GBM has been demonstrated with examples which eliminate the biases from most confounding variables between groups. This serves to modify the estimation of treatment effects of Shuxuetong injection on ALT index making the results more reliable. Based on large scale clinical observational data from HIS database, significant effects of Shuxuetong injection on abnormal changes in ALT have not been found.

  6. Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate

    NASA Astrophysics Data System (ADS)

    Cavallari, Eleonora; Carrera, Carla; Aime, Silvio; Reineri, Francesca

    2018-04-01

    The use of [1-13C]pyruvate, hyperpolarized by dissolution-Dynamic Nuclear Polarization (d-DNP), in in vivo metabolic studies has developed quickly, thanks to the imaging probe's diagnostic relevance. Nevertheless, the cost of a d-DNP polarizer is quite high and the speed of hyperpolarization process is relatively slow, meaning that its use is limited to few research laboratories. ParaHydrogen Induced Polarization Side Arm Hydrogenation (PHIP-SAH) (Reineri et al., 2015) is a cost effective and easy-to-handle method that produces 13C-MR hyperpolarization in [1-13C]pyruvate and other metabolites. This work aims to identify the main determinants of the hyperpolarization levels observed in C13-pyruvate using this method. By dissecting the various steps of the PHIP-SAH procedure, it has been possible to assess the role of several experimental parameters whose optimization must be pursued if this method is to be made suitable for future translational steps. The search for possible solutions has led to improvements in the polarization of sodium [1-13C]pyruvate from 2% to 5%. Moreover, these results suggest that observed polarization levels could be increased considerably by an automatized procedure which would reduce the time required for the work-up passages that are currently carried out manually. The results reported herein mean that the attainment of polarization levels suitable for the metabolic imaging applications of these hyperpolarized substrates show significant promise.

  7. A study of the metabolism of l-αγ-diaminobutyric acid in a Xanthomonas species

    PubMed Central

    Rao, D. Rajagopal; Hariharan, K.; Vijayalakshmi, K. R.

    1969-01-01

    1. l-αγ-Diaminobutyric acid is metabolized in Xanthomonas sp. to aspartic β-semialdehyde, aspartic acid and oxaloacetic acid. 2. Aspartic β-semialdehyde is formed from diaminobutyric acid by a pyruvate-dependent γ-transamination. 3. The transaminase has a pH optimum of 9 and exhibits a high degree of substrate specificity, as analogues of diaminobutyric acid and pyruvate are inert in the system. The transaminase is inhibited by carbonyl-binding agents such as hydroxylamine. 4. Aspartic acid is formed from aspartic β-semialdehyde by an NAD+-dependent dehydrogenation. 5. The dehydrogenase has a pH optimum of 8·5 and is a thiol enzyme. It is specific for aspartic β-semialdehyde but analogues of NAD+ such as 3-acetylpyridine–adenine dinucleotide and deamino-NAD are partly active in the system. 6. The significance of these reactions is discussed in relation to diaminobutyric acid metabolism in plants and mammalian systems. PMID:4390206

  8. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes.

    PubMed

    Xu, Guoqiang; Chen, Xiulai; Liu, Liming; Jiang, Linghuo

    2013-11-01

    In this study, the simultaneous use of reductive and oxidative routes to produce fumaric acid was explored. The strain FMME003 (Saccharomyces cerevisiae CEN.PK2-1CΔTHI2) exhibited capability to accumulate pyruvate and was used for fumaric acid production. The fum1 mutant FMME004 could produce fumaric acid via oxidative route, but the introduction of reductive route derived from Rhizopus oryzae NRRL 1526 led to lower fumaric acid production. Analysis of the key factors associated with fumaric acid production revealed that pyruvate carboxylase had a low degree of control over the carbon flow to malic acid. The fumaric acid titer was improved dramatically when the heterologous gene RoPYC was overexpressed and 32 μg/L of biotin was added. Furthermore, under the optimal carbon/nitrogen ratio, the engineered strain FMME004-6 could produce up to 5.64 ± 0.16 g/L of fumaric acid. These results demonstrated that the proposed fermentative method is efficient for fumaric acid production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Development of an enzymatic assay to measure lactate in perchloric acid-precipitated cerebrospinal fluid.

    PubMed

    Lu, Jun; Genzen, Jonathan R; Grenache, David G

    2018-04-27

    Individuals with inherited deficiencies of the pyruvate dehydrogenase complex or the respiratory chain complex can have increased concentrations of cerebrospinal fluid (CSF) lactate. Such measurements are clinical useful when measured in conjunction with pyruvate in order to calculate the lactate:pyruvate (L:P) ratio, a useful surrogate of cytosolic redox status. CSF pyruvate is measured in a protein-free supernatant prepared by the addition of CSF to perchloric acid while lactate is measured in untreated CSF. Utilizing the same sample for both lactate and pyruvate measurements is desirable. To develop a method to measure lactate in perchloric-acid precipitated CSF and validate the L:P ratio as calculated from the analysis of both analytes in the same sample. Samples were prepared by the addition of 1 mL CSF to 2 mL 8% (w/v) cold perchloric acid, incubated on ice for 10 min, then centrifuged to obtain a protein-free supernatant. Lactate was measured by its oxidation to pyruvate and hydrogen peroxide using lactate oxidase and the absorbance of the resulting chromogen determined at 540 nm on a Roche cobas c501 chemistry analyzer. Method accuracy, linearity, imprecision and sensitivity were determined and a reference interval was verified. To assess accuracy, this method was compared to lactate determined in unaltered CSF at another laboratory using 41 specimens with lactate concentrations from 0.6-11.9 mmol/L. Linear regression produced a slope of 1.09 and y-intercept of 0.26 (R 2  = 1.00). Recovery was performed by ad-mixes of a high lactate standard and a CSF pool in different ratios to create a set of 19 samples prior to preparing protein-free supernatants. Recovery was 94.6-100% (mean ± SD was 97.4 ± 1.4%) at lactate concentrations of 2.68 to 12.63 mmol/L. Linearity was determined by combining two supernatants with low and high lactate concentrations in different ratios to create a set of six samples (0.15-12.70 mmol/L) that were

  10. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293.

    PubMed

    Li, Ling; Eom, Hyun-Ju; Park, Jung-Mi; Seo, Eunyoung; Ahn, Ji Eun; Kim, Tae-Jip; Kim, Jeong Hwan; Han, Nam Soo

    2012-10-10

    Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 is a lactic acid bacterium that converts pyruvate mainly to d-(-)-lactic acid by using d-(-)-lactate dehydrogenase (ldhD). The aim of this study was to identify the gene responsible for d-lactic acid formation in this organism and to characterize the enzyme to facilitate the production of optically pure d-lactic acid. A genomic analysis of L. mesenteroides ATCC 8293 revealed that 7 genes encode lactate-related dehydrogenase. According to transcriptomic, proteomic, and phylogenetic analyses, LEUM_1756 was the major gene responsible for the production of d-lactic acid. The LEUM_1756 gene, of 996bp and encoding 332 amino acids (36.5kDa), was cloned and overexpressed in Escherichia coli BL21(DE3) Star from an inducible pET-21a(+) vector. The enzyme was purified by Ni-NTA column chromatography and showed a specific activity of 4450U/mg, significantly higher than those of other previously reported ldhDs. The gel permeation chromatography analysis showed that the purified enzyme exists as tetramers in solution and this was the first report among lactic acid bacteria. The pH and temperature optima were pH 8.0 and 30°C, respectively, for the pyruvate reduction reaction, and pH 11.0 and 20°C, respectively, for the lactate oxidation reaction. The K(m) kinetic parameters for pyruvate and lactate were 0.58mM and 260mM, respectively. In addition, the k(cat) values for pyruvate and lactate were 2900s(-1) and 2280s(-1), respectively. The enzyme was not inhibited by Ca(2+), Co(2+), Cu(2+), Mg(2+), Mn(2+), Na(+), or urea, but was inhibited by 1mM Zn(2+) and 1mM SDS. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    NASA Astrophysics Data System (ADS)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  12. The sugar model: catalysis by amines and amino acid products

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  13. Normal on-treatment ALT during antiviral treatment is associated with a lower risk of hepatic events in patients with chronic hepatitis B.

    PubMed

    Wong, Grace Lai-Hung; Chan, Henry Lik-Yuen; Tse, Yee-Kit; Yip, Terry Cheuk-Fung; Lam, Kelvin Long-Yan; Lui, Grace Chung-Yan; Wong, Vincent Wai-Sun

    2018-06-18

    Recent studies reveal that the rate of normal on-treatment alanine aminotransferase (ALT) appears different for different nucleos(t)ide analogues (NAs); yet its clinical significance is unclear. We aimed to evaluate the impact of normal on-treatment ALT during antiviral treatment with entecavir (ETV) or tenofovir disoproxil fumarate (TDF) in patients with chronic hepatitis B (CHB). A territory-wide cohort of patients with CHB who received ETV and/or TDF in 2005-2016 was identified. Serial on-treatment ALT levels were collected and analyzed. Normal on-treatment ALT (ALT-N) was defined as ALT <30 U/L in males and <19 U/L in females. The primary and secondary outcomes were composite hepatic events (including hepatocellular carcinoma) based on diagnostic codes. Patients with hepatic events before or during the first year of antiviral treatment or follow-up <1 year were excluded. A total of 21,182 patients with CHB (10,437 with and 10,745 without ALT-N at 12 months after antiviral treatment) were identified and followed for 4.0 ± 1.7 years. Patients with and without ALT-N differed in baseline ALT (58 vs. 61 U/L), hepatitis B virus DNA (4.9 vs. 5.1 log10 IU/ml) and cirrhosis status (8.8% vs. 10.5%). A total of 627 (3.0%) patients developed composite hepatic events. Compared to no ALT-N, ALT-N at 3, 6, 9 and 12 months reduced the risk of hepatic events, after adjustment for baseline ALT and other important covariates, with adjusted hazard ratios (95% CI) of 0.61 (0.49-0.77), 0.55 (0.45-0.67), 0.54 (0.44-0.65) and 0.51 (0.42-0.61) respectively (all p <0.001). The cumulative incidence (95% CI) of composite hepatic events at six years was 3.51% (3.06%-4.02%) in ALT-N and 5.70% (5.15%-6.32%) in the no ALT-N group (p <0.001). Normal on-treatment ALT is associated with a lower risk of hepatic events in patients with CHB receiving NA treatment, translating into improved clinical outcomes in these patients. We investigated 21,182 patients with chronic

  14. Structural Basis for Flip-Flop Action of Thiamin-Dependent Enzymes Revealed by Crystal Structure of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina M.; Sidhu, Sukdeep; Patel, Mulchand S.

    2003-01-01

    The biologically active derivative of vitamin B1; thiamin pyrophosphate; is used as cofactor by many enzymes that perform a wide range of catalytic functions in the pathways of energy production. In alpha2beta2-heterotetrameric human pyruvate dehydrogenase, the first catalytic component enzyme of human pyruvate dehydrogenase complex, this cofactor is used to cleave the C(sup alpha)-C(=0) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase, the second catalytic component of the complex. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites have puzzled researchers from earlier functional studies of this enzyme. In order to gain insight into the mechanism of action of this enzyme, we determined the crystal structure of the holoform of human pyruvate dehydrogenase at 1.958, resolution. We propose a kinetic model for the flip-flop action of this enzyme through the concerted approx. 2A, shuttle-like motion of the heterodimers. The similarity of thiamin pyrophosphate binding in human pyruvate dehydrogenase and other functionally related enzymes suggests this newly defined mechanism of shuttle-like motion of domains to be common for the family of thiamin pyrophosphate-dependent enzymes.

  15. Ephedra alte (Joint Pine): An Invasive, Problematic Weedy Species in Forestry and Fruit Tree Orchards in Jordan

    PubMed Central

    Qasem, Jamal R.

    2012-01-01

    A field survey was carried out to record plant species climbed by Ephedra alte in certain parts of Jordan during 2008–2010. Forty species of shrubs, ornamental, fruit, and forest trees belonging to 24 plant families suffered from the climbing habit of E. alte. Growth of host plants was adversely affected by E. alte growth that extended over their vegetation. In addition to its possible competition for water and nutrients, the extensive growth it forms over host species prevents photosynthesis, smothers growth and makes plants die underneath the extensive cover. However, E. alte did not climb all plant species, indicating a host preference range. Damaged fruit trees included Amygdalus communis, Citrus aurantifolia, Ficus carica, Olea europaea, Opuntia ficus-indica, and Punica granatum. Forestry species that were adversely affected included Acacia cyanophylla, Ceratonia siliqua, Crataegus azarolus, Cupressus sempervirens, Pinus halepensis, Pistacia atlantica, Pistacia palaestina, Quercus coccifera, Quercus infectoria, Retama raetam, Rhamnus palaestina, Rhus tripartita, and Zizyphus spina-christi. Woody ornamentals attacked were Ailanthus altissima, Hedera helix, Jasminum fruticans, Jasminum grandiflorum, Nerium oleander, and Pyracantha coccinea. Results indicated that E. alte is a strong competitive for light and can completely smother plants supporting its growth. A. communis, F. carica, R. palaestina, and C. azarolus were most frequently attacked. PMID:22645486

  16. [Diagnostic value of detection of blood levels of lactate, pyruvate and 2,3-diphosphoglycerate in children with diabetes mellitus].

    PubMed

    Marchenko, L F; Baturin, A A; Terent'eva, E A

    1991-01-01

    Measurements were made of lactate, pyruvate and 2,3-diphosphoglycerate in 69 children admitted to the hospital in a state of diabetic ketoacidosis of different intensity. Depending on the intensity of metabolic abnormalities, the content of lactate and pyruvate was found to be increased, whereas that of 2,3-diphosphoglycerate to be lowered. Measurements of the content of lactate and the lactate/pyruvate ratio enables carrying out differential diagnosis between the ketoacidotic and lactacidotic varieties of diabetic coma.

  17. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions.

    PubMed

    Vaartjes, W J; den Breejen, J N; Geelen, M J; van den Bergh, S G

    1980-08-05

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite direction of the activity of pyruvate dehydrogenase (EC 1.2.4.1). 3. Changes of the transmembrane pH gradient and of the membrane potential, brought about by the pretreatments of the mitochondria, cannot account for the observed changes in the rate of pyruvate transport. 4. It is proposed that the pretreatment of the mitochondria directly modulates the activity of the mitochondrial pyruvate carrier. The possible regulatory role of such a modulation system is discussed.

  18. A Simple Experiment Demonstrating the Allosteric Regulation of Yeast Pyruvate Kinase.

    ERIC Educational Resources Information Center

    Taber, Richard L.; Campbell, Angela; Spencer, Scott

    1998-01-01

    Explains the procedures used to determine the regulatory properties of yeast pyruvate kinase. Involves a partial purification using PEG precipitation that can be done in one laboratory period with simple equipment. (DDR)

  19. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    PubMed

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  20. Salmonella enterica serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice.

    PubMed

    Mercado-Lubo, Regino; Leatham, Mary P; Conway, Tyrrell; Cohen, Paul S

    2009-04-01

    Previously, we showed that the Salmonella enterica serovar Typhimurium SR-11 tricarboxylic acid (TCA) cycle must operate as a complete cycle for full virulence after oral infection of BALB/c mice (M. Tchawa Yimga, M. P. Leatham, J. H. Allen, D. C. Laux, T. Conway, and P. S. Cohen, Infect. Immun. 74:1130-1140, 2006). In the same study, we showed that for full virulence, malate must be converted to both oxaloacetate and pyruvate. Moreover, it was recently demonstrated that blocking conversion of succinyl-coenzyme A to succinate attenuates serovar Typhimurium SR-11 but does not make it avirulent; however, blocking conversion of succinate to fumarate renders it completely avirulent and protective against subsequent oral infection with the virulent serovar Typhimurium SR-11 wild-type strain (R. Mercado-Lubo, E. J. Gauger, M. P. Leatham, T. Conway, and P. S. Cohen, Infect. Immun. 76:1128-1134, 2008). Furthermore, the ability to convert succinate to fumarate appeared to be required only after serovar Typhimurium SR-11 became systemic. In the present study, evidence is presented that serovar Typhimurium SR-11 mutants that cannot convert fumarate to malate or that cannot convert malate to both oxaloacetate and pyruvate are also avirulent and protective in BALB/c mice. These results suggest that in BALB/c mice, the malate that is removed from the TCA cycle in serovar Typhimurium SR-11 for conversion to pyruvate must be replenished by succinate or one of its precursors, e.g., arginine or ornithine, which might be available in mouse phagocytes.

  1. Metabolic Analysis of Wild-type Escherichia coli and a Pyruvate Dehydrogenase Complex (PDHC)-deficient Derivative Reveals the Role of PDHC in the Fermentative Metabolism of Glucose*

    PubMed Central

    Murarka, Abhishek; Clomburg, James M.; Moran, Sean; Shanks, Jacqueline V.; Gonzalez, Ramon

    2010-01-01

    Pyruvate is located at a metabolic junction of assimilatory and dissimilatory pathways and represents a switch point between respiratory and fermentative metabolism. In Escherichia coli, the pyruvate dehydrogenase complex (PDHC) and pyruvate formate-lyase are considered the primary routes of pyruvate conversion to acetyl-CoA for aerobic respiration and anaerobic fermentation, respectively. During glucose fermentation, the in vivo activity of PDHC has been reported as either very low or undetectable, and the role of this enzyme remains unknown. In this study, a comprehensive characterization of wild-type E. coli MG1655 and a PDHC-deficient derivative (Pdh) led to the identification of the role of PDHC in the anaerobic fermentation of glucose. The metabolism of these strains was investigated by using a mixture of 13C-labeled and -unlabeled glucose followed by the analysis of the labeling pattern in protein-bound amino acids via two-dimensional 13C,1H NMR spectroscopy. Metabolite balancing, biosynthetic 13C labeling of proteinogenic amino acids, and isotopomer balancing all indicated a large increase in the flux of the oxidative branch of the pentose phosphate pathway (ox-PPP) in response to the PDHC deficiency. Because both ox-PPP and PDHC generate CO2 and the calculated CO2 evolution rate was significantly reduced in Pdh, it was hypothesized that the role of PDHC is to provide CO2 for cell growth. The similarly negative impact of either PDHC or ox-PPP deficiencies, and an even more pronounced impairment of cell growth in a strain lacking both ox-PPP and PDHC, provided further support for this hypothesis. The three strains exhibited similar phenotypes in the presence of an external source of CO2, thus confirming the role of PDHC. Activation of formate hydrogen-lyase (which converts formate to CO2 and H2) rendered the PDHC deficiency silent, but its negative impact reappeared in a strain lacking both PDHC and formate hydrogen-lyase. A stoichiometric analysis of CO2

  2. Coordination of FocA and Pyruvate Formate-Lyase Synthesis in Escherichia coli Demonstrates Preferential Translocation of Formate over Other Mixed-Acid Fermentation Products

    PubMed Central

    Beyer, Lydia; Doberenz, Claudia; Falke, Dörte; Hunger, Doreen; Suppmann, Bernhard

    2013-01-01

    Enterobacteria such as Escherichia coli generate formate, lactate, acetate, and succinate as major acidic fermentation products. Accumulation of these products in the cytoplasm would lead to uncoupling of the membrane potential, and therefore they must be either metabolized rapidly or exported from the cell. E. coli has three membrane-localized formate dehydrogenases (FDHs) that oxidize formate. Two of these have their respective active sites facing the periplasm, and the other is in the cytoplasm. The bidirectional FocA channel translocates formate across the membrane delivering substrate to these FDHs. FocA synthesis is tightly coupled to synthesis of pyruvate formate-lyase (PflB), which generates formate. In this study, we analyze the consequences on the fermentation product spectrum of altering FocA levels, uncoupling FocA from PflB synthesis or blocking formate metabolism. Changing the focA translation initiation codon from GUG to AUG resulted in a 20-fold increase in FocA during fermentation and an ∼3-fold increase in PflB. Nevertheless, the fermentation product spectrum throughout the growth phase remained similar to that of the wild type. Formate, acetate, and succinate were exported, but only formate was reimported by these cells. Lactate accumulated in the growth medium only in mutants lacking FocA, despite retaining active PflB, or when formate could not be metabolized intracellularly. Together, these results indicate that FocA has a strong preference for formate as a substrate in vivo and not other acidic fermentation products. The tight coupling between FocA and PflB synthesis ensures adequate substrate delivery to the appropriate FDH. PMID:23335413

  3. Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT)

    PubMed Central

    De Vitis, Marco; Berardinelli, Francesco; Sgura, Antonella

    2018-01-01

    Eukaryotic cells undergo continuous telomere shortening as a consequence of multiple rounds of replications. During tumorigenesis, cells have to acquire telomere DNA maintenance mechanisms (TMMs) in order to counteract telomere shortening, to preserve telomeres from DNA damage repair systems and to avoid telomere-mediated senescence and/or apoptosis. For this reason, telomere maintenance is an essential step in cancer progression. Most human tumors maintain their telomeres expressing telomerase, whereas a lower but significant proportion activates the alternative lengthening of telomeres (ALT) pathway. However, evidence about the coexistence of ALT and telomerase has been found both in vivo in the same cancer populations and in vitro in engineered cellular models, making the distinction between telomerase- and ALT-positive tumors elusive. Indeed, after the development of drugs able to target telomerase, the capability for some cancer cells to escape death, switching from telomerase to ALT, was highlighted. Unfortunately, to date, the mechanism underlying the possible switching or the coexistence of telomerase and ALT within the same cell or populations is not completely understood and different factors could be involved. In recent years, different studies have tried to shed light on the complex regulation network that controls the transition between the two TMMs, suggesting a role for embryonic cancer origin, epigenetic modifications, and specific genes activation—both in vivo and in vitro. In this review, we examine recent findings about the cancer-associated differential activation of the two known TMMs and the possible factors implicated in this process. Furthermore, some studies on cancers are also described that did not display any TMM. PMID:29463031

  4. Distribution of the Pyruvate Dehydrogenase Complex in Developing Soybean Cotyledons

    USDA-ARS?s Scientific Manuscript database

    The somewhat surprising report that storage proteins and oil are non-uniformly distributed in the cotyledons of developing soybeans prompted us to determine the spatial distribution of the mitochondrial and plastidial forms of the pyruvate dehydrogenase complex (PDC). It has been proposed that pla...

  5. Prevalence of epilepsy and seizure disorders as causes of apparent life- threatening event (ALTE) in children admitted to a tertiary hospital.

    PubMed

    Anjos, Alessandra Marques dos; Nunes, Magda Lahorgue

    2009-09-01

    To determine the prevalence and describe clinical characteristics of seizure disorders and epilepsy as causes of apparent life- threatening event (ALTE) in children admitted at the emergency and followed in a tertiary hospital. Cross-sectional study with prospective data collection using specific guidelines to determine the etiology of ALTE. During the study, 30 (4.2%) children admitted to the hospital had a diagnosis of ALTE. There was a predominance of males (73%) and term infants (70%). Neonatal neurological disorders and neuropsychomotor development delay were found respectively in 13.4% and 10% of the cases. Etiological investigation revealed that 50% of the cases were idiopathic, and 13.4% were caused by epilepsy or seizure disorders. Although all patients had recurrent ALTE events, epilepsy had not been previously suspected. Epilepsy should be included in the differential diagnosis of ALTE, particularly when events are recurrent.

  6. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate.

    PubMed

    Halestrap, A P; Denton, R M

    1974-02-01

    alpha-Cyano-4-hydroxycinnamate greatly inhibits the transport of pyruvate but not that of acetate or butyrate in liver mitochondria and erythrocytes. In the latter, lactate uptake is also inhibited. It is concluded that a specific carrier is involved in membrane transport of pyruvate and that the plasma-membrane carrier may also be involved in lactate transport.

  7. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency

    PubMed Central

    Hixon, Jeff; Kosinski, Penelope A.; Cianchetta, Giovanni; Histen, Gavin; Chen, Yue; Hill, Collin; Gross, Stefan; Si, Yaguang; Johnson, Kendall; DeLaBarre, Byron; Luo, Zhiyong; Gu, Zhiwei; Yao, Gui; Tang, Huachun; Fang, Cheng; Xu, Yingxia; Lv, Xiaobing; Biller, Scott; Su, Shin-San Michael; Yang, Hua; Popovici-Muller, Janeta; Salituro, Francesco; Silverman, Lee; Dang, Lenny

    2017-01-01

    Pyruvate kinase (PK) deficiency is a rare genetic disease that causes chronic hemolytic anemia. There are currently no targeted therapies for PK deficiency. Here, we describe the identification and characterization of AG-348, an allosteric activator of PK that is currently in clinical trials for the treatment of PK deficiency. We demonstrate that AG-348 can increase the activity of wild-type and mutant PK enzymes in biochemical assays and in patient red blood cells treated ex vivo. These data illustrate the potential for AG-348 to restore the glycolytic pathway activity in patients with PK deficiency and ultimately lead to clinical benefit. PMID:28760888

  8. Approach & Landing Test (ALT) - Shuttle Free-Flight (FF)-2, News Release

    NASA Image and Video Library

    1977-09-13

    S77-28138 (13 Sept 1977) --- The shuttle Orbiter 101 "Enterprise" makes a slight turn and bank maneuver during the second free flight of the Shuttle Approach and Landing Tests (ALT) conducted on September 13, 1977, at the Dryden Flight Research Center in Southern California. The "Enterprise" separated from the NASA 747 carrier aircraft and landed following a five-minute, 28-second unpowered flight. The Orbiter 101 crew was astronauts Joe H. Engle, commander, and Richard H. Truly, pilot. The ALT free flights are designed to verify orbiter subsonic airworthiness, integrated systems operations and pilot-guided approach and landing capability and satisfy prerequisites to automatic flight control and navigation mode. The orbiter soars above the dry California desert in this post-separation view. Astronaut C. Gordon Fullerton took this picture while riding in T-38 chase plane number one. He used a 35mm Nikon camera with a 50mm lens.

  9. An X-ray structural study of pyruvate dehydrogenase kinase: A eukaryotic serine kinase with a prokaryotic histidine-kinase fold

    NASA Astrophysics Data System (ADS)

    Steussy, Calvin Nicklaus, Jr.

    2001-07-01

    Pyruvate Dehydrogenase Kinase is an enzyme that controls the flow of glucose through the eukaryotic cell and contributes to the pathology of diabetes mellitus. Early work on this kinase demonstrated that it has an amino acid sequence much like bacterial histidine kinases, but an activity similar to that of modern serine/threonine kinases. This project utilized the techniques of X-ray crystallography to determine molecular structure of pyruvate dehydrogenase kinase, isozyme 2. The structure was phased using selenium substituted for sulfur in methionine residues, and data at multiple wavelengths was collected at the National Synchrotron Light Source, Brookhaven National Laboratories. PDK 2 was found to fold into a two-domain monomer that forms a dimer through two beta sheets in the C-terminal domain. The N-terminal domain is an alpha-helical bundle while the C-terminal domain is an alpha/beta sandwich. The fold of the C-terminal domain is very similar to that of the prokaryotic histidine kinases, indicating that they share a common ancestor. The catalytic mechanism, however, has evolved to use general base catalysis to activate the serine substrate, rather than the direct nucleophilic attack by the imidazole sidechain used in the prokaryotic kinases. Thus, the structure of the protein echoes its prokaryotic ancestor, while the chemical mechanism has adapted to a serine substrate. The electrostatic surface of PDK2 leads to the suggestion that the lipoyl domain of the pyruvate dehydrogenase kinase, an important associated structure, may bind in the cleft formed between the N- and C-terminal domains. In addition, a network of hydrogen bonds directly connects the nucleotide binding pocket to the dimer interface, suggesting that there may be some interaction between dimer formation and ATP binding or ADP release.

  10. The major Alternaria alternata allergen, Alt a 1: A reliable and specific marker of fungal contamination in citrus fruits.

    PubMed

    Gabriel, M F; Uriel, N; Teifoori, F; Postigo, I; Suñén, E; Martínez, J

    2017-09-18

    The ubiquitously present spores of Alternaria alternata can spoil a wide variety of foodstuffs, including a variety of fruits belonging to the Citrus genus. The major allergenic protein of A. alternata, Alt a 1, is a species-specific molecular marker that has been strongly associated with allergenicity and phytopathogenicity of this fungal species. This study aimed to evaluate the potential of the detection of Alt a 1 as a reliable indicator of A. alternata contamination in citrus fruits. To accomplish this aim, sixty oranges were artificially infected with a spore suspension of A. alternata. Internal fruit material was collected at different incubation times (one, two and three weeks after the fungal inoculation) and used for both total RNA extraction and protein extraction. Alt a 1 detection was then performed by polymerase chain reaction (PCR) amplification using Alt a 1 specific primers and by enzyme-linked immunosorbent assay (ELISA). The experimental model presented in this work was effective to simulate the typical Alternaria black rot phenotype and its progression. Although both PCR and ELISA techniques have been successfully carried out for detecting Alt a 1 allergen in A. alternata infected oranges, the PCR method was found to be more sensitive than ELISA. Nevertheless, ELISA results were highly valuable to demonstrate that considerable amounts of Alt a 1 are produced during A. alternata fruit infection process, corroborating the recently proposed hypothesis that this protein plays a role in the pathogenicity and virulence of Alternaria species. Such evidence suggests that the detection of Alt a 1 by PCR-based assay may be used as a specific indicator of the presence of pathogenic and allergenic fungal species, A. alternata, in fruits. This knowledge can be employed to control the fungal infection and mitigate agricultural losses as well as human exposure to A. alternata allergens and toxins. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Poly(Lactic Acid) Blends with Poly(Trimethylene Carbonate) as Biodegradable Medical Adhesive Material

    PubMed Central

    Zhang, Shuang; Li, Hongli; Yuan, Mingwei; Yuan, Minglong; Chen, Haiyun

    2017-01-01

    A novel medical adhesive was prepared by blending poly(lactic acid) (PLA) with poly(trimethylene carbonate) (PTMC) in ethyl acetate, and the two materials were proven to be biodegradable and biocompatible. The medical adhesive was characterized by 1H nuclear magnetic resonance (1HNMR), gel permeation chromatography (GPC), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The water vapor transmission rate (WVTR) of this material was measured to be 7.13 g·cm−2·24 h−1. Its degree of comfortability was confirmed by the extensibility (E) and the permanent set (PS), which were approximately 7.83 N·cm−2 and 18.83%, respectively. In vivo tests regarding rabbit immunoglobulin M (IgM), rabbit immunoglobulin G (IgG), rabbit bone alkaline phosphatase (BALP), rabbit interleukin 6 (IL-6), rabbit interleukin 10 (IL-10), rabbit tumor necrosis factor α(TNFα), glutamic-oxaloacetic transaminase (AST/GOT), glutamic-pyruvic transaminase (ALT/GPT), alkaline phosphatase (AKP), blood urea nitrogen (BUN) and creatinine (Cr) indicated that the PLA-PTMC medical adhesive was not harmful to the liver and kidneys. Finally, pathological sections indicated that PLA-PTMC was more effective than the control group. These data suggest that in addition to having a positive effect on hemostasis and no sensibility to wounds, PLA-PTMC can efficiently prevent infections and has great potential as a medical adhesive. PMID:28956808

  12. Changes in pyruvate metabolism detected by magnetic resonance imaging are linked to DNA damage and serve as a sensor of temozolomide response in glioblastoma cells

    PubMed Central

    Park, Ilwoo; Mukherjee, Joydeep; Ito, Motokazu; Chaumeil, Myriam M.; Jalbert, Llewellyn E.; Gaensler, Karin; Ronen, Sabrina M.; Nelson, Sarah J.; Pieper, Russell O.

    2014-01-01

    Recent findings show that exposure to temozolomide (TMZ), a DNA damaging drug used to treat glioblastoma, can suppress the conversion of pyruvate to lactate. To understand the mechanistic basis for this effect and its potential utility as a TMZ response biomarker, we compared the response of isogenic glioblastoma cell populations differing only in expression of the DNA repair protein MGMT, a TMZ-sensitivity determinant, after exposure to TMZ in vitro and in vivo. Hyperpolarized [1-(13)C]-pyruvate-based magnetic resonance imaging was used to monitor temporal effects on pyruvate metabolism in parallel with DNA damage responses and tumor cell growth. TMZ exposure decreased conversion of pyruvate to lactate only in MGMT-deficient cells. This effect coincided temporally with TMZ-induced increases in levels of the DNA damage response protein pChk1. Changes in pyruvate to lactate conversion triggered by TMZ preceded tumor growth suppression and were not associated with changes in levels of NADH or lactate dehydrogenase activity in tumors. Instead, they were associated with a TMZ-induced decrease in the expression and activity of pyruvate kinase PKM2, a glycolytic enzyme that indirectly controls pyruvate metabolism. PKM2 silencing decreased pyruvate kinase activity, intracellular lactate levels, and conversion of pyruvate to lactate in the same manner as TMZ, and Chk1 silencing blocked the TMZ-induced decrease in PKM2 expression. Overall, our findings showed how TMZ-induced DNA damage is linked through PKM2 to changes in pyruvate metabolism, and how these changes can be exploited by magnetic resonance imaging methods as an early sensor of TMZ therapeutic response. PMID:25320009

  13. The adenosine triphosphate inhibition of the pyruvate kinase reaction and its dependence on the total magnesium ion concentration

    PubMed Central

    Holmsen, Holm; Storm, Eva

    1969-01-01

    1. The effects of ATP, PPi and EDTA on the skeletal-muscle pyruvate kinase reaction at various concentrations of magnesium (where `magnesium' refers to total Mg2+, both free and in the form of complexes) were investigated. The reaction rate was determined as the amount of pyruvate formed in a recorded time of incubation. 2. At 44mm-magnesium the Km values for ADP and phosphoenolpyruvate were unaltered by the presence of ATP up to 6·8mm in systems buffered with either tris–hydrochloric acid or glycylglycine–sodium hydroxide, but the Km values were different in these systems. The Km for one substrate was independent of the concentration of the second substrate. 3. At 10mm-magnesium in the tris–hydrochloric acid system ATP inhibited the reaction competitively with respect to ADP and phosphoenolpyruvate. In the glycylglycine–sodium hydroxide system the inhibition appeared to be non-competitive. At 10mm-magnesium the Km values were lower than at 44mm-magnesium and dependent on the system used. 4. In the tris–hydrochloric acid system the reaction rate rose with increasing magnesium concentration up to a maximum at a concentration 10–20 times that of ADP. Further increase inhibited the reaction and at 44mm-magnesium the rate was 25–50% of its maximum. This inhibition paralleled that produced by increasing trimethylammonium chloride concentrations and was not due to a specific effect of the Mg2+ ion. 5. In the presence of 6·8mm-ATP no reaction occurred below 4–6mm-magnesium, and further increase apparently abolished the inhibition as the reaction rate increased and became equal to those obtained in the absence of ATP at 10–25mm-magnesium. Further increase in magnesium concentration gave reaction rates that were slightly higher in the presence of ATP than in its absence. The maximal rate in the presence of ATP was distinctly lower than in its absence. When 6·8mm-PPi or 6·8mm-EDTA was present the variations in reaction rate with rising magnesium

  14. 1H-NMR and Hyperpolarized 13C-NMR Assays of Pyruvate-Lactate Exhange: a comparative study

    PubMed Central

    Orton, Matthew R.; Tardif, Nicolas; Parkes, Harold G.; Robinson, Simon P.; Leach, Martin O.; Chung, Yuen-Li; Eykyn, Thomas R.

    2015-01-01

    Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. Measurement of exchange kinetics using hyperpolarized 13C NMR has provided a biomarker of response to novel therapeutics. In this study we investigated an alternative in vitro 1H assay, using [3-13C]pyruvate, and compared the measured kinetics with a hyperpolarized 13C-NMR assay, using [1-13C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL = 0.506 ± 0.054 and kPL = 0.441 ± 0.090 nmol/s/106 cells, (mean ± standard deviation, n = 3); 1H, 13C assays respectively). The apparent backward reaction rate constant (kLP) could only be measured with good reproducibility using the 1H-NMR assay (kLP = 0.376 ± 0.091 nmol/s/106 cells, (mean ± standard deviation, n = 3)). The 1H-NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity. PMID:23712817

  15. The relationship between intracranial pressure and lactate/pyruvate ratio in patients with subarachnoid haemorrhage.

    PubMed

    Cesak, T; Adamkov, J; Habalova, J; Poczos, P; Kanta, M; Bartos, M; Hosszu, T

    2018-01-01

    The aim of this study was to analyse the relationship between intracranial pressure (intracranial pressure monitoring) and lactate pyruvate ratio (cerebral microdialysis) in patients with ruptured intracranial aneurysms. In a group of fifteen patients, intracranial pressure and lactate/pyruvate ratios were measured and logged in hourly intervals. The relationship between these two variables was subsequently analysed in two ways. 1) Intracranial hypertension (ICP > 20 mmHg) in the presence of energy deprivation (L/P ratio > 30) was noted. 2) The dynamics of L/P ratio changes in relation to immediate ICP and CPP values was analysed. Out of a total of 1873 monitored hours we were able to record lactate/pyruvate ratios higher than 30 in 832 hours (44 %). Of those 832 hours during which lactate/pyruvate ratios were higher than 30, ICP was higher than 20 in 193 hours (23 %). Out of 219 hours of monitoring, in which ICP was higher than 20, a simultaneously increased L/P ratio higher than 30 was recorded in 193 hours (88 %). L/P ratio values above 30 were associated with decreased CPP values (p = 0.04), but not with increased ICP values (p = 0.79). Intracranial hypertension coincides with energetic imbalance in approximately one quarter of cases. This points to the shortcomings of the most common form of neuromonitoring in SAH patients - ICP monitoring. This method may not be reliable enough in detecting hypoxic damage, which is the major cause of morbidity and mortality in SAH patients (Fig. 5, Ref. 11).

  16. Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein 1 (PP1), from Cucurbita maxima.

    PubMed

    Clark, A M; Jacobsen, K R; Bostwick, D E; Dannenhoffer, J M; Skaggs, M I; Thompson, G A

    1997-07-01

    Sieve elements in the phloem of most angiosperms contain proteinaceous filaments and aggregates called P-protein. In the genus Cucurbita, these filaments are composed of two major proteins: PP1, the phloem filament protein, and PP2, the phloem lactin. The gene encoding the phloem filament protein in pumpkin (Cucurbita maxima Duch.) has been isolated and characterized. Nucleotide sequence analysis of the reconstructed gene gPP1 revealed a continuous 2430 bp protein coding sequence, with no introns, encoding an 809 amino acid polypeptide. The deduced polypeptide had characteristics of PP1 and contained a 15 amino acid sequence determined by N-terminal peptide sequence analysis of PP1. The sequence of PP1 was highly repetitive with four 200 amino acid sequence domains containing structural motifs in common with cysteine proteinase inhibitors. Expression of the PP1 gene was detected in roots, hypocotyls, cotyledons, stems, and leaves of pumpkin plants. PP1 and its mRNA accumulated in pumpkin hypocotyls during the period of rapid hypocotyl elongation after which mRNA levels declined, while protein levels remained elevated. PP1 was immunolocalized in slime plugs and P-protein bodies in sieve elements of the phloem. Occasionally, PP1 was detected in companion cells. PP1 mRNA was localized by in situ hybridization in companion cells at early stages of vascular differentiation. The developmental accumulation and localization of PP1 and its mRNA paralleled the phloem lactin, further suggesting an interaction between these phloem-specific proteins.

  17. Approach & Landing Test (ALT) - Shuttle Free-Flight (FF)-2 - New Release

    NASA Image and Video Library

    1977-09-13

    S77-28141 (13 Sept 1977) --- The shuttle Orbiter 101 "Enterprise" makes a slight turn and bank maneuver during the second free flight of the Shuttle Approach and Landing Tests (ALT) conducted on September 13, 1977, at the Dryden Flight Research Center in Southern California. The "Enterprise" separated from the NASA 747 carrier aircraft and landed following a five-minute, 28-second unpowered flight. The Orbiter 101 crew was astronauts Joe H. Engle, commander, and Richard H. Truly, pilot. The ALT free flights are designed to verify orbiter subsonic airworthiness, integrated systems operations and pilot-guided approach and landing capability and satisfy prerequisites to automatic flight control and navigation mode. The orbiter soars above the dry California desert in this post-separation view. Photographer Bill Blunck of JSC's Photographic Technology Laboratory took this picture while riding in T-38 chase plane number two. He used a 70mm Hasselblad camera with an 80mm lens.

  18. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants.

    PubMed

    Manitchotpisit, Pennapa; Bischoff, Kenneth M; Price, Neil P J; Leathers, Timothy D

    2013-05-01

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Four bacterial strains, designated as ALT3A, ALT3B, ALT17, and MR1, produced inhibitory effects on growth of LAB. Sequencing of rRNA identified these strains as species of Bacillus subtilis (ALT3A and ALT3B) and B. cereus (ALT17 and MR1). Cell mass from colonies and agar samples from inhibition zones were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The spectra of ALT3A and ALT3B showed a strong signal at m/z 1,060, similar in mass to the surfactin family of antimicrobial lipopeptides. ALT3A and ALT3B were analyzed by zymogram analysis using SDS-PAGE gels placed on agar plates inoculated with LAB. Cell lysates possessed an inhibitory protein of less than 10 kDa, consistent with the production of an antibacterial lipopeptide. Mass spectra of ALT17 and MR1 had notable signals at m/z 908 and 930 in the whole cell extracts and at m/z 687 in agar, but these masses do not correlate with those of previously reported antibacterial lipopeptides, and no antibacterial activity was detected by zymogram. The antibacterial activities produced by these strains may have application in the fuel ethanol industry as an alternative to antibiotics for prevention and control of bacterial contamination.

  19. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg Effect and colon cancer cell growth

    PubMed Central

    Schell, John C.; Olson, Kristofor A.; Jiang, Lei; Hawkins, Amy J.; Van Vranken, Jonathan G.; Xie, Jianxin; Egnatchik, Robert A.; Earl, Espen G.; Deberardinis, Ralph J.; Rutter, Jared

    2014-01-01

    Summary Cancer cells are typically subject to profound metabolic alterations, including the Warburg effect wherein cancer cells oxidize a decreased fraction of the pyruvate generated from glycolysis. We show herein that the mitochondrial pyruvate carrier (MPC), composed of the products of the MPC1 and MPC2 genes, modulates fractional pyruvate oxidation. MPC1 is deleted or underexpressed in multiple cancers and correlates with poor prognosis. Cancer cells re-expressing MPC1 and MPC2 display increased mitochondrial pyruvate oxidation, with no changes in cell growth in adherent culture. MPC re-expression exerted profound effects in anchorage-independent growth conditions, however, including impaired colony formation in soft agar, spheroid formation, and xenograft growth. We also observed a decrease in markers of stemness and traced the growth effects of MPC expression to the stem cell compartment. We propose that reduced MPC activity is an important aspect of cancer metabolism, perhaps through altering the maintenance and fate of stem cells. PMID:25458841

  20. Cassava root diet induces low pyruvate levels.

    PubMed

    Golay, Van K

    2010-01-01

    The high cyanogenic-glucoside carbohydrate of the cassava root (Manihot esculenta) has special properties that make it an ideal therapeutic food for lowering nicotinamide adenine dinucleotide reduced form (NADH) and inducing Sirtuin (Sirt) gene overexpression when eaten in an exclusive mono-food diet regime. The author, using himself as the sole test subject, repeatedly induced low pyruvate levels (reflective of NADH levels) after being on the diet for 1-2 weeks at a time. The possible influences of exclusive cassava dieting on redox control and Sirtuin activation will be discussed.

  1. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  2. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  3. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  4. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  5. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  6. Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans.

    PubMed

    Kwak, Min-Kyu; Ku, MyungHee; Kang, Sa-Ouk

    2018-01-01

    High methylglyoxal content disrupts cell physiology, but mammals have scavengers to prevent glycolytic and mitochondrial dysfunctions. In yeast, methylglyoxal accumulation triggers methylglyoxal-oxidizing alcohol dehydrogenase (Adh1) activity. While methylglyoxal reductases and glyoxalases have been well studied in prokaryotes and eukaryotes, experimental evidence for methylglyoxal dehydrogenase (Mgd) and other catalytic activities of this enzyme affecting glycolysis and the tricarboxylic acid cycle is lacking. A glycine-rich cytoplasmic Mgd protein, designated as Mgd1/Grp2, was isolated from glutathione-depleted Candida albicans. The effects of Mgd1/Grp2 activities on metabolic pathophysiology were investigated using knockout and overexpression mutants. We measured glutathione-(in)dependent metabolite contents and metabolic effects, including viability, oxygen consumption, ADH1 transcripts, and glutathione reductase and α-ketoglutarate dehydrogenase activities in the mutants. Based on the findings, methylglyoxal-oxidizing proteins were monitored to determine effects of MGD1/GRP2 disruption on methylglyoxal-scavenging traits during glutathione deprivation. Methylglyoxal-oxidizing NAD(H)-linked Mgd1/Grp2 was found solely in glutathione auxotrophs, and it catalyzed the reduction of both methylglyoxal and pyruvate. MGD1/GRP2 disruptants showed growth defects, cell-cycle arrest, and methylglyoxal and pyruvate accumulation with mitochondrial impairment, regardless of ADH1 compensation. Other methylglyoxal-oxidizing enzymes were identified as key glycolytic enzymes with enhanced activity and transcription in MGD1/GRP2 disruptants, irrespective of glutathione content. Failure of methylglyoxal and pyruvate dissimilation by Mgd1/Grp2 deficiency leads to poor glutathione-dependent redox regulation despite compensation by Adh1. This is the first report that multifunctional Mgd activities contribute to scavenging methylglyoxal and pyruvate to maintain metabolic homeostasis

  7. Biomaterial properties evaluation of poly(vinyl acetate- alt-maleic anhydride)/chitosan nanocapsules

    NASA Astrophysics Data System (ADS)

    Raţă, Delia Mihaela; Popa, Marcel; Chailan, Jean-François; Zamfir, Carmen Lăcrămioara; Peptu, Cătălina Anişoara

    2014-08-01

    Nanocapsules with diameter around 100 nm based on a natural polymer (chitosan) and a synthetic polymer poly(vinyl acetate- alt-maleic anhydride) [poly(MAVA)] by interfacial condensation method were prepared. The present study proposes a new type of biocompatible nanocapsules based on poly(vinyl acetate- alt-maleic anhydride-chitosan) (MCS) able to become a reliable support for inclusion and release of drugs. The spherical shape of the nanocapsules was evidenced by scanning electron microscopy. Nanocapsules presented a good Norfloxacin loading and release capacity. Haemocompatibility tests have demonstrated that the nanocapsules present a low toxicity and a good compatibility with sanguine medium. The biocompatibility properties of the nanocapsules after their intraperitoneal administration in rats were evidenced by histopathological examination of different organs (brain, liver, kidney, and lung). The results are encouraging and the nanocapsules can be used as controlled drug delivery systems.

  8. Insulin resistance and alanine amino transaminase (ALT) levels in first degree relatives of type 2 diabetes mellitus.

    PubMed

    Kuzhandai velu, V; Jyothirmayi, B; Kumar, J S

    2011-01-01

    Insulin resistance is established as an independent predictor of a range of disorders such as obesity, hypertension, dyslipidemia, type 2 diabetes mellitus and atherosclerotic cardiovascular diseases. There is an association of hyperinsulinemia with hypertriglycerdemia, low level of HDL and high level of LDL. In nonalcoholic fatty liver disease, there is an elevation of ALT, raising the possibility that the prospective relationship between ALT and type 2 diabetes may reflect cross-sectional associations with insulin resistance or obesity. To find the significance of insulin resistance and alanine aminotransferase level in first degree relatives of type 2 diabetes mellitus. The study included 50 first degree relatives of type 2 diabetes (25 men and 25 women) aged 20-60 years and 30 control of similar age. All cases were taken from SRM Medical College Hospital and Research Centre, Chennai. All the cases were analyzed for HOMA(IR), QUICKI, IR ratio, fasting glucose, insulin (ELISA), lipid profile and alanine aminotransferase. Student's 't' test was applied for statistical analysis. The data show the significance of insulin resistance (HOMA(IR)) (2.76±1.46, 1.35±0.8, p<0.001) in the first degree relatives of type 2 diabetes mellitus when compared with controls respectively and increased level fasting plasma insulin (12.28±6.16, 6.12±3.04, p<0.001). In the lipid profile the total cholesterol and TAG are significant. No statistical significance was found in ALT (24.8±9.84, 20.08±11.02). Results of the study conclude that there is a high prevalence of insulin resistance in the first degree relatives of type 2 diabetes mellitus. ALT levels in the first degree relatives of type 2 diabetes mellitus had increased levels of insulin resistance, the pathogenesis suggesting increase in ALT levels as seen in insulin resistance condition. In our study, ALT was not statistically significant. Copyright © 2012 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  9. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Pyruvate kinase (PK) deficiency in newborns: the pitfalls of diagnosis.

    PubMed

    Pissard, Serge; de Montalembert, Mariane; Bachir, Dora; Max-Audit, Isabelle; Goossens, Michel; Wajcman, Henri; Bader-Meunier, Brigitte

    2007-04-01

    Pyruvate kinase (PK) deficiency is asymptomatic in heterozygotes, but it can lead in homozygous neonates to a severe neonatal hemolysis, sometimes life-threatening. We report five cases, with a 1- to 17-month delayed diagnosis, highlighting the need to measure PK activity in neonates and parents in case of an hemolysis at birth.

  11. Creatine and creatine pyruvate reduce hypoxia-induced effects on phrenic nerve activity in the juvenile mouse respiratory system.

    PubMed

    Scheer, Monika; Bischoff, Anna M; Kruzliak, Peter; Opatrilova, Radka; Bovell, Douglas; Büsselberg, Dietrich

    2016-08-01

    Adequate concentrations of ATP are required to preserve physiological cell functions and protect tissue from hypoxic damage. Decreased oxygen concentration results in ATP synthesis relying increasingly on the presence of phosphocreatine. The lack of ATP through hypoxic insult to neurons that generate or regulate respiratory function, would lead to the cessation of breathing (apnea). It is not clear whether creatine plays a role in maintaining respiratory phrenic nerve (PN) activity during hypoxic challenge. The aim of the study was to test the effects of exogenously applied creatine or creatine pyruvate in maintaining PN induced respiratory rhythm against the deleterious effects of severe hypoxic insult using Working Heart-Brainstem (WHB) preparations of juvenile Swiss type mice. WHB's were perfused with control perfusate or perfusate containing either creatine [100μM] or creatine pyruvate [100μM] prior to hypoxic challenge and PN activity recorded throughout. Results showed that severe hypoxic challenge resulted in an initial transient increase in PN activity, followed by a reduction in that activity leading to respiratory apnea. The results demonstrated that perfusing the WHB preparation with creatine or creatine pyruvate, significantly reduced the onset of apnea compared to control conditions, with creatine pyruvate being the more effective substance. Overall, creatine and creatine pyruvate each produced time-dependent degrees of protection against severe hypoxic-induced disturbances of PN activity. The underlying protective mechanisms are unknown and need further investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.

    PubMed

    Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I

    2009-07-01

    In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.

  13. Distinct cytoprotective roles of pyruvate and ATP by glucose metabolism on epithelial necroptosis and crypt proliferation in ischaemic gut

    PubMed Central

    Huang, Ching‐Ying; Kuo, Wei‐Ting; Huang, Chung‐Yen; Lee, Tsung‐Chun; Chen, Chin‐Tin; Peng, Wei‐Hao; Lu, Kuo‐Shyan; Yang, Chung‐Yi

    2016-01-01

    Key points Intestinal ischaemia causes epithelial death and crypt dysfunction, leading to barrier defects and gut bacteria‐derived septic complications.Enteral glucose protects against ischaemic injury; however, the roles played by glucose metabolites such as pyruvate and ATP on epithelial death and crypt dysfunction remain elusive.A novel form of necrotic death that involves the assembly and phosphorylation of receptor interacting protein kinase 1/3 complex was found in ischaemic enterocytes.Pyruvate suppressed epithelial cell death in an ATP‐independent manner and failed to maintain crypt function. Conversely, replenishment of ATP partly restored crypt proliferation but had no effect on epithelial necroptosis in ischaemic gut.Our data argue against the traditional view of ATP as the main cytoprotective factor by glucose metabolism, and indicate a novel anti‐necroptotic role of glycolytic pyruvate under ischaemic stress. Abstract Mesenteric ischaemia/reperfusion induces epithelial death in both forms of apoptosis and necrosis, leading to villus denudation and gut barrier damage. It remains unclear whether programmed cell necrosis [i.e. receptor‐interacting protein kinase (RIP)‐dependent necroptosis] is involved in ischaemic injury. Previous studies have demonstrated that enteral glucose uptake by sodium‐glucose transporter 1 ameliorated ischaemia/reperfusion‐induced epithelial injury, partly via anti‐apoptotic signalling and maintenance of crypt proliferation. Glucose metabolism is generally assumed to be cytoprotective; however, the roles played by glucose metabolites (e.g. pyruvate and ATP) on epithelial cell death and crypt dysfunction remain elusive. The present study aimed to investigate the cytoprotective effects exerted by distinct glycolytic metabolites in ischaemic gut. Wistar rats subjected to mesenteric ischaemia were enterally instilled glucose, pyruvate or liposomal ATP. The results showed that intestinal ischaemia caused RIP1

  14. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    PubMed Central

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  15. Metabolic markers and ALT cutoff level for diagnosing nonalcoholic fatty liver disease: a community-based cross-sectional study.

    PubMed

    Miyake, Teruki; Kumagi, Teru; Hirooka, Masashi; Koizumi, Mitsuhito; Furukawa, Shinya; Ueda, Teruhisa; Tokumoto, Yoshio; Ikeda, Yoshio; Abe, Masanori; Kitai, Kohichiro; Hiasa, Yoichi; Matsuura, Bunzo; Onji, Morikazu

    2012-06-01

    Untreated nonalcoholic fatty liver disease (NAFLD) may progress to liver cirrhosis or failure and is associated with the development of hepatocellular carcinoma, diabetes, and cardiovascular disease. It is therefore essential to diagnose and treat NAFLD at an early stage. To assist in this effort, this retrospective study explored the risk factors for NAFLD, and derived new surrogates, a revised alanine aminotransferase (ALT) cutoff level and a novel NAFLD index, to identify previously undiagnosed cases of NAFLD. Using a community-based, cross-sectional design, the records of 6,370 Japanese subjects who had undergone at least 1 annual health check-up were reviewed for the identification of subjects meeting the diagnostic criteria for NAFLD and the variables associated with NAFLD for the estimation of ideal ALT cutoff levels. The results of multivariate analysis of the 1,346 subjects who met the diagnostic criteria for NAFLD confirmed that metabolic disease markers and a novel NAFLD index, using the variables derived from multivariate analysis, were also markers of NAFLD. The ALT cutoff levels for NAFLD diagnosis were estimated at 25 U/L for males and 17 U/L for females. ALT level and the novel NAFLD index were confirmed to be surrogate markers for NAFLD in addition to metabolic disease markers. The ALT cutoff level used in NAFLD diagnosis should be revised downward to identify subjects at risk of NAFLD to prevent NAFLD progression and the development of associated diseases.

  16. CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism.

    PubMed

    Menazza, Sara; Wong, Renee; Nguyen, Tiffany; Wang, Guanghui; Gucek, Marjan; Murphy, Elizabeth

    2013-03-01

    Cyclophilin D (CypD) is a mitochondrial chaperone that has been shown to regulate the mitochondrial permeability transition pore (MPTP). MPTP opening is a major determinant of mitochondrial dysfunction and cardiomyocyte death during ischemia/reperfusion (I/R) injury. Mice lacking CypD have been widely used to study regulation of the MPTP, and it has been shown recently that genetic depletion of CypD correlates with elevated levels of mitochondrial Ca(2+). The present study aimed to characterize the metabolic changes in CypD(-/-) hearts. Initially, we used a proteomics approach to examine protein changes in CypD(-/-) mice. Using pathway analysis, we found that CypD(-/-) hearts have alterations in branched chain amino acid metabolism, pyruvate metabolism and the Krebs cycle. We tested whether these metabolic changes were due to inhibition of electron transfer from these metabolic pathways into the electron transport chain. As we found decreased levels of succinate dehydrogenase and electron transfer flavoprotein in the proteomics analysis, we examined whether activities of these enzymes might be altered. However, we found no alterations in their activities. The proteomics study also showed a 23% decrease in carnitine-palmitoyltransferase 1 (CPT1), which prompted us to perform a metabolomics analysis. Consistent with the decrease in CPT1, we found a significant decrease in C4/Ci4, C5-OH/C3-DC, C12:1, C14:1, C16:1, and C20:3 acyl carnitines in hearts from CypD(-/-) mice. In summary, CypD(-/-) hearts exhibit changes in many metabolic pathways and caution should be used when interpreting results from these mice as due solely to inhibition of the MPTP. Published by Elsevier Ltd.

  17. The high-resolution structure of dihydrodipicolinate synthase from Escherichia coli bound to its first substrate, pyruvate

    PubMed Central

    Devenish, Sean R. A.; Gerrard, Juliet A.; Jameson, Geoffrey B.; Dobson, Renwick C. J.

    2008-01-01

    Dihydrodipicolinate synthase (DHDPS) mediates the key first reaction common to the biosynthesis of (S)-lysine and meso-diaminopimelate, molecules which play a crucial cross-linking role in bacterial cell walls. An effective inhibitor of DHDPS would represent a useful antibacterial agent; despite extensive effort, a suitable inhibitor has yet to be found. In an attempt to examine the specificity of the active site of DHDPS, the enzyme was cocrystallized with the substrate analogue oxaloacetate. The resulting crystals diffracted to 2.0 Å resolution, but solution of the protein structure revealed that pyruvate was bound in the active site rather than oxaloacetic acid. Kinetic analysis confirmed that the decarboxy­lation of oxaloacetate was not catalysed by DHDPS and was instead a slow spontaneous chemical process. PMID:19052357

  18. Characterisation of a thiamine diphosphate-dependent alpha-keto acid decarboxylase from Proteus mirabilis JN458.

    PubMed

    Wang, Biying; Bai, Yajun; Fan, Taiping; Zheng, Xiaohui; Cai, Yujie

    2017-10-01

    Alpha-keto acid decarboxylases can convert keto acids to their corresponding aldehydes, which are often volatile aroma compounds. The gene encoding α-keto acid decarboxylase in Proteus mirabilis JN458 was cloned, and the enzyme overexpressed in Escherichia coli BL21 (DE3), purified in high yield, and characterised. The molecular weight is 62.291kDa by MALDI-TOF MS, and optimum activity at pH 6.0 and 40-50°C. The enzyme is a typical decarboxylase, dependent on thiamine diphosphate and Mg 2+ as cofactors. For the decarboxylation reaction, the enzyme displayed a broad substrate range. Kinetic parameters were determined using 4-methyl-2-oxopentanoic acid, phenyl pyruvate and 3-methyl-2-oxopentanoic acid as substrates. K m and k cat values for phenyl pyruvate were 0.62mM and 77.38s -1 , respectively, and the k cat /K m value was 124.81mM -1 s -1 . The enzyme properties suggest it may act effectively under cheese ripening conditions. Copyright © 2017. Published by Elsevier Ltd.

  19. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases

    PubMed Central

    Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun

    2016-01-01

    Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery. PMID:26959013

  20. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases.

    PubMed

    Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun

    2016-03-04

    Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery.

  1. The concentration of the mitochondrial pyruvate carrier in rat liver and heart mitochondria determined with alpha-cyano-beta-(1-phenylindol-3-yl)acrylate.

    PubMed Central

    Shearman, M S; Halestrap, A P

    1984-01-01

    alpha-Cyano-beta-(1-phenylindol-3-yl)acrylate inhibited pyruvate transport into both liver and heart mitochondria approximately linearly with respect to its concentration until 65% inhibition was achieved. The extent of inhibition was dependent on the mitochondrial protein concentration. By extrapolation of plots of inhibition versus inhibitor concentration to total inhibition, or by mathematical analysis of the plots, the concentration of pyruvate transporter molecules per mg of protein was calculated to be approximately 100 pmol/mg for both heart and liver mitochondria, and the Ki about 7 nM. The data also suggest that pyruvate transport is rate-limiting for pyruvate oxidation by heart mitochondria in State 3, but not by liver mitochondria. PMID:6508736

  2. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  3. Branched Chain Amino Acid Oxidation in Cultured Rat Skeletal Muscle Cells

    PubMed Central

    Pardridge, William M.; Casanello-Ertl, Delia; Duducgian-Vartavarian, Luiza

    1980-01-01

    Leucine metabolism in skeletal muscle is linked to protein turnover. Since clofibrate is known both to cause myopathy and to decrease muscle protein content, the present investigations were designed to examine the effects of acute clofibrate treatment on leucine oxidation. Rat skeletal muscle cells in tissue culture were used in these studies because cultivated skeletal muscle cells, like muscle in vivo, have been shown to actively utilize branched chain amino acids and to produce alanine. The conversion of [1-14C]leucine to 14CO2 or to the [1-14C]keto-acid of leucine (α-keto-isocaproate) was linear for at least 2 h of incubation; the production of 14CO2 from [1-14C]leucine was saturable with a Km = 6.3 mM and a maximum oxidation rate (Vmax) = 31 nmol/mg protein per 120 min. Clofibric acid selectively inhibited the oxidation of [1-14C]leucine (Ki = 0.85 mM) and [U-14C]isoleucine, but had no effect on the oxidation of [U-14C]glutamate, -alanine, -lactate, or -palmitate. The inhibition of [1-14C]leucine oxidation by clofibrate was also observed in the rat quarter-diaphragm preparation. Clofibrate primarily inhibited the production of 14CO2 and had relatively little effect on the production of [1-14C]keto-acid of leucine. A physiological concentration—3.0 g/100 ml—of albumin, which actively binds clofibric acid, inhibited but did not abolish the effects of a 2-mM concentration of clofibric acid on leucine oxidation. Clofibrate treatment stimulated the net consumption of pyruvate, and inhibited the net production of alanine. The drug also increased the cytosolic NADH/NAD+ ratio as reflected by an increase in the lactate/pyruvate ratio, in association with a decrease in cell aspartate levels. The changes in pyruvate metabolism and cell redox state induced by the drug were delayed compared with the nearly immediate inhibition of leucine oxidation. These studies suggest that clofibric acid, in concentrations that approximate high therapeutic levels of the drug

  4. Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling.

    PubMed

    Zheng, Pu; Zhang, Kunkun; Yan, Qiang; Xu, Yan; Sun, Zhihao

    2013-08-01

    Succinic acid is an important platform chemical for synthesis of C4 compounds. We applied genome shuffling to improve fermentative production of succinic acid by A. succinogenes. Using a screening strategy composed of selection in fermentation broth, cultured in 96-deep-well plates, and condensed HPLC screening, a starting population of 11 mutants producing a higher succinic acid concentration was selected and subjected to recursive protoplasts fusion. After three rounds of genome shuffling, strain F3-II-3-F was obtained, producing succinic acid at 1.99 g/l/h with a yield of 95.6 g/l. The genome shuffled strain had about a 73 % improvement in succinic acid production compared to the parent strain after 48 h in fed-batch fermentation. The genomic variability of F3-II-3-F was confirmed by amplified fragment-length polymorphism. The activity levels of key enzymes involved in end-product formation from glucose and metabolic flux distribution during succinic acid production were compared between A. succinogenes CGMCC 1593 and F3-II-3-F. Increased activity of glucokinase, fructose-1,6-bisphosphate aldolase, PEP carboxykinase and fumarase, as well as decreased activity of pyruvate kinase, pyruvate formate-lyase, and acetate kinase explained the enhanced succinic acid production and decreased acetic acid formation. Metabolic flux analysis suggested that increased flux to NADH was the main reason for increased activity of the C4 pathway resulting in increased yields of succinic acid. The present work will be propitious to the development of a bio-succinic acid fermentation industry.

  5. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    PubMed

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Pyruvate dehydrogenase complex deficiency and its relationship with epilepsy frequency--An overview.

    PubMed

    Bhandary, Suman; Aguan, Kripamoy

    2015-10-01

    The pyruvate dehydrogenase complex (PDHc) is a member of a family of multienzyme complexes that provides the link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the physiologically irreversible decarboxylation of various 2-oxoacid substrates to their corresponding acyl-CoA derivatives, NADH and CO2. PDHc deficiency is a metabolic disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration that vary with age and gender. In this review, we aim to discuss the relationship between occurrence of epilepsy and PDHc deficiency associated with the pyruvate dehydrogenase complex (E1α subunit (PDHA1) and E1β subunit (PDHB)) and PDH phosphatase (PDP) deficiency. PDHc plays a crucial role in the aerobic carbohydrate metabolism and regulates the use of carbohydrate as the source of oxidative energy. In severe PDHc deficiency, the energy deficit impairs brain development in utero resulting in physiological and structural changes in the brain that contributes to the subsequent onset of epileptogenesis. Epileptogenesis in PDHc deficiency is linked to energy failure and abnormal neurotransmitter metabolism that progressively alters neuronal excitability. This metabolic blockage might be restricted via inclusion of ketogenic diet that is broken up by β-oxidation and directly converting it to acetyl-CoA, and thereby improving the patient's health condition. Genetic counseling is essential as PDHA1 deficiency is X-linked. The demonstration of the X-chromosome localization of PDHA1 resolved a number of questions concerning the variable phenotype displayed by patients with E1 deficiency. Most patients show a broad range of neurological abnormalities, with the severity showing some dependence on the nature of the mutation in the Elα gene, while PDHB and PDH phosphatase (PDP) deficiencies are of autosomal recessive inheritance. However, in females, the disorder is further complicated by the pattern of X

  7. Latent carcinogenicity of early-life exposure to dichloroacetic acid in mice

    EPA Science Inventory

    AbstractEnvironmental exposures occurring early in life may have an important influence on cancer risk later in life. Here we investigated carryover effects of young-adult exposure to dichloroacetic acid (DCA), a small molecule analog of pyruvate and low-level environmental cont...

  8. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.

    PubMed

    Höfler, Saskia; Lorenz, Christin; Busch, Tjorven; Brinkkötter, Mascha; Tohge, Takayuki; Fernie, Alisdair R; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2016-07-01

    Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence. © 2016 Scandinavian Plant Physiology Society.

  9. Structural Basis for Flip-Flop Action of Thiamin Pyrophosphate-Dependent Enzymes Revealed by Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina; Ciszak, Ewa M.; Korotchkina, Lioubov; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    Thiamin pyrophosphate (TPP), the biologically active form of vitamin BI, is a cofactor of enzymes catalyzing reactions involving the cleavage of a carbon-carbon bond adjacent to an oxo group. TPP-dependent enzymes show a common mechanism of TPP activation by: (1) forming the ionic N-H...O(sup -) hydrogen bonding between the N1' atom of the aminopirymidine ring of the coenzyme and intrinsic gamma-carboxylate group of glutamate and (2) imposing an "active" V-conformation that brings the N4' atom of the aminopirymidine to the distance required for the intramolecular C-H.. .N hydrogen bonding with the thiazolium C2 atom. Within these two hydrogen bonds that rapidly exchange protons, protonation of the N1' atom is strictly coordinated with the deprotonation of the 4' -amino group and eventually abstraction of the proton from C2. The human pyruvate dehydrogenase Elp, component of human pyruvate dehydrogenase complex, catalyzes the irreversible decarboxylation of the pyruvate followed by the reductive acetylation of the lipoyl group of dihydrolipoyl acyltransferase. Elp is alpha(sub 2)beta(sub2)-heterotetrameric with a molecular mass of I54 kDa, which has two catalytic sites, each providing TPP and magnesium ion as cofactors and each formed on the interface between the PP and PYR domains. The dynamic nonequivalence of two otherwise chemically equivalent catalytic sites has been observed and the flip-flop mechanism was suggested, according to which two active sites affect each other and in which different steps of the catalytic reaction are performed in each of the sites at any given moment. Based on specific futures of human pyruvate dehydrogenase including rigid and flexible connections between domains that bind the cofactor we propose a mechanistic model for the flip-flop action of this enzyme. We postulate that the dynamic protein environment drives the exchange of tautomers in the 4' -aminopyrimidine ring of the cofactor through a concerted shuttl-like motion of

  10. DSLR Double Star Astrometry Using an Alt-Az Telescope

    NASA Astrophysics Data System (ADS)

    Frey, Thomas; Haworth, David

    2014-07-01

    The goal of this project was to determine if the double star's angular separation and position angle measurements could be successfully measured with a motor driven, alt-azimuth Dobsonian-mounted Newtonian telescope (without a field rotator), and a digital single-lens reflex (DSLR) camera. Additionally, the project was constrained by using as much existing equipment as much as possible, including an Apple MacBook Pro laptop and a Canon T2i camera. This project was additionally challenging because the first author had no experience with astrophotography.

  11. Examination of age-related epigenetic changes following early-life exposure to dichloroacetic acid

    EPA Science Inventory

    Recent studies have shown that transient early-life exposure to dichloroacetic acid (DCA), a pyruvate analog and metabolic reprogramming agent, increases liver cancer incidence in older mice. This carcinogenic effect is not associated with direct mutagenicity, persistent cytotoxi...

  12. Mixed pyruvate labeling enables backbone resonance assignment of large proteins using a single experiment.

    PubMed

    Robson, Scott A; Takeuchi, Koh; Boeszoermenyi, Andras; Coote, Paul W; Dubey, Abhinav; Hyberts, Sven; Wagner, Gerhard; Arthanari, Haribabu

    2018-01-24

    Backbone resonance assignment is a critical first step in the investigation of proteins by NMR. This is traditionally achieved with a standard set of experiments, most of which are not optimal for large proteins. Of these, HNCA is the most sensitive experiment that provides sequential correlations. However, this experiment suffers from chemical shift degeneracy problems during the assignment procedure. We present a strategy that increases the effective resolution of HNCA and enables near-complete resonance assignment using this single HNCA experiment. We utilize a combination of 2- 13 C and 3- 13 C pyruvate as the carbon source for isotope labeling, which suppresses the one bond ( 1 J αβ ) coupling providing enhanced resolution for the Cα resonance and amino acid-specific peak shapes that arise from the residual coupling. Using this approach, we can obtain near-complete (>85%) backbone resonance assignment of a 42 kDa protein using a single HNCA experiment.

  13. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, M. I.; Millard, C. S.; Clark, D. P.

    1998-04-01

    Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinicmore » acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.« less

  14. Pyruvate Formate-Lyase Is Essential for Fumarate-Independent Anaerobic Glycerol Utilization in the Enterococcus faecalis Strain W11

    PubMed Central

    Ikegami, Yuki

    2014-01-01

    Although anaerobic glycerol metabolism in Enterococcus faecalis requires exogenous fumarate for NADH oxidation, E. faecalis strain W11 can metabolize glycerol in the absence of oxygen without exogenous fumarate. In this study, metabolic end product analyses and reporter assays probing the expression of enzymes involved in pyruvate metabolism were performed to investigate this fumarate-independent anaerobic metabolism of glycerol in W11. Under aerobic conditions, the metabolic end products of W11 cultured with glycerol were similar to those of W11 cultured with glucose. However, when W11 was cultured anaerobically, most of the glucose was converted to l-lactate, but glycerol was converted to ethanol and formate. During anaerobic culture with glycerol, the expression of the l-lactate dehydrogenase and pyruvate dehydrogenase E1αβ genes in W11 was downregulated, whereas the expression of the pyruvate formate-lyase (Pfl) and aldehyde/alcohol dehydrogenase genes was upregulated. These changes in the expression levels caused the change in the composition of end products. A pflB gene disruptant (Δpfl mutant) of W11 could barely utilize glycerol under anaerobic conditions, but the growth of the Δpfl mutant cultured with either glucose or dihydroxyacetone (DHA) under anaerobic conditions was the same as that of W11. Glucose metabolism and DHA generates one NADH molecule per pyruvate molecule, whereas glycerol metabolism in the dehydrogenation pathway generates two NADH molecules per pyruvate molecule. These findings demonstrate that NADH generated from anaerobic glycerol metabolism in the absence of fumarate is oxidized through the Pfl-ethanol fermentation pathway. Thus, Pfl is essential to avoid the accumulation of excess NADH during fumarate-independent anaerobic glycerol metabolism. PMID:24769696

  15. [Discovery of the target genes inhibited by formic acid in Candida shehatae].

    PubMed

    Cai, Peng; Xiong, Xujie; Xu, Yong; Yong, Qiang; Zhu, Junjun; Shiyuan, Yu

    2014-01-04

    At transcriptional level, the inhibitory effects of formic acid was investigated on Candida shehatae, a model yeast strain capable of fermenting xylose to ethanol. Thereby, the target genes were regulated by formic acid and the transcript profiles were discovered. On the basis of the transcriptome data of C. shehatae metabolizing glucose and xylose, the genes responsible for ethanol fermentation were chosen as candidates by the combined method of yeast metabolic pathway analysis and manual gene BLAST search. These candidates were then quantitatively detected by RQ-PCR technique to find the regulating genes under gradient doses of formic acid. By quantitative analysis of 42 candidate genes, we finally identified 10 and 5 genes as markedly down-regulated and up-regulated targets by formic acid, respectively. With regard to gene transcripts regulated by formic acid in C. shehatae, the markedly down-regulated genes ranking declines as follows: xylitol dehydrogenase (XYL2), acetyl-CoA synthetase (ACS), ribose-5-phosphate isomerase (RKI), transaldolase (TAL), phosphogluconate dehydrogenase (GND1), transketolase (TKL), glucose-6-phosphate dehydrogenase (ZWF1), xylose reductase (XYL1), pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC); and a declining rank for up-regulated gens as follows: fructose-bisphosphate aldolase (ALD), glucokinase (GLK), malate dehydrogenase (MDH), 6-phosphofructokinase (PFK) and alcohol dehydrogenase (ADH).

  16. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  17. Production of succinic Acid from citric Acid and related acids by lactobacillus strains.

    PubMed

    Kaneuchi, C; Seki, M; Komagata, K

    1988-12-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.

  18. The Regulation of Pyruvate Dehydrogenase Activity in Pea Leaf Mitochondria (The Effect of Respiration and Oxidative Phosphorylation).

    PubMed

    Moore, A. L.; Gemel, J.; Randall, D. D.

    1993-12-01

    The regulation of the pea (Pisum sativum) leaf mitochondrial pyruvate dehydrogenase complex by respiratory rate and oxidative phosphorylation has been investigated by measuring the respiratory activity, the redox poise of the quinone pool (Q-pool), and mitochondrial pyruvate dehydrogenase (mtPDC) activity under various metabolic conditions. It was found that, under state 4 conditions, mtPDC activity was unaffected by either the addition of succinate, 2-oxoglutarate, or glycine or the overall respiratory rate and redox poise of the Q-pool but was partially inhibited by NADH due to product inhibition. In the presence of ADP significant inactivation of PDC, which was sensitive to oligomycin, was observed with all substrates, apart from pyruvate, suggesting that inactivation was due to ATP formation. Inactivation of PDC by ADP addition was observed even in the presence of carboxyatractyloside, an inhibitor of the ATP/ADP translocator, suggesting that other mechanisms to facilitate the entry of adenylates, in addition to the adenylate carrier, must exist in plant mitochondria.

  19. Lethal neonatal case and review of primary short-chain enoyl-CoA hydratase (SCEH) deficiency associated with secondary lymphocyte pyruvate dehydrogenase complex (PDC) deficiency.

    PubMed

    Bedoyan, Jirair K; Yang, Samuel P; Ferdinandusse, Sacha; Jack, Rhona M; Miron, Alexander; Grahame, George; DeBrosse, Suzanne D; Hoppel, Charles L; Kerr, Douglas S; Wanders, Ronald J A

    2017-04-01

    Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and parents. SCEH deficiency was confirmed with very low SCEH activity in fibroblasts and nearly absent immunoreactivity of SCEH. The patient had a severe neonatal course with elevated blood and cerebrospinal fluid lactate and pyruvate concentrations, high plasma alanine and slightly low plasma cystine. 2-Methyl-2,3-dihydroxybutyric acid was markedly elevated as were metabolites of the three branched-chain α-ketoacids on urine organic acids analysis. These urine metabolites notably decreased when lactic acidosis decreased in blood. Lymphocyte pyruvate dehydrogenase complex (PDC) activity was deficient, but PDC and α-ketoglutarate dehydrogenase complex activities in cultured fibroblasts were normal. Oxidative phosphorylation analysis on intact digitonin-permeabilized fibroblasts was suggestive of slightly reduced PDC activity relative to control range in mitochondria. We reviewed 16 other cases with mutations in ECHS1 where PDC activity was also assayed in order to determine how common and generalized secondary PDC deficiency is associated with primary SCEH deficiency. For reasons that remain unexplained, we find that about half of cases with primary SCEH deficiency also exhibit secondary PDC deficiency. The patient died on day-of-life 39, prior to establishing his diagnosis, highlighting the importance of early and rapid neonatal diagnosis because of possible adverse effects of certain therapeutic interventions, such as administration of ketogenic diet, in this disorder. There is a need for better understanding of the pathogenic mechanisms and phenotypic variability in this relatively recently discovered disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Viability of a Nonenzymatic Reductive Citric Acid Cycle Kinetics and Thermochemistry

    NASA Astrophysics Data System (ADS)

    Ross, David S.

    2007-02-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate → pyruvate → oxaloacetate → malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite magnetite quartz and pyrrhotite pyrite magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life.

  1. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    NASA Technical Reports Server (NTRS)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  2. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803

    PubMed Central

    2014-01-01

    Background Molecular engineering of the intermediary physiology of cyanobacteria has become important for the sustainable production of biofuels and commodity compounds from CO2 and sunlight by “designer microbes.” The chemical commodity product L-lactic acid can be synthesized in one step from a key intermediary metabolite of these organisms, pyruvate, catalyzed by a lactate dehydrogenase. Synthetic biology engineering to make “designer microbes” includes the introduction and overexpression of the product-forming biochemical pathway. For further optimization of product formation, modifications in the surrounding biochemical network of intermediary metabolism have to be made. Results To improve light-driven L-lactic acid production from CO2, we explored several metabolic engineering design principles, using a previously engineered L-lactic acid producing mutant strain of Synechocystis sp. PCC6803 as the benchmark. These strategies included: (i) increasing the expression level of the relevant product-forming enzyme, lactate dehydrogenase (LDH), for example, via expression from a replicative plasmid; (ii) co-expression of a heterologous pyruvate kinase to increase the flux towards pyruvate; and (iii) knockdown of phosphoenolpyruvate carboxylase to decrease the flux through a competing pathway (from phosphoenolpyruvate to oxaloacetate). In addition, we tested selected lactate dehydrogenases, some of which were further optimized through site-directed mutagenesis to improve the enzyme’s affinity for the co-factor nicotinamide adenine dinucleotide phosphate (NADPH). The carbon partitioning between biomass and lactic acid was increased from about 5% to over 50% by strain optimization. Conclusion An efficient photosynthetic microbial cell factory will display a high rate and extent of conversion of substrate (CO2) into product (here: L-lactic acid). In the existing CO2-based cyanobacterial cell factories that have been described in the literature, by far most of

  3. Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity.

    PubMed

    Liang, Lei; Li, Qingguo; Huang, Liyong; Li, Dawei; Li, Xinxiang

    2015-12-25

    Mitochondrial pyruvate carrier (MPC), composed of MPC1 and MPC2, can modulate pyruvate oxidation in mitochondrial and MPC1 expression correlates with poor prognosis of multiple cancers. Here, we reported that MPC1 is acetylated and its main acetylation sites are: K45 and K46. Sirt3 binds to and deacetylates MPC1. High glucose decreases MPC1 acetylation level by increasing Sirt3-MPC1 binding. Furthermore, acetylation mimic mutation of MPC1 reduces it activity and abolishes its function in inhibition of colon cancer cell growth. These results reveal a novel post-translational regulation of MPC1 by Sirt3, which is important for its activity and colon cancer cell growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Inhibition of fatty acid synthesis in isolated adipocytes by 5-(tetradecyloxy)-2-furoic acid.

    PubMed

    Halvorson, D L; McCune, S A

    1984-11-01

    The compound 5-(tetradecyloxy)-2-furoic acid (TOFA), a hypolipidemic agent, inhibits fatty acid synthesis, lactate and pyruvate accumulation and CO2 release in isolated rat adipocytes. TOFA stimulates the accumulation of citrate. ATP levels are not lowered by TOFA. In comparison with the natural fatty acid, oleate, TOFA exhibited a much greater inhibitory effect on lipogenesis. TOFyl-CoA formation within intact adipocytes was demonstrated. Although not inhibited by TOFA, acetyl-CoA carboxylase is inhibited by TOFyl-CoA. It is proposed that many of the metabolic effects of TOFA in isolated adipocytes can be explained by TOFyl-CoA inhibition of acetyl-CoA carboxylase. TOFA inhibits glycolysis as a secondary event with the primary event of inhibition of fatty acid synthesis causing an accumulation of citrate which is an inhibitor of phosphofructokinase.

  5. Physiology of Growth and Sporulation in Bacillus cereus I. Effect of Glutamic and Other Amino Acids

    PubMed Central

    Buono, F.; Testa, R.; Lundgren, D. G.

    1966-01-01

    Buono, F. (Syracuse University, Syracuse, N.Y.), R. Testa, and D. G. Lundgren. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids. J. Bacteriol. 91:2291–2299. 1966.—Growth and sporulation were studied in Bacillus cereus by use of an active culture technique and a synthetic medium. A high level of glutamic acid (70 mm) was required for optimal growth and glucose oxidation followed by sporulation even though relatively little glutamic acid was consumed (14 mm). Optimal growth occurred with a combination of 14 mm glutamic acid and 56 mm (NH4)2SO4, aspartic acid, or alanine. Ornithine or arginine at 70 mm could replace glutamic acid in the synthetic medium without affecting the normal growth cycle. Glutamic acid was not replaced by any other amino acid, by (NH4)2SO4, or by a combination of either α-ketoglutarate or pyruvate plus (NH4)2SO4. Enzyme assays of cell-free extracts prepared from cells harvested at different times were used to study the metabolism of glutamic acid. Glutamic-oxaloacetic and glutamic-pyruvate transaminases were completely activated (or derepressed) during early stages of sporulation (period of 6 to 8 hr). Alanine dehydrogenase responded in a similar manner, but the levels of this enzyme were much higher throughout the culture cycle. Neither glutamic dehydrogenase nor α-ketoglutarate dehydrogenase was detected. Sporulation in a replacement salts medium was studied with cells harvested at different times from the synthetic medium. Cultures 2 to 6 hr old were unable to sporulate in the replacement salts medium unless glutamic acid (7.0 mm) was present. By the 6th hr, cells were in the early stages of sporulation, showing spore septa development. Cultures 8 hr old sporulated in the replacement salts medium. Other metabolic intermediates able to replace glutamic acid in the replacement salts medium were alanine, aspartic acid, and glutamine at equimolar concentrations. Also, ammonium ions in

  6. Bifunctionality of the thiamin diphosphate cofactor: assignment of tautomeric/ionization states of the 4′-aminopyrimidine ring when various intermediates occupy the active sites during the catalysis of yeast pyruvate decarboxylase

    PubMed Central

    Balakrishnan, Anand; Gao, Yuhong; Moorjani, Prerna; Nemeria, Natalia S.; Tittmann, Kai; Jordan, Frank

    2012-01-01

    Thiamin diphosphate (ThDP) dependent enzymes perform crucial C-C bond forming and breaking reactions in sugar and amino acid metabolism and in biosynthetic pathways via a sequence of ThDP-bound covalent intermediates. A member of this superfamily, yeast pyruvate decarboxylase (YPDC) carries out the non-oxidative decarboxylation of pyruvate and is mechanistically a simpler ThDP enzyme. YPDC variants created by substitution at the active center (D28A, E51X, E477Q) and on the substrate activation pathway (E91D and C221E) display varying activity, suggesting that they stabilize different covalent intermediates. To test the role of both rings of ThDP in YPDC catalysis (the 4′-aminopyrimidine as acid-base, and thiazolium as electrophilic covalent catalyst), we applied a combination of steady state and time-resolved circular dichroism experiments (assessing the state of ionization and tautomerization of enzyme-bound ThDP-related intermediates), and chemical quench of enzymatic reaction mixtures followed by NMR characterization of the ThDP-bound intermediates released from YPDC (assessing occupancy of active centers by these intermediates and rate-limiting steps). Results suggest that: (1) Pyruvate and analogs induce active site asymmetry in YPDC and variants. (2) The rare 1′,4′-iminopyrimidine ThDP tautomer participates in formation of ThDP-bound intermediates. (3) Propionylphosphinate also binds at the regulatory site and its binding is reflected by catalytic events at the active site 20Å away. (4) YPDC stabilizes an electrostatic model for the 4′-aminopyrimidinium ionization state, an important contribution of the protein to catalysis. The combination of tools used provides time-resolved details about individual events during ThDP catalysis; the methods are transferable to other ThDP superfamily members. PMID:22300533

  7. Identification and characterisation of a new class of highly specific and potent inhibitors of the mitochondrial pyruvate carrier.

    PubMed

    Hildyard, John C W; Ammälä, Carina; Dukes, Iain D; Thomson, Stephen A; Halestrap, Andrew P

    2005-01-01

    Two novel thiazolidine compounds, GW604714X and GW450863X, were found to be potent inhibitors of mitochondrial respiration supported by pyruvate but not other substrates. Direct measurement of pyruvate transport into rat liver and yeast mitochondria confirmed that these agents inhibited the mitochondrial pyruvate carrier (MPC) with K(i) values <0.1 muM. Inhibitor titrations of pyruvate-dependent respiration by heart mitochondria gave values (+/-S.E.) for the concentration of inhibitor binding sites (pmol per mg protein) and their K(i) (nM) of 56.0+/-0.9 and 0.057+/-0.010 nM for the more hydrophobic GW604714X; for GW450863X the values were 59.9+/-4.6 and 0.60+/-0.12 nM. [(3)H]-methoxy-GW450863X binding was also used to determine the MPC content of the heart, kidney, liver and brain mitochondria giving values of 56, 40, 26 and 20 pmol per mg protein respectively. Binding to yeast mitochondria was <10% of that in rat liver mitochondria, consistent with the slow rate of pyruvate transport into yeast mitochondria. [(3)H]-methoxy-GW450863X binding was inhibited by GW604714X and by the established MPC inhibitor, UK5099. The absorbance spectra of GW450863X and GW604714X were markedly changed by the addition of beta-mercaptoethanol suggesting that the novel inhibitors, like alpha-cyanocinnamate, possess an activated double bond that attacks a critical cysteine residue on the MPC. However, no labelled protein was detected following SDS-PAGE suggesting that the covalent modification is reversible. GW604714X and GW450863X inhibited l-lactate transport by the plasma membrane monocarboxylate transporter MCT1, but at concentrations more than four orders of magnitude greater than the MPC.

  8. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells.

    PubMed

    Vanderperre, Benoît; Cermakova, Kristina; Escoffier, Jessica; Kaba, Mayis; Bender, Tom; Nef, Serge; Martinou, Jean-Claude

    2016-08-05

    Selective transport of pyruvate across the inner mitochondrial membrane by the mitochondrial pyruvate carrier (MPC) is a fundamental step that couples cytosolic and mitochondrial metabolism. The recent molecular identification of the MPC complex has revealed two interacting subunits, MPC1 and MPC2. Although in yeast, an additional subunit, MPC3, can functionally replace MPC2, no alternative MPC subunits have been described in higher eukaryotes. Here, we report for the first time the existence of a novel MPC subunit termed MPC1-like (MPC1L), which is present uniquely in placental mammals. MPC1L shares high sequence, structural, and topological homology with MPC1. In addition, we provide several lines of evidence to show that MPC1L is functionally equivalent to MPC1: 1) when co-expressed with MPC2, it rescues pyruvate import in a MPC-deleted yeast strain; 2) in mammalian cells, it can associate with MPC2 to form a functional carrier as assessed by bioluminescence resonance energy transfer; 3) in MPC1 depleted mouse embryonic fibroblasts, MPC1L rescues the loss of pyruvate-driven respiration and stabilizes MPC2 expression; and 4) MPC1- and MPC1L-mediated pyruvate imports show similar efficiency. However, we show that MPC1L has a highly specific expression pattern and is localized almost exclusively in testis and more specifically in postmeiotic spermatids and sperm cells. This is in marked contrast to MPC1/MPC2, which are ubiquitously expressed throughout the organism. To date, the biological importance of this alternative MPC complex during spermatogenesis in placental mammals remains unknown. Nevertheless, these findings open up new avenues for investigating the structure-function relationship within the MPC complex. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Changes in small angle X-ray scattering parameters observed upon ligand binding to rabbit muscle pyruvate kinase are not correlated with allosteric transitions†

    PubMed Central

    Fenton, Aron W.; Williams, Rachel; Trewhella, Jill

    2010-01-01

    Protein fluorescence and small-angle X-ray scattering (SAXS) have been used to monitor effector affinity and conformational changes previously associated with allosteric regulation in rabbit muscle pyruvate kinase (M1-PYK). In the absence of substrate (phosphoenolpyruvate; PEP), SAXS-monitored conformational changes in M1-PYK elicited by the binding of phenylalanine (an allosteric inhibitor that reduces the affinity of M1-PYK for PEP) are similar to those observed upon binding of alanine or 2-aminobutyric acid. Under the current assay conditions, these small amino acids bind to the protein, but elicit a minimal change in the affinity of the protein for PEP. Therefore, if changes in scattering signatures represent cleft closure via domain rotation as previously interpreted, it can be concluded that these motions are not sufficient to elicit allosteric inhibition. Additionally, although PEP has similar affinities for the free enzyme and the M1-PYK/small-amino-acid complexes (i.e. the small amino acids have minimal allosteric effects), PEP binding elicits different changes in the SAXS signature of the free enzyme vs. the M1-PYK/small-amino-acid complexes. PMID:20712377

  10. Role of individual phosphorylation sites in inactivation of pyruvate dehydrogenase complex in rat heart mitochondria

    PubMed Central

    Sale, Graham J.; Randle, Philip J.

    1982-01-01

    1. A method is described using trypsin/formic acid cleavage for unambiguously measuring occupancies of phosphorylation sites in rat heart pyruvate dehydrogenase [32P]phosphate complexes. 2. In mitochondria oxidizing 2-oxoglutarate+l-malate relative initial rates of phosphorylation were site 1>site 2>site 3. 3. Dephosphorylation and reactivation of fully phosphorylated complex was initiated in mitochondria by inhibiting the kinase reaction. Using dichloroacetate relative rates of dephosphorylation were site 2>(1=3). Using sodium dithionite or sodium pyruvate or uncouplers+sodium arsenite or steady state turnover (31P replacing 32P in inactive complex) relative rates were site 2>site 1>site 3. With dithionite reactivation was faster than site 3 dephosphorylation, i.e. site 3 is apparently not inactivating. 4. The steady state proportion of inactive complex was varied (92–48%) in mitochondria oxidizing 2-oxoglutarate/l-malate by increasing extramitochondrial Ca2+ (0–2.6μm). This action of Ca2+ induced dephosphorylation (site 3>site 2>site 1). These experiments enable prediction of site occupancies in vivo for given steady state proportions of inactive complexes. 5. The proportion of inactive complex was related linearly to occupancy of site 1. 6. Sodium dithionite (10mm) and Ca2+ (0.5μm) together resulted in faster dephosphorylations of each site than either agent alone; relative rates were site 2>(1=3). 7. Dephosphorylation and possibly phosphorylation of sites 1 and 2 was not purely sequential as shown by detection of complexes phosphorylated in site 2 but not in site 1. Estimates of the contribution of site 2 phosphorylation to inactivation ranged from 0.7 to 6.4%. 8. It is concluded that the primary function of site 1 phosphorylation is inactivation, phosphorylation of site 2 is not primarily concerned with inactivation and that phosphorylation of site 3 is non-inactivating. PMID:7103952

  11. Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide.

    PubMed

    Thomas, A P; Halestrap, A P

    1981-05-15

    1. N-Phenylmaleimide irreversibly inhibits pyruvate transport into rat heart and liver mitochondria to a much greater extent than does N-ethylmaleimide, iodoacetate or bromopyruvate. alpha-Cyanocinnamate protects the pyruvate transporter from attack by this thiol-blocking reagent. 2. In both heart and liver mitochondria alpha-cyanocinnamate diminishes labelling by [3H]N-phenylmaleimide of a membrane protein of subunit mol.wt. 15000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. Exposure of mitochondrial to unlabelled N-phenylmaleimide in the presence of alpha-cyanocinnamate, followed by removal of alpha-cyanocinnamate and exposure to [3H]N-phenylmaleimide, produced specific labelling of the same protein. 4. Both labelling and kinetic experiments with inhibitors gave values for the approximate amount of carrier present in liver and heart mitochondria of 100 and 450 pmol/mg of mitochondrial protein respectively. 5. The turnover numbers for net pyruvate transport and pyruvate exchange at 0 degrees C were 6 and 200 min-1 respectively.

  12. Elevated alanine aminotransferase (ALT) in the deceased donor: impact on early post-transplant liver allograft function.

    PubMed

    Mangus, Richard S; Fridell, Jonathan A; Kubal, Chandrashekhar A; Davis, Jason P; Tector, A Joseph

    2015-02-01

    Serum alanine aminotransferase (ALT) levels are frequently elevated with liver injury and such elevations are common in deceased organ donors. The impact of this injury on early liver allograft function has not been well described. This study analyses the immediate function and 1-year graft and patient survival for liver allografts stratified by peak serum ALT levels in the deceased donor. The on-site organ procurement records for 1348 consecutive deceased liver donors were reviewed (2001–2011). Serum ALT was categorized into three study groups: normal/mild elevation, 0–499 μ/L; moderate elevation, 500–999 μ/L (>10× upper limit of normal) and severe elevation, ≥1000 μ/L (>20× upper limit of normal). Outcomes included early graft function and graft loss, and 1-year graft and patient survival. Distribution of subjects included: normal/mild, 1259 (93%); moderate, 34 (3%) and severe, 55 (4%). Risk of 30-day graft loss for the three study groups was: 72 (6%), 3 (9%) and 3 (6%) (P = 0.74). Graft and patient survival at 1 year for the three groups was: normal/mild, 1031 (87%), 1048 (88%); moderate, 31 (91%), 31 (91%) and severe, 43 (88%), 44 (90%) (P = 0.71, 0.79). Cox proportional hazards modelling of survival while controlling for donor age and recipient model for end-stage liver disease score (MELD) demonstrates no statistically significant difference among the three study groups. This study demonstrates clinical equivalence in early graft function and 1-year graft and patient survival for donor livers with varying peak levels of serum ALT. These donor allografts may, therefore, be utilized successfully.

  13. Weakly-bridged dimeric diorganotin(IV) compounds derived from pyruvic acid hydrazone Schiff base ligands: Synthesis, characterization and crystal structures

    NASA Astrophysics Data System (ADS)

    Hong, Min; Yin, Han-Dong; Cui, Ji-Chun

    2011-03-01

    We report the synthesis of four diorganotin(IV) compounds of Schiff base pyruvic acid hydrazone derivatives formulated as [R 2SnLY] 2, where L 1 is 2-SC 4H 3CON 2C(CH 3)CO 2 with Y = CH 3CH 2CH 2CH 2OH, R = n-Bu ( 1); L 2 is C 6H 5CON 2C(CH 3)CO 2 with Y = CH 3CH 2OH, R = p-F-Bz ( 2); L 3 is 2-HOC 6H 4CON 2C(CH 3)CO 2 with Y dbnd H 2O, R = p-CN -Bz ( 3); and L 4 is 4-NO 2-C 6H 4CON 2C(CH 3)CO 2 with Y dbnd CH 3CH 2OH, R = Bz ( 4). The structures of all compounds have been established by a combination of single-crystal X-ray diffraction analysis, 1H and 119Sn NMR spectroscopy, IR spectroscopy, and elemental analysis. Studies reveal that four ligands present the same coordination mode with tin center, which all present tridentate ONO donor Schiff bases and coordinate to the tin center in an enolic form. In compounds 1- 4, each tin atom is seven-coordinated and exhibits a distorted pentagonal bipyramid with a planar SnO 4N unit and two apical alkyl carbon atoms, thus forming a weakly-bridged dimeric molecule. Additionally, the distance of Sn⋯O bridge in each compound is obviously affected by the choice of different alkyl groups and coordination solvent molecules, which fluctuates in the range of 2.571(5)-2.839(4) Å. Furthermore, the supramolecular structure analysis show that there are two types of supramolecular infrastructures, 1D chain or 2D network, which are formed by intermolecular O-H···N or C-H⋯X (X = O, N or F) hydrogen bonds.

  14. MT1-MMP Responsive Doxorubicin Conjugated Poly(lactic-co-glycolic Acid)/Poly(styrene-alt-maleic Anhydride) Core/Shell Microparticles for Intrahepatic Arterial Chemotherapy of Hepatic Cancer.

    PubMed

    Davaa, Enkhzaya; Lee, Junghan; Jenjob, Ratchapol; Yang, Su-Geun

    2017-01-11

    In this study, we demonstrated that the MT1-MMP-responsive peptide (sequence: GPLPLRSWGLK) and doxorubicin-conjugated poly(lactic-co-glycolic acid/poly(styrene-alt-maleic anhydride) core/shell microparticles (PLGA/pSMA MPs) can be applied for intrahepatic arterial injection for hepatocellular carcinoma (HCC). PLGA/pSMA MPs were prepared with a capillary-focused microfluidic device. The particle size, observed by scanning electron microscopy (SEM), was around 22 ± 3 μm. MT1-MMP-responsive peptide and doxorubicin (DOX) were chemically conjugated with pSMA segments on the shell of MPs to form a PLGA/pSMA-peptide-DOX complex, resulting in high encapsulation efficiency (91.1%) and loading content (2.9%). DOX was released from PLGA/pSMA-peptide-DOX MPs in a pH-dependent manner (∼25% at pH 5.4 and ∼8% at pH 7.4) and accumulated significantly in an MT1-MMP-overexpressing Hep3B cell line. An in vivo intrahepatic injection study showed localization of MPs on the hepatic vessels and hepatic lobes up to 24 h after the injection without any shunting to the lung. Moreover, MPs efficiently inhibited tumor growth of Hep3B hepatic tumor xenografted mouse models. We expect that PLGA/pSMA-peptide-DOX MPs can be utilized as an effective intrahepatic drug delivery system for the treatment of HCC.

  15. Inhibition of the pentose phosphate shunt by 2,3-diphosphoglycerate in erythrocyte pyruvate kinase deficiency.

    PubMed

    Tomoda, A; Lachant, N A; Noble, N A; Tanaka, K R

    1983-07-01

    Pentose phosphate shunt activity was studied by the release of 14CO2 from 14C-1-glucose and 14C-2-glucose in the red cells of five patients with pyruvate kinase deficiency and found to be significantly decreased after new methylene blue stimulation when compared to high reticulocyte controls. Incubated Heinz body formation was increased and the ascorbate cyanide test was positive in blood from these patients. The activity of glucose-6-phosphate dehydrogenase (G6PD) as well as that of 6-phosphogluconate dehydrogenase (6PGD) was inhibited to 20% of baseline in normal red cell haemolysate by 4 mM 2,3-diphosphoglycerate at pH 7.1. 2,3-Diphosphoglycerate was a competitive inhibitor with 6-phosphogluconate (Ki=1.05 mM) and a noncompetitive inhibitor with NADP (Ki=3.3 mM) for 6PGD. Since the intracellular concentrations of glucose-6-phosphate, 6-phosphogluconate and NADP are below their Kms for G6PD and 6PGD, the kinetic data suggest that increased concentrations of 2,3-diphosphoglycerate in pyruvate kinase deficient red cells are sufficiently high to suppress pentose phosphate shunt activity. This suppression may be an additional factor contributing to the haemolytic anaemia of pyruvate kinase deficiency, particularly during periods of infection or metabolic stress.

  16. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  17. Computational study of pH-dependent oligomerization and ligand binding in Alt a 1, a highly allergenic protein with a unique fold

    NASA Astrophysics Data System (ADS)

    Garrido-Arandia, María; Bretones, Jorge; Gómez-Casado, Cristina; Cubells, Nuria; Díaz-Perales, Araceli; Pacios, Luis F.

    2016-05-01

    Alt a 1 is a highly allergenic protein from Alternaria fungi responsible for several respiratory diseases. Its crystal structure revealed a unique β-barrel fold that defines a new family exclusive to fungi and forms a symmetrical dimer in a butterfly-like shape as well as tetramers. Its biological function is as yet unknown but its localization in cell wall of Alternaria spores and its interactions in the onset of allergy reactions point to a function to transport ligands. However, at odds with binding features in β-barrel proteins, monomeric Alt a 1 seems unable to harbor ligands because the barrel is too narrow. Tetrameric Alt a 1 is able to bind the flavonoid quercetin, yet the stability of the aggregate and the own ligand binding are pH-dependent. At pH 6.5, which Alt a 1 would meet when secreted by spores in bronchial epithelium, tetramer-quercetin complex is stable. At pH 5.5, which Alt a 1 would meet in apoplast when infecting plants, the complex breaks down. By means of a combined computational study that includes docking calculations, empirical p Ka estimates, Poisson-Boltzmann electrostatic potentials, and Molecular Dynamics simulations, we identified a putative binding site at the dimeric interface between subunits in tetramer. We propose an explanation on the pH-dependence of both oligomerization states and protein-ligand affinity of Alt a 1 in terms of electrostatic variations associated to distinct protonation states at different pHs. The uniqueness of this singular protein can thus be tracked in the combination of all these features.

  18. Computational study of pH-dependent oligomerization and ligand binding in Alt a 1, a highly allergenic protein with a unique fold.

    PubMed

    Garrido-Arandia, María; Bretones, Jorge; Gómez-Casado, Cristina; Cubells, Nuria; Díaz-Perales, Araceli; Pacios, Luis F

    2016-05-01

    Alt a 1 is a highly allergenic protein from Alternaria fungi responsible for several respiratory diseases. Its crystal structure revealed a unique β-barrel fold that defines a new family exclusive to fungi and forms a symmetrical dimer in a butterfly-like shape as well as tetramers. Its biological function is as yet unknown but its localization in cell wall of Alternaria spores and its interactions in the onset of allergy reactions point to a function to transport ligands. However, at odds with binding features in β-barrel proteins, monomeric Alt a 1 seems unable to harbor ligands because the barrel is too narrow. Tetrameric Alt a 1 is able to bind the flavonoid quercetin, yet the stability of the aggregate and the own ligand binding are pH-dependent. At pH 6.5, which Alt a 1 would meet when secreted by spores in bronchial epithelium, tetramer-quercetin complex is stable. At pH 5.5, which Alt a 1 would meet in apoplast when infecting plants, the complex breaks down. By means of a combined computational study that includes docking calculations, empirical pKa estimates, Poisson-Boltzmann electrostatic potentials, and Molecular Dynamics simulations, we identified a putative binding site at the dimeric interface between subunits in tetramer. We propose an explanation on the pH-dependence of both oligomerization states and protein-ligand affinity of Alt a 1 in terms of electrostatic variations associated to distinct protonation states at different pHs. The uniqueness of this singular protein can thus be tracked in the combination of all these features.

  19. Monitoring Mitochondrial Pyruvate Carrier Activity in Real Time Using a BRET-Based Biosensor: Investigation of the Warburg Effect.

    PubMed

    Compan, Vincent; Pierredon, Sandra; Vanderperre, Benoît; Krznar, Petra; Marchiq, Ibtissam; Zamboni, Nicola; Pouyssegur, Jacques; Martinou, Jean-Claude

    2015-08-06

    The transport of pyruvate into mitochondria requires a specific carrier, the mitochondrial pyruvate carrier (MPC). The MPC represents a central node of carbon metabolism, and its activity is likely to play a key role in bioenergetics. Until now, investigation of the MPC activity has been limited. However, the recent molecular identification of the components of the carrier has allowed us to engineer a genetically encoded biosensor and to monitor the activity of the MPC in real time in a cell population or in a single cell. We report that the MPC activity is low in cancer cells, which mainly rely on glycolysis to generate ATP, a characteristic known as the Warburg effect. We show that this low activity can be reversed by increasing the concentration of cytosolic pyruvate, thus increasing oxidative phosphorylation. This biosensor represents a unique tool to investigate carbon metabolism and bioenergetics in various cell types. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis

    PubMed Central

    Liu, Wenlan; Sun, Zhirong; Qu, Jixu; Yang, Chunning; Zhang, Xiaomin; Wei, Xinxin

    2017-01-01

    The aim of the present study was to investigate the correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis. Root respiration was determined using a biological oxygen analyzer. Respiration-related enzymes including glucose-6-phosphate dehydrogenase plus 6-phosphogluconate dehydrogenase, phosphohexose isomerase and succinate dehydrogenase, and respiratory pathways were evaluated. Biomass was determined by a drying-weighing method. In addition, the percentage of glycyrrhizic acid was detected using high-performance liquid chromatography. The association between root respiration and the levels of biomass and glycyrrhizic acid was investigated. The glycolysis pathway (EMP), tricarboxylic acid cycle (TCA) and pentose phosphate (PPP) pathway acted concurrently in the roots of G. uralensis. Grey correlation analysis showed that TCA had the strongest correlation (correlation coefficient, 0.8003) with biomass. Starch and acetyl coenzyme A had the closest association with above-ground biomass, while soluble sugar correlated less strongly with above-ground biomass. Grey correlation analysis between biochemical pathways and the intermediates showed that pyruvic acid had the strongest correlation with EMP, while acetyl coenzyme A correlated most strongly with TCA. Among the intermediates and pathways, pyruvic acid and EMP exhibited the greatest correlation with glycyrrhizic acid, while acetyl coenzyme A and TCA correlated with glycyrrhizic acid less closely. The results of this study may aid the cultivation of G. uralensis. However, these results require verification in further studies. PMID:28962162

  1. Correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis.

    PubMed

    Liu, Wenlan; Sun, Zhirong; Qu, Jixu; Yang, Chunning; Zhang, Xiaomin; Wei, Xinxin

    2017-09-01

    The aim of the present study was to investigate the correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis . Root respiration was determined using a biological oxygen analyzer. Respiration-related enzymes including glucose-6-phosphate dehydrogenase plus 6-phosphogluconate dehydrogenase, phosphohexose isomerase and succinate dehydrogenase, and respiratory pathways were evaluated. Biomass was determined by a drying-weighing method. In addition, the percentage of glycyrrhizic acid was detected using high-performance liquid chromatography. The association between root respiration and the levels of biomass and glycyrrhizic acid was investigated. The glycolysis pathway (EMP), tricarboxylic acid cycle (TCA) and pentose phosphate (PPP) pathway acted concurrently in the roots of G. uralensis . Grey correlation analysis showed that TCA had the strongest correlation (correlation coefficient, 0.8003) with biomass. Starch and acetyl coenzyme A had the closest association with above-ground biomass, while soluble sugar correlated less strongly with above-ground biomass. Grey correlation analysis between biochemical pathways and the intermediates showed that pyruvic acid had the strongest correlation with EMP, while acetyl coenzyme A correlated most strongly with TCA. Among the intermediates and pathways, pyruvic acid and EMP exhibited the greatest correlation with glycyrrhizic acid, while acetyl coenzyme A and TCA correlated with glycyrrhizic acid less closely. The results of this study may aid the cultivation of G. uralensis . However, these results require verification in further studies.

  2. Structural Basis for Inactivation of the Human Pyruvate Dehydrogenase Complex by Phosphorylation: Role of Disordered Phosphorylation Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Masato; Wynn, R. Max; Chuang, Jacinta L.

    2009-09-11

    We report the crystal structures of the phosporylated pyruvate dehydrogenase (E1p) component of the human pyruvate dehydrogenase complex (PDC). The complete phosphorylation at Ser264-{alpha} (site 1) of a variant E1p protein was achieved using robust pyruvate dehydrogenase kinase 4 free of the PDC core. We show that unlike its unmodified counterpart, the presence of a phosphoryl group at Ser264-{alpha} prevents the cofactor thiamine diphosphate-induced ordering of the two loops carrying the three phosphorylation sites. The disordering of these phosphorylation loops is caused by a previously unrecognized steric clash between the phosphoryl group at site 1 and a nearby Ser266-{alpha}, whichmore » nullifies a hydrogen-bonding network essential for maintaining the loop conformations. The disordered phosphorylation loops impede the binding of lipoyl domains of the PDC core to E1p, negating the reductive acetylation step. This results in the disruption of the substrate channeling in the PDC, leading to the inactivation of this catalytic machine.« less

  3. S-Nitrosation of monocarboxylate transporter 1: Inhibition of pyruvate-fueled respiration and proliferation of breast cancer cells

    PubMed Central

    Diers, Anne R.; Broniowska, Katarzyna A.; Chang, Ching-Fang; Hill, R. Blake; Hogg, Neil

    2014-01-01

    Summary Energy substrates metabolized through mitochondria (e.g., pyruvate, glutamine) are required for biosynthesis of macromolecules in proliferating cells. Since several mitochondrial proteins are known to be targets of S-nitrosation, we determined whether bioenergetics are modulated by S-nitrosation and defined the subsequent effects on proliferation. The nitrosating agent S-nitroso-L-cysteine (L-CysNO) was used to initiate intracellular S-nitrosation, and treatment decreased mitochondrial function and inhibited proliferation of MCF7 mammary adenocarcinoma cells. Surprisingly, the D isomer of CysNO (D-CysNO) which is not transported into cells also caused mitochondrial dysfunction and limited proliferation. Both L- and D-CysNO also inhibited cellular pyruvate uptake and caused S-nitrosation of thiol groups on monocarboxylate transporter 1, a proton-linked pyruvate transporter. These data demonstrate the importance of mitochondrial metabolism in proliferative responses in breast cancer and highlight a novel role for inhibition of metabolic substrate uptake through S-nitrosation of exofacial protein thiols in cellular responses to nitrosative stress. PMID:24486553

  4. Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis.

    PubMed

    Gray, Lawrence R; Sultana, Mst Rasheda; Rauckhorst, Adam J; Oonthonpan, Lalita; Tompkins, Sean C; Sharma, Arpit; Fu, Xiaorong; Miao, Ren; Pewa, Alvin D; Brown, Kathryn S; Lane, Erin E; Dohlman, Ashley; Zepeda-Orozco, Diana; Xie, Jianxin; Rutter, Jared; Norris, Andrew W; Cox, James E; Burgess, Shawn C; Potthoff, Matthew J; Taylor, Eric B

    2015-10-06

    Gluconeogenesis is critical for maintenance of euglycemia during fasting. Elevated gluconeogenesis during type 2 diabetes (T2D) contributes to chronic hyperglycemia. Pyruvate is a major gluconeogenic substrate and requires import into the mitochondrial matrix for channeling into gluconeogenesis. Here, we demonstrate that the mitochondrial pyruvate carrier (MPC) comprising the Mpc1 and Mpc2 proteins is required for efficient regulation of hepatic gluconeogenesis. Liver-specific deletion of Mpc1 abolished hepatic MPC activity and markedly decreased pyruvate-driven gluconeogenesis and TCA cycle flux. Loss of MPC activity induced adaptive utilization of glutamine and increased urea cycle activity. Diet-induced obesity increased hepatic MPC expression and activity. Constitutive Mpc1 deletion attenuated the development of hyperglycemia induced by a high-fat diet. Acute, virally mediated Mpc1 deletion after diet-induced obesity decreased hyperglycemia and improved glucose tolerance. We conclude that the MPC is required for efficient regulation of gluconeogenesis and that the MPC contributes to the elevated gluconeogenesis and hyperglycemia in T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Artificial photosynthesis of. beta. -ketocarboxylic acids from carbon dioxide and ketones via enolate complexes of aluminum porphyrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Yasuhiro; Aida, Takuzo; Inoue, Shohei

    1989-04-12

    Photochemical fixation of carbon dioxide is of much interest in connection with biological photosynthesis by green plants as well as from the viewpoint of carbon resource utilization. One of the important steps in the assimilation of carbon dioxide is the carboxylation of a carbonyl compound into ketocarboxylic acid, where the reaction proceeds via an enolate species as reactive intermediate. For example, in four carbon (C{sub 4}) pathway and Crassulacean acid metabolism (CAM) processes, pyruvate is converted with the aid of ATP into phosphoenolpyruvate, which is subsequently carboxylated to give oxaloacetate by the action of pyruvate carboxylase. In relation to thismore » interesting biological process, some artificial systems have been exploited for the synthesis of {beta}-ketocarboxylic acid derivatives from carbon dioxide and ketones using nucleophiles such as metal carbonates, thiazolates, phenolates, alkoxides, and strong organic as well as inorganic basis, which promote the enolization of ketones in the intermediate step. We wish to report here a novel, visible light-induced fixation of carbon dioxide with the enolate complex of aluminum porphyrin, giving {beta}-ketocarboxylic acid under mild conditions.« less

  6. Solvent effect on post-irradiation grafting of styrene onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) films

    NASA Astrophysics Data System (ADS)

    Napoleão Geraldes, Adriana; Augusto Zen, Heloísa; Ribeiro, Geise; Fernandes Parra, Duclerc; Benévolo Lugão, Ademar

    2013-03-01

    Radiation-induced grafting of styrene onto ETFE films in different solvent was investigated after simultaneous irradiation (in post-irradiation condition) using a 60Co source. Grafting of styrene followed by sulfonation onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) are currently studied for synthesis of ion exchange membranes. The ETFE films were immersed in styrene/toluene, styrene/methanol and styrene/isopropyl alcohol and irradiated at 20 and 100 kGy doses at room temperature. The post-irradiation time was established at 14 day and the grafting degree was evaluated. The grafted films were sulfonated using chlorosulfonic acid and 1,2-dichloroethane 20:80 (v/v) at room temperature for 5 h. The degree of grafting (DOG) was determined gravimetrically and physical or chemical changes were evaluated by differential scanning calorimeter analysis (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The ion exchange capacity (IEC) values showed the best performance of sulfonation for ETFE membranes grafted in toluene solvent. Surface images of the grafted films by SEM technique have presented a strong effect of the solvents on the films morphology.

  7. Protective effects of ethyl pyruvate in cisplatin-induced nephrotoxicity

    PubMed Central

    Kelle, Ilker; Akkoc, Hasan; Tunik, Selcuk; Nergiz, Yusuf; Erdinc, Meral; Erdinc, Levent

    2014-01-01

    This study was performed to investigate the effect of ethyl pyruvate on changes in renal functions and oxidative stress related renal injury caused by cisplatin (cis-dichlorodiammine platinum-II; CDDP). Male Wistar albino rats were divided into four groups (n = 8): (1) control group (1 ml Ringer's lactate solution i.p.); (2) ethyl pyruvate (EP) group (50 mg/kg Ringer's EP solution (REPS) i.p.); (3) cisplatin group (a single dose of cisplatin (5 mg/kg, i.p.); and (4) cisplatin + EP group (a single dose of cisplatin (5 mg/kg, i.p.) + REPS 50 mg/kg/day, i.p.) for five days. At the sixth day, kidneys of rats were mounted to a Langendorff apparatus. Renal perfusion pressures were recorded. Blood samples were taken for serum urea, creatinine, total oxidant status (TOS), total antioxidant status (TAS) and oxidative stres index (OSI) evaluations. Kidney tissues were obtained for malondialdehyde (MDA) analyses and histopathological examination. Perfusion pressures, serum urea, creatinine, TOS, OSI and tissue MDA levels were found significantly higher, whereas TAS was notably lower in cisplatin group. Histopathological examination showed apparent renal paranchymal injury in cisplatin group. In cisplatin + REPS group, perfusion pressures, serum urea, creatinine and tissue MDA levels were decreased. Moreover, EP co-administration provided less inflammatory cell infiltration, tubular dilatation, whereas TOS, TAS and OSI improved significantly versus cisplatin group. These findings show that EP has protective effects against cisplatin nephrotoxicity. PMID:26019553

  8. [The effect of diet ratio of polyunsaturated fatty acids of omega-3 and omega-6 families on activity of aminotransferases and gamma-glutamyltransferase in rat blood serum].

    PubMed

    Ketsa, O V; Marchenko, M M

    2014-01-01

    The effect of diet fat compositions with various ratio of omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) on alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT) activities in blood serum of 45 white mongrel rats weighing 90-110 g (9 animals in group) has been investigated. Fat components in the semi-synthetic diet, compiled on the basis of AIN-93 diet, and sources of omega-6 and omega-3 PUFA were presented by sunflower oil, soybean oil and fish oil. It has been shown that four-week inclusion of linoleic acid (LA) and alpha-linolenic acid (alpha-LNA) in a ratio of 7:1 into the diet (soybean oil) as well as use of only omega-6 PUFA (sunflower oil) has lead to an increase in the activity of ALT and GGT in rat blood serum compared to control animals treated with the complex of linolenic, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid through the mixture of sunflower oil and fish oil (9:1) with the ratio of omega-6 and omega-3 PUFA 7:1. Along with this, the AST:ALT ratio (de Ritis ratio) was lower (p < 0.05) as compared with the control group of rat, amounting respectively 0.92 +/- 0.08 and 0.79 +/- 0.12 vs 1.26 +/- 0.10. The use of high doses of omega-3 fatty acids (600 mg EPA and 400 mg DHA per kg of animal weight per day coming through fish oil) did not affect the activity of ALT and GGT, but increased AST serum activity (0.47 +/- 0.04 micromoles/min per mg protein) and the de Ritis ratio (2.53 +/- 0.23). The diet deprived with fat increased enzyme activity of ALT, AST and GGT in rat blood serum.

  9. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier.

    PubMed

    Martínez-Zamora, Ana; Meseguer, Salvador; Esteve, Juan M; Villarroya, Magda; Aguado, Carmen; Enríquez, J Antonio; Knecht, Erwin; Armengod, M-Eugenia

    2015-01-01

    GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function.

  10. The role of dietary long chain fatty acids in mitochondrial structure and function. Effects on rat cardiac mitochondrial respiration.

    PubMed

    Clandinin, M T

    1978-02-01

    To evaluate the effect of dietary rapeseed oils on cardiac mitochondrial function and metabolic conservation of energy, male weanling rats derived from the Sprague-Dawley strain were fed three rations containing either 15% (w/w) soybean oil, low erucic acid rapeseed oil or a high erucic acid rapeseed oil. Cardiac mitochondria were isolated for measurement of mitochondrial respiratory functions. Pyruvate and malate plus malonate or succinate plus amytal, or alpha-ketoglutarate and malate plus malonate were utilized as substrates for oxidative phosphorylation. Net rates of state 3 oxygen uptake and therefore ATP synthesis were found to decline with chronic feeding of the 15% (w/w) oil containing diets. Significantly reduced ADP/O ratios were observed for groups fed high erucic acid rapeseed oil containing diets for 11 days. Decreased ADP/O ratios were also observed for groups fed high or low erucic acid rapeseed oils for 112 days. When pyruvate and malate plus malonate were utilized as substrates, reduced rates of ATP synthesis were observed after chronic feeding of high erucic acid rapeseed oil diets. Only prolonged feeding of low erucic acid rapeseed oils resulted in significant alterations in the efficiency of oxidative phosphorylation.

  11. Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in petunia.

    PubMed

    Gass, Nathalie; Glagotskaia, Tatiana; Mellema, Stefan; Stuurman, Jeroen; Barone, Mario; Mandel, Therese; Roessner-Tunali, Ute; Kuhlemeier, Cris

    2005-08-01

    Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.

  12. Alternative 2-keto acid oxidoreductase activities in Trichomonas vaginalis.

    PubMed

    Brown, D M; Upcroft, J A; Dodd, H N; Chen, N; Upcroft, P

    1999-01-25

    We have induced high levels of resistance to metronidazole (1 mM or 170 microg ml(-1)) in two different strains of Trichomonas vaginalis (BRIS/92/STDL/F1623 and BRIS/92/STDL/B7708) and have used one strain to identify two alternative T. vaginalis 2-keto acid oxidoreductases (KOR) both of which are distinct from the already characterised pyruvate:ferredoxin oxidoreductase (PFOR). Unlike the characterised PFOR which is severely down-regulated in metronidazole-resistant parasites, both of the alternative KORs are fully active in metronidazole-resistant T. vaginalis. The first, KORI, localized in all membrane fractions but predominantly in the hydrogenosome fraction, is soluble in Triton X-100 and the second, KOR2, is extractable in 1 M acetate from membrane fractions of metronidazole-resistant parasites. PFOR and both KORI and KOR2 use a broad range of 2-keto acids as substrates (pyruvate, alpha-ketobutyrate, alpha-ketomalonate), including the deaminated forms of aromatic amino acids (indolepyruvate and phenylpyruvate). However, unlike PFOR neither KORI or KOR2 was able to use oz-ketoglutarate. Deaminated forms of branched chain amino acids (alpha-ketoisovalerate) were not substrates for T. vaginalis KORs. Since KOR I and KOR2 do not apparently donate electrons to ferredoxin, and are not down-regulated in metronidazole-resistant parasites, we propose that KORI and KOR2 provide metronidazole-resistant parasites with an alternative energy production pathway(s) which circumvents metronidazole activation.

  13. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    PubMed

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  14. Continuous pyruvate carbon flux to newly synthesized cholesterol and the suppressed evolution of pyruvate-generated CO2 in tumors: further evidence for a persistent truncated Krebs cycle in hepatomas.

    PubMed

    Parlo, R A; Coleman, P S

    1986-04-29

    Viable tissue slices from rat liver and Morris hepatoma 3924A were compared as to their ability to incorporate carbons from [U-14 C]pyruvate into newly synthesized cholesterol versus CO2. By 4 h, the tumor slice incubation had incorporated over 6-fold more pyruvate carbons into the sterol than into CO2, relative to the normal liver slice incubation, per g tissue protein. However, the presence of the mitochondrial citrate exchange carrier inhibitor 1,2,3-benzenetricarboxylate in the incubation inhibited the formation of [14C]cholesterol, while simultaneously leading to an increase in the rate of 14CO2 production in the tumor. In the normal liver system by contrast, benzenetricarboxylate also inhibited [14C]cholesterol formation, but had hardly any effect on the already high rate of 14CO2 production. The ability of benzenetricarboxylate to inhibit the rapid carbon flux from pyruvate to cholesterol, and to steer the metabolic flow of carbons toward oxidative decarboxylation via the Krebs cycle in whole, viable tumor tissue, indirectly emphasizes the importance of the mitochondrial citrate exchange carrier in supporting the decontrol of cholesterogenesis de novo in tumors by accelerating the supply of lipogenic precursor carbons to the tumor cytosol. These studies may be therefore interpreted as extensions, to the level of whole-cell metabolism, of the concept of a persistent 'truncated' Krebs cycle in the mitochondria of metastatic cancer tissue. This concept states, in part, that a rapid efflux of mitochondrially generated citrate would operate preferentially in tumors, and thus provide carbons continuously to the cytoplasmic compartment where the well-established deregulated pathway of cholesterogenesis occurs (Parlo, R.A. and Coleman, P.S. (1984) J. Biol. Chem. 259, 9997-10003; Coleman, P.S. and Lavietes, B.B. (1981) CRC Crit. Rev. Biochem. 11, 341-393).

  15. Resistance to hypoxia-induced necroptosis is conferred by glycolytic pyruvate scavenging of mitochondrial superoxide in colorectal cancer cells.

    PubMed

    Huang, C-Y; Kuo, W-T; Huang, Y-C; Lee, T-C; Yu, L C H

    2013-05-02

    Cancer cells may survive under oxygen and nutrient deprivation by metabolic reprogramming for high levels of anaerobic glycolysis, which contributes to tumor growth and drug resistance. Abnormally expressed glucose transporters (GLUTs) are colocalized with hypoxia (Hx) inducible factor (HIF)1α in peri-necrotic regions in human colorectal carcinoma. However, the underlying mechanisms of anti-necrotic resistance conferred by glucose metabolism in hypoxic cancer cells remain poorly understood. Our aim was to investigate signaling pathways of Hx-induced necroptosis and explore the role of glucose pyruvate metabolite in mechanisms of death resistance. Human colorectal carcinoma cells were Hx exposed with or without glucose, and cell necroptosis was examined by receptor-interacting protein (RIP)1/3 kinase immunoprecipitation and (32)P kinase assays. Our results showed increased RIP1/3 complex formation and phosphorylation in hypoxic, but not normoxic cells in glucose-free media. Blocking RIP1 signaling, by necrostatin-1 or gene silencing, decreased lactodehydrogenase (LDH) leakage and plasma membrane disintegration. Generation of mitochondrial superoxide was noted after hypoxic challenge; its reduction by antioxidants inhibited RIP signaling and cell necrosis. Supplementation of glucose diminished the RIP-dependent LDH leakage and morphological damage in hypoxic cells, whereas non-metabolizable sugar analogs did not. Hypoxic cells given glucose showed nuclear translocation of HIF1α associated with upregulation of GLUT-1 and GLUT-4 expression, as well as increase of intracellular ATP, pyruvate and lactate levels. The glucose-mediated death resistance was ablated by iodoacetate (an inhibitor to glyceraldehyde-3-phosphate dehydrogenase), but not by UK5099 (an inhibitor to mitochondrial pyruvate carrier), suggesting that glycolytic pathway was involved in anti-necrotic mechanism. Lastly, replacing glucose with cell-permeable pyruvate derivative also led to decrease of Hx

  16. The viability of a nonenzymatic reductive citric acid cycle - Kinetics and thermochemistry

    USGS Publications Warehouse

    Ross, D.S.

    2007-01-01

    The likelihood of a functioning nonenzymatic reductive citric acid cycle, recently proposed as the precursor to biosynthesis on early Earth, is examined on the basis of the kinetics and thermochemistry of the acetate ??? pyruvate ??? oxaloacetate ??? malate sequence. Using data derived from studies of the Pd-catalyzed phosphinate reduction of carbonyl functions it is shown that the rate of conversion of pyruvate to malate with that system would have been much too slow to have played a role in the early chemistry of life, while naturally occurring reduction systems such as the fayalite-magnetite-quartz and pyrrhotite-pyrite-magnetite mineral assemblages would have provided even slower conversions. It is also shown that the production of pyruvate from acetate is too highly endoergic to be driven by a naturally occurring energy source such as pyrophosphate. It is thus highly doubtful that the cycle can operate at suitable rates without enzymes, and most unlikely that it could have participated in the chemistry leading to life. ?? 2006 Springer Science + Business Media B.V.

  17. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi.

    PubMed

    Lin, J W; Lu, H C; Chen, H Y; Weng, S F

    1997-10-09

    Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.

  18. Differing clinical phenotype for higher alanine-aminotransferase (ALT) compared with high-risk NAFLD fibrosis score in type 2 diabetes mellitus.

    PubMed

    Williams, Kathryn H; Burns, Kharis; Twigg, Stephen M

    2018-03-01

    The impact of non-alcoholic fatty liver disease (NAFLD) presence and severity on the diabetes phenotype remains unclear. Our study aimed to explore and contrast the phenotypes associated with higher ALT and high-risk NAFLD fibrosis score (NFS) in type 2 diabetes. 324 patients with type 2 diabetes mellitus who were seen at a diabetes centre for a complications assessment with data for NFS were available for study. Data regarding co-morbidities and pathology were obtained at assessment and by file audit. Logistic regression was used to determine if there were significant relationships between pre-determined diabetes complications and co-morbidities and ALT or high-risk NFS (>0.675). Significant univariate associations with lower ALT included those of osteoporosis/osteopenia and inability to sense the monofilament. High-risk NFS was associated with arrhythmia, VPT ≥ 25 V and albuminuria. The associations of high-risk NFS with albuminuria and VPT ≥ 25 V remained after adjustment. In type 2 diabetes, the clinical phenotype of those with higher ALT is dissimilar, sometimes inverse, to those with high-risk NFS. More emphasis should be placed on liver fibrosis risk rather than on liver enzymes alone. Copyright © 2017. Published by Elsevier Inc.

  19. Stimulation of mitochondrial pyruvate metabolism and citrulline synthesis by dexamethasone. Effect of isolation and incubation media.

    PubMed Central

    Martin, A D; Titheradge, M A

    1984-01-01

    Hepatic mitochondria isolated in 0.3 M-sucrose or 0.3 M-mannitol from rats treated for 3h with dexamethasone displayed stimulated rates of pyruvate carboxylation and decarboxylation and citrulline synthesis when compared with organelles from control animals. Mitochondria isolated in mannitol also displayed elevated rates of pyruvate carboxylation and decarboxylation when compared with those isolated in sucrose, and this stimulation was shown to be independent of the lengthy isolation procedure. Citrulline synthesis proceeded at similar rates in mitochondria isolated in either sugar. The concentration of exchangeable adenine nucleotides was identical in mitochondria isolated in sucrose or mannitol, suggesting that those prepared in the former sugar are not more permeable to metabolites than those prepared in the latter. The matrix volume of mitochondria isolated in mannitol was greater than that of mitochondria isolated in sucrose, and the effect of mannitol on pyruvate metabolism was mimicked by swelling the organelles in hypo-osmotic sucrose. Measurements of the extra-matrix volume by using [14C]sucrose or [14C]mannitol suggest that mannitol can permeate mitochondria to a greater extent than can sucrose. The possibility that mannitol elicits its effect by entering the mitochondrial matrix and so initiating swelling is discussed. PMID:6433898

  20. The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism.

    PubMed

    Ries, Laure Nicolas Annick; de Assis, Leandro José; Rodrigues, Fernando José Santos; Caldana, Camila; Rocha, Marina Campos; Malavazi, Iran; Bayram, Özgür; Goldman, Gustavo H

    2018-05-24

    The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilisation in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilisation in the reference filamentous fungus Aspergillus nidulans , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localised to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilisation, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilisation of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. Copyright © 2018, G3: Genes, Genomes, Genetics.

  1. On the Trajectories of the Predetermined ALT Model: What Are We Really Modeling?

    ERIC Educational Resources Information Center

    Jongerling, Joran; Hamaker, Ellen L.

    2011-01-01

    This article shows that the mean and covariance structure of the predetermined autoregressive latent trajectory (ALT) model are very flexible. As a result, the shape of the modeled growth curve can be quite different from what one might expect at first glance. This is illustrated with several numerical examples that show that, for example, a…

  2. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride) Hybrid Material as an Adsorbent for Water Purification.

    PubMed

    Panzarasa, Guido; Osypova, Alina; Consolati, Giovanni; Quasso, Fiorenza; Soliveri, Guido; Ribera, Javier; Schwarze, Francis W M R

    2018-01-23

    Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene- alt -maleic anhydride) (P(E- alt -MA)). Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye) for a wide pH range (from pH 2 to 12) and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E- alt -MA), the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.

  3. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride) Hybrid Material as an Adsorbent for Water Purification

    PubMed Central

    Osypova, Alina; Quasso, Fiorenza; Soliveri, Guido; Ribera, Javier; Schwarze, Francis W. M. R.

    2018-01-01

    Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene-alt-maleic anhydride) (P(E-alt-MA)). Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye) for a wide pH range (from pH 2 to 12) and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E-alt-MA), the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes. PMID:29360734

  4. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production.

    PubMed

    Bai, Dong-Mei; Zhao, Xue-Ming; Li, Xin-Gang; Xu, Shi-Min

    2004-12-20

    The effects of initial glucose concentration and calcium lactate concentration on the lactic acid production by the parent strain, Lactobacillus lactis BME5-18, were studied. The results of the experiments indicated that glucose and lactate repressed the cell growth and the lactic acid production by Lactobacillus lactis BME5-18. A L(+)-lactic acid overproducing strain, Lactobacillus lactis BME5-18M, was screened by mutagenizing the parent strain with ultraviolet (UV) light irradiation and selecting the high glucose and lactate calcium concentration repression resistant mutant. Starting with a concentration of 100g L(-1) glucose, the mutant produced 98.6 g L(-1) lactic acid after 60 h in flasks, 73.9% higher than that of the parent strain. The L(+)-lactic acid purity was 98.1% by weight based on the amount of total lactic acid. The culture of the parent strain could not be analyzed well by conventional metabolic flux analysis techniques, since some pyruvate were accumulated intracellularly. Therefore, a revised flux analysis method was proposed by introducing intracellular pyruvate pool. Further studies demonstrate that there is a high level of NADH oxidase activity (12.11 mmol mg(-1) min(-1)) in the parent strain. The molecular mechanisms of the strain improvement were proposed, i.e., the high level of NADH oxidase activity was eliminated and the uptake rate of glucose was increased from 82.1 C-mmol (g DW h)(-1) to 98.9 C-mmol (g DW h)(-1) by mutagenizing the parent strain with UV, and therefore the mutant strain converts mostly pyruvate to lactic acid with a higher productivity (1.76 g L(-1) h(-1)) than the parent strain (0.95 g L(-1) h(-1)).

  5. HIBCH mutations can cause Leigh-like disease with combined deficiency of multiple mitochondrial respiratory chain enzymes and pyruvate dehydrogenase.

    PubMed

    Ferdinandusse, Sacha; Waterham, Hans R; Heales, Simon J R; Brown, Garry K; Hargreaves, Iain P; Taanman, Jan-Willem; Gunny, Roxana; Abulhoul, Lara; Wanders, Ronald J A; Clayton, Peter T; Leonard, James V; Rahman, Shamima

    2013-12-04

    Deficiency of 3-hydroxy-isobutyryl-CoA hydrolase (HIBCH) caused by HIBCH mutations is a rare cerebral organic aciduria caused by disturbance of valine catabolism. Multiple mitochondrial respiratory chain (RC) enzyme deficiencies can arise from a number of mechanisms, including defective maintenance or expression of mitochondrial DNA. Impaired biosynthesis of iron-sulphur clusters and lipoic acid can lead to pyruvate dehydrogenase complex (PDHc) deficiency in addition to multiple RC deficiencies, known as the multiple mitochondrial dysfunctions syndrome. Two brothers born to distantly related Pakistani parents presenting in early infancy with a progressive neurodegenerative disorder, associated with basal ganglia changes on brain magnetic resonance imaging, were investigated for suspected Leigh-like mitochondrial disease. The index case had deficiencies of multiple RC enzymes and PDHc in skeletal muscle and fibroblasts respectively, but these were normal in his younger brother. The observation of persistently elevated hydroxy-C4-carnitine levels in the younger brother led to suspicion of HIBCH deficiency, which was investigated by biochemical assay in cultured skin fibroblasts and molecular genetic analysis. Specific spectrophotometric enzyme assay revealed HIBCH activity to be below detectable limits in cultured skin fibroblasts from both brothers. Direct Sanger sequence analysis demonstrated a novel homozygous pathogenic missense mutation c.950G pyruvate dehydrogenase deficiency.

  6. Metabolic engineering of a laboratory-evolved Thermobifida fusca muC strain for malic acid production on cellulose and minimal treated lignocellulosic biomass.

    PubMed

    Deng, Yu; Mao, Yin; Zhang, Xiaojuan

    2016-01-01

    Malic acid is mainly used as an acidulant and taste enhancer in the beverage and food industry. Previously, a mutant strain Thermobifida fusca muC, obtained by adaptive evolution was found to accumulate malic acid on cellulose with low yield. In this study, the malic acid synthesis pathway in T. fusca muC was confirmed to be from phosphoenolpyruvate to oxaloacetate, followed by reduction of oxaloacetate to malate. To increase the yield of malic acid by the muC strain significantly, the carbon flux from pyruvate was redirected to oxaloacetate by expressing an exogenous pyruvate carboxylase (PCx) gene from Corynebacterium glutamicum ATCC 13032 in the chromosome of T. fusca muC-16. The yield of malic acid in the engineered strain muC-16 was increased by 47.9% compared to the parent strain muC. The muC-16 strain was then grown on ∼100 g/L cellulose and the highest titer of malic acid was 62.76 g/L by batch fermentation. T. fusca muC-16 strain converted milled corn stover to malic acid with the highest titer of 21.47 g/L with minimal treatment. © 2016 American Institute of Chemical Engineers.

  7. Reduction of α-oxo carboxyylic acids by pigeon liver `malic' enzyme

    PubMed Central

    Tang, Chung L.; Hsu, Robert Y.

    1973-01-01

    1. Pigeon liver `malic' enzyme [l-malate–NADP+ oxidoreductase (decarboxylating); EC 1.1.1.40] was shown to catalyse the reductase reaction: [Formula: see text] l-Malate was identified as the reaction product, and was formed in stoicheiometric amount. 2. In addition to oxaloacetate and pyruvate, a number of other α-oxo carboxylic acids were also reduced. PMID:4764261

  8. Expression of PEP carboxylase from Escherichia coli complements the phenotypic effects of pyruvate carboxylase mutations in Saccharomyces cerevisiae.

    PubMed

    Flores, C L; Gancedo, C

    1997-08-04

    We investigated the effects of the expression of the Escherichia coli ppc gene encoding PEP carboxylase in Saccharomyces cerevisiae mutants devoid of pyruvate carboxylase. Functional expression of the ppc gene restored the ability of the yeast mutants to grow in glucose-ammonium medium. Growth yield in this medium was the same in the transformed yeast than in the wild type although the growth rate of the transformed yeast was slower. Growth in pyruvate was slowed down in the transformed strain, likely due to a futile cycle produced by the simultaneous action of PEP carboxykinase and PEP carboxylase.

  9. Comparison of efficacy of folic acid and silymarin in the management of antiepileptic drug induced liver injury: a randomized clinical trial.

    PubMed

    Asgarshirazi, Masoumeh; Shariat, Mamak; Sheikh, Mahdi

    2017-06-01

    Liver injury associated with antiepileptic drugs accounts for a large proportion of drug-induced liver injuries (DILI) in children. Although withdrawal of the causative agent is the only proved treatment for DILI, in some clinical situations it is not possible. Recent studies have reported promising results of using hepatoprotective drugs with antioxidant actions for the management of DILI. This study aimed to evaluate the efficacy of folic acid versus silymarin treatment in relation to decreasing liver enzymes in patients with DILI due to antiepileptic therapy. This randomized, open-label, clinical trial evaluated 55 children with epilepsy who were on antiepileptic treatment and experienced DILI. The children were randomized to receive either silymarin (5 mg/kg per day) or folic acid (1 mg per day) for one month and were followed up for three months. Liver enzymes significantly decreased in both groups. The decrease trend in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were stronger in the folic acid group compared to silymarin group (P=0.04 and P=0.007, respectively). At the end of the study patients in the folic acid group had significantly lower ALT (P=0.04), AST (P=0.02), and gamma-glutamyl transferase (GGT) (P<0.001) levels and also higher percentage of normal ALT (30.7% vs 3.4%, P=0.009) and AST (42.3% vs 0%, P<0.001), and GGT (23.1% vs 0%, P=0.008) values compared to the patients in the silymarin group. No rebound elevations in ALT, AST and GGT levels or adverse reactions were noted in neither of the study groups. Although both treatments were safe and effective in decreasing liver enzymes, folic acid seems to be superior to silymarin in the management of DILI.

  10. Inhibitory effects of ethyl pyruvate on platelet aggregation and phosphatidylserine exposure.

    PubMed

    Li, Wenjin; Yang, Xinyu; Peng, Minyuan; Li, Can; Mu, Guangfu; Chen, Fangping

    2017-06-03

    Ethyl pyruvate (EP) is a stable lipophilic pyruvate derivative. Studies demonstrated that EP shows potent anti-oxidation, anti-inflammatory and anti-coagulant effects. Inflammation and coagulation are closely interacted with platelet activation. However, it is unclear whether EP has anti-platelet effects. Therefore, we investigated the anti-platelet effect of EP in this study in vitro. We found that EP inhibited agonists induced platelets aggregation, ATP release and adhesion to collagen. Flow cytometric analysis revealed that EP inhibited agonist induced platelets PAC-1 binding, as well as P-selectin and CD40L expression. The underlying mechanism of action may involve the inhibition of platelet PI3K/Akt and Protein Kinase C (PKC) signaling pathways. Additionally, EP dose dependently inhibited platelet PS exposure induced by high concentration thrombin. Lactate dehydrogenase (LDH) activity assay and mice platelet count implied that EP may have no toxic effect on platelets. Therefore, we are the first to report that EP has potent anti-platelet activity and attenuates platelet PS exposure in vitro, suggesting that the inhibitory effects of EP on platelets may also play important roles in improvement of inflammation and coagulation disorder in related animal models. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Insulin-induced inhibition of gluconeogenesis genes, including glutamic pyruvic transaminase 2, is associated with reduced histone acetylation in a human liver cell line.

    PubMed

    Honma, Kazue; Kamikubo, Michiko; Mochizuki, Kazuki; Goda, Toshinao

    2017-06-01

    Hepatic glutamic pyruvic transaminase (GPT; also known as alanine aminotransferase) is a gluconeogenesis enzyme that catalyzes conversions between alanine and pyruvic acid. It is also used as a blood biomarker for hepatic damage. In this study, we investigated whether insulin regulates GPT expression, as it does for other gluconeogenesis genes, and if this involves the epigenetic modification of histone acetylation. Human liver-derived HepG2 cells were cultured with 0.5-100nM insulin for 8h, and the mRNA expression of GPT, glutamic-oxaloacetic transaminase (GOT), γ-glutamyltransferase (GGT), PCK1, G6PC and FBP1 was measured. We also investigated the extent of histone acetylation around these genes. Insulin suppressed the mRNA expression of gluconeogenesis genes (GPT2, GOT1, GOT2, GGT1, GGT2, G6PC, and PCK1) in HepG2 cells in a dose-dependent manner. mRNA levels of GPT2, but not GPT1, were decreased by insulin. Histone acetylation was also reduced around GPT2, G6PC, and PCK1 in response to insulin. The expression of GPT2 and other gluconeogenesis genes such as G6PC and PCK1 was suppressed by insulin, in association with decreases in histone H3 and H4 acetylation surrounding these genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process of preparation

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1995-10-10

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: --[--(R.sup.1)(R.sup.2)Si--C.tbd.C--(R.sup.3)(R.sup.4)Si--CH.dbd.CH--].sub .n --, wherein n.gtoreq.2; and each R.sup.1, R.sup.2, R.sup.3, and R.sup.4 is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  13. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process of preparation

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Yi Pang.

    1993-08-31

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: -[-(R[sup 1])(R[sup 2])Si-C[triple bond]C-(R[sup 3])(R[sup 4])Si-CH[double bond]CH-][sub n]-, wherein n[>=]2; each R[sup 1], R[sup 2], R[sup 3], and R[sup 4] is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  14. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process of preparation

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1995-10-10

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: --[--(R{sup 1})(R{sup 2})Si--C{triple_bond}C--(R{sup 3})(R{sup 4})Si--CH{double_bond}CH--]{sub n}--, wherein n{>=}2; and each R{sup 1}, R{sup 2}, R{sup 3}, and R{sup 4} is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  15. Pyruvate and ketone-body transport across the mitochondrial membrane. Exchange properties, pH-dependence and mechanism of the carrier.

    PubMed

    Halestrap, A P

    1978-06-15

    The effects of exchangeable ions and pH on the efflux of pyruvate from preloaded mitochondria are reported. Efflux obeys first-order kinetics, and the stimulation of efflux by exchangeable ions such as acetoacetate and lactate obeys Michaelis--Menten kinetics. The apparent Km value +/- S.E. for acetoacetate was 0.56 +/- 0.14 mM (n = 5) and that for lactate 12.3 +/- 2.3 mM (n = 6). The Vmax. values +/- S.E. at 0 degrees C were 16.2 +/- 2.0 and 21.9 +/- 2.7 nmol/min per mg of protein. The exchange of a variety of other substituted monocarboxylates was also studied. Efflux was also stimulated by increasing the external pH. The data gave a pK for the transport process of 8.35 and a Vmax. of 3.31 +/- 0.14 nmol/min per mg. The similarity of the Vmax. values for various exchangeable ions but the difference of this from the Vmax. in the absence of exchangeable ions may indicate that transport of pyruvate occurs with H+ and not in exchange for an OH- ion. The inhibition of transport by alpha-cyano-4-hydroxycinnamate took several seconds to reach completion at 0 degrees C. It is proposed that inhibition occurs by binding to the substrate site and subsequent reaction with an -SH group on the inside of the membrane. The inhibitor can be displaced by substrates that can also enter the mitochondria independently of the carrier and so compete with the inhibitor for the substrate-binding site on the inside of the membrane. A mechanism for transport is proposed that invokes a transition state of pyruvate involving addition of an -SH group to the 2-carbon of pyruvate. Evidence is presented that suggests that ketone bodies may cross the mitochondrial membrane either on the carrier or by free diffusion. The physiological involvement of the carrier in ketone-body metabolism is discussed. The role of ketone bodies and pH in the physiological regulation of pyruvate transport is considered.

  16. Structural intermediates and directionality of the swiveling motion of Pyruvate Phosphate Dikinase

    NASA Astrophysics Data System (ADS)

    Minges, Alexander; Ciupka, Daniel; Winkler, Christian; Höppner, Astrid; Gohlke, Holger; Groth, Georg

    2017-03-01

    Pyruvate phosphate dikinase (PPDK) is a vital enzyme in cellular energy metabolism catalyzing the ATP- and Pi-dependent formation of phosphoenolpyruvate from pyruvate in C4 -plants, but the reverse reaction forming ATP in bacteria and protozoa. The multi-domain enzyme is considered an efficient molecular machine that performs one of the largest single domain movements in proteins. However, a comprehensive understanding of the proposed swiveling domain motion has been limited by not knowing structural intermediates or molecular dynamics of the catalytic process. Here, we present crystal structures of PPDKs from Flaveria, a model genus for studying the evolution of C4 -enzymes from phylogenetic ancestors. These structures resolve yet unknown conformational intermediates and provide the first detailed view on the large conformational transitions of the protein in the catalytic cycle. Independently performed unrestrained MD simulations and configurational free energy calculations also identified these intermediates. In all, our experimental and computational data reveal strict coupling of the CD swiveling motion to the conformational state of the NBD. Moreover, structural asymmetries and nucleotide binding states in the PPDK dimer support an alternate binding change mechanism for this intriguing bioenergetic enzyme.

  17. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    PubMed

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  18. Tricarboxylic acid cycle inhibition by Li+ in the human neuroblastoma SH-SY5Y cell line: a 13C NMR isotopomer analysis.

    PubMed

    Fonseca, Carla P; Jones, John G; Carvalho, Rui A; Jeffrey, F Mark H; Montezinho, Liliana P; Geraldes, Carlos F G C; Castro, M M C A

    2005-11-01

    Li+ effects on glucose metabolism and on the competitive metabolism of glucose and lactate were investigated in the human neuroblastoma SH-SY5Y cell line using 13C NMR spectroscopy. The metabolic model proposed for glucose and lactate metabolism in these cells, based on tcaCALC best fitting solutions, for both control and Li+ conditions, was consistent with: (i) a single pyruvate pool; (ii) anaplerotic flux from endogenous unlabelled substrates; (iii) no cycling between pyruvate and oxaloacetate. Li+ was shown to induce a 38 and 53% decrease, for 1 and 15 mM Li+, respectively, in the rate of glucose conversion into pyruvate, when [U-13C]glucose was present, while no effects on lactate production were observed. Pyruvate oxidation by the tricarboxylic acid cycle and citrate synthase flux were shown to be significantly reduced by 64 and 84% in the presence of 1 and 15 mM Li+, respectively, suggesting a direct inhibitory effect of Li+ on tricarboxylic acid cycle flux. This work also showed that when both glucose and lactate are present as energetic substrates, SH-SY5Y cells preferentially consumed exogenous lactate over glucose, as 62% of the acetyl-CoA was derived from [3-13C]lactate while only 26% was derived from [U-13C]glucose. Li+ did not significantly affect the relative utilisation of these two substrates by the cells or the residual contribution of unlabelled endogenous sources for the acetyl-CoA pool.

  19. Pyruvate Decarboxylase Provides Growing Pollen Tubes with a Competitive Advantage in PetuniaW⃞

    PubMed Central

    Gass, Nathalie; Glagotskaia, Tatiana; Mellema, Stefan; Stuurman, Jeroen; Barone, Mario; Mandel, Therese; Roessner-Tunali, Ute; Kuhlemeier, Cris

    2005-01-01

    Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen–pistil interaction. PMID:15994907

  20. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4

    PubMed Central

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Camacho, Carolina Espindola; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A. L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.; Dubinett, Steven M.; Critchlow, Susan E.; Kurdistani, Siavash K.; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G.; Christofk, Heather R.

    2016-01-01

    SUMMARY Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export, which when inhibited enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors further supporting their use as anti-cancer therapeutics. PMID:26876179

  1. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4.

    PubMed

    Hong, Candice Sun; Graham, Nicholas A; Gu, Wen; Espindola Camacho, Carolina; Mah, Vei; Maresh, Erin L; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A L; Gardner, Brian K; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K; Hurvitz, Sara A; Dubinett, Steven M; Critchlow, Susan E; Kurdistani, Siavash K; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G; Christofk, Heather R

    2016-02-23

    Monocarboxylate transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here, we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export that when inhibited, enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors, further supporting their use as anti-cancer therapeutics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease.

    PubMed

    Horas H Nababan, Saut; Nishiumi, Shin; Kawano, Yuki; Kobayashi, Takashi; Yoshida, Masaru; Azuma, Takeshi

    2017-06-01

    This study was designed to identify novel links between lipid species and disease progression in non-alcoholic fatty liver disease (NAFLD). We analyzed lipid species in the liver and plasma of db/db mice fed a choline-deficient l-amino acid-defined, high-fat diet (CDAHFD) using liquid chromatography/mass spectrometry (LC/MS). An in vitro experiment was performed using HepG2 cells stimulated with recombinant human TNFα or IL1β. The expression of steatosis-, inflammation-, and fibrosis-related genes were analyzed. Plasma samples from NAFLD patients were also analyzed by LC/MS. The CDAHFD-fed db/db mice with hepatic steatosis, inflammation, mild fibrosis, obesity, and hypercholesterolemia displayed significantly higher hepatic and plasma levels of free adrenic acid (p < 0.05). The accumulated adrenic acid in the CDAHFD-fed db/db mice was associated with increased expression of ELOVL2 and 5, and the suppression of the acyl-CoA oxidase 1 gene during peroxisomal β-oxidation. The pretreatment of HepG2 cells with adrenic acid enhanced their cytokine-induced cytokines and chemokines mRNA expression. In NAFLD patients, the group with the highest ALT levels exhibited higher plasma adrenic acid concentrations than the other ALT groups (p-value for trend <0.001). Data obtained demonstrated that adrenic acid accumulation contributes to disease progression in NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A Novel ω-3 Acid Ethyl Ester Formulation Incorporating Advanced Lipid TechnologiesTM (ALT®) Improves Docosahexaenoic Acid and Eicosapentaenoic Acid Bioavailability Compared with Lovaza®.

    PubMed

    Lopez-Toledano, Miguel A; Thorsteinsson, Thorsteinn; Daak, Ahmed; Maki, Kevin C; Johns, Colleen; Rabinowicz, Adrian L; Sancilio, Frederick D

    2017-03-01

    The US Food and Drug Administration has approved several highly purified ω-3 fatty acid prescription drugs for the treatment of severe hypertriglyceridemia. These differ in the amounts and forms of docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). This study compared the bioavailability of SC401 (1530 mg EPA-ethyl esters [EEs] and DHA-EEs plus Advanced Lipid Technologies ⁎ [ALT † ], a proprietary lipid-delivery platform to improve absorption), with. Lovaza ‡ (3600 mg ω-3, primarily EPA-EEs and DHA-EEs) under low-fat feeding conditions. This was a Phase I, randomized, open-label, single-dose, 2-way crossover study in healthy participants housed from day -3 to day 2 in each treatment period. Blood samples for pharmacokinetic measurements were collected before and after dosing, and safety profile and tolerability were assessed. In unadjusted analyses, SC401 had 5% lower C max and approximately the same AUC 0-last of EPA + DHA total lipids compared with Lovaza. When adjusted for baseline, SC401 had ~6% higher C max and 18% higher AUC 0-last for EPA + DHA total lipids, and dose- and baseline-adjusted analyses found that SC401 had ~149% higher C max and 178% higher AUC 0-last than Lovaza for EPA + DHA total lipids. The T max was also substantially longer with Lovaza (~10 hours) than with SC401 (~6 hours). These results indicate that SC401, an ω-3 acid EE formulation containing ALT † achieved high bioavailability of EPA and DHA, at a lower dose (1530 mg) than Lovaza (3600 mg), under low-fat feeding conditions. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  4. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

    PubMed

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-02-01

    The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.

  5. LIPT1 deficiency presenting as early infantile epileptic encephalopathy, Leigh disease, and secondary pyruvate dehydrogenase complex deficiency.

    PubMed

    Stowe, Robert C; Sun, Qin; Elsea, Sarah H; Scaglia, Fernando

    2018-05-01

    Lipoic acid is an essential cofactor for the mitochondrial 2-ketoacid dehydrogenase complexes and the glycine cleavage system. Lipoyltransferase 1 catalyzes the covalent attachment of lipoate to these enzyme systems. Pathogenic variants in LIPT1 gene have recently been described in four patients from three families, commonly presenting with severe lactic acidosis resulting in neonatal death and/or poor neurocognitive outcomes. We report a 2-month-old male with severe lactic acidosis, refractory status epilepticus, and brain imaging suggestive of Leigh disease. Exome sequencing implicated compound heterozygous LIPT1 pathogenic variants. We describe the fifth case of LIPT1 deficiency, whose phenotype progressed to that of an early infantile epileptic encephalopathy, which is novel compared to previously described patients whom we will review. Due to the significant biochemical and phenotypic overlap that LIPT1 deficiency and mitochondrial energy cofactor disorders have with pyruvate dehydrogenase deficiency and/or nonketotic hyperglycinemia, they are and have been presumptively under-diagnosed without exome sequencing. © 2018 Wiley Periodicals, Inc.

  6. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats.

    PubMed

    Zlotnik, Alexander; Sinelnikov, Igor; Gruenbaum, Benjamin F; Gruenbaum, Shaun E; Dubilet, Michael; Dubilet, Elena; Leibowitz, Akiva; Ohayon, Sharon; Regev, Adi; Boyko, Matthew; Shapira, Yoram; Teichberg, Vivian I

    2012-01-01

    Decreasing blood glutamate concentrations after traumatic brain injury accelerates brain-to-blood glutamate efflux, leading to improved neurologic outcomes. The authors hypothesize that treatment with blood glutamate scavengers should reduce neuronal cell loss, whereas administration of glutamate should worsen outcomes. The authors performed histologic studies of neuronal survival in the rat hippocampus after traumatic brain injury and treatment with blood glutamate scavengers. Traumatic brain injury was induced on anesthetized male Sprague-Dawley rats by a standardized weight drop. Intravenous treatment groups included saline (control), oxaloacetate, pyruvate, and glutamate. Neurologic outcome was assessed using a Neurological Severity Score at 1 h, and 1, 2, 7, 14, 21, 28 days. Blood glutamate was determined at baseline and 90 min. Four weeks after traumatic brain injury, a histologic analysis of surviving neurons was performed. Oxaloacetate and pyruvate treatment groups demonstrated increased neuronal survival (oxaloacetate 2,200 ± 37, pyruvate 2,108 ± 137 vs. control 1,978 ± 46, P < 0.001, mean ± SD). Glutamate treatment revealed decreased neuronal survival (1,715 ± 48, P < 0.001). Treatment groups demonstrated favorable neurologic outcomes at 24 and 48 h (Neurological Severity Score at 24 and 48 h: 5.5 (1-8.25), 5 (1.75-7.25), P = 0.02 and 3(1-6.5), 4 (1.75-4.5), P = 0.027, median ± corresponding interquartile range). Blood glutamate concentrations were decreased in the oxaloacetate and pyruvate treatment groups. Administration of oxaloacetate and pyruvate was not shown to have any adverse effects. The authors demonstrate that the blood glutamate scavengers oxaloacetate and pyruvate provide neuroprotection after traumatic brain injury, expressed both by reduced neuronal loss in the hippocampus and improved neurologic outcomes. The findings of this study may bring about new therapeutic possibilities in a variety of clinical settings.

  7. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  8. Biotransformation of nitroso aromatic compounds and 2-oxo acids to N-hydroxy-N-arylacylamides by thiamine-dependent enzymes in rat liver.

    PubMed

    Yoshioka, T; Uematsu, T

    1998-07-01

    The formation of N-hydroxy-N-arylacylamides from nitroso aromatic compounds and 2-oxo acids was investigated using rat liver subcellular fractions. Activities were found in both mitochondria and cytosol, except for activities for phenylpyruvate and glyoxylate; the former did not produce N-hydroxy-N-phenylphenylacetamide and the latter nonenzymatically produced N-hydroxy-N-phenylformamide with nitrosobenzene (NOB). The cytosolic activity of N-hydroxy-N-phenylglycolamide formation was indicated to be due to transketolase, which utilized hydroxypyruvate as a glycolic aldehyde donor to NOB. With mitochondria, 2-oxo acids (including hydroxypyruvate) served as substrates for the biotransformation of NOB to the corresponding N-hydroxy-N-phenylacylamides. The substrate preference was 2-oxobutyrate > pyruvate > 2-oxoisovalerate > 2-oxoisocaproate > 2-oxovalerate > 2-oxo-3-methylvalerate, judging from Vmax/half-saturating concentration for mitochondria values. The half-saturating concentrations for NOB were nearly constant. The mitochondrial activity was due to pyruvate dehydrogenase complex and branched-chain 2-oxo acid dehydrogenase complex (BCDHC). By using partially purified BCDHC, pyruvate and 2-oxobutyrate were found to be common substrates for both of the enzymes, and 2-oxoisovalerate was shown to be the most effective substrate for BCDHC. Analysis by the Taft equation indicated that the polar effects, rather than the steric effects, of the alkyl groups of 2-oxo acids are important for BCDHC-catalyzed formation of N-hydroxy-N-phenylacylamides. A positive Hammett constant obtained for the formation of N-hydroxy-N-arylisobutyramides indicates that an electron-withdrawing substituent makes the nitroso compounds susceptible to BCDHC-catalyzed biotransformation.

  9. Performance during a strenuous swimming session is associated with high blood lactate: pyruvate ratio and hypoglycemia in fasted rats

    PubMed Central

    Travassos, P.B.; Godoy, G.; De Souza, H.M.; Curi, R.; Bazotte, R.B.

    2018-01-01

    The aim of this study was to investigate the effect of lactatemia elevation and glycemia reduction on strenuous swimming performance in fasted rats. Three rats were placed in a swimming tank at the same time. The first rat was removed immediately (control group) and the remaining ones were submitted to a strenuous swimming session. After the second rat was exhausted (Exh group), the third one was immediately removed from the water (Exe group). According to the period of time required for exhaustion, the rats were divided into four groups: low performance (3–7 min), low-intermediary performance (8–12 min), high-intermediary performance (13–17 min), and high performance (18–22 min). All rats were removed from the swimming tanks and immediately killed by decapitation for blood collection or anesthetized for liver perfusion experiments. Blood glucose, lactate, and pyruvate concentrations, blood lactate/pyruvate ratio, and liver lactate uptake and its conversion to glucose were evaluated. Exhaustion in low and low-intermediary performance were better associated with higher lactate/pyruvate ratio. On the other hand, exhaustion in high-intermediary and high performance was better associated with hypoglycemia. Lactate uptake and glucose production from lactate in livers from the Exe and Exh groups were maintained. We concluded that there is a time sequence in the participation of lactate/pyruvate ratio and hypoglycemia in performance during an acute strenuous swimming section in fasted rats. The liver had an important participation in preventing hyperlactatemia and hypoglycemia during swimming through lactate uptake and its conversion to glucose. PMID:29590261

  10. Performance during a strenuous swimming session is associated with high blood lactate: pyruvate ratio and hypoglycemia in fasted rats.

    PubMed

    Travassos, P B; Godoy, G; De Souza, H M; Curi, R; Bazotte, R B

    2018-03-26

    The aim of this study was to investigate the effect of lactatemia elevation and glycemia reduction on strenuous swimming performance in fasted rats. Three rats were placed in a swimming tank at the same time. The first rat was removed immediately (control group) and the remaining ones were submitted to a strenuous swimming session. After the second rat was exhausted (Exh group), the third one was immediately removed from the water (Exe group). According to the period of time required for exhaustion, the rats were divided into four groups: low performance (3-7 min), low-intermediary performance (8-12 min), high-intermediary performance (13-17 min), and high performance (18-22 min). All rats were removed from the swimming tanks and immediately killed by decapitation for blood collection or anesthetized for liver perfusion experiments. Blood glucose, lactate, and pyruvate concentrations, blood lactate/pyruvate ratio, and liver lactate uptake and its conversion to glucose were evaluated. Exhaustion in low and low-intermediary performance were better associated with higher lactate/pyruvate ratio. On the other hand, exhaustion in high-intermediary and high performance was better associated with hypoglycemia. Lactate uptake and glucose production from lactate in livers from the Exe and Exh groups were maintained. We concluded that there is a time sequence in the participation of lactate/pyruvate ratio and hypoglycemia in performance during an acute strenuous swimming section in fasted rats. The liver had an important participation in preventing hyperlactatemia and hypoglycemia during swimming through lactate uptake and its conversion to glucose.

  11. Associations of I148M variant in PNPLA3 gene with plasma ALT levels during 2-year follow-up in normal weight and overweight children: the PANIC Study.

    PubMed

    Viitasalo, A; Pihlajamaki, J; Lindi, V; Atalay, M; Kaminska, D; Joro, R; Lakka, T A

    2015-04-01

    PNPLA3 I148M polymorphism (rs738409) has been strongly associated with liver fat content and plasma alanine aminotransferase (ALT) levels in obese adults and children, but little is known about these relationships in normal weight individuals. We studied the associations and interactions of overweight and the PNPLA3 I148M polymorphism with plasma ALT levels during 2-year follow-up in children. Subjects were a population sample of 481 Caucasian children aged 6-8 years examined at baseline and 419 children re-examined after 2-year follow-up. Altogether, 58 (12%) of 481 children at baseline and 71 (17%) of 419 children after 2-year follow-up were overweight. We assessed plasma ALT levels and other cardiometabolic risk factors and genotyped the PNPLA3 I148M polymorphism. Being overweight and carrying PNPLA3 148M allele were associated with increased ALT levels at baseline (P = 0.002; P = 0.033) and after 2-year follow-up (P < 0.001; P = 0.001). Being overweight (P < 0.001) and carrying PNPLA3 148M allele (P = 0.001) were also associated with increase in ALT levels during 2-year follow-up. PNPLA3 148M allele carriers had increased ALT levels at baseline (P = 0.024 for interaction) and after 2-year follow-up (P = 0.002 for interaction) as well as a larger increase in ALT levels during 2-year follow-up (P = 0.002 for interaction) if they were overweight but not if they were normal weight. Further adjustment for clinical puberty, dietary factors, physical activity or sedentary behaviour had little or no effect on these associations. PNPLA3 148M allele carriers had higher plasma ALT levels and larger increase in ALT levels during follow-up than non-carriers only among overweight children. © 2014 The Authors. Pediatric Obesity © 2014 World Obesity.

  12. Improvement of ALT decay kinetics by all-oral HCV treatment: Role of NS5A inhibitors and differences with IFN-based regimens

    PubMed Central

    Cento, Valeria; Nguyen, Thi Huyen Tram; Di Carlo, Domenico; Biliotti, Elisa; Gianserra, Laura; Lenci, Ilaria; Di Paolo, Daniele; Calvaruso, Vincenza; Teti, Elisabetta; Cerrone, Maddalena; Romagnoli, Dante; Melis, Michela; Danieli, Elena; Menzaghi, Barbara; Polilli, Ennio; Siciliano, Massimo; Nicolini, Laura Ambra; Di Biagio, Antonio; Magni, Carlo Federico; Bolis, Matteo; Antonucci, Francesco Paolo; Di Maio, Velia Chiara; Alfieri, Roberta; Sarmati, Loredana; Casalino, Paolo; Bernardini, Sergio; Micheli, Valeria; Rizzardini, Giuliano; Parruti, Giustino; Quirino, Tiziana; Puoti, Massimo; Babudieri, Sergio; D’Arminio Monforte, Antonella; Andreoni, Massimo; Craxì, Antonio; Angelico, Mario; Pasquazzi, Caterina; Taliani, Gloria; Guedj, Jeremie; Ceccherini-Silberstein, Francesca

    2017-01-01

    Background Intracellular HCV-RNA reduction is a proposed mechanism of action of direct-acting antivirals (DAAs), alternative to hepatocytes elimination by pegylated-interferon plus ribavirin (PR). We modeled ALT and HCV-RNA kinetics in cirrhotic patients treated with currently-used all-DAA combinations to evaluate their mode of action and cytotoxicity compared with telaprevir (TVR)+PR. Study design Mathematical modeling of ALT and HCV-RNA kinetics was performed in 111 HCV-1 cirrhotic patients, 81 treated with all-DAA regimens and 30 with TVR+PR. Kinetic-models and Cox-analysis were used to assess determinants of ALT-decay and normalization. Results HCV-RNA kinetics was biphasic, reflecting a mean effectiveness in blocking viral production >99.8%. The first-phase of viral-decline was faster in patients receiving NS5A-inhibitors compared to TVR+PR or sofosbuvir+simeprevir (p<0.001), reflecting higher efficacy in blocking assembly/secretion. The second-phase, noted δ and attributed to infected-cell loss, was faster in patients receiving TVR+PR or sofosbuvir+simeprevir compared to NS5A-inhibitors (0.27 vs 0.21 d-1, respectively, p = 0.0012). In contrast the rate of ALT-normalization, noted λ, was slower in patients receiving TVR+PR or sofosbuvir+simeprevir compared to NS5A-inhibitors (0.17 vs 0.27 d-1, respectively, p<0.001). There was no significant association between the second-phase of viral-decline and ALT normalization rate and, for a given level of viral reduction, ALT-normalization was more profound in patients receiving DAA, and NS5A in particular, than TVR+PR. Conclusions Our data support a process of HCV-clearance by all-DAA regimens potentiated by NS5A-inhibitor, and less relying upon hepatocyte death than IFN-containing regimens. This may underline a process of “cell-cure” by DAAs, leading to a fast improvement of liver homeostasis. PMID:28545127

  13. Impaired hippocampal glucose metabolism during and after flurothyl-induced seizures in mice: Reduced phosphorylation coincides with reduced activity of pyruvate dehydrogenase.

    PubMed

    McDonald, Tanya S; Borges, Karin

    2017-07-01

    To determine changes in glucose metabolism and the enzymes involved in the hippocampus ictally and postictally in the acute mouse flurothyl seizure model. [U- 13 C]-Glucose was injected (i.p.) prior to, or following a 5 min flurothyl-induced seizure. Fifteen minutes later, mice were killed and the total metabolite levels and % 13 C enrichment were analyzed in the hippocampal formation using gas chromatography-mass spectrometry. Activities of key metabolic and antioxidant enzymes and the phosphorylation status of pyruvate dehydrogenase were measured, along with lipid peroxidation. During seizures, total lactate levels increased 1.7-fold; however, [M + 3] enrichment of both lactate and alanine were reduced by 30% and 43%, respectively, along with a 28% decrease in phosphofructokinase activity. Postictally the % 13 C enrichments of all measured tricarboxylic acid (TCA) cycle intermediates and the amino acids were reduced by 46-93%. At this time, pyruvate dehydrogenase (PDH) activity was 56% of that measured in controls, and there was a 1.9-fold increase in the phosphorylation of PDH at ser232. Phosphorylation of PDH is known to decrease its activity. Here, we show that the increase of lactate levels during flurothyl seizures is from a source other than [U- 13 C]-glucose, such as glycogen. Surprisingly, although we saw a reduction in phosphofructokinase activity during the seizure, metabolism of [U- 13 C]-glucose into the TCA cycle seemed unaffected. Similar to our recent findings in the chronic phase of the pilocarpine model, postictally the metabolism of glucose by glycolysis and the TCA cycle was impaired along with reduced PDH activity. Although this decrease in activity may be a protective mechanism to reduce oxidative stress, which is observed in the flurothyl model, ATP is critical to the recovery of ion and neurotransmitter balance and return to normal brain function. Thus we identified promising novel strategies to enhance energy metabolism and recovery from

  14. Metabolic and histologic effects of sodium pyruvate treatment in the rat after cortical contusion injury.

    PubMed

    Fukushima, Masamichi; Lee, Stefan M; Moro, Nobuhiro; Hovda, David A; Sutton, Richard L

    2009-07-01

    This study determined the effects of intraperitoneal sodium pyruvate (SP) treatment on the levels of circulating fuels and on cerebral microdialysis levels of glucose (MD(glc)), lactate (MD(lac)), and pyruvate (MD(pyr)), and the effects of SP treatment on neuropathology after left cortical contusion injury (CCI) in rats. SP injection (1000 mg/kg) 5 min after sham injury (Sham-SP) or CCI (CCI-SP) significantly increased arterial pyruvate (p < 0.005) and lactate (p < 0.001) compared to that of saline-treated rats with CCI (CCI-Sal). Serum glucose also increased significantly in CCI-SP compared to that in CCI-Sal rats (p < 0.05), but not in Sham-SP rats. MD(pyr) was not altered after CCI-Sal, whereas MD(lac) levels within the cerebral cortex significantly increased bilaterally (p < 0.05) and those for MD(glc) decreased bilaterally (p < 0.05). MD(pyr) levels increased significantly in both Sham-SP and CCI-SP rats (p < 0.05 vs. CCI-Sal) and were higher in left/injured cortex of the CCI-SP group (p < 0.05 vs. sham-SP). In CCI-SP rats the contralateral MD(lac) decreased below CCI-Sal levels (p < 0.05) and the ipsilateral MD(glc) levels exceeded those of CCI-Sal rats (p < 0.05). Rats with a single low (500 mg/kg) or high dose (1000 mg/kg) SP treatment had fewer damaged cortical cells 6 h post-CCI than did saline-treated rats (p < 0.05), but three hourly injections of SP (1000 mg/kg) were needed to significantly reduce contusion volume 2 weeks after CCI. Thus, a single intraperitoneal SP treatment increases circulating levels of three potential brain fuels, attenuates a CCI-induced reduction in extracellular glucose while increasing extracellular levels of pyruvate, but not lactate, and can attenuate cortical cell damage occurring within 6 h of injury. Enduring (2 week) neuronal protection was achieved only with multiple SP treatments within the first 2 h post-CCI, perhaps reflecting the need for additional fuel throughout the acute period of increased metabolic demands

  15. Metabolic and Histologic Effects of Sodium Pyruvate Treatment in the Rat after Cortical Contusion Injury

    PubMed Central

    Fukushima, Masamichi; Lee, Stefan M.; Moro, Nobuhiro; Hovda, David A.

    2009-01-01

    Abstract This study determined the effects of intraperitoneal sodium pyruvate (SP) treatment on the levels of circulating fuels and on cerebral microdialysis levels of glucose (MDglc), lactate (MDlac), and pyruvate (MDpyr), and the effects of SP treatment on neuropathology after left cortical contusion injury (CCI) in rats. SP injection (1000 mg/kg) 5 min after sham injury (Sham-SP) or CCI (CCI-SP) significantly increased arterial pyruvate (p < 0.005) and lactate (p < 0.001) compared to that of saline-treated rats with CCI (CCI-Sal). Serum glucose also increased significantly in CCI-SP compared to that in CCI-Sal rats (p < 0.05), but not in Sham-SP rats. MDpyr was not altered after CCI-Sal, whereas MDlac levels within the cerebral cortex significantly increased bilaterally (p < 0.05) and those for MDglc decreased bilaterally (p < 0.05). MDpyr levels increased significantly in both Sham-SP and CCI-SP rats (p < 0.05 vs. CCI-Sal) and were higher in left/injured cortex of the CCI-SP group (p < 0.05 vs. sham-SP). In CCI-SP rats the contralateral MDlac decreased below CCI-Sal levels (p < 0.05) and the ipsilateral MDglc levels exceeded those of CCI-Sal rats (p < 0.05). Rats with a single low (500 mg/kg) or high dose (1000 mg/kg) SP treatment had fewer damaged cortical cells 6 h post-CCI than did saline-treated rats (p < 0.05), but three hourly injections of SP (1000 mg/kg) were needed to significantly reduce contusion volume 2 weeks after CCI. Thus, a single intraperitoneal SP treatment increases circulating levels of three potential brain fuels, attenuates a CCI-induced reduction in extracellular glucose while increasing extracellular levels of pyruvate, but not lactate, and can attenuate cortical cell damage occurring within 6 h of injury. Enduring (2 week) neuronal protection was achieved only with multiple SP treatments within the first 2 h post-CCI, perhaps reflecting the need for additional fuel throughout the

  16. A comparison of juice extraction methods in the pungency measurement of onion bulbs.

    PubMed

    Yoo, Kil Sun; Lee, Eun Jin; Hamilton, Brian K; Patil, Bhimanagouda S

    2016-02-01

    Onion pungency is estimated by measuring the pyruvic acid content in juice extracted from fresh tissues. We compared pyruvic acid content and its variation in the juices extracted by the pressing, maceration, blending with no water, or blending with water (blend/water) methods. There were considerable differences in the pyruvic acid content and coefficient of variation (CV) among these methods, and there was an interaction between the onion cultivars and the juice extraction methods. The pressing method showed over 30% CV in the quartered or composite samples. The blend/water method showed the greatest pyruvic acid content in the shortday-type ('TG1015Y' and 'Texas Early White') onions, while the pressing method showed the greatest pyruvic acid content in the longday-type onions. The blend/water method, which gave ratios between 1:1 and 1:4 (w/w), showed the same pyruvic acid content. The blending (no water) method had the highest correlation, followed by the maceration method. The lowest correlations were found with the pressing method and the blend/water method. Complete homogenisation of tissues with 1:1 or greater ratios of water was necessary for the maximum consistency and full development of the pyruvic acid reaction for onion pungency measurement. © 2015 Society of Chemical Industry.

  17. Carbohydrate Metabolism in the Toxoplasma gondii Apicoplast: Localization of Three Glycolytic Isoenzymes, the Single Pyruvate Dehydrogenase Complex, and a Plastid Phosphate Translocator▿ †

    PubMed Central

    Fleige, Tobias; Fischer, Karsten; Ferguson, David J. P.; Gross, Uwe; Bohne, Wolfgang

    2007-01-01

    Many apicomplexan parasites, such as Toxoplasma gondii and Plasmodium species, possess a nonphotosynthetic plastid, referred to as the apicoplast, which is essential for the parasites’ viability and displays characteristics similar to those of nongreen plastids in plants. In this study, we localized several key enzymes of the carbohydrate metabolism of T. gondii to either the apicoplast or the cytosol by engineering parasites which express epitope-tagged fusion proteins. The cytosol contains a complete set of enzymes for glycolysis, which should enable the parasite to metabolize imported glucose into pyruvate. All the glycolytic enzymes, from phosphofructokinase up to pyruvate kinase, are present in the T. gondii genome, as duplicates and isoforms of triose phosphate isomerase, phosphoglycerate kinase, and pyruvate kinase were found to localize to the apicoplast. The mRNA expression levels of all genes with glycolytic products were compared between tachyzoites and bradyzoites; however, a strict bradyzoite-specific expression pattern was observed only for enolase I. The T. gondii genome encodes a single pyruvate dehydrogenase complex, which was located in the apicoplast and absent in the mitochondrion, as shown by targeting of epitope-tagged fusion proteins and by immunolocalization of the native pyruvate dehydrogenase complex. The exchange of metabolites between the cytosol and the apicoplast is likely to be mediated by a phosphate translocator which was localized to the apicoplast. Based on these localization studies, a model is proposed that explains the supply of the apicoplast with ATP and the reduction power, as well as the exchange of metabolites between the cytosol and the apicoplast. PMID:17449654

  18. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conde, Vanessa R.; Oliveira, Pedro F.; Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto – UMIB/ICBAS/UP

    Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similarmore » in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression. - Highlights: • Metabolic phenotype of less and high invasive bladder cancer cells was studied. • Bladder cancer progression involves alterations in cells glycolytic profile. • More invasive bladder cancer cells switch from glucose to pyruvate consumption. • Our results may help to identify metabolic biomarkers of bladder cancer progression.« less

  19. Comparative kinetic studies of Mn2+-activated and fructose-1,6-P-modified Mg2+-activated pyruvate kinase from Concholepas concholepas.

    PubMed

    Carvajal, N; González, R; Morán, A; Oyarce, A M

    1985-01-01

    Initial velocity and product inhibition studies of Mn2+-activated and FDP-modified Mg2+-activated pyruvate kinase from Concholepas concholepas, were performed. Evidence is presented to show that the Mn2+-enzyme catalyzes an ordered sequential mechanism, with ADP being the first substrate and pyruvate the last product. The results presented are consistent with a random combination of reactants with the FDP-modified Mg2+-activated enzyme and the formation of the dead-end complexes enzyme ADP-ATP and enzyme-PEP-ATP.

  20. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC

    PubMed Central

    Basher, Fahmin; Jeng, Emily K.; Wong, Hing; Wu, Jennifer

    2016-01-01

    Shedding of the human NKG2D ligand MIC (MHC class I-chain-related molecule) from tumor cell surfaces correlates with progression of many epithelial cancers. Shedding-derived soluble MIC (sMIC) enables tumor immune escape through multiple immune suppressive mechanisms, such as disturbing natural killer (NK) cell homeostatic maintenance, impairing NKG2D expression on NK cells and effector T cells, and facilitating the expansion of arginase I+ myeloid suppressor cells. Our recent study has demonstrated that sMIC is an effective cancer therapeutic target. Whether targeting tumor-derived sMIC would enhance current active immunotherapy is not known. Here, we determined the in vivo therapeutic effect of an antibody co-targeting sMIC with the immunostimulatory IL-15 superagonist complex, ALT-803, using genetically engineered transplantable syngeneic sMIC+ tumor models. We demonstrate that combined therapy of a nonblocking antibody neutralizing sMIC and ALT-803 improved the survival of animals bearing sMIC+ tumors in comparison to monotherapy. We further demonstrate that the enhanced therapeutic effect with combined therapy is through concurrent augmentation of NK and CD8 T cell anti-tumor responses. In particular, expression of activation-induced surface molecules and increased functional potential by cytokine secretion are improved greatly by the administration of combined therapy. Depletion of NK cells abolished the cooperative therapeutic effect. Our findings suggest that administration of the sMIC-neutralizing antibody can enhance the anti-tumor effects of ALT-803. With ALT-803 currently in clinical trials to treat progressive solid tumors, the majority of which are sMIC+, our findings provide a rationale for co-targeting sMIC to enhance the therapeutic efficacy of ALT-803 or other IL-15 agonists. PMID:26625316