Sample records for lactis stress responses

  1. Transcriptome analysis shows activation of the arginine deiminase pathway in Lactococcus lactis as a response to ethanol stress.

    PubMed

    Díez, Lorena; Solopova, Ana; Fernández-Pérez, Rocío; González, Miriam; Tenorio, Carmen; Kuipers, Oscar P; Ruiz-Larrea, Fernanda

    2017-09-18

    This paper describes the molecular response of Lactococcus lactis NZ9700 to ethanol. This strain is a well-known nisin producer and a lactic acid bacteria (LAB) model strain. Global transcriptome profiling using DNA microarrays demonstrated a bacterial adaptive response to the presence of 2% ethanol in the culture broth and differential expression of 67 genes. The highest up-regulation was detected for those genes involved in arginine degradation through the arginine deiminase (ADI) pathway (20-40 fold up-regulation). The metabolic responses to ethanol of wild type L. lactis strains were studied and compared to those of regulator-deletion mutants MG∆argR and MG∆ahrC. The results showed that in the presence of 2% ethanol those strains with an active ADI pathway reached higher growth rates when arginine was available in the culture broth than in absence of arginine. In a chemically defined medium strains with an active ADI pathway consumed arginine and produced ornithine in the presence of 2% ethanol, hence corroborating that arginine catabolism is involved in the bacterial response to ethanol. This is the first study of the L. lactis response to ethanol stress to demonstrate the relevance of arginine catabolism for bacterial adaptation and survival in an ethanol containing medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses.

    PubMed

    Azizan, Kamalrul Azlan; Ressom, Habtom W; Mendoza, Eduardo R; Baharum, Syarul Nataqain

    2017-01-01

    Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13 C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30°C, 37°C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis ( r ) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis , in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis . Overall, the

  3. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays

    PubMed Central

    Saraiva, Tessália D. L.; Silva, Wanderson M.; Pereira, Ulisses P.; Campos, Bruno C.; Benevides, Leandro J.; Rocha, Flávia S.; Figueiredo, Henrique C. P.; Azevedo, Vasco; Soares, Siomar C.

    2017-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods. PMID:28384209

  4. Engineering Trehalose Synthesis in Lactococcus lactis for Improved Stress Tolerance ▿ †

    PubMed Central

    Carvalho, Ana Lúcia; Cardoso, Filipa S.; Bohn, Andreas; Neves, Ana Rute; Santos, Helena

    2011-01-01

    Trehalose accumulation is a common cell defense strategy against a variety of stressful conditions. In particular, our team detected high levels of trehalose in Propionibacterium freudenreichii in response to acid stress, a result that led to the idea that endowing Lactococcus lactis with the capacity to synthesize trehalose could improve the acid tolerance of this organism. To this end, we took advantage of the endogenous genes involved in the trehalose catabolic pathway of L. lactis, i.e., trePP and pgmB, encoding trehalose 6-phosphate phosphorylase and β-phosphoglucomutase, respectively, which enabled the synthesis of trehalose 6-phosphate. Given that L. lactis lacks trehalose 6-phosphate phosphatase, the respective gene, otsB, from the food-grade organism P. freudenreichii was used to provide the required activity. The trehalose yield was approximately 15% in resting cells and in mid-exponential-phase cells grown without pH control. The intracellular concentration of trehalose reached maximal values of approximately 170 mM, but at least 67% of the trehalose produced was found in the growth medium. The viability of mutant and control strains was examined after exposure to heat, cold or acid shock, and freeze-drying. The trehalose-producing strains showed improved tolerance (5- to 10-fold-higher survivability) to acid (pH 3) and cold shock (4°C); there was also a strong improvement in cell survival in response to heat shock (45°C), and no protection was rendered against dehydration. The insight provided by this work may help the design of food-grade strains optimized for the dairy industry as well as for oral drug delivery. PMID:21515730

  5. Assessing the effects of exposure to environmental stress on some functional properties of Bifidobacterium animalis ssp. lactis.

    PubMed

    Amund, O D; Ouoba, L I I; Sutherland, J P; Ghoddusi, H B

    2014-12-01

    This study assessed the effects of exposing a strain of Bifidobacterium animalis ssp. lactis to acid, bile and osmotic stresses on antagonistic properties, biofilm formation and antibiotic susceptibility/resistance profile. Exposure to each stress factor appeared to have no significant effect on the antagonism against Escherichia coli NCTC 12900 and Salmonella enterica serovar Enteritidis PT4. No suppression in biofilm formation due to exposure to stress was observed. Bile and osmotic stresses resulted in significantly higher biofilm formation. Expression of an exopolysaccharide synthesis gene, gtf 01207, was significantly higher when the B. animalis ssp. lactis strain was exposed to osmotic stress. Susceptibility of the B. animalis ssp. lactis strain to chloramphenicol, erythromycin, ampicillin and vancomycin, and resistance to tetracycline remained unchanged when exposed to each stress. The expression of a tetracycline resistance gene, tet(W), was significantly higher when exposed to each stress. These results may suggest that the potential for the B. animalis ssp. lactis strain to provide probiotic benefit, after exposure to the stressful conditions of the gastrointestinal tract, remains intact.

  6. Expression of lycopene biosynthesis genes fused in line with Shine-Dalgarno sequences improves the stress-tolerance of Lactococcus lactis.

    PubMed

    Dong, Xiangrong; Wang, Yanping; Yang, Fengyuan; Zhao, Shanshan; Tian, Bing; Li, Tao

    2017-01-01

    Lycopene biosynthetic genes from Deinococcus radiodurans were co-expressed in Lactococcus lactis to produce lycopene and improve its tolerance to stress. Lycopene-related genes from D. radiodurans, DR1395 (crtE), DR0862 (crtB), and DR0861 (crtI), were fused in line with S hine-Dalgarno (SD) sequences and co-expressed in L. lactis. The recombinant strain produced 0.36 mg lycopene g -1  dry cell wt after 48 h fermentation. The survival rate to UV irradiation of the recombinant strain was higher than that of the non-transformed strain. The L. lactis with co-expressed genes responsible for lycopene biosynthesis from D. radiodurans produced lycopene and exhibited increased resistance to UV stress, suggesting that the recombinant strain has important application potential in food industry.

  7. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.

    PubMed

    Weidmann, Stéphanie; Maitre, Magali; Laurent, Julie; Coucheney, Françoise; Rieu, Aurélie; Guzzo, Jean

    2017-04-17

    Lactococcus lactis is a lactic acid bacterium widely used in cheese and fermented milk production. During fermentation, L. lactis is subjected to acid stress that impairs its growth. The small heat shock protein (sHsp) Lo18 from the acidophilic species Oenococcus oeni was expressed in L. lactis. This sHsp is known to play an important role in protein protection and membrane stabilization in O. oeni. The role of this sHsp could be studied in L. lactis, since no gene encoding for sHsp has been detected in this species. L. lactis subsp. cremoris strain MG1363 was transformed with the pDLhsp18 plasmid, which is derived from pDL278 and contains the hsp18 gene (encoding Lo18) and its own promoter sequence. The production of Lo18 during stress conditions was checked by immunoblotting and the cellular distribution of Lo18 in L. lactis cells after heat shock was determined. Our results clearly indicated a role for Lo18 in cytoplasmic protein protection and membrane stabilization during stress. The production of sHsp in L. lactis improved tolerance to heat and acid conditions in this species. Finally, the improvement of the L. lactis survival in milk medium thanks to Lo18 was highlighted, suggesting an interesting role of this sHsp. These findings suggest that the expression of a sHsp by a L. lactis strain results in greater resistance to stress, and, can consequently enhance the performances of industrial strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Molecular analysis of UAS(E), a cis element containing stress response elements responsible for ethanol induction of the KlADH4 gene of Kluyveromyces lactis.

    PubMed

    Mazzoni, C; Santori, F; Saliola, M; Falcone, C

    2000-01-01

    KlADH4 is a gene of Kluyveromyces lactis encoding a mitochondrial alcohol dehydrogenase activity, which is specifically induced by ethanol and insensitive to glucose repression. In this work, we report the molecular analysis of UAS(E), an element of the KlADH4 promoter which is essential for the induction of KlADH4 in the presence of ethanol. UAS(E) contains five stress response elements (STREs), which have been found in many genes of Saccharomyces cerevisiae involved in the response of cells to conditions of stress. Whereas KlADH4 is not responsive to stress conditions, the STREs present in UAS(E) seem to play a key role in the induction of the gene by ethanol, a situation that has not been observed in the related yeast S. cerevisiae. Gel retardation experiments showed that STREs in the KlADH4 promoter can bind factor(s) under non-inducing conditions. Moreover, we observed that the RAP1 binding site present in UAS(E) binds KlRap1p.

  9. Expression of genes associated with stress conditions by Listeria monocytogenes in interaction with nisin producer Lactococcus lactis.

    PubMed

    Miranda, Rodrigo Otávio; Campos-Galvão, Maria Emilene Martino; Nero, Luís Augusto

    2018-03-01

    The use of nisin producers in foods is considered a mitigation strategy to control foodborne pathogens growth, such as Listeria monocytogenes, due to the production of this bacteriocin in situ. However, when the bacteriocin does not reach an adequate concentration, the target bacteria can develop a cross-response to different stress conditions in food, such as acid, thermal and osmotic. This study aimed to evaluate the interaction of a nisin-producing strain of Lactococcus lactis DY-13 and L. monocytogenes in BHI and skim milk, and its influence on general (sigB), acid (gadD2), thermal (groEL) and osmotic (gbu) stress-related genes of the pathogen. L. monocytogenes populations decreased approximately 2log in BHI and 1log in milk after 24h in co-culture with the nisin producer L. lactis, coherent with the increasing expression of nisK. Expression of stress-related genes by L. monocytogenes presented lower oscillation in BHI than in milk, indicating its better ability to survive in milk, despite the higher nisin production. Stress-related genes presented a varied expression by L. monocytogenes in the tested conditions: sigB expression remained stable or reduced over time; gadD2 presented high expression in milk; groEL presented low expression in BHI when compared to milk, trending to decrease overtime; gbu expression in milk after 24h was lower than in BHI. The presented study demonstrated the growth of a nisin producer L. lactis can affect the expression of stress-related genes by L. monocytogenes, and understating these mechanisms is crucial to enhance the conservation methods employed in foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Acid or erythromycin stress significantly improves transformation efficiency through regulating expression of DNA binding proteins in Lactococcus lactis F44.

    PubMed

    Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun

    2017-12-01

    Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. A novel small RNA S042 increases acid tolerance in Lactococcus lactis F44.

    PubMed

    Wu, Hao; Song, Shunyi; Tian, Kairen; Zhou, Dandan; Wang, Binbin; Liu, Jiaheng; Zhu, Hongji; Qiao, Jianjun

    2018-06-07

    Lactococcus lactis, a gram-positive bacterium, encounters various environmental stresses, especially acid stress, during fermentation. Small RNAs (sRNAs) that serve as regulators at post-transcriptional level play important roles in acid stress response. Here, a novel sRNA S042 was identified by RNA-Seq, RT-PCR and Northern blot. The transcription level of s042 was upregulated 2.29-fold under acid stress by Quantitative RT-PCR (qRT-PCR) analysis. Acid tolerance assay showed that overexpressing s042 increased the survival rate of L. lactis F44 and deleting s042 significantly inhibited the viability under acidic conditions. Moreover, the targets were predicted by online software and four genes were chosen as candidates. Among them, argR (arginine regulator) and accD (acetyl-CoA carboxylase carboxyl transferase subunit beta) were validated to be the direct targets activated by S042 through reporter fusion assay. The regulatory mechanism between S042 and its targets was further investigated through Bioinformatics and qRT-PCR. This study served to highlight the role of the novel sRNA S042 in acid resistance of L. lactis and provided new insights into the response mechanism of acid stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Assessment of stress tolerance acquisition in the heat-tolerant derivative strains of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus rhamnosus GG.

    PubMed

    Aakko, J; Sánchez, B; Gueimonde, M; Salminen, S

    2014-07-01

    The purpose of this study was to investigate the heat-shock response at molecular level in Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. lactis BB-12 and their heat-tolerant derivatives and to characterize the changes that make the derivatives more robust in terms of heat stress. The study strains were exposed for 2 h to a heat-shock treatment, Bif. animalis subsp. lactis BB-12 and its derivative at 50°C and the Lact. rhamnosus GG and its derivative at 60°C. Protein synthesis before and after heat shock was examined using proteomics and RT-qPCR. The analysis revealed that the regulation of seven proteins in both strain pairs was modified as a response to heat or between the original and the derivative strain. The comparison of wild-type strains and the heat-tolerant derivatives suggests that the acquisition of heat tolerance in the Bif. animalis subsp. lactis BB-12 derivative is due to a slightly increased constitutive level of chaperones, while in Lact. rhamnosus GG derivative, the main reason seems to be a higher ability to induce the production of chaperones. This study revealed possible markers of heat tolerance in B. lactis and Lact. rhamnosus strains. This study increases our knowledge on how Lactobacillus and Bifidobacterium strains may acquire heat tolerance. These findings may be useful for improving the heat tolerance of existing probiotic strains as well as screening new heat-tolerant strains. © 2014 The Society for Applied Microbiology.

  13. Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic.

    PubMed

    Hviid, Anne-Mette Meisner; Ruhdal-Jensen, Peter; Kilstrup, Mogens

    2017-04-01

    Lactic acid bacteria currently used extensively by the dairy industry have a superior tolerance towards short-chain alcohols, which makes them interesting targets for use in future bio-refineries. The mechanism underlying the alcohol tolerance of lactic acid bacteria has so far received little attention. In the present study, the physiological alcohol stress response of Lactococcus lactis subsp. cremoris MG1363 towards the primary, even-chain alcohols ethanol, butanol and hexanol, was characterized. The alcohol tolerance of L. lactis was found to be comparable to those reported for highly alcohol-resistant lactic acid bacteria. Combined results from alcohol survival rate, live/dead staining, and a novel usage of the β-galactosidase assay, revealed that while high concentrations of ethanol and hexanol were cytostatic to L. lactis, high concentrations of butanol were cytotoxic, causing irreparable damages to the cell membrane.

  14. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    PubMed

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.

    PubMed

    Mancini, Stefano; Abicht, Helge K; Gonskikh, Yulia; Solioz, Marc

    2015-02-01

    Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments. © 2014 John Wiley & Sons Ltd.

  16. Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis

    PubMed Central

    Dijkstra, Annereinou R.; Alkema, Wynand; Starrenburg, Marjo J. C.; van Hijum, Sacha A. F. T.; Bron, Peter A.

    2016-01-01

    Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nan

  17. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.

    PubMed

    Cretenet, Marina; Le Gall, Gwenaëlle; Wegmann, Udo; Even, Sergine; Shearman, Claire; Stentz, Régis; Jeanson, Sophie

    2014-12-03

    Lactococcus lactis is the most used species in the dairy industry. Its ability to adapt to technological stresses, such as oxidative stress encountered during stirring in the first stages of the cheese-making process, is a key factor to measure its technological performance. This study aimed to understand the response to oxidative stress of Lactococcus lactis subsp. cremoris MG1363 at the transcriptional and metabolic levels in relation to acidification kinetics and growth conditions, especially at an early stage of growth. For those purposes, conditions of hyper-oxygenation were initially fixed for the fermentation. Kinetics of growth and acidification were not affected by the presence of oxygen, indicating a high resistance to oxygen of the L. lactis MG1363 strain. Its resistance was explained by an efficient consumption of oxygen within the first 4 hours of culture, leading to a drop of the redox potential. The efficient consumption of oxygen by the L. lactis MG1363 strain was supported by a coherent and early adaptation to oxygen after 1 hour of culture at both gene expression and metabolic levels. In oxygen metabolism, the over-expression of all the genes of the nrd (ribonucleotide reductases) operon or fhu (ferrichrome ABC transports) genes was particularly significant. In carbon metabolism, the presence of oxygen led to an early shift at the gene level in the pyruvate pathway towards the acetate/2,3-butanediol pathway confirmed by the kinetics of metabolite production. Finally, the MG1363 strain was no longer able to consume oxygen in the stationary growth phase, leading to a drastic loss of culturability as a consequence of cumulative stresses and the absence of gene adaptation at this stage. Combining metabolic and transcriptomic profiling, together with oxygen consumption kinetics, yielded new insights into the whole genome adaptation of L. lactis to initial oxidative stress. An early and transitional adaptation to oxidative stress was revealed for L

  18. Suppression of oral tolerance by Lactococcus lactis in mice.

    PubMed

    Sakai, Tohru; Hirota, Yuko; Nakamoto, Mariko; Shuto, Emi; Hosaka, Toshio; Makino, Seiya; Ikegami, Shuji

    2011-01-01

    Although oral ovabumin (OVA) administration suppressed the antibody (Ab) response in OVA-immunized mice, Lactococcus lactis increased OVA-specific IgG2a in these mice. L. lactis increased the casein-specific IgG level in NC/Nga mice fed on a casein diet. The percentage of CD4(+)CD25(+) cells was increased in DO11.10 mice orally given OVA, but this increase of CD4(+)CD25(+) cells were suppressed in L. lactis-fed DO11.10 mice.

  19. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris.

    PubMed

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-05-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.

  20. Microbiota of Minas cheese as influenced by the nisin producer Lactococcus lactis subsp. lactis GLc05.

    PubMed

    Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; Carvalho, Antônio Fernandes de; Cocolin, Luca; Nero, Luís Augusto

    2015-12-02

    Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cyclopropanation of Membrane Unsaturated Fatty Acids Is Not Essential to the Acid Stress Response of Lactococcus lactis subsp. cremoris ▿

    PubMed Central

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-01-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-l-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells. PMID:21421775

  2. Improved Acid Stress Survival of Lactococcus lactis Expressing the Histidine Decarboxylation Pathway of Streptococcus thermophilus CHCC1524*

    PubMed Central

    Trip, Hein; Mulder, Niels L.; Lolkema, Juke S.

    2012-01-01

    Degradative amino acid decarboxylation pathways in bacteria generate secondary metabolic energy and provide resistance against acid stress. The histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524 was functionally expressed in the heterologous host Lactococcus lactis NZ9000, and the benefits of the newly acquired pathway for the host were analyzed. During growth in M17 medium in the pH range of 5–6.5, a small positive effect was observed on the biomass yield in batch culture, whereas no growth rate enhancement was evident. In contrast, a strong benefit for the engineered L. lactis strain was observed in acid stress survival. In the presence of histidine, the pathway enabled cells to survive at pH values as low as 3 for at least 2 h, conditions under which the host cells were rapidly dying. The flux through the histidine decarboxylation pathway in cells grown at physiological pH was under strict control of the electrochemical proton gradient (pmf) across the membrane. Ionophores that dissipated the membrane potential (ΔΨ) and/or the pH gradient (ΔpH) strongly increased the flux, whereas the presence of glucose almost completely inhibited the flux. Control of the pmf over the flux was exerted by both ΔΨ and ΔpH and was distributed over the transporter HdcP and the decarboxylase HdcA. The control allowed for a synergistic effect between the histidine decarboxylation and glycolytic pathways in acid stress survival. In a narrow pH range around 2.5 the synergism resulted in a 10-fold higher survival rate. PMID:22351775

  3. Phenotypic variation in Lactococcus lactis subsp. lactis isolates derived from intestinal tracts of marine and freshwater fish.

    PubMed

    Itoi, S; Yuasa, K; Washio, S; Abe, T; Ikuno, E; Sugita, H

    2009-09-01

    We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture. In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l-arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate. Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described. The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.

  4. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain

    PubMed Central

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S.; Esteban, Luis; Alarcón, Sergio

    2016-01-01

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains. PMID:26847906

  5. Response of Leuconostoc strains against technological stress factors: Growth performance and volatile profiles.

    PubMed

    Cicotello, Joaquín; Wolf, Irma V; D'Angelo, Luisa; Guglielmotti, Daniela M; Quiberoni, Andrea; Suárez, Viviana B

    2018-08-01

    The ability of twelve strains belonging to three Leuconostoc species (Leuconostoc mesenteroides, Leuconostoc lactis and Leuconostoc pseudomesenteroides) to grow under diverse sub-lethal technological stress conditions (cold, acidic, alkaline and osmotic) was evaluated in MRS broth. Two strains, Leuconostoc lactis Ln N6 and Leuconostoc mesenteroides Ln MB7, were selected based on their growth under sub-lethal conditions, and volatile profiles in RSM (reconstituted skim milk) at optimal and under stress conditions were analyzed. Growth rates under sub-lethal conditions were strain- and not species-dependent. Volatilomes obtained from the two strains studied were rather diverse. Particularly, Ln N6 (Ln. lactis) produced more ethanol and acetic acid than Ln MB7 (Ln. mesenteroides) and higher amounts and diversity of the rest of volatile compounds as well, at all times of incubation. For the two strains studied, most of stress conditions applied diminished the amounts of ethanol and acetic acid produced and the diversity and levels of the rest of volatile compounds. These results were consequence of the different capacity of the strains to grow under each stress condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Genome‐scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi‐strain arrays

    PubMed Central

    Siezen, Roland J.; Bayjanov, Jumamurat R.; Felis, Giovanna E.; van der Sijde, Marijke R.; Starrenburg, Marjo; Molenaar, Douwe; Wels, Michiel; van Hijum, Sacha A. F. T.; van Hylckama Vlieg, Johan E. T.

    2011-01-01

    Summary Lactococcus lactis produces lactic acid and is widely used in the manufacturing of various fermented dairy products. However, the species is also frequently isolated from non‐dairy niches, such as fermented plant material. Recently, these non‐dairy strains have gained increasing interest, as they have been described to possess flavour‐forming activities that are rarely found in dairy isolates and have diverse metabolic properties. We performed an extensive whole‐genome diversity analysis on 39 L. lactis strains, isolated from dairy and plant sources. Comparative genome hybridization analysis with multi‐strain microarrays was used to assess presence or absence of genes and gene clusters in these strains, relative to all L. lactis sequences in public databases, whereby chromosomal and plasmid‐encoded genes were computationally analysed separately. Nearly 3900 chromosomal orthologous groups (chrOGs) were defined on basis of four sequenced chromosomes of L. lactis strains (IL1403, KF147, SK11, MG1363). Of these, 1268 chrOGs are present in at least 35 strains and represent the presently known core genome of L. lactis, and 72 chrOGs appear to be unique for L. lactis. Nearly 600 and 400 chrOGs were found to be specific for either the subspecies lactis or subspecies cremoris respectively. Strain variability was found in presence or absence of gene clusters related to growth on plant substrates, such as genes involved in the consumption of arabinose, xylan, α‐galactosides and galacturonate. Further niche‐specific differences were found in gene clusters for exopolysaccharides biosynthesis, stress response (iron transport, osmotolerance) and bacterial defence mechanisms (nisin biosynthesis). Strain variability of functions encoded on known plasmids included proteolysis, lactose fermentation, citrate uptake, metal ion resistance and exopolysaccharides biosynthesis. The present study supports the view of L. lactis as a species with a very flexible

  7. Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain.

    PubMed

    Zuljan, Federico; Espariz, Martín; Blancato, Victor S; Esteban, Luis; Alarcón, Sergio; Magni, Christian

    2016-02-04

    We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains. Copyright © 2016 Zuljan et al.

  8. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    PubMed Central

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  9. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Novel Antibacterial Activity of Lactococcus Lactis Subspecies Lactis Z11 Isolated from Zabady

    PubMed Central

    Enan, Gamal; Abdel-Shafi, Seham; Ouda, Sahar; Negm, Sally

    2013-01-01

    The purpose of this study was to select and characterize a probiotic bacterium with distinctive antimicrobial activities. In this respect, Lactococcus lactis subspecies lactis Z11 (L. lactis Z11) isolated from Zabady (Arabian yoghurt) inhibited other strains of lactic acid bacteria and some food-born pathogens including Listeria monocytogenes, Bacillus cereus and staphylococcus aureus. The inhibitory activity of cell free supernatant (CFS) of L. lactis Z11 isolated from zabady was lost by proteolytic enzymes, heat resistant. Consequently, the active substance(s) of CFS was characterized as a bacteriocin. This bacteriocin has been shown to consist of protein but has no lipidic or glucidic moieties in its active molecule. Its activity was stable in the pH range 2.0 to 7.0 and was not affected by organic solvents. The L. lactis Z11 bacteriocin was produced in CFS throughout the mide to the late exponential phase of growth of the producer organism and maximum bacteriocin production was obtained at initial pH 6.5 at incubation temperature of about 30°C. PMID:24151453

  11. Cloning and functional expression of the mitochondrial alternative oxidase gene (aox1) of Aspergillus niger in Lactococcus lactis and its induction by oxidizing conditions.

    PubMed

    Papagianni, Maria; Avramidis, Nicholaos

    2012-01-05

    Lactococcus lactis is a widely used food bacterium mainly known for its fermentation metabolism. An important, and for long time overlooked, trait of this species is its ability to perform respiratory metabolism in the presence of heme and under aerobic conditions. There is no evidence however for the presence of an alternative respiration pathway and AOX activity. In this study, a cDNA fragment encoding the mitochondrial alternative oxidase, the enzyme responsible for alternative respiration, from a citric acid producing Aspergillus niger strain was cloned and expressed in L. lactis as a host strain. Expression of aox1 conferred on this organism cyanide-resistant and salicylhydroxamate-sensitive growth. Bioreactor cultures under fully aerobic conditions of the transformed L. lactis showed that the alternative respiratory pathway operates and improves significantly the microorganism's response to oxidizing stress conditions as it enhances biomass production, suppresses lactate formation, and leads to accumulation of large amounts of nisin. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Genome analysis of food-processing stressful-resistant probiotic Bifidobacterium animalis subsp. lactis BF052, and its potential application in fermented soymilk.

    PubMed

    Charnchai, Pattra; Jantama, Sirima Suvarnakuta; Jantama, Kaemwich

    2017-09-15

    In this study, Bifidobacterium animalis subsp. lactis BF052 was demonstrated the growth capability in soymilk and could be thus supplemented as a probiotic starter that employed soymilk as one of its food vehicles. The complete genome sequence of BF052 was therefore determined to understand the genetic basis of BF052 as a technological and functional probiotic starter. The whole genome sequence of BF052 consists of a circular genome of 1938 624 bp with a G+C content of 60.50%. This research highlights relevant genes involving in its adaptive responses to industrial and/or environmental stresses and utilization of α-galacto-oligosaccharides in BF052 strain compared with other representative bifidobacterial genomes. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis.

    PubMed

    Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta

    2016-03-01

    Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.

  14. Short communication: Salt tolerance of Lactococcus lactis R-604 as influenced by mild stresses from ethanol, heat, hydrogen peroxide, and UV light.

    PubMed

    Gonzalez, Ernesto E; Olson, Douglas; Aryana, Kayanush

    2017-06-01

    Lactococcus lactis is a culture widely used in salt-containing dairy products. Salt hinders bacterial growth, but exposure to environmental stress may protect cells against subsequent stress, including salt. The objective of this study was to evaluate the salt tolerance of L. lactis R-604 after exposure to various stresses. The culture was subjected to 10% (vol/vol) ethanol for 30 min, mild heat at 52°C for 30 min, 15 mM hydrogen peroxide for 30 min, or UV light (254 nm) for 5 min and compared with a control. Starting with 5 log cfu/mL for all treatments, growth was determined in M17 broth with 5 NaCl concentrations (0, 1, 3, 5, and 7% wt/vol). Plating was conducted daily for 5 d. Salt tolerance was enhanced with mild heat exposure before growth in M17 broth with 5% (wt/vol) NaCl on d 3, 4, and 5, and with exposure to hydrogen peroxide and ethanol stresses before growth in M17 broth with 5% (wt/vol) NaCl on d 4 and 5. Exposure of this culture to mild heat, hydrogen peroxide, or ethanol before growth in M17 broth containing 5% (wt/vol) salt can enhance its survival, which could be beneficial when using it in salt-containing dairy products. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Genetic and phenotypic features defining industrial relevant Lactococcus lactis, L. cremoris and L. lactis biovar. diacetylactis strains.

    PubMed

    Manno, Mariano Torres; Zuljan, Federico; Alarcón, Sergio; Esteban, Luis; Blancato, Victor; Espariz, Martín; Magni, Christian

    2018-06-23

    Lactococcus lactis strains constitute one of the most important starter cultures for cheese production. In this study, a genome-wide analysis was performed including 68 available genomes of L. lactis group strains showing the existence of two species (L. lactis and L. cremoris) and two biovars (L. lactis biovar. diacetylactis and L. cremoris biovar. lactis). The proposed classification scheme revealed coherency among phenotypic (through in silico and in vivo bacterial function profiling), phylogenomic (through maximum likelihood trees) and genomic (using overall genome sequence-based parameters) approaches. Strain biodiversity for the industrial biovar. diacetylactis was also analyzed, finding they are formed by at least three variants with the CC1 clonal complex as the only one distributed worldwide. These findings and methodologies will help improve the selection of L. lactis group strains for industrial use as well as facilitate the interpretation of previous or future research studies on this diverse group of bacteria. Copyright © 2018. Published by Elsevier B.V.

  16. Characterization of two nisin-producing Lactococcus lactis subsp. lactis strains isolated from a commercial sauerkraut fermentation.

    PubMed Central

    Harris, L J; Fleming, H P; Klaenhammer, T R

    1992-01-01

    Two Lactococcus lactis subsp. lactis strains, NCK400 and LJH80, isolated from a commercial sauerkraut fermentation were shown to produce nisin. LJH80 was morphologically unstable and gave rise to two stable, nisin-producing (Nip+) derivatives, NCK318-2 and NCK318-3. NCK400 and derivatives of LJH80 exhibited identical morphological and metabolic characteristics, but could be distinguished on the basis of plasmid profiles and genomic hybridization patterns to a DNA probe specific for the iso-ISS1 element, IS946. NCK318-2 and NCK318-3 harbored two and three plasmids, respectively, which hybridized with IS946. Plasmid DNA was not detected in NCK400, and DNA from this strain failed to hybridize with IS946. Despite the absence of detectable plasmid DNA in NCK400, nisin-negative derivatives (NCK402 and NCK403) were isolated after repeated transfer in broth at 37 degrees C. Nisin-negative derivatives concurrently lost the ability to ferment sucrose and became sensitive to nisin. A 4-kbp HindIII fragment containing the structural gene for nisin (spaN), cloned from L. lactis subsp. lactis ATCC 11454, was used to probe genomic DNA of NCK318-2, NCK318-3, NCK400, and NCK402 digested with EcoRI or HindIII. The spaN probe hybridized to an 8.8-kbp EcoRI fragment and a 10-kbp HindIII fragment in the Nip+ sauerkraut isolates, but did not hybridize to the Nip- derivative, NCK402. A different hybridization pattern was observed when the same probe was used against Nip+ L. lactis subsp. lactis ATCC 11454 and ATCC 7962. These phenotypic and genetic data confirmed that unique Nip+ L. lactis subsp. lactis strains were isolated from fermenting sauerkraut. Images PMID:1622214

  17. Statistical investigation of Kluyveromyces lactis cells permeabilization with ethanol by response surface methodology.

    PubMed

    de Faria, Janaína T; Rocha, Pollyana F; Converti, Attilio; Passos, Flávia M L; Minim, Luis A; Sampaio, Fábio C

    2013-12-01

    The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD), and the collected results were then worked out by response surface methodology (RSM). Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L(-1) oNP min(-1) g(-1) was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industry.

  18. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.

    PubMed

    Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian

    2016-04-01

    Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.

  19. Characterization of a Wild, Novel Nisin A-Producing Lactococcus Strain with an L. lactis subsp. cremoris Genotype and an L. lactis subsp. lactis Phenotype, Isolated from Greek Raw Milk

    PubMed Central

    Parapouli, Maria; Delbès-Paus, Céline; Kakouri, Athanasia; Koukkou, Anna-Irini; Montel, Marie-Christine

    2013-01-01

    Several molecular taxonomic studies have revealed that many natural (wild) Lactococcus lactis strains of dairy origin which are phenotypically representative of the L. lactis subspecies lactis cluster genotypically within subspecies cremoris and vice versa. Recently, we isolated two wild nisin-producing (Nis+) L. lactis strains, M78 and M104, of the lactis phenotype from Greek raw milk (J. Samelis, A. Lianou, A. Kakouri, C. Delbès, I. Rogelj, B. B. Matijašic, and M. C. Montel, J. Food Prot. 72:783–790, 2009); strain M78 possess a novel nisin A sequence (GenBank accession number HM219853). In this study, the actual subspecies identity of M78 and M104 isolates was elucidated, using 16S rRNA and acmA (encoding lactococcal N-acetylmuramidase) gene and histidine biosynthesis operon polymorphisms and 16S rRNA and ldh (encoding lactate dehydrogenase) gene phylogenies. Except the acmA gene analysis, molecular tools revealed that isolates M78 and M104 clustered with strains of the cremoris genotype, including the LMG 6897T strain, while they were distant from strains of the lactis genotype, including the LMG 6890T strain. The two wild isolates had identical repetitive sequence-based PCR (rep-PCR), randomly amplified polymorphic DNA (RAPD), plasmid, and whole-cell protein profiles and shared high 16S rRNA (99.9%) and ldh (100%) gene sequence homologies. In contrast, they exhibited identical sugar fermentation and enzymatic patterns which were similar to those of the subspecies lactis LMG 6890T strain. To our knowledge, this is the first complete identification report on a wild L. lactis subsp. cremoris genotype of the lactis phenotype which is capable of nisin A production and, thus, has strong potential for use as a novel dairy starter and/or protective culture. PMID:23542625

  20. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: evaluation of the probiotic potential.

    PubMed

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its probiotic potential. Lc. lactis DF4Mi was resistant to acidic pH and oxbile, presented co-aggregation with Listeria monocytogenes, and was not affected by several drugs from different generic groups, being sensitive to most tested antibiotics. These properties indicate that this Lc. lactis strain can be used for enhancement of dairy foods safety and quality, in combination with potential probiotic properties.

  1. Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171.

    PubMed

    Kumari, Archana; Akkoç, Nefise; Akçelik, Mustafa

    2012-04-01

    Lactic acid bacteria (LAB) are possessing ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this regard, novel bacteriocin compound secreting capability of LAB isolated from Tulum Cheese in Turkey was demonstrated. The synthesized bacteriocin was purified by ammonium sulphate precipitation, dialysis and gel filtration. The molecular weight (≈3.4 kDa) of obtained bacteriocin was confirmed by SDS-PAGE, which revealed single peptide band. Molecular identification of LAB strain isolated from Tulum Cheese was conducted using 16S rDNA gene sequencing as Lactococcus lactis ssp. lactis LL171. The amino acid sequences (KKIDTRTGKTMEKTEKKIELSLKNMKTAT) of the bacteriocin from Lactococcus lactis ssp. lactis LL171 was found unique and novel than reported bacteriocins. Further, the bacteriocin was possessed the thermostable property and active at wide range of pH values from 1 to 11. Thus, bacteriocin reported in this study has the potential applications property as food preservative agent.

  2. Comparison of the acidifying activity of Lactococcus lactis subsp. lactis strains isolated from goat's milk and Valdeteja cheese.

    PubMed

    Alonso-Calleja, C; Carballo, J; Capita, R; Bernardo, A; García-López, M L

    2002-01-01

    This work was carried out to study the acid production by Lactococcus lactis subsp. lactis strains isolated from goat's milk and goat cheese (Valdeteja variety) in order to select a suitable starter culture for industrial goat cheese manufacturing. The titrable acidity of 45 Lactococcus lactis subsp. lactis strains isolated from a home-made batch of Valdeteja cheese with excellent sensory characteristics was measured over a period of 18 h. The strains were divided into two groups depending on the acid production rate: 20 fast acid producer (F) strains and 25 slow acid producer (S) strains. The kinetic parameters (lag phase, maximum acid production rate and value of upper asymptote curve) of the acid production curves for F and S strains were significantly (P < 0.001) different. Significant (P < 0.001) differences between titrable acidity of F and S strains were observed after the second hour of incubation. An F strain acetoin producer (Lactococcus lactis subsp. lactis 470Ch2) was selected as autochthonous starter culture for industrial Valdeteja goat cheese manufacturing.

  3. Draft Genome Sequence of the Putrescine-Producing Strain Lactococcus lactis subsp. lactis 1AA59

    PubMed Central

    del Rio, Beatriz; Linares, Daniel M.; Fernandez, María; Mayo, Baltasar; Martín, M. Cruz

    2015-01-01

    We report here the 2,576,542-bp genome annotated draft assembly sequence of Lactococcus lactis subsp. lactis 1AA59. This strain—isolated from a traditional cheese—produces putrescine, one of the most frequently biogenic amines found in dairy products. PMID:26089428

  4. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Characterization of the bacteriocin

    PubMed Central

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality. PMID:25763065

  5. Mucosal and systemic immune responses elicited by recombinant Lactococcus lactis expressing a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis.

    PubMed

    Torkashvand, Ali; Bahrami, Fariborz; Adib, Minoo; Ajdary, Soheila

    2018-05-05

    We constructed a food-grade expression system harboring a F1S1 fusion protein of Bordetella pertussis to be produced in Lactococcus lactis NZ3900 as a new oral vaccine model against whooping cough, caused by B. pertussis. F1S1 was composed of N-terminally truncated S1 subunit of pertussis toxin and type I immunodominant domain of filamentous hemagglutinin which are both known as protective immunogens against pertussis. The recombinant L. lactis was administered via oral or intranasal routes to BALB/c mice and the related specific systemic and mucosal immune responses were then evaluated. The results indicated significantly higher levels of specific IgA in the lung extracts and IgG in sera of mucosally-immunized mice, compared to their controls. It was revealed that higher levels of IgG2a, compared to IgG1, were produced in all mucosally-immunized mice. Moreover, immunized mice developed Th1 responses with high levels of IFN-γ production by the spleen cells. These findings provide evidence for L. lactis to be used as a suitable vehicle for expression and delivery of F1S1 fusion protein to mucosa and induction of appropriate systemic and mucosal immune responses against pertussis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Transcriptome analysis and related databases of Lactococcus lactis.

    PubMed

    Kuipers, Oscar P; de Jong, Anne; Baerends, Richard J S; van Hijum, Sacha A F T; Zomer, Aldert L; Karsens, Harma A; den Hengst, Chris D; Kramer, Naomi E; Buist, Girbe; Kok, Jan

    2002-08-01

    Several complete genome sequences of Lactococcus lactis and their annotations will become available in the near future, next to the already published genome sequence of L. lactis ssp. lactis IL 1403. This will allow intraspecies comparative genomics studies as well as functional genomics studies aimed at a better understanding of physiological processes and regulatory networks operating in lactococci. This paper describes the initial set-up of a DNA-microarray facility in our group, to enable transcriptome analysis of various Gram-positive bacteria, including a ssp. lactis and a ssp. cremoris strain of Lactococcus lactis. Moreover a global description will be given of the hardware and software requirements for such a set-up, highlighting the crucial integration of relevant bioinformatics tools and methods. This includes the development of MolGenIS, an information system for transcriptome data storage and retrieval, and LactococCye, a metabolic pathway/genome database of Lactococcus lactis.

  7. Subcutaneous or oral immunization of mice with Lactococcus lactis expressing F4 fimbrial adhesin FaeG.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei; Wang, Yicheng

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea in neonatal and postweaning piglets. Fimbrial adhesion of ETEC has been considered an important colonization factor with antigenicity. To safely and effectively deliver the F4 (K88) fimbrial adhesin FaeG to the immune system, we have previously constructed the secretory expression vector pNZ8112-faeG, and FaeG was produced in cytoplasmic form in Lactococcus lactis. In this work, BALB/c mice were immunized with recombinant L. lactis to further determine the immunogenicity of recombinant FaeG (rFaeG) via the subcutaneous or oral route. Subcutaneous immunization in mice with recombinant L. lactis induced a significant increase in the F4-specific serum IgG titer and the number of antibody-secreting cells (ASCs) in the spleen. Oral immunization of mice with recombinant L. lactis induced mucosal and systemic F4-specific immune responses and increased the number of ASCs in the spleen, mesenteric lymph nodes and Peyer's patches. High-dose (2.8 × 10(11) CFU) recombinant strains and adjuvant cholera toxin B subunit enhanced specific mucosal immune responses. The results suggest the feasibility of delivering rFaeG expressed in L. lactis to the immune system in order to induce an F4-specific immune response.

  8. Transcriptome Analysis of Lactococcus lactis in Coculture with Saccharomyces cerevisiae▿

    PubMed Central

    Maligoy, Mathieu; Mercade, Myriam; Cocaign-Bousquet, Muriel; Loubiere, Pascal

    2008-01-01

    The study of microbial interactions in mixed cultures remains an important conceptual and methodological challenge for which transcriptome analysis could prove to be the essential method for improving our understanding. However, the use of whole-genome DNA chips is often restricted to the pure culture of the species for which the chips were designed. In this study, massive cross-hybridization was observed between the foreign cDNA and the specific Lactococcus lactis DNA chip. A very simple method is proposed to considerably decrease this nonspecific hybridization, consisting of adding the microbial partner's DNA. A correlation was established between the resulting cross-hybridization and the phylogenetic distance between the microbial partners. The response of L. lactis to the presence of Saccharomyces cerevisiae was analyzed during the exponential growth phase in fermentors under defined growth conditions. Although no differences between growth kinetics were observed for the pure and the mixed cultures of L. lactis, the mRNA levels of 158 genes were significantly modified. More particularly, a strong reorientation of pyrimidine metabolism was observed when L. lactis was grown in mixed cultures. These changes in transcript abundance were demonstrated to be regulated by the ethanol produced by the yeast and were confirmed by an independent method (quantitative reverse transcription-PCR). PMID:17993564

  9. Detection and Viability of Lactococcus lactis throughout Cheese Ripening

    PubMed Central

    Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese. PMID:25503474

  10. Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis.

    PubMed

    Frees, D; Varmanen, P; Ingmer, H

    2001-07-01

    Exposure of cells to elevated temperatures triggers the synthesis of chaperones and proteases including components of the conserved Clp protease complex. We demonstrated previously that the proteolytic subunit, ClpP, plays a major role in stress tolerance and in the degradation of non-native proteins in the Gram-positive bacterium Lactococcus lactis. Here, we used transposon mutagenesis to generate mutants in which the temperature- and puromycin-sensitive phenotype of a lactococcal clpP null mutant was partly alleviated. In all mutants obtained, the transposon was inserted in the L. lactis trmA gene. When analysing a clpP, trmA double mutant, we found that the expression normally induced from the clpP and dnaK promoters in the clpP mutant was reduced to wild-type level upon introduction of the trmA disruption. Additionally, the degradation of puromycyl-containing polypeptides was increased, suggesting that inactivation of trmA compensates for the absence of ClpP by stimulating an as yet unidentified protease that degrades misfolded proteins. When trmA was disrupted in wild-type cells, both stress tolerance and proteolysis of puromycyl peptides was enhanced above wild-type level. Based on our results, we propose that TrmA, which is well conserved in several Gram-positive bacteria, affects the degradation of non-native proteins and thereby controls stress tolerance.

  11. [A comparison of the properties of bacteriocins formed by Lactococcus lactis subsp. lactis strains of diverse origin].

    PubMed

    Stoianova, L G; Egorov, N S; Fedorova, G B; Katrukha, G S; Netrusov, A I

    2007-01-01

    Bacteriocins formed by four strains of Lactococcus lactis subsp. lactis have been studied and compared: 729 (a natural strain isolated from milk), 1605 (a mutant of strain 729), F-116 (a recombinant obtained by fusing of protoplasts of the two related strain 729 and 1605), and a nisin-forming strain obtained by adaptive selection at Moscow State University. Antimicrobial activity studies revealed differences between the strains in the effects on individual groups of microorganisms; the activities of the strains were also distinct from that of Nisaplin (a commercial preparation of the bacteriocin nisin). Methods for isolation and purification of bacteriocins have been developed, making it possible to obtain individual components of antibiotic complexes as chromatographically pure preparations. Bacteriocins formed by the strains of Lactococcus lactis subsp. lactis have been identified and differences in their biological and physicochemical properties, established. A novel potent broad-spectrum antibiotic substance distinct from nisin has been isolated from the recombinant strain F-116.

  12. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus.

    PubMed

    Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M

    2016-11-30

    It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of

  13. Cloning of the citrate permease gene of Lactococcus lactis subsp. lactis biovar diacetylactis and expression in Escherichia coli.

    PubMed Central

    Sesma, F; Gardiol, D; de Ruiz Holgado, A P; de Mendoza, D

    1990-01-01

    The citrate plasmid (Cit+ plasmid) from Lactococcus lactis subsp. lactis biovar diacetylactis was cloned into the EcoRI site of plasmid pUC18. This recombinant plasmid enabled Escherichia coli K-12 to transport and utilize citrate as a source of energy, indicating expression of the citrate permease from L. lactis biovar diacetylactis. The citrate permease was under the control of the lac promoter of pUC18. Genetic expression of the Cit+ plasmid in maxicells revealed that the plasmid encoded two polypeptides of 47 and 32 kilodaltons, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2117878

  14. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  15. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain.

    PubMed

    Camperio, Cristina; Armas, Federica; Biasibetti, Elena; Frassanito, Paolo; Giovannelli, Carlo; Spuria, Liliana; D'Agostino, Claudia; Tait, Sabrina; Capucchio, Maria Teresa; Marianelli, Cinzia

    2017-01-01

    Lactococcus lactis is one of the most important microorganisms in the dairy industry and has "generally recognized as safe" (GRAS) status. L. lactis belongs to the group of lactic acid bacteria (LAB) and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU) or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU) or S. aureus (≈ 102 CFU/ml) were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were also found in

  16. A mouse mastitis model to study the effects of the intramammary infusion of a food-grade Lactococcus lactis strain

    PubMed Central

    Biasibetti, Elena; Frassanito, Paolo; Giovannelli, Carlo; Spuria, Liliana; D’Agostino, Claudia; Tait, Sabrina; Capucchio, Maria Teresa

    2017-01-01

    Lactococcus lactis is one of the most important microorganisms in the dairy industry and has “generally recognized as safe” (GRAS) status. L. lactis belongs to the group of lactic acid bacteria (LAB) and is encountered in a wide range of environments. Recently, the use of the intramammary infusion of a live culture of LAB has been investigated as a new antibiotic alternative for treating mastitis in dairy ruminants. Controversial results are described in literature regarding its efficacy and safety. In this study we conducted in-depth investigation of the mammary gland immune response induced by intramammary inoculum of a live culture of L. lactis LMG 7930 using the mouse mastitis model. Overnight cultures either of L. lactis (≈ 107 CFU) or of the mastitis pathogens Staphylococcus chromogenes (≈ 105 CFU) or S. aureus (≈ 102 CFU/ml) were injected into the mouse inguinal glands. A double injection, consisting of S. chromogenes first and then L. lactis, was also investigated. Bacterial recovery from the gland and inflammatory cell infiltration were assessed. L. lactis-treated and control glands were analysed for proinflammatory cytokine production. Microbiological results showed that L. lactis was able to survive in the mammary gland 24 h post infection, as were the mastitis pathogens S. chromogenes and S. aureus. L. lactis reduced S. chromogenes survival in the glands and increased its own survival ability by coexisting with the pathogen. Histology showed that L. lactis-treated glands presented variable histological features, ranging from undamaged tissue with no inflammatory cell infiltrate to severe PMN infiltrate with focal areas of tissue damage. S. aureus-treated glands showed the most severe histological grade of inflammation despite the fact that the inoculum size was the smallest. In contrast, most S. chromogenes-treated glands showed normal structures with no infiltration or lesions. Significant increases in IL-1β and TNF-α levels were also found

  17. The significance of translation regulation in the stress response

    PubMed Central

    2013-01-01

    Background The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. Results A genome-scale study of the translational response to nutritional limitation was performed in the model bacterium Lactococcus lactis. Two measures were used to assess the translational status of each individual mRNA: the fraction engaged in translation (ribosome occupancy) and ribosome density (number of ribosomes per 100 nucleotides). Under isoleucine starvation, half of the mRNAs considered were translationally down-regulated mainly due to decreased ribosome density. This pattern concerned genes involved in growth-related functions such as translation, transcription, and the metabolism of fatty acids, phospholipids and bases, contributing to the slowdown of growth. Only 4% of the mRNAs were translationally up-regulated, mostly related to prophagic expression in response to stress. The remaining genes exhibited antagonistic regulations of the two markers of translation. Ribosome occupancy increased significantly for all the genes involved in the biosynthesis of isoleucine, although their ribosome density had decreased. The results revealed complex translational regulation of this pathway, essential to cope with isoleucine starvation. To elucidate the regulation of global gene expression more generally, translational regulation was compared to transcriptional regulation under isoleucine starvation and to other post-transcriptional regulations related to mRNA degradation and mRNA dilution by growth. Translational regulation appeared to accentuate the effects of transcriptional changes for down-regulated growth-related functions under isoleucine starvation although m

  18. Short communication: Genotypic and phenotypic identification of environmental streptococci and association of Lactococcus lactis ssp. lactis with intramammary infections among different dairy farms.

    PubMed

    Werner, B; Moroni, P; Gioia, G; Lavín-Alconero, L; Yousaf, A; Charter, M E; Carter, B Moslock; Bennett, J; Nydam, D V; Welcome, F; Schukken, Y H

    2014-11-01

    Lactococcus species are counted among a large and closely related group of environmental streptococci and streptococci-like bacteria that include bovine mastitis pathogenic Streptococcus, Enterococcus, and Aerococcus species. Phenotypic and biochemical identification methods can be inaccurate and unreliable for species within this group, particularly for Lactococcus spp. As a result, the incidence of Lactococcus spp. on the farm may have been historically underreported and consequently little is known about the clinical importance of this genus as a mastitis pathogen. We used molecular genetic identification methods to accurately differentiate 60 environmental streptococci and streptococci-like bacteria isolated from cows with high somatic cell count and chronic intramammary infection (IMI; >2 somatic cell scores above 4) among 5 geographically distinct farms in New York and Minnesota that exhibited an observed increase in IMI. These isolates were phenotypically identified as Streptococcus uberis and Streptococcus spp. Genetic methods identified 42 isolates (70%) as Lactococcus lactis ssp. lactis, including all 10 isolates originally phenotypically identified as Streptococcus uberis. Antibiotic inhibition testing of all Lc. lactis ssp. lactis showed that 7 isolates were resistant to tetracycline. In the present study, a predominance of Lc. lactis ssp. lactis was identified in association with chronic, clinical bovine IMI among all 5 farms and characterized antimicrobial resistance for treatment therapies. Routine use by mastitis testing labs of molecular identification methods for environmental streptococci and streptococci-like bacteria can further define the role and prevalence of Lc. lactis ssp. lactis in association with bovine IMI and may lead to more targeted therapies. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Transcriptional responses in Lactococcus lactis subsp. cremoris to the changes in oxygen and redox potential during milk acidification.

    PubMed

    Larsen, N; Brøsted Werner, B; Jespersen, L

    2016-08-01

    Milk acidification and metabolic activity of the starter cultures are affected by oxygen; however, molecular factors related to the redox changes are poorly defined. The objective of the study was to investigate transcriptional responses in Lactococcus lactis subsp. cremoris CHCCO2 grown in milk to the shifts of oxygen and redox potential (Eh7 ). Transcriptomic studies were performed with the use of Illumina HiSeq 2000 mRNA sequencing and validated by the real-time quantitative PCR. In total 105 differentially expressed genes were assigned functional gene names. Most of the differentially expressed genes were detected during aerobic reduction phase. Upregulated genes were implicated in lactose utilization, glycogen biosynthesis, amino sugar metabolism, oxidation-reduction, pyrimidine biosynthesis and DNA integration processes. Genes of purine nucleotide biosynthesis and genes encoding amino acid, multidrug resistance and ion ABC transporters were mostly downregulated, while oligopeptide transporter genes were reduced during oxygen depletion and induced at minimum Eh7 . Understanding of gene responses in starter cultures to the changes of oxidation-reduction state is important for the better control and reproducibility of dairy fermentations. We applied mRNA sequencing by Illumina HiSeq 2000 to investigate gene expression profile in a dairy strain of Lactococcus lactis subsp. cremoris during milk acidification. Novelty of this study lies in linking transcriptional responses to oxygen depletion and the changes of redox potential with the fermentation kinetics and clarification of molecular factors specifically expressed in milk which might be essential for bacterial performance and the final quality of cheeses. © 2016 The Society for Applied Microbiology.

  20. Leuconostoc strains isolated from dairy products: Response against food stress conditions.

    PubMed

    D'Angelo, Luisa; Cicotello, Joaquín; Zago, Miriam; Guglielmotti, Daniela; Quiberoni, Andrea; Suárez, Viviana

    2017-09-01

    A systematic study about the intrinsic resistance of 29 strains (26 autochthonous and 3 commercial ones), belonging to Leuconostoc genus, against diverse stress factors (thermal, acidic, alkaline, osmotic and oxidative) commonly present at industrial or conservation processes were evaluated. Exhaustive result processing was made by applying one-way ANOVA, Student's test (t), multivariate analysis by Principal Component Analysis (PCA) and Matrix Hierarchical Cluster Analysis. In addition, heat adaptation on 4 strains carefully selected based on previous data analysis was assayed. The strains revealed wide diversity of resistance to stress factors and, in general, a clear relationship between resistance and Leuconostoc species was established. In this sense, the highest resistance was shown by Leuconostoc lactis followed by Leuconostoc mesenteroides strains, while Leuconostoc pseudomesenteroides and Leuconostoc citreum strains revealed the lowest resistance to the stress factors applied. Heat adaptation improved thermal cell survival and resulted in a cross-resistance against the acidic factor. However, all adapted cells showed diminished their oxidative resistance. According to our knowledge, this is the first study regarding response of Leuconostoc strains against technological stress factors and could establish the basis for the selection of "more robust" strains and propose the possibility of improving their performance during industrial processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Display of the Viral Epitopes on Lactococcus lactis: A Model for Food Grade Vaccine against EV71

    PubMed Central

    Varma, Nadimpalli Ravi S.; Toosa, Haryanti; Foo, Hooi Ling; Alitheen, Noorjahan Banu Mohamed; Nor Shamsudin, Mariana; Arbab, Ali S.; Yusoff, Khatijah; Abdul Rahim, Raha

    2013-01-01

    In this study, we have developed a system for display of antigens of Enterovirus type 71 (EV71) on the cell surface of L. lactis. The viral capsid protein (VP1) gene from a local viral isolate was utilized as the candidate vaccine for the development of oral live vaccines against EV71 using L. lactis as a carrier. We expressed fusion proteins in E. coli and purified fusion proteins were incubated with L. lactis. We confirmed that mice orally fed with L. lactis displaying these fusion proteins on its surface were able to mount an immune response against the epitopes of EV71. This is the first example of an EV71 antigen displayed on the surface of a food grade organism and opens a new perspective for alternative vaccine strategies against the EV71. We believe that the method of protein docking utilized in this study will allow for more flexible presentations of short peptides and proteins on the surface of L. lactis to be useful as a delivery vehicle. PMID:23476790

  2. Antihypertensive and hypolipidemic effect of milk fermented by specific Lactococcus lactis strains.

    PubMed

    Rodríguez-Figueroa, J C; González-Córdova, A F; Astiazaran-García, H; Hernández-Mendoza, A; Vallejo-Cordoba, B

    2013-07-01

    The antihypertensive and hypolipidemic effects of milk fermented by specific Lactococcus lactis strains in spontaneously hypertensive rats (SHR) were investigated. The SHR were fed ad libitum milk fermented by Lc. lactis NRRL B-50571, Lc. lactis NRRL B-50572, Captopril (40mg/kg of body weight, Sigma-Aldrich Co., St. Louis, MO) or purified water for 4 wk. Results suggested that Lc. lactis fermented milks presented a significant blood pressure-lowering effect. No significant difference was noted among milk fermented by Lc. lactis NRRL B-50571 and Captopril by the second and third week of treatment. Additionally, milk fermented by Lc. lactis strains modified SHR lipid profiles. Milk fermented by Lc. lactis NRRL B-50571 and B-50572 were able to reduce plasma low-density lipoprotein cholesterol and triglyceride contents. Thus, milk fermented by Lc. lactis strains may be a coadjuvant in the reduction of hypertension and hyperlipidemia and may be used as a functional food for better cardiovascular health. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Intramammary infusion of a live culture of Lactococcus lactis in ewes to treat staphylococcal mastitis.

    PubMed

    Mignacca, Sebastian Alessandro; Dore, Simone; Spuria, Liliana; Zanghì, Pietro; Amato, Benedetta; Duprè, Ilaria; Armas, Federica; Biasibetti, Elena; Camperio, Cristina; Lollai, Stefano A; Capucchio, Maria Teresa; Cannas, Eugenia Agnese; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia

    2017-12-01

    Alternatives to antibiotic therapy for mastitis in ruminants are needed. We present an evaluation, in two trials, of the efficacy of an intramammary infusion of a live culture of Lactococcus lactis for the treatment of subclinical and clinical mastitis in ewes. In total, 67 animals were enrolled: 19 lactating ewes (study 1), including healthy (N=6) and coagulase-negative staphylococci (CNS)-infected ewes (N=13); and 48 lactating ewes (study 2) with either CNS mastitis (N=32), or Staphylococcus aureus mastitis (N=16), for a total of 123 mammary glands. Intramammary infusions were performed with either L. lactis or PBS for 3 (study 1) or 7 (study 2) consecutive days. Antibiotic-treated and untreated control glands were included. Milk samples for microbiology, somatic cell analysis and milk production were collected before and after treatment.Results/Key findings.L. lactis rapidly activated the mammary glands' innate immune response and initiated an inflammatory response as evidenced by the recruitment of polymorphonuclear neutrophils and increased somatic cell counts. But while leading to a transient clearance of CNS in the gland, this response caused mild to moderate clinical cases of mastitis characterized by abnormal milk secretions and udder inflammation. Moreover, S. aureus infections did not improve, and CNS infections tended to relapse. Under our experimental conditions, the L. lactis treatment led to a transient clearance of the pathogen in the gland, but also caused mild to moderate clinical cases of mastitis. We believe it is still early to implement bacterial formulations as alternatives in treating mastitis in ruminants and further experimentation is needed.

  4. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis.

    PubMed

    Luoma, S; Peltoniemi, K; Joutsjoki, V; Rantanen, T; Tamminen, M; Heikkinen, I; Palva, A

    2001-03-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.

  5. Expression of Six Peptidases from Lactobacillus helveticus in Lactococcus lactis

    PubMed Central

    Luoma, Susanna; Peltoniemi, Kirsi; Joutsjoki, Vesa; Rantanen, Terhi; Tamminen, Marja; Heikkinen, Inka; Palva, Airi

    2001-01-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration. PMID:11229915

  6. Antimicrobial susceptibilities and random amplified polymorphic DNA-PCR fingerprint characterization of Lactococcus lactis ssp. lactis and Lactococcus garvieae isolated from bovine intramammary infections.

    PubMed

    Plumed-Ferrer, C; Barberio, A; Franklin-Guild, R; Werner, B; McDonough, P; Bennett, J; Gioia, G; Rota, N; Welcome, F; Nydam, D V; Moroni, P

    2015-09-01

    In total, 181 streptococci-like bacteria isolated from intramammary infections (IMI) were submitted by a veterinary clinic to Quality Milk Production Services (QMPS, Cornell University, Ithaca, NY). The isolates were characterized by sequence analysis, and 46 Lactococcus lactis ssp. lactis and 47 Lactococcus garvieae were tested for susceptibility to 17 antibiotics. No resistant strains were found for β-lactam antibiotics widely used in clinical practice (penicillin, ampicillin, and amoxicillin), and all minimum inhibitory concentrations (MIC) were far from the resistance breakpoints. Eight strains had MIC intermediate to cefazolin. The random amplification of polymorphic DNA (RAPD)-PCR fingerprint patterns showed a slightly higher heterogeneity for Lc. lactis ssp. lactis isolates than for Lc. garvieae isolates. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Use of waste materials for Lactococcus lactis development.

    PubMed

    Rodríguez, Noelia; Torrado, Ana; Cortés, Sandra; Domínguez, José Manuel

    2010-08-15

    Lactococcus lactis is an interesting microorganism with several industrial applications, particularly in the food industry. As well as being a probiotic species, L. lactis produces several metabolites with interesting properties, such as lactic acid (LA) and biosurfactants. Nevertheless, L. lactis is an especially demanding species since it has strong nutritional requirements, implying the use of complex and expensive culture media. The results showed the potential of L. lactis CECT-4434 as a LA and biosurfactant producer. The economical cost of L. lactis cultures can be reduced by replacing the MRS medium by the use of two waste materials: trimming vine shoots as C source, and 20 g L(-1) distilled wine lees (vinasses) as N, P and micronutrient sources. From the hemicellulosic fraction, 14.3 g L(-1) LA and 1.7 mg L(-1) surfactin equivalent were achieved after 74 h (surface tension reduction of 14.4 mN m(-1)); meanwhile, a simultaneous saccharification and fermentation process allowed the generation of 10.8 g L(-1) LA and 1.5 mg L(-1) surfactin equivalent after 72 h, reducing the surface tension by 12.1 units at the end of fermentation. Trimming vine shoots and vinasses can be used as alternative economical media for LA and cell-bound biosurfactant production. Copyright (c) 2010 Society of Chemical Industry.

  8. Thermal inactivation kinetics of Lactococcus lactis subsp. lactis bacteriophage pll98-22.

    PubMed

    Sanlibaba, Pinar; Buzrul, S; Akkoç, Nefise; Alpas, H; Akçelik, M

    2009-03-01

    Survival curves of Lactococcus lactis subsp. lactis bacteriophage pll98 inactivated by heat were obtained at seven temperature values (50-80 degrees C) in M17 broth and skim milk. Deviations from first-order kinetics in both media were observed as sigmoidal shapes in the survival curves of pll98. An empirical model with four parameters was used to define the thermal inactivation. Number of parameters of the model was reduced from four to two in order to increase the robustness of the model. The reduced model produced comparable fits to the full model. Both the survival data and the calculations done using the reduced model (time necessary to reduce the number of phage pll98 six- or seven- log10) indicated that skim milk is a more protective medium than M17 broth within the assayed temperature range.

  9. Transformation of Streptococcus lactis Protoplasts by Plasmid DNA †

    PubMed Central

    Kondo, Jeffery K.; McKay, Larry L.

    1982-01-01

    Polyethylene glycol-treated protoplasts prepared from Streptococcus lactis LM3302, a lactose-negative (Lac−) derivative of S. lactis ML3, were transformed to lactose-fermenting ability by a transductionally shortened plasmid (pLM2103) coding for lactose utilization. Images PMID:16346019

  10. Endosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects.

    PubMed

    Stein, Karina; Brand, Stephanie; Jenckel, André; Sigmund, Anna; Chen, Zhijian James; Kirschning, Carsten J; Kauth, Marion; Heine, Holger

    2017-02-01

    Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions. We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection. L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4 + T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy. L lactis G121-treated murine BMDCs and human moDCs released T H 1-polarizing cytokines and induced T H 1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of T H 1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13 -/- BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The T H 1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2. Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8. Copyright © 2016 American Academy of Allergy, Asthma & Immunology

  11. 21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., nontoxicogenic yeast Kluyveromyces lactis (previously named Saccharomyces lactis). It contains the enzyme β... prepared from yeast that has been grown in a pure culture fermentation and by using materials that are...

  12. 21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., nontoxicogenic yeast Kluyveromyces lactis (previously named Saccharomyces lactis). It contains the enzyme β... prepared from yeast that has been grown in a pure culture fermentation and by using materials that are...

  13. Lactococcus lactis-based vaccines: current status and future perspectives.

    PubMed

    Bahey-El-Din, Mohammed; Gahan, Cormac G M

    2011-01-01

    Lactococcus lactis offers significant potential as a platform for the delivery of vaccines especially via mucosal routes of administration. The organism has an established history of safe use in the food industry and is highly amenable to genetic manipulation, with many systems available for efficient production of secreted and surface-expressed proteins. Here we describe the benefits of using this organism as a vaccine delivery platform and outline how L. lactis based antigen delivery may be improved. Finally we discuss the safe use of L. lactis vectors and outline the potential for use of biological containment systems and killed lactococcal preparations.

  14. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    PubMed Central

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  15. AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration.

    PubMed

    Linares, Daniel M; Del Rio, Beatriz; Redruello, Begoña; Ladero, Victor; Martin, M Cruz; de Jong, Anne; Kuipers, Oscar P; Fernandez, Maria; Alvarez, Miguel A

    2015-09-01

    Dairy industry fermentative processes mostly use Lactococcus lactis as a starter. However, some dairy L. lactis strains produce putrescine, a biogenic amine that raises food safety and spoilage concerns, via the agmatine deiminase (AGDI) pathway. The enzymatic activities responsible for putrescine biosynthesis in this bacterium are encoded by the AGDI gene cluster. The role of the catabolic genes aguB, aguD, aguA, and aguC has been studied, but knowledge regarding the role of aguR (the first gene in the cluster) remains limited. In the present work, aguR was found to be a very low level constitutively expressed gene that is essential for putrescine biosynthesis and is transcribed independently of the polycistronic mRNA encoding the catabolic genes (aguBDAC). In response to agmatine, AguR acts as a transcriptional activator of the aguB promoter (PaguB), which drives the transcription of the aguBDAC operon. Inverted sequences required for PaguB activity were identified by deletion analysis. Further work indicated that AguR is a transmembrane protein which might function as a one-component signal transduction system that senses the agmatine concentration of the medium and, accordingly, regulates the transcription of the aguBDAC operon through a C-terminal cytoplasmic DNA-binding domain typically found in LuxR-like proteins. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration

    PubMed Central

    Linares, Daniel M.; del Rio, Beatriz; Redruello, Begoña; Martin, M. Cruz; de Jong, Anne; Kuipers, Oscar P.; Fernandez, Maria

    2015-01-01

    Dairy industry fermentative processes mostly use Lactococcus lactis as a starter. However, some dairy L. lactis strains produce putrescine, a biogenic amine that raises food safety and spoilage concerns, via the agmatine deiminase (AGDI) pathway. The enzymatic activities responsible for putrescine biosynthesis in this bacterium are encoded by the AGDI gene cluster. The role of the catabolic genes aguB, aguD, aguA, and aguC has been studied, but knowledge regarding the role of aguR (the first gene in the cluster) remains limited. In the present work, aguR was found to be a very low level constitutively expressed gene that is essential for putrescine biosynthesis and is transcribed independently of the polycistronic mRNA encoding the catabolic genes (aguBDAC). In response to agmatine, AguR acts as a transcriptional activator of the aguB promoter (PaguB), which drives the transcription of the aguBDAC operon. Inverted sequences required for PaguB activity were identified by deletion analysis. Further work indicated that AguR is a transmembrane protein which might function as a one-component signal transduction system that senses the agmatine concentration of the medium and, accordingly, regulates the transcription of the aguBDAC operon through a C-terminal cytoplasmic DNA-binding domain typically found in LuxR-like proteins. PMID:26116671

  17. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

    PubMed

    Kelleher, Philip; Bottacini, Francesca; Mahony, Jennifer; Kilcawley, Kieran N; van Sinderen, Douwe

    2017-03-29

    Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production. In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon. Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.

  18. Nisin production of Lactococcus lactis N8 with hemin-stimulated cell respiration in fed-batch fermentation system.

    PubMed

    Kördikanlıoğlu, Burcu; Şimşek, Ömer; Saris, Per E J

    2015-01-01

    In this study, nisin production of Lactococcus lactis N8 was optimized by independent variables of glucose, hemin and oxygen concentrations in fed-batch fermentation in which respiration of cells was stimulated with hemin. Response surface model was able to explain the changes of the nisin production of L. lactis N8 in fed-batch fermentation system with high fidelity (R(2) 98%) and insignificant lack of fit. Accordingly, the equation developed indicated the optimum parameters for glucose, hemin, and dissolved oxygen were 8 g L(-1) h(-1) , 3 μg mL(-1) and 40%, respectively. While 1711 IU mL(-1) nisin was produced by L. lactis N8 in control fed-batch fermentation, 5410 IU mL(-1) nisin production was achieved within the relevant optimum parameters where the respiration of cell was stimulated with hemin. Accordingly, nisin production was enhanced 3.1 fold in fed-batch fermentation using hemin. In conclusion the nisin production of L. lactis N8 was enhanced extensively as a result of increasing the biomass by stimulating the cell respiration with adding the hemin in the fed-batch fermentation. © 2015 American Institute of Chemical Engineers.

  19. Lactococcus lactis As a Versatile Vehicle for Tolerogenic Immunotherapy

    PubMed Central

    Cook, Dana P.; Gysemans, Conny; Mathieu, Chantal

    2018-01-01

    Genetically modified Lactococcus lactis bacteria have been engineered as a tool to deliver bioactive proteins to mucosal tissues as a means to exert both local and systemic effects. They have an excellent safety profile, the result of years of human consumption in the food industry, as well as a lack of toxicity and immunogenicity. Also, containment strategies have been developed to promote further application as clinical protein-based therapeutics. Here, we review technological advancements made to enhanced the potential of L. lactis as live biofactories and discuss some examples of tolerogenic immunotherapies mediated by mucosal drug delivery via L. lactis. Additionally, we highlight their use to induce mucosal tolerance by targeted autoantigen delivery to the intestine as an approach to reverse autoimmune type 1 diabetes. PMID:29387056

  20. Secretory expression of a heterologous nattokinase in Lactococcus lactis.

    PubMed

    Liang, Xiaobo; Zhang, Lixin; Zhong, Jin; Huan, Liandong

    2007-05-01

    Nattokinase has been reported as an oral health product for the prevention of atherosclerosis. We developed a novel strategy to express a nattokinase from Bacillus subtilis in a live delivery vehicle, Lactococcus lactis. Promoter P( nisZ) and signal peptide SP(Usp) were used for inducible and secretory expression of nattokinase in L. lactis. Western blotting analysis demonstrated that nattokinase was successfully expressed, and about 94% of the enzyme was secreted to the culture. The recombinant nattokinase showed potent fibrinolytic activity, equivalent to 41.7 urokinase units per milliliter culture. Expression and delivery of such a fibrinolytic enzyme in the food-grade vehicle L. lactis would facilitate the widespread application of nattokinase in the control and prevention of thrombosis diseases.

  1. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis.

    PubMed

    Pek, Han Bin; Lim, Pei Yu; Liu, Chengcheng; Lee, Dong-Yup; Bi, Xuezhi; Wong, Fong Tian; Ow, Dave Siak-Wei

    2017-05-01

    To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis. The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively. Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.

  2. Lactolisterin BU, a Novel Class II Broad-Spectrum Bacteriocin from Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4.

    PubMed

    Lozo, Jelena; Mirkovic, Nemanja; O'Connor, Paula M; Malesevic, Milka; Miljkovic, Marija; Polovic, Natalija; Jovcic, Branko; Cotter, Paul D; Kojic, Milan

    2017-11-01

    Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 produces a novel bacteriocin, lactolisterin BU, with strong antimicrobial activity against many species of Gram-positive bacteria, including important food spoilage and foodborne pathogens, such as Listeria monocytogenes , Staphylococcus aureus , Bacillus spp., and streptococci. Lactolisterin BU was extracted from the cell surface of BGBU1-4 by 2-propanol and purified to homogeneity by C 18 solid-phase extraction and reversed-phase high-performance liquid chromatography. The molecular mass of the purified lactolisterin BU was 5,160.94 Da, and an internal fragment, AVSWAWQH, as determined by N-terminal sequencing, showed low-level similarity to existing antimicrobial peptides. Curing and transformation experiments revealed the presence of a corresponding bacteriocin operon on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4. Analysis of the bacteriocin operon revealed a leaderless bacteriocin of 43 amino acids that exhibited similarity to bacteriocin BHT-B (63%) from Streptococcus ratti , a bacteriocin with analogy to aureocin A. IMPORTANCE Lactolisterin BU, a broad-spectrum leaderless bacteriocin produced by L. lactis subsp. lactis bv. diacetylactis BGBU1-4, expresses strong antimicrobial activity against food spoilage and foodborne pathogens, such as Listeria monocytogenes , Staphylococcus aureus , Bacillus spp., and streptococci. Lactolisterin BU showed the highest similarity to aureocin-like bacteriocins produced by different bacteria. The operon for synthesis is located on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4, indicating possible horizontal transfer among producers. Copyright © 2017 American Society for Microbiology.

  3. Lactolisterin BU, a Novel Class II Broad-Spectrum Bacteriocin from Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4

    PubMed Central

    Lozo, Jelena; Mirkovic, Nemanja; O'Connor, Paula M.; Malesevic, Milka; Miljkovic, Marija; Polovic, Natalija; Cotter, Paul D.

    2017-01-01

    ABSTRACT Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 produces a novel bacteriocin, lactolisterin BU, with strong antimicrobial activity against many species of Gram-positive bacteria, including important food spoilage and foodborne pathogens, such as Listeria monocytogenes, Staphylococcus aureus, Bacillus spp., and streptococci. Lactolisterin BU was extracted from the cell surface of BGBU1-4 by 2-propanol and purified to homogeneity by C18 solid-phase extraction and reversed-phase high-performance liquid chromatography. The molecular mass of the purified lactolisterin BU was 5,160.94 Da, and an internal fragment, AVSWAWQH, as determined by N-terminal sequencing, showed low-level similarity to existing antimicrobial peptides. Curing and transformation experiments revealed the presence of a corresponding bacteriocin operon on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4. Analysis of the bacteriocin operon revealed a leaderless bacteriocin of 43 amino acids that exhibited similarity to bacteriocin BHT-B (63%) from Streptococcus ratti, a bacteriocin with analogy to aureocin A. IMPORTANCE Lactolisterin BU, a broad-spectrum leaderless bacteriocin produced by L. lactis subsp. lactis bv. diacetylactis BGBU1-4, expresses strong antimicrobial activity against food spoilage and foodborne pathogens, such as Listeria monocytogenes, Staphylococcus aureus, Bacillus spp., and streptococci. Lactolisterin BU showed the highest similarity to aureocin-like bacteriocins produced by different bacteria. The operon for synthesis is located on the smallest plasmid, pBU6 (6.2 kb), of strain BGBU1-4, indicating possible horizontal transfer among producers. PMID:28842543

  4. Introduction of Peptidase Genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and Controlled Expression

    PubMed Central

    Wegmann, U.; Klein, J. R.; Drumm, I.; Kuipers, O. P.; Henrich, B.

    1999-01-01

    Peptidases PepI, PepL, PepW, and PepG from Lactobacillus delbrueckii subsp. lactis, which have no counterparts in Lactococcus lactis, and peptidase PepQ were examined to determine their potential to confer new peptidolytic properties to lactococci. Controllable expression of the corresponding genes (pep genes) was achieved by constructing translational fusions with the promoter of the nisA gene (PnisA). A suitable host strain, UKLc10, was constructed by chromosomal integration of the genes encoding the NisRK two-component system into the fivefold peptidase-deficient mutant IM16 of L. lactis. Recombinants of this strain were used to analyze growth, peptidase activities, peptide utilization, and intracellular protein cleavage products. After nisin induction of PnisA::pep fusions, all of the peptidases were visible as distinct bands in protein gels. Despite the fact that identical transcription and translation signals were used to express the pep genes, the relative amounts of individual peptidases varied considerably. All of the peptidases exhibited activities in extracts of recombinant UKLc10 clones, but only PepL and PepG allowed the clones to utilize specific peptide substrates as sources of essential amino acids. In milk medium, induction of pepG and induction of pepW resulted in growth acceleration. The activities of all five peptidases during growth in milk medium were revealed by high-performance liquid chromatography analyses of intracellular amino acid and peptide pools. PMID:10543778

  5. Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products.

    PubMed

    Zycka-Krzesinska, Joanna; Boguslawska, Joanna; Aleksandrzak-Piekarczyk, Tamara; Jopek, Jakub; Bardowski, Jacek K

    2015-10-15

    To assess the occurrence of antibiotic-resistant Lactic Acid Bacteria (LAB) in Polish raw milk and fermented artisanal products, a collection comprising 500 isolates from these products was screened. Among these isolates, six strains (IBB28, IBB160, IBB161, IBB224, IBB477 and IBB487) resistant to tetracycline were identified. The strains showing atypical tetracycline resistance were classified as Lactococcus lactis: three of them were identified as L. lactis subsp. cremoris (IBB224, IBB477 and IBB487) and the other three (IBB28, IBB160, IBB161) were identified as L. lactis subsp. lactis. The mechanism involving Ribosomal Protection Proteins (RPP) was identified as responsible for tetracycline resistance. Three of the tested strains (IBB28, IBB160 and IBB224) had genes encoding the TetS protein, whereas the remaining three (IBB161, IBB477 and IBB487) expressed TetM. The results also demonstrated that the genes encoding these proteins were located on genetic mobile elements. The tet(S) gene was found to be located on plasmids, whereas tet(M) was found within the Tn916 transposon. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The effect of nisin from Lactococcus lactis subsp. lactis on refrigerated patin fillet quality

    NASA Astrophysics Data System (ADS)

    Adilla, S. N.; Utami, R.; Nursiwi, A.; Nurhartadi, E.

    2017-04-01

    The effect of nisin from Lactococcus lactis subsp. lactis with spraying method application on quality of patin fillet during refrigerated storage (4±1°C) was investigated. The quality of patin fillet based on total plate count (TPC), pH, TVB-N, and TBA values during 16 days at 4±1°C. Completely Randomized Design (CDR) was used in one factor (nisin activity) at 0 IU/ml, 500 IU/ml, 1000 IU/ml, and 2000 IU/ml. The observation was done at 0, 4th, 8th, 12th, and 16th days of storage. The result showed that variation of nisin activity significantly affected the quality of fillet according to TPC, pH, and TVB-N values, however no significant difference on the obtained of TBA value. Nisin in 500 IU/ml, 1000 IU/ml, and 2000 IU/ml could extend the shelf-life of fillet until 4th, 8th, and 12th days respectively based on standard in all parameters.

  7. Diversity Analysis of Dairy and Nondairy Lactococcus lactis Isolates, Using a Novel Multilocus Sequence Analysis Scheme and (GTG)5-PCR Fingerprinting▿

    PubMed Central

    Rademaker, Jan L. W.; Herbet, Hélène; Starrenburg, Marjo J. C.; Naser, Sabri M.; Gevers, Dirk; Kelly, William J.; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E. T.

    2007-01-01

    The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)5-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene. PMID:17890345

  8. Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting.

    PubMed

    Rademaker, Jan L W; Herbet, Hélène; Starrenburg, Marjo J C; Naser, Sabri M; Gevers, Dirk; Kelly, William J; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E T

    2007-11-01

    The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.

  9. Unleashing Natural Competence in Lactococcus lactis by Induction of the Competence Regulator ComX

    PubMed Central

    Mulder, Joyce; Wels, Michiel; Kuipers, Oscar P.; Bron, Peter A.

    2017-01-01

    ABSTRACT In biotechnological workhorses like Streptococcus thermophilus and Bacillus subtilis, natural competence can be induced, which facilitates genetic manipulation of these microbes. However, in strains of the important dairy starter Lactococcus lactis, natural competence has not been established to date. However, in silico analysis of the complete genome sequences of 43 L. lactis strains revealed complete late competence gene sets in 2 L. lactis subsp. cremoris strains (KW2 and KW10) and at least 10 L. lactis subsp. lactis strains, including the model strain IL1403 and the plant-derived strain KF147. The remainder of the strains, including all dairy isolates, displayed genomic decay in one or more of the late competence genes. Nisin-controlled expression of the competence regulator comX in L. lactis subsp. lactis KF147 resulted in the induction of expression of the canonical competence regulon and elicited a state of natural competence in this strain. In contrast, comX expression in L. lactis NZ9000, which was predicted to encode an incomplete competence gene set, failed to induce natural competence. Moreover, mutagenesis of the comEA-EC operon in strain KF147 abolished the comX-driven natural competence, underlining the involvement of the competence machinery. Finally, introduction of nisin-inducible comX expression into nisRK-harboring derivatives of strains IL1403 and KW2 allowed the induction of natural competence in these strains also, expanding this phenotype to other L. lactis strains of both subspecies. IMPORTANCE Specific bacterial species are able to enter a state of natural competence in which DNA is taken up from the environment, allowing the introduction of novel traits. Strains of the species Lactococcus lactis are very important starter cultures for the fermentation of milk in the cheese production process, where these bacteria contribute to the flavor and texture of the end product. The activation of natural competence in this industrially

  10. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.

    PubMed

    Shi, Weijia; Li, Yu; Gao, Xueling; Fu, Ruiyan

    2016-03-01

    The growth characteristics and intracellular hemin concentrations of Lactococcus lactis grown under different culture pH and aeration conditions were examined to investigate the effect of culture pH on the respiration efficiency of L. lactis NZ9000 (pZN8148). Cell biomass and biomass yield of L. lactis grown with 4 μg hemin/ml and O2 were higher than those without aeration when the culture pH was controlled at 5-6.5. The culture pH affected the respiratory efficiency in the following order of pH: 5 > 5.5 > 6 > 6.5; the lag phase increased as the culture pH decreased. Hemin accumulation was sensitive to culture pH. Among the four pH conditions, pH 5.5 was optimal for hemin accumulation in the cells. The highest intracellular hemin level in L. lactis resting cells incubated at different pH saline levels (5-6.5) was at pH 5.5. The respiration efficiency of L. lactis under respiration-permissive conditions increases markedly as the culture pH decreases. These results may help develop high cell-density L. lactis cultures. Thus, this microorganism may be used for industrial applications.

  11. A Zn-Dependent Metallopeptidase Is Responsible for Sensitivity to LsbB, a Class II Leaderless Bacteriocin of Lactococcus lactis subsp. lactis BGMN1-5

    PubMed Central

    Uzelac, Gordana; Lozo, Jelena; Aleksandrzak-Piekarczyk, Tamara; Gabrielsen, Christina; Kristensen, Tom; Nes, Ingolf F.; Diep, Dzung B.; Topisirovic, Ljubisa

    2013-01-01

    Lactococcus lactis subsp. lactis BGMN1-5 produces a leaderless class II bacteriocin called LsbB. To identify the receptor for LsbB, a cosmid library of the LsbB-sensitive strain BGMN1-596 was constructed. About 150 cosmid clones were individually isolated and transferred to LsbB-resistant mutants of BGMN1-596. Cosmid pAZILcos/MN2, carrying a 40-kb insert, was found to restore LsbB sensitivity in LsbB-resistant mutants. Further subcloning revealed that a 1.9-kb fragment, containing only one open reading frame, was sufficient to restore sensitivity. The fragment contains the gene yvjB coding for a Zn-dependent membrane-bound metallopeptidase, suggesting that this gene may serve as the receptor for LsbB. Further support for this notion derives from several independent experiments: (i) whole-genome sequencing confirmed that all LsbB-resistant mutants contain mutations in yvjB; (ii) disruption of yvjB by direct gene knockout rendered sensitive strains BGMN1-596 and IL1403 resistant to LsbB; and (iii) most compellingly, heterologous expression of yvjB in naturally resistant strains of other species, such as Lactobacillus paracasei and Enterococcus faecalis, also rendered them sensitive to the bacteriocin. To our knowledge, this is the first time a membrane-bound peptidase gene has been shown to be involved in bacteriocin sensitivity in target cells. We also demonstrated a novel successful approach for identifying bacteriocin receptors. PMID:24123824

  12. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12-supplemented yogurt in healthy adults on antibiotics: a phase I safety study

    PubMed Central

    Merenstein, Daniel J; Tan, Tina P; Molokin, Aleksey; Smith, Keisha Herbin; Roberts, Robert F; Shara, Nawar M; Mete, Mihriye; Sanders, Mary Ellen; Solano-Aguilar, Gloria

    2015-01-01

    Probiotics are live microorganisms that, when administered in sufficient doses, provide health benefits on the host. The United States Food and Drug Administration (FDA) requires phase I safety studies for probiotics when the intended use of the product is as a drug. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp lactis (B. lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of adults who were prescribed a 10-day course of antibiotics for a respiratory infection. Secondary aims were to assess the ability of BB-12 to affect the expression of whole blood immune markers associated with cell activation and inflammatory response. A phase I, double-blinded, randomized controlled study was conducted in compliance with FDA guidelines for an Investigational New Drug (IND). Forty participants were randomly assigned to consume 4 ounces of either BB-12 -supplemented yogurt or non-supplemented control yogurt daily for 10 d. The primary outcome was to assess safety and tolerability, assessed by the number of reported adverse events. A total of 165 non-serious adverse events were reported, with no differences between the control and BB-12 groups. When compared to the control group, B lactis fecal levels were modestly higher in the BB-12-supplemented group. In a small subset of patients, changes in whole blood expression of genes associated with regulation and activation of immune cells were detected in the BB-12-supplemented group. BB-12-supplemented yogurt is safe and well tolerated when consumed by healthy adults concurrently taking antibiotics. This study will form the basis for future randomized clinical trials investigating the potential immunomodulatory effects of BB-12-supplemented yogurt in a variety of disease states. PMID:25569274

  13. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12-supplemented yogurt in healthy adults on antibiotics: a phase I safety study.

    PubMed

    Merenstein, Daniel J; Tan, Tina P; Molokin, Aleksey; Smith, Keisha Herbin; Roberts, Robert F; Shara, Nawar M; Mete, Mihriye; Sanders, Mary Ellen; Solano-Aguilar, Gloria

    2015-01-01

    Probiotics are live microorganisms that, when administered in sufficient doses, provide health benefits on the host. The United States Food and Drug Administration (FDA) requires phase I safety studies for probiotics when the intended use of the product is as a drug. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp lactis (B. lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of adults who were prescribed a 10-day course of antibiotics for a respiratory infection. Secondary aims were to assess the ability of BB-12 to affect the expression of whole blood immune markers associated with cell activation and inflammatory response. A phase I, double-blinded, randomized controlled study was conducted in compliance with FDA guidelines for an Investigational New Drug (IND). Forty participants were randomly assigned to consume 4 ounces of either BB-12 -supplemented yogurt or non-supplemented control yogurt daily for 10 d. The primary outcome was to assess safety and tolerability, assessed by the number of reported adverse events. A total of 165 non-serious adverse events were reported, with no differences between the control and BB-12 groups. When compared to the control group, B lactis fecal levels were modestly higher in the BB-12-supplemented group. In a small subset of patients, changes in whole blood expression of genes associated with regulation and activation of immune cells were detected in the BB-12-supplemented group. BB-12-supplemented yogurt is safe and well tolerated when consumed by healthy adults concurrently taking antibiotics. This study will form the basis for future randomized clinical trials investigating the potential immunomodulatory effects of BB-12-supplemented yogurt in a variety of disease states.

  14. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Pérez, Tania; Balcázar, José Luis; Peix, Alvaro; Valverde, Angel; Velázquez, Encarna; de Blas, Ignacio; Ruiz-Zarzuela, Imanol

    2011-08-01

    The species Lactococcus lactis currently includes three subspecies; L. lactis subsp. lactis and L. lactis subsp. cremoris, isolated from milk sources, and L. lactis subsp. hordniae, isolated from the leafhopper Hordnia circellata. In this study, three strains, designated L105(T), I3 and L101, were isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). These strains were closely related to members of the species Lactococcus lactis. Strain L105(T) showed 99.4 % 16S rRNA gene sequence similarity to that of the type strains L. lactis subsp. lactis NCDO 604(T) and L. lactis subsp. hordniae NCDO 2181(T) and showed 99.9 % similarity to the type strain Lactococcus lactis subsp. cremoris NCDO 607(T). Analysis of two housekeeping genes, rpoB and recA, confirmed the close relationship between the novel strains and L. lactis subsp. cremoris with similarities of 99.3 and 99.7 %, respectively. The three strains could, however, be differentiated from their closest relatives on the basis of several phenotypic characteristics, as was the case for L. lactis subsp. lactis and L. lactis subsp. hordniae, which were also closely related on the basis of 16S rRNA, rpoB and recA gene sequence similarities. The strains isolated in this study represent a new subspecies, for which the name Lactococcus lactis subsp. tructae subsp. nov. is proposed. The type strain is L105(T) ( = LMG 24662(T)  = DSM 21502(T)).

  15. Lactococcus lactis subsp. lactis infection in Bester sturgeon, a cultured hybrid of Huso huso × Acipenser ruthenus, in Taiwan.

    PubMed

    Chen, Ming-Hui; Hung, Shao-Wen; Shyu, Ching-Lin; Lin, Cheng-Chung; Liu, Pan-Chen; Chang, Chen-Hsuan; Shia, Wei-Yau; Cheng, Ching-Fu; Lin, Shiun-Long; Tu, Ching-Yu; Lin, Yu-Hsing; Wang, Way-Shyan

    2012-10-01

    Approximately 5300 hybrid sturgeons with an average body weight of 600-800 g were farmed in 3 round tankers measuring 3m in diameter each containing 28,000 L of aerated groundwater. According to the owner's description, the diseased fish had anorexia, pale body color, and reddish spots on the abdomen. The morbidity and lethality rates in this outbreak were about 70% (3706/5300) and 100% (3706/3706), respectively. The clinical examination revealed enteritis, enlarged abdomen, and rapid respiration rate. The gross findings revealed a volume of about 4 mL of ascites. The histopathological examination showed multiple massive, hemorrhagic or coagulative necrotic foci in the liver and spleen. Furthermore, there was diffuse infiltration of glycogen in hepatic cells, and a few polymorphonuclear and mononuclear leucocytes were observed surrounding the spleen. Some bacterial clumps were noted around the necrotic foci. We also observed that there was moderate to severe, acute, multifocal, coagulative necrosis in the renal parenchyma, with some necrotic foci present beneath the margin of the kidney. Additionally, multifocal, coagulative necrosis was found in the pancreas. Results of microbiologic examinations, including biochemical characteristics, PCR amplification of 16S rRNA gene, sequencing and comparison, and phylogenetic analysis, revealed the pathogen of this infection was Lactococcus lactis subsp. lactis, and based on the results of an antimicrobial agent sensitivity test the bacterium was only sensitive to ampicillin and florfenicol. Additionally, results of in vivo experimental infections in hybrid tilapia showed that 1×10(8) and 1×10(9) CFU/mL of our isolate caused death in all fish and LD(50) values ranged from 10(2) to 10(5) CFU/mL. To the best of the authors' knowledge, this is the first reported case of Lactococcus lactis subsp. lactis infection in hybrid sturgeon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Portal vein thrombosis and liver abscess due to Lactococcus lactis.

    PubMed

    Güz, Galip; Yeğin, Zeynep Arzu; Doğan, Ibrahim; Hizel, Kenan; Bali, Musa; Sindel, Sükrü

    2006-06-01

    A 26-year-old man was admitted with fever and abdominal pain. Abdominal ultrasonography and Doppler ultrasound eventually revealed portal vein thrombosis and a pyogenic liver abscess (17x11x11 cm). Lactococcus lactis was isolated from a culture of the abscess material. This organism is not a common pathogen in humans. This is the first published description of portal vein thrombosis and pyogenic liver abscess due to L. lactis.

  17. [Characteristics and identification of bacteriocins produced by Lactococcus lactis subsp. lactis 194-K].

    PubMed

    Ustiugova, E A; Timofeeva, A V; Stoianova, L G; Netrusov, A I; Katrukha, G S

    2012-01-01

    The Lactococcus lactis subsp. lactis 194-K strain has been established to be able to produce two bacteriocins, one of which was identified as the known lantibiotic nisin A, and the other 194-D bacteriocin represents a polypeptide with a 2589-Da molecular mass and comprises 20 amino acid residues. Both bacteriocins were produced in varying proportions in all of the studied nutrient media, which support the growth of the producer. Depending on the cultivation medium, the nisin A content was 380- to 1123-fold lower in the 194-K stain culture fluid than that of the 194-D peptide. In comparision to to nisin A Bacteriocin 194-D possessed a wide range of antibacterial activity and suppressed the growth of both Gram-positive and Gram-negative bacteria. An optimal medium for 194-D bacteriocin synthesis was shown to be a fermentation medium which contained yeast extract, casein hydrolysate, and potassium phosphate. The biosynthesis ofbacteriocin 194-D by the 194-K strain in these media occurred parallel to producer growth, and its maximal accumulation in the culture fluid was observed at 14-20 h of the strain's growth.

  18. Differentiation of Streptococcus lactis var. maltigenes from Other Lactic Streptococci1

    PubMed Central

    Gordon, D. F.; Morgan, M. E.; Tucker, J. S.

    1963-01-01

    Strains of lactic streptococci isolated from samples of raw milk which had developed a malty aroma were subjected to the cultural, physiological, and serological tests commonly employed in the classification of streptococci. None of the strains could be differentiated from Streptococcus lactis by these tests. Resting cells of strains which produced an organoleptically detectable malty aroma when cultured in milk were usually found to possess an active α-ketoacid decarboxylase, indicating the presence of the mechanism responsible for the characteristic aroma production. This decarboxylase activity was either weak or nonexistent in the nonmalty strains, and no activity was detected in known strains of S. lactis, S. cremoris, or S. diacetilactis. The malty strains usually produced higher acidities in milk than did the nonmalty strains, and, in most instances, they developed a granular type of growth sediment in broth, as opposed to a viscid sediment. Many of them gave weakly positive Voges-Proskauer tests in glucose broth with or without added citrate and appeared to be somewhat more resistant to nisin than the nonmalty strains. PMID:13949187

  19. Immunopathological evaluation of recombinant mycobacterial antigen Hsp65 expressed in Lactococcus lactis as a novel vaccine candidate

    PubMed Central

    Herrera Ramírez, J. C.; De la Mora, A. Ch.; De la Mora Valle, A.; Lopez-Valencia, G.; Hurtado, R. M. B.; Rentería Evangelista, T. B.; Rodríguez Castillo, J. L.; Rodríguez Gardea, A.; Gómez Gómez, S. D.; Medina-Basulto, G. E.

    2017-01-01

    Bovine tuberculosis (TBB) is a zoonotic disease distributed worldwide and is of great importance for public health and the livestock industry. Several experimental vaccines against this disease have been evaluated in recent years, yielding varying results. An example is the Bacillus Calmette-Guérin (BCG) vaccine, which has been used extensively in humans and tested in cattle showing mixed results related to protection (0-80%) against Mycobacterium bovis. In this study, we used the food-grade bacterium Lactococcus lactis as an expression system for production of mycobacterial protein Hsp65. For this purpose, the construction of a replicable plasmid in strain NZ9000 L. lactis (pVElepr) was conducted, which expressed the Mycobacterium leprae Hsp65 antigen, and was recognized by traded anti-Hsp65 antibodies. The strain NZ9000-pVElepr was applied to calves that were negative to tuberculin test and the immune response was monitored. The results showed that immune response was not significantly increased in calves with NZ9000-pVElepr with respect to control groups, and no injury was observed in any lung or lymph of the calves. Finally, this study suggest that the recombinant NZ9000 strain of L. lactis may protect against the development of M. bovis infection, although studies with longer exposure to this pathogen are necessary to conclude the matter. PMID:29163649

  20. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  1. The Prophylactic Effect of Probiotic Enterococcus lactis IW5 against Different Human Cancer Cells

    PubMed Central

    Nami, Yousef; Haghshenas, Babak; Haghshenas, Minoo; Abdullah, Norhafizah; Yari Khosroushahi, Ahmad

    2015-01-01

    Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, MCF-7, AGS, HT-29, and Caco-2. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications. PMID:26635778

  2. Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9.

    PubMed

    Vinogradov, Evgeny; Sadovskaya, Irina; Grard, Thierry; Murphy, James; Mahony, Jennifer; Chapot-Chartier, Marie-Pierre; van Sinderen, Douwe

    2018-05-22

    Lactococcus lactis is the most widely utilised starter bacterial species in dairy fermentations. The L. lactis cell envelope contains polysaccharides, which, among other known functions, serve as bacteriophage receptors. Our previous studies have highlighted the structural diversity of these so-called cell wall polysaccharides (CWPSs) among L. lactis strains that could account for the narrow host range of most lactococcal bacteriophages. In the present work, we studied the CWPS of L. lactis strain UC509.9, an Irish dairy starter strain that is host to the temperate and well-characterized P335-type phage Tuc2009. The UC509.9 CWPS structure was analyzed by methylation, deacetylation/deamination, Smith degradation and 2D NMR spectroscopy. The CWPS consists of a linear backbone composed of a tetrasaccharide repeat unit, partially substituted with a branched phosphorylated oligosaccharide having a common trisaccharide and three non-stoichiometric substitutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Putrescine-Producing Lactococcus lactis ▿ †

    PubMed Central

    Ladero, Victor; Rattray, Fergal P.; Mayo, Baltasar; Martín, María Cruz; Fernández, María; Alvarez, Miguel A.

    2011-01-01

    Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution. PMID:21803900

  4. Geraniol dehydrogenase, the key enzyme in biosynthesis of the alarm pheromone, from the astigmatid mite Carpoglyphus lactis (Acari: Carpoglyphidae).

    PubMed

    Noge, Koji; Kato, Makiko; Mori, Naoki; Kataoka, Michihiko; Tanaka, Chihiro; Yamasue, Yuji; Nishida, Ritsuo; Kuwahara, Yasumasa

    2008-06-01

    Geraniol dehydrogenase (GeDH), which plays an important role in the biosynthesis of neral, an alarm pheromone, was purified from the astigmatid mite Carpoglyphus lactis. The enzyme was obtained in an apparently homogeneous and active form after 1879-fold purification through seven steps of chromatography. Car. lactis GeDH was determined to be a monomer in its active form with a relative molecular mass of 42 800, which is a unique subunit structure in comparison with already established alcohol dehydrogenases. Car. lactis GeDH oxidized geraniol into geranial in the presence of NAD+. NADP+ was ineffective as a cofactor, suggesting that Car. lactis GeDH is an NAD+-dependent alcohol dehydrogenase. The optimal pH and temperature for geraniol oxidation were determined to be pH 9.0 and 25 degrees C, respectively. The Km values for geraniol and NAD+ were 51.0 microm and 59.5 microm, respectively. Car. lactis GeDH was shown to selectively oxidize geraniol, whereas its geometrical isomer, nerol, was inert as a substrate. The high specificity for geraniol suggests that Car. lactis GeDH specializes in the alarm pheromone biosynthesis of Car. lactis. Car. lactis GeDH is composed of 378 amino acids. Structurally, Car. lactis GeDH showed homology with zinc-dependent alcohol dehydrogenases found in mammals and a mosquito (36.6-37.6% identical), and the enzyme was considered to be a member of the medium-chain dehydrogenase/reductase family, in view of the highly conserved sequences of zinc-binding and NAD+-binding sites. Phylogenetic analyses indicate that Car. lactis GeDH could be categorized as a new class, different from other established alcohol dehydrogenases.

  5. Chromosomal Diversity in Lactococcus lactis and the Origin of Dairy Starter Cultures

    PubMed Central

    Kelly, William J.; Ward, Lawrence J. H.; Leahy, Sinead C.

    2010-01-01

    A large collection of Lactococcus lactis strains, including wild-type isolates and dairy starter cultures, were screened on the basis of their phenotype and the macrorestriction patterns produced from pulsed-field gel electrophoresis (PFGE) analysis of SmaI digests of genomic DNA. Three groups of dairy starter cultures, used for different purposes in the dairy industry, and a fourth group made up of strains isolated from the environment were selected for analysis of their chromosomal diversity using the endonuclease I-CeuI. Chromosome architecture was largely conserved with each strain having six copies of the rRNA genes, and the chromosome size of individual strains ranged between 2,240 and 2,688 kb. The origin of L. lactis strains showed the greatest correlation with chromosome size, and dairy strains, particularly those with the cremoris phenotype, had smaller chromosomes than wild-type strains. Overall, this study, coupled with analysis of the sequenced L. lactis genomes, provides evidence that defined strain dairy starter cultures have arisen from plant L. lactis strains. Adaptation of these strains to the dairy environment has involved loss of functions resulting in smaller chromosomes and acquisition of genes (usually plasmid associated) that facilitate growth in milk. We conclude that dairy starter cultures generally and the industrially used cremoris and diacetylactis phenotype strains in particular comprise a specialized group of L. lactis strains that have been selected to become an essential component of industrial processes and have evolved accordingly, so that they are no longer fit to survive outside the dairy environment. PMID:20847124

  6. Evaluation of Lactococcus lactis Isolates from Nondairy Sources with Potential Dairy Applications Reveals Extensive Phenotype-Genotype Disparity and Implications for a Revised Species

    PubMed Central

    Cavanagh, Daniel; Casey, Aidan; Altermann, Eric; Cotter, Paul D.; Fitzgerald, Gerald F.

    2015-01-01

    Lactococcus lactis is predominantly associated with dairy fermentations, but evidence suggests that the domesticated organism originated from a plant niche. L. lactis possesses an unusual taxonomic structure whereby strain phenotypes and genotypes often do not correlate, which in turn has led to confusion in L. lactis classification. A bank of L. lactis strains was isolated from various nondairy niches (grass, vegetables, and bovine rumen) and was further characterized on the basis of key technological traits, including growth in milk and key enzyme activities. Phenotypic analysis revealed all strains from nondairy sources to possess an L. lactis subsp. lactis phenotype (lactis phenotype); however, seven of these strains possessed an L. lactis subsp. cremoris genotype (cremoris genotype), determined by two separate PCR assays. Multilocus sequence typing (MLST) showed that strains with lactis and cremoris genotypes clustered together regardless of habitat, but it highlighted the increased diversity that exists among “wild” strains. Calculation of average nucleotide identity (ANI) and tetranucleotide frequency correlation coefficients (TETRA), using the JSpecies software tool, revealed that L. lactis subsp. cremoris and L. lactis subsp. lactis differ in ANI values by ∼14%, below the threshold set for species circumscription. Further analysis of strain TIFN3 and strains from nonindustrial backgrounds revealed TETRA values of <0.99 in addition to ANI values of <95%, implicating that these two groups are separate species. These findings suggest the requirement for a revision of L. lactis taxonomy. PMID:25841018

  7. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.

    PubMed

    Pudlik, Agata M; Lolkema, Juke S

    2011-08-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.

  8. Probiotic Yogurt Culture Bifidobacterium Animalis Subsp. Lactis BB-12 and Lactobacillus Acidophilus LA-5 Modulate the Cytokine Secretion by Peripheral Blood Mononuclear Cells from Patients with Ulcerative Colitis.

    PubMed

    Sheikhi, A; Shakerian, M; Giti, H; Baghaeifar, M; Jafarzadeh, A; Ghaed, V; Heibor, M R; Baharifar, N; Dadafarin, Z; Bashirpour, G

    2016-06-01

    There are some evidences for the immunomodulation disorders in the response to intestinal microbiota in inflammatory bowel disease. Yogurt is a fermented milk product made with a starter culture consisting of different probiotics which could be colonized in intestine. However, the role of probiotics in the aetiopathogenesis of ulcerative colitis (UC) has not been clarified. To determine how the immune system responds to these bacteria this study was planned. Bifidobacterium lactis BB-12 (B. lactis) and Lactobacillus acidophilus LA-5 (L. acidophilus) were cultivated on MRS broth. PBMCs of 36 UC patients were separated by Ficoll-Hypaque centrifugation and co-cultured with different concentrations of UV killed bacteria in RPMI-1 640 plus 10% FCS for 48/72 h. IL-10, TGF-β, IFN-γ and TNF-α were measured in supernatant of PBMCs by ELISA. Both bacteria significantly augmented IL-10, TGF-β, IFN-γ and TNF-α compared to control (p<0.001). The secretion levels of IL-10 and TGF-β by B. lactis- compared to L. acidophilus-stimulated PBMCs were significantly higher (p<0.05, p<0.01 respectively). The secretion levels of TNF-α and IFN-γ by PBMCs after 72 h were significantly lower compared to 48 h stimulation by B. lactis (p<0.001, p<0.035 respectively). These data show that both probiotics may trigger the pro- and anti-inflammatory immune response of UC patients. It seems that IL-10/TGF-β uprising by B. lactis could be the reason of TNF-α/IFN-γ reduction. Therefore albeit B. lactis still stimulates the effector Th cells but because of more stimulatory effect on Tregs, it could be a good potential therapeutic candidate for further investigation. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Stress Physiology of Lactic Acid Bacteria

    PubMed Central

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie

    2016-01-01

    SUMMARY Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  10. Stress Physiology of Lactic Acid Bacteria.

    PubMed

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese

    PubMed Central

    Furtado, Danielle N.; Todorov, Svetoslav D.; Landgraf, Mariza; Destro, Maria T.; Franco, Bernadette D.G.M.

    2015-01-01

    Listeria monocytogenes is a pathogen frequently found in dairy products. Its control in fresh cheeses is difficult, due to the psychrotrophic properties and salt tolerance. Bacteriocinogenic lactic acid bacteria (LAB) with proven in vitro antilisterial activity can be an innovative technological approach but their application needs to be evaluated by means of in situ tests. In this study, a novel bacteriocinogenic Lactococcus lactis strain ( Lc . lactis DF4Mi), isolated from raw goat milk, was tested for control of growth of L. monocytogenes in artificially contaminated fresh Minas type goat cheese during storage under refrigeration. A bacteriostatic effect was achieved, and counts after 10 days were 3 log lower than in control cheeses with no added LAB. However, this effect did not differ significantly from that obtained with a non-bacteriocinogenic Lc. lactis strain. Addition of nisin (12.5 mg/kg) caused a rapid decrease in the number of viable L. monocytogenes in the cheeses, suggesting that further studies with the purified bacteriocin DF4Mi may open new possibilities for this strain as biopreservative in dairy products. PMID:26221109

  12. Antilisterial Activity of Nisin-Like Bacteriocin-Producing Lactococcus lactis subsp. lactis Isolated from Traditional Sardinian Dairy Products

    PubMed Central

    Cosentino, Sofia; Fadda, Maria Elisabetta; Deplano, Maura; Melis, Roberta; Pomata, Rita; Pisano, Maria Barbara

    2012-01-01

    With the aim of selecting LAB strains with antilisterial activity to be used as protective cultures to enhance the safety of dairy products, the antimicrobial properties of 117 Lactococcus lactis subsp. lactis isolated from artisanal Sardinian dairy products were evaluated, and six strains were found to produce bacteriocin-like substances. The capacity of these strains to antagonize Listeria monocytogenes during cocultivation in skimmed milk was evaluated, showing a reduction of L. monocytogenes counts of approximately 4 log units compared to the positive control after 24 h of incubation. In order for a strain to be used as bioprotective culture, it should be carefully evaluated for the presence of virulence factors, to determine what potential risks might be involved in its use. None of the strains tested was found to produce biogenic amines or to possess haemolytic activity. In addition, all strains were sensitive to clinically important antibiotics such as ampicillin, tetracycline, and vancomycin. Our results suggest that these bac+ strains could be potentially applied in cheese manufacturing to control the growth of L. monocytogenes. PMID:22536018

  13. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation.

    PubMed

    Martín, Rebeca; Chain, Florian; Miquel, Sylvie; Natividad, Jane M; Sokol, Harry; Verdu, Elena F; Langella, Philippe; Bermúdez-Humarán, Luis G

    2014-01-01

    Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a "proof-of-concept," our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces.

  14. Lactococcus lactis expressing either Staphylococcus aureus fibronectin-binding protein A or Listeria monocytogenes internalin A can efficiently internalize and deliver DNA in human epithelial cells.

    PubMed

    Innocentin, Silvia; Guimarães, Valeria; Miyoshi, Anderson; Azevedo, Vasco; Langella, Philippe; Chatel, Jean-Marc; Lefèvre, François

    2009-07-01

    Lactococci are noninvasive bacteria frequently used as protein delivery vectors and, more recently, as in vitro and in vivo DNA delivery vehicles. We previously showed that a functional eukaryotic enhanced green fluorescent protein (eGFP) expression plasmid vector was delivered in epithelial cells by Lactococcus lactis producing Listeria monocytogenes internalin A (L. lactis InlA(+)), but this strategy is limited in vivo to transgenic mice and guinea pigs. In this study, we compare the internalization ability of L. lactis InlA(+) and L. lactis producing either the fibronectin-binding protein A of Staphylococcus aureus (L. lactis FnBPA(+)) or its fibronectin binding domains C and D (L. lactis CD(+)). L. lactis FnBPA(+) and L. lactis InlA(+) showed comparable internalization rates in Caco-2 cells, while the internalization rate observed with L. lactis CD(+) was lower. As visualized by conventional and confocal fluorescence microscopy, large clusters of L. lactis FnBPA(+), L. lactis CD(+), and L. lactis InlA(+) were present in the cytoplasm of Caco-2 cells after internalization. Moreover, the internalization rates of Lactobacillus acidophilus NCFM and of an NCFM mutant strain with the gene coding for the fibronectin-binding protein (fbpA) inactivated were also evaluated in Caco-2 cells. Similar low internalization rates were observed for both wild-type L. acidophilus NCFM and the fbpA mutant, suggesting that commensal fibronectin binding proteins have a role in adhesion but not in invasion. L. lactis FnBPA(+), L. lactis CD(+), and L. lactis InlA(+) were then used to deliver a eukaryotic eGFP expression plasmid in Caco-2 cells: flow cytometry analysis showed that the highest percentage of green fluorescent Caco-2 cells was observed after coculture with either L. lactis FnBPA(+) or L. lactis InlA(+). Analysis of the in vivo efficiency of these invasive recombinant strains is currently in progress to validate their potential as DNA vaccine delivery vehicles.

  15. Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.

    PubMed

    van der Els, Simon; James, Jennelle K; Kleerebezem, Michiel; Bron, Peter A

    2018-04-15

    CRISPR-Cas9 technology has been exploited for the removal or replacement of genetic elements in a wide range of prokaryotes and eukaryotes. Here, we describe the extension of the Cas9 application toolbox to the industrially important dairy species Lactococcus lactis The Cas9 expression vector pLABTarget, encoding the Streptocccus pyogenes Cas9 under the control of a constitutive promoter, was constructed, allowing plug and play introduction of short guide RNA (sgRNA) sequences to target specific genetic loci. Introduction of a pepN -targeting derivative of pLABTarget into L. lactis strain MG1363 led to a strong reduction in the number of transformants obtained, which did not occur in a pepN deletion derivative of the same strain, demonstrating the specificity and lethality of the Cas9-mediated double-strand breaks in the lactococcal chromosome. Moreover, the same pLABTarget derivative allowed the selection of a pepN deletion subpopulation from its corresponding single-crossover plasmid integrant precursor, accelerating the construction and selection of gene-specific deletion derivatives in L. lactis Finally, pLABTarget, which contained sgRNAs designed to target mobile genetic elements, allowed the effective curing of plasmids, prophages, and integrative conjugative elements (ICEs). These results establish that pLABTarget enables the effective exploitation of Cas9 targeting in L. lactis , while the broad-host-range vector used suggests that this toolbox could readily be expanded to other Gram-positive bacteria. IMPORTANCE Mobile genetic elements in Lactococcus lactis and other lactic acid bacteria (LAB) play an important role in dairy fermentation, having both positive and detrimental effects during the production of fermented dairy products. The pLABTarget vector offers an efficient cloning platform for Cas9 application in lactic acid bacteria. Targeting Cas9 toward mobile genetic elements enabled their effective curing, which is of particular interest in the

  16. Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets

    PubMed Central

    2014-01-01

    Background Epidermal growth factor (EGF) is an important growth factor in regulation of cell proliferation, differentiation, survival and apoptosis. Studies showed that food-grade Lactococcus lactis (L. lactis) and NICE expression system have superior performance in exogenous protein expression. This study aimed to construct and express porcine EGF (pEGF), and use L. lactis as vehicle for producing and delivering pEGF. Furthermore, investigating biological activity of pEGF and exploring applications feasibility of combination effects of L. lactis and pEGF on early weaned piglets’ production. Results A recombinant Lactococcus lactis which produced and secreted pEGF at 1000 ng/ml in culture supernatant was generated. Secreted pEGF was a fully biologically active protein, as demonstrated by its capacity to stimulate L929 mouse fibroblast cell line proliferation in vitro. For in vivo study, forty piglets were randomly allocated to control, antibiotic control, empty vector-expressing L. lactis (LL-EV) and pEGF-secreting L. lactis (LL-pEGF). After 14 d of rearing, final body weight and average daily gain in LL-pEGF were greater (P < 0.05, 8.95 vs. 8.37 kg, 206.1 vs. 157.7 g/day, respectively) than those in control, but no significant differences between LL-pEGF, LL-EV and antibiotic control. Overall period average daily feed intake was higher in LL-pEGF, LL-EV and antibiotic control than in control (P < 0.05, 252.9, 255.6, 250.0, 207.3 g/day, respectively). No significant difference was observed on ADFI/ADG. LL-pEGF increased villous height in the duodenum, jejunum and ileum than in control and LL-EV (P < 0.05). Sucrase in the 3 intestinal segments, aminopeptidase A in the duodenum and Jejunum, aminopeptidase N and dipeptidase IV in the duodenum in LL-pEGF were higher than those in control (P < 0.05). Furthermore, Escherichia coli and Enterococcus counts decreased in the ileum and Lactobacillus increased in the ileum and cecum digesta in LL-pEGF compare with the

  17. Protein Kinases Involved in Mating and Osmotic Stress in the Yeast Kluyveromyces lactis▿

    PubMed Central

    Kawasaki, Laura; Castañeda-Bueno, María; Sánchez-Paredes, Edith; Velázquez-Zavala, Nancy; Torres-Quiroz, Francisco; Ongay-Larios, Laura; Coria, Roberto

    2008-01-01

    Systematic disruption of genes encoding kinases and mitogen-activated protein kinases (MAPKs) was performed in Kluyveromyces lactis haploid cells. The mutated strains were assayed by their capacity to mate and to respond to hyperosmotic stress. The K. lactis Ste11p (KlSte11p) MAPK kinase kinase (MAPKKK) was found to act in both mating and osmoresponse pathways while the scaffold KlSte5p and the MAPK KlFus3p appeared to be specific for mating. The p21-activated kinase KlSte20p and the kinase KlSte50p participated in both pathways. Protein association experiments showed interaction of KlSte50p and KlSte20p with Gα and Gβ, respectively, the G protein subunits involved in the mating pathway. Both KlSte50p and KlSte20p also showed interaction with KlSte11p. Disruption mutants of the K. lactis PBS2 (KlPBS2) and KlHOG1 genes of the canonical osmotic response pathway resulted in mutations sensitive to high salt and high sorbitol but dispensable for mating. Mutations that eliminate the MAPKK KlSte7p activity had a strong effect on mating and also showed sensitivity to osmotic stress. Finally, we found evidence of physical interaction between KlSte7p and KlHog1p, in addition to diminished Hog1p phosphorylation after a hyperosmotic shock in cells lacking KlSte7p. This study reveals novel roles for components of transduction systems in yeast. PMID:18024598

  18. Use of murine models to detect the allergenicity of genetically modified Lactococcus lactis NZ9000/pNZPNK.

    PubMed

    Chiang, Shen-Shih; Liu, Chin-Feng; Ku, Ting-Wei; Mau, Jeng-Leun; Lin, Hsin-Tang; Pan, Tzu-Ming

    2011-04-27

    By introducing aprN into Lactococcus lactis NZ9000, the genetically modified L. lactis NZ9000/pNZPNK successfully expressed the nattokinase. The safety assessment of this novel strain was based on allergenicity of pepsin digestion stability and murine model serologic identity. Subjecting to the GM strain and host to pepsin digestion, the soluble fractions and cell debris were fast degraded completely. Feeding with ovalbumin resulted in significantly higher production of IgG1 and IgE as compared to that of L. lactis NZ9000/pNZPNK or L. lactis NZ9000. Further, the serum IgG2a level increased dose-dependently at week 2 and induced immune reaction toward Th1 pathway. Secretion of cytokines IL-4 and IL-10 fed with lactococci was significantly lower than that of the OVA group. L. lactis NZ9000/pNZPNK did not increase the proliferation of type 2 helper T cells in spleen or induce allergenicity in BALB/c mice. On the basis of the results, the new GM lactic acid bacterium is regarded as safe to use.

  19. Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies

    PubMed Central

    Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun

    2013-01-01

    Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933

  20. The Surgically Induced Stress Response

    PubMed Central

    Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N.

    2013-01-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Although the stress response to acute trauma evolved to improve chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246

  1. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    PubMed

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  2. Mutation of the oxaloacetate decarboxylase gene of Lactococcus lactis subsp. lactis impairs the growth during citrate metabolism.

    PubMed

    Augagneur, Y; Garmyn, D; Guzzo, J

    2008-01-01

    Citrate metabolism generates metabolic energy through the generation of a membrane potential and a pH gradient. The purpose of this work was to study the influence of oxaloacetate decarboxylase in citrate metabolism and intracellular pH maintenance in relation to acidic conditions. A Lactococcus lactis oxaloacetate decarboxylase mutant [ILCitM (pFL3)] was constructed by double homologous recombination. During culture with citrate, and whatever the initial pH, the growth rate of the mutant was lower. In addition, the production of diacetyl and acetoin was altered in the mutant strain. However, our results indicated no relationship with a change in the maintenance of intracellular pH. Experiments performed on resting cells clearly showed that oxaloacetate accumulated temporarily in the supernatant of the mutant. This accumulation could be involved in the perturbations observed during citrate metabolism, as the addition of oxaloacetate in M17 medium inhibited the growth of L. lactis. The mutation of oxaloacetate decarboxylase perturbed citrate metabolism and reduced the benefits of its utilization during growth under acidic conditions. This study allows a better understanding of citrate metabolism and the role of oxaloacetate decarboxylase in the tolerance of lactic acid bacteria to acidic conditions.

  3. Increasing the Heme-Dependent Respiratory Efficiency of Lactococcus lactis by Inhibition of Lactate Dehydrogenase

    PubMed Central

    Arioli, Stefania; Zambelli, Daniele; Guglielmetti, Simone; De Noni, Ivano; Pedersen, Martin B.; Pedersen, Per Dedenroth; Dal Bello, Fabio

    2013-01-01

    The discovery of heme-induced respiration in Lactococcus lactis has radically improved the industrial processes used for the biomass production of this species. Here, we show that inhibition of the lactate dehydrogenase activity of L. lactis during growth under respiration-permissive conditions can stimulate aerobic respiration, thereby increasing not only growth efficiency but also the robustness of this organism. PMID:23064338

  4. Standardized Assay Medium To Measure Lactococcus lactis Enzyme Activities while Mimicking Intracellular Conditions

    PubMed Central

    Goel, Anisha; Santos, Filipe; de Vos, Willem M.; Teusink, Bas

    2012-01-01

    Knowledge of how the activity of enzymes is affected under in vivo conditions is essential for analyzing their regulation and constructing models that yield an integrated understanding of cell behavior. Current kinetic parameters for Lactococcus lactis are scattered through different studies and performed under different assay conditions. Furthermore, assay conditions often diverge from conditions prevailing in the intracellular environment. To establish uniform assay conditions that resemble intracellular conditions, we analyzed the intracellular composition of anaerobic glucose-limited chemostat cultures of L. lactis subsp. cremoris MG 1363. Based on this, we designed a new assay medium for enzyme activity measurements of growing cells of L. lactis, mimicking as closely as practically possible its intracellular environment. Procedures were optimized to be carried out in 96-well plates, and the reproducibility and dynamic range were checked for all enzyme activity measurements. The effects of freezing and the carryover of ammonium sulfate from the addition of coupling enzymes were also established. Activities of all 10 glycolytic and 4 fermentative enzymes were measured. Remarkably, most in vivo-like activities were lower than previously published data. Yet, the ratios of Vmax over measured in vivo fluxes were above 1. With this work, we have developed and extensively validated standard protocols for enzyme activity measurements for L. lactis. PMID:22020503

  5. Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis

    PubMed Central

    Zhang, Huimin; Wang, Qingjing; Fisher, Derek J.; Cai, Mingzhu; Chakravartty, Vandana; Ye, Huiyan; Li, Ping; Solbiati, Jose O.; Feng, Youjun

    2016-01-01

    Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake 3H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis. PMID:27161258

  6. Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis.

    PubMed

    Zhang, Huimin; Wang, Qingjing; Fisher, Derek J; Cai, Mingzhu; Chakravartty, Vandana; Ye, Huiyan; Li, Ping; Solbiati, Jose O; Feng, Youjun

    2016-05-10

    Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake (3)H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis.

  7. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation

    PubMed Central

    Martín, Rebeca; Martín, Rebeca; Chain, Florian; Chain, Florian; Miquel, Sylvie; Miquel, Sylvie; Natividad, Jane M; Natividad, Jane M; Sokol, Harry; Sokol, Harry; Verdu, Elena F; Verdu, Elena F; Langella, Philippe; Langella, Philippe; Bermúdez-Humarán, Luis G; Bermúdez-Humarán, Luis G

    2014-01-01

    Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a “proof-of-concept,” our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces. PMID:24732667

  8. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice.

    PubMed

    Martín, Rebeca; Laval, Laure; Chain, Florian; Miquel, Sylvie; Natividad, Jane; Cherbuy, Claire; Sokol, Harry; Verdu, Elena F; van Hylckama Vlieg, Johan; Bermudez-Humaran, Luis G; Smokvina, Tamara; Langella, Philippe

    2016-01-01

    Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.

  9. Mechanism of Citrate Metabolism by an Oxaloacetate Decarboxylase-Deficient Mutant of Lactococcus lactis IL1403 ▿

    PubMed Central

    Pudlik, Agata M.; Lolkema, Juke S.

    2011-01-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706–714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of l-lactate, indicating exchange between oxaloacetate and l-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate. PMID:21665973

  10. Bruxism affects stress responses in stressed rats.

    PubMed

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  11. Natural DNA transformation is functional in Lactococcus lactis ssp. cremoris KW2.

    PubMed

    David, Blandine; Radziejwoski, Amandine; Toussaint, Frédéric; Fontaine, Laetitia; Henry de Frahan, Marie; Patout, Cédric; van Dillen, Sabine; Boyaval, Patrick; Horvath, Philippe; Fremaux, Christophe; Hols, Pascal

    2017-06-16

    Lactococcus lactis is one of the most commonly used lactic acid bacteria in the dairy industry. Activation of competence for natural DNA transformation in this species would greatly improve the selection of novel strains with desired genetic traits. Here, we investigated the activation of natural transformation in L. lactis ssp. cremoris KW2, a strain of plant origin whose genome encodes the master competence regulator ComX and the complete set of proteins usually required for natural transformation. In the absence of knowledge about competence regulation in this species, we constitutively overproduced ComX in a reporter strain of late competence phase activation and showed, by transcriptomic analyses, a ComX-dependent induction of all key competence genes. We further demonstrated that natural DNA transformation is functional in this strain and requires the competence DNA uptake machinery. Since constitutive ComX overproduction is unstable, we alternatively expressed comX under the control of an endogenous xylose-inducible promoter. This regulated system was used to successfully inactivate the adaptor protein MecA and subunits of the Clp proteolytic complex, which were previously shown to be involved in ComX degradation in streptococci. In the presence of a low amount of ComX, the deletion of mecA , clpC , or clpP genes markedly increased the activation of the late competence phase and transformability. Altogether, our results report the functionality of natural DNA transformation in L. lactis and pave the way for the identification of signaling mechanisms that trigger the competence state in this species. IMPORTANCE Lactococcus lactis is a lactic acid bacterium of major importance, which is used as a starter species for milk fermentation, a host for heterologous protein production, and a delivery platform for therapeutic molecules. Here, we report the functionality of natural transformation in L. lactis ssp. cremoris KW2 by the overproduction of the master

  12. Novel angiotensin I-converting enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains.

    PubMed

    Rodríguez-Figueroa, J C; González-Córdova, A F; Torres-Llanez, M J; Garcia, H S; Vallejo-Cordoba, B

    2012-10-01

    The ability of specific wild Lactococcus lactis strains to hydrolyze milk proteins to release angiotensin I-converting enzyme (ACE) inhibitory peptides was evaluated. The peptide profiles were obtained from the <3 kDa water-soluble extract and subsequently fractionated by reversed-phase HPLC. The fractions with the lowest half-maximal inhibitory concentration estimated values (peptide concentration necessary to inhibit ACE activity by 50%) were Lc. lactis NRRL B-50571 fraction (F)1 (0.034 ± 0.002 μg/mL; mean ± SD) and Lc. lactis NRRL B-50572B F 0005 (0.041 ± 0.003 μg/mL; mean ± SD). All peptide fractions were analyzed by reversed-phase HPLC tandem mass spectrometry. Twenty-one novel peptide sequences associated with ACE inhibitory (ACEI) activity were identified. Several novel ACEI peptides presented peptides encrypted with proven hypotensive activity. In conclusion, specific wild Lc. lactis strains were able to hydrolyze milk proteins to generate potent ACEI peptides. However, further studies are necessary to find out the relationship between Lc. lactis strain proteolytic systems and their ability to biogenerate hypotensive peptides. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp.

    PubMed

    Król, A; Pomastowski, P; Rafińska, K; Railean-Plugaru, V; Walczak, J; Buszewski, B

    2018-01-01

    The aim of the study was to neutralize zearalenone by lactic acid bacteria (LAB) such as Lactococcus lactis and Bifidobacterium sp. and investigate the mechanism of zearalenone (ZEA) binding. Neutralization of ZEA by LAB was confirmed by identification of binding kinetics and spectroscopic studies such as Fourier transform infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The obtained results showed that the kinetic process of zearalenone binding to L. lactis is not homogeneous but is expressed with an initial rapid stage with about 90% of ZEA biosorption and with a much slower second step. In case of Bifidobacterium sp., the neutralization process is homogeneous; the main stage can be described with about 88% of ZEA biosorption. MALDI-TOF-MS measurements and FTIR analysis confirmed the uptake of zearalenone molecules by bacterial species. Moreover, the assessment of dead and live lactic acid bacteria cells after zearalenone treatment was performed using fluorescence microscopy. Graphical abstract Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. was confirmed by identification of binding kinetics and spectroscopic studies such as FT-IR spectroscopy and MALDI-TOF-MS spectrometry. The mechanism of ZEA binding was also investigated.

  14. [Production and partial characterization of beta-galactosidase from Kluyveromyces lactis grown in deproteinized whey].

    PubMed

    Ramírez Matheus, Alejandra O; Rivas, Nilo

    2003-06-01

    The purpose of this work was to optimize the beta-galactosidase production by Kluyveromyces lactis, applying the Surface Response Methodology (SRM) and using deproteinized whey as fermentation medium. An Orthogonal Central Compound Design (OCCD) was used without repetition, with four factors: temperature, pH, agitation speed and fermentation time. Then, enzyme activity (U/ml) as response variable was used. Thirty trials in twenty-five treatments, with six repetitions at the central point, were carried out, in a New Brunswick Bioflo 2000 fermentor with a volume of 2 liters. The deproteinized whey obtained by thermocoagulation was chemically analyzed. The results were: moisture 93.83%, total solids 6.17%, protein 0.44%, lactose 4.85%, acidity 0.43% and pH 4.58. The best conditions in the enzyme production were: temperature 30.3 degrees C, pH 4.68, agitation speed 191 r.p.m. and fermentation time 18.5 h. with an enzyme production of 8.3 U/ml. The degree of purification obtained was 7.4 times and the yield was 50.8%. The purified enzyme had an optimum temperature of 60 degrees C and a pH of 6.2. This work shows that the yeast Kluyveromyces lactis grown in deproteinized whey is able to produce the enzyme beta-galactosidase and SRM can be used in the fermentology processes, specifically in determining the best suitable operation conditions.

  15. Carpoglyphus lactis (Acari: Astigmata) from various dried fruits differed in associated micro-organisms.

    PubMed

    Hubert, J; Nesvorná, M; Kopecký, J; Ságová-Marečková, M; Poltronieri, P

    2015-02-01

    Carpoglyphus lactis is a stored product mite infesting saccharide-rich stored commodities including dried fruits, wine, beer, milk products, jams and honey. The association with micro-organisms can improve the survival of mites on dried fruits. The microbial communities associated with C. lactis were studied in specimens originating from the packages of dried apricot, plums and figs and compared to the laboratory strain reared on house dust mite diet (HDMd). Clone libraries of bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) region were constructed and analysed by operational taxonomic unit (OTU) approach. The 16S rRNA gene libraries differed among the compared diets. The sequences classified to the genera Leuconostoc, Elizabethkingia, Ewingella, Erwinia, Bacillus and Serratia were prevailing in mites sampled from the dried fruits. The ITS library showed smaller differences between the laboratory strain on HDMd and the isolates from dried fruits packages, with the exception of the mite strain from dried plums. The population growth was used as an indirect indicator of fitness and decreased in the order from yeast diet to HDMd and dried fruits. The treatment and pretreatment of mites by antibiotics did not reveal the presence of antagonistic bacteria which might slow down the C. lactis population growth. The shifts of the microbial community in the gut of C. lactis were induced by the diet changes. The identified yeasts and bacteria are suggested as the main food source of stored product mites on dried fruits. The study describes the adaptation of C. lactis to feeding on dried fruits including the interaction with micro-organisms. We also identified potentially pathogenic bacteria carried by the mites to dried fruits for human consumption. © 2014 The Society for Applied Microbiology.

  16. Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action.

    PubMed

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Kennedy, Sean; Galleron, Nathalie; Quinquis, Benoît; Batto, Jean-Michel; Moumen, Bouziane; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-05-28

    Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production. An earlier in-depth study of the first completely sequenced ssp. bulgaricus genome revealed the characteristics of a genome in an active phase of rapid evolution, in what appears to be an adaptation to the milk environment. Here we examine for the first time if the same conclusions apply to the ssp. lactis, and discuss intra- and inter-subspecies genomic diversity in the context of evolutionary adaptation. Both L. delbrueckii ssp. show the signs of reductive evolution through the elimination of superfluous genes, thereby limiting their carbohydrate metabolic capacities and amino acid biosynthesis potential. In the ssp. lactis this reductive evolution has gone less far than in the ssp. bulgaricus. Consequently, the ssp. lactis retained more extended carbohydrate metabolizing capabilities than the ssp. bulgaricus but, due to high intra-subspecies diversity, very few carbohydrate substrates, if any, allow a reliable distinction of the two ssp. We further show that one of the most important traits, lactose fermentation, of one of the economically most important dairy bacteria, L. delbruecki ssp. bulgaricus, relies on horizontally acquired rather than deep ancestral genes. In this sense this bacterium may thus be regarded as a natural GMO avant la lettre. The dairy lactic acid producing bacteria L. delbrueckii ssp. lactis and ssp. bulgaricus appear to represent different points on the same evolutionary track of adaptation to the milk environment through the loss of superfluous functions and the acquisition of functions that allow an optimized utilization of milk resources, where the ssp. bulgaricus has progressed further away from the common ancestor.

  17. Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp. bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677.

    PubMed

    Zhai, Zhengyuan; Douillard, François P; An, Haoran; Wang, Guohong; Guo, Xinghua; Luo, Yunbo; Hao, Yanling

    2014-06-01

    To overcome the deleterious effects of acid stress, Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) elicits an adaptive response to acid stress. In this study, proteomics approach complemented by transcriptional analysis revealed some cellular changes in L. bulgaricus CAUH1 during acid adaptation. We observed an increase of glycolysis-associated proteins, promoting an optimal utilization of carbohydrates. Also, rerouting of the pyruvate metabolism to fatty acid biosynthesis was observed, indicating a possible modification of the cell membrane rigidity and impermeability. In addition, expression of ribosomal protein S1 (RpsA) was repressed; however, the expression of EF-Tu, EF-G and TypA was up-regulated at both protein and transcript levels. This suggests a reduction of protein synthesis in response to acid stress along with possible enhancement of the translational accuracy and protein folding. It is noteworthy that the putative transcriptional regulator Ldb0677 was 1.84-fold up-regulated. Heterologous expression of Ldb0677 was shown to significantly enhance acid resistance in host strain Lactococcus lactis. To clarify its role in transcriptional regulation network, the DNA-binding specificity of Ldb0677 was determined using bacterial one-hybrid and electrophoretic mobility shift assay. The identification of a binding motif (SSTAGACR) present in the promoter regions of 22 genes indicates that it might function as a major regulator in acid stress response in L. bulgaricus. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. 21 CFR 184.1388 - Lactase enzyme preparation from Kluyveromyces lactis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) This enzyme preparation is derived from the nonpathogenic, nontoxicogenic yeast Kluyveromyces lactis... 683), which converts lactose to glucose and galactose. It is prepared from yeast that has been grown...

  19. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence.

    PubMed

    Freires, Irlan A; Avilés-Reyes, Alejandro; Kitten, Todd; Simpson-Haidaris, P J; Swartz, Michael; Knight, Peter A; Rosalen, Pedro L; Lemos, José A; Abranches, Jacqueline

    2017-01-02

    In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.

  20. Proposal for creation of a new genus Neomicrococcus gen. nov. to accommodate Zhihengliuella aestuarii Baik et al. 2011 and Micrococcus lactis Chittpurna et al. 2011 as Neomicrococcus aestuarii comb. nov. and Neomicrococcus lactis comb. nov.

    PubMed

    Prakash, Om; Sharma, Avinash; Nimonkar, Yogesh; Shouche, Yogesh S

    2015-11-01

    Micrococcus lactis and Zhihengliuella aestuarii were described independently in 2011. Their type strains showed high levels of 16S rRNA gene sequence similarity (99.3%). Phylogenetic analysis revealed that M. lactis MCC 2278T and Z. aestuarii JCM 16166T formed a monophyletic group and showed distant relationships to other members of closely related genera such as Micrococcus, Zhihengliuella, Arthrobacter and Citricoccus. The presence of large proportions of iso-C14:0 and iso-C16:0 with small amounts of iso-C15:0 distinguished M. lactis MCC 2278T and Z. aestuarii JCM 16166T from other members of the genera Micrococcus and Zhihengliuella. Unlike other members of the genera Zhihengliuella and Micrococcus, M. lactis MCC 2278T and Z. aestuarii JCM 16166T showed growth at low concentrations of NaCl. Thus, based on distinctive phylogenetic, chemotaxonomic and physiological features of these two organisms in comparison with other members of the genera Micrococcus and Zhihengliuella, it is clear that they do not fit within the existing classification and deserve separate status. DNA-DNA hybridization between the two type strains was 63%, indicating that they represent separate species. In this study, we propose the creation of a novel genus, Neomicrococcus gen. nov., to accommodate the two species with Neomicrococcus aestuarii gen. nov., comb. nov. (type strain JCM 16166T = KCTC 19557T) as the type species. Neomicrococcus lactis comb. nov. (type strain MCC 2278T = DSM 23694T) is also proposed.

  1. Optimization of nisin production by Lactococcus lactis UQ2 using supplemented whey as alternative culture medium.

    PubMed

    González-Toledo, S Y; Domínguez-Domínguez, J; García-Almendárez, B E; Prado-Barragán, L A; Regalado-González, C

    2010-08-01

    Lactococcus lactis UQ2 is a nisin A-producing native strain. In the present study, the production of nisin by L. lactis UQ2 in a bioreactor using supplemented sweet whey (SW) was optimized by a statistical design of experiments and response surface methodology (RSM). In a 1st approach, a fractional factorial design (FFD) of the order 2(5-1) with 3 central points was used. The effect on nisin production of air flow, SW, soybean peptone (SP), MgSO(4)/MnSO(4) mixture, and Tween 80 was evaluated. From FFD, the most significant factors affecting nisin production were SP (P = 0.011), and SW (P = 0.037). To find optimum conditions, a central composite design (CCD) with 2 central points was used. Three factors were considered, SW (7 to 10 g/L), SP (7 to10 g/L), and small amounts of added nisin as self-inducer (NI 34.4 to 74.4 IU/L). Nisin production was expressed as international units (IU). From RSM, an optimum nisin activity of 180 IU/mL was predicted at 74.4 IU/L NI, 13.8 g/L SP, and 14.9 or 5.11 g/L SW, while confirmatory experiments showed a maximum activity of 178 +/- 5.2 IU/mL, verifying the validity of the model. The 2nd-order model showed a coefficient of determination (R(2)) of 0.828. Optimized conditions were used for constant pH fermentations, where a maximum activity of 575 +/- 17 IU/mL was achieved at pH 6.5 after 12 h. The adsorption-desorption technique was used to partially purify nisin, followed by drying. The resulting powder showed an activity of 102150 IU/g. Practical Application: Nisin production was optimized using supplemented whey as alternative culture medium, using a native L. lactis UQ2 strain. Soybean peptone, SW, and subinhibitory amounts of nisin were successfully employed to optimize nisin production by L. lactis UQ2. Dried semipurified nisin showed an activity of 102150 IU/g.

  2. Beneficial effect of Lactococcus lactis NCC 2287 in a murine model of eosinophilic esophagitis.

    PubMed

    Holvoet, S; Doucet-Ladevèze, R; Perrot, M; Barretto, C; Nutten, S; Blanchard, C

    2016-12-01

    Eosinophilic esophagitis (EoE) is a severe inflammatory disease of the esophagus which is characterized histologically by an eosinophilic infiltration into the esophageal tissue. The efficacy of probiotics in the context of atopic diseases has been well investigated but, to date, there has been no study which has evaluated probiotic effects on EoE inflammation. This study sought to identify a probiotic which improves esophageal inflammation in experimental EoE. Two candidate probiotics, Lactococcus lactis NCC 2287 and Bifidobacterium lactis NCC 2818, were tested in a murine model of EoE elicited by epicutaneous sensitization with Aspergillus fumigatus protein extract. Administration of bacterial strains in drinking water was used, respectively, as a preventive or treatment measure, or continuously throughout the study. Inflammatory parameters were assessed in the esophagus, skin, and lungs after allergen challenge. In this EoE model, supplementation with L. lactis NCC 2287 significantly decreased esophageal and bronchoalveolar eosinophilia but only when given as a therapeutic treatment. No significant effect on eosinophilia was observed when NCC 2287 was given as a preventive or a continuous intervention. NCC 2287 supplementation had no significant effect on immunoglobulin levels, skin symptom scores, or on transepidermal water loss. Supplementation with another probiotic, B. lactis NCC 2818, had no significant effect on esophageal eosinophilia. We identified a L. lactis strain, able to attenuate esophageal eosinophilic inflammation in a preclinical model of EoE. This effect is strain specific and depends on the timing and duration of bacterial supplementation. Confirmation of these observations in human clinical trials is warranted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. L+-lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84.

    PubMed

    Petrov, Kaloyan; Urshev, Zoltan; Petrova, Penka

    2008-06-01

    A new Lactococcus lactis subsp. lactis B84, capable of utilizing starch as a sole carbon source and producing L(+)-lactate, was isolated from spontaneously fermented rye sourdough. Aiming at maximum lactic acid productivity, the components of the media and the cultivation conditions were varied. In MRS-starch medium (with absence of yeast and meat extracts), at 33 degrees C, agitation 200 rpm and pH 6.0 for 6 days complete starch hydrolysis occurred and 5.5 gl(-1) lactic acid were produced from 18 gl(-1) starch. The identification of strain B84 was based on genetic criteria. Amplified ribosomal DNA restriction analysis (ARDRA), PCR with species-specific primers and sequencing of the 16S rDNA proved its species affiliation. Four genes for enzymes, involved in starch degradation were detected in B84 genome: amyL, amyY, glgP and apu, coding cytoplasmic and extracellular alpha-amylases, glycogen phosphorylase and amylopullulanase, respectively. Reverse transcription PCR experiments showed that both genes, encoding alpha-amylases (amyL and amyY) were expressed into mRNAs, whereas apu and glgP were not. Amylase activity assay was performed at different pH and temperatures. The cell-bond amylase proved to be the key enzyme, involved in the starch hydrolysis with maximum activity at 45 degrees C and pH 5.4.

  4. Complete Genome Sequence of Kluyveromyces lactis Strain GG799, a Common Yeast Host for Heterologous Protein Expression

    PubMed Central

    Chuzel, Léa; Ganatra, Mehul B.; Schermerhorn, Kelly M.; Gardner, Andrew F.; Anton, Brian P.

    2017-01-01

    ABSTRACT We report the genome sequence of the dairy yeast Kluyveromyces lactis strain GG799 obtained using the Pacific Biosciences RS II platform. K. lactis strain GG799 is a common host for the expression of proteins at both laboratory and industrial scales. PMID:28751387

  5. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria

    PubMed Central

    Whittamore, Jonathan M.; Hatch, Marguerite

    2015-01-01

    Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can infuence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice defcient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt−/−, a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt−/− mice when compared to treatment with B. adolescent-is. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64 % of WT mice, but only 37 % of Agxt−/− mice were colonized. Examining intestinal oxalate fuxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially infuence dietary hyperoxaluria in mice. PMID:25269440

  6. Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey.

    PubMed

    Rodrigues, B; Lima-Costa, M E; Constantino, A; Raposo, S; Felizardo, C; Gonçalves, D; Fernandes, T; Dionísio, L; Peinado, J M

    2016-10-01

    Alcoholic fermentation of carob waste sugars (sucrose, glucose and fructose) extracted with cheese whey, by co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis has been analyzed. Growth and fermentation of S. cerevisiae in the carob-whey medium showed an inhibition of about 30% in comparison with water-extracted carob. The inhibition of K. lactis on carob-whey was greater (70%) when compared with the whey medium alone, due to osmolarity problems. Oxygen availability was a very important factor for K. lactis, influencing its fermentation performance. When K. lactis was grown alone on carob-whey medium, lactose was always consumed first, and glucose and fructose were consumed afterwards, only at high aeration conditions. In co-culture with S. cerevisiae, K. lactis was completely inhibited and, at low aeration, died after 3 days; at high aeration this culture could survive but growth and lactose fermentation were only recovered after S. cerevisiae became stationary. To overcome the osmolarity and K. lactis' oxygen problems, the medium had to be diluted and a sequential fermentative process was designed in a STR-3l reactor. K. lactis was inoculated first and, with low aeration (0.13vvm), consumed all the lactose in 48h. Then S. cerevisiae was inoculated, consuming the total of the carob sugars, and producing ethanol in a fed-batch regime. The established co-culture with K. lactis increased S. cerevisiae ethanol tolerance. This fermentation process produced ethanol with good efficiency (80g/l final concentration and a conversion factor of 0.4g ethanol/g sugar), eliminating all the sugars of the mixed waste. These efficient fermentative results pointed to a new joint treatment of agro-industrial wastes which may be implemented successfully, with economic and environmental sustainability for a bioethanol industrial proposal. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Fermentation of protopanaxadiol type ginsenosides (PD) with probiotic Bifidobacterium lactis and Lactobacillus rhamnosus.

    PubMed

    Tan, Joanne Sh; Yeo, Chia-Rou; Popovich, David G

    2017-07-01

    Ginsenosides are believed to be the principal components behind the pharmacological actions of ginseng, and their bioactive properties are closely related to the type, position, and number of sugar moieties attached to the aglycone; thus, modification of the sugar chains may markedly change their biological activities. In this study, major protopanaxadiol type ginsenosides (PD) Rb1, Rc, and Rb2 were isolated from Panax ginseng and were transformed using two probiotic strains namely Bifidobacterium lactis Bi-07 and Lactobacillus rhamnosus HN001 to obtain specific deglycosylated ginsenosides. It was demonstrated that B. lactis transformed ginsenosides Rb1, Rc, and Rb2 to Rd within 1 h of fermentation and rare ginsenoside F2 by the conversion of Rd after 12-h fermentation. The maximum Rd concentration was 147.52 ± 1.45 μg/mL after 48-h fermentation as compared to 45.85 ± 0.71 μg/mL before fermentation. In contrast, L. rhamnosus transformed Rb1, Rc, and Rb2 into Rd as the final metabolite after 72-h fermentation. B. lactis displayed significantly (p < 0.05) higher β-glucosidase activity against p-nitrophenyl-β-glucopyranoside than L. rhamnosus and higher bioconversion efficiency during fermentation. The present study suggests that the fermentation of major PD type ginsenosides with B. lactis Bi-07 may serve as an effective means to afford bioactive deglycosylated ginsenosides and to create novel ginsenoside extracts.

  8. Listeria monocytogenes and Salmonella enterica affect the expression of nisin gene and its production by Lactococcus lactis.

    PubMed

    Abdollahi, Soosan; Ghahremani, Mohammad Hossein; Setayesh, Neda; Samadi, Nasrin

    2018-06-13

    The Lactococcus lactis is known as a probiotic bacterium and also as a producer of nisin. Nisin has been approved by related legal agencies to be used as an antimicrobial peptide in food preservation. In fact, the L. lactis is present in different food products along with other micro-organisms especially pathogenic bacteria. So, it is important to predict the behavior of nisin-producer strain in contact with other pathogens. In this regard, nisin gene expression and the level of secreted biologically active form of nisin by L. lactis subsp. lactis in modified MRS broth and whey solution in co-culture with Listeria monocytogenes or Salmonella enterica were studied. The nisin concentration was determined by microbiological assay method and the transcription level of nisin gene was assayed through quantitative reverse transcription PCR (RT-qPCR). According to our results, the highest concentration of nisin and its gene transcription level were detected in mono- and co-cultures after 16 h of incubation, concurrent with the end of L. lactis exponential phase of growth. The nisin mRNA copies in co-cultures were higher than mono-cultures only at 16 h of incubation. But, differences between nisin concentrations in mono- and co-cultures were significant at 16, 24 h and at 12, 16, 24 h of incubation in the modified MRS medium and whey solution, respectively. This incompatibility could be related to the low availability of components required for nisin precursor modification, transportation and processing in mono-cultures. Overall, the L. lactis produced more mature and active nisin when it was in contact with pathogenic bacteria. Copyright © 2018. Published by Elsevier Ltd.

  9. Manipulation for plasmid elimination by transforming synthetic competitors diversifies lactococcus lactis starters applicable to food products.

    PubMed

    Kobayashi, Miho; Nomura, Masaru; Kimoto, Hiromi

    2007-11-01

    This study was designed selectively to eliminate a theta-plasmid from Lactococcus lactis strains by transforming synthetic competitors. A shuttle vector for Escherichia coli and L. lactis, pDB1, was constructed by ligating a partial replicon of pDR1-1B, which is a 7.3 kb theta-plasmid in L. lactis DRC1, with an erythromycin resistance gene into pBluescript II KS(+). This versatile vector was used to construct competitors to common lactococcal theta-plasmids. pDB1 contains the 5' half of the replication origin and the 3' region of repB of pDR1-1B, but lacks the 1.1-kb region normally found between these two segments. A set of primers, Pv3 and Pv4, was designed to amplify the 1.1-kb middle parts of the general theta-replicons of lactococcal plasmids. When the PCR products were cloned into the Nru I and Xho I sites of pDB1, synthetic replicons were constructed and replication activity was restored. A number of theta-plasmids in L. lactis ssp. lactis and cremoris were eliminated selectively by transforming the synthetic competitors. These competitors were easily eliminated by subculture for a short time in the absence of selection. The resulting variants contained no exogenous DNA and are suitable for food products, since part of the phenotype was altered without altering other plasmids indispensable for fermentation.

  10. Early caregiving and physiological stress responses.

    PubMed

    Luecken, Linda J; Lemery, Kathryn S

    2004-05-01

    Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.

  11. Predictors of responses to stress among families coping with poverty-related stress.

    PubMed

    Santiago, Catherine DeCarlo; Etter, Erica Moran; Wadsworth, Martha E; Raviv, Tali

    2012-05-01

    This study tested how poverty-related stress (PRS), psychological distress, and responses to stress predicted future effortful coping and involuntary stress responses one year later. In addition, we explored age, sex, ethnicity, and parental influences on responses to stress over time. Hierarchical linear modeling analyses conducted with 98 low-income families (300 family members: 136 adults, 82 school-aged children, 82 adolescents) revealed that primary control coping, secondary control coping, disengagement, involuntary engagement, and involuntary disengagement each significantly predicted future use of that response. Primary and secondary control coping also predicted less maladaptive future responses to stress, while involuntary responses to stress undermined the development of adaptive responding. Age, sex, and interactions among PRS and prior coping were also found to predict certain responses to stress. In addition, child subgroup analyses demonstrate the importance of parental modeling of coping and involuntary stress responses, and warmth/nurturance and monitoring practices. Results are discussed with regard to the implications for preventive interventions with families in poverty.

  12. Lactococcus lactis NCC 2287 Alleviates Food Allergic Manifestations in Sensitized Mice by Reducing IL-13 Expression Specifically in the Ileum

    PubMed Central

    Zuercher, Adrian W.; Weiss, Marietta; Holvoet, Sébastien; Moser, Mireille; Moussu, Hélène; van Overtvelt, Laurence; Horiot, Stéphane; Moingeon, Philippe; Nutten, Sophie; Prioult, Guénolée; Singh, Anurag; Mercenier, Annick

    2012-01-01

    Objective. Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. Methods. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA) plus cholera toxin (CT) by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase) or after sensitization (management phase). Results. Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1) and CCL17 (TARC) in the ileum. No effect was observed in the jejunum. Conclusion/Significance. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms. PMID:21961022

  13. Lactococcus lactis NCC 2287 alleviates food allergic manifestations in sensitized mice by reducing IL-13 expression specifically in the ileum.

    PubMed

    Zuercher, Adrian W; Weiss, Marietta; Holvoet, Sébastien; Moser, Mireille; Moussu, Hélène; van Overtvelt, Laurence; Horiot, Stéphane; Moingeon, Philippe; Nutten, Sophie; Prioult, Guénolée; Singh, Anurag; Mercenier, Annick

    2012-01-01

    Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA) plus cholera toxin (CT) by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase) or after sensitization (management phase). Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1) and CCL17 (TARC) in the ileum. No effect was observed in the jejunum. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms.

  14. Safety of Bifidobacterium animalis Subsp. Lactis (B. lactis) Strain BB-12-Supplemented Yogurt in Healthy Children.

    PubMed

    Tan, Tina P; Ba, Zhaoyong; Sanders, Mary E; D'Amico, Frank J; Roberts, Robert F; Smith, Keisha H; Merenstein, Daniel J

    2017-02-01

    Probiotics are live microorganisms that may provide health benefits to the individual when consumed in sufficient quantities. For studies conducted on health or disease endpoints on probiotics in the United States, the Food and Administration has required those studies to be conducted as investigational new drugs. This phase I, double-blinded, randomized, controlled safety study represents the first requirement of this pathway. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp. lactis (B lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of children. The secondary aim was to assess the effect of BB-12-supplemented yogurt on the gut microbiota of the children. Sixty children ages 1 to 5 years were randomly assigned to consume 4 ounces of either BB-12-supplemented yogurt or nonsupplemented control yogurt daily for 10 days. The primary outcome was to assess safety and tolerability, as determined by the number of reported adverse events. A total of 186 nonserious adverse events were reported, with no significant differences between the control and BB-12 groups. No significant changes due to probiotic treatment were observed in the gut microbiota of the study cohort. BB-12-supplemented yogurt is safe and well-tolerated when consumed by healthy children. The present study will form the basis for future randomized clinical trials investigating the potential effects of BB-12-supplemented yogurt in different disease states.

  15. Multilocus sequence typing of Lactococcus lactis from naturally fermented milk foods in ethnic minority areas of China.

    PubMed

    Xu, Haiyan; Sun, Zhihong; Liu, Wenjun; Yu, Jie; Song, Yuqin; Lv, Qiang; Zhang, Jiachao; Shao, Yuyu; Menghe, Bilige; Zhang, Heping

    2014-05-01

    To determine the genetic diversity and phylogenetic relationships among Lactococcus lactis isolates, 197 strains isolated from naturally homemade yogurt in 9 ethnic minority areas of 6 provinces of China were subjected to multilocus sequence typing (MLST). The MLST analysis was performed using internal fragment sequences of 12 housekeeping genes (carB, clpX, dnaA, groEL, murC, murE, pepN, pepX, pyrG, recA, rpoB, and pheS). Six (dnaA) to 8 (murC) different alleles were detected for these genes, which ranged from 33.62 (clpX) to 41.95% (recA) GC (guanine-cytosine) content. The nucleotide diversity (π) ranged from 0.00362 (murE) to 0.08439 (carB). Despite this limited allelic diversity, the allele combinations of each strain revealed 72 different sequence types, which denoted significant genotypic diversity. The dN/dS ratios (where dS is the number of synonymous substitutions per synonymous site, and dN is the number of nonsynonymous substitutions per nonsynonymous site) were lower than 1, suggesting potential negative selection for these genes. The standardized index of association of the alleles IA(S)=0.3038 supported the clonality of Lc. lactis, but the presence of network structure revealed by the split decomposition analysis of the concatenated sequence was strong evidence for intraspecies recombination. Therefore, this suggests that recombination contributed to the evolution of Lc. lactis. A minimum spanning tree analysis of the 197 isolates identified 14 clonal complexes and 23 singletons. Phylogenetic trees were constructed based on the sequence types, using the minimum evolution algorithm, and on the concatenated sequence (6,192 bp), using the unweighted pair-group method with arithmetic mean, and these trees indicated that the evolution of our Lc. lactis population was correlated with geographic origin. Taken together, our results demonstrated that MLST could provide a better understanding of Lc. lactis genome evolution, as well as useful information for

  16. Developing a xylanase XYNZG from Plectosphaerella cucumerina for baking by heterologously expressed in Kluyveromyces lactis.

    PubMed

    Zhan, Fei Xiang; Wang, Qin Hong; Jiang, Si Jing; Zhou, Yu Ling; Zhang, Gui Min; Ma, Yan He

    2014-12-16

    Xylanase can replace chemical additives to improve the volume and sensory properties of bread in the baking. Suitable baking xylanase with improved yield will promote the application of xylanase in baking industry. The xylanase XYNZG from the Plectosphaerella cucumerina has been previously characterized by heterologous expression in Pichia pastoris. However, P. pastoris is not a suitable host for xylanase to be used in the baking process since P. pastoris does not have GRAS (Generally Regarded As Safe) status and requires large methanol supplement during the fermentation in most conditions, which is not allowed to be used in the food industry. Kluyveromyces lactis, as another yeast expression host, has a GRAS status, which has been successfully used in food and feed applications. No previous work has been reported concerning the heterologous expression of xylanase gene xynZG in K. lactis with an aim for application in baking. The xylanase gene xynZG from the P. cucumerina was heterologously expressed in K. lactis. The recombinant protein XYNZG in K. lactis presented an approximately 19 kDa band on SDS-PAGE and zymograms analysis. Transformant with the highest halo on the plate containing the RBB-xylan (Remazol Brilliant Blue-xylan) was selected for the flask fermentation in different media. The results indicated that the highest activity of 115 U/ml at 72 h was obtained with the YLPU medium. The mass spectrometry analysis suggested that the hydrolytic products of xylan by XYNZG were mainly xylobiose and xylotriose. The results of baking trials indicated that the addition of XYNZG could reduce the kneading time of dough, increase the volume of bread, improve the texture, and have more positive effects on the sensory properties of bread. Xylanase XYNZG is successfully expressed in K. lactis, which exhibits the highest activity among the published reports of the xylanase expression in K. lactis. The recombinant XYNZG can be used to improve the volume and sensory

  17. Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

    PubMed

    Léonard, Lucie; Gharsallaoui, Adem; Ouaali, Fahima; Degraeve, Pascal; Waché, Yves; Saurel, Rémi; Oulahal, Nadia

    2013-09-01

    This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. RESEARCH: Conceptualizing Environmental Stress: A Stress-Response Model of Coastal Sandy Barriers.

    PubMed

    Gabriel; Kreutzwiser

    2000-01-01

    / The purpose of this paper is to develop and apply a conceptual framework of environmental stress-response for a geomorphic system. Constructs and methods generated from the literature were applied in the development of an integrative stress-response framework using existing environmental assessment techniques: interaction matrices and a systems diagram. Emphasis is on the interaction between environmental stress and the geomorphic environment of a sandy barrier system. The model illustrates a number of stress concepts pertinent to modeling environmental stress-response, including those related to stress-dependency, frequency-recovery relationships, environmental heterogeneity, spatial hierarchies and linkages, and temporal change. Sandy barrier stress-response and recovery are greatly impacted by fluctuating water levels, stress intensity and frequency, as well as environmental gradients such as differences in sediment storage and supply. Aspects of these stress-response variables are articulated in terms of three main challenges to management: dynamic stability, spatial integrity, and temporal variability. These in turn form the framework for evaluative principles that may be applied to assess how policies and management practices reflect key biophysical processes and human stresses identified by the model.

  19. Development and evaluation of an efficient heterologous gene knock-in reporter system in Lactococcus lactis.

    PubMed

    Lu, Yifei; Yan, Hongxiang; Deng, Jiezhong; Huang, Zhigang; Jin, Xurui; Yu, Yanlan; Hu, Qiwen; Hu, Fuquan; Wang, Jing

    2017-09-18

    Lactococcus lactis is a food grade probiotics and widely used to express heterologous proteins. Generally, target genes are knocked into the L. lactis genome through double-crossover recombination to express heterologous proteins stably. However, creating marker-less heterologous genes knocked-in clones is laborious. In this study, an efficient heterologous gene knock-in reporter system was developed in L. lactis NZ9000. Our knock-in reporter system consists of a temperature-sensitive plasmid pJW and a recombinant L. lactis strain named NZB. The pJW contains homologous arms, and was constructed to knock-in heterologous genes at a fixed locus of NZ9000 genome. lacZ (β-galactosidase) gene was knocked into the chromosome of NZ9000 as a counter-selective marker through the plasmid pJW to generate NZB. The engineered NZB strain formed blue colonies on X-Gal plate. The desired double-crossover mutants formed white colonies distinctive from the predominantly blue colonies (parental and plasmid-integrated clones) when the embedded lacZ was replaced with the target heterologous genes carried by pJW in NZB. By using the system, the heterologous gene knocked-in clones are screened by colony phenotype change rather than by checking colonies individually. Our new knock-in reporter system provides an efficient method to create heterologous genes knocked-in clones.

  20. Effect of yogurt containing polydextrose, Lactobacillus acidophilus NCFM and Bifidobacterium lactis HN019: a randomized, double-blind, controlled study in chronic constipation.

    PubMed

    Magro, Daniéla Oliveira; de Oliveira, Lais Mariana R; Bernasconi, Isabela; Ruela, Marilia de Souza; Credidio, Laura; Barcelos, Irene K; Leal, Raquel F; Ayrizono, Maria de Lourdes Stesuko; Fagundes, João José; Teixeira, Leandro de B; Ouwehand, Arthur C; Coy, Claudio S R

    2014-07-24

    Constipation is a frequent complaint and the combination of a prebiotic and probiotics could have a potentially synergic effect on the intestinal transit. The present study therefore aims to investigate the combination of polydextrose (Litesse), L. acidophilus NCFM® and B. lactis HN019 in a yogurt on intestinal transit in subjects who suffer from constipation. Patients with constipation were randomly divided into two groups, Control Group (CG) and Treatment Group (TG), and had to eat 180 ml of unflavored yogurt every morning for 14 days. Those in the CG received only yogurt, while the TG received yogurt containing polydextrose, L. acidophilus NCFM (ATCC 700396) and B. lactis HN019 (AGAL NM97/09513). Favourable clinical response was assessed since Agachan score had a significant reduction at the end of the study in both groups and tended to be better in the TG. The subjects in the treatment group also had a shorter transit time at the end of the intervention compared to the control group (p = 0.01). The product containing yogurt with polydextrose, B. lactis HN019 and L. acidophilus NCFM® significantly shortened colonic transit time after two weeks in the TG compared to CG and may be an option for treatment of constipation.

  1. Nisin-Producing Lactococcus lactis Strains Isolated from Human Milk

    PubMed Central

    Beasley, Shea S.; Saris, Per E. J.

    2004-01-01

    Characterization by partial 16S rRNA gene sequencing, ribotyping, and green fluorescent protein-based nisin bioassay revealed that 6 of 20 human milk samples contained nisin-producing Lactococcus lactis bacteria. This suggests that the history of humans consuming nisin is older than the tradition of consuming fermented milk products. PMID:15294850

  2. Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403.

    PubMed

    Vinogradov, Evgeny; Sadovskaya, Irina; Courtin, Pascal; Kulakauskas, Saulius; Grard, Thierry; Mahony, Jennifer; van Sinderen, Douwe; Chapot-Chartier, Marie-Pierre

    2018-06-15

    In the lactic acid bacterium Lactococcus lactis, a cell wall polysaccharide (CWPS) is the bacterial receptor of the majority of infecting bacteriophages. The diversity of CWPS structures between strains explains, at least partially, the narrow host range of lactococcal phages. In the present work, we studied the polysaccharide components of the cell wall of the prototype L. lactis subsp. lactis strain IL1403. We identified a rhamnose-rich complex polysaccharide, carrying a glycerophosphate substitution, as the major component. Its structure was analyzed by 2D NMR spectroscopy, methylation analysis and MALDI-TOF MS and shown to be distinctly different from currently known lactococcal CWPS structures. It contains a linear backbone of repeated α-l-Rha disaccharide subunits, which is irregularly substituted with a trisaccharide occasionally bearing a glycerophosphate group. A poly (glycerol phosphate) teichoic acid, another important carbohydrate component of the IL1403 cell wall, was also isolated and structurally characterized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.

    PubMed

    Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji

    2010-06-01

    Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Recombinant Invasive Lactococcus lactis Carrying a DNA Vaccine Coding the Ag85A Antigen Increases INF-γ, IL-6, and TNF-α Cytokines after Intranasal Immunization.

    PubMed

    Mancha-Agresti, Pamela; de Castro, Camila Prosperi; Dos Santos, Janete S C; Araujo, Maíra A; Pereira, Vanessa B; LeBlanc, Jean G; Leclercq, Sophie Y; Azevedo, Vasco

    2017-01-01

    Tuberculosis (TB) remains a major threat throughout the world and in 2015 it caused the death of 1.4 million people. The Bacillus Calmette-Guérin is the only existing vaccine against this ancient disease; however, it does not provide complete protection in adults. New vaccines against TB are eminently a global priority. The use of bacteria as vehicles for delivery of vaccine plasmids is a promising vaccination strategy. In this study, we evaluated the use of, an engineered invasive Lactococcus lactis (expressing Fibronectin-Binding Protein A from Staphylococcus aureus ) for the delivery of DNA plasmid to host cells, especially to the mucosal site as a new DNA vaccine against tuberculosis. One of the major antigens documented that offers protective responses against Mycobacterium tuberculosis is the Ag85A. L. lactis FnBPA + (pValac: Ag85A) which was obtained and used for intranasal immunization of C57BL/6 mice and the immune response profile was evaluated. In this study we observed that this strain was able to produce significant increases in the amount of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6) in the stimulated spleen cell supernatants, showing a systemic T helper 1 (Th1) cell response. Antibody production (IgG and sIgA anti-Ag85A) was also significantly increased in bronchoalveolar lavage, as well as in the serum of mice. In summary, these findings open new perspectives in the area of mucosal DNA vaccine, against specific pathogens using a Lactic Acid Bacteria such as L. lactis.

  5. Tornado disasters and stress responses.

    PubMed

    Godleski, L S

    1997-04-01

    Each year, a number of tornados rip through Kentucky, leaving fear, destruction, and human injury in their path. Persons who endure these catastrophes often experience a variety of stress responses. The psychological and medical sequelae include depression, acute and post-traumatic stress disorders, substance abuse, anxiety, and somatization. It is especially important for the Kentucky practitioner to be able to recognize and screen for pathology following a tornado disaster in order to provide leadership in ascertaining treatment for such stress responses.

  6. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    EPA Science Inventory

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  7. Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women.

    PubMed

    Lupis, Sarah B; Lerman, Michelle; Wolf, Jutta M

    2014-11-01

    While previous research has suggested that anger and fear responses to stress are linked to distinct sympathetic nervous system (SNS) stress responses, little is known about how these emotions predict hypothalamus-pituitary-adrenal (HPA) axis reactivity. Further, earlier research primarily relied on retrospective self-report of emotion. The current study aimed at addressing both issues in male and female individuals by assessing the role of anger and fear in predicting heart rate and cortisol stress responses using both self-report and facial coding analysis to assess emotion responses. We exposed 32 healthy students (18 female; 19.6±1.7 yr) to an acute psychosocial stress paradigm (TSST) and measured heart rate and salivary cortisol levels throughout the protocol. Anger and fear before and after stress exposure was assessed by self-report, and video recordings of the TSST were assessed by a certified facial coder to determine emotion expression (FACS). Self-reported emotions and emotion expressions did not correlate (all p>.23). Increases in self-reported fear predicted blunted cortisol responses in men (β=0.41, p=.04). Also for men, longer durations of anger expression predicted exaggerated cortisol responses (β=0.67 p=.004), and more anger incidences predicted exaggerated cortisol and heart rate responses (β=0.51, p=.033; β=0.46, p=.066, resp.). Anger and fear did not predict SNS or HPA activity for females (all p>.23). The current differential self-report and facial coding findings support the use of multiple modes of emotion assessment. Particularly, FACS but not self-report revealed a robust anger-stress association that could have important downstream health effects for men. For women, future research may clarify the role of other emotions, such as self-conscious expressions of shame, for physiological stress responses. A better understanding of the emotion-stress link may contribute to behavioral interventions targeting health-promoting ways of

  8. Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women

    PubMed Central

    Lupis, Sarah B.; Lerman, Michelle; Wolf, Jutta M.

    2014-01-01

    While previous research has suggested that anger and fear responses to stress are linked to distinct sympathetic nervous system (SNS) stress responses, little is known about how these emotions predict hypothalamus-pituitary-adrenal (HPA) axis reactivity. Further, earlier research primarily relied on retrospective self-report of emotion. The current study aimed at addressing both issues in male and female individuals by assessing the role of anger and fear in predicting heart rate and cortisol stress responses using both self-report and facial coding analysis to assess emotion responses. We exposed 32 healthy students (18 female; 19.6+/−1.7 yrs.) to an acute psychosocial stress paradigm (TSST) and measured heart rate and salivary cortisol levels throughout the protocol. Anger and fear before and after stress exposure was assessed by self-report, and video recordings of the TSST were assessed by a certified facial coder to determine emotion expression (FACS). Self-reported emotions and emotion expressions did not correlate (all p > .23). Increases in self-reported fear predicted blunted cortisol responses in men (β = 0.41, p = .04). Also for men, longer durations of anger expression predicted exaggerated cortisol responses (β = 0.67 p = .004), and more anger incidences predicted exaggerated cortisol and heart rate responses (β = 0.51, p = .033; β = 0.46, p = .066, resp.). Anger and fear did not predict SNS or HPA activity for females (all p > .23). The current differential self-report and facial coding findings support the use of multiple modes of emotion assessment. Particularly, FACS but not self-report revealed a robust anger-stress association that could have important downstream health effects for men. For women, future research may clarify the role of other emotions, such as self-conscious expressions of shame, for physiological stress responses. A better understanding of the emotion-stress link may contribute to behavioral interventions targeting health

  9. Responses to Fiscal Stress in Higher Education.

    ERIC Educational Resources Information Center

    Wilson, Robert A., Ed.

    Proceedings of the 1981 University of Arizona conference on responses to fiscal stress in higher education are presented. Topics include the impact of the federal government on higher education, state and institutional responses to new federal policies, developing responses to fiscal stress, alternate perspectives on fiscal stress, and tactical…

  10. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response

    PubMed Central

    Brosschot, Jos F.; Thayer, Julian F.

    2018-01-01

    Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always “on” but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS) states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories. PMID:29518937

  11. Generalized Unsafety Theory of Stress: Unsafe Environments and Conditions, and the Default Stress Response.

    PubMed

    Brosschot, Jos F; Verkuil, Bart; Thayer, Julian F

    2018-03-07

    Prolonged physiological stress responses form an important risk factor for disease. According to neurobiological and evolution-theoretical insights the stress response is a default response that is always "on" but inhibited by the prefrontal cortex when safety is perceived. Based on these insights the Generalized Unsafety Theory of Stress (GUTS) states that prolonged stress responses are due to generalized and largely unconsciously perceived unsafety rather than stressors. This novel perspective necessitates a reconstruction of current stress theory, which we address in this paper. We discuss a variety of very common situations without stressors but with prolonged stress responses, that are not, or not likely to be caused by stressors, including loneliness, low social status, adult life after prenatal or early life adversity, lack of a natural environment, and less fit bodily states such as obesity or fatigue. We argue that in these situations the default stress response may be chronically disinhibited due to unconsciously perceived generalized unsafety. Also, in chronic stress situations such as work stress, the prolonged stress response may be mainly caused by perceived unsafety in stressor-free contexts. Thus, GUTS identifies and explains far more stress-related physiological activity that is responsible for disease and mortality than current stress theories.

  12. Purification and characterization of two new cell-bound bioactive compounds produced by wild Lactococcus lactis strain.

    PubMed

    Saraiva, Margarete Alice Fontes; Brede, Dag Anders; Nes, Ingolf Figved; Baracat-Pereira, Maria Cristina; de Queiroz, Marisa Vieira; de Moraes, Célia Alencar

    2017-07-03

    Novel compounds and innovative methods are required considering that antibiotic resistance has reached a crisis point. In the study, two cell-bound antimicrobial compounds produced by Lactococcus lactis ID1.5 were isolated and partially characterized. Following purification by cationic exchange and a solid-phase C18 column, antimicrobial activity was recovered after three runs of RPC using 60% (v/v) and 100% (v/v) of 2-propanol for elution, suggesting that more than one antimicrobial compound were produced by L. lactis ID1.5, which were in this study called compounds AI and AII. The mass spectrum of AI and AII showed major intensity ions at m/z 1070.05 and 955.9 Da, respectively. The compound AI showed a spectrum of antimicrobial activity mainly against L. lactis species, while the organisms most sensitive to compound AII were Bacillus subtilis, Listeria innocua, Streptococcus pneumoniae and Pseudomonas aeruginosa. The antimicrobial activity of both compounds was suppressed by treatment with Tween 80. Nevertheless, both compounds showed high stability to heat and proteases treatments. The isolated compounds, AI and AII, showed distinct properties from other antimicrobial substances already reported as produced by L. lactis, and have a significant inhibitory effect against two clinically important respiratory pathogens. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2014-01-01

    This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation. PMID:25344239

  14. Yeast Kluyveromyces lactis as host for expression of the bacterial lipase: cloning and adaptation of the new lipase gene from Serratia sp.

    PubMed

    Šiekštelė, Rimantas; Veteikytė, Aušra; Tvaska, Bronius; Matijošytė, Inga

    2015-10-01

    Many microbial lipases have been successfully expressed in yeasts, but not in industrially attractive Kluyveromyces lactis, which among other benefits can be cultivated on a medium supplemented with whey--cheap and easily available industrial waste. A new bacterial lipase from Serratia sp. was isolated and for the first time expressed into the yeast Kluyveromyces lactis by heterologous protein expression system based on a strong promoter of Kluyveromyces marxianus triosephosphate isomerase gene and signal peptide of Kluyveromyces marxianus endopolygalacturonase gene. In addition, the bacterial lipase gene was synthesized de novo by taking into account a codon usage bias optimal for K. lactis and was expressed into the yeast K. lactis also. Both resulting strains were characterized by high output level of the target protein secreted extracellularly. Secreted lipases were characterized for activity and stability.

  15. Engineering Signal Peptides for Enhanced Protein Secretion from Lactococcus lactis

    PubMed Central

    Ng, Daphne T. W.

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts. PMID:23124224

  16. Engineering signal peptides for enhanced protein secretion from Lactococcus lactis.

    PubMed

    Ng, Daphne T W; Sarkar, Casim A

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts.

  17. Lactococcus lactis expressing food-grade β-galactosidase alleviates lactose intolerance symptoms in post-weaning Balb/c mice.

    PubMed

    Li, Jingjie; Zhang, Wen; Wang, Chuan; Yu, Qian; Dai, Ruirui; Pei, Xiaofang

    2012-12-01

    The endogenous β-galactosidase expressed in intestinal microbes is demonstrated to help humans in lactose usage, and treatment associated with the promotion of beneficial microorganism in the gut is correlated with lactose tolerance. From this point, a kind of recombinant live β-galactosidase delivery system using food-grade protein expression techniques and selected probiotics as vehicle was promoted by us for the purpose of application in lactose intolerance subjects. Previously, a recombinant Lactococcus lactis MG1363 strain expressing food-grade β-galactosidase, the L. lactis MG1363/FGZW, was successfully constructed and evaluated in vitro. This study was conducted to in vivo evaluate its efficacy on alleviating lactose intolerance symptoms in post-weaning Balb/c mice, which were orally administered with 1 × 10⁶ CFU or 1 × 10⁸ CFU of L. lactis MG1363/FGZW daily for 4 weeks before lactose challenge. In comparison with naïve mice, the mice administered with L. lactis MG1363/FGZW showed significant alleviation of diarrhea symptoms in less total feces weight within 6 h post-challenge and suppressed intestinal motility after lactose challenge, although there was no significant increase of β-galactosidase activity in small intestine. The alleviation also correlated with higher species abundance, more Bifidobacterium colonization, and stronger colonization resistance in mice intestinal microflora. Therefore, this recombinant L. lactis strain effectively alleviated diarrhea symptom induced by lactose uptake in lactose intolerance model mice with the probable mechanism of promotion of lactic acid bacteria to differentiate and predominantly colonize in gut microbial community, thus making it a promising probiotic for lactose intolerance subjects.

  18. Influence of Technological Treatments on the Functionality of Bifidobacterium lactis INL1, a Breast Milk-Derived Probiotic.

    PubMed

    Zacarías, María Florencia; Souza, Tassia Costa; Zaburlín, Natalia; Carmona Cara, Denise; Reinheimer, Jorge; Nicoli, Jacques; Vinderola, Gabriel

    2017-10-01

    The aim of this study is to evaluate the influence of the technological processing on the functionality of the human breast milk probiotic strain Bifidobacterium lactis INL1. In vitro antagonistic activity of B. lactis INL1 was detected for Gram-positive and Gram-negative pathogens. B. lactis INL1 was administered to mice as fresh (F), frozen (Z), spray-dried (S), or lyophilized (L) culture. Immune parameters (IgA, IL-10, and IFN-γ) were determined and histological analysis was performed to assess functionality and protection capacity against Salmonella. In BALB/c mice, F and S cultures induced an increase in the number of IgA-producing cells in the small intestine and IL-10 levels were increased for L culture in the large intestine. In Swiss mice, B. lactis INL1 increased secretory-IgA levels in the small intestine before and after Salmonella infection, both as F or dehydrated culture. Also, an attenuation of damage in the intestinal epithelium and less inflammatory infiltrates were observed in animals that received F and S cultures, whereas in liver only F showed some effect. The anti-inflammatory effect was confirmed in both tissues by myeloperoxidase activity and by IFN-γ levels in the intestinal content. B. lactis INL1 showed inhibitory activity against pathogens and confirmed its probiotic potential in animal models. Technological processing of the probiotic strain affected its functionality. This work provides evidence about the influence of technology on the functionality of probiotics, which may help probiotics and functional food manufacturers to take processing into consideration when assessing the functionality of new strains. © 2017 Institute of Food Technologists®.

  19. Identification, Cloning, and Characterization of a Lactococcus lactis Branched-Chain α-Keto Acid Decarboxylase Involved in Flavor Formation

    PubMed Central

    Smit, Bart A.; van Hylckama Vlieg, Johan E. T.; Engels, Wim J. M.; Meijer, Laura; Wouters, Jan T. M.; Smit, Gerrit

    2005-01-01

    The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain α-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3′ terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain α-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions. PMID:15640202

  20. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12®-supplemented yogurt in healthy children

    PubMed Central

    Tan, Tina P.; Ba, Zhaoyong; Sanders, Mary Ellen; D’Amico, Frank J.; Roberts, Robert F.; Smith, Keisha Herbin; Merenstein, Daniel J.

    2016-01-01

    Objectives Probiotics are live microorganisms that may provide health benefits to the individual when consumed in sufficient quantities. For studies conducted on health or disease endpoints on probiotics in the United States, the Food and Administration (FDA) has required those studies to be conducted as investigational new drugs. This phase I, double-blinded, randomized, controlled safety study represents the first requirement of this pathway. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12® (BB-12®)-supplemented yogurt when consumed by a generally healthy group of children. The secondary aim was to assess the effect of BB-12®-supplemented yogurt on the gut microbiota of the children. Methods Sixty children aged 1–5 years were randomly assigned to consume four ounces of either BB-12®-supplemented yogurt or non-supplemented control yogurt daily for 10 days. The primary outcome was to assess safety and tolerability, as determined by the number of reported adverse events. Results A total of 186 non-serious adverse events were reported, with no significant differences between the control and BB-12® groups. No significant changes due to probiotic treatment were observed in the gut microbiota of the study cohort. Conclusions BB-12®-supplemented yogurt is safe and well-tolerated when consumed by healthy children. This study will form the basis for future randomized clinical trials investigating the potential effects of BB-12®-supplemented yogurt in different disease states. PMID:28114246

  1. Plant responses to water stress

    PubMed Central

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  2. Regulation of Cell Wall Plasticity by Nucleotide Metabolism in Lactococcus lactis*

    PubMed Central

    Solopova, Ana; Formosa-Dague, Cécile; Courtin, Pascal; Furlan, Sylviane; Veiga, Patrick; Péchoux, Christine; Armalyte, Julija; Sadauskas, Mikas; Kok, Jan; Hols, Pascal; Dufrêne, Yves F.; Kuipers, Oscar P.; Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2016-01-01

    To ensure optimal cell growth and separation and to adapt to environmental parameters, bacteria have to maintain a balance between cell wall (CW) rigidity and flexibility. This can be achieved by a concerted action of peptidoglycan (PG) hydrolases and PG-synthesizing/modifying enzymes. In a search for new regulatory mechanisms responsible for the maintenance of this equilibrium in Lactococcus lactis, we isolated mutants that are resistant to the PG hydrolase lysozyme. We found that 14% of the causative mutations were mapped in the guaA gene, the product of which is involved in purine metabolism. Genetic and transcriptional analyses combined with PG structure determination of the guaA mutant enabled us to reveal the pivotal role of the pyrB gene in the regulation of CW rigidity. Our results indicate that conversion of l-aspartate (l-Asp) to N-carbamoyl-l-aspartate by PyrB may reduce the amount of l-Asp available for PG synthesis and thus cause the appearance of Asp/Asn-less stem peptides in PG. Such stem peptides do not form PG cross-bridges, resulting in a decrease in PG cross-linking and, consequently, reduced PG thickness and rigidity. We hypothesize that the concurrent utilization of l-Asp for pyrimidine and PG synthesis may be part of the regulatory scheme, ensuring CW flexibility during exponential growth and rigidity in stationary phase. The fact that l-Asp availability is dependent on nucleotide metabolism, which is tightly regulated in accordance with the growth rate, provides L. lactis cells the means to ensure optimal CW plasticity without the need to control the expression of PG synthesis genes. PMID:27022026

  3. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    PubMed Central

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  4. Coping and Responses to Stress in Navajo Adolescents: Psychometric Properties of the Responses to Stress Questionnaire

    ERIC Educational Resources Information Center

    Wadsworth, Martha E.; Rieckmann, Traci; Benson, Molly A.; Compas, Bruce E.

    2004-01-01

    This study tested the factor structure of coping and stress responses in Navajo adolescents and examined the reliability and validity of the Responses to Stress Questionnaire (RSQ; Connor-Smith, Compas, Wadsworth, Thomsen, & Saltzman, 2000) with this population. Confirmatory factor analyses revealed that a correlated five-factor model of…

  5. Response to Hyperosmotic Stress

    PubMed Central

    Saito, Haruo; Posas, Francesc

    2012-01-01

    An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive program that includes temporary arrest of cell-cycle progression, adjustment of transcription and translation patterns, and the synthesis and retention of the compatible osmolyte glycerol. These adaptive responses are mostly governed by the high osmolarity glycerol (HOG) pathway, which is composed of membrane-associated osmosensors, an intracellular signaling pathway whose core is the Hog1 MAP kinase (MAPK) cascade, and cytoplasmic and nuclear effector functions. The entire pathway is conserved in diverse fungal species, while the Hog1 MAPK cascade is conserved even in higher eukaryotes including humans. This conservation is illustrated by the fact that the mammalian stress-responsive p38 MAPK can rescue the osmosensitivity of hog1Δ mutations in response to hyperosmotic challenge. As the HOG pathway is one of the best-understood eukaryotic signal transduction pathways, it is useful not only as a model for analysis of osmostress responses, but also as a model for mathematical analysis of signal transduction pathways. In this review, we have summarized the current understanding of both the upstream signaling mechanism and the downstream adaptive responses to hyperosmotic stress in yeast. PMID:23028184

  6. Absence of neurogenic response following robust predator-induced stress response.

    PubMed

    Lau, Catherine; Hebert, Mark; Vani, Marc A; Walling, Sue; Hayley, Shawn; Lagace, Diane C; Blundell, Jacqueline

    2016-12-17

    Traumatic events contribute to a variety of neuropsychiatric disorders including post-traumatic stress disorder (PTSD). Identifying the neural mechanisms that affect the stress response may improve treatment for stress-related disorders. Neurogenesis, the production of neurons, occurs within the adult brain and disturbances in neurogenesis in the subgranular zone (SGZ) of the hippocampus have been linked to mood and anxiety disorders. Chronic stress models have mainly suggested correlations with stress reducing adult SGZ neurogenesis, whereas acute stress models and those with a naturalistic component that are also associated with long-lasting behavioral changes have produced inconsistent results. Therefore, the goal of the current study was to examine the effects of acute predator stress on adult neurogenesis. Predator stress involved a single 10-min unprotected rat to cat exposure that has previously been shown to produce contextual fear, hyperarousal, and anxiety-like behavior lasting at least 3weeks. As expected, predator stress produced a stress response as detected by elevated corticosterone (CORT) levels immediately after stress. Despite this robust stress response, there was no significant difference between stressed and handled control rats in the number of proliferating or surviving cells as assessed by a 5-bromo-2'-deoxyuridine-immunoreactive (BrdU-IR) labeling 2h or 4weeks post-stress throughout the rostro-caudal axis of the SGZ, respectively. Additionally, 90% of 4-week-old BrdU-IR cells in both conditions expressed NeuN, suggesting no change in cell fate with stress exposure. Overall, these data give caution to the notion that acute predator stress can alter the production or survival of adult-generated cells. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    PubMed

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  8. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    PubMed Central

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  9. Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element

    PubMed Central

    Walley, Justin W; Coughlan, Sean; Hudson, Matthew E; Covington, Michael F; Kaspi, Roy; Banu, Gopalan; Harmer, Stacey L; Dehesh, Katayoon

    2007-01-01

    Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation. PMID:17953483

  10. Alternative Splicing Control of Abiotic Stress Responses.

    PubMed

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    PubMed

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  12. Functional Expression of an Orchid Fragrance Gene in Lactococcus lactis

    PubMed Central

    Song, Adelene Ai Lian; Abdullah, Janna O.; Abdullah, Mohd Puad; Shafee, Norazizah; Rahim, Raha A.

    2012-01-01

    Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile. PMID:22408409

  13. Effect of autochthonous bacteriocin-producing Lactococcus lactis on bacterial population dynamics and growth of halotolerant bacteria in Brazilian charqui.

    PubMed

    Biscola, Vanessa; Abriouel, Hikmate; Todorov, Svetoslav Dimitrov; Capuano, Verena Sant'Anna Cabral; Gálvez, Antonio; Franco, Bernadette Dora Gombossy de Melo

    2014-12-01

    Charqui is a fermented, salted and sun-dried meat product, widely consumed in Brazil and exported to several countries. Growth of microorganisms in this product is unlikely due to reduced Aw, but halophilic and halotolerant bacteria may grow and cause spoilage. Charqui is a good source of lactic acid bacteria able to produce antimicrobial bacteriocins. In this study, an autochthonous bacteriocinogenic strain (Lactococcus lactis subsp. lactis 69), isolated from charqui, was added to the meat used for charqui manufacture and evaluated for its capability to prevent the growth of spoilage bacteria during storage up to 45 days. The influence of L. lactis 69 on the bacterial diversity during the manufacturing of the product was also studied, using denaturing gradient gel electrophoresis (DGGE). L. lactis 69 did not affect the counts and diversity of lactic acid bacteria during manufacturing and storage, but influenced negatively the populations of halotolerant microorganisms, reducing the spoilage potential. The majority of tested virulence genes was absent, evidencing the safety and potential technological application of this strain as an additional hurdle to inhibit undesirable microbial growth in this and similar fermented meat products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Trimming of two major type 1 diabetes driving antigens, GAD65 and IA-2, allows for successful expression in Lactococcus lactis.

    PubMed

    Robert, S; Van Huynegem, K; Gysemans, C; Mathieu, C; Rottiers, P; Steidler, L

    2015-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease characterised by excessive immune reactions against auto-antigens of pancreatic β-cells. Restoring auto-antigen tolerance remains the superior therapeutic strategy. Oral auto-antigen administration uses the tolerogenic nature of the gut-associated immune system to induce antigen-specific tolerance. However, due to gastric degradation, proper mucosal product delivery often imposes a challenge. Recombinant Lactococcus lactis have proven to be effective and safe carriers for gastrointestinal delivery of therapeutic products: L. lactis secreting diabetes-associated auto-antigens in combination with interleukin (IL)-10 have demonstrated therapeutic efficacy in a well-defined mouse model for T1D. Here, we describe the construction of recombinant L. lactis secreting the 65 kDa isoform of glutamic acid decarboxylase (GAD65) and tyrosine phosphatase-like protein ICA512 (IA-2), two major T1D-related auto-antigens. Attempts to secrete full size human GAD65 and IA-2 protein by L. lactis were unsuccessful. Trimming of GAD65 and IA-2 was investigated to optimise antigen secretion while maintaining sufficient bacterial growth. GAD65370-575 and IA-2635-979 showed to be efficiently secreted by recombinant L. lactis. Antigen secretion was verified by immunoblotting. Plasmid-derived GAD65 and IA-2 expression was combined in single strains with human IL-10 expression, a desired combination to allow tolerance induction. This study reports the generation of recombinant L. lactis secreting two major diabetes-related auto-antigens: human GAD65 and IA-2, by themselves or combined with the anti-inflammatory cytokine human IL-10. Prohibitive sequence obstacles hampering antigen secretion were resolved by trimming the full size proteins.

  15. Stress proteins and the immune response.

    PubMed

    Moseley, P

    2000-07-25

    The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61

  16. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes.

    PubMed

    Avramova, Zoya

    2015-07-01

    Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis. © 2015 The Author The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.

    PubMed

    Geva, Nirit; Defrin, Ruth

    2018-04-01

    The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44.

    PubMed

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-06-16

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process.

  19. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling.

    PubMed

    Børsting, M W; Qvist, K B; Brockmann, E; Vindeløv, J; Pedersen, T L; Vogensen, F K; Ardö, Y

    2015-01-01

    Lactococcus lactis strains depend on a proteolytic system for growth in milk to release essential AA from casein. The cleavage specificities of the cell envelope proteinase (CEP) can vary between strains and environments and whether the enzyme is released or bound to the cell wall. Thirty-eight Lc. lactis strains were grouped according to their CEP AA sequences and according to identified peptides after hydrolysis of milk. Finally, AA positions in the substrate binding region were suggested by the use of a new CEP template based on Streptococcus C5a CEP. Aligning the CEP AA sequences of 38 strains of Lc. lactis showed that 21 strains, which were previously classified as group d, could be subdivided into 3 groups. Independently, similar subgroupings were found based on comparison of the Lc. lactis CEP AA sequences and based on normalized quantity of identified peptides released from αS1-casein and β-casein. A model structure of Lc. lactis CEP based on the crystal structure of Streptococcus C5a CEP was used to investigate the AA positions in the substrate-binding region. New AA positions were suggested, which could be relevant for the cleavage specificity of CEP; however, these could only explain 2 out of 3 found subgroups. The third subgroup could be explained by 1 to 5 AA positions located opposite the substrate binding region. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Extraversion and cardiovascular responses to recurrent social stress: Effect of stress intensity.

    PubMed

    Lü, Wei; Xing, Wanying; Hughes, Brian M; Wang, Zhenhong

    2017-10-28

    The present study sought to establish whether the effects of extraversion on cardiovascular responses to recurrent social stress are contingent on stress intensity. A 2×5×1 mixed-factorial experiment was conducted, with social stress intensity as a between-subject variable, study phase as a within-subject variable, extraversion as a continuous independent variable, and cardiovascular parameter (HR, SBP, DBP, or RSA) as a dependent variable. Extraversion (NEO-FFI), subjective stress, and physiological stress were measured in 166 undergraduate students randomly assigned to undergo moderate (n=82) or high-intensity (n=84) social stress (a public speaking task with different levels of social evaluation). All participants underwent continuous physiological monitoring while facing two consecutive stress exposures distributed across five laboratory phases: baseline, stress exposure 1, post-stress 1, stress exposure 2, post-stress 2. Results indicated that under moderate-intensity social stress, participants higher on extraversion exhibited lesser HR reactivity to stress than participants lower on extraversion, while under high-intensity social stress, they exhibited greater HR, SBP, DBP and RSA reactivity. Under both moderate- and high-intensity social stress, participants higher on extraversion exhibited pronounced SBP and DBP response adaptation to repeated stress, and showed either better degree of HR recovery or greater amount of SBP and DBP recovery after stress. These findings suggest that individuals higher on extraversion exhibit physiological flexibility to cope with social challenges and benefit from adaptive cardiovascular responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin

    PubMed Central

    Castelain, Mickaël; Duviau, Marie-Pierre; Canette, Alexis; Schmitz, Philippe; Loubière, Pascal; Cocaign-Bousquet, Muriel; Piard, Jean-Christophe; Mercier-Bonin, Muriel

    2016-01-01

    Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis. PMID:27010408

  2. Lactococcus lactis subsp. cremoris strain JFR1 attenuates Salmonella adhesion to human intestinal cells in vitro.

    PubMed

    Zhang, Justina Su; Guri, Anilda; Corredig, Milena; Morales-Rayas, Rocio; Hassan, Ashraf; Griffiths, Mansel; LaPointe, Gisèle

    2016-12-01

    Lactococcus lactis subsp. cremoris JFR1 has been studied in reduced fat cheese due to its ability to produce exopolysaccharides (EPS) in situ, contributing to improved textural and organoleptic properties. In this study, the effect of strain JFR1 on virulence gene expression and attachment of Salmonella to HT-29 human colon carcinoma cells was investigated. Overnight cultures of L. lactis subsp. cremoris JFR1 containing EPS, grown in M17 media with 0.5% glucose supplementation, decreased attachment as well as down regulated virulence gene expression in Salmonella enterica subsp. enterica when tested on HT-29 cells. However, EPS isolated from milk fermented with L. lactis subsp. cremoris JFR1 did not affect Salmonella virulence gene expression or attachment to HT-29 cells. These results suggest that EPS does not contribute to the attachment of Salmonella to human intestinal cells. However, the possibility that the isolation process may have affected the structural features of EPS cannot be ruled out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Construction of two Lactococcus lactis expression vectors combining the Gateway and the NIsin Controlled Expression systems.

    PubMed

    Douillard, François P; Mahony, Jennifer; Campanacci, Valérie; Cambillau, Christian; van Sinderen, Douwe

    2011-09-01

    Over the last 10 years, the NIsin Controlled Expression (NICE) system has been extensively used in the food-grade bacterium Lactococcus lactis subsp. cremoris to produce homologous and heterologous proteins for academic and biotechnological purposes. Although various L. lactis molecular tools have been developed, no expression vectors harboring the popular Gateway recombination system are currently available for this widely used cloning host. In this study, we constructed two expression vectors that combine the NICE and the Gateway recombination systems and we tested their applicability by recombining and over-expressing genes encoding structural proteins of lactococcal phages Tuc2009 and TP901-1. Over-expressed phage proteins were analyzed by immunoblotting and purified by His-tag affinity chromatography with protein productions yielding 2.8-3.7 mg/l of culture. This therefore is the first description of L. lactis NICE expression vectors which integrate the Gateway cloning technology and which are suitable for the production of sufficient amounts of proteins to facilitate subsequent structural and functional analyses. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. STRESS ETHYLENE PRODUCTION - A MEASURE OF PLANT RESPONSE TO STRESS

    EPA Science Inventory

    Contents: Introduction to the symposium; Environmental data acquisition; Plant organ chambers in plant physiology field research; Interpreting the metabolic responses of plants to water stress; Stress ethylene production.

  5. Bifidobacterium animalis subspecies lactis modulates the local immune response and glucose uptake in the small intestine of juvenile pigs infected with the parasitic nematode Ascaris suum

    USDA-ARS?s Scientific Manuscript database

    The probiotic bacteria Bifidobacterium animalis subspecies lactis (Bb12) or a placebo containing vehicle without Bb12 was administered orally to pregnant sows during the last trimester of pregnancy, and to their offspring from birth through the termination of the study three months later. Weaned-pig...

  6. Lactobacillus bulgaricus Proteinase Expressed in Lactococcus lactis Is a Powerful Carrier for Cell Wall-Associated and Secreted Bovine β-Lactoglobulin Fusion Proteins

    PubMed Central

    Bernasconi, Eric; Germond, Jacques-Edouard; Delley, Michèle; Fritsché, Rodolphe; Corthésy, Blaise

    2002-01-01

    Lactic acid bacteria have a good potential as agents for the delivery of heterologous proteins to the gastrointestinal mucosa and thus for the reequilibration of inappropriate immune responses to food antigens. Bovine β-lactoglobulin (BLG) is considered a major allergen in cow's milk allergy. We have designed recombinant Lactococcus lactis expressing either full-length BLG or BLG-derived octapeptide T6 (IDALNENK) as fusions with Lactobacillus bulgaricus extracellular proteinase (PrtB). In addition to constructs encoding full-length PrtB for the targeting of heterologous proteins to the cell surface, we generated vectors aiming at the release into the medium of truncated PrtB derivatives lacking 100 (PrtB∂, PrtB∂-BLG, and PrtB∂-T6) or 807 (PrtBΔ) C-terminal amino acids. Expression of recombinant products was confirmed using either anti-PrtB, anti-BLG, or anti-peptide T6 antiserum. All forms of the full-length and truncated recombinant products were efficiently translocated, irrespective of the presence of eucaryotic BLG sequences in the fusion proteins. L. lactis expressing PrtB∂-BLG yielded up to 170 μg per 109 CFU in the culture supernatant and 9 μg per 109 CFU at the bacterial cell surface within 14 h. Therefore, protein fusions relying on the use of PrtB gene products are adequate for concomitant cell surface display and secretion by recombinant L. lactis and thus may ensure maximal bioavailability of the eucaryotic antigen in the gut-associated lymphoid tissue. PMID:12039750

  7. Effect of Pet Dogs on Children’s Perceived Stress and Cortisol Stress Response

    PubMed Central

    Kertes, Darlene A.; Liu, Jingwen; Hall, Nathan J.; Hadad, Natalie A.; Wynne, Clive D. L.; Bhatt, Samarth S.

    2016-01-01

    The present study tested whether pet dogs have stress-buffering effects for children during a validated laboratory-based protocol, the Trier Social Stress Test for Children (TSST-C). Participants were 101 children aged 7–12 years with their primary caregivers and pet dogs. Children were randomly assigned in the TSST-C to a pet present condition or one of two comparison conditions: parent present or no support figure present. Baseline, response, and recovery indices of perceived stress and cortisol levels were computed based on children’s self-reported feelings of stress and salivary cortisol. Results indicated that in the alone (no social support) condition, children showed the expected rise for both perceived stress and cortisol response to stress. Pet dog presence significantly buffered the perceived stress response in comparison to children in the alone and parent present conditions. No main condition effect was observed for cortisol; however, for children experiencing the stressor with their pet present, lower cortisol response to stress was associated with more child-initiated petting and less dog proximity-seeking behavior. The results support the notion that pet dogs can provide socio-emotional benefits for children via stress buffering. PMID:28439150

  8. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.

    PubMed

    Taguchi, Yodai; Saburi, Wataru; Imai, Ryozo; Mori, Haruhide

    2017-08-01

    Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce β-d-glucose 1-phosphate (β-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0-8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, β-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From β-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1↔1)-α-d-Manp6P, was synthesized with 51% yield.

  9. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aminopeptidase enzyme preparation derived from...

  10. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aminopeptidase enzyme preparation derived from...

  11. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aminopeptidase enzyme preparation derived from...

  12. 21 CFR 184.1985 - Aminopeptidase enzyme preparation derived from lactococcus lactis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Streptococcus lactis). The preparation contains the enzyme aminopeptidase (CAS Reg. No. 9031-94-1; EC 3.4.11.1) and other peptidases that hydrolyze milk proteins. The preparation is produced by pure culture... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aminopeptidase enzyme preparation derived from...

  13. Everyday stress response targets in the science of behavior change.

    PubMed

    Smyth, Joshua M; Sliwinski, Martin J; Zawadzki, Matthew J; Scott, Stacey B; Conroy, David E; Lanza, Stephanie T; Marcusson-Clavertz, David; Kim, Jinhyuk; Stawski, Robert S; Stoney, Catherine M; Buxton, Orfeu M; Sciamanna, Christopher N; Green, Paige M; Almeida, David M

    2018-02-01

    Stress is an established risk factor for negative health outcomes, and responses to everyday stress can interfere with health behaviors such as exercise and sleep. In accordance with the Science of Behavior Change (SOBC) program, we apply an experimental medicine approach to identifying stress response targets, developing stress response assays, intervening upon these targets, and testing intervention effectiveness. We evaluate an ecologically valid, within-person approach to measuring the deleterious effects of everyday stress on physical activity and sleep patterns, examining multiple stress response components (i.e., stress reactivity, stress recovery, and stress pile-up) as indexed by two key response indicators (negative affect and perseverative cognition). Our everyday stress response assay thus measures multiple malleable stress response targets that putatively shape daily health behaviors (physical activity and sleep). We hypothesize that larger reactivity, incomplete recovery, and more frequent stress responses (pile-up) will negatively impact health behavior enactment in daily life. We will identify stress-related reactivity, recovery, and response in the indicators using coordinated analyses across multiple naturalistic studies. These results are the basis for developing a new stress assay and replicating the initial findings in a new sample. This approach will advance our understanding of how specific aspects of everyday stress responses influence health behaviors, and can be used to develop and test an innovative ambulatory intervention for stress reduction in daily life to enhance health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Neuronal Responses to Physiological Stress

    PubMed Central

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger

    2012-01-01

    Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level. PMID:23112806

  15. Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei).

    PubMed

    Ben Braïek, Olfa; Ghomrassi, Hamdi; Cremonesi, Paola; Morandi, Stefano; Fleury, Yannick; Le Chevalier, Patrick; Hani, Khaled; Bel Hadj, Omrane; Ghrairi, Taoufik

    2017-06-01

    Screening for lactic acid bacteria (LAB) from fresh shrimp samples (Penaeus vannamei) collected from retail seafood markets in the Tunisian's coast, resulted in the isolation of an Enterococcus strain termed Q1. This strain was selected for its antagonistic activity against pathogenic bacteria such as Listeria monocytogenes, Pseudomonas aeruginosa, Lactococcus garvieae and against fungi (Aspergillus niger and Fusarium equiseti). The Q1 strain was characterised using standard morphological and biochemical tests, growth assays at different temperatures, pH and salinity. 16S rRNA, rpoA and pheS gene sequencing, as well as the 16S-23S rRNA intergenic spacer analyses, were combined to identify strain Q1 as a strain of Enterococcus lactis. The bacteriocin produced by E. lactis Q1 is thermostable, active in the pH range from 4.0 to 9.0 and has a bactericidal mode of action. The enterocin P structural gene was detected by specific PCR in strain E. lactis Q1, which is in good agreement with SDS-PAGE data of the purified bacteriocin. A lack of significant antibiotic resistance genes and virulence determinants was confirmed by specific PCRs. This work provides the first description of an enterocin P producer E. lactis strain isolated from a fresh shrimp. Based on its safety properties (absence of haemolytic activity, virulence factors and antibiotic resistance genes), this strain has the potential to be used as a natural additive or adjunct protective culture in food biopreservation and/or probiotic culture.

  16. Biotechnological approaches to study plant responses to stress.

    PubMed

    Pérez-Clemente, Rosa M; Vives, Vicente; Zandalinas, Sara I; López-Climent, María F; Muñoz, Valeria; Gómez-Cadenas, Aurelio

    2013-01-01

    Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized.

  17. Biotechnological Approaches to Study Plant Responses to Stress

    PubMed Central

    Pérez-Clemente, Rosa M.; Vives, Vicente; Zandalinas, Sara I.; López-Climent, María F.; Muñoz, Valeria; Gómez-Cadenas, Aurelio

    2013-01-01

    Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized. PMID:23509757

  18. Effects of the probiotic Bifidobacterium animalis subsp. lactis on the non-surgical treatment of periodontitis. A histomorphometric, microtomographic and immunohistochemical study in rats

    PubMed Central

    Ricoldi, Milla S. T.; Furlaneto, Flávia A. C.; Oliveira, Luiz F. F.; Teixeira, Gustavo C.; Pischiotini, Jéssica P.; Moreira, André L. G.; Ervolino, Edilson; de Oliveira, Maricê N.; Bogsan, Cristina S. B.; Salvador, Sérgio L.

    2017-01-01

    Lactobacillus probiotics have been investigated in periodontitis. However, the effects of the genus Bifidobacterium on periodontitis are hardly known. This study evaluated the effects of the probiotic (PROB) Bifidobacterium animalis subsp. lactis (B. lactis) HN019 as an adjunct to scaling and root planing (SRP) in rats with experimental periodontitis (EP). At baseline, 32 rats were assigned to 4 groups: C (control), PROB, EP-SRP and EP-SRP-PROB. In groups EP-SRP and EP-SRP-PROB, the mandibular first molars of the animals received a ligature. At day 14, the ligatures were removed and SRP was performed. Animals of groups PROB and EP-SRP-PROB were orally administered with 10 mL/day of 109 colony forming units of B. lactis HN019 for 15 days, starting at day 14. Animals were euthanized at day 29. Histomorphometric, microtomographic and immunohistochemical analyses were performed. Microbiological effects of B. lactis on biofilm were also evaluated. Data were statistically analyzed (ANOVA, Tukey; Kruskal-Wallis, Dunn’s; Two-tailed t-test; p<0.05). Group EP-SRP-PROB presented reduced alveolar bone resorption and attachment loss when compared with Group EP-SRP (p<0.05). Group EP-SRP-PROB showed significantly fewer osteoclasts, increased expression of anti-inflammatory cytokines and reduced expression of proinflammatory cytokines compared with Group EP-SRP (p<0.05). B. lactis promoted a higher ratio between aerobic and anaerobic bacteria in biofilm samples (p<0.05). B. lactis HN019 may have a role in the treatment of EP in rats, as an adjunct to SRP. PMID:28662142

  19. The behavioural effects of predator-induced stress responses in the cricket (Gryllus texensis): the upside of the stress response.

    PubMed

    Adamo, Shelley A; Kovalko, Ilya; Mosher, Brianna

    2013-12-15

    Predator-induced stress responses are thought to reduce an animal's risk of being eaten. Therefore, these stress responses should enhance anti-predator behaviour. We found that individual insects (the cricket Gryllus texensis) show reliable behavioural responses (i.e. behavioural types) in a plus-shaped maze. An individual's behaviour in the plus maze remained consistent for at least 1/2 of its adult life. However, after exposure to a model predator, both male and female crickets showed a reduced period of immobility and an increased amount of time spent under shelter compared with controls. These changes could be mimicked by injections of the insect stress neurohormone octopamine. These behavioural changes probably aid crickets in evading predators. Exposure to a model predator increased the ability of crickets to escape a live predator (a bearded dragon, Pogona vitticeps). An injection of octopamine had the same effect, showing that stress hormones can reduce predation. Using crickets to study the fitness consequences of predator-induced stress responses will help integrate ecological and biomedical concepts of 'stress'.

  20. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    PubMed

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Plant hormone-mediated regulation of stress responses.

    PubMed

    Verma, Vivek; Ravindran, Pratibha; Kumar, Prakash P

    2016-04-14

    Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses. Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria, fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play critical roles in helping the plants to adapt to adverse environmental conditions. The elaborate hormone signaling networks and their ability to crosstalk make them ideal candidates for mediating defense responses. Recent research findings have helped to clarify the elaborate signaling networks and the sophisticated crosstalk occurring among the different hormone signaling pathways. In this review, we summarize the roles of the major plant hormones in regulating abiotic and biotic stress responses with special focus on the significance of crosstalk between different hormones in generating a sophisticated and efficient stress response. We divided the discussion into the roles of ABA, salicylic acid, jasmonates and ethylene separately at the start of the review. Subsequently, we have discussed the crosstalk among them, followed by crosstalk with growth promoting hormones (gibberellins, auxins and cytokinins). These have been illustrated with examples drawn from selected abiotic and biotic stress responses. The discussion on seed dormancy and germination serves to illustrate the fine balance that can be enforced by the two key hormones ABA and GA in regulating plant responses to environmental signals. The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is just beginning to be understood. Future research employing genome-scale systems biology approaches to solve problems of such magnitude will undoubtedly lead to a better understanding of plant development. Therefore, discovering additional crosstalk

  2. Cortisol modulates men's affiliative responses to acute social stress.

    PubMed

    Berger, Justus; Heinrichs, Markus; von Dawans, Bernadette; Way, Baldwin M; Chen, Frances S

    2016-01-01

    The dominant characterization of the physiological and behavioral human stress reaction is the fight-or-flight response. On the other hand, it has been suggested that social affiliation during stressful times ("tend-and-befriend") also represents a common adaptive response to stress, particularly for women. In the current study, we investigate the extent to which men may also show affiliative responses following acute stress. In addition, we examine a potential neuroendocrine modulator of the hypothesized affiliative response. Eighty male students (forty dyads) were recruited to undergo either the Trier Social Stress Test for Groups (TSST-G) or a non-stressful control situation. Subsequently, participants completed a dyadic interaction task and were then asked to report their feelings of psychological closeness to their interaction partner. Although participants assigned to the stress condition did not differ overall on psychological closeness from participants assigned to the control condition, participants with high cortisol responses to the stressor showed significantly higher ratings of psychological closeness to their interaction partner than participants with low cortisol responses. Our findings suggest that men may form closer temporary bonds following stressful situations that are accompanied by a significant cortisol response. We suggest that the traditional characterization of the male stress response in terms of "fight-or-flight" may be incomplete, and that social affiliation may in fact represent a common, adaptive response to stress in men. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    PubMed

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  4. Response of Desulfovibrio vulgaris to Alkaline Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolyar, S.; He, Q.; He, Z.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included threemore » ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).« less

  5. Lactose-induced cell death of beta-galactosidase mutants in Kluyveromyces lactis.

    PubMed

    Lodi, Tiziana; Donnini, Claudia

    2005-05-01

    The Kluyveromyces lactis lac4 mutants, lacking the beta-galactosidase gene, cannot assimilate lactose, but grow normally on many other carbon sources. However, when these carbon sources and lactose were simultaneously present in the growth media, the mutants were unable to grow. The effect of lactose was cytotoxic since the addition of lactose to an exponentially-growing culture resulted in 90% loss of viability of the lac4 cells. An osmotic stabilizing agent prevented cells killing, supporting the hypothesis that the lactose toxicity could be mainly due to intracellular osmotic pressure. Deletion of the lactose permease gene, LAC12, abolished the inhibitory effect of lactose and allowed the cell to assimilate other carbon substrates. The lac4 strains gave rise, with unusually high frequency, to spontaneous mutants tolerant to lactose (lar1 mutation: lactose resistant). These mutants were unable to take up lactose. Indeed, lar1 mutation turned out to be allelic to LAC12. The high mutability of the LAC12 locus may be an advantage for survival of K. lactis whose main habitat is lactose-containing niches.

  6. Stress response physiology of thermophiles.

    PubMed

    Ranawat, Preeti; Rawat, Seema

    2017-04-01

    Thermo (or hyperthermo) philic microorganisms are ubiquitous having a wide range of habitats from freshly fallen snow to pasteurized milk to geothermal areas like hot springs. The variations in physicochemical conditions, viz., temperature, pH, nutrient availability and light intensity in the habitats always pose stress conditions for the inhabitants leading to slow growth or cell death. The industrial processes used for harvesting secondary metabolites such as enzymes, toxins and organic acids also create stressed environments for thermophiles. The production of DNA-binding proteins, activation of reactive oxygen species detoxification system, compatible solute accumulation, expression of heat shock proteins and alterations in morphology are a few examples of physiological changes demonstrated by these microscopic lifeforms in stress. These microorganisms exhibit complex genetic and physiological changes to minimize, adapt to and repair damage caused by extreme environmental disturbances. These changes are termed as 'stress responses' which enable them to stabilize their homeostasis. The exploration of important thermophilic factors would pave the way in engineering the microbial strains for various biotechnological applications. This review article presents a picture of physiological responses of thermophiles against various stress conditions as their mechanisms to respond to stress make them model organisms to further explore them for basic and applied biology purposes.

  7. Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis.

    PubMed

    Borrero, Juan; Jiménez, Juan J; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2011-01-01

    Replacement of the signal peptide (SP) of the bacteriocins enterocin P (EntP) and hiracin JM79 (HirJM79), produced by Enterococcus faecium P13 and Enterococcus hirae DCH5, respectively, by the signal peptide of Usp45 (SP(usp45)), the major Sec-dependent protein secreted by Lactococcus lactis, permits the production, secretion, and functional expression of EntP and HirJM79 by L. lactis. Chimeric genes encoding the SP(usp45) fused to either mature EntP (entP), with or without the immunity gene (entiP) or to mature HirJM79 (hirJM79), with or without the immunity gene (hiriJM79), were cloned into the expression vector pMG36c, carrying the P(32) constitutive promoter, and into pNZ8048 under control of the inducible PnisA promoter. The production of EntP and HirJM79 by most of the L. lactis recombinant strains was 1.5- to 3.7-fold higher and up to 3.6-fold higher than by the E. faecium P13 and E. hirae DCH5 control strains, respectively. However, the specific antimicrobial activity of the recombinant EntP was 1.1- to 6.2-fold higher than that produced by E. faecium P13, while that of the HirJM79 was a 40% to an 89% of that produced by E. hirae DCH5. Chimeras of SP(usp45) fused to mature EntP or HirJM79 drive the production and secretion of these bacteriocins in L. lactis in the absence of specific immunity and secretion proteins. The supernatants of the recombinant L. lactis NZ9000 strains, producers of EntP, showed a much higher antimicrobial activity against Listeria spp. than that of the recombinant L. lactis NZ9000 derivatives, producers of HirJM79.

  8. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms

    PubMed Central

    Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa

    2015-01-01

    In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat–drought stress as a major abiotic stress combination and, drought–pathogen and heat–pathogen as examples of abiotic–biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance. PMID:26442037

  9. When Does Stress Help or Harm? The Effects of Stress Controllability and Subjective Stress Response on Stroop Performance

    PubMed Central

    Henderson, Roselinde K.; Snyder, Hannah R.; Gupta, Tina; Banich, Marie T.

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest

  10. When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

    PubMed

    Henderson, Roselinde K; Snyder, Hannah R; Gupta, Tina; Banich, Marie T

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop

  11. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    PubMed

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  12. Waterborne aripiprazole blunts the stress response in zebrafish

    NASA Astrophysics Data System (ADS)

    Barcellos, Heloísa Helena De Alcantara; Kalichak, Fabiana; da Rosa, João Gabriel Santos; Oliveira, Thiago Acosta; Koakoski, Gessi; Idalencio, Renan; de Abreu, Murilo Sander; Giacomini, Ana Cristina Varrone; Fagundes, Michele; Variani, Cristiane; Rossini, Mainara; Piato, Angelo L.; Barcellos, Leonardo José Gil

    2016-11-01

    Here we provide, at least to our knowledge, the first evidence that aripiprazole (APPZ) in the water blunts the stress response of exposed fish in a concentration ten times lower than the concentration detected in the environment. Although the mechanism of APPZ in the neuroendocrine axis is not yet determined, our results highlight that the presence of APPZ residues in the environment may interfere with the stress responses in fish. Since an adequate stress response is crucial to restore fish homeostasis after stressors, fish with impaired stress response may have trouble to cope with natural and/or imposed stressors with consequences to their welfare and survival.

  13. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment.

    PubMed

    Cavanagh, Daniel; Fitzgerald, Gerald F; McAuliffe, Olivia

    2015-05-01

    Lactococcus lactis is an organism of substantial economic importance, used extensively in the production of fermented foods and widely held to have evolved from plant strains. The domestication of this organism to the milk environment is associated with genome reduction and gene decay, and the acquisition of specific genes involved in protein and lactose utilisation by horizontal gene transfer. In recent years, numerous studies have focused on uncovering the physiology and molecular biology of lactococcal strains from the wider environment for exploitation in the dairy industry. This in turn has facilitated comparative genome analysis of lactococci from different environments and provided insight into the natural phenotypic and genetic diversity of L. lactis. This diversity may be exploited in dairy fermentations to develop products with improved quality and sensory attributes. In this review, we discuss the classification of L. lactis and the problems that arise with phenotype/genotype designation. We also discuss the adaptation of non-dairy lactococci to milk, the traits associated with this adaptation and the potential application of non-dairy lactococci to dairy fermentations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.

    PubMed

    Yamaoka, Chizuru; Kurita, Osamu; Kubo, Tomoko

    2014-12-01

    The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Stress biomarker responses to different protocols of forced exercise in chronically stressed rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2017-01-01

    Stress is one of the most significant causes of major health problems on a global scale. The beneficial effects of exercise on combating stress, however, are well-established. The present study investigated the stress biomarker responses, such as serum corticosterone, interlukin-1β, and glucose levels, to different (preventive, therapeutic, protective, and continuous) protocols of forced exercise under stress. Male rats were randomly allocated to the following five groups: stressed, preventive, therapeutic, protective, and continuous (and/or pre-stress, post-stress, stress-accompanied, and both pre-stress and stress-accompanied exercise respectively) exercise groups. Stress was applied 6 h/day for 21 days and the treadmill running was employed at a speed of 20-21 m/min for 21 and 42 days. The findings showed that the therapeutic, protective, and continuous exercises led to reduced corticosterone and glucose levels. Whereas, the preventive exercise did not reverse the stress responses, and that the therapeutic exercise led to a significant decline in serum interlukin-1β. It is concluded that protective, therapeutic, and, particularly, continuous exercises lead to significant reductions in serum corticosterone and the associated stress-induced hyperglycemia. Moreover, it appears that the timing and duration of exercise are the two factors contributing to changes in stress biomarker responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dysfunctional stress responses in chronic pain.

    PubMed

    Woda, Alain; Picard, Pascale; Dutheil, Frédéric

    2016-09-01

    Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nitrogen stress response and stringent response are coupled in Escherichia coli

    PubMed Central

    Brown, Daniel R.; Barton, Geraint; Pan, Zhensheng; Buck, Martin; Wigneshweraraj, Sivaramesh

    2014-01-01

    Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria. PMID:24947454

  18. 2016 Microbial Stress Response GRC/GRS

    DTIC Science & Technology

    2016-09-13

    Holyoke College South Hadley, MA Chairs: Eduardo A. Groisman & Dianne K. Newman Vice Chairs: Petra A. Levin & William W. Navarre Contributors...by Discussion Leader 9:10 am - 9:35 am Martin Ackermann (ETH Zurich, Switzerland) "History-Dependence in Bacterial Stress Response – Scaling up from...Government. Microbial Stress Response GRC – Registration List Ackermann, Martin ETH Zurich Speaker Registered Andersson, Dan I Uppsala

  19. Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of Lactococcus lactis.

    PubMed

    Sadovskaya, Irina; Vinogradov, Evgeny; Courtin, Pascal; Armalyte, Julija; Meyrand, Mickael; Giaouris, Efstathios; Palussière, Simon; Furlan, Sylviane; Péchoux, Christine; Ainsworth, Stuart; Mahony, Jennifer; van Sinderen, Douwe; Kulakauskas, Saulius; Guérardel, Yann; Chapot-Chartier, Marie-Pierre

    2017-09-12

    Polysaccharides are ubiquitous components of the Gram-positive bacterial cell wall. In Lactococcus lactis , a polysaccharide pellicle (PSP) forms a layer at the cell surface. The PSP structure varies among lactococcal strains; in L. lactis MG1363, the PSP is composed of repeating hexasaccharide phosphate units. Here, we report the presence of an additional neutral polysaccharide in L. lactis MG1363 that is a rhamnan composed of α-l-Rha trisaccharide repeating units. This rhamnan is still present in mutants devoid of the PSP, indicating that its synthesis can occur independently of PSP synthesis. High-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) analysis of whole bacterial cells identified a PSP at the surface of wild-type cells. In contrast, rhamnan was detected only at the surface of PSP-negative mutant cells, indicating that rhamnan is located underneath the surface-exposed PSP and is trapped inside peptidoglycan. The genetic determinants of rhamnan biosynthesis appear to be within the same genetic locus that encodes the PSP biosynthetic machinery, except the gene tagO encoding the initiating glycosyltransferase. We present a model of rhamnan biosynthesis based on an ABC transporter-dependent pathway. Conditional mutants producing reduced amounts of rhamnan exhibit strong morphological defects and impaired division, indicating that rhamnan is essential for normal growth and division. Finally, a mutation leading to reduced expression of lcpA , encoding a protein of the LytR-CpsA-Psr (LCP) family, was shown to severely affect cell wall structure. In lcpA mutant cells, in contrast to wild-type cells, rhamnan was detected by HR-MAS NMR, suggesting that LcpA participates in the attachment of rhamnan to peptidoglycan. IMPORTANCE In the cell wall of Gram-positive bacteria, the peptidoglycan sacculus is considered the major structural component, maintaining cell shape and integrity. It is decorated with other glycopolymers, including

  20. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    PubMed

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  1. Comfort food is comforting to those most stressed: evidence of the chronic stress response network in high stress women.

    PubMed

    Tomiyama, A Janet; Dallman, Mary F; Epel, Elissa S

    2011-11-01

    Chronically stressed rodents who are allowed to eat calorie-dense "comfort" food develop greater mesenteric fat, which in turn dampens hypothalamic-pituitary-adrenocortical (HPA) axis activity. We tested whether similar relations exist in humans, at least cross-sectionally. Fifty-nine healthy premenopausal women were exposed to a standard laboratory stressor to examine HPA response to acute stress and underwent diurnal saliva sampling for basal cortisol and response to dexamethasone administration. Based on perceived stress scores, women were divided into extreme quartiles of low versus high stress categories. We found as hypothesized that the high stress group had significantly greater BMI and sagittal diameter, and reported greater emotional eating. In response to acute lab stressor, the high stress group showed a blunted cortisol response, lower diurnal cortisol levels, and greater suppression in response to dexamethasone. These cross-sectional findings support the animal model, which suggests that long-term adaptation to chronic stress in the face of dense calories result in greater visceral fat accumulation (via ingestion of calorie-dense food), which in turn modulates HPA axis response, resulting in lower cortisol levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Growth of infants fed formula supplemented with Bifidobacterium lactis Bb12 or Lactobacillus GG: a systematic review of randomized controlled trials.

    PubMed

    Szajewska, Hania; Chmielewska, Anna

    2013-11-12

    Growth is an essential outcome measure for evaluating the safety of any new ingredients, including probiotics, added to infant formulae. The aim of this systematic review was to determine the effects of supplementation of infant formulae with Bifidobacterium lactis Bb12 (B lactis) and/or Lactobacillus rhamnosus GG (LGG) compared with unsupplemented formula on the growth of healthy infants. The MEDLINE, EMBASE, and Cochrane Library databases were searched in June 2013 for relevant randomized controlled trials (RCTs) conducted in healthy term infants. Unpublished data were obtained from the manufacturer of B lactis-supplemented formula. The primary outcome measures were weight, length, and head circumference. Nine eligible trials were identified. Compared with unsupplemented controls, supplementation of infant formula with B lactis had no effect on weight gain [4 RCTs, n = 266, mean difference (MD) 0.96 g/day, 95% confidence interval (CI) -0.70 to 2.63)], length gain (4 RCTs, n = 261, MD -0.39 mm/month, 95% CI -1.32 to 0.53), or head circumference gain (3 RCTs, n = 207, MD 0.56 mm/month, 95% CI -0.17 to 1.30). Data limited to one small (n = 105) trial suggest that infants who received standard infant formula supplemented with LGG grew significantly better. No such effect was observed in infants fed hydrolyzed formula supplemented with LGG. Supplementation of infant formula with B lactis results in growth similar to what is found in infants fed unsupplemented formula. Limited data do not allow one to reach a conclusion regarding the effect of LGG supplementation on infant growth.

  3. Associations between circadian and stress response cortisol in children.

    PubMed

    Simons, Sterre S H; Cillessen, Antonius H N; de Weerth, Carolina

    2017-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis functioning is characterized by the baseline production of cortisol following a circadian rhythm, as well as by the superimposed production of cortisol in response to a stressor. However, it is relatively unknown whether the basal cortisol circadian rhythm is associated with the cortisol stress response in children. Since alterations in cortisol stress responses have been associated with mental and physical health, this study investigated whether the cortisol circadian rhythm is associated with cortisol stress responses in 6-year-old children. To this end, 149 normally developing children (M age  = 6.09 years; 70 girls) participated in an innovative social evaluative stress test that effectively provoked increases in cortisol. To determine the cortisol stress response, six cortisol saliva samples were collected and two cortisol stress response indices were calculated: total stress cortisol and cortisol stress reactivity. To determine children's cortisol circadian rhythm eight cortisol circadian samples were collected during two days. Total diurnal cortisol and diurnal cortisol decline scores were calculated as indices of the cortisol circadian rhythm. Hierarchical regression analyses indicated that higher total diurnal cortisol as well as a smaller diurnal cortisol decline, were both uniquely associated with higher total stress cortisol. No associations were found between the cortisol circadian rhythm indices and cortisol stress reactivity. Possible explanations for the patterns found are links with children's self-regulatory capacities and parenting quality.

  4. Stress-related cortisol responsivity modulates prospective memory.

    PubMed

    Glienke, K; Piefke, M

    2017-12-01

    It is known that there is inter-individual variation in behavioural and physiological stress reactions to the same stressor. The present study aimed to examine the impact of cortisol responsivity on performance in a complex real life-like prospective memory (PM) paradigm by a re-analysis of data published previously, with a focus on the taxonomy of cognitive dimensions of PM. Twenty-one male subjects were stressed with the Socially Evaluated Cold Pressor Test (SECPT) before the planning of intentions. Another group of 20 males underwent a control procedure. Salivary cortisol was measured to assess the intensity of the biological stress response. Additionally, participants rated the subjective experience of stress on a 5-point rating scale. Stressed participants were post-hoc differentiated in high (n = 11) and low cortisol responders (n = 10). Cortisol niveau differed significantly between the two groups, whereas subjective stress ratings did not. PM performance of low cortisol responders was stable across time and the PM performance of controls declined. High cortisol responders showed a nominally weaker PM retrieval across the early trails and significantly improved only on the last trial. The data demonstrate for the first time that participants with a low cortisol responsivity may benefit from stress exposure before the planning phase of PM. PM performance of high cortisol responders shows a more inconsistent pattern, which may be interpreted in the sense of a recency effect in PM retrieval. Alternatively, high cortisol responses may have a deteriorating effect on PM retrieval, which disappeared on the last trials of the task as a result of the decrease of cortisol levels across time. Importantly, the data also demonstrate that the intensity of cortisol responses does not necessarily correspond to the intensity of the mental experience of stress. © 2017 British Society for Neuroendocrinology.

  5. Oral Immunization with a Recombinant Lactococcus lactis-Expressing HIV-1 Antigen on Group A Streptococcus Pilus Induces Strong Mucosal Immunity in the Gut.

    PubMed

    Chamcha, Venkateswarlu; Jones, Andrew; Quigley, Bernard R; Scott, June R; Amara, Rama Rao

    2015-11-15

    The induction of a potent humoral and cellular immune response in mucosal tissue is important for the development of an effective HIV vaccine. Most of the current HIV vaccines under development use the i.m. route for immunization, which is relatively poor in generating potent and long-lived mucosal immune responses. In this article, we explore the ability of an oral vaccination with a probiotic organism, Lactococcus lactis, to elicit HIV-specific immune responses in the mucosal and systemic compartments of BALB/c mice. We expressed the HIV-1 Gag-p24 on the tip of the T3 pilus of Streptococcus pyogenes as a fusion to the Cpa protein (LL-Gag). After four monthly LL-Gag oral immunizations, we observed strong Gag-specific IgG and IgA responses in serum, feces, and vaginal secretions. However, the Gag-specific CD8 T cell responses in the blood were at or below our detection limit. After an i.m. modified vaccinia Ankara/Gag boost, we observed robust Gag-specific CD8 T cell responses both in systemic and in mucosal tissues, including intraepithelial and lamina propria lymphocytes of the small intestine, Peyer's patches, and mesenteric lymph nodes. Consistent with strong immunogenicity, the LL-Gag induced activation of CD11c(+) CD11b(+) dendritic cells in the Peyer's patches after oral immunization. Our results demonstrate that oral immunization with L. lactis expressing an Ag on the tip of the group A Streptococcus pilus serves as an excellent vaccine platform to induce strong mucosal humoral and cellular immunity against HIV. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Job stress factors, stress response, and social support in association with insomnia of Japanese male workers.

    PubMed

    Nishitani, Naoko; Sakakibara, Hisataka

    2010-01-01

    The aim of the present study was to examine the relation of insomnia with job stress factors, stress response, and social support. A self-completed questionnaire survey was conducted in 212 male Japanese workers at a synthetic fiber plant. With regard to insomnia, subjects were asked the first 5 of the 8 questions on the Athens Insomnia Scale (AIS). Job stress factors, stress response and social support were assessed using the Job Stress Questionnaire. Multiple regression analyses showed that psychological job stress factors of poor appropriateness of work and high qualitative workload were associated with insomnia. The psychological stress response of depression and physical stress responses were also related with insomnia. Depression was also related to appropriateness of work. The present results showed that insomnia was closely related with the psychological job stress factor of appropriateness of work and the psychological response of depression. These mutual relationships between insomnia and poor mental health need be investigated further.

  7. Biofortification of riboflavin and folate in idli batter, based on fermented cereal and pulse, by Lactococcus lactis N8 and Saccharomyces boulardii SAA655.

    PubMed

    Chandrasekar Rajendran, S C; Chamlagain, B; Kariluoto, S; Piironen, V; Saris, P E J

    2017-06-01

    Lactococcus lactis N8 and Saccharomyces boulardii SAA655 were investigated for their ability to synthesize B-vitamins (riboflavin and folate) and their functional role as microbial starters in idli fermentation. In this study, ultra-high performance liquid chromatography and microbiological assay were used to determine the total riboflavin and folate content respectively. Increased levels of folate were evident in both L. lactis N8 and S. boulardii SAA655 cultivated medium. Enhanced riboflavin levels were found only in S. boulardii SAA655 grown medium, whereas decreased riboflavin level was found in L. lactis N8 cultivated medium. To evaluate the functional role of microbial starter strains, L. lactis N8 and S. boulardii SAA655 were incorporated individually and in combination into idli batter, composed of wet grounded rice and black gram. For the experiments, naturally fermented idli batter was considered as control. The results indicated that natural idli fermentation did not enhance the riboflavin level and depleted folate levels by half. In comparison with control, L. lactis N8 and S. boulardii SAA655 incorporated idli batter (individually and in combination) increased riboflavin and folate levels by 40-90%. Apart from compensating the folate loss caused by natural fermentation, S. boulardii SAA655 fermented idli batter individually and in combination with L. lactis N8 also showed the highest leavening character. Moreover, the microbial starter incorporation did not significantly influence the pH of idli batter. Incorporation of L. lactis N8 and S. boulardii SAA655 can evidently enhance the functional and technological characteristics of idli batter. UN General Assembly declared 2016 the International Year of pulses emphasizing the importance of legumes as staple food. Furthermore, this is the first experimental report of in situ biofortifcation of riboflavin and folate using microbes in pulse based fermented staple food. The current study suggests possible

  8. Stress Response and Artemisinin Resistance in Malaria Parasite

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0241 TITLE: Stress Response and Artemisinin Resistance in Malaria Parasite PRINCIPAL INVESTIGATOR: Juan C. Pizarro...SUBTITLE Stress Response and Artemisinin Resistance in Malaria Parasite 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0241 5c. PROGRAM ELEMENT...explored the role of GRP78, a protein chaperone from the stress response, in arteminisin resistant parasites. The GRP78 expression at the mRNA and

  9. Heterologous expression of an α-amylase inhibitor from common bean (Phaseolus vulgaris) in Kluyveromyces lactis and Saccharomyces cerevisiae.

    PubMed

    Brain-Isasi, Stephanie; Álvarez-Lueje, Alejandro; Higgins, Thomas Joseph V

    2017-06-15

    Phaseolamin or α-amylase inhibitor 1 (αAI) is a glycoprotein from common beans (Phaseolus vulgaris L.) that inhibits some insect and mammalian α-amylases. Several clinical studies support the beneficial use of bean αAI for control of diabetes and obesity. Commercial extracts of P. vulgaris are available but their efficacy is still under question, mainly because some of these extracts contain antinutritional impurities naturally present in bean seeds and also exhibit a lower specific activity αAI. The production of recombinant αAI allows to overcome these disadvantages and provides a platform for the large-scale production of pure and functional αAI protein for biotechnological and pharmaceutical applications. A synthetic gene encoding αAI from the common bean (Phaseolus vulgaris cv. Pinto) was codon-optimised for expression in yeasts (αAI-OPT) and cloned into the protein expression vectors pKLAC2 and pYES2. The yeasts Kluyveromyces lactis GG799 (and protease deficient derivatives such as YCT390) and Saccharomyces cerevisiae YPH499 were transformed with the optimised genes and transformants were screened for expression by antibody dot blot. Recombinant colonies of K. lactis YCT390 that expressed and secreted functional αAI into the culture supernatants were selected for further analyses. Recombinant αAI from K. lactis YCT390 was purified using anion-exchange and affinity resins leading to the recovery of a functional inhibitor. The identity of the purified αAI was confirmed by mass spectrometry. Recombinant clones of S. cerevisiae YPH499 expressed functional αAI intracellularly, but did not secrete the protein. This is the first report describing the heterologous expression of the α-amylase inhibitor 1 (αAI) from P. vulgaris in yeasts. We demonstrated that recombinant strains of K. lactis and S. cerevisiae expressed and processed the αAI precursor into mature and active protein and also showed that K. lactis secretes functional αAI.

  10. Coping as a mediator of the relationship between stress mindset and psychological stress response: a pilot study.

    PubMed

    Horiuchi, Satoshi; Tsuda, Akira; Aoki, Shuntaro; Yoneda, Kenichiro; Sawaguchi, Yusuke

    2018-01-01

    Coping, the cognitive and behavioral effort required to manage the effects of stressors, is important in determining psychological stress responses (ie, the emotional, behavioral, and cognitive responses to stressors). Coping was classified into categories of emotional expression (eg, negative feelings and thoughts), emotional support seeking (eg, approaching loved ones to request encouragement), cognitive reinterpretation (eg, reframing a problem positively), and problem solving (eg, working to solve the problem). Stress mindset refers to the belief that stress has enhancing (stress-is-enhancing mindset) or debilitating consequences (stress-is-debilitating mindset). This study examined whether coping mediated the relationship between stress mindset and psychological stress responses. Psychological stress responses were conceptualized as depression-anxiety, irritability-anger, and helplessness. The following two hypotheses were tested: 1) a stronger stress-is-enhancing mindset is associated with less frequent use of emotional expression, emotional support seeking, and problem solving, which in turn is associated with lower levels of depression-anxiety, irritability-anger, and helplessness; 2) a stronger stress-is-debilitating mindset is associated with more frequent use of these coping strategies, which in turn is associated with higher levels of these psychological stress responses. The participants were 30 male and 94 female undergraduate and graduate students (mean age =20.4 years). Stress mindset, coping, and psychological stress responses were measured using self-report questionnaires. Six mediation analyses were performed with stress-is-enhancing mindset or stress-is-debilitating mindset as the independent variable, one of the psychological stress responses as the dependent variable, and the four coping strategies as mediators. Emotional expression partially mediated the relationship between a strong stress-is-debilitating mindset and higher irritability

  11. Coping as a mediator of the relationship between stress mindset and psychological stress response: a pilot study

    PubMed Central

    Horiuchi, Satoshi; Tsuda, Akira; Aoki, Shuntaro; Yoneda, Kenichiro; Sawaguchi, Yusuke

    2018-01-01

    Background Coping, the cognitive and behavioral effort required to manage the effects of stressors, is important in determining psychological stress responses (ie, the emotional, behavioral, and cognitive responses to stressors). Coping was classified into categories of emotional expression (eg, negative feelings and thoughts), emotional support seeking (eg, approaching loved ones to request encouragement), cognitive reinterpretation (eg, reframing a problem positively), and problem solving (eg, working to solve the problem). Stress mindset refers to the belief that stress has enhancing (stress-is-enhancing mindset) or debilitating consequences (stress-is-debilitating mindset). This study examined whether coping mediated the relationship between stress mindset and psychological stress responses. Psychological stress responses were conceptualized as depression-anxiety, irritability-anger, and helplessness. The following two hypotheses were tested: 1) a stronger stress-is-enhancing mindset is associated with less frequent use of emotional expression, emotional support seeking, and problem solving, which in turn is associated with lower levels of depression-anxiety, irritability-anger, and helplessness; 2) a stronger stress-is-debilitating mindset is associated with more frequent use of these coping strategies, which in turn is associated with higher levels of these psychological stress responses. Materials and methods The participants were 30 male and 94 female undergraduate and graduate students (mean age =20.4 years). Stress mindset, coping, and psychological stress responses were measured using self-report questionnaires. Six mediation analyses were performed with stress-is-enhancing mindset or stress-is-debilitating mindset as the independent variable, one of the psychological stress responses as the dependent variable, and the four coping strategies as mediators. Results Emotional expression partially mediated the relationship between a strong stress

  12. Stressors, Resources, and Stress Responses in Pregnant African American Women

    PubMed Central

    Giurgescu, Carmen; Kavanaugh, Karen; Norr, Kathleen F.; Dancy, Barbara L.; Twigg, Naomi; McFarlin, Barbara L.; Engeland, Christopher G.; Hennessy, Mary Dawn; White-Traut, Rosemary C.

    2013-01-01

    This research aimed to develop an initial understanding of the stressors, stress responses, and personal resources that impact African American women during pregnancy, potentially leading to preterm birth. Guided by the ecological model, a prospective, mixed-methods, complementarity design was used with 11 pregnant women and 8 of their significant others. Our integrated analysis of quantitative and qualitative data revealed 2 types of stress responses: high stress responses (7 women) and low stress responses (4 women). Patterns of stress responses were seen in psychological stress and cervical remodeling (attenuation or cervical length). All women in the high stress responses group had high depression and/or low psychological well-being and abnormal cervical remodeling at one or both data collection times. All but 1 woman had at least 3 sources of stress (racial, neighborhood, financial, or network). In contrast, 3 of the 4 women in the low stress responses group had only 2 sources of stress (racial, neighborhood, financial, or network) and 1 had none; these women also reported higher perceived support. The findings demonstrate the importance of periodically assessing stress in African American women during pregnancy, particularly related to their support network as well as the positive supports they receive. PMID:23360946

  13. WRKY transcription factors in plant responses to stresses.

    PubMed

    Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua

    2017-02-01

    The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.

  14. The Role of the Transcriptional Response to DNA Replication Stress

    PubMed Central

    Herlihy, Anna E.; de Bruin, Robertus A.M.

    2017-01-01

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage. PMID:28257104

  15. The Role of the Transcriptional Response to DNA Replication Stress.

    PubMed

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  16. Towards Establishment of a Rice Stress Response Interactome

    PubMed Central

    Seo, Young-Su; Chern, Mawsheng; Bartley, Laura E.; Han, Muho; Jung, Ki-Hong; Lee, Insuk; Walia, Harkamal; Richter, Todd; Xu, Xia; Cao, Peijian; Bai, Wei; Ramanan, Rajeshwari; Amonpant, Fawn; Arul, Loganathan; Canlas, Patrick E.; Ruan, Randy; Park, Chang-Jin; Chen, Xuewei; Hwang, Sohyun; Jeon, Jong-Seong; Ronald, Pamela C.

    2011-01-01

    Rice (Oryza sativa) is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%–60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H) assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein–protein interaction (PPI) assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance. PMID:21533176

  17. The relationship between personality and the response to acute psychological stress.

    PubMed

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, André; Luo, Yuejia

    2017-12-04

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular reactivity, hypothalamic-pituitary-adrenal axis reactivity, and subjective affect (including positive affect, negative affect and subjective controllability) in healthy individuals. The Generalized Estimating Equations (GEE) approach was applied to account for the relationship between personality traits and stress responses. Results suggested that higher neuroticism predicted lower heart rate stress reactivity, lower cortisol stress response, more decline of positive affect and lower subjective controllability. Individuals higher in extraversion showed smaller cortisol activation to stress and less increase of negative affect. In addition, higher openness score was associated with lower cortisol stress response. These findings elucidate that neuroticism, extraversion and openness are important variables associated with the stress response and different dimensions of personality trait are associated with different aspects of the stress response.

  18. ABA signaling in stress-response and seed development.

    PubMed

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  19. A General Method for Selection of α-Acetolactate Decarboxylase-Deficient Lactococcus lactis Mutants To Improve Diacetyl Formation

    PubMed Central

    Curic, Mirjana; Stuer-Lauridsen, Birgitte; Renault, Pierre; Nilsson, Dan

    1999-01-01

    The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the α-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. PMID:10049884

  20. Regulation of Acetate Kinase Isozymes and Its Importance for Mixed-Acid Fermentation in Lactococcus lactis

    PubMed Central

    Puri, Pranav; Goel, Anisha; Bochynska, Agnieszka

    2014-01-01

    Acetate kinase (ACK) converts acetyl phosphate to acetate along with the generation of ATP in the pathway for mixed-acid fermentation in Lactococcus lactis. The reverse reaction yields acetyl phosphate for assimilation purposes. Remarkably, L. lactis has two ACK isozymes, and the corresponding genes are present in an operon. We purified both enzymes (AckA1 and AckA2) from L. lactis MG1363 and determined their oligomeric state, specific activities, and allosteric regulation. Both proteins form homodimeric complexes, as shown by size exclusion chromatography and static light-scattering measurements. The turnover number of AckA1 is about an order of magnitude higher than that of AckA2 for the reaction in either direction. The Km values for acetyl phosphate, ATP, and ADP are similar for both enzymes. However, AckA2 has a higher affinity for acetate than does AckA1, suggesting an important role under acetate-limiting conditions despite the lower activity. Fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, and phospho-enol-pyruvate inhibit the activities of AckA1 and AckA2 to different extents. The allosteric regulation of AckA1 and AckA2 and the pool sizes of the glycolytic intermediates are consistent with a switch from homolactic to mixed-acid fermentation upon slowing of the growth rate. PMID:24464460

  1. Relation between stress and cytokine responses in inner-city mothers.

    PubMed

    Gruenberg, David A; Wright, Rosalind J; Visness, Cynthia M; Jaffee, Katy F; Bloomberg, Gordon R; Cruikshank, William W; Kattan, Meyer; Sandel, Megan T; Wood, Robert A; Gern, James E

    2015-11-01

    Women in poor urban neighborhoods have high rates of stress and allergic diseases, but whether stress or stress correlates such as depression promote inflammatory and type 2 cytokine responses is unknown. To examine associations among external stressors, perceived stress, depression, and peripheral blood mononuclear cell cytokine responses of mothers enrolled in the Urban Environment and Childhood Asthma Study and test the hypothesis that stress would be positively associated with type 2 and selected proinflammatory (tumor necrosis factor-α and interleukin-8) responses. Questionnaire data from mothers living in 4 inner cities included information about external stress, stress perception, and depression. The external stress domains (interpersonal problems, housing, and neighborhood stress) were combined into a Composite Stressor score. Peripheral blood mononuclear cells were stimulated ex vivo and cytokine responses to innate, adaptive, and polyclonal immune stimuli were compared with stress and depression scores for 469 of the 606 study participants. There were no significant positive associations between Composite Stressor scores, perceived stress, or depression scores and proinflammatory or type 2 cytokine responses, and these findings were not modified by allergy or asthma status. There were some modest associations with individual stressors and cytokine responses, but no consistent relations were noted. Depression was associated with decreased responses to some stimuli, particularly dust mite. Composite measurements of stressors, perceived stress, or depression were not positively related to proinflammatory or type 2 cytokine responses in these young urban women. These data do not support the hypothesis that these factors promote cytokine responses associated with allergy. ClinicalTrials.gov, identifier NCT00114881. Copyright © 2015. Published by Elsevier Inc.

  2. Growth phase-dependent proteomes of the Malaysian isolated Lactococcus lactis dairy strain M4 using label-free qualitative shotgun proteomics analysis.

    PubMed

    Yap, Theresa Wan Chen; Rabu, Amir; Abu Bakar, Farah Diba; Rahim, Raha Abdul; Mahadi, Nor Muhammad; Illias, Rosli Md; Murad, Abdul Munir Abdul

    2014-01-01

    Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MS(E)) approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications.

  3. Genome Sequence of the Cheese-Starter Strain Lactobacillus delbrueckii subsp. lactis CRL 581.

    PubMed

    Hebert, Elvira María; Raya, Raúl R; Brown, Lucía; Font de Valdez, Graciela; Savoy de Giori, Graciela; Taranto, María Pía

    2013-08-08

    We report the genome sequence of Lactobacillus delbrueckii subsp. lactis CRL 581 (1,911,137 bp, GC 49.7%), a proteolytic strain isolated from a homemade Argentinian hard cheese which has a key role in bacterial nutrition and releases bioactive health-beneficial peptides from milk proteins.

  4. Nongenetically modified Lactococcus lactis-adjuvanted vaccination enhanced innate immunity against Helicobacter pylori.

    PubMed

    Liu, Wei; Tan, Zhoulin; Liu, Hai; Zeng, Zhiqin; Luo, Shuanghui; Yang, Huimin; Zheng, Lufeng; Xi, Tao; Xing, Yingying

    2017-10-01

    Gram-positive enhancer matrix particles (GEM) produced by Lactococcus lactis can enhance vaccine-induced immune response. However, the mechanism under which this adjuvant mounts the efficacy of orally administered vaccines remains unexplored. We used a prophylactic mice model to investigate the mechanism of GEM-adjuvanted vaccination. Helicobacter pylori urease-specific antibody response was monitored and detected in murine serum by ELISA. Urease-specific splenic cytokine profile was examined. Gastric inflammatory responses were measured on day 43 or 71 by quantitative real-time PCR, flow cytometry and histology. We found that GEM enhanced the efficiency of oral H. pylori vaccine by promoting innate immunity. The vaccine CUE-GEM composed of GEM particles and recombinant antigen CTB-UE provided protection of immunized mice against H. pylori insult. The protective response was associated with induction of postimmunization gastritis and local Th1/Th17 cell-medicated immune response. We showed that innate inflammatory responses including neutrophil chemokines CXCL1-2, neutrophils, and antimicrobial proteins S100A8 and MUC1 were significantly elevated. Within all infected mice, S100A8 and MUC1 levels were negatively correlated with H. pylori burden. Strikingly, mice receiving GEM also show reduction of colonization, possibly through natural host response pathways to recruit CD4 + T cells and promote S100A8 expression. These findings suggest that GEM-based vaccine may impact Th1/Th17 immunity to orchestrate innate immune response against H. pylori infection. © 2017 John Wiley & Sons Ltd.

  5. In response to community violence: coping strategies and involuntary stress responses among Latino adolescents.

    PubMed

    Epstein-Ngo, Quyen; Maurizi, Laura K; Bregman, Allyson; Ceballo, Rosario

    2013-01-01

    Among poor, urban adolescents, high rates of community violence are a pressing public health concern. This study relies on a contextual framework of stress and coping to investigate how coping strategies and involuntary stress responses may both mediate and moderate the relation between exposure to community violence and psychological well-being. Our sample consists of 223 ninth grade Latino adolescents from poor, urban families. In response to community violence, these adolescents reported using an array of coping strategies as well as experiencing a number of involuntary stress responses; the most frequent coping responses were turning to religion and seeking social support. Hierarchical regression analyses demonstrated that involuntary stress responses mediated the relations between both witnessing or being victimized by violence and poorer psychological functioning, while coping strategies moderated these relations. These findings suggest that the negative psychological effects of exposure to community violence may, in part, be explained by involuntary stress responses, while religious-based coping may serve as a protective factor.

  6. A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia.

    PubMed

    Dan, Tong; Liu, Wenjun; Sun, Zhihong; Lv, Qiang; Xu, Haiyan; Song, Yuqin; Zhang, Heping

    2014-06-09

    Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics.

  7. A novel multi-locus sequence typing (MLST) protocol for Leuconostoc lactis isolates from traditional dairy products in China and Mongolia

    PubMed Central

    2014-01-01

    Background Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. Results Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. Conclusions Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics. PMID:24912963

  8. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of epsD.

    PubMed

    Frantzen, Cyril A; Kleppen, Hans Petter; Holo, Helge

    2018-02-01

    Undefined mesophilic mixed (DL) starter cultures are used in the production of continental cheeses and contain unknown strain mixtures of Lactococcus lactis and leuconostocs. The choice of starter culture affects the taste, aroma, and quality of the final product. To gain insight into the diversity of Lactococcus lactis strains in starter cultures, we whole-genome sequenced 95 isolates from three different starter cultures. Pan-genomic analyses, which included 30 publically available complete genomes, grouped the strains into 21 L. lactis subsp . lactis and 28 L. lactis subsp. cremoris lineages. Only one of the 95 isolates grouped with previously sequenced strains, and the three starter cultures showed no overlap in lineage distributions. The culture diversity was assessed by targeted amplicon sequencing using purR , a core gene, and epsD , present in 93 of the 95 starter culture isolates but absent in most of the reference strains. This enabled an unprecedented discrimination of starter culture Lactococcus lactis and revealed substantial differences between the three starter cultures and compositional shifts during the cultivation of cultures in milk. IMPORTANCE In contemporary cheese production, standardized frozen seed stock starter cultures are used to ensure production stability, reproducibility, and quality control of the product. The dairy industry experiences significant disruptions of cheese production due to phage attacks, and one commonly used countermeasure to phage attack is to employ a starter rotation strategy, in which two or more starters with minimal overlap in phage sensitivity are used alternately. A culture-independent analysis of the lactococcal diversity in complex undefined starter cultures revealed large differences between the three starter cultures and temporal shifts in lactococcal composition during the production of bulk starters. A better understanding of the lactococcal diversity in starter cultures will enable the development of

  9. Transactional Associations Between Youths’ Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    PubMed Central

    Agoston, Anna Monica; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict subsequent depression. Youth (M age = 12.41; SD = 1.19; 86 girls, 81 boys) and their maternal caregivers completed semi-structured interviews and questionnaires at three annual waves. Multi-group comparison path analyses were conducted to examine sex and stress-level differences in the proposed reciprocal-influence model. In girls and in youth exposed to high levels of peer stress, maladaptive stress responses predicted more depressive symptoms and adaptive stress responses predicted fewer depressive symptoms at each wave. These findings suggest the utility of preventive interventions for depression designed to enhance the quality of girls’ stress responses. In boys, depression predicted less adaptive and more maladaptive stress responses, but only at the second wave. These findings suggest that interventions designed to reduce boys’ depressive symptoms may help them develop more adaptive stress responses. PMID:20852929

  10. Chronic Smoking, Trait Anxiety, and the Physiological Response to Stress.

    PubMed

    Wiggert, Nicole; Wilhelm, Frank H; Nakajima, Motohiro; al'Absi, Mustafa

    2016-10-14

    Both chronic smoking and trait anxiety have been associated with dysregulations in psychobiological stress response systems. However, these factors have not been studied in conjunction. We expected trait anxiety and smoking status to attenuate stress reactivity. Furthermore, we expected an allostatic load effect resulting in particularly attenuated stress reactivity in high-anxious smokers. In addition, high-anxious smokers were expected to exhibit increased urges to smoke in response to stress. 115 smokers and 37 nonsmokers, aged 18-64 years, completed a laboratory session including mental stressors such as evaluated public speaking and mental arithmetic. Trait anxiety was assessed using Spielberger's State-Trait Anxiety Inventory. Cardiovascular autonomic indices, salivary cortisol, and the desire to smoke were measured at baseline, during stressors, and at recovery. Regression analyses showed that smokers exhibited attenuated cardiovascular stress responses in comparison to nonsmokers. Higher trait anxiety predicted attenuated systolic blood pressure responses to stress. No interaction effect of smoking status and trait anxiety was found in stress response measures. Higher trait anxiety predicted an increased desire to smoke in response to stress among smokers. Results indicate that both smoking status and trait anxiety are associated with blunted sympatho-adrenal cardiovascular stress reactivity. Elevated urges to smoke in response to stress found among smokers with high trait anxiety suggest an important role of anxiety in smoking propensity and relapse.

  11. Habitat odor can alleviate innate stress responses in mice.

    PubMed

    Matsukawa, Mutsumi; Imada, Masato; Aizawa, Shin; Sato, Takaaki

    2016-01-15

    Predatory odors, which can induce innate fear and stress responses in prey species, are frequently used in the development of animal models for several psychiatric diseases including post-traumatic stress disorder (PTSD) following a life-threatening event. We have previously shown that odors can be divided into at least three types; odors that act as (1) innate stressors, (2) as innate relaxants, or (3) have no innate effects on stress responses. Here, we attempted to verify whether an artificial odor, which had no innate effect on predatory odor-induced stress, could alleviate stress if experienced in early life as a habitat odor. In the current study, we demonstrated that the innate responses were changed to counteract stress following a postnatal experience. Moreover, we suggest that inhibitory circuits involved in stress-related neuronal networks and the concentrations of norepinephrine in the hippocampus may be crucial in alleviating stress induced by the predatory odor. Overall, these findings may be important for understanding the mechanisms involved in differential odor responses and also for the development of pharmacotherapeutic interventions that can alleviate stress in illnesses like PTSD. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Work stress and innate immune response.

    PubMed

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.

  13. Cortisol responses to naturalistic and laboratory stress in student teachers: comparison with a non-stress control day.

    PubMed

    Wolfram, Maren; Bellingrath, Silja; Feuerhahn, Nicolas; Kudielka, Brigitte M

    2013-04-01

    Ambulatory assessments of hypothalamus-pituitary-adrenal axis responses to acute natural stressors yield evidence on stress regulation with high ecological validity. Sampling of salivary cortisol is a standard technique in this field. In 21 healthy student teachers, we assessed cortisol responses to a demonstration lesson. On a control day, sampling was repeated at analogous times. Additionally, the cortisol awakening response (CAR) was assessed on both days. Participants were also exposed to a laboratory stressor, the Trier Social Stress Test, and rated their individual levels of chronic work stress. In pre-to-post-stress assessment, cortisol levels declined after the lesson. However, post-stress cortisol levels were significantly higher compared with those on the control day. Also, the Trier Social Stress Test yielded higher cortisol responses when using the control day as reference baseline. Associations between the CAR and chronic stress measures were observed solely on the control day. There were no significant associations between cortisol responses to the natural and laboratory stressors. Our results indicate that a control day might be an important complement in laboratory but especially in ambulatory stress research. Furthermore, associations between chronic stress measures and the CAR might be obscured by acute stress exposure. Finally, responses to the laboratory stressor do not seem to mirror natural stress responses. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Micrococcus lactis sp. nov., isolated from dairy industry waste.

    PubMed

    Chittpurna; Singh, Pradip K; Verma, Dipti; Pinnaka, Anil Kumar; Mayilraj, Shanmugam; Korpole, Suresh

    2011-12-01

    A Gram-positive, yellow-pigmented, actinobacterial strain, DW152(T), was isolated from a dairy industry effluent treatment plant. 16S rRNA gene sequence analysis indicated that strain DW152(T) exhibited low similarity with many species with validly published names belonging to the genera Micrococcus and Arthrobacter. However, phenotypic properties including chemotaxonomic markers affiliated strain DW152(T) to the genus Micrococcus. Strain DW152(T) had ai-C(15:0) and i-C(15:0) as major cellular fatty acids, and MK-8(H(2)) as the major menaquinone. The cell-wall peptidoglycan of strain DW152(T) had l-lysine as the diagnostic amino acid and the type was A4α. The DNA G+C content of strain DW152(T) was 68.0 mol%. In 16S rRNA gene sequence analysis, strain DW152(T) exhibited significant similarity with Micrococcus terreus NBRC 104258(T), but the mean value of DNA-DNA relatedness between these strains was only 42.3%. Moreover, strain DW152(T) differed in biochemical and chemotaxonomic characteristics from M. terreus and other species of the genus Micrococcus. Based on the above differences, we conclude that strain DW152(T) should be treated as a novel species of the genus Micrococcus, for which the name Micrococcus lactis sp. nov. is proposed. The type strain of Micrococcus lactis sp. nov. is DW152(T) (=MTCC10523(T) =DSM 23694(T)).

  15. Reduced risk of apoptosis: mechanisms of stress responses.

    PubMed

    Milisav, Irina; Poljšak, Borut; Ribarič, Samo

    2017-02-01

    Apoptosis signaling pathways are integrated into a wider network of interconnected apoptotic and anti-apoptotic pathways that regulate a broad range of cell responses from cell death to growth, development and stress responses. An important trigger for anti- or pro-apoptotic cell responses are different forms of stress including hypoxia, energy deprivation, DNA damage or inflammation. Stress duration and intensity determine whether the cell's response will be improved cell survival, due to stress adaptation, or cell death by apoptosis, necrosis or autophagy. Although the interplay between enhanced stress tolerance and modulation of apoptosis triggering is not yet fully understood, there is a substantial body of experimental evidence demonstrating that apoptosis and anti-apoptosis signaling pathways can be manipulated to trigger or delay apoptosis in vitro or in vivo. Anti-apoptotic strategies cover a broad range of approaches. These interventions include mediators that prevent apoptosis (trophic factors and cytokines), apoptosis inhibition (caspase inhibition, stimulation of anti-apoptotic or inhibition of pro-apoptotic proteins and elimination of apoptotic stimulus), adaptive stress responses (induction of maintenance and repair, caspase inactivation) and cell-cell interactions (blocking engulfment and modified micro environment). There is a consensus that preclinical efficacy and safety evaluations of anti-apoptotic strategies should be performed with protocols that simulate as closely as possible the effects of aging, gender, risk factors, comorbidities and co-medications.

  16. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress

    PubMed Central

    2013-01-01

    Background Every year, substantial crop loss occurs globally, as a result of bacterial, fungal, parasite and viral infections in rice. Here, we present an in-depth investigation of the transcriptomic response to infection with the destructive bacterial pathogen Xanthomonas oryzae pv. oryzae(Xoo) in both resistant and susceptible varieties of Oryza sativa. A comparative analysis to fungal, parasite and viral infection in rice is also presented. Results Within 24 h of Xoo inoculation, significant reduction of cell wall components and induction of several signalling components, membrane bound receptor kinases and specific WRKY and NAC transcription factors was prominent, providing a framework for how the presence of this pathogen was signalled and response mounted. Extensive comparative analyses of various other pathogen responses, including in response to infection with another bacterium (Xoc), resistant and susceptible parasite infection, fungal, and viral infections, led to a proposed model for the rice biotic stress response. In this way, a conserved induction of calcium signalling functions, and specific WRKY and NAC transcription factors, was identified in response to all biotic stresses. Comparison of these responses to abiotic stress (cold, drought, salt, heat), enabled the identification of unique genes responsive only to bacterial infection, 240 genes responsive to both abiotic and biotic stress, and 135 genes responsive to biotic, but not abiotic stresses. Functional significance of a number of these genes, using genetic inactivation or over-expression, has revealed significant stress-associated phenotypes. While only a few antagonistic responses were observed between biotic and abiotic stresses, e.g. for a number of endochitinases and kinase encoding genes, some of these may be crucial in explaining greater pathogen infection and damage under abiotic stresses. Conclusions The analyses presented here provides a global view of the responses to multiple

  17. Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis.

    PubMed

    Linares, Daniel M; Alvarez-Sieiro, Patricia; del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Martin, Ma Cruz; Fernandez, Maria; Alvarez, Miguel A

    2015-12-30

    Lactococcus lactis has been safely consumed in fermented foods for millennia. This Gram-positive bacterium has now become of industrial importance as an expression host for the overproduction of lipopolysaccharide-free recombinant proteins used as food ingredients, therapeutic proteins and biotechnological enzymes. This paper reports an agmatine-controlled expression (ACE) system for L. lactis, comprising the lactococcal agmatine-sensor/transcriptional activator AguR and its target promoter P(aguB). The usefulness and efficiency of this system was checked via the reporter gene gfp and by producing PEP (Myxococcus xanthus prolyl-endopeptidase), an enzyme of biomedical interest able to degrade the immunotoxic peptides produced during the gastrointestinal breakdown of gluten. The ACE system developed in this work was suitable for the efficient expression of the functional recombinant proteins GFP and PEP. The expression system was tightly regulated by the agmatine concentration and allowed high protein production without leakiness.

  18. Role of shame and body esteem in cortisol stress responses

    PubMed Central

    Lupis, Sarah B.; Sabik, Natalie J.

    2016-01-01

    Studies assessing the role of shame in HPA axis reactivity report mixed findings. Discrepancies may be due to methodological difficulties and inter-individual differences in the propensity to experience shame in a stressful situation. Hence, the current study combined self-report of shame and facial coding of shame expressions and assessed the role of body esteem as a moderator of the shame–stress link. For this, 44 healthy students (24F, age 20.5 ± 2.1 years) were exposed to an acute psychosocial stress paradigm (Trier Social Stress Test: TSST). Salivary cortisol levels were measured throughout the protocol. Trait shame was measured before the stress test, and state shame immediately afterwards. Video recordings of the TSST were coded to determine emotion expressions. State shame was neither associated with cortisol stress responses nor with body esteem (self-report: all ps ≥ .24; expression: all ps ≥ .31). In contrast, higher trait shame was associated with both negative body esteem (p = .049) and stronger cortisol stress responses (p = .013). Lastly, having lower body esteem predicted stronger cortisol stress responses (p = .022); however, it did not significantly moderate the association between shame indices and cortisol stress responses (all ps ≥ .94). These findings suggest that body esteem and trait shame independently contribute to strength of cortisol stress responses. Thus, in addition to trait shame, body esteem emerged as an important predictor of cortisol stress responses and as such, a potential contributor to stress-related negative health outcomes. PMID:26577952

  19. Refining the multisystem view of the stress response: coordination among cortisol, alpha-amylase, and subjective stress in response to relationship conflict.

    PubMed

    Laurent, Heidemarie K; Powers, Sally I; Granger, Douglas A

    2013-07-02

    This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period ("matched phase coordination"), and association between overall levels of cortisol and sAA in response to conflict ("average level coordination"). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Refining the multisystem view of the stress response: Coordination among cortisol, alpha-amylase, and subjective stress in response to relationship conflict

    PubMed Central

    Powers, Sally I.; Granger, Douglas A.

    2013-01-01

    This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period (“matched phase coordination”), and association between overall levels of cortisol and sAA in response to conflict (“average level coordination”). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed. PMID:23684904

  1. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  2. Chronic Smoking, Trait Anxiety, and the Physiological Response to Stress

    PubMed Central

    Wiggert, Nicole; Wilhelm, Frank H.; Nakajima, Motohiro; al’Absi, Mustafa

    2016-01-01

    Background and Objectives Both chronic smoking and trait anxiety have been associated with dysregulations in psychobiological stress response systems. However, these factors have not been studied in conjunction. We expected trait anxiety and smoking status to attenuate stress reactivity. Furthermore, we expected an allostatic load effect resulting in particularly attenuated stress reactivity in high-anxious smokers. In addition, high-anxious smokers were expected to exhibit increased urges to smoke in response to stress. Methods 115 smokers and 37 nonsmokers, aged 18 – 64 years, completed a laboratory session including mental stressors such as evaluated public speaking and mental arithmetic. Trait anxiety was assessed using Spielberger’s State-Trait Anxiety Inventory. Cardiovascular autonomic indices, salivary cortisol, and the desire to smoke were measured at baseline, during stressors, and at recovery. Results Regression analyses showed that smokers exhibited attenuated cardiovascular stress responses in comparison to nonsmokers. Higher trait anxiety predicted attenuated systolic blood pressure responses to stress. No interaction effect of smoking status and trait anxiety was found in stress response measures. Higher trait anxiety predicted an increased desire to smoke in response to stress among smokers. Conclusion Results indicate that both smoking status and trait anxiety are associated with blunted sympatho-adrenal cardiovascular stress reactivity. Elevated urges to smoke in response to stress found among smokers with high trait anxiety suggest an important role of anxiety in smoking propensity and relapse. PMID:27484702

  3. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds.

    PubMed

    Qian, Dandan; Tian, Lihong; Qu, Leqing

    2015-09-23

    The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds.

  4. Induction of the cellular stress response in Chironomus (Diptera)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardalis, G.; Hudson, L.A.; Ciborowski, J.J.H.

    1995-12-31

    The accumulation of stress or heat shock proteins is involved in the protection and defense of a cell from environmentally induced damage. Under stressful conditions, cytoplasmic stress protein 70 migrates to the nucleus where it assists in the restoration of the nucleolar function. The authors have demonstrated a dose-response relationship between incidence of decreased nucleolar size in chironomid salivary glands and degree of sediment contamination. Reduced nucleolar size is indicative of reduced nucleolar function. The relationship between nucleolus size and stress protein accumulation is being explored. They are conducting experiments on chironomids to characterize the response elicited by heat shockmore » and PAH exposure in the laboratory to determine if the simultaneous action of more than one stressor can significantly alter the stress response. Simultaneous studies are being conducted to validate these biomarkers in mesocosm caging experiments. Aspects of the response will be useful as biomarkers of general stress.« less

  5. Influence of the addition of Lactobacillus acidophilus La-05, Bifidobacterium animalis subsp. lactis Bb-12 and inulin on the technological, physicochemical, microbiological and sensory features of creamy goat cheese.

    PubMed

    Barbosa, Ilsa C; Oliveira, Maria E G; Madruga, Marta S; Gullón, Beatriz; Pacheco, Maria T B; Gomes, Ana M P; Batista, Ana S M; Pintado, Maria M E; Souza, Evandro L; Queiroga, Rita C R E

    2016-10-12

    The effects of the addition of Lactobacillus acidophilus LA-05, Bifidobacterium animalis subsp. lactis BB-12 and inulin on the quality characteristics of creamy goat cheese during refrigerated storage were evaluated. The manufactured cheeses included the addition of starter culture (Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris - R-704) (CC); starter culture, L. acidophilus LA-05 and inulin (CLA); starter culture, B. lactis BB-12 and inulin (CBB); or starter culture, L. acidophilus LA-05, B. lactis BB-12 and inulin (CLB). In the synbiotic cheeses (CLA, CBB and CLB), the counts of L. acidophilus LA-05 and B. lactis BB-12 were greater than 6log CFU g -1 , the amount of inulin was greater than 6 g per 100 g, and the firmness was reduced. The cheeses evaluated had high brightness values (L*), with a predominance of yellow (b*). CC had higher contents of proteins, lipids and minerals compared to the other cheeses. There was a decrease in the amount of short-chain fatty acids (SCFAs) and an increase of medium-chain (MCFAs) and long-chain fatty acids (LCFAs) in the synbiotic cheeses compared to CC. The amount of conjugated linoleic acid increased in CLA, CBB and CLB. The highest depth of proteolysis and the greatest changes in the release of free amino acids were found in CLB. The addition of inulin and probiotics, alone or in co-culture, did not affect the cheese acceptance. Inulin and probiotics can be used together for the production of creamy goat cheese without negatively affecting the general quality characteristics of the product, and to add value because of its synbiotic potential.

  6. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    PubMed

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  7. Molecular cloning of the plasma membrane H(+)-ATPase from Kluyveromyces lactis: a single nucleotide substitution in the gene confers ethidium bromide resistance and deficiency in K+ uptake.

    PubMed Central

    Miranda, M; Ramírez, J; Peña, A; Coria, R

    1995-01-01

    A Kluyveromyces lactis strain resistant to ethidium bromide and deficient in potassium uptake was isolated. Studies on the proton-pumping activity of the mutant strain showed that a decreased H(+)-ATPase specific activity was responsible for the observed phenotypes. The putative K. lactis PMA1 gene encoding the plasma membrane H(+)-ATPase was cloned by its ability to relieve the potassium transport defect of this mutant and by reversing its resistance to ethidium bromide. Its deduced amino acid sequence predicts a protein 899 residues long that is structurally colinear in its full length to H(+)-ATPases cloned from different yeasts, except for the presence of a variable N-terminal domain. By PCR-mediated amplification, we identified a transition from G to A that rendered the substitution of the fully conserved methionine at position 699 by isoleucine. We attribute to this amino acid change the low capacity of the mutant H(+)-ATPase to pump out protons. PMID:7730265

  8. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  9. Abiotic stress signaling and responses in plants

    PubMed Central

    Zhu, Jian-Kang

    2016-01-01

    Summary As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population. PMID:27716505

  10. The Adaptive Calibration Model of stress responsivity

    PubMed Central

    Ellis, Bruce J.; Shirtcliff, Elizabeth A.

    2010-01-01

    This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350

  11. Hormonal control of cold stress responses in plants.

    PubMed

    Eremina, Marina; Rozhon, Wilfried; Poppenberger, Brigitte

    2016-02-01

    Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.

  12. A Food-Grade Cloning System for Industrial Strains of Lactococcus lactis

    PubMed Central

    Sørensen, Kim I.; Larsen, Rasmus; Kibenich, Annette; Junge, Mette P.; Johansen, Eric

    2000-01-01

    We have previously reported the construction of a food-grade cloning vector for Lactococcus using the ochre suppressor, supB, as the selective marker. This vector, pFG1, causes only a slight growth inhibition in the laboratory strain MG1363 but is unstable in the industrial strains tested. As supB suppresses both amber and ochre stop codons, which are present in 82% of all known lactococcal genes, this undesirable finding may result from the accumulation of elongated mistranslated polypeptides. Here, we report the development of a new food-grade cloning vector, pFG200, which is suitable for overexpressing a variety of genes in industrial strains of Lactococcus lactis. The vector uses an amber suppressor, supD, as selectable marker and consists entirely of Lactococcus DNA, with the exception of a small polylinker region. Using suppressible pyrimidine auxotrophs, selection and maintenance are efficient in any pyrimidine-free medium including milk. Importantly, the presence of this vector in a variety of industrial strains has no significant effect on the growth rate or the rate of acidification in milk, making this an ideal system for food-grade modification of industrially relevant L. lactis strains. The usefulness of this system is demonstrated by overexpressing the pepN gene in a number of industrial backgrounds. PMID:10742196

  13. Enhanced startle responsivity 24 hours after acute stress exposure.

    PubMed

    Herten, Nadja; Otto, Tobias; Adolph, Dirk; Pause, Bettina M; Kumsta, Robert; Wolf, Oliver T

    2016-10-01

    Cortisol release in a stressful situation can be beneficial for memory encoding and memory consolidation. Stimuli, such as odors, related to the stressful episode may successfully cue memory contents of the stress experience. The current investigation aimed at testing the potency of stress to influence startle responsivity 24 hr later and to implicitly reactivate emotional memory traces triggered by an odor involved. Participants were assigned to either a stress (Trier Social Stress Test [TSST]) or control (friendly TSST [f-TSST]) condition featuring an ambient odor. On the next day, participants underwent an auditory startle paradigm while their eyeblink reflex was recorded by an electrooculogram. Three different olfactory stimuli were delivered, one being the target odor presented the day before. Additionally, negative, positive, and pictures of the committee members were included for comparing general startle responsivity and fear-potentiated startle. Participants of the stress group demonstrated an enhanced startle response across all stimuli compared to participants of the control group. There were no specific effects with regard to the target odor. The typical fear-potentiated startle response occurred. Stressed participants tended to rate the target odor more aversive than control participants. Odor recognition memory did not differ between the groups, suggesting an implicit effect on odor valence. Our results show that acute stress exposure enhances startle responsivity 24 hr later. This effect might be caused by a shift of amygdala function causing heightened sensitivity, but lower levels of specificity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Hypothalamic oxytocin mediates social buffering of the stress response

    PubMed Central

    Smith, Adam S.; Wang, Zuoxin

    2013-01-01

    Background While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. Methods Female prairie voles (Microtus ochrogaster) were exposed to 1 hr immobilization stress then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized females recovering alone with oxytocin, or vehicle, and females recovering with their male partner with a selective oxytocin receptor antagonist, or vehicle. Group sizes varied from 6 to 8 voles (n = 98 total). Results We found that 1 hr immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in females recovering alone, but not the females recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus (PVN) of the hypothalamus. Intra-PVN oxytocin injections reduced behavioral and corticosterone responses to immobilization whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. Conclusions Together, our data demonstrate that PVN oxytocin mediates the social buffering effects on the stress response, and thus may be a target for treatment of stress-related disorders. PMID:24183103

  15. Cortisol Response to Stress in Adults with Attention Deficit Hyperactivity Disorder

    PubMed Central

    Palomar, Gloria; Ferrer, Roser; Real, Alberto; Nogueira, Mariana; Corrales, Montserrat; Casas, Miguel; Ramos-Quiroga, Josep Antoni

    2015-01-01

    Background: Differences in the cortisol response have been reported between children exhibiting the inattentive and hyperactive/impulsive subtypes of attention deficit hyperactivity disorder. However, there is no such information about adults. The aim of the present study was to determine the possible differences between the combined and inattentive subtypes in the cortisol response to stress. Methods: Ninety-six adults with attention deficit hyperactivity disorder, 38 inattentive and 58 combined, without any medical or psychiatric comorbidities and 25 healthy controls were included. The Trier Social Stress Test was used to assess physiological stress responses. Clinical data and subjective stress levels, including the Perceived Stress Scale, were also recorded. Results: No significant differences in the cortisol response to the Trier Social Stress Test were found between patients and controls. However, albeit there were no basal differences, lower cortisol levels at 15 (P=.015), 30 (P=.015), and 45 minutes (P=.045) were observed in the combined compared with the inattentive subtype after the stress induction; these differences disappeared 60 minutes after the stress. In contrast, the subjective stress responses showed significant differences between attention deficit hyperactivity disorder patients and controls (P<.001), but no differences were seen between attention deficit hyperactivity disorder subtypes. In turn, subjective stress measures, such as the Perceived Stress Scale, positively correlated with the whole cortisol stress response (P<.027). Conclusions: Both the combined and inattentive attention deficit hyperactivity disorder adults exhibited a normal cortisol response to stress when challenged. Nevertheless, the inattentive patients displayed a higher level of cortisol after stress compared with the combined patients. Despite the differences in the cortisol response, adults with attention deficit hyperactivity disorder reported high levels of subjective

  16. Cortisol Response to Stress in Adults with Attention Deficit Hyperactivity Disorder.

    PubMed

    Corominas-Roso, Margarida; Palomar, Gloria; Ferrer, Roser; Real, Alberto; Nogueira, Mariana; Corrales, Montserrat; Casas, Miguel; Ramos-Quiroga, Josep Antoni

    2015-03-17

    Differences in the cortisol response have been reported between children exhibiting the inattentive and hyperactive/impulsive subtypes of attention deficit hyperactivity disorder. However, there is no such information about adults. The aim of the present study was to determine the possible differences between the combined and inattentive subtypes in the cortisol response to stress. Ninety-six adults with attention deficit hyperactivity disorder, 38 inattentive and 58 combined, without any medical or psychiatric comorbidities and 25 healthy controls were included. The Trier Social Stress Test was used to assess physiological stress responses. Clinical data and subjective stress levels, including the Perceived Stress Scale, were also recorded. No significant differences in the cortisol response to the Trier Social Stress Test were found between patients and controls. However, albeit there were no basal differences, lower cortisol levels at 15 (P=.015), 30 (P=.015), and 45 minutes (P=.045) were observed in the combined compared with the inattentive subtype after the stress induction; these differences disappeared 60 minutes after the stress. In contrast, the subjective stress responses showed significant differences between attention deficit hyperactivity disorder patients and controls (P<.001), but no differences were seen between attention deficit hyperactivity disorder subtypes. In turn, subjective stress measures, such as the Perceived Stress Scale, positively correlated with the whole cortisol stress response (P<.027). Both the combined and inattentive attention deficit hyperactivity disorder adults exhibited a normal cortisol response to stress when challenged. Nevertheless, the inattentive patients displayed a higher level of cortisol after stress compared with the combined patients. Despite the differences in the cortisol response, adults with attention deficit hyperactivity disorder reported high levels of subjective stress in their every-day life. © The

  17. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response.

    PubMed

    Negi, Pooja; Rai, Archana N; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.

  18. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response

    PubMed Central

    Negi, Pooja; Rai, Archana N.; Suprasanna, Penna

    2016-01-01

    The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original ‘Controlling Element’ hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as “distributed genomic control modules.” According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement. PMID:27777577

  19. Differentiating anticipatory from reactive cortisol responses to psychosocial stress.

    PubMed

    Engert, Veronika; Efanov, Simona I; Duchesne, Annie; Vogel, Susanne; Corbo, Vincent; Pruessner, Jens C

    2013-08-01

    Most psychosocial stress studies assess the overall cortisol response without further identifying the temporal dynamics within hormone levels. It has been shown, however, that the amplitude of anticipatory cortisol stress levels has a unique predictive value for psychological health. So far, no "best practice" in how to investigate the anticipatory cortisol stress response has emerged. The goal of the current research was to develop a protocol that would allow for a sensitive and easy-to-implement laboratory-based investigation into anticipatory cortisol stress levels. We initially tested 26 healthy men in either an anticipation- or stress-only condition of the Trier Social Stress Test (TSST) to map the distinct timelines of anticipatory and reactive cortisol release profiles (study 1). Subsequently, we administered the TSST to 50 healthy men such that the cortisol responses to anticipatory and reactive stress components could be dissociated (study 2). In both studies we sampled saliva cortisol at high frequency (at baseline, during 10min of anticipation and during and after 10min of acute stress) and the current mood state pre- and post-stress. We found anticipatory responder rates of 20% and 40%, with peak anticipatory cortisol levels between 14 and 20min after onset of anticipation. Visible changes in reactive cortisol levels occurred only after the termination of the acute stressor. We conclude that the best practice to detect a maximum number of anticipatory responders in the TSST would be to extend the anticipation phase to 15min. In doing so, the anticipatory cortisol peak could be captured at a time-point of the actual stressor that is uninfluenced by reactive cortisol levels. Overall, we could reveal several features of anticipatory responders. Most importantly, there was a positive correlation between anticipatory and reactive stress responses. There was no association between anticipatory cortisol and alpha-amylase as well as subjective

  20. Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1.

    PubMed

    Baruffini, Enrico; Goffrini, Paola; Donnini, Claudia; Lodi, Tiziana

    2006-12-01

    In Kluyveromyces lactis, galactose transport has been thought to be mediated by the lactose permease encoded by LAC12. In fact, a lac12 mutant unable to grow on lactose did not grow on galactose either and showed low and uninducible galactose uptake activity. The existence of other galactose transport systems, at low and at high affinity, had, however, been hypothesized on the basis of galactose uptake kinetics studies. Here we confirmed the existence of a second galactose transporter and we isolated its structural gene. It turned out to be HGT1, previously identified as encoding the high-affinity glucose carrier. Analysis of galactose transporter mutants, hgt1 and lac12, and the double mutant hgt1lac12, suggested that Hgt1 was the high-affinity and Lac12 was the low-affinity galactose transporter. HGT1 expression was strongly induced by galactose and insensitive to glucose repression. This could explain the rapid adaptation to galactose observed in K. lactis after a shift from glucose to galactose medium.

  1. Stress response in medically important Mucorales.

    PubMed

    Singh, Pankaj; Paul, Saikat; Shivaprakash, M Rudramurthy; Chakrabarti, Arunaloke; Ghosh, Anup K

    2016-10-01

    Mucorales are saprobes, ubiquitously distributed and able to infect a heterogeneous population of human hosts. The fungi require robust stress responses to survive in human host. We tested the growth of Mucorales in the presence of different abiotic stress. Eight pathogenic species of Mucorales, including Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, Apophysomyces elegans, Licthemia corymbifera, Cunninghamella bertholletiae, Syncephalastrum racemosum and Mucor racemosus, were exposed to different stress inducers: osmotic (sodium chloride and d-sorbitol), oxidative (hydrogen peroxide and menadione), pH, cell wall and metal ions (Cu, Zn, Fe and Mg). Wide variation in stress responses was noted: R. arrhizus showed maximum resistance to both osmotic and oxidative stresses, whereas R. pusillus and M. indicus were relatively sensitive. Rhizopus arrhizus and R. microsporus showed maximum resistance to alkaline pH, whereas C. bertholletiae, L. corymbifera, M. racemosus and A. elegans were resistant to acidic pH. Maximum tolerance was noted in R. microsporus to Cu, R. microsporus and R. arrhizus to Fe and C. bertholletiae to Zn. In contrast, L. corymbifera, A. elegans and M. indicus were sensitive to Cu, Zn and Fe respectively. In conclusion, R. arrhizus showed high stress tolerance in comparison to other species of Mucorales, and this could be the possible reason for high pathogenic potential of this fungi. © 2016 Blackwell Verlag GmbH.

  2. 2010 MICROBIAL STRESS RESPONSE GORDON RESEARCH CONFERENCE, JULY 18-23, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarah Ades

    2011-07-23

    The 2010 Gordon Research Conference on Microbial Stress Responses provides an open and exciting forum for the exchange of scientific discoveries on the remarkable mechanisms used by microbes to survive in nearly every niche on the planet. Understanding these stress responses is critical for our ability to control microbial survival, whether in the context of biotechnology, ecology, or pathogenesis. From its inception in 1994, this conference has traditionally employed a very broad definition of stress in microbial systems. Sessions will cover the major steps of stress responses from signal sensing to transcriptional regulation to the effectors that mediate responses. Amore » wide range of stresses will be represented. Some examples include (but are not limited to) oxidative stress, protein quality control, antibiotic-induced stress and survival, envelope stress, DNA damage, and nutritional stress. The 2010 meeting will also focus on the role of stress responses in microbial communities, applied and environmental microbiology, and microbial development. This conference brings together researchers from both the biological and physical sciences investigating stress responses in medically- and environmentally relevant microbes, as well as model organisms, using cutting-edge techniques. Computational, systems-level, and biophysical approaches to exploring stress responsive circuits will be integrated throughout the sessions alongside the more traditional molecular, physiological, and genetic approaches. The broad range of excellent speakers and topics, together with the intimate and pleasant setting at Mount Holyoke College, provide a fertile ground for the exchange of new ideas and approaches.« less

  3. Thiol specific oxidative stress response in Mycobacteria.

    PubMed

    Dosanjh, Nirpjit S; Rawat, Mamta; Chung, Ji-Hae; Av-Gay, Yossef

    2005-08-01

    The cellular response of mycobacteria to thiol specific oxidative stress was studied in Mycobacterium bovis BCG cultures. Two-dimensional gel electrophoresis revealed that upon diamide treatment at least 60 proteins were upregulated. Fourteen of these proteins were identified by MALDI-MS; four proteins, AhpC, Tpx, GroEL2, and GroEL1 are functionally related to oxidative stress response; eight proteins, LeuC, LeuD, Rv0224c, Rv3029c, AsnB, Rv2971, PheA and HisH are classified as part of the bacterial intermediary metabolism and respiration pathways; protein EchA14 belong to lipid metabolism, and NrdE, belongs to the mycobacterial information pathway category. Reverse transcription followed by quantitative real time PCR in response to diamide stress demonstrated that protein expression is directly proportional to the corresponding gene transcription.

  4. Intracellular proteins produced by mammalian cells in response to environmental stress

    NASA Technical Reports Server (NTRS)

    Goochee, Charles F.; Passini, Cheryl A.

    1988-01-01

    The nature of the response of mammalian cells to environmental stress is examined by reviewing results of studies where cultured mouse L cells and baby hamster kidney cells were exposed to heat shock and the synthesis of heat-shock proteins and stress-response proteins (including HSP70, HSC70, HSP90, ubiquitin, and GRP70) in stressed and unstressed cells was evaluated using 2D-PAGE. The intracellular roles of the individual stress response proteins are discussed together with the regulation of the stress response system.

  5. Subjective Stress, Salivary Cortisol, and Electrophysiological Responses to Psychological Stress

    PubMed Central

    Qi, Mingming; Gao, Heming; Guan, Lili; Liu, Guangyuan; Yang, Juan

    2016-01-01

    The present study aimed to investigate the subjective stress, salivary cortisol, and electrophysiological responses to psychological stress induced by a modified version of a mental arithmetic task. Fifteen participants were asked to estimate whether the multiplication product of two-decimal numbers was above 10 or not either with a time limit (the stress condition) or without a time limit (the control condition). The results showed that participants reported higher levels of stress, anxiety, and negative affect in the stress condition than they did in the control condition. Moreover, the salivary cortisol level continued to increase after the stress condition but exhibited a sharp decrease after the control condition. In addition, the electrophysiological data showed that the amplitude of the frontal-central N1 component was larger for the stress condition than it was for the control condition, while the amplitude of the frontal-central P2 component was larger for the control condition than it was for the stress condition. Our study suggests that the psychological stress characteristics of time pressure and social-evaluative threat caused dissociable effects on perception and on the subsequent attentional resource allocation of visual information. PMID:26925026

  6. Secreted expression of Leuconostoc mesenteroides glucansucrase in Lactococcus lactis for the production of insoluble glucans

    USDA-ARS?s Scientific Manuscript database

    We expressed a glucansucrase, DsrI, from Leuconostoc mesenteroides that catalyzes formation of water-insoluble glucans from sucrose in Lactococcus lactis using a nisin-controlled gene expression system. Production of DsrI was optimized using several different background vectors, signal peptides, str...

  7. Hypothalamic oxytocin mediates social buffering of the stress response.

    PubMed

    Smith, Adam S; Wang, Zuoxin

    2014-08-15

    While stressful life events can enhance the risk of mental disorders, positive social interactions can propagate good mental health and normal behavioral routines. Still, the neural systems that promote these benefits are undetermined. Oxytocin is a hormone involved in social behavior and stress; thus, we focus on the impact that social buffering has on the stress response and the governing effects of oxytocin. Female prairie voles (Microtus ochrogaster) were exposed to 1 hour immobilization stress and then recovered alone or with their male partner to characterize the effect of social contact on the behavioral, physiological, and neuroendocrine stress response. In addition, we treated immobilized female voles recovering alone with oxytocin or vehicle and female voles recovering with their male partner with a selective oxytocin receptor antagonist or vehicle. Group sizes varied from 6 to 8 voles (N = 98 total). We found that 1 hour immobilization increased anxiety-like behaviors and circulating levels of corticosterone, a stress hormone, in female prairie voles recovering alone but not the female prairie voles recovering with their male partner. This social buffering by the male partner on biobehavioral responses to stress was accompanied by increased oxytocin release in the paraventricular nucleus of the hypothalamus. Intra-paraventricular nucleus oxytocin injections reduced behavioral and corticosterone responses to immobilization, whereas injections of an oxytocin receptor antagonist blocked the effects of the social buffering. Together, our data demonstrate that paraventricular nucleus oxytocin mediates the social buffering effects on the stress response and thus may be a target for treatment of stress-related disorders. Published by Society of Biological Psychiatry on behalf of Society of Biological Psychiatry.

  8. Cell identity regulators link development and stress responses in the Arabidopsis root.

    PubMed

    Iyer-Pascuzzi, Anjali S; Jackson, Terry; Cui, Hongchang; Petricka, Jalean J; Busch, Wolfgang; Tsukagoshi, Hironaka; Benfey, Philip N

    2011-10-18

    Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Hyperosmotic Stress Response of Campylobacter jejuni

    PubMed Central

    Cameron, Andrew; Frirdich, Emilisa; Huynh, Steven; Parker, Craig T.

    2012-01-01

    The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, and upon entering host organisms, where osmotic adaptation can be associated with virulence. In this study, growth profiles, transcriptomics, and phenotypic, mutant, and single-cell analyses were used to explore the effects of hyperosmotic stress exposure on C. jejuni. Increased growth inhibition correlated with increased osmotic concentration, with both ionic and nonionic stressors inhibiting growth at 0.620 total osmol liter−1. C. jejuni adaptation to a range of osmotic stressors and concentrations was accompanied by severe filamentation in subpopulations, with microscopy indicating septum formation and phenotypic diversity between individual cells in a filament. Population heterogeneity was also exemplified by the bifurcation of colony morphology into small and large variants on salt stress plates. Flow cytometry of C. jejuni harboring green fluorescent protein (GFP) fused to the ATP synthase promoter likewise revealed bimodal subpopulations under hyperosmotic stress. We also identified frequent hyperosmotic stress-sensitive variants within the clonal wild-type population propagated on standard laboratory medium. Microarray analysis following hyperosmotic upshift revealed enhanced expression of heat shock genes and genes encoding enzymes for synthesis of potential osmoprotectants and cross-protective induction of oxidative stress genes. The capsule export gene kpsM was also upregulated, and an acapsular mutant was defective for growth under hyperosmotic stress. For C. jejuni, an organism lacking most conventional osmotic response factors, these data suggest an unusual hyperosmotic stress response, including likely “bet-hedging” survival strategies relying on the presence of stress-fit individuals in a heterogeneous population. PMID:22961853

  10. Antidepressants recruit new neurons to improve stress response regulation

    PubMed Central

    Surget, A; Tanti, A; Leonardo, E D; Laugeray, A; Rainer, Q; Touma, C; Palme, R; Griebel, G; Ibarguen-Vargas, Y; Hen, R; Belzung, C

    2011-01-01

    Recent research suggests an involvement of hippocampal neurogenesis in behavioral effects of antidepressants. However, the precise mechanisms through which newborn granule neurons might influence the antidepressant response remain elusive. Here, we demonstrate that unpredictable chronic mild stress in mice not only reduces hippocampal neurogenesis, but also dampens the relationship between hippocampus and the main stress hormone system, the hypothalamo-pituitary-adrenal (HPA) axis. Moreover, this relationship is restored by treatment with the antidepressant fluoxetine, in a neurogenesis-dependent manner. Specifically, chronic stress severely impairs HPA axis activity, the ability of hippocampus to modulate downstream brain areas involved in the stress response, the sensitivity of the hippocampal granule cell network to novelty/glucocorticoid effects and the hippocampus-dependent negative feedback of the HPA axis. Remarkably, we revealed that, although ablation of hippocampal neurogenesis alone does not impair HPA axis activity, the ability of fluoxetine to restore hippocampal regulation of the HPA axis under chronic stress conditions, occurs only in the presence of an intact neurogenic niche. These findings provide a mechanistic framework for understanding how adult-generated new neurons influence the response to antidepressants. We suggest that newly generated neurons may facilitate stress integration and that, during chronic stress or depression, enhancing neurogenesis enables a dysfunctional hippocampus to restore the central control on stress response systems, then allowing recovery. PMID:21537331

  11. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid.

    PubMed

    Song, Li; Cui, Hongyu; Tang, Lijie; Qiao, Xinyuan; Liu, Min; Jiang, Yanping; Cui, Wen; Li, Yijing

    2014-07-01

    Integration plasmids are often used in constructing chromosomal mutations, as it enables the alternation of genes at any location by integration or replacement. Food-grade integration vectors can integrate into the host genome without introducing any selectable markers or residual bases, and the recombination often happens in non-coding region. In this study we used the temperature-sensitive pWV01 replicon to construct 2 chloramphenicol-resistant integration plasmids (pGBHC32-upp) containing the uracil phosphoribosyl transferase (upp) gene as a counterselective marker for Lactobacillus casei (L. casei) ATCC393 and Lactococcus lactis (L. lactis) MG1363. We then ligated the designed homologous arms to the pGBHC32-upp plasmids to allow their integration to the bacterial chromosome, and selected upp deletion mutants of L. casei ATCC393 and L. lactis MG1363 in the presence of 5-fluorouracil (5-FU). Analysis of genetic stability, growth curve, carbon utilization and scanning electronic microscopy showed that, except for 5-FU resistance, there were no significant differences between the wild type and mutant lactic acid bacteria. The integration system and the upp deletion strains could be used in the insertion or deletion of genes at any location of the chromosome of both L. casei ATCC 393 and L. lactis MG1363, and the homologous recombination would not introduce any selectable markers or residual bases. These mutant strains can be further investigated for heterologous protein expression and construction of a live mucosal vaccine carrier. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808

    PubMed Central

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-01-01

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed. PMID:24400001

  13. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808.

    PubMed

    Munsch-Alatossava, Patricia; Alatossava, Tapani

    2013-12-24

    The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.

  14. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    PubMed

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse

  15. Sex Differences in Relationship between Stress Responses and Lifestyle in Japanese Workers

    PubMed Central

    Suzuki, Akiko; Akamatsu, Rie

    2014-01-01

    Background This study examined the relationships between stress responses and lifestyle, including sleeping and eating behaviors, in Japanese workers according to sex. Methods Questionnaires about stress responses and lifestyle were completed by 3,017 workers in a financial enterprise (41.5% men, 58.5% women). Data were collected in Japan in August 2011. Participants were classified into stress and nonstress groups. Relationships between stress responses and lifestyle were investigated using logistic regression analysis with stress response as a dependent variable. Results There were 254 (8.4%) participants in the stress group and 2,763 (91.6%) in the nonstress group. The results showed that sleeping for shorter periods [odds ratio (OR) = 2.97, 95% confidence interval (CI): 1.58–5.60] was associated with stress responses in women, whereas we found no relationship between stress responses and lifestyle among men. However, working overtime was associated with stress responses in men (OR = 2.71, 95% CI: 1.43–5.15). Eating at night was associated with stress responses in the univariate analysis (men: OR = 2.10, 95% CI: 1.16–3.80; women: OR = 1.61, 95% CI: 1.09–2.39). Conclusion This study showed that stress responses were related to lifestyle among women but not among men. Among women, stress responses were related to sleeping for shorter periods, whereas they were related to working long hours among men. In addition, stress responses were related to eating at night in the univariate analysis, although this relationship was not seen in the multivariate analysis, in either sex. PMID:24932418

  16. Lipolysis Response to Endoplasmic Reticulum Stress in Adipose Cells*

    PubMed Central

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-01-01

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues. PMID:22223650

  17. Selection for intrinsic endurance modifies endocrine stress responsiveness

    PubMed Central

    Waters, R Parrish; Renner, Kenneth J; Summers, Cliff H; Watt, Michael L; Forster, Gina L; Koch, Lauren G; Britton, Steven L; Swallow, John G

    2010-01-01

    Physical exercise dampens an individual’s stress response and decreases symptoms of anxiety and depression disorders. While the extrinsic relationship of exercise and psychological state are established, their intrinsic relationship is unresolved. We investigated the potential intrinsic relationship of exercise with stress responsiveness using NIH rats bidirectionally selected for intrinsic endurance capacity. Selection resulted in two populations, one with high intrinsic endurance (high capacity runners; HCR) and one with low intrinsic endurance (low capacity runners; LCR). Animals from these populations were subjected to the elevated plus maze (EPM) and novel environment to assess levels of anxiety-like behavior, and to restraint stress to determine stress responsiveness. Pre-test plasma corticosterone levels and the response of plasma corticosterone to exposure to the EPM and restraint were analyzed using ELISA. A dexamethasone suppression test was performed to assess negative feedback tone of corticosterone release. Pre-test plasma corticosterone levels were similar between LCR and HCR, and these populations had similar behavioral and corticosterone responses to the EPM. Following restraint, HCR animals exhibited more anxiotypic behavior than LCR animals on the EPM, and exhibited an increase in plasma corticosterone following EPM and restraint that was not observed in LCR animals. HCR animals also exhibited more anxiotypic behavior in the novel environment compared to LCR animals. Plasma corticosterone levels were equally reduced in both populations following dexamethasone administration. Overall, our data suggest a positive genetic relationship between exercise endurance and stress responsiveness, which is at odds with the established extrinsic relationship of these traits. PMID:20682296

  18. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  19. Global Metabolic Responses to Salt Stress in Fifteen Species

    PubMed Central

    Pollak, Georg R.; Kuehne, Andreas; Sauer, Uwe

    2016-01-01

    Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses to osmotic stress are conserved among diverse organisms or confined to particular groups of species. Here we investigate the global metabolic responses of twelve bacteria, two yeasts and two human cell lines exposed to sustained hyperosmotic salt stress by measuring semiquantitative levels of hundreds of cellular metabolites using nontargeted metabolomics. Beyond the accumulation of osmoprotectants, we observed significant changes of numerous metabolites in all species. Global metabolic responses were predominantly species-specific, yet individual metabolites were characteristically affected depending on species’ taxonomy, natural habitat, envelope structure or salt tolerance. Exploiting the breadth of our dataset, the correlation of individual metabolite response magnitudes across all species implicated lower glycolysis, tricarboxylic acid cycle, branched-chain amino acid metabolism and heme biosynthesis to be generally important for salt tolerance. Thus, our findings place the global metabolic salt stress response into a phylogenetic context and provide insights into the cellular phenotype associated with salt tolerance. PMID:26848578

  20. Role of chromatin in water stress responses in plants

    PubMed Central

    Han, Soon-Ki; Wagner, Doris

    2014-01-01

    As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth. PMID:24302754

  1. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties

    PubMed Central

    Zanni, Elena; Schifano, Emily; Motta, Sara; Sciubba, Fabio; Palleschi, Claudio; Mauri, Pierluigi; Perozzi, Giuditta; Uccelletti, Daniela; Devirgiliis, Chiara; Miccheli, Alfredo

    2017-01-01

    Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus, lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans, with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis. Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates. PMID:28702021

  2. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties.

    PubMed

    Zanni, Elena; Schifano, Emily; Motta, Sara; Sciubba, Fabio; Palleschi, Claudio; Mauri, Pierluigi; Perozzi, Giuditta; Uccelletti, Daniela; Devirgiliis, Chiara; Miccheli, Alfredo

    2017-01-01

    Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus , lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans , with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis . Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates.

  3. Disruption of GluA2 phosphorylation potentiates stress responsivity.

    PubMed

    Ellis, Alexandra S; Fosnocht, Anne Q; Lucerne, Kelsey E; Briand, Lisa A

    2017-08-30

    Cocaine addiction is characterized by persistent craving and addicts frequently relapse even after long periods of abstinence. Exposure to stress can precipitate relapse in humans and rodents. Stress and drug use can lead to common alterations in synaptic plasticity and these commonalities may contribute to the ability of stress to elicit relapse. These common changes in synaptic plasticity are mediated, in part, by alterations in the trafficking and stabilization of AMPA receptors. Exposure to both cocaine and stress can lead to alterations in protein kinase C-mediated phosphorylation of GluA2 AMPA subunits and thus alter the trafficking of GluA2-containing AMPARs. However, it is not clear what role AMPAR trafficking plays in the interactions between stress and cocaine. The current study utilized a mouse with a point mutation within the GluA2 subunit c-terminus resulting in a disruption of PKC-mediated GluA2 phosphorylation to examine stress responsivity. Although no differences were seen in the response to a forced swim stress in naïve mice, GluA2 K882A knock-in mice exhibited an increased stress response following cocaine self-administration. Furthermore, we demonstrated that disrupting GluA2 phosphorylation increases vulnerability to stress-induced reinstatement of both cocaine seeking and cocaine-conditioned reward. Finally, GluA2 K882A knock-in mice exhibit an increased vulnerability to social defeat as indicated by increased social avoidance. Taken together these results indicate that disrupting GluA2 phosphorylation leads to increased responsivity to acute stress following cocaine exposure and increased vulnerability to chronic stress. These results highlight the GluA2 phosphorylation site as a novel target for the stress-related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. PBP2b plays a key role in both peripheral growth and septum positioning in Lactococcus lactis.

    PubMed

    David, Blandine; Duchêne, Marie-Clémence; Haustenne, Gabrielle Laurie; Pérez-Núñez, Daniel; Chapot-Chartier, Marie-Pierre; De Bolle, Xavier; Guédon, Eric; Hols, Pascal; Hallet, Bernard

    2018-01-01

    Lactococcus lactis is an ovoid bacterium that forms filaments during planktonic and biofilm lifestyles by uncoupling cell division from cell elongation. In this work, we investigate the role of the leading peptidoglycan synthase PBP2b that is dedicated to cell elongation in ovococci. We show that the localization of a fluorescent derivative of PBP2b remains associated to the septal region and superimposed with structural changes of FtsZ during both vegetative growth and filamentation indicating that PBP2b remains intimately associated to the division machinery during the whole cell cycle. In addition, we show that PBP2b-negative cells of L. lactis are not only defective in peripheral growth; they are also affected in septum positioning. This septation defect does not simply result from the absence of the protein in the cell growth machinery since it is also observed when PBP2b-deficient cells are complemented by a catalytically inactive variant of PBP2b. Finally, we show that round cells resulting from β-lactam treatment are not altered in septation, suggesting that shape elongation as such is not a major determinant for selection of the division site. Altogether, we propose that the specific PBP2b transpeptidase activity at the septum plays an important role for tagging future division sites during L. lactis cell cycle.

  5. Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis.

    PubMed

    Lodi, Tiziana; Fontanesi, Flavia; Ferrero, Iliana; Donnini, Claudia

    2004-09-15

    Two new genes KlJEN1 and KlJEN2 were identified in Kluyveromyces lactis. The deduced structure of their products is typical of membrane-bound carriers and displays high similarity to Jen1p, the monocarboxylate permease of Saccharomyces cerevisiae. Both KlJEN1 and KlJEN2 are under the control of glucose repression mediated by FOG1 and FOG2, corresponding to S. cerevisiae GAL83 and SNF1 respectively, and KlCAT8, proteins involved in glucose signalling cascade in K. lactis. KlJEN1, but not KlJEN2, is induced by lactate. KlJEN2 in contrast is expressed at high level in ethanol and succinate. The physiological characterization of null mutants showed that KlJEN1 is the functional homologue of ScJEN1, whereas KlJEN2 encodes a dicarboxylic acids transporter. In fact, KlJen1p [transporter classification (TC) number: 2.A.1.12.2.] is required for lactate uptake and therefore for growth on lactate. KlJen2p is required for succinate transport, as demonstrated by succinate uptake experiments and by inability of Kljen2 mutant to grow on succinate. This carrier appears to transport also malate and fumarate because the Kljen2 mutant cannot grow on these substrates and the succinate uptake is competed by these carboxylic acids. We conclude that KlJEN2 is the first yeast gene shown to encode a dicarboxylic acids permease.

  6. Use of synthetic genes for cloning, production and functional expression of the bacteriocins enterocin A and bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis.

    PubMed

    Jiménez, Juan J; Borrero, Juan; Gútiez, Loreto; Arbulu, Sara; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2014-06-01

    The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacter jejuni.

  7. Social stress response in adolescents with bipolar disorder.

    PubMed

    Casement, Melynda D; Goldstein, Tina R; Gratzmiller, Sarah M; Franzen, Peter L

    2018-05-01

    Theoretical models posit that stressors contribute to the onset and maintenance of bipolar disorder in adolescence through disruptions in stress physiology, but physiological response to stressors has not been evaluated in adolescents with bipolar illness. The present study tests the hypothesis that adolescents with bipolar disorder will have greater reactivity to a laboratory social stress task than healthy adolescents. Adolescents with bipolar illness (n = 27) and healthy adolescents (n = 28) completed a modified version of the Trier Social Stress Task. Stress response was assessed using high frequency heart rate variability (HF-HRV), heart rate (HR), mean arterial blood pressure (MAP), salivary cortisol, and subjective stress. Multilevel models were used to test for group differences in resting-state physiology, and stress reactivity and recovery. Adolescents with bipolar disorder had greater reactivity in HF-HRV (z = 3.32), but blunted reactivity in MAP (z = -3.08) and cortisol (z = -2.60), during the stressor compared to healthy adolescents. They also had lower resting HF-HRV (z = -3.49) and cortisol (z = -2.86), and higher resting HR (z = 3.56), than healthy adolescents. These results indicate that bipolar disorder is associated with disruptions in autonomic and endocrine response to stress during adolescence, including greater HF-HRV reactivity. Further research should evaluate whether these individual differences in stress physiology precede and predict the onset of mood episodes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Proteomic response of mouse pituitary gland under heat stress revealed active regulation of stress responsive proteins.

    PubMed

    Memon, Shahar Bano; Lian, Li; Gadahi, Javaid Ali; Genlin, Wang

    2016-10-01

    The mapping of tissue proteomes can identify the molecular regulators and effectors of their physiological activity. However, proteomic response of a mammalian tissue against heat stress (HS) particularly of the pituitary gland has not yet been resolved. The proteomic response of the mouse pituitary gland against HS at 40 o C was evaluated by iTRAQ. We found that, HS actively regulates stress-related proteins. Among 375 differentially expressed proteins, 26 up and 46 downregulated proteins were found as stress responsive proteins. Two proteins belonging to the HSP70 and one to HSP90 family were found upregulated. Meanwhile, the expression of HSP90α (Cytosolic), HSP60, and HSP84b were observed to be downregulated. A neuroprotective enzyme Nmnat3 was observed to be significantly upregulated. Three proteins related to the intermediate filament (IF) proteins (lamins, vimentin and keratins) were also found to be upregulated. We reported, an association between the IF proteins and HSPs as a biological marker of HS. The expression of Apo A-IV was upregulated and might be one explanation for low food intake during HS. Our findings indicated that, differentially expressed proteins might be played important roles in combating HS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Increasing correlations between personality traits and cortisol stress responses obtained by data aggregation.

    PubMed

    Pruessner, J C; Gaab, J; Hellhammer, D H; Lintz, D; Schommer, N; Kirschbaum, C

    1997-11-01

    Attempts to link personality traits and cortisol stress responses have often been inconclusive. The aim of this paper was to investigate this association by aggregating cortisol stress responses. Therefore, 20 healthy men were exposed to a task consisting of public speaking and mental arithmetics in front of an audience on five days. Six cortisol levels were measured in relation to the stressful task obtained at 10-min intervals on each day. Psychological assessment included the Questionnaire for Competence and Control (FKK) and the Giessen-Test (G-T). These questionnaires focus on assessing personality traits, i.e. locus of control and self-concept. Areas under the response curve (AUC) of the six cortisol samples were computed to obtain an index of the individual's cortisol stress response on each day. Since novelty is a random situational factor likely to mask individual differences in the stress response, the AUC cortisol stress responses of days two to five were consecutively aggregated, excluding the first day. Scales of the two questionnaires employed did not correlate with the AUC cortisol stress response of the first stress trial. The correlation pattern of the AUC cortisol measures of days two to five with the questionnaire scales was inconclusive. However, significant correlations emerged with an increasing number of cortisol stress responses aggregated. Correlations between the measure of social dominance and aggregated AUC cortisol stress responses rose from r = -.47 on day two of the experimental session to r = -.70 after aggregating days two to five. Similarly, measures of locus of control and cortisol stress responses became increasingly correlated with aggregation of several stress exposures. These data provide preliminary evidence for a relationship between questionnaire scales aiming at assessing personality traits and cortisol stress responses uncovered by repeated stress exposure and data aggregation. While novelty may mask the impact of

  10. A robust and reliable non-invasive test for stress responsivity in mice.

    PubMed

    Zimprich, Annemarie; Garrett, Lillian; Deussing, Jan M; Wotjak, Carsten T; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Wurst, Wolfgang; Hölter, Sabine M

    2014-01-01

    Stress and an altered stress response have been associated with many multifactorial diseases, such as psychiatric disorders or neurodegenerative diseases. As currently mouse mutants for each single gene are generated and phenotyped in a large-scale manner, it seems advisable also to test these mutants for alterations in their stress responses. Here we present the determinants of a robust and reliable non-invasive test for stress-responsivity in mice. Stress is applied through restraining the mice in tubes and recording behavior in the Open Field 20 min after cessation of the stress. Two hours, but not 15 or 50 min of restraint lead to a robust and reproducible increase in distance traveled and number of rearings during the first 5 min in the Open Field in C57BL/6 mice. This behavioral response is blocked by the corticosterone synthesis inhibitor metyrapone, but not by RU486 treatment, indicating that it depends on corticosteroid secretion, but is not mediated via the glucocorticoid receptor type II. We assumed that with a stress duration of 15 min one could detect hyper-responsivity, and with a stress duration of 2 h hypo-responsivity in mutant mouse lines. This was validated with two mutant lines known to show opposing effects on corticosterone secretion after stress exposure, corticotropin-releasing hormone (CRH) over-expressing mice and CRH receptor 1 knockout (KO) mice. Both lines showed the expected phenotype, i.e., increased stress responsivity in the CRH over-expressing mouse line (after 15 min restraint stress) and decreased stress responsivity in the CRHR1-KO mouse line (after 2 h of restraint stress). It is possible to repeat the acute stress test several times without the stressed animal adapting to it, and the behavioral response can be robustly evoked at different ages, in both sexes and in different mouse strains. Thus, locomotor and rearing behavior in the Open Field after an acute stress challenge can be used as reliable, non-invasive indicators of

  11. A robust and reliable non-invasive test for stress responsivity in mice

    PubMed Central

    Zimprich, Annemarie; Garrett, Lillian; Deussing, Jan M.; Wotjak, Carsten T.; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Wurst, Wolfgang; Hölter, Sabine M.

    2014-01-01

    Stress and an altered stress response have been associated with many multifactorial diseases, such as psychiatric disorders or neurodegenerative diseases. As currently mouse mutants for each single gene are generated and phenotyped in a large-scale manner, it seems advisable also to test these mutants for alterations in their stress responses. Here we present the determinants of a robust and reliable non-invasive test for stress-responsivity in mice. Stress is applied through restraining the mice in tubes and recording behavior in the Open Field 20 min after cessation of the stress. Two hours, but not 15 or 50 min of restraint lead to a robust and reproducible increase in distance traveled and number of rearings during the first 5 min in the Open Field in C57BL/6 mice. This behavioral response is blocked by the corticosterone synthesis inhibitor metyrapone, but not by RU486 treatment, indicating that it depends on corticosteroid secretion, but is not mediated via the glucocorticoid receptor type II. We assumed that with a stress duration of 15 min one could detect hyper-responsivity, and with a stress duration of 2 h hypo-responsivity in mutant mouse lines. This was validated with two mutant lines known to show opposing effects on corticosterone secretion after stress exposure, corticotropin-releasing hormone (CRH) over-expressing mice and CRH receptor 1 knockout (KO) mice. Both lines showed the expected phenotype, i.e., increased stress responsivity in the CRH over-expressing mouse line (after 15 min restraint stress) and decreased stress responsivity in the CRHR1-KO mouse line (after 2 h of restraint stress). It is possible to repeat the acute stress test several times without the stressed animal adapting to it, and the behavioral response can be robustly evoked at different ages, in both sexes and in different mouse strains. Thus, locomotor and rearing behavior in the Open Field after an acute stress challenge can be used as reliable, non-invasive indicators of

  12. Conserved Transcriptional Responses to Nutrient Stress in Bloom-Forming Algae

    PubMed Central

    Harke, Matthew J.; Juhl, Andrew R.; Haley, Sheean T.; Alexander, Harriet; Dyhrman, Sonya T.

    2017-01-01

    The concentration and composition of bioavailable nitrogen (N) and phosphorus (P) in the upper ocean shape eukaryotic phytoplankton communities and influence their physiological responses. Phytoplankton are known to exhibit similar physiological responses to limiting N and P conditions such as decreased growth rates, chlorosis, and increased assimilation of N and P. Are these responses similar at the molecular level across multiple species? To interrogate this question, five species from biogeochemically important, bloom-forming taxa (Bacillariophyta, Dinophyta, and Haptophyta) were grown under similar low N, low P, and replete nutrient conditions to identify transcriptional patterns and associated changes in biochemical pools related to N and P stress. Metabolic profiles, revealed through the transcriptomes of these taxa, clustered together based on species rather than nutrient stressor, suggesting that the global metabolic response to nutrient stresses was largely, but not exclusively, species-specific. Nutrient stress led to few transcriptional changes in the two dinoflagellates, consistent with other research. An orthologous group analysis examined functionally conserved (i.e., similarly changed) responses to nutrient stress and therefore focused on the diatom and haptophytes. Most conserved ortholog changes were specific to a single nutrient treatment, but a small number of orthologs were similarly changed under both N and P stress in 2 or more species. Many of these orthologs were related to photosynthesis and may represent generalized stress responses. A greater number of orthologs were conserved across more than one species under low P compared to low N. Screening the conserved orthologs for functions related to N and P metabolism revealed increased relative abundance of orthologs for nitrate, nitrite, ammonium, and amino acid transporters under N stress, and increased relative abundance of orthologs related to acquisition of inorganic and organic P

  13. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model.

    PubMed

    Guo, Shanguang; Yan, Weiwei; McDonough, Sean P; Lin, Nengfeng; Wu, Katherine J; He, Hongxuan; Xiang, Hua; Yang, Maosheng; Moreira, Maira Aparecida S; Chang, Yung-Fu

    2015-03-24

    Clostridium difficile infection (CDI) causes nosocomial antibiotic-associated diarrhea and colitis in the developed world. Two potent cytotoxins, toxin A (TcdA) and toxin B (TcdB) are the virulence factors of this disease and can be a good vaccine candidate against CDI. In the present study, we genetically engineered Lactococcus lactis to express the nontoxic, recombinant fragments derived from TcdA and TcdB C-terminal receptor binding domains (Tcd-AC and Tcd-BC) as an oral vaccine candidate. The immunogenicity of the genetically engineered L. lactis oral vaccine delivery system (animal groups LAC and LBC or the combination of both, LACBC) was compared with the recombinant TcdA and TcdB C-terminal receptor binding domain proteins (animal groups PAC and PBC or the combination of both, PACBC), which were expressed and purified from E. coli. After the C. difficile challenge, the control groups received PBS or engineered L. lactis with empty vector, showed severe diarrhea symptoms and died within 2-3 days. However, both the oral vaccine and recombinant protein vaccine groups had significantly lower mortalities, body weight decreases and histopathologic lesions than the control sham-vaccine groups (p<0.05) except group LBC which only had a 31% survival rate after the challenge. The data of post infection survival showed that an average of 86% of animals survived in groups PAC and PACBC, 75% of animals survived in group LACBC, and 65% of animals survived in group LAC. All of the vaccinated animals produced higher titers of both IgG and IgA than the control groups (p<0.05), and the antibodies were able to neutralize the cytopathic effect of toxins in vitro. The results of this study indicate that there is a potential to use L. lactis as a delivery system to develop a cost effective oral vaccine against CDI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus.

    PubMed

    Xia, Yun; Lu, Maixin; Chen, Gang; Cao, Jianmeng; Gao, Fengying; Wang, Miao; Liu, Zhigang; Zhang, Defeng; Zhu, Huaping; Yi, Mengmeng

    2018-05-01

    The present study aimed to evaluate the individual and combined effects of Lactobacillus rhamnosus (LR) JCM1136 and Lactococcus lactis subsp. lactis (LL) JCM5805 on the growth, intestinal microbiota, intestinal morphology, immune response and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). A total of 720 apparently healthy juvenile Nile tilapia (0.20 ± 0.05 g) were randomly divided into four equal groups. Fish were fed with a basal diet (CK) supplemented with JCM1136 (LR), JCM5805 (LL), and JCM1136 + JCM5805 (LR+LL) at 1 × 10 8  CFU/g basal diet for 6 weeks, followed by a basal diet for 1 week. After 6 weeks of feeding, the LL treatment significantly increased the growth and feed utilization of Nile tilapia when compared with the CK. Light microscopy and transmission electron microscopy images of the midgut revealed that probiotic supplementation significantly increased gut microvilli length and microvilli density compared to CK. The transcript levels of several key immune-related genes in the mid-intestine and liver of fish were analyzed by means of quantitative polymerase chain reaction (qPCR) at the end of the sixth week. The results showed the following: when compared to CK group, fish in LR had significantly increased transcript levels of IFN-γ, lyzc, hsp70 and IL-1β in the intestine; LL fish showed significantly increased expressions of TNF-α, IFN-γ, lyzc, hsp70 and IL-1β in the intestine and liver; and intestine lyzc, hsp70 and IL-1β and liver TNF-α, IFN-γ, hsp70 and IL-1β were significantly increased in LR+LL fish. Following a 6-week period of being fed probiotics or a control diet, the tilapia were challenged with an intraperitoneal injection of 20 μl of the pathogenic Streptococcus agalactiae (WC1535) (1 × 10 5  CFU/ml). The survival rates of the probiotic-fed groups were significantly higher than that of the CK group, and the LL group had the highest survival rate. High-throughput sequencing revealed a

  15. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance

    PubMed Central

    Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated

  16. Cortisol stress response in post-traumatic stress disorder, panic disorder, and major depressive disorder patients.

    PubMed

    Wichmann, Susann; Kirschbaum, Clemens; Böhme, Carsten; Petrowski, Katja

    2017-09-01

    Previous research has focussed extensively on the distinction of HPA-axis functioning between patient groups and healthy volunteers, with relatively little emphasis on a direct comparison of patient groups. The current study's aim was to analyse differences in the cortisol stress response as a function of primary diagnosis of panic disorder (PD), post-traumatic stress disorder (PTSD), and major depressive disorder (MDD). A total of n=30 PD (mean age±SD: 36.07±12.56), n=23 PTSD (41.22±10.17), n=18 MDD patients (39.00±14.93) and n=47 healthy control (HC) individuals (35.51±13.15) participated in this study. All the study participants were female. The Trier Social Stress Test (TSST) was used for reliable laboratory stress induction. Blood sampling accompanied the TSST for cortisol and ACTH assessment. Panic-related, PTSD-specific questionnaires and the Beck Depression Inventory II were handed out for the characterisation of the study groups. Repeated measure ANCOVAs were conducted to test for main effects of time or group and for interaction effects. Regression analyses were conducted to take comorbid depression into account. 26.7% of the PD patients, 43.5% of the PTSD patients, 72.2% of the MDD patients and 80.6% of the HC participants showed a cortisol stress response upon the TSST. ANCOVA revealed a cortisol hypo-responsiveness both in PD and PTSD patients, while no significant group differences were seen in the ACTH concentrations. Additional analyses showed no impact of comorbid depressiveness on the cortisol stress response. MDD patients did not differ in the hormonal stress response neither compared to the HC participants nor to the PD and PTSD patients. Our main findings provide evidence of a dissociation between the cortisol and ACTH concentrations in response to the TSST in PTSD and in PD patients, independent of comorbid depression. Our results further support overall research findings of a cortisol hypo-responsiveness in PD patients. A hypo-response

  17. Psychological stress during exercise: cardiorespiratory and hormonal responses.

    PubMed

    Webb, Heather E; Weldy, Michael L; Fabianke-Kadue, Emily C; Orndorff, G R; Kamimori, Gary H; Acevedo, Edmund O

    2008-12-01

    The purpose of this study was to examine the cardiorespiratory (CR) and stress hormone responses to a combined physical and mental stress. Eight participants (VO2(max) = 41.24 +/- 6.20 ml kg(-1) min(-1)) completed two experimental conditions, a treatment condition including a 37 min ride at 60% of VO2(max) with participants responding to a computerized mental challenge dual stress condition (DSC) and a control condition of the same duration and intensity without the mental challenge exercise alone condition (EAC). Significant interactions across time were found for CR responses, with heart rate, ventilation, and respiration rate demonstrating higher increases in the DSC. Additionally, norepinephrine was significantly greater in the DSC at the end of the combined challenge. Furthermore, cortisol area-under-the-curve (AUC) was also significantly elevated during the DSC. These results demonstrate that a mental challenge during exercise can exacerbate the stress response, including the release of hormones that have been linked to negative health consequences (cardiovascular, metabolic, autoimmune illnesses).

  18. Lysines 72, 80 and 213 and aspartic acid 210 of the Lactococcus lactis LacR repressor are involved in the response to the inducer tagatose-6-phosphate leading to induction of lac operon expression.

    PubMed

    van Rooijen, R J; Dechering, K J; Niek, C; Wilmink, J; de Vos, W M

    1993-02-01

    Site-directed mutagenesis of the Lactococcus lactis lacR gene was performed to identify residues in the LacR repressor that are involved in the induction of lacABCDFEGX operon expression by tagatose-6-phosphate. A putative inducer binding domain located near the C-terminus was previously postulated based on homology studies with the Escherichia coli DeoR family of repressors, which all have a phosphorylated sugar as inducer. Residues within this domain and lysine residues that are charge conserved in the DeoR family were changed into alanine or arginine. The production of the LacR mutants K72A, K80A, K80R, D210A, K213A and K213R in the LacR-deficient L.lactis strain NZ3015 resulted in repressed phospho-beta-galactosidase (LacG) activities and decreased growth rates on lactose. Gel mobility shift assays showed that the complex between a DNA fragment carrying the lac operators and LacR mutants K72A, K80A, K213A and D210A did not dissociate in the presence of tagatose-6-phosphate, in contrast to wild type LacR. Other mutations (K62A/K63A, K72R, K73A, K73R, T212A, F214R, R216R and R216K) exhibited no gross effects on inducer response. The results strongly suggest that the lysines at positions 72, 80 and 213 and aspartic acid at position 210 are involved in the induction of lac operon expression by tagatose-6-phosphate.

  19. The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress.

    PubMed

    Crum, Alia J; Akinola, Modupe; Martin, Ashley; Fath, Sean

    2017-07-01

    Prior research suggests that altering situation-specific evaluations of stress as challenging versus threatening can improve responses to stress. The aim of the current study was to explore whether cognitive, physiological and affective stress responses can be altered independent of situation-specific evaluations by changing individuals' mindsets about the nature of stress in general. Using a 2 × 2 design, we experimentally manipulated stress mindset using multi-media film clips orienting participants (N = 113) to either the enhancing or debilitating nature of stress. We also manipulated challenge and threat evaluations by providing positive or negative feedback to participants during a social stress test. Results revealed that under both threat and challenge stress evaluations, a stress-is-enhancing mindset produced sharper increases in anabolic ("growth") hormones relative to a stress-is-debilitating mindset. Furthermore, when the stress was evaluated as a challenge, a stress-is-enhancing mindset produced sharper increases in positive affect, heightened attentional bias towards positive stimuli, and greater cognitive flexibility, whereas a stress-is-debilitating mindset produced worse cognitive and affective outcomes. These findings advance stress management theory and practice by demonstrating that a short manipulation designed to generate a stress-is-enhancing mindset can improve responses to both challenging and threatening stress.

  20. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    PubMed

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  1. Characterization of a Nucleus-Encoded Chitinase from the Yeast Kluyveromyces lactis

    PubMed Central

    Colussi, Paul A.; Specht, Charles A.; Taron, Christopher H.

    2005-01-01

    Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin α-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain. The association of purified KlCts1p with chitin is stable in the presence of high salt concentrations and pH 3 to 10 buffers; however, complete dissociation and release of fully active KlCts1p occur in 20 mM NaOH. Similarly, secreted human serum albumin harboring a carboxy-terminal fusion with the chitin-binding domain derived from KlCts1p also dissociates from chitin in 20 mM NaOH, demonstrating the domain's potential utility as an affinity tag for reversible chitin immobilization or purification of alkaliphilic or alkali-tolerant recombinant fusion proteins. Finally, haploid K. lactis cells harboring a cts1 null mutation are viable but exhibit a cell separation defect, suggesting that KlCts1p is required for normal cytokinesis, probably by facilitating the degradation of septum-localized chitin. PMID:15932978

  2. Characterization of a nucleus-encoded chitinase from the yeast Kluyveromyces lactis.

    PubMed

    Colussi, Paul A; Specht, Charles A; Taron, Christopher H

    2005-06-01

    Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin alpha-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain. The association of purified KlCts1p with chitin is stable in the presence of high salt concentrations and pH 3 to 10 buffers; however, complete dissociation and release of fully active KlCts1p occur in 20 mM NaOH. Similarly, secreted human serum albumin harboring a carboxy-terminal fusion with the chitin-binding domain derived from KlCts1p also dissociates from chitin in 20 mM NaOH, demonstrating the domain's potential utility as an affinity tag for reversible chitin immobilization or purification of alkaliphilic or alkali-tolerant recombinant fusion proteins. Finally, haploid K. lactis cells harboring a cts1 null mutation are viable but exhibit a cell separation defect, suggesting that KlCts1p is required for normal cytokinesis, probably by facilitating the degradation of septum-localized chitin.

  3. Effect of childhood physical abuse on cortisol stress response.

    PubMed

    Carpenter, Linda L; Shattuck, Thaddeus T; Tyrka, Audrey R; Geracioti, Thomas D; Price, Lawrence H

    2011-03-01

    Abuse and neglect are highly prevalent in children and have enduring neurobiological effects. Stressful early life environments perturb the hypothalamic-pituitary-adrenal (HPA) axis, which in turn may predispose to psychiatric disorders in adulthood. However, studies of childhood maltreatment and adult HPA function have not yet rigorously investigated the differential effects of maltreatment subtypes, including physical abuse. In this study, we sought to replicate our previous finding that childhood maltreatment was associated with attenuated cortisol responses to stress and determine whether the type of maltreatment was a determinant of the stress response. Salivary cortisol response to the Trier Social Stress Test (TSST) was examined in a non-clinical sample of women (n = 110). Subjects had no acute medical problems and were not seeking psychiatric treatment. Effects of five maltreatment types, as measured by the Childhood Trauma Questionnaire, on cortisol response to the TSST were investigated. To further examine the significant (p < 0.005) effect of one maltreatment type, women with childhood physical abuse (PA) (n = 20) were compared to those without past PA (n = 90). Women reporting childhood PA displayed a significantly blunted cortisol response to the TSST compared with subjects without PA, after controlling for estrogen use, age, other forms of maltreatment, and other potential confounds. There were no differences between PA and control groups with regard to physiological arousal during the stress challenge. In a non-clinical sample of women with minimal or no current psychopathology, physical abuse is associated with a blunted cortisol response to a psychosocial stress task.

  4. Efficient secretory expression of the sweet-tasting protein brazzein in the yeast Kluyveromyces lactis.

    PubMed

    Jo, Hyun-Joo; Noh, Jin-Seok; Kong, Kwang-Hoon

    2013-08-01

    Brazzein is an intensely sweet-tasting protein with high water solubility, heat stability, and taste properties resembling those of carbohydrate sweeteners. In the present study, we describe the expression of the synthetic gene encoding brazzein, a sweet protein in the yeast Kluyveromyces lactis. The synthetic brazzein gene was designed based on the biased codons of the yeast, so as to optimize its expression, as well as on the extracellular secretion for expression in an active, soluble form. The synthesized brazzein gene was cloned into the secretion vector pKLAC2, which contains the yeast prepropeptide signal from the Saccharomycescerevisiae α-mating factor. The constructed plasmid pKLAC2-des-pE1M-brazzein was introduced into the yeast K. lactis GG799. The yeast transformants were cultured for high-yield secretion of the recombinant des-pE1M-brazzein in YPGal medium for 96 h at 30°C. The expressed recombinant des-pE1M-brazzein was purified by CM-Sepharose column chromatography and approximately 104 mg/L was obtained. The purity and conformational state of the recombinant des-pE1M-brazzein were confirmed using SDS-PAGE, HPLC, and circular dichroism. The identity of the recombinant protein was also confirmed by N-terminal amino acid analysis and taste testing. The purified recombinant des-pE1M-brazzein had an intrinsic sweetness in its minor form, approximately 2130 times sweeter than sucrose on a weight basis. These results demonstrate that the K. lactis expression system is useful for producing the recombinant brazzein in active form at a high yield with attributes useful in the food industry. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Expression of food-grade phytase in Lactococcus lactis from optimized conditions in milk broth.

    PubMed

    Miao, Yuzhi; Xu, Hui; Fei, Baojin; Qiao, Dairong; Cao, Yi

    2013-07-01

    The major objective of this study was to engineer lactic acid bacteria to produce the enzyme phytase from a gene native to Bacillus subtilis GYPB04. The phytase gene (phyC) of B. subtilis GYPB04 was cloned into the plasmid pMG36e for expression in Lactococcus lactis. The enzyme activity in L. lactis cultured in GM17 broth was 20.25 U/mL at 36°C. The expressed phytase was characterized as active in a pH range of 2.0-9.0 at a temperature range of 20-80°C, with an optimum pH of 5.5-6.5 and temperature of 60°C. When cultured in food-grade milk broth, the transformed L. lactis grew to an OD(600 nm) value of 1.05 and had a phytase yield of 13.58 U/mL. In same broth under optimized conditions for cell growth and phytase production, the transformant reached an OD(600 nm) value of 1.68 and a phytase yield of 42.12 U/mL, representing approximately 1.6-fold and 3.1-fold increases, respectively, compared to growth in natural milk broth. Fermentation was scaled to 5 L under optimized conditions, and product analysis revealed a final OD(600 nm) value of 1.89 and an extracellular enzyme activity of 24.23 U/mL. The results of this study may be used in the dairy fermentation industry for the development of functional, healthy yogurts and other fermented dairy foods that provide both active phytase and viable probiotics to the consumer. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Cell-Wall-Bound Proteinase of Lactobacillus delbrueckii subsp. lactis ACA-DC 178: Characterization and Specificity for β-Casein

    PubMed Central

    Tsakalidou, E.; Anastasiou, R.; Vandenberghe, I.; van Beeumen, J.; Kalantzopoulos, G.

    1999-01-01

    Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40°C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes β-casein mainly and α- and κ-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from β-casein, which have been identified. PMID:10223997

  7. Stress response of brown pelican nestlings to ectoparasite infestation

    USGS Publications Warehouse

    Eggert, L.M.F.; Jodice, P.G.R.; O'Reilly, K. M.

    2010-01-01

    Measurement of corticosterone has become a useful tool for assessing the response of individuals to ecological stressors of interest. Enhanced corticosterone levels can promote survival of stressful events; however, in situations where a stressor persists and corticosterone levels remain elevated, the adrenocortical response can be detrimental. A potential ecological stressor for wild birds is parasitism by ectoparasites. We studied the stress response of 11-23-day-old brown pelican (Pelecanus occidentalis) nestlings by measuring plasma corticosterone levels in relation to the presence of the soft tick Carios capensis at two colonies in South Carolina in 2005. We expected to see higher baseline and stress-induced levels of corticosterone for parasitized chicks compared to those nestlings with no ticks. Although nestlings mounted a response to capture stress, tick category was not associated with corticosterone levels at either colony. Our results appear to contrast those of previous studies and indicate that the adrenocortical response of the host is likely dependent on the type of ectoparasite and the degree of infestation. ?? 2009 Elsevier Inc.

  8. Nitric Oxide Regulates Protein Methylation during Stress Responses in Plants.

    PubMed

    Hu, Jiliang; Yang, Huanjie; Mu, Jinye; Lu, Tiancong; Peng, Juli; Deng, Xian; Kong, Zhaosheng; Bao, Shilai; Cao, Xiaofeng; Zuo, Jianru

    2017-08-17

    Methylation and nitric oxide (NO)-based S-nitrosylation are highly conserved protein posttranslational modifications that regulate diverse biological processes. In higher eukaryotes, PRMT5 catalyzes Arg symmetric dimethylation, including key components of the spliceosome. The Arabidopsis prmt5 mutant shows severe developmental defects and impaired stress responses. However, little is known about the mechanisms regulating the PRMT5 activity. Here, we report that NO positively regulates the PRMT5 activity through S-nitrosylation at Cys-125 during stress responses. In prmt5-1 plants, a PRMT5 C125S transgene, carrying a non-nitrosylatable mutation at Cys-125, fully rescues the developmental defects, but not the stress hypersensitive phenotype and the responsiveness to NO during stress responses. Moreover, the salt-induced Arg symmetric dimethylation is abolished in PRMT5 C125S /prmt5-1 plants, correlated to aberrant splicing of pre-mRNA derived from a stress-related gene. These findings define a mechanism by which plants transduce stress-triggered NO signal to protein methylation machinery through S-nitrosylation of PRMT5 in response to environmental alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Modeling of the Competitive Growth of Listeria monocytogenes and Lactococcus lactis in Vegetable Broth

    PubMed Central

    Breidt, Frederick; Fleming, Henry P.

    1998-01-01

    Current mathematical models used by food microbiologists do not address the issue of competitive growth in mixed cultures of bacteria. We developed a mathematical model which consists of a system of nonlinear differential equations describing the growth of competing bacterial cell cultures. In this model, bacterial cell growth is limited by the accumulation of protonated lactic acid and decreasing pH. In our experimental system, pure and mixed cultures of Lactococcus lactis and Listeria monocytogenes were grown in a vegetable broth medium. Predictions of the model indicate that pH is the primary factor that limits the growth of L. monocytogenes in competition with a strain of L. lactis which does not produce the bacteriocin nisin. The model also predicts the values of parameters that affect the growth and death of the competing populations. Further development of this model will incorporate the effects of additional inhibitors, such as bacteriocins, and may aid in the selection of lactic acid bacterium cultures for use in competitive inhibition of pathogens in minimally processed foods. PMID:9726854

  10. Safety characterisation and inhibition of fungi and bacteria by a novel multiple enterocin-producing Enterococcus lactis 4CP3 strain.

    PubMed

    Ben Braïek, Olfa; Cremonesi, Paola; Morandi, Stefano; Smaoui, Slim; Hani, Khaled; Ghrairi, Taoufik

    2018-03-07

    This study aims to characterise a potential bacteriocinogenic lactic acid bacterial strain isolated from a raw pink shrimp (Palaemon serratus) and evaluate its safety aspect. The strain designated as 4CP3 was noted to display antibacterial activities (P < 0.05) against Gram-positive and Gram-negative foodborne pathogens (Listeria monocytogenes and Pseudomonas aeruginosa) and some filamentous fungi (e.g. Aspergillus niger A79). Phenotypic and molecular techniques as well as phylogenetic analysis identified the isolate 4CP3 as Enterococcus lactis. Its produced antimicrobial substance was determined as a bacteriocin that was stable over a wide range of pH (2-10) and after heating at 100 °C for 15 min. The maximum bacteriocin production was 1400 AU/ml recorded after 12 h of incubation in de Man, Rogosa and Sharpe (MRS) broth medium at 30 °C. The mode of action of the bacteriocin produced by 4CP3 strain was identified as bactericidal against L. monocytogenes EGDe 107776 and P. aeruginosa ATCC 27853. By specific PCR amplifications, E. lactis 4CP3 was shown to produce the enterocins A, B and P. To our knowledge, this feature is newly described for E. lactis strain isolated from raw shrimps. Regarding safety aspect of E. lactis 4CP3, it has been demonstrated that this strain was not haemolytic, gelatinase negative, sensitive to vancomycin, and free of common antibiotic resistance genes and virulence factors. Therefore, it may be useful as a safe natural agent in preservation of foods or as a new probiotic strain in food and feed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats.

    PubMed

    Yee, Nicole; Plassmann, Kerstin; Fuchs, Eberhard

    2011-09-01

    Clinical studies have implicated adolescence as an important and vulnerable period during which traumatic experiences can predispose individuals to anxiety and mood disorders. As such, a stress model in juvenile rats (age 27-29 d) was previously developed to investigate the long-term effects of stress exposure during adolescence on behavior and physiology. This paradigm involves exposing rats to different stressors on consecutive days over a 3-day period. Here, we studied the effects of juvenile stress on long-term core body temperature regulation and acute stress-induced hyperthermia (SIH) responses using telemetry. We found no differences between control and juvenile stress rats in anxiety-related behavior on the elevated plus maze, which we attribute to stress associated with surgical implantation of telemetry devices. This highlights the severe impact of surgical stress on the results of subsequent behavioral measurements. Nonetheless, juvenile stress disrupted the circadian rhythmicity of body temperature and decreased circadian amplitude. It also induced chronic hypothermia during the dark phase of the day, when rats are most active. When subjected to acute social defeat stress as adults, juvenile stress had no impact on the SIH response relative to controls. However, 24 h later, juvenile stress rats displayed an elevated SIH response in anticipation of social defeat when re-exposed to the social defeat environment. Taken together, our findings indicate that juvenile stress can induce long-term alterations in body temperature regulation and heighten the increase in temperature associated with anticipation of social defeat. The outcomes of behavioral measurements in these experiments, however, are severely affected by surgical stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Oral vaccine of Lactococcus lactis harbouring pandemic H1N1 2009 haemagglutinin1 and nisP anchor fusion protein elevates anti-HA1 sIgA levels in mice.

    PubMed

    Joan, Stella Siaw Xiu; Pui-Fong, Jee; Song, Adelene Ai-Lian; Chang, Li-Yen; Yusoff, Khatijah; AbuBakar, Sazaly; Rahim, Raha Abdul

    2016-05-01

    An oral lactococcal-based vaccine which haboured the haemagglutinin1 (HA1) antigen fused to nisP anchor protein for the purpose of surface displaying the HA1 antigen was developed against H1N1 virus. Recombinant L. lactis strains expressed HA1-nisP fusion proteins when induced with nisin, as confirmed through western blotting. However, immunofluorescense did not detect any surface-displayed proteins, suggesting that the protein was either unsuccessfully translocated or improperly displayed. Despite this, oral administration of recombinant L. lactis strains to BALB/c mice revealed that significant levels of anti-HA1 sIgA antibodies were detected in mice fecal suspension samples of mice group NZ9000 (pNZ:HN) when compared to the negative control NZ9000 (pNZ8048) group. Specific anti-HA1 sIgA antibodies were locally produced and live recombinant lactococcal vaccine was able to elicit humoral response of BALB/c mice despite unsuccessful surface display of the HA1 epitope.

  13. Overtime work and stress response in a group of Japanese workers.

    PubMed

    Sato, Yuji; Miyake, Hitoshi; Thériault, Gilles

    2009-01-01

    Working long overtime hours is considered a cause of mental health problems among workers but such a relationship has yet to be empirically confirmed. To clarify the influence of overtime work on response to stress and to assess the role of other stress-related factors on this relationship. The study was conducted among 24 685 employees of a company in Japan. Stress response, job stressors and social supports were assessed by the Brief Job Stress Questionnaire. Participants were divided into five categories of overtime (0-19, 20-39, 40-59, >or=60 h of overtime per month and exempted employees). The nonadjusted odds ratios for stress response for 40-59 and >or=60 overtime hours per month in reference to 0-19 overtime hours were 1.11 [95% confidence interval (CI) 1.03-1.19] and 1.62 (95% CI 1.50-1.76), respectively. After adjustment for self-assessed amount of work, mental workload and sleeping time, the association between overtime work and stress response disappeared. This large cross-sectional study shows that overtime work appears to influence stress response indirectly through other stress factors such as self-assessed amount of work, mental workload and sleeping time.

  14. Maternal Influences on Youth Responses to Peer Stress

    ERIC Educational Resources Information Center

    Abaied, Jamie L.; Rudolph, Karen D.

    2011-01-01

    Understanding how youths develop particular styles of responding to stress is critical for promoting effective coping. This research examined the prospective, interactive contribution of maternal socialization of coping and peer stress to youth responses to peer stress. A sample of 144 early adolescents (mean age = 12.44 years, SD = 1.22) and…

  15. The Deletion of the Succinate Dehydrogenase Gene KlSDH1 in Kluyveromyces lactis Does Not Lead to Respiratory Deficiency

    PubMed Central

    Saliola, Michele; Bartoccioni, Paola Chiara; De Maria, Ilaria; Lodi, Tiziana; Falcone, Claudio

    2004-01-01

    We have isolated a Kluyveromyces lactis mutant unable to grow on all respiratory carbon sources with the exception of lactate. Functional complementation of this mutant led to the isolation of KlSDH1, the gene encoding the flavoprotein subunit of the succinate dehydrogenase (SDH) complex, which is essential for the aerobic utilization of carbon sources. Despite the high sequence conservation of the SDH genes in Saccharomyces cerevisiae and K. lactis, they do not have the same relevance in the metabolism of the two yeasts. In fact, unlike SDH1, KlSDH1 was highly expressed under both fermentative and nonfermentative conditions. In addition to this, but in contrast with S. cerevisiae, K. lactis strains lacking KlSDH1 were still able to grow in the presence of lactate. In these mutants, oxygen consumption was one-eighth that of the wild type in the presence of lactate and was normal with glucose and ethanol, indicating that the respiratory chain was fully functional. Northern analysis suggested that alternative pathway(s), which involves pyruvate decarboxylase and the glyoxylate cycle, could overcome the absence of SDH and allow (i) lactate utilization and (ii) the accumulation of succinate instead of ethanol during growth on glucose. PMID:15189981

  16. High-fat diet effects on metabolic responses to chronic stress.

    PubMed

    Nemati, Marzieh; Zardooz, Homeira; Rostamkhani, Fatemeh; Abadi, Alireza; Foroughi, Forough

    2017-07-01

    High-fat diets and chronic stress are prevalent risk factors for various chronic diseases in modern societies. This study investigated the effect of high-fat diet on glucose-related metabolic responses to chronic foot-shock stress. Male rats were divided into high-fat diet (containing 54.21% saturated and 44.89% unsaturated fatty acids) and normal diet groups and then into stress and non-stress subgroups. The diets were applied for 5 weeks, and stress was induced during the last week of the diet course. Plasma levels of metabolic parameters, HOMA-IR index, intra-abdominal fat weight, and islets' insulin secretion were assessed. High-fat diet increased abdominal fat weight and plasma leptin, and insulin levels in response to stress without affecting HOMA-IR index and islets' insulin secretion. High proportion of unsaturated fat may not lead to deleterious metabolic responses; however combined with chronic stress has a synergistic and adverse effect on visceral adiposity and results in elevated plasma leptin.

  17. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    PubMed Central

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  18. The effects of Bifidobacterium animalis ssp. lactis B94 on gastrointestinal wellness in adults with Prader-Willi syndrome: study protocol for a randomized controlled trial.

    PubMed

    Alyousif, Zainab; Miller, Jennifer L; Sandoval, Mariana Y; MacPherson, Chad W; Nagulesapillai, Varuni; Dahl, Wendy J

    2018-04-27

    Constipation is a frequent problem in adults with Prader-Willi syndrome. Certain probiotics have been shown to improve transit and gastrointestinal symptoms of adults with functional constipation. The aim of this study is to determine the effect of daily consumption of Bifidobacterium animalis ssp. lactis B94 (B. lactis B94) on stool frequency, stool form, and gastrointestinal symptoms in adults with Prader-Willi syndrome. Adults with Prader-Willi syndrome (18-75 years old, n = 36) will be recruited and enrolled in a 20-week, randomized, double-blind, placebo-controlled, crossover study. Study subjects will be randomized to B. lactis B94 or placebo each for a 4-week period, preceded by a 4-week baseline and followed by 4-week washouts. Subjects will complete daily records of stool frequency and stool form (a proxy of transit time). Dietary intake data also will be collected. Stools, one in each period, will be collected for exploratory microbiota analyses. To our knowledge, this is the first randomized controlled trial evaluating the effectiveness of B. lactis in adults with Prader-Willi syndrome. The results of this study will provide evidence of efficacy for future clinical trials in patient populations with constipation. ClinicalTrials.gov ( NCT03277157 ). Registered on 08 September 2017.

  19. Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics.

    PubMed

    Speranza, Barbara; Campaniello, Daniela; Monacis, Noemi; Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2018-06-01

    The aim of this study was to develop a functional fresh cream cheese with Bifidobacterium animalis subsp. lactis DSM 10140 or Lactobacillus reuteri DSM 20016 and prebiotics (inulin, FOS and lactulose). The research was divided into two steps: in vitro evaluation of the effects of prebiotic compounds; validation at laboratory level with production of functional cream mini-cheeses. Prebiotics showed a protective effect: B. animalis subsp. lactis DSM 10140 cultivability on Petri dishes was positively influenced by lactulose, whereas fructooligosaccharides (FOS) were the prebiotic compounds able to prolong Lb. reuteri DSM 20016 cultivability. At 30 °C, a prolongation of the death time (more than 300 days) was observed, while the controls showed death time values about 100 days. At 45 °C, death time values increased from 32.2 (control) to 33, 35, and 38 days in the samples added with FOS, inulin and lactulose, respectively. Lactulose and FOS were chosen to be added to cream mini-cheeses inoculated with B. animalis subsp. lactis DSM 10140 and Lb. reuteri DSM 20016, respectively; the proposed functional cream cheese resulted in a product with favourable conditions for the viability of both probiotics which maintained cultivable cells above the recommended level during 28 days of storage at 4 °C with good sensory characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Lipoxygenase-allene oxide synthase pathway in octocoral thermal stress response

    NASA Astrophysics Data System (ADS)

    Lõhelaid, H.; Teder, T.; Samel, N.

    2015-03-01

    Marine ecosystems are sensitive to elevated seawater temperature, with stony corals serving as model organisms for temperature-imposed declines in population viability and diversity. Several stress markers, including heat shock proteins, have been used for the detection and prediction of stress responses in stony corals. However, the stress indicators in soft corals remain elusive. In higher animals and plants, oxylipins synthesized by fatty acid di- and monooxygenases contribute to stress-induced signaling; however, the role of eicosanoid pathways in corals remains unclear. The eicosanoid gene specific to corals encodes for a natural fusion protein of allene oxide synthase and lipoxygenase ( AOS- LOX). In this work, using the easily cultivated soft coral Capnella imbricata as the stress response model, we monitored the expression of the AOS-LOX and the formation of arachidonic acid metabolites in response to an acute rise in water temperature. Gene expression profiles of two 70 kDa heat shock proteins ( Hsps: Hsp70 and Grp78) were used as a positive control for the stress response. In comparison with normal seawater temperature (23 °C), AOS- LOXa and Hsps were all up-regulated after modest (28 °C) and severe (31 °C) temperature elevation. While the up-regulation of AOS- LOXa and Grp78 was more sensitive to moderate temperature changes, Hsp70s were more responsive to severe heat shock. Concurrently, endogenous and exogenous AOS-LOXa-derived eicosanoids were up-regulated. Thus, together with the up-regulation of AOS- LOX by other abiotic and biotic stress stimuli, these data implicate AOS-LOX as part of the general stress response pathway in corals.

  1. Emotion Socialization as a Predictor of Physiological and Psychological Responses to Stress

    PubMed Central

    Guo, Jinhong; Mrug, Sylvie; Knight, David C.

    2017-01-01

    Reactivity patterns to acute stress are important indicators of physical and mental health. However, the relationships between emotion socialization and stress responses are not well understood. This study aimed to examine whether parental responses to negative emotions predicted physiological and psychological responses to acute stress in late adolescence and emerging adulthood, and whether these relationships varied by gender and ethnicity. Participants were 973 individuals (mean age = 19.20 years; 50% male; 63% African American, 34% European American) who reported on parental emotion socialization. Participants completed a standardized social stress test (the Trier Social Stress Test; TSST). Heart rate, blood pressure and salivary samples were assessed from baseline throughout the task and during recovery period. Psychological responses to stress were measured immediately after the TSST. Unsupportive parental responses to children’s negative emotions were associated with blunted cortisol reactivity and greater negative emotions to a psychosocial stress task in females and African American youth, whereas supportive parental responses predicted greater cortisol reactivity and lower negative emotions to stress in European American youth, as well as less negative emotions in males. However, parental responses to negative emotions did not predict heart rate or SBP reactivity to the TSST. Findings suggest that parental emotion socialization may be an important factor influencing HPA axis reactivity and psychological responses to stress, with important differences across gender and ethnic youth subgroups. PMID:28377196

  2. p53 -Dependent and -Independent Nucleolar Stress Responses

    PubMed Central

    Olausson, Karl Holmberg; Nistér, Monica; Lindström, Mikael S.

    2012-01-01

    The nucleolus has emerged as a cellular stress sensor and key regulator of p53-dependent and -independent stress responses. A variety of abnormal metabolic conditions, cytotoxic compounds, and physical insults induce alterations in nucleolar structure and function, a situation known as nucleolar or ribosomal stress. Ribosomal proteins, including RPL11 and RPL5, become increasingly bound to the p53 regulatory protein MDM2 following nucleolar stress. Ribosomal protein binding to MDM2 blocks its E3 ligase function leading to stabilization and activation of p53. In this review we focus on a number of novel regulators of the RPL5/RPL11-MDM2-p53 complex including PICT1 (GLTSCR2), MYBBP1A, PML and NEDD8. p53-independent pathways mediating the nucleolar stress response are also emerging and in particular the negative control that RPL11 exerts on Myc oncoprotein is of importance, given the role of Myc as a master regulator of ribosome biogenesis. We also briefly discuss the potential of chemotherapeutic drugs that specifically target RNA polymerase I to induce nucleolar stress. PMID:24710530

  3. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  4. Xenohormesis: health benefits from an eon of plant stress response evolution

    PubMed Central

    Hooper, Paul L.; Tytell, Michael; Vígh, Lászlo

    2010-01-01

    Xenohormesis is a biological principle that explains how environmentally stressed plants produce bioactive compounds that can confer stress resistance and survival benefits to animals that consume them. Animals can piggyback off products of plants' sophisticated stress response which has evolved as a result of their stationary lifestyle. Factors eliciting the plant stress response can judiciously be employed to maximize yield of health-promoting plant compounds. The xenohormetic plant compounds can, when ingested, improve longevity and fitness by activating the animal's cellular stress response and can be applied in drug discovery, drug production, and nutritional enhancement of diet. PMID:20524162

  5. The Effect of Music on the Human Stress Response

    PubMed Central

    Thoma, Myriam V.; La Marca, Roberto; Brönnimann, Rebecca; Finkel, Linda; Ehlert, Ulrike; Nater, Urs M.

    2013-01-01

    Background Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. Methods Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music (‘Miserere’, Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. Results The three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. Conclusion Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the

  6. Spray-drying process preserves the protective capacity of a breast milk-derived Bifidobacterium lactis strain on acute and chronic colitis in mice

    PubMed Central

    Burns, Patricia; Alard, Jeanne; Hrdỳ, Jiri; Boutillier, Denise; Páez, Roxana; Reinheimer, Jorge; Pot, Bruno; Vinderola, Gabriel; Grangette, Corinne

    2017-01-01

    Gut microbiota dysbiosis plays a central role in the development and perpetuation of chronic inflammation in inflammatory bowel disease (IBD) and therefore is key target for interventions with high quality and functional probiotics. The local production of stable probiotic formulations at limited cost is considered an advantage as it reduces transportation cost and time, thereby increasing the effective period at the consumer side. In the present study, we compared the anti-inflammatory capacities of the Bifidobacterium animalis subsp. lactis (B. lactis) INL1, a probiotic strain isolated in Argentina from human breast milk, with the commercial strain B. animalis subsp. lactis BB12. The impact of spray-drying, a low-cost alternative of bacterial dehydration, on the functionality of both bifidobacteria was also investigated. We showed for both bacteria that the spray-drying process did not impact on bacterial survival nor on their protective capacities against acute and chronic colitis in mice, opening future perspectives for the use of strain INL1 in populations with IBD. PMID:28233848

  7. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast

    PubMed Central

    Henry, Susan A.; Gaspar, Maria L.; Jesch, Stephen A.

    2014-01-01

    This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed. PMID:24418527

  8. Stress Response and the Adolescent Transition: Performance versus Peer Rejection Stressors

    PubMed Central

    Stroud, Laura R.; Foster, Elizabeth; Papandonatos, George D.; Handwerger, Kathryn; Granger, Douglas A.; Kivlighan, Katie T.; Niaura, Raymond

    2009-01-01

    Little is known about normative variation in stress response over the adolescent transition. This study examined neuroendocrine and cardiovascular responses to performance and peer rejection stressors over the adolescent transition in a normative sample. Participants were 82 healthy children (ages 7-12 years, n=39, 22 females) and adolescents (ages 13-17, n=43, 20 females) recruited through community postings. Following a habituation session, participants completed a performance (public speaking, mental arithmetic, mirror tracing) or peer rejection (exclusion challenges) stress session. Salivary cortisol, alpha amylase (sAA), systolic and diastolic blood pressure (SBP, DBP), and heart rate (HR) were measured throughout. Adolescents showed significantly greater cortisol, sAA, SBP and DBP stress response relative to children. Developmental differences were most pronounced in the performance stress session for cortisol and DBP, and in the peer rejection session for sAA and SBP. Heightened physiological stress responses in typical adolescents may facilitate adaptation to new challenges of adolescence and adulthood. In high-risk adolescents, this normative shift may tip the balance toward stress response dysregulation associated with depression and other psychopathology. Specificity of physiological response by stressor type highlights the importance of a multi-system approach to the psychobiology of stress and may also have implications for understanding trajectories to psychopathology. PMID:19144222

  9. Glutamatergic Response to Heat Pain Stress in Schizophrenia.

    PubMed

    Chiappelli, Joshua; Shi, Qiaoyun; Wijtenburg, Sarah Andrea; Quiton, Raimi; Wisner, Krista; Gaston, Frank; Kodi, Priyadurga; Gaudiot, Christopher; Kochunov, Peter; Rowland, Laura M; Hong, Liyi Elliot

    2018-06-06

    Regulation of stress response involves top-down mechanisms of the frontal-limbic glutamatergic system. As schizophrenia is associated with glutamatergic abnormalities, we hypothesized that schizophrenia patients may have abnormal glutamatergic reactivity within the dorsal anterior cingulate cortex (dACC), a key region involved in perception of and reaction to stress. To test this, we developed a somatic stress paradigm involving pseudorandom application of safe but painfully hot stimuli to the forearm of participants while they were undergoing serial proton magnetic resonance spectroscopy to measure changes in glutamate and glutamine levels in the dACC. This paradigm was tested in a sample of 21 healthy controls and 23 patients with schizophrenia. Across groups, glutamate levels significantly decreased following exposure to thermal pain, while ratio of glutamine to glutamate significantly increased. However, schizophrenia patients exhibited an initial increase in glutamate levels during challenge that was significantly different from controls, after controlling for heat pain tolerance. Furthermore, in patients, the acute glutamate response was positively correlated with childhood trauma (r = .41, P = .050) and inversely correlated with working memory (r = -.49, P = .023). These results provide preliminary evidence for abnormal glutamatergic response to stress in schizophrenia patients, which may point toward novel approaches to understanding how stress contributes to the illness.

  10. Phosphate-Dependent Root System Architecture Responses to Salt Stress1[OPEN

    PubMed Central

    Sommerfeld, Hector Montero; ter Horst, Anneliek; Haring, Michel A.

    2016-01-01

    Nutrient availability and salinity of the soil affect the growth and development of plant roots. Here, we describe how inorganic phosphate (Pi) availability affects the root system architecture (RSA) of Arabidopsis (Arabidopsis thaliana) and how Pi levels modulate responses of the root to salt stress. Pi starvation reduced main root length and increased the number of lateral roots of Arabidopsis Columbia-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75 mm) on all measured RSA components. At higher salt concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid signaling compared with the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general, lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied, and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By genome-wide association mapping, 12 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses. PMID:27208277

  11. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms.

    PubMed

    Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin

    2015-07-01

    Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype. © 2014 Scandinavian Plant Physiology Society.

  12. Endocrine stress responses and risk of type 2 diabetes mellitus.

    PubMed

    Siddiqui, Azaz; Madhu, S V; Sharma, S B; Desai, N G

    2015-08-13

    This study was carried to ascertain whether stress responses are associated with abnormalities in glucose tolerance, insulin sensitivity and pancreatic beta cell function and risk of type 2 Diabetes Mellitus. Salivary cortisol, a marker of hypothalamic-pituitary-adrenal (HPA) axis and salivary α-amylase, a marker of sympathetic nervous system (SNS) were compared in 125 subjects of newly detected diabetes mellitus (NDDM) and normal glucose tolerance (NGT) subjects who were diagnosed on the basis of oral glucose tolerance test (OGTT). Assessment of stress in them was done through stress scales - presumptive stressful life events scale (PSLES), perceived stress scale (PSS) and sense of coherence (SOC) and correlated with these and other stress response markers. Significantly higher 10 pm salivary cortisol and post dexamethasone salivary cortisol were found in NDDM subjects as compared to NGT. 10 pm salivary cortisol correlated significantly with fasting plasma glucose (FPG), 2 h plasma glucose (2h PG) and glycated hemoglobin (HbA1c) while post dex salivary cortisol correlated with 2h PG, HbA1c and salivary α-amylase with 2h PG. Stepwise logistic regression analysis showed that body mass index (OR: 1.840), SOC (OR: 0.688) and 10 pm salivary cortisol (OR: 1.427) were the strongest predictors of NDDM. The results of the present study indicate that NDDM subjects display significantly higher chronic stress and stress responses when compared to subjects with NGT. Chronic stress and endocrine stress responses are significantly associated with glucose intolerance, insulin resistance and diabetes mellitus.

  13. Emotion socialization as a predictor of physiological and psychological responses to stress.

    PubMed

    Guo, Jinhong; Mrug, Sylvie; Knight, David C

    2017-06-01

    Reactivity patterns to acute stress are important indicators of physical and mental health. However, the relationships between emotion socialization and stress responses are not well understood. This study aimed to examine whether parental responses to negative emotions predicted physiological and psychological responses to acute stress in late adolescence and emerging adulthood, and whether these relationships varied by gender and ethnicity. Participants were 973 individuals (mean age=19.20years; 50% male; 63% African American, 34% European American) who reported on parental emotion socialization. Participants completed a standardized social stress test (the Trier Social Stress Test; TSST). Heart rate, blood pressure and salivary samples were assessed from baseline throughout the task and during recovery period. Psychological responses to stress were measured immediately after the TSST. Unsupportive parental responses to children's negative emotions were associated with blunted cortisol reactivity and greater negative emotions to a psychosocial stress task in females and African American youth, whereas supportive parental responses predicted greater cortisol reactivity and lower negative emotions to stress in European American youth, as well as less negative emotions in males. However, parental responses to negative emotions did not predict heart rate or SBP reactivity to the TSST. Findings suggest that parental emotion socialization may be an important factor influencing HPA axis reactivity and psychological responses to stress, with important differences across gender and ethnic youth subgroups. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Neonatal mucosal immunization with a non-living, non-genetically modified Lactococcus lactis vaccine carrier induces systemic and local Th1-type immunity and protects against lethal bacterial infection

    PubMed Central

    Ramirez, Karina; Ditamo, Yanina; Rodriguez, Liliana; Picking, Wendy L.; van Roosmalen, Maarten L.; Leenhouts, Kees; Pasetti, Marcela F.

    2010-01-01

    Safe and effective immunization of newborns and infants can significantly reduce childhood mortality, yet conventional vaccines have been largely unsuccessful in stimulating the neonatal immune system. We explored the capacity of a novel mucosal antigen delivery system consisting of non-living, non-genetically modified Lactococcus lactis particles, designated Gram-positive Enhancer Matrix (GEM), to induce immune responses in the neonatal setting. Yersinia pestis LcrV, used as model protective antigen, was displayed on the GEM particles. Newborn mice immunized intranasally with GEM-LcrV developed LcrV-specific antibodies, Th1-type cell-mediated immunity, and were protected against lethal Y. pestis (plague) infection. The GEM particles activated and enhanced the maturation of neonatal dendritic cells both in vivo and in vitro. These dendritic cells showed increased capacities for secretion of pro-inflammatory and Th1-cell polarizing cytokines, antigen presentation and stimulation of CD4+ and CD8+ T cells. These data show that mucosal immunization with L. lactis GEM particles carrying vaccine antigens represents a promising approach to prevent infectious diseases early in life. PMID:19924118

  15. Transactional Associations between Youths' Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    ERIC Educational Resources Information Center

    Agoston, Anna M.; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict…

  16. Crop and medicinal plants proteomics in response to salt stress

    PubMed Central

    Aghaei, Keyvan; Komatsu, Setsuko

    2013-01-01

    Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen-related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase, and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase, and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects. PMID:23386857

  17. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders.

    PubMed

    Pacák, K; Palkovits, M

    2001-08-01

    Despite the fact that many research articles have been written about stress and stress-related diseases, no scientifically accepted definition of stress exists. Selye introduced and popularized stress as a medical and scientific idea. He did not deny the existence of stressor-specific response patterns; however, he emphasized that such responses did not constitute stress, only the shared nonspecific component. In this review we focus mainly on the similarities and differences between the neuroendocrine responses (especially the sympathoadrenal and the sympathoneuronal systems and the hypothalamo-pituitary-adrenocortical axis) among various stressors and a strategy for testing Selye's doctrine of nonspecificity. In our experiments, we used five different stressors: immobilization, hemorrhage, cold exposure, pain, or hypoglycemia. With the exception of immobilization stress, these stressors also differed in their intensities. Our results showed marked heterogeneity of neuroendocrine responses to various stressors and that each stressor has a neurochemical "signature." By examining changes of Fos immunoreactivity in various brain regions upon exposure to different stressors, we also attempted to map central stressor-specific neuroendocrine pathways. We believe the existence of stressor-specific pathways and circuits is a clear step forward in the study of the pathogenesis of stress-related disorders and their proper treatment. Finally, we define stress as a state of threatened homeostasis (physical or perceived treat to homeostasis). During stress, an adaptive compensatory specific response of the organism is activated to sustain homeostasis. The adaptive response reflects the activation of specific central circuits and is genetically and constitutionally programmed and constantly modulated by environmental factors.

  18. Casein Hydrolysates by Lactobacillus brevis and Lactococcus lactis Proteases: Peptide Profile Discriminates Strain-Dependent Enzyme Specificity.

    PubMed

    Bounouala, Fatima Zohra; Roudj, Salima; Karam, Nour-Eddine; Recio, Isidra; Miralles, Beatriz

    2017-10-25

    Casein from ovine and bovine milk were hydrolyzed with two extracellular protease preparations from Lactobacillus brevis and Lactococcus lactis. The hydrolysates were analyzed by HPLC-MS/MS for peptide identification. A strain-dependent peptide profile could be observed, regardless of the casein origin, and the specificity of these two proteases could be computationally ascribed. The cleavage pattern yielding phenylalanine, leucine, or tyrosine at C-terminal appeared both at L. lactis and Lb. brevis hydrolysates. However, the cleavage C-terminal to lysine was favored with Lb. brevis protease. The hydrolysates showed ACE-inhibitory activity with IC 50 in the 16-70 μg/mL range. Ovine casein hydrolysates yielded greater ACE-inhibitory activity. Previously described antihypertensive and opioid peptides were found in these ovine and bovine casein hydrolysates and prediction of the antihypertensive activity of the sequences based on quantitative structure and activity relationship (QSAR) was performed. This approach might represent a useful classification tool regarding health-related properties prior to further purification.

  19. Depersonalization experiences in undergraduates are related to heightened stress cortisol responses.

    PubMed

    Giesbrecht, Timo; Smeets, Tom; Merckelbach, Harald; Jelicic, Marko

    2007-04-01

    The relationship between dissociative tendencies, as measured with the Dissociative Experiences Scale and its amnesia, absorption/imaginative involvement, and depersonalization/derealization subscales, and HPA axis functioning was studied in 2 samples of undergraduate students (N = 58 and 67). Acute stress was induced by means of the Trier Social Stress Test. Subjective and physiological stress (i.e., cortisol) responses were measured. Individuals high on the depersonalization/derealization subscale of the Dissociative Experiences Scale exhibited more pronounced cortisol responses, while individuals high on the absorption subscale showed attenuated responses. Interestingly, subjective stress experiences, as indicated by the Tension-Anxiety subscale of the Profile of Mood States, were positively related to trait dissociation. The present findings illustrate how various types of dissociation (i.e., depersonalization/derealization, absorption) are differentially related to cortisol stress responses.

  20. Endoplasmic reticulum stress preconditioning attenuates methylmercury-induced cellular damage by inducing favorable stress responses

    PubMed Central

    Usuki, Fusako; Fujimura, Masatake; Yamashita, Akio

    2013-01-01

    We demonstrate that methylmercury (MeHg)-susceptible cells preconditioned with an inhibitor of endoplasmic reticulum (ER) Ca2+-ATPase, thapsigargin, showed resistance to MeHg cytotoxicity through favorable stress responses, which included phosphorylation of eukaryotic initiation factor 2 alpha (Eif2α), accumulation of activating transcription factor 4 (Atf4), upregulation of stress-related proteins, and activation of extracellular signal regulated kinase pathway. In addition, ER stress preconditioning induced suppression of nonsense-mediated mRNA decay (NMD) mainly through the phospho-Eif2α-mediated general suppression of translation initiation and possible combined effects of decreased several NMD components expression. Atf4 accumulation was not mediated by NMD inhibition but translation inhibition of its upstream open reading frame (uORF) and translation facilitation of its protein-coding ORF by the phospho-Eif2α. These results suggested that ER stress plays an important role in MeHg cytotoxicity and that the modulation of ER stress has therapeutic potential to attenuate MeHg cytotoxicity, the underlying mechanism being the induction of integrated stress responses. PMID:23907635

  1. Low lifetime stress exposure is associated with reduced stimulus–response memory

    PubMed Central

    Goldfarb, Elizabeth V.; Shields, Grant S.; Daw, Nathaniel D.; Slavich, George M.; Phelps, Elizabeth A.

    2017-01-01

    Exposure to stress throughout life can cumulatively influence later health, even among young adults. The negative effects of high cumulative stress exposure are well-known, and a shift from episodic to stimulus–response memory has been proposed to underlie forms of psychopathology that are related to high lifetime stress. At the other extreme, effects of very low stress exposure are mixed, with some studies reporting that low stress leads to better outcomes, while others demonstrate that low stress is associated with diminished resilience and negative outcomes. However, the influence of very low lifetime stress exposure on episodic and stimulus–response memory is unknown. Here we use a lifetime stress assessment system (STRAIN) to assess cumulative lifetime stress exposure and measure memory performance in young adults reporting very low and moderate levels of lifetime stress exposure. Relative to moderate levels of stress, very low levels of lifetime stress were associated with reduced use and retention (24 h later) of stimulus–response (SR) associations, and a higher likelihood of using context memory. Further, computational modeling revealed that participants with low levels of stress exhibited worse expression of memory for SR associations than those with moderate stress. These results demonstrate that very low levels of stress exposure can have negative effects on cognition. PMID:28298555

  2. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    PubMed

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  3. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    PubMed

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes.

    PubMed

    Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann

    2010-04-01

    Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Age-Related Decrease in Stress Responsiveness and Proactive Coping in Male Mice.

    PubMed

    Oh, Hee-Jin; Song, Minah; Kim, Young Ki; Bae, Jae Ryong; Cha, Seung-Yun; Bae, Ji Young; Kim, Yeongmin; You, Minsu; Lee, Younpyo; Shim, Jieun; Maeng, Sungho

    2018-01-01

    Coping is a strategic approach to dealing with stressful situations. Those who use proactive coping strategies tend to accept changes and act before changes are expected. In contrast, those who use reactive coping are less flexible and more likely to act in response to changes. However, little research has assessed how coping style changes with age. This study investigated age-related changes in coping strategies and stress responsiveness and the influence of age on the processing of conditioned fear memory in 2-, 12- and 23-month-old male mice. Coping strategy was measured by comparing the escape latency in an active avoidance test and by comparing responses to a shock prod. The results showed that proactivity in coping response gradually decreased with age. Stress responsiveness, measured by stress-induced concentration of corticosterone, was also highest in 2-month-old mice and decreased with age. Consolidation of fear memory was highest in 12-month-old mice and was negatively correlated with the degree of stress responsiveness and proactivity in coping. Fear extinction did not differ among age groups and was not correlated with stress responsiveness or the proactivity of coping. However, the maintenance of extinct fear memory, which was best in 2-month-old mice and worst in 12-month-old mice, was negatively correlated with stress responsiveness but not with coping style. Age-dependent changes in the expression of glucocorticoid receptor (GR) and its regulatory co-chaperones, which are accepted mechanisms for stress hormone stimulation, were measured in the hippocampus. The expression of GR was increased at 12 months compared to other age groups. There were no differences in Hsp70 and BAG1 expression by age. These results can be summarized as follows: (1) stress responsiveness and proactivity in coping decreased with age class; (2) consolidation of fear memory was negatively correlated with both stress responsiveness and proactivity; however, maintenance of

  6. Age-Related Decrease in Stress Responsiveness and Proactive Coping in Male Mice

    PubMed Central

    Oh, Hee-Jin; Song, Minah; Kim, Young Ki; Bae, Jae Ryong; Cha, Seung-Yun; Bae, Ji Young; Kim, Yeongmin; You, Minsu; Lee, Younpyo; Shim, Jieun; Maeng, Sungho

    2018-01-01

    Coping is a strategic approach to dealing with stressful situations. Those who use proactive coping strategies tend to accept changes and act before changes are expected. In contrast, those who use reactive coping are less flexible and more likely to act in response to changes. However, little research has assessed how coping style changes with age. This study investigated age-related changes in coping strategies and stress responsiveness and the influence of age on the processing of conditioned fear memory in 2-, 12- and 23-month-old male mice. Coping strategy was measured by comparing the escape latency in an active avoidance test and by comparing responses to a shock prod. The results showed that proactivity in coping response gradually decreased with age. Stress responsiveness, measured by stress-induced concentration of corticosterone, was also highest in 2-month-old mice and decreased with age. Consolidation of fear memory was highest in 12-month-old mice and was negatively correlated with the degree of stress responsiveness and proactivity in coping. Fear extinction did not differ among age groups and was not correlated with stress responsiveness or the proactivity of coping. However, the maintenance of extinct fear memory, which was best in 2-month-old mice and worst in 12-month-old mice, was negatively correlated with stress responsiveness but not with coping style. Age-dependent changes in the expression of glucocorticoid receptor (GR) and its regulatory co-chaperones, which are accepted mechanisms for stress hormone stimulation, were measured in the hippocampus. The expression of GR was increased at 12 months compared to other age groups. There were no differences in Hsp70 and BAG1 expression by age. These results can be summarized as follows: (1) stress responsiveness and proactivity in coping decreased with age class; (2) consolidation of fear memory was negatively correlated with both stress responsiveness and proactivity; however, maintenance of

  7. Use of the KlADH3 promoter for the quantitative production of the murine PDE5A isoforms in the yeast Kluyveromyces lactis.

    PubMed

    Cardarelli, Silvia; Giorgi, Mauro; Naro, Fabio; Malatesta, Francesco; Biagioni, Stefano; Saliola, Michele

    2017-09-22

    Phosphodiesterases (PDE) are a superfamily of enzymes that hydrolyse cyclic nucleotides (cAMP/cGMP), signal molecules in transduction pathways regulating crucial aspects of cell life. PDEs regulate the intensity and duration of the cyclic nucleotides signal modulating the downstream biological effect. Due to this critical role associated with the extensive distribution and multiplicity of isozymes, the 11 mammalian families (PDE1 to PDE11) constitute key therapeutic targets. PDE5, one of these cGMP-specific hydrolysing families, is the molecular target of several well known drugs used to treat erectile dysfunction and pulmonary hypertension. Kluyveromyces lactis, one of the few yeasts capable of utilizing lactose, is an attractive host alternative to Saccharomyces cerevisiae for heterologous protein production. Here we established K. lactis as a powerful host for the quantitative production of the murine PDE5 isoforms. Using the promoter of the highly expressed KlADH3 gene, multicopy plasmids were engineered to produce the native and recombinant Mus musculus PDE5 in K. lactis. Yeast cells produced large amounts of the purified A1, A2 and A3 isoforms displaying K m , V max and Sildenafil inhibition values similar to those of the native murine enzymes. PDE5 whose yield was nearly 1 mg/g wet weight biomass for all three isozymes (30 mg/L culture), is well tolerated by K. lactis cells without major growth deficiencies and interferences with the endogenous cAMP/cGMP signal transduction pathways. To our knowledge, this is the first time that the entire PDE5 isozymes family containing both regulatory and catalytic domains has been produced at high levels in a heterologous eukaryotic organism. K. lactis has been shown to be a very promising host platform for large scale production of mammalian PDEs for biochemical and structural studies and for the development of new specific PDE inhibitors for therapeutic applications in many pathologies.

  8. Stress-Induced Inflammatory Responses in Women: Effects of Race and Pregnancy

    PubMed Central

    Christian, Lisa M.; Glaser, Ronald; Porter, Kyle; Iams, Jay D.

    2013-01-01

    Objective African Americans experience preterm birth at nearly twice the rate of Whites. Chronic stress associated with minority status is implicated in this disparity. Inflammation is a key biological pathway by which stress may affect birth outcomes. This study examined effects of race and pregnancy on stress-induced inflammatory responses. Methods Thirty-nine women in the 2nd trimester of pregnancy (19 African American; 20 White) and 39 demographically similar nonpregnant women completed an acute stressor (Trier Social Stress Test). Psychosocial characteristics, health behaviors, and affective responses were assessed. Serum interleukin(IL)-6 was measured via high sensitivity ELISA at baseline, 45 minutes, and 120 minutes post-stressor. Results IL-6 responses at 120 minutes post-stressor were 46% higher in African Americans versus Whites (95%CI:8%-81%; t(72)=3.51, p=.001). This effect was present in pregnancy and nonpregnancy. IL-6 responses at 120 minutes post-stressor tended to be lower (15%) in pregnant versus nonpregnant women (95%CI:-5%-32%; p=0.14). Racial differences in inflammatory responses were not accounted for by demographics, psychological characteristics, health behaviors, or differences in salivary cortisol across the study session. Pregnant Whites showed lower negative affective responses than nonpregnant women of either race (ps≤.007). Conclusion This study provides novel evidence that stress-induced inflammatory responses are more robust among African American women versus Whites during pregnancy and nonpregnancy. The ultimate impact of stress on health is a function of stressor exposure and physiological responses. Individual differences in stress-induced inflammatory responses represent a clear target for continued research efforts in racial disparities in health during pregnancy and nonpregnancy. PMID:23873713

  9. Keratins Are Altered in Intestinal Disease-Related Stress Responses

    PubMed Central

    Helenius, Terhi O.; Antman, Cecilia A.; Asghar, Muhammad Nadeem; Nyström, Joel H.; Toivola, Diana M.

    2016-01-01

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. PMID:27626448

  10. Keratins Are Altered in Intestinal Disease-Related Stress Responses.

    PubMed

    Helenius, Terhi O; Antman, Cecilia A; Asghar, Muhammad Nadeem; Nyström, Joel H; Toivola, Diana M

    2016-09-10

    Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.

  11. Sex differences in the stress response in SD rats.

    PubMed

    Lu, Jing; Wu, Xue-Yan; Zhu, Qiong-Bin; Li, Jia; Shi, Li-Gen; Wu, Juan-Li; Zhang, Qi-Jun; Huang, Man-Li; Bao, Ai-Min

    2015-05-01

    Sex differences play an important role in depression, the basis of which is an excessive stress response. We aimed at revealing the neurobiological sex differences in the same study in acute- and chronically-stressed rats. Female Sprague-Dawley (SD) rats were randomly divided into 6 groups: chronic unpredictable mild stress (CUMS), acute foot shock (FS) and controls, animals in all 3 groups were sacrificed in proestrus or diestrus. Male SD rats were randomly divided into 3 groups: CUMS, FS and controls. Comparisons were made of behavioral changes in CUMS and control rats, plasma levels of corticosterone (CORT), testosterone (T) and estradiol (E2), and of the hypothalamic mRNA-expression of stress-related molecules, i.e. estrogen receptor α and β, androgen receptor, aromatase, mineralocorticoid receptor, glucocorticoid receptor, corticotropin-releasing hormone, arginine vasopressin and oxytocin. CUMS resulted in disordered estrus cycles, more behavioral and hypothalamic stress-related molecules changes and a stronger CORT response in female rats compared with male rats. Female rats also showed decreased E2 and T levels after FS and CUMS, while male FS rats showed increased E2 and male CUMS rats showed decreased T levels. Stress affects the behavioral, endocrine and the molecular response of the stress systems in the hypothalamus of SD rats in a clear sexual dimorphic way, which has parallels in human data on stress and depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Heritable stress response dynamics revealed by single-cell genealogy

    PubMed Central

    2018-01-01

    Cells often respond to environmental stimuli by activating specific transcription factors. Upon exposure to glucose limitation stress, it is known that yeast Saccharomyces cerevisiae cells dephosphorylate the general stress response factor Msn2, leading to its nuclear localization, which in turn activates the expression of many genes. However, the precise dynamics of Msn2 nucleocytoplasmic translocations and whether they are inherited over multiple generations in a stress-dependent manner are not well understood. Tracking Msn2 localization events in yeast lineages grown on a microfluidic chip, here we report how cells modulate the amplitude, duration, frequency, and dynamic pattern of the localization events in response to glucose limitation stress. Single yeast cells were found to modulate the amplitude and frequency of Msn2 nuclear localization, but not its duration. Moreover, the Msn2 localization frequency was epigenetically inherited in descendants of mother cells, leading to a decrease in cell-to-cell variation in localization frequency. An analysis of the time dynamic patterns of nuclear localizations between genealogically related cell pairs using an information theory approach found that the magnitude of pattern similarity increased with stress intensity and was strongly inherited by the descendant cells at the highest stress level. By dissecting how general stress response dynamics is contributed by different modulation schemes over long time scales, our work provides insight into which scheme evolution might have acted on to optimize fitness in stressful environments. PMID:29675464

  13. Identification of plasma glucocorticoids in pallid sturgeon in response to stress

    USGS Publications Warehouse

    Webb, M.A.H.; Allert, J.A.; Kappenman, K.M.; Marcos, J.; Feist, G.W.; Schreck, C.B.; Shackleton, C.H.

    2007-01-01

    Compared to teleosts, little is known about the stress response in chondrosteans, and the glucocorticoid(s) most responsive to stress have never been definitively determined in sturgeon. In terms of cortisol production, pallid sturgeon (Scaphirhynchus albus) have a low physiological response to stress compared to other sturgeons (Acipenser sp.). Because of this, our null hypothesis was that cortisol is not the predominant glucocorticoid secreted in response to stress in pallid sturgeon. Our objective was to identify the putative glucocorticoids present in the plasma of pallid sturgeon during the stress response. Pallid sturgeon were subjected to a severe confinement stress (12 h) with an additional handling stressor for the first 6 h. Control fish were not subjected to confinement but were handled only to collect blood. Blood plasma was collected at time 0, 6, and 12 h. Gas chromatography/mass spectrometry was used to screen the plasma for the spectrum of glucocorticoids and determine the putative steroid secreted during the stress response. Cortisol was the primary glucocorticoid detected in stressed pallid sturgeon. In addition, the cortisol metabolites cortisone, alloTHE (5??-pregnane-3??,17??,21-triol-11,20-dione), allo-??-cortolone (3??,17??,20??,21-tetrahydro-5??-pregnan-11-one), and allo-??-cortolone (3??,17??,20??,21-tetrahydro-5??-pregnan-11-one) were detected. Plasma cortisol increased from a resting concentration of 0.67 ng/ml to 10.66 ng/ml at 6 h followed by a decrease to 6.78 ng/ml by 12 h. Plasma glucose increased significantly by time 6 and 12 h in both stressed and unstressed groups and remained elevated at time 12 h, while resting lactate concentrations were low to non-detectable and did not increase significantly with the stressor over time. Cortisol was the primary glucocorticoid synthesized and secreted in response to a stressor in pallid sturgeon. Though the proportional increase in plasma cortisol in stressed pallid sturgeon was lower than

  14. Adrenocortical stress responses influence an invasive vertebrate's fitness in an extreme environment

    PubMed Central

    Jessop, Tim S.; Letnic, Mike; Webb, Jonathan K.; Dempster, Tim

    2013-01-01

    Continued range expansion into physiologically challenging environments requires invasive species to maintain adaptive phenotypic performance. The adrenocortical stress response, governed in part by glucocorticoid hormones, influences physiological and behavioural responses of vertebrates to environmental stressors. However, any adaptive role of this response in invasive populations that are expanding into extreme environments is currently unclear. We experimentally manipulated the adrenocortical stress response of invasive cane toads (Rhinella marina) to investigate its effect on phenotypic performance and fitness at the species' range front in the Tanami Desert, Australia. Here, toads are vulnerable to overheating and dehydration during the annual hot–dry season and display elevated plasma corticosterone levels indicative of severe environmental stress. By comparing unmanipulated control toads with toads whose adrenocortical stress response was manipulated to increase acute physiological stress responsiveness, we found that control toads had significantly reduced daily evaporative water loss and higher survival relative to the experimental animals. The adrenocortical stress response hence appears essential in facilitating complex phenotypic performance and setting fitness trajectories of individuals from invasive species during range expansion. PMID:23945686

  15. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response

    PubMed Central

    Aunins, Thomas R.; Erickson, Keesha E.; Prasad, Nripesh; Levy, Shawn E.; Jones, Angela; Shrestha, Shristi; Mastracchio, Rick; Stodieck, Louis; Klaus, David; Zea, Luis; Chatterjee, Anushree

    2018-01-01

    Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress

  16. Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response.

    PubMed

    Aunins, Thomas R; Erickson, Keesha E; Prasad, Nripesh; Levy, Shawn E; Jones, Angela; Shrestha, Shristi; Mastracchio, Rick; Stodieck, Louis; Klaus, David; Zea, Luis; Chatterjee, Anushree

    2018-01-01

    Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress

  17. Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1

    PubMed Central

    González-Siso, María Isabel; Touriño, Alba; Vizoso, Ángel; Pereira-Rodríguez, Ángel; Rodríguez-Belmonte, Esther; Becerra, Manuel; Cerdán, María Esperanza

    2015-01-01

    In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved. PMID:25186243

  18. An overview of stress response proteomes in Listeria monocytogenes

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes adapts to diverse stress conditions including cold, osmotic, heat, acid, and alkali stresses encountered during food processing and preservation which is a serious food safety threat. In this review, we have presented the major findings on this bacterium’s stress response prot...

  19. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  20. Abnormal stress responsivity in a rodent developmental disruption model of schizophrenia.

    PubMed

    Zimmerman, Eric C; Bellaire, Mark; Ewing, Samuel G; Grace, Anthony A

    2013-10-01

    Although numerous studies have implicated stress in the pathophysiology of schizophrenia, less is known about how the effects of stress interact with genetic, developmental, and/or environmental determinants to promote disease progression. In particular, it has been proposed that in humans, stress exposure in adolescence could combine with a predisposition towards increased stress sensitivity, leading to prodromal symptoms and eventually psychosis. However, the neurobiological substrates for this interaction are not fully characterized. Previous work in our lab has demonstrated that rats born to dams administered with the DNA-methylating agent methylazoxymethanol acetate (MAM) at gestational day 17 exhibit as adults behavioral and anatomical abnormalities consistent with those observed in patients with schizophrenia. Here, we examined behavioral and neuroendocrine responses to stress in the MAM model of schizophrenia. MAM-treated male rats were exposed to acute and repeated footshock stress at prepubertal, peripubteral, and adult ages. Ultrasonic vocalizations (USVs), freezing, and corticosterone responses were quantified. We found that juvenile MAM-treated rats emitted significantly more calls, spent more time vocalizing, emitted calls at a higher rate, and showed more freezing in response to acute footshock stress when compared with their saline (SAL) treated counterparts, and that this difference is not present in older animals. In addition, adolescent MAM-treated animals displayed a blunted HPA axis corticosterone response to acute footshock that did not adapt after 10 days of stress exposure. These data demonstrate abnormal stress responsivity in the MAM model of schizophrenia and suggest that these animals are more sensitive to the effects of stress in youth.

  1. Conversion of psychological stress into cellular stress response: roles of the sigma-1 receptor in the process.

    PubMed

    Hayashi, Teruo

    2015-04-01

    Psychiatrists empirically recognize that excessive or chronic psychological stress can result in long-lasting impairments of brain functions that partly involve neuronal cell damage. Recent studies begin to elucidate the molecular pathways activated/inhibited by psychological stress. Activation of the hypothalamic-pituitary-adrenal axis under psychological stress causes inflammatory oxidative stresses in the brain, in part due to elevation of cytokines. Psychological stress or neuropathological conditions (e.g., accumulation of β-amyloids) trigger 'cellular stress responses', which promote upregulation of molecular chaperones to protect macromolecules from degradation. The unfolded protein response, the endoplasmic reticulum (ER)-specific cellular stress response, has been recently implicated in the pathophysiology of neuropsychiatric disorders and the pharmacology of certain clinically used drugs. The sigma-1 receptor is an ER protein whose ligands are shown to exert antidepressant-like and neuroprotective actions. Recent studies found that the sigma-1 receptor is a novel ligand-operated ER chaperone that regulates bioenergetics, free radical generation, oxidative stress, unfolded protein response and cytokine signaling. The sigma-1 receptor also regulates morphogenesis of neuronal cells, such as neurite outgrowth, synaptogenesis, and myelination, which can be perturbed by cellular stress. The sigma-1 receptor may thus contribute to a cellular defense system that protects nervous systems against chronic psychological stress. Findings from sigma receptor research imply that not only cell surface monoamine effectors but also intracellular molecules, especially those at the ER, may provide novel therapeutic targets for future drug developments. © 2014 The Author. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  2. Time matters - acute stress response and glucocorticoid sensitivity in early multiple sclerosis.

    PubMed

    Kern, Simone; Rohleder, Nicolas; Eisenhofer, Graeme; Lange, Jan; Ziemssen, Tjalf

    2014-10-01

    Psychosocial stress has frequently been associated with disease activity and acute exacerbations in multiple sclerosis (MS). Despite this well established finding, strikingly little is known about the acute hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) stress response in MS. Twenty-six early relapsing-remitting MS (RRMS) patients and seventeen age- and sex-matched healthy control subjects (CS) took part in the Trier Social Stress Test (TSST), a well validated psycho-social laboratory stress protocol. Repeated blood samples were analyzed for stress-related cortisol and catecholamine levels as well as for glucocorticoid sensitivity (GCS) of target immune cells. Chronic and acute stress appraisals were assessed by self-report measures. RRMS patients and CS did not differ in stress-related cortisol/catecholamine levels, GCS or stress appraisal in response to the TSST. However, cortisol release as well as GCS was strongly correlated with time since diagnosis but not with neurological disability. Patients with shorter disease duration (2-12 months) expressed a significantly higher cortisol stress response while MS patients with longer disease duration (14-36 months) showed a significantly diminished HPA response as well as lower post-stress GCS. There is evidence for a time-dependent variability in the HPA stress system with an increased cortisol stress response in the first year after diagnosis along with a more blunted HPA stress response and a diminished GCS in subsequent disease stages. Data underscore the highly dynamic nature of HPA axis regulation in the MS disease process, which could possibly relate to compensatory mechanisms within a cytokine-HPA axis feedback circuit model. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Sex and stress: Men and women show different cortisol responses to psychological stress induced by the Trier social stress test and the Iowa singing social stress test.

    PubMed

    Reschke-Hernández, Alaine E; Okerstrom, Katrina L; Bowles Edwards, Angela; Tranel, Daniel

    2017-01-02

    Acute psychological stress affects each of us in our daily lives and is increasingly a topic of discussion for its role in mental illness, aging, cognition, and overall health. A better understanding of how such stress affects the body and mind could contribute to the development of more effective clinical interventions and prevention practices. Over the past 3 decades, the Trier Social Stress Test (TSST) has been widely used to induce acute stress in a laboratory setting based on the principles of social evaluative threat, namely, a judged speech-making task. A comparable alternative task may expand options for examining acute stress in a controlled laboratory setting. This study uses a within-subjects design to examine healthy adult participants' (n = 20 men, n = 20 women) subjective stress and salivary cortisol responses to the standard TSST (involving public speaking and math) and the newly created Iowa Singing Social Stress Test (I-SSST). The I-SSST is similar to the TSST but with a new twist: public singing. Results indicated that men and women reported similarly high levels of subjective stress in response to both tasks. However, men and women demonstrated different cortisol responses; men showed a robust response to both tasks, and women displayed a lesser response. These findings are in line with previous literature and further underscore the importance of examining possible sex differences throughout various phases of research, including design, analysis, and interpretation of results. Furthermore, this nascent examination of the I-SSST suggests a possible alternative for inducing stress in the laboratory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Thermodynamic Modeling and Analysis of Human Stress Response

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.

    1999-01-01

    A novel approach based on the second law of thermodynamics is developed to investigate the psychophysiology and quantify human stress level. Two types of stresses (thermal and mental) are examined. A Unified Stress Response Theory (USRT) is developed under the new proposed field of study called Engineering Psychophysiology. The USRT is used to investigate both thermal and mental stresses from a holistic (human body as a whole) and thermodynamic viewpoint. The original concepts and definitions are established as postulates which form the basis for thermodynamic approach to quantify human stress level. An Objective Thermal Stress Index (OTSI) is developed by applying the second law of thermodynamics to the human thermal system to quantify thermal stress or dis- comfort in the human body. The human thermal model based on finite element method is implemented. It is utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal stress responses under different environmental conditions. An innovative hybrid technique is developed to analyze human thermal behavior based on series of human-environment interaction simulations. Continuous monitoring of thermal stress is demonstrated with the help of OTSI. It is well established that the human thermal system obeys the second law of thermodynamics. Further, the OTSI is validated against the experimental data. Regarding mental stress, an Objective Mental Stress Index (OMSI) is developed by applying the Maxwell relations of thermodynamics to the combined thermal and cardiovascular system in the human body. The OMSI is utilized to demonstrate the technique of monitoring mental stress continuously and is validated with the help of series of experimental studies. Although the OMSI indicates the level of mental stress, it provides a strong thermodynamic and mathematical relationship between activities of thermal and cardiovascular systems of the human body.

  5. Cortisol Stress Response Variability in Early Adolescence Attachment, Affect and Sex

    PubMed Central

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J.; Wynne-Edwards, Katherine; Wright, Joan M.; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic–pituitary–adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents. PMID:27468997

  6. Cortisol Stress Response Variability in Early Adolescence: Attachment, Affect and Sex.

    PubMed

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J; Wynne-Edwards, Katherine; Wright, Joan M; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic-pituitary-adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents.

  7. Stress Response Mechanisms: From Single Cells to Multinational Organizations

    PubMed Central

    Pech, Richard J.

    2006-01-01

    Can a literal comparison be made between biological phenomena in organisms and phenomena in human organizations? The evidence provided by simplified but useful examples appears to suggest that a phenomenon simulating hormesis can and does occur in organizational contexts. Similarities between stress response behaviors of organisms and stress response behaviors in organizations are discussed. Cellular stress response mechanisms stimulate and repair, as well as defend the organism against further attacks. Organizational hormesis describes actions that stimulate the organization by increasing its focus and protecting it against future attacks. The common aim for the organism as well as the organization is to increase the probability of survival. The following describes examples of organizational survival that demonstrate a number of hormetic parallels between organisms and organisations. PMID:18648597

  8. Use of PCR-Based Methods for Rapid Differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis

    PubMed Central

    Torriani, Sandra; Zapparoli, Giacomo; Dellaglio, Franco

    1999-01-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains. PMID:10508059

  9. Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis.

    PubMed

    Torriani, S; Zapparoli, G; Dellaglio, F

    1999-10-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.

  10. Reproduction elevates the corticosterone stress response in common fruit bats.

    PubMed

    Klose, Stefan M; Smith, Carolynn L; Denzel, Andrea J; Kalko, Elisabeth K V

    2006-04-01

    Changes in reproductive state or the environment may affect the sensitivity of the hypothalamic-pituitary-andrenal (HPA) axis. However, little is known about the dynamics of the resulting corticosteroid stress response, in particular in tropical mammals. In this study, we address the modulation of corticosterone release in response to different reproductive conditions and seasonality in 326 free-living common fruit-eating bats (Artibeus jamaicensis) on Barro Colorado Island in Panama during dry and wet seasons. We present strong evidence that stress sensitivity is primarily modulated by reproductive condition. In reproductively active females, corticosterone increases were more rapid and reached higher levels, but also decreased significantly faster than in inactive females. The corticosterone response was weaker in reproducing males than in females and delayed compared to non-reproductive males. Testes volume in reproductively active males was negatively correlated with corticosterone concentrations. Our findings suggest differentiated dynamics in the corticosterone stress response between sexes, potentially reflecting conflicting ecological demands. In females, a strong acute corticosterone response may represent high stress- and risk-sensitivity that facilitates escape and thus helps to protect reproduction. In males, suppression during reproductive activity could reflect lowered stress sensitivity to avoid chronically elevated corticosterone levels in times of frequent aggressive and therefore costly inter-male encounters.

  11. Stress tolerances of nullmutants of function-unknown genes encoding menadione stress-responsive proteins in Aspergillus nidulans.

    PubMed

    Leiter, Éva; Bálint, Mihály; Miskei, Márton; Orosz, Erzsébet; Szabó, Zsuzsa; Pócsi, István

    2016-07-01

    A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Physiological Responses to Thermal Stress and Exercise

    NASA Astrophysics Data System (ADS)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  13. Financial stress response profiles and psychosocial functioning in low-income parents.

    PubMed

    Perzow, Sarah E D; Bray, Bethany C; Wadsworth, Martha E

    2018-06-01

    Parenting in the context of poverty is accompanied by heightened stress and heightened stakes. How parents respond to poverty-related stress has important implications for family functioning, but research investigating individual differences in low-income mothers' and fathers' responses to financial stress and their associations with parents' concurrent psychosocial adaptation is lacking. A better understanding of differences in stress responses among low-income parents is required to develop and tailor prevention programs that meet these families' needs. This study applies latent profile analysis (LPA) to identify and describe profiles of financial stress responses (problem solving, emotion regulation, emotion expression, cognitive restructuring, positive thinking, acceptance, distraction, denial, avoidance, wishful thinking, rumination, intrusive thoughts, emotional arousal, physiologic arousal, impulsive action, emotional numbing, cognitive interference, escape, and inaction) and examines associations between profile membership and psychosocial functioning in low-income parents. Five profiles were identified that were distinguished by self-reported voluntary and involuntary financial stress responses: active (32% of sample), low (11%), high (11%), negative cognitive (NC; 17%), and average (29%) responders. Notable differences emerged on measures of life stress, economic hardship, psychopathology, and social support, with individuals in the NC responders profile reporting the most difficulty and members of the active responders profile reporting the greatest adaptation. These findings offer a more nuanced understanding of how mothers and fathers respond to chronic poverty-related stress and have valuable implications for intervention efforts to promote adaptive stress responses and psychosocial functioning in low-income families. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  15. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster

    PubMed Central

    Landis, Gary; Shen, Jie; Tower, John

    2012-01-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging. PMID:23211361

  16. Zika Virus Hijacks Stress Granule Proteins and Modulates the Host Stress Response

    PubMed Central

    Hou, Shangmei; Kumar, Anil; Xu, Zaikun; Airo, Adriana M.; Stryapunina, Iryna; Wong, Cheung Pang; Branton, William; Tchesnokov, Egor; Götte, Matthias; Power, Christopher

    2017-01-01

    ABSTRACT Zika virus (ZIKV), a member of the Flaviviridae family, has recently emerged as an important human pathogen with increasing economic and health impact worldwide. Because of its teratogenic nature and association with the serious neurological condition Guillain-Barré syndrome, a tremendous amount of effort has focused on understanding ZIKV pathogenesis. To gain further insights into ZIKV interaction with host cells, we investigated how this pathogen affects stress response pathways. While ZIKV infection induces stress signaling that leads to phosphorylation of eIF2α and cellular translational arrest, stress granule (SG) formation was inhibited. Further analysis revealed that the viral proteins NS3 and NS4A are linked to translational repression, whereas expression of the capsid protein, NS3/NS2B-3, and NS4A interfered with SG formation. Some, but not all, flavivirus capsid proteins also blocked SG assembly, indicating differential interactions between flaviviruses and SG biogenesis pathways. Depletion of the SG components G3BP1, TIAR, and Caprin-1, but not TIA-1, reduced ZIKV replication. Both G3BP1 and Caprin-1 formed complexes with capsid, whereas viral genomic RNA stably interacted with G3BP1 during ZIKV infection. Taken together, these results are consistent with a scenario in which ZIKV uses multiple viral components to hijack key SG proteins to benefit viral replication. IMPORTANCE There is a pressing need to understand ZIKV pathogenesis in order to advance the development of vaccines and therapeutics. The cellular stress response constitutes one of the first lines of defense against viral infection; therefore, understanding how ZIKV evades this antiviral system will provide key insights into ZIKV biology and potentially pathogenesis. Here, we show that ZIKV induces the stress response through activation of the UPR (unfolded protein response) and PKR (protein kinase R), leading to host translational arrest, a process likely mediated by the viral

  17. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters. PMID:22209905

  18. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses.

    PubMed

    Hsu, Yuan-Chang; Tsai, Sheng-Feng; Yu, Lung; Chuang, Jih-Ing; Wu, Fong-Sen; Jen, Chauying J; Kuo, Yu-Min

    2016-01-01

    Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.

  19. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females

    PubMed Central

    Treadway, Michael T.; Valeri, Linda; Douglas, Samuel

    2017-01-01

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response (n = 10), moderate-response (n = 21), and mild-response (n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  20. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females.

    PubMed

    Admon, Roee; Treadway, Michael T; Valeri, Linda; Mehta, Malavika; Douglas, Samuel; Pizzagalli, Diego A

    2017-08-16

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response ( n = 10), moderate-response ( n = 21), and mild-response ( n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  1. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of themore » genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.« less

  2. Responses to Interpersonal Stress: Normative Changes Across Childhood and the Impact of Peer Victimization

    PubMed Central

    Troop-Gordon, Wendy; Sugimura, Niwako; Rudolph, Karen D.

    2016-01-01

    This research examined the development of stress responses across 2nd to 6th grades and whether exposure to peer victimization alters stress response trajectories. Youth (338 girls; 298 boys; M age = 7.97 years, SD = .37) reported on stress responses; teachers and youth reported on peer victimization. Latent growth curve modeling revealed an increase in effortful engagement responses and a decrease in disengagement and involuntary engagement responses during this period. Peer victimization disrupted these normative trajectories, resulting in less effortful engagement and more effortful disengagement and involuntary stress responses in early adolescence. These findings suggest that early peer victimization sensitizes youth to stress by interfering with the development of effective coping and fostering maladaptive stress responses. PMID:27709602

  3. Proteomics Analysis of Alfalfa Response to Heat Stress

    PubMed Central

    Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang

    2013-01-01

    The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825

  4. Draft Genome Sequence of Bifidobacterium animalis subsp. lactis Strain CECT 8145, Able To Improve Metabolic Syndrome In Vivo.

    PubMed

    Chenoll, E; Codoñer, F M; Silva, A; Martinez-Blanch, J F; Martorell, P; Ramón, D; Genovés, S

    2014-03-27

    Bifidobacterium animalis subsp. lactis strain CECT 8145 is able to reduce body fat content and improve metabolic syndrome biomarkers. Here, we report the draft genome sequence of this strain, which may provide insights into its safety status and functional role.

  5. Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds.

    PubMed

    Wisselink, H Wouter; Mars, Astrid E; van der Meer, Pieter; Eggink, Gerrit; Hugenholtz, Jeroen

    2004-07-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.

  6. A microRNA regulates the response of corals to thermal stress.

    PubMed

    Gajigan, Andrian P; Conaco, Cecilia

    2017-07-01

    Coral reefs are diverse ecosystems of great ecological and economic importance. However, corals are vulnerable to a variety of stressors, including rising seawater temperatures, and yet little is known about the genetic mechanisms underlying their survival and adaptation to stress. Like other animals, corals possess genes for key members of the microRNA (miRNA) machinery. miRNAs are short RNAs that regulate diverse cellular processes, including organismal stress response, through post-transcriptional repression of gene transcripts. Through small RNA sequencing, we identified 26 miRNAs in the coral, Acropora digitifera. Many of the identified miRNAs are novel, while eight are conserved with miRNAs previously identified in other cnidarians. One of the identified miRNAs is differentially expressed in coral tissues exposed to acute thermal stress. This thermally responsive miRNA putatively regulates multiple pathways of the organismal stress response, DNA/RNA expression regulation, repair mechanisms, tissue morphogenesis, and signalling. We propose a model by which miRNA regulation allows the coral to mount a robust stress response through sequestration of a pool of nontranslated transcripts encoding stress response proteins. Release of miRNA-mediated repression under stress conditions may result in rapid and abundant translation of proteins that help the coral maintain cellular homoeostasis. These findings highlight the potential importance of miRNAs in the thermal resilience of corals. © 2017 John Wiley & Sons Ltd.

  7. The stress response system of proteins: Implications for bioreactor scaleup

    NASA Technical Reports Server (NTRS)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  8. Genetic erosion impedes adaptive responses to stressful environments

    PubMed Central

    Bijlsma, R; Loeschcke, Volker

    2012-01-01

    Biodiversity is increasingly subjected to human-induced changes of the environment. To persist, populations continually have to adapt to these often stressful changes including pollution and climate change. Genetic erosion in small populations, owing to fragmentation of natural habitats, is expected to obstruct such adaptive responses: (i) genetic drift will cause a decrease in the level of adaptive genetic variation, thereby limiting evolutionary responses; (ii) inbreeding and the concomitant inbreeding depression will reduce individual fitness and, consequently, the tolerance of populations to environmental stress. Importantly, inbreeding generally increases the sensitivity of a population to stress, thereby increasing the amount of inbreeding depression. As adaptation to stress is most often accompanied by increased mortality (cost of selection), the increase in the ‘cost of inbreeding’ under stress is expected to severely hamper evolutionary adaptive processes. Inbreeding thus plays a pivotal role in this process and is expected to limit the probability of genetically eroded populations to successfully adapt to stressful environmental conditions. Consequently, the dynamics of small fragmented populations may differ considerably from large nonfragmented populations. The resilience of fragmented populations to changing and deteriorating environments is expected to be greatly decreased. Alleviating inbreeding depression, therefore, is crucial to ensure population persistence. PMID:25568035

  9. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    PubMed

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  10. Immune and stress responses in oysters with insights on adaptation.

    PubMed

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses

    DOE PAGES

    Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less

  12. Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less

  13. Sex differences in chronic stress responses and Alzheimer's disease.

    PubMed

    Yan, Yan; Dominguez, Sky; Fisher, Daniel W; Dong, Hongxin

    2018-02-01

    Clinical studies indicate that Alzheimer's disease (AD) disproportionately affects women in both disease prevalence and severity, but the mechanisms underlying this sex divergence are unknown. Though some have suggested this difference in risk is a reflection of known differences in longevity between men and women, mounting clinical and preclinical evidence supports women also having intrinsic susceptibilities towards the disease. While a number of potential risk factors have been hypothesized to affect these differences in risks, none have been definitively verified. In this review, we discuss a novel hypothesis whereby women's susceptibility to chronic stress also mediates increased risk for AD. As stress is a risk factor for AD, and women are twice as likely to develop mood disorders where stress is a major etiology, it is possible that sex dimorphisms in stress responses contribute to the increase in women with AD. In line with this, sex divergence in biochemical responses to stress have been noted along the hypothalamic-pituitary-adrenal (HPA) axis and among known molecular effectors of AD, with crosstalk between these processes also being likely. In addition, activation of the cortical corticotrophin-releasing factor receptor 1 (CRF1) signaling pathway leads to distinct female-biased increases in molecules associated with AD pathogenesis. Therefore, the different biochemical responses to stress between women and men may represent an intrinsic, sex-dependent risk factor for AD.

  14. Dimethylsulfoniopropionate, superoxide dismutase and glutathione as stress response indicators in three corals under short-term hyposalinity stress.

    PubMed

    Gardner, Stephanie G; Nielsen, Daniel A; Laczka, Olivier; Shimmon, Ronald; Beltran, Victor H; Ralph, Peter J; Petrou, Katherina

    2016-02-10

    Corals are among the most active producers of dimethylsulfoniopropionate (DMSP), a key molecule in marine sulfur cycling, yet the specific physiological role of DMSP in corals remains elusive. Here, we examine the oxidative stress response of three coral species (Acropora millepora, Stylophora pistillata and Pocillopora damicornis) and explore the antioxidant role of DMSP and its breakdown products under short-term hyposalinity stress. Symbiont photosynthetic activity declined with hyposalinity exposure in all three reef-building corals. This corresponded with the upregulation of superoxide dismutase and glutathione in the animal host of all three species. For the symbiont component, there were differences in antioxidant regulation, demonstrating differential responses to oxidative stress between the Symbiodinium subclades. Of the three coral species investigated, only A. millepora provided any evidence of the role of DMSP in the oxidative stress response. Our study reveals variability in antioxidant regulation in corals and highlights the influence life-history traits, and the subcladal differences can have on coral physiology. Our data expand on the emerging understanding of the role of DMSP in coral stress regulation and emphasizes the importance of exploring both the host and symbiont responses for defining the threshold of the coral holobiont to hyposalinity stress. © 2016 The Author(s).

  15. Review of Signal Crosstalk in Plant Stress Responses

    USDA-ARS?s Scientific Manuscript database

    This book was prepared to summarize the current understanding of the dynamics of plant response to biotic and abiotic stresses. The preface of the book sets the stage for the contents of the different chapters by outlining that plants defend themselves from various environmental stresses through a v...

  16. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    PubMed

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PsycINFO Database Record 2009 APA.

  17. Attraction of Coffee Bean Weevil, Araecerus fasciculatus, to Volatiles from the Industrial Yeast Kluyveromyces lactis.

    PubMed

    Yang, Shuai; Mei, Xiang-Dong; Zhang, Xiao-Fang; Li, Yao-Fa; She, Dongmei; Zhang, Tao; Ning, Jun

    2017-02-01

    The coffee bean weevil (CBW), Araecerus fasciculatus (De Geer, 1775) (Coleoptera: Anthribidae) is an important pest of stored products such as grains, coffee beans, cassava, and traditional Chinese medicine materials. In China, CBW causes large losses of Daqu, a traditional Chinese liquor fermentation starter, and, unfortunately, the use of conventional insecticides against CBW is not suitable in Daqu storage. We found CBW to be highly attracted to fermenting yeast cultures, such as Kluyveromyces lactis. Eight volatile compounds, produced by fermenting cultures and not by sterile samples, were identified by gas chromatography coupled with mass spectrometry. Five of these substances elicited significant responses in Y-tube behavioral bioassays. Field trapping experiments revealed 2-phenylethanol and 2-phenylethyl acetate to be crucial for attraction of CBW. Results show that yeast volatiles play an important role in host location, and that 2-phenylethanol and 2-phenylethyl acetate could be utilized as potential attractants in monitoring and control systems against this important pest.

  18. Selection of Streptococcus lactis Mutants Defective in Malolactic Fermentation

    PubMed Central

    Renault, Pierre P.; Heslot, Henri

    1987-01-01

    An enrichment medium and a new sensitive medium were developed to detect malolactic variants in different strains of lactic bacteria. Factors such as the concentration of glucose and l-malate, pH level, and the type of indicator dye used are discussed with regard to the kinetics of malic acid conversion to lactic acid. Use of these media allowed a rapid and easier screening of mutagenized streptococcal cells unable to ferment l-malate. A collection of malolactic-negative mutants of Streptococcus lactis induced by UV, nitrosoguanidine, or transposonal mutagenesis were characterized. The results showed that several mutants were apparently defective in the structural gene of malolactic enzyme, whereas others contained mutations which may either inactivate a putative permease or affect a regulatory sequence. PMID:16347282

  19. Subtilisin QK-2: secretory expression in Lactococcus lactis and surface display onto gram-positive enhancer matrix (GEM) particles.

    PubMed

    Mao, Ruifeng; Zhou, Kangping; Han, Zhenwei; Wang, Yefu

    2016-05-12

    Purified from the supernatant of Bacillus subtilis QK02 culture broth, Subtilisin QK-2 is a type of effective thrombolytic reagent that has great exploitable potential. However, the unbearable flavor that occurs with fermentation and the complicated methods that are required to obtain pure products limit the application of this enzyme. Lactic acid bacteria (LAB)-based delivery vehicles are promising as cheap and safe options for medicinal compounds. The secretory expression and surface display using LAB may popularize Subtilisin QK-2 more easily and conveniently with minimal adverse effects. Subtilisin QK-2 was expressed successfully in two forms using lactic acid bacteria. For the secretory expression in Lactococcus lactis, Subtilisin QK-2 was efficiently secreted into the culture using the promoter P nisA and signal peptide SPUsp. The expression levels were not different in L. lactis NZ9000 and NZ3900 without the effect of different selection markers. However, leaky expression was only detected in L. lactis NZ3900. The biological activity of this secreted Subtilisin QK-2 was enhanced by modulating the pH of medium to slightly alkaline during induction and by codon optimization of either the entire gene sequence (qk') or only the propeptide gene sequence (qkpro'). For surface display onto gram-positive enhancer matrix (GEM) particles, n LysM repeats from the C-terminal region of the major autolysin AcmA of L. lactis were fused to either the C-terminus (n = 1, 3, 5) or the N-terminus (n = 1) of the Subtilisin QK-2. These fusion proteins were secreted into the culture medium, and the QK-3LysM was able to bind to the surface of various LAB GEM particles without a loss of fibrinolytic activity. Furthermore, the binding capacity significantly increased with a higher concentration of QK-3LysM. Compared to the free-form Subtilisin QK-2, the QK-3LysM displayed on the surface of GEM particles was more stable in the simulated gastric juice. Combined with the safety and

  20. Validation of the German version of the Ford Insomnia Response to Stress Test.

    PubMed

    Dieck, Arne; Helbig, Susanne; Drake, Christopher L; Backhaus, Jutta

    2018-06-01

    The purpose of this study was to assess the psychometric properties of a German version of the Ford Insomnia Response to Stress Test with groups with and without sleep problems. Three studies were analysed. Data set 1 was based on an initial screening for a sleep training program (n = 393), data set 2 was based on a study to test the test-retest reliability of the Ford Insomnia Response to Stress Test (n = 284) and data set 3 was based on a study to examine the influence of competitive sport on sleep (n = 37). Data sets 1 and 2 were used to test internal consistency, factor structure, convergent validity, discriminant validity and test-retest reliability of the Ford Insomnia Response to Stress Test. Content validity was tested using data set 3. Cronbach's alpha of the Ford Insomnia Response to Stress Test was good (α = 0.80) and test-retest reliability was satisfactory (r = 0.72). Overall, the one-factor model showed the best fit. Furthermore, significant positive correlations between the Ford Insomnia Response to Stress Test and impaired sleep quality, depression and stress reactivity were in line with the expectations regarding the convergent validity. Subjects with sleep problems had significantly higher scores in the Ford Insomnia Response to Stress Test than subjects without sleep problems (P < 0.01). Competitive athletes with higher scores in the Ford Insomnia Response to Stress Test had significantly lower sleep quality (P = 0.01), demonstrating that vulnerability for stress-induced sleep disturbances accompanies poorer sleep quality in stressful episodes. The findings show that the German version of the Ford Insomnia Response to Stress Test is a reliable and valid questionnaire to assess the vulnerability to stress-induced sleep disturbances. © 2017 European Sleep Research Society.

  1. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christen, Verena; Capelle, Martinus; Fent, Karl, E-mail: karl.fent@fhnw.ch

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL andmore » Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.« less

  2. NO buffering and conditional NO release in stress response.

    PubMed

    Begara-Morales, Juan C; Chaki, Mounira; Valderrama, Raquel; Sánchez-Calvo, Beatriz; Mata-Pérez, Capilla; Padilla, María N; Corpas, Francisco J; Barroso, Juan B

    2018-03-01

    Nitric oxide (NO) has emerged as an essential biological messenger in plant biology that usually transmits its bioactivity by post-translational modifications such as S-nitrosylation, the reversible addition of a NO group to a protein cysteine residue leading to S-nitrosothiols (SNOs). In last year's, SNOs have emerged as key signalling molecules mainly involved in plant response to stress. Chief among SNOs is S-nitrosoglutathione (GSNO), generated by S-nitrosylation of the key antioxidant glutathione (GSH). GSNO is considered the major NO reservoir and a phloem mobile signal that confers to NO the capacity of a long-distance signalling molecule. GSNO is able to regulate protein function and gene expression resulting in a key role of GSNO in fundamental processes in plant such as development and response to a wide range of environmental stresses. In addition, GSNO is also able to regulate total SNO pool and consequently, it could be considered the storage of NO in cells that may control NO signalling under basal and stress-related responses. Thus, GSNO function could be crucial during plant response to environmental stresses. Besides this importance of GSNO in plant biology, its mode of action has not been widely discussed in the literature. In this review, we will firstly discuss the GSNO turnover in cells and secondly the role of GSNO as mediator of physiological and stress-related processes in plants, highlighting aspects in which there is still some controversy.

  3. Crop Production under Drought and Heat Stress: Plant Responses and Management Options

    PubMed Central

    Fahad, Shah; Bajwa, Ali A.; Nazir, Usman; Anjum, Shakeel A.; Farooq, Ayesha; Zohaib, Ali; Sadia, Sehrish; Nasim, Wajid; Adkins, Steve; Saud, Shah; Ihsan, Muhammad Z.; Alharby, Hesham; Wu, Chao; Wang, Depeng; Huang, Jianliang

    2017-01-01

    Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future. PMID:28706531

  4. A transcription factor hierarchy defines an environmental stress response network.

    PubMed

    Song, Liang; Huang, Shao-Shan Carol; Wise, Aaron; Castanon, Rosa; Nery, Joseph R; Chen, Huaming; Watanabe, Marina; Thomas, Jerushah; Bar-Joseph, Ziv; Ecker, Joseph R

    2016-11-04

    Environmental stresses are universally encountered by microbes, plants, and animals. Yet systematic studies of stress-responsive transcription factor (TF) networks in multicellular organisms have been limited. The phytohormone abscisic acid (ABA) influences the expression of thousands of genes, allowing us to characterize complex stress-responsive regulatory networks. Using chromatin immunoprecipitation sequencing, we identified genome-wide targets of 21 ABA-related TFs to construct a comprehensive regulatory network in Arabidopsis thaliana Determinants of dynamic TF binding and a hierarchy among TFs were defined, illuminating the relationship between differential gene expression patterns and ABA pathway feedback regulation. By extrapolating regulatory characteristics of observed canonical ABA pathway components, we identified a new family of transcriptional regulators modulating ABA and salt responsiveness and demonstrated their utility to modulate plant resilience to osmotic stress. Copyright © 2016, American Association for the Advancement of Science.

  5. Elucidating the fungal stress response by proteomics.

    PubMed

    Kroll, Kristin; Pähtz, Vera; Kniemeyer, Olaf

    2014-01-31

    Fungal species need to cope with stress, both in the natural environment and during interaction of human- or plant pathogenic fungi with their host. Many regulatory circuits governing the fungal stress response have already been discovered. However, there are still large gaps in the knowledge concerning the changes of the proteome during adaptation to environmental stress conditions. With the application of proteomic methods, particularly 2D-gel and gel-free, LC/MS-based methods, first insights into the composition and dynamic changes of the fungal stress proteome could be obtained. Here, we review the recent proteome data generated for filamentous fungi and yeasts. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Does the scientific evidence support the advertising claims made for products containing Lactobacillus casei and Bifidobacterium lactis? A systematic review.

    PubMed

    Meléndez-Illanes, Lorena; González-Díaz, Cristina; Chilet-Rosell, Elisa; Álvarez-Dardet, Carlos

    2016-09-01

    To analyse the scientific evidence that exists for the advertising claims made for two products containing Lactobacillus casei and Bifidobacterium lactis and to conduct a comparison between the published literature and what is presented in the corporate website. Systematic review, using Medline through Pubmed and Embase. We included human clinical trials that exclusively measured the effect of Lactobacillus casei or Bifidobacterium lactis on a healthy population, and where the objective was related to the health claims made for certain products in advertising. We assessed the levels of evidence and the strength of the recommendation according to the classification criteria established by the Oxford Centre for Evidence Based Medicine (CEBM). We also assessed the outcomes of the studies published on the website that did not appear in the search. Of the 440 articles identified, 16 met the inclusion criteria. Only four (25%) of these presented a level of evidence of 1b and a recommendation grade of A, all corresponding to studies on product containing Bifidobacterium lactis, and only 12 of the 16 studies were published on the corporate website (47). There is insufficient scientific evidence to support the health claims made for these products, especially in the case of product containing Lactobacillus casei. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The Contribution of Caseins to the Amino Acid Supply for Lactococcus lactis Depends on the Type of Cell Envelope Proteinase

    PubMed Central

    Flambard, Benedicte; Helinck, Sandra; Richard, Jean; Juillard, Vincent

    1998-01-01

    The ability of caseins to fulfill the amino acid requirements of Lactococcus lactis for growth was studied as a function of the type of cell envelope proteinase (PI versus PIII type). Two genetically engineered strains of L. lactis that differed only in the type of proteinase were grown in chemically defined media containing αs1-, β-, and κ-caseins (alone or in combination) as the sources of amino acids. Casein utilization resulted in limitation of the growth rate, and the extent of this limitation depended on the type of casein and proteinase. Adding different mixtures of essential amino acids to the growth medium made it possible to identify the nature of the limitation. This procedure also made it possible to identify the amino acid deficiency which was growth rate limiting for L. lactis in milk (S. Helinck, J. Richard, and V. Juillard, Appl. Environ. Microbiol. 63:2124–2130, 1997) as a function of the type of proteinase. Our results were compared with results from previous in vitro experiments in which casein degradation by purified proteinases was examined. The results were in agreement only in the case of the PI-type proteinase. Therefore, our results bring into question the validity of the in vitro approach to identification of casein-derived peptides released by a PIII-type proteinase. PMID:9603805

  8. Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis1[OPEN

    PubMed Central

    Clauw, Pieter; Coppens, Frederik; De Beuf, Kristof; Dhondt, Stijn; Van Daele, Twiggy; Maleux, Katrien; Storme, Veronique; Clement, Lieven; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress. PMID:25604532

  9. Measuring Physiological Stress Responses in Children: Lessons from a Novice

    ERIC Educational Resources Information Center

    Quas, Jodi A.

    2011-01-01

    In this article the author describes challenges associated with integrating physiological measures of stress into developmental research, especially in the domains of memory and cognition. An initial critical challenge concerns how to define stress, which can refer to one or a series of events, a response, the consequence of that response, an…

  10. Attenuation of maternal psychophysiological stress responses and the maternal cortisol awakening response over the course of human pregnancy.

    PubMed

    Entringer, Sonja; Buss, Claudia; Shirtcliff, Elizabeth A; Cammack, Alison L; Yim, Ilona S; Chicz-DeMet, Aleksandra; Sandman, Curt A; Wadhwa, Pathik D

    2010-05-01

    The effects of maternal stress during pregnancy may depend, in part, on the timing in gestation of the occurrence of stress. The aim of the present study was to examine the effect of stage of gestation on maternal psychophysiological responses to stress using a standardized laboratory paradigm and on the cortisol response to awakening (CAR). A longitudinal design was employed to quantify maternal psychophysiological stress reactivity [changes in heart rate (HR), blood pressure, salivary cortisol, and psychological distress in response to the trier social stress test (TSST)] and the CAR at approximately 17 and 31 weeks gestation in a sample of 148 women. To account for the possible effects of habituation when being exposed to the same stress protocol twice, a non-pregnant comparison group (CG, N = 36) also underwent these assessments at two time points, with a comparable time interval between the assessments. In both groups, the TSST elicited significant changes in maternal HR, mean arterial pressure, and psychological distress levels but not a significant increase in cortisol levels. Among the pregnant women (pregnant group(PG)), the stressor-induced increases in HR, blood pressure, and psychological distress were significantly lower at the second (31 weeks gestation) compared to the first (17 weeks gestation) assessment of pregnancy (all p < 0.01). The maternal CAR was also significantly attenuated in later compared to earlier gestation (p = 0.003). In the CG, there were no significant differences in psychophysiological stress responses and in the CAR across the two assessments. Among pregnant women there is a progressive attenuation of psychophysiological stress responses with advancing gestation. This attenuation is unlikely to be attributable to habituation. Individual differences in the degree of attenuation of stress responses over gestation may represent a novel marker of stress susceptibility in human pregnancy.

  11. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.

    PubMed

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  12. Stress Response of Granular Systems

    NASA Astrophysics Data System (ADS)

    Ramola, Kabir; Chakraborty, Bulbul

    2017-10-01

    We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

  13. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    PubMed

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Plant responsiveness to root-root communication of stress cues.

    PubMed

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-07-01

    Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.

  15. Youth Offspring of Mothers with Posttraumatic Stress Disorder Have Altered Stress Reactivity in Response to a Laboratory Stressor

    PubMed Central

    Danielson, Carla Kmett; Hankin, Benjamin L.; Badanes, Lisa S.

    2015-01-01

    Summary Parental Posttraumatic Stress Disorder (PTSD), particularly maternal PTSD, confers risk for stress-related psychopathology among offspring. Altered hypothalamic-pituitary-adrenal (HPA) axis functioning is one mechanism proposed to explain transmission of this intergenerational risk. Investigation of this mechanism has been largely limited to general stress response (e.g., diurnal cortisol), rather than reactivity in response to an acute stressor. We examined cortisol reactivity in response to a laboratory stressor among offspring of mothers with a lifetime diagnosis of PTSD (n=36) and age- and gender- matched control offspring of mothers without PTSD (n=36). Youth (67% girls; mean age = 11.4, SD = 2.6) participated in a developmentally sensitive laboratory stressor and had salivary cortisol assessed five times (one pre-stress, one immediate post-stress, and three recovery measures, spaced 15 minutes apart). Results were consistent with the hypothesis that offspring of mothers with PTSD would exhibit a dysregulated, blunted cortisol reactivity profile and control offspring would display the expected adaptive peak in cortisol response to challenge profile. Findings were maintained after controlling for youth traumatic event history, physical anxiety symptoms, and depression, as well as maternal depression. This finding contributes to the existing literature indicating that attenuated HPA axis functioning, inclusive of hyposecretion of cortisol in response to acute stress, is robust among youth of mothers with PTSD. Future research is warranted in elucidating cortisol reactivity as a link between maternal PTSD and stress-related psychopathology vulnerability among offspring. PMID:25622009

  16. Psychological stress during exercise: immunoendocrine and oxidative responses.

    PubMed

    Huang, Chun-Jung; Webb, Heather E; Evans, Ronald K; McCleod, Kelly A; Tangsilsat, Supatchara E; Kamimori, Gary H; Acevedo, Edmund O

    2010-12-01

    The purpose of this study was to examine the changes in catecholamines (epinephrine [EPI] and norepinephrine [NE]), interleukin-2 (IL-2) and a biomarker of oxidative stress (8-isoprostane) in healthy individuals who were exposed to a dual challenge (physical and psychological stress). Furthermore, this study also examined the possible relationships between catecholamines (NE and EPI) and 8-isoprostane and between IL-2 and 8-isoprostane following a combined physical and psychological challenge. Seven healthy male subjects completed two experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% VO(2max) for 37 min, while the dual-stress condition (DSC) included 20 min of a mental challenge while cycling. DSC showed greater EPI and 8-isoprostane levels (significant condition by time interaction). NE and IL-2 revealed significant change across time in both conditions. In addition, following dual stress, EPI area-under-the-curve (AUC) demonstrated a positive correlation with NE AUC and IL-2 AUC. NE AUC was positively correlated with IL-2 AUC and peak 8-isoprostane, and peak IL-2 was positively correlated with peak 8-isoprostane in response to a dual stress. The potential explanation for elevated oxidative stress during dual stress may be through the effects of the release of catecholamines and IL-2. These findings may further provide the potential explanation that dual stress alters physiological homeostasis in many occupations including firefighting, military operations and law enforcement. A greater understanding of these responses to stress can assist in finding strategies (e.g. exercise training) to overcome the inherent psychobiological challenges associated with physically and mentally demanding professions.

  17. Responses to Interpersonal Stress: Normative Changes Across Childhood and the Impact of Peer Victimization.

    PubMed

    Troop-Gordon, Wendy; Sugimura, Niwako; Rudolph, Karen D

    2017-03-01

    This research examined the development of stress responses across second to sixth grades and whether exposure to peer victimization alters stress response trajectories. Youth (338 girls; 298 boys; M age  = 7.97 years, SD = .37) reported on stress responses; teachers and youth reported on peer victimization. Latent growth curve modeling revealed an increase in effortful engagement responses and a decrease in disengagement and involuntary engagement responses during this period. Peer victimization disrupted these normative trajectories, resulting in less effortful engagement and more effortful disengagement and involuntary stress responses in early adolescence. These findings suggest that early peer victimization sensitizes youth to stress by interfering with the development of effective coping and fostering maladaptive stress responses. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  18. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity.

    PubMed

    Lee, Ayoung; Lee, Young Ju; Yoo, Hye Jin; Kim, Minkyung; Chang, Yeeun; Lee, Dong Seog; Lee, Jong Ho

    2017-05-31

    The aim of this study was to investigate the impact of consuming dairy yogurt containing Lactobacillus paracasei ssp. paracasei ( L. paracasei ), Bifidobacterium animalis ssp. lactis ( B. lactis ) and heat-treated Lactobacillus plantarum ( L. plantarum ) on immune function. A randomized, open-label, placebo-controlled study was conducted on 200 nondiabetic subjects. Over a twelve-week period, the test group consumed dairy yogurt containing probiotics each day, whereas the placebo group consumed milk. Natural killer (NK) cell activity, interleukin (IL)-12 and immunoglobulin (Ig) G1 levels were significantly increased in the test group at twelve weeks compared to baseline. Additionally, the test group had significantly greater increases in serum NK cell activity and interferon (IFN)-γ and IgG1 than placebo group. Daily consumption of dairy yogurt containing L. paracasei , B. lactis and heat-treated L. plantarum could be an effective option to improve immune function by enhancing NK cell function and IFN-γ concentration (ClinicalTrials.gov: NCT03051425).

  19. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity

    PubMed Central

    Lee, Ayoung; Lee, Young Ju; Yoo, Hye Jin; Kim, Minkyung; Chang, Yeeun; Lee, Dong Seog; Lee, Jong Ho

    2017-01-01

    The aim of this study was to investigate the impact of consuming dairy yogurt containing Lactobacillus paracasei ssp. paracasei (L. paracasei), Bifidobacterium animalis ssp. lactis (B. lactis) and heat-treated Lactobacillus plantarum (L. plantarum) on immune function. A randomized, open-label, placebo-controlled study was conducted on 200 nondiabetic subjects. Over a twelve-week period, the test group consumed dairy yogurt containing probiotics each day, whereas the placebo group consumed milk. Natural killer (NK) cell activity, interleukin (IL)-12 and immunoglobulin (Ig) G1 levels were significantly increased in the test group at twelve weeks compared to baseline. Additionally, the test group had significantly greater increases in serum NK cell activity and interferon (IFN)-γ and IgG1 than placebo group. Daily consumption of dairy yogurt containing L. paracasei, B. lactis and heat-treated L. plantarum could be an effective option to improve immune function by enhancing NK cell function and IFN-γ concentration (ClinicalTrials.gov: NCT03051425). PMID:28561762

  20. Long-term administration of pDC-Stimulative Lactococcus lactis strain decelerates senescence and prolongs the lifespan of mice.

    PubMed

    Sugimura, Tetsu; Jounai, Kenta; Ohshio, Konomi; Suzuki, Hiroaki; Kirisako, Takayoshi; Sugihara, Yoshihiko; Fujiwara, Daisuke

    2018-05-01

    The decline in immune function caused by aging increases the risk of infectious diseases, tumorigeneses and chronic inflammation, resulting in accelerating senescence. We previously reported a lactic acid bacteria, Lactococcus lactis strain Plasma (synonym of Lactococcus lactis subsp. lactis JCM 5805, Lc-Plasma), that stimulates plasmacytoid dendritic cells (pDCs), which play a crucial role in phylaxis from viral infection. In this study, we investigated the anti-aging effects of long-term oral administration of Lc-Plasma in a senescence-accelerated mouse strain, SAMP6. Mice given Lc-Plasma showed a significant improvement in survival rate at 82 weeks and a decreased senescence score as compared with control mice throughout this study. Anatomic analysis at 82 weeks revealed that the frequency of altered hepatocellular foci was significantly lower, and the incidence of other pathological findings in the liver and lungs tended to be lower in Lc-Plasma mice than in control mice. Transcription level of the IL-1β gene in lungs also tended to be lower in Lc-Plasma mice. Furthermore, the thinning of skin and age-related decrease in muscle mass were also significantly suppressed in the Lc-Plasma group as compared with the control group. Consistent with these phenotypic features, pDCs activity was significantly higher in Lc-Plasma mice than in control mice. In conclusion, long-term administration of Lc-Plasma can decelerate senescence and prolong lifespan via maintenance of the immune system due to activation of pDCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.

    PubMed

    Flahaut, Nicolas A L; Wiersma, Anne; van de Bunt, Bert; Martens, Dirk E; Schaap, Peter J; Sijtsma, Lolke; Dos Santos, Vitor A Martins; de Vos, Willem M

    2013-10-01

    Lactococcus lactis subsp. cremoris MG1363 is a paradigm strain for lactococci used in industrial dairy fermentations. However, despite of its importance for process development, no genome-scale metabolic model has been reported thus far. Moreover, current models for other lactococci only focus on growth and sugar degradation. A metabolic model that includes nitrogen metabolism and flavor-forming pathways is instrumental for the understanding and designing new industrial applications of these lactic acid bacteria. A genome-scale, constraint-based model of the metabolism and transport in L. lactis MG1363, accounting for 518 genes, 754 reactions, and 650 metabolites, was developed and experimentally validated. Fifty-nine reactions are directly or indirectly involved in flavor formation. Flux Balance Analysis and Flux Variability Analysis were used to investigate flux distributions within the whole metabolic network. Anaerobic carbon-limited continuous cultures were used for estimating the energetic parameters. A thorough model-driven analysis showing a highly flexible nitrogen metabolism, e.g., branched-chain amino acid catabolism which coupled with the redox balance, is pivotal for the prediction of the formation of different flavor compounds. Furthermore, the model predicted the formation of volatile sulfur compounds as a result of the fermentation. These products were subsequently identified in the experimental fermentations carried out. Thus, the genome-scale metabolic model couples the carbon and nitrogen metabolism in L. lactis MG1363 with complete known catabolic pathways leading to flavor formation. The model provided valuable insights into the metabolic networks underlying flavor formation and has the potential to contribute to new developments in dairy industries and cheese-flavor research.

  2. [Effects of Mindfulness Meditation program on perceived stress, ways of coping, and stress response in breast cancer patients].

    PubMed

    Kang, Gwangsoon; Oh, Sangeun

    2012-04-01

    Purpose of this study was to examine the effects of the Mindfulness Meditation program on perceived stress, ways of coping, salivary cortisol level, and psychological stress response in patients with breast cancer. This was a quasi-experimental study with a non-equivalent control group pre-post test design. Participants in this study were 50 patients who had completed breast cancer treatment (experimental group, 25, control group, 25). The experimental group received the Mindfulness Meditation program for 3 hours/session/ week for 8 weeks. Data were analyzed using χ²-test and t-test for subject homogeneity verification, and ANCOVA to examine the hypotheses. The experimental group had significantly lower scores for perceived stress, emotional focused coping, salivary cortisol level, and psychological stress response compared to the control group. However, no significant differences were found between two groups for the scores on problem focused stress coping. According to the results, the Mindfulness Meditation program was useful for decreasing perceived stress, emotional focused coping, salivary cortisol level, and psychological stress response. Therefore, this program is an effective nursing intervention to decrease stress in patients with breast cancer.

  3. Transposable elements contribute to activation of maize genes in response to abiotic stress.

    PubMed

    Makarevitch, Irina; Waters, Amanda J; West, Patrick T; Stitzer, Michelle; Hirsch, Candice N; Ross-Ibarra, Jeffrey; Springer, Nathan M

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as "junk" DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize.

  4. The Relationship between Beginning Teachers' Stress Causes, Stress Responses, Teaching Behaviour and Attrition

    ERIC Educational Resources Information Center

    Harmsen, Ruth; Helms-Lorenz, Michelle; Maulana, Ridwan; van Veen, Klaas

    2018-01-01

    In this study, the relationships between beginning teachers' perceived stress causes, stress responses, observed teaching behaviour and attrition is investigated employing structural equation modelling (SEM). A total of 143 BTs were surveyed using the Questionnaire on the Experience and Evaluation of Work-BTs (QEEW-BT). Teaching behaviour was…

  5. RNA-seq analysis of stress response in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Fish under intensive rearing conditions experience various stress conditions, which have negative impacts on survival, growth and fillet quality. Understanding the molecular mechanisms underlying stress responses will facilitate improvement of animal welfare and production efficiency. Our objective ...

  6. MDMA does not alter responses to the Trier Social Stress Test in humans.

    PubMed

    Bershad, Anya K; Miller, Melissa A; de Wit, Harriet

    2017-07-01

    ±3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a stimulant-psychedelic drug with unique social effects. It may dampen reactivity to negative social stimuli such as social threat and rejection. Perhaps because of these effects, MDMA has shown promise as a treatment for post-traumatic stress disorder (PTSD). However, the effect of single doses of MDMA on responses to an acute psychosocial stressor has not been tested. In this study, we sought to test the effects of MDMA on responses to stress in healthy adults using a public speaking task. We hypothesized that the drug would reduce responses to the stressful task. Volunteers (N = 39) were randomly assigned to receive placebo (N = 13), 0.5 mg/kg MDMA (N = 13), or 1.0 mg/kg MDMA (N = 13) during a stress and a no-stress session. Dependent measures included subjective reports of drug effects and emotional responses to the task, as well as salivary cortisol, heart rate, and blood pressure. The stress task produced its expected increase in physiological responses (cortisol, heart rate) and subjective ratings of stress in all three groups, and MDMA produced its expected subjective and physiological effects. MDMA alone increased ratings of subjective stress, heart rate, and saliva cortisol concentrations, but contrary to our hypothesis, it did not moderate responses to the Trier Social Stress Test. Despite its efficacy in PTSD and anxiety, MDMA did not reduce either the subjective or objective responses to stress in this controlled study. The conditions under which MDMA relieves responses to negative events or memories remain to be determined.

  7. MDMA does not alter responses to the Trier Social Stress Test in humans

    PubMed Central

    Bershad, Anya K.; Miller, Melissa A.; de Wit, Harriet

    2018-01-01

    Rationale ±3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a stimulant-psychedelic drug with unique social effects. It may dampen reactivity to negative social stimuli such as social threat and rejection. Perhaps because of these effects, MDMA has shown promise as a treatment for post-traumatic stress disorder (PTSD). However, the effect of single doses of MDMA on responses to an acute psychosocial stressor has not been tested. Objectives In this study, we sought to test the effects of MDMA on responses to stress in healthy adults using a public speaking task. We hypothesized that the drug would reduce responses to the stressful task. Methods Volunteers (N = 39) were randomly assigned to receive placebo (N = 13), 0.5 mg/kg MDMA (N = 13), or 1.0 mg/kg MDMA (N = 13) during a stress and a no-stress session. Dependent measures included subjective reports of drug effects and emotional responses to the task, as well as salivary cortisol, heart rate, and blood pressure. Results The stress task produced its expected increase in physiological responses (cortisol, heart rate) and subjective ratings of stress in all three groups, and MDMA produced its expected subjective and physiological effects. MDMA alone increased ratings of subjective stress, heart rate, and saliva cortisol concentrations, but contrary to our hypothesis, it did not moderate responses to the Trier Social Stress Test. Conclusions Despite its efficacy in PTSD and anxiety, MDMA did not reduce either the subjective or objective responses to stress in this controlled study. The conditions under which MDMA relieves responses to negative events or memories remain to be determined. PMID:28432376

  8. Natural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana

    PubMed Central

    Ramel, Fanny; Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan

    2009-01-01

    Background Soluble sugars are involved in responses to stress, and act as signalling molecules that activate specific or hormone cross-talk transduction pathways. Thus, exogenous sucrose treatment efficiently induces tolerance to the herbicide atrazine in Arabidopsis thaliana plantlets, at least partially through large-scale modifications of expression of stress-related genes. Methods Availability of sugars in planta for stress responses is likely to depend on complex dynamics of soluble sugar accumulation, sucrose–starch partition and organ allocation. The question of potential relationships between endogenous sugar levels and stress responses to atrazine treatment was investigated through analysis of natural genetic accessions of A. thaliana. Parallel quantitative and statistical analysis of biochemical parameters and of stress-sensitive physiological traits was carried out on a set of 11 accessions. Key Results Important natural variation was found between accessions of A. thaliana in pre-stress shoot endogenous sugar levels and responses of plantlets to subsequent atrazine stress. Moreover, consistent trends and statistically significant correlations were detected between specific endogenous sugar parameters, such as the pre-stress end of day sucrose level in shoots, and physiological markers of atrazine tolerance. Conclusions These significant relationships between endogenous carbohydrate metabolism and stress response therefore point to an important integration of carbon nutritional status and induction of stress tolerance in plants. The specific correlation between pre-stress sucrose level and greater atrazine tolerance may reflect adaptive mechanisms that link sucrose accumulation, photosynthesis-related stress and sucrose induction of stress defences. PMID:19789177

  9. Natural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana.

    PubMed

    Ramel, Fanny; Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan

    2009-12-01

    Soluble sugars are involved in responses to stress, and act as signalling molecules that activate specific or hormone cross-talk transduction pathways. Thus, exogenous sucrose treatment efficiently induces tolerance to the herbicide atrazine in Arabidopsis thaliana plantlets, at least partially through large-scale modifications of expression of stress-related genes. Availability of sugars in planta for stress responses is likely to depend on complex dynamics of soluble sugar accumulation, sucrose-starch partition and organ allocation. The question of potential relationships between endogenous sugar levels and stress responses to atrazine treatment was investigated through analysis of natural genetic accessions of A. thaliana. Parallel quantitative and statistical analysis of biochemical parameters and of stress-sensitive physiological traits was carried out on a set of 11 accessions. Important natural variation was found between accessions of A. thaliana in pre-stress shoot endogenous sugar levels and responses of plantlets to subsequent atrazine stress. Moreover, consistent trends and statistically significant correlations were detected between specific endogenous sugar parameters, such as the pre-stress end of day sucrose level in shoots, and physiological markers of atrazine tolerance. These significant relationships between endogenous carbohydrate metabolism and stress response therefore point to an important integration of carbon nutritional status and induction of stress tolerance in plants. The specific correlation between pre-stress sucrose level and greater atrazine tolerance may reflect adaptive mechanisms that link sucrose accumulation, photosynthesis-related stress and sucrose induction of stress defences.

  10. Licheniocin 50.2 and Bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria monocytogenes Clinical Isolates.

    PubMed

    Cirkovic, Ivana; Bozic, Dragana D; Draganic, Veselin; Lozo, Jelena; Beric, Tanja; Kojic, Milan; Arsic, Biljana; Garalejic, Eliana; Djukic, Slobodanka; Stankovic, Slavisa

    2016-01-01

    Coagulase negative staphylococci (CoNS) and Listeria monocytogenes have important roles in pathogenesis of various genital tract infections and fatal foetomaternal infections, respectively. The aim of our study was to investigate the inhibitory effects of two novel bacteriocins on biofilms of CoNS and L. monocytogenes genital isolates. The effects of licheniocin 50.2 from Bacillus licheniformis VPS50.2 and crude extract of bacteriocins produced by Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 (BGBU1-4 crude extract) were evaluated on biofilm formation and formed biofilms of eight CoNS (four S. epidermidis, two S. hominis, one S. lugdunensis and one S. haemolyticus) and 12 L. monocytogenes genital isolates. Licheniocin 50.2 and BGBU1-4 crude extract inhibited the growth of both CoNS and L. monocytogenes isolates, with MIC values in the range between 200-400 AU/ml for licheniocin 50.2 and 400-3200 AU/ml for BGBU1-4 crude extract. Subinhibitory concentrations (1/2 × and 1/4 × MIC) of licheniocin 50.2 inhibited biofilm formation by all CoNS isolates (p < 0.05, respectively), while BGBU1-4 crude extract inhibited biofilm formation by all L. monocytogenes isolates (p < 0.01 and p < 0.05, respectively). Both bacteriocins in concentrations of 100 AU/mL and 200 AU/mL reduced the amount of 24 h old CoNS and L. monocytogenes biofilms (p < 0.05, p < 0.01, p < 0.001). This study suggests that novel bacteriocins have potential to be used for genital application, to prevent biofilm formation and/or to eradicate formed biofilms, and consequently reduce genital and neonatal infections by CoNS and L. monocytogenes.

  11. Production and purification of staphylococcal nuclease in Lactococcus lactis using a new expression-secretion system and a pH-regulated mini-reactor

    PubMed Central

    2010-01-01

    Background Staphylococcal (or micrococcal) nuclease or thermonuclease (SNase or Nuc) is a naturally-secreted nucleic acid degrading enzyme that participates in Staphylococcus aureus spread in the infected host. Purified Nuc protein can be used as an exogenous reagent to clear cellular extracts and improve protein purification. Here, a recombinant form of Nuc was produced and secreted in a Gram-positive host, Lactococcus lactis, and purified from the culture medium. Results The gene segment corresponding to the S. aureus nuclease without its signal peptide was cloned in an expression-secretion vector. It was then fused to a lactococcal sequence encoding a signal peptide, and expressed under the control of a lactococcal promoter that is inducible by zinc starvation. An L. lactis subsp cremoris model strain (MG1363) transformed with the resulting plasmid was grown in either of two media (GM17v and CDM) that are free of animal compounds, allowing GMP (Good Manufacturing Practice) production. Induction conditions (concentration of the metal chelator EDTA and timing of addition) in small-scale pH-regulated fermentors were optimized using LacMF (Lactis Multi-Fermentor), a home-made parallel fermentation control system able to monitor 12 reactors simultaneously. Large amounts of recombinant Nuc (rNuc) were produced and secreted in both media, and rNuc was purified from GM17v medium in a single-step procedure. Conclusions In L. lactis, rNuc production and secretion were optimal after induction by 0.5 mM EDTA in small scale (200 mL) GM17v exponential phase cultures (at an OD600 of 2), leading to a maximal protein yield of 210 mg per L of culture medium. Purified rNuc was highly active, displaying a specific activity of 2000 U/mg. PMID:20492646

  12. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  13. Lactococcus lactis and Lactobacillus salivarius differently modulate early immunological response of Wistar rats co-administered with Listeria monocytogenes.

    PubMed

    Lukic, J; Jancic, I; Mirkovic, N; Bufan, B; Djokic, J; Milenkovic, M; Begovic, J; Strahinic, I; Lozo, J

    2017-10-13

    In the light of the increasing resistance of bacterial pathogens to antibiotics, one of the main global strategies in applied science is development of alternative treatments, which would be safe both for the host and from the environmental perspective. Accordingly, the aim of this study was to test whether two lactic acid bacteria (LAB) strains, Lactococcus lactis BGBU1-4 and Lactobacillus salivarius BGHO1, could be applied as safe supplements for Listeria infection. Two major research objectives were set: to compare the effects of BGBU1-4 and BGHO1 on early immune response in gut tissue of Wistar rats co-administered with Listeria monocytogenes ATCC19111 and next, to test how this applies to their usage as therapeutics in acute ATCC19111 infection. Intestinal villi (IV), Peyer's patches (PP) and mesenteric lymph nodes (MLN) were used for the analysis. The results showed that BGHO1 increased the mRNA expression of innate immune markers CD14, interleukin (IL)-1β and tumour necrosis factor (TNF)-α in PP and IV, and, in parallel, caused a decrease of listeriolysin O (LLO) mRNA expression in same tissues. In MLN of BGHO1 treated rats, LLO expression was increased, along with an increase of the expression of OX-62 mRNA and CD69, pointing to the activation of adaptive immunity. On the other hand, in BGBU1-4 treated rats, there was no reduction of LLO mRNA expression and no induction of innate immunity markers in intestinal tissue. Additionally, CD14 and IL-1β, as well as LLO, but not OX-62 mRNA and CD69 expression, were elevated in MLN of BGBU1-4 treated rats. However, when applied therapeutically, both, BGBU1-4 and BGHO1, lowered Listeria count in spleens of infected rats. Our results not only reveal the potential of LAB to ameliorate Listeria infections, but suggest different immunological effects of two different LAB strains, both of which could be effective in Listeria elimination.

  14. Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-12-01

    Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major.

    PubMed

    Dawood, Mahmoud A O; Koshio, Shunsuke; Ishikawa, Manabu; Yokoyama, Saichiro; El Basuini, Mohammed F; Hossain, Md Sakhawat; Nhu, Truong H; Dossou, Serge; Moss, Amina S

    2016-02-01

    Pagrus major fingerlings (3·29 ± 0·02 g) were fed with basal diet (control) supplemented with Lactobacillus rhamnosus (LR), Lactococcus lactis (LL), and L. rhamnosus + L. lactis (LR + LL) at 10(6) cell g(-1) feed for 56 days. Feeding a mixture of LR and LL significantly increased feed utilization (FER and PER), intestine lactic acid bacteria (LAB) count, plasma total protein, alternative complement pathway (ACP), peroxidase, and mucus secretion compared with the other groups (P < 0.05). Serum lysozyme activity (LZY) significantly increased in LR + LL when compared with the control group. Additionally, fish fed the LR + LL diet showed a higher growth performance (Fn wt, WG, and SGR) and protein digestibility than the groups fed an individual LR or the control diet. Superoxide dismutase (SOD) significantly increased in LR and LR + LL groups when compared with the other groups. Moreover, the fish fed LR or LL had better improvement (P < 0.05) in growth, feed utilization, body protein and lipid contents, digestibility coefficients (dry matter, protein, and lipid), protease activity, total intestine and LAB counts, hematocrit, total plasma protein, biological antioxidant potential, ACP, serum and mucus LZY and bactericidal activities, peroxidase, SOD, and mucus secretion than the control group. Interestingly, fish fed diets with LR + LL showed significantly lower total cholesterol and triglycerides when compared with the other groups (P < 0.05). These data strongly suggest that a mixture of LR and LL probiotics may serve as a healthy immunostimulating feed additive in red sea bream aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Heart rate response to post-learning stress predicts memory consolidation.

    PubMed

    Larra, Mauro F; Schulz, André; Schilling, Thomas M; Ferreira de Sá, Diana S; Best, Daniel; Kozik, Bartlomiej; Schächinger, Hartmut

    2014-03-01

    Stressful experiences are often well remembered, an effect that has been explained by beta-adrenergic influences on memory consolidation. Here, we studied the impact of stress induced heart rate (HR) responses on memory consolidation in a post-learning stress paradigm. 206 male and female participants saw 52 happy and angry faces immediately before being exposed to the Cold Pressor Test or a non-stressful control procedure. Memory for the faces and their respective expression was tested twice, after 30 min and on the next day. High HR responders (in comparison to low HR responders as well as to the non-stressful control group) showed enhanced recognition memory one day after learning. Our results show that beta-adrenergic activation elicited shortly after learning enhances memory consolidation and that the stress induced HR response is a predictor for this effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Characterization of the physiological stress response in lingcod

    USGS Publications Warehouse

    Milston, R.H.; Davis, M.W.; Parker, S.J.; Olla, B.L.; Clements, S.; Schreck, C.B.

    2006-01-01

    The goal of this study was to describe the duration and magnitude of the physiological stress response in lingcod Ophiodon elongatus after exposure to brief handling and sublethal air stressors. The response to these stressors was determined during a 24-h recovery period by measuring concentrations of plasma cortisol, lactate, glucose, sodium, and potassium. Lingcod were subjected to brief handling followed by either a 15-min or a 45-min air stressor in the laboratory. After the 15-min stressor, an increase in cortisol or glucose could not be detected until after 5 min of recovery. Peak concentrations were measured after 30 min for cortisol and after 60 min for glucose and lactate. Glucose and lactate had returned to basal levels after 12 h, whereas cortisol did not return to basal levels until after 24 h of recovery. Immediately following a 45-min air stressor, all measured parameters were significantly elevated over levels in prestressor control fish. Cortisol concentrations tended to increase and reached a measured peak after 8 h of recovery, whereas glucose and lactate reached a measured peak after 1 h of recovery. Cortisol and lactate returned to basal levels within 24 h. Glucose, however, remained elevated even after 24 h of recovery. Plasma ions initially increased during the first hour of recovery, and the concentrations then declined to a level below that measured in control fish for the remainder of the 24-h recovery period. In addition, we evaluated the effect of fish size on the stress response. There was no significant difference between the stress response of smaller (41-49-cm [total length] and larger (50-67-cm) lingcod after 45 min air exposure. In general, both the magnitude and duration of the primary and secondary stress responses in lingcod are comparable to those of salmonids. ?? Copyright by the American Fisheries Society 2006.

  18. Social evaluative threat with verbal performance feedback alters neuroendocrine response to stress.

    PubMed

    Phan, Jenny M; Schneider, Ekaterina; Peres, Jeremy; Miocevic, Olga; Meyer, Vanessa; Shirtcliff, Elizabeth A

    2017-11-01

    Laboratory stress tasks such as the Trier Social Stress Test (TSST) have provided a key piece to the puzzle for how psychosocial stress impacts the hypothalamic-pituitary-adrenal axis, other stress-responsive biomarkers, and ultimately wellbeing. These tasks are thought to work through biopsychosocial processes, specifically social evaluative threat and the uncontrollability heighten situational demands. The present study integrated an experimental modification to the design of the TSST to probe whether additional social evaluative threat, via negative verbal feedback about speech performance, can further alter stress reactivity in 63 men and women. This TSST study confirmed previous findings related to stress reactivity and stress recovery but extended this literature in several ways. First, we showed that additional social evaluative threat components, mid-task following the speech portion of the TSST, were still capable of enhancing the psychosocial stressor. Second, we considered stress-reactive hormones beyond cortisol to include dehydroepiandrosterone (DHEA) and testosterone, and found these hormones were also stress-responsive, and their release was coupled with one another. Third, we explored whether gain- and loss-framing incentive instructions, meant to influence performance motivation by enhancing the personal relevance of task performance, impacted hormonal reactivity. Results showed that each hormone was stress reactive and further had different responses to the modified TSST compared to the original TSST. Beyond the utility of showing how the TSST can be modified with heightened social evaluative threat and incentive-framing instructions, this study informs about how these three stress-responsive hormones have differential responses to the demands of a challenge and a stressor. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A review of factors influencing the stress response in Australian marsupials

    PubMed Central

    Hing, Stephanie; Narayan, Edward; Thompson, R. C. Andrew; Godfrey, Stephanie

    2014-01-01

    Many Australian marsupials are threatened species. In order to manage in situ and ex situ populations effectively, it is important to understand how marsupials respond to threats. Stress physiology (the study of the response of animals to challenging stimuli), a key approach in conservation physiology, can be used to characterize the physiological response of wildlife to threats. We reviewed the literature on the measurement of glucocorticoids (GCs), endocrine indicators of stress, in order to understand the stress response to conservation-relevant stressors in Australian marsupials and identified 29 studies. These studies employed a range of methods to measure GCs, with faecal glucocorticoid metabolite enzyme immunoassay being the most common method. The main stressors considered in studies of marsupials were capture and handling. To date, the benefits of stress physiology have yet to be harnessed fully in marsupial conservation. Despite a theoretical base dating back to the 1960s, GCs have only been used to understand how 21 of the 142 extant species of Australian marsupial respond to stressors. These studies include merely six of the 60 marsupial species of conservation concern (IUCN Near Threatened to Critically Endangered). Furthermore, the fitness consequences of stress for Australian marsupials are rarely examined. Individual and species differences in the physiological stress response also require further investigation, because significant species-specific variations in GC levels in response to stressors can shed light on why some individuals or species are more vulnerable to stress factors while others appear more resilient. This review summarizes trends, knowledge gaps and future research directions for stress physiology research in Australian marsupial conservation. PMID:27293648

  20. Self-esteem levels and cardiovascular and inflammatory responses to acute stress.

    PubMed

    O'Donnell, Katie; Brydon, Lena; Wright, Caroline E; Steptoe, Andrew

    2008-11-01

    Acute mental stress tests have helped to clarify the pathways through which psychosocial factors are linked to disease risk. This methodology is now being used to investigate potentially protective psychosocial factors. We investigated whether global self-esteem might buffer cardiovascular and inflammatory responses to acute stress. One hundred and one students completed the Rosenberg Self-Esteem Scale. Heart rate and heart rate variability (HRV) were recorded for 5 min periods at baseline, during two mental stress tasks, (a speech and a color-word task) and 10, 25 and 40 min into a recovery period. Plasma levels of tumor-necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-1 receptor antagonist (IL-1Ra) were assessed at baseline, immediately post-stress and after 45 min recovery. Repeated measures analysis of variance demonstrated that heart rate levels were lower across all time points in those with high self-esteem, although heart rate reactivity to stress was not related to self-esteem. There were no differences in baseline HRV, TNF-alpha, IL-6 or IL-1Ra. Multiple linear regressions revealed that greater self-esteem was associated with a smaller reduction in heart rate variability during the speech task, but not the color-word task. Greater self-esteem was associated with smaller TNF-alpha and IL-1Ra responses immediately following acute stress and smaller IL-1Ra responses at 45 min post-stress. In conclusion, global self-esteem is associated with lower heart rate and attenuated HRV and inflammatory responses to acute stress. These responses could be processes through which self-esteem protects against the development of disease.

  1. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  2. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  3. Anion channels: master switches of stress responses.

    PubMed

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Transposon integration enhances expression of stress response genes.

    PubMed

    Feng, Gang; Leem, Young-Eun; Levin, Henry L

    2013-01-01

    Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.

  5. Transposon integration enhances expression of stress response genes

    PubMed Central

    Feng, Gang; Leem, Young-Eun; Levin, Henry L.

    2013-01-01

    Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress. PMID:23193295

  6. Effect of acute psychological stress on response inhibition: An event-related potential study.

    PubMed

    Qi, Mingming; Gao, Heming; Liu, Guangyuan

    2017-04-14

    This study aimed to investigate the effect of acute psychological stress on response inhibition and its electrophysiological correlates using a dual-task paradigm. Acute stress was induced by a primary task (mental arithmetic task), which consisted of a stress block and a control block. Response inhibition was measured using a secondary task (Go/NoGo task). In each trial, a Go/NoGo stimulus was presented immediately after the mental arithmetic task. The results revealed increased subjective stress and negative affect for the stress relative to control block, suggesting that the mental arithmetic task triggered a reliable stress response. ERPs locked to the Go/NoGo stimuli revealed that decreased P2 and increased N2 components were evoked for the stress block compared to the control block. These results demonstrated that acute psychological stress alters the response inhibition process by reducing the early selective attention process and enhancing the cognitive control process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Plant responsiveness to root–root communication of stress cues

    PubMed Central

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-01-01

    Background and Aims Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Methods Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. Key Results In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3–24 h after the beginning of stress induction. Conclusions The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios. PMID:22408186

  8. Strain improvement of Lactobacillus lactis for D-lactic acid production.

    PubMed

    Joshi, D S; Singhvi, M S; Khire, J M; Gokhale, D V

    2010-04-01

    Three mutants, isolated by repeated UV mutagenesis of Lactobacillus lactis NCIM 2368, produced increased D: -lactic acid concentrations. These mutants were compared with the wild type using 100 g hydrolyzed cane sugar/l in the fermentation medium. One mutant, RM2-24, produced 81 g lactic acid/l which was over three times that of the wild type. The highest D: -lactic acid (110 g/l) in batch fermentation was obtained with 150 g cane sugar/l with a 73% lactic acid yield. The mutant utilizes cellobiose efficiently, converting it into D-lactic acid suggesting the presence of cellobiase. Thus, this strain could be used to obtain D-lactic acid from cellulosic materials that are pre-hydrolyzed with cellulase.

  9. Ontogeny of the stress response in chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Feist, G.; Schreck, C.B.

    2001-01-01

    Whole body concentrations of cortisol were determined via radioimmunoassay in chinook salmon, Onchorynchus tshawytscha, during early development in both stressed and non-stressed fish to determine when the corticosteroidogenic stress response first appeared. Progeny from both pooled and individual females were examined to determine if differences existed in offspring from different females. Levels of cortisol were low in eyed eggs, increased at hatch, decreased 2 weeks later and then remained constant thereafter. Differences in cortisol between stressed and control fish were found 1 week after hatch and persisted for the remainder of the study. The magnitude of the stress response, or relative amount of cortisol produced, generally increased from the time when it was first detected, but a decrease in the ability to elicit cortisol was seen 4 weeks after hatching. Cortisol content of separate progeny from two individual females showed a similar pattern to that seen in pooled eggs. Our results indicate that chinook salmon are capable of producing cortisol following a stressful event approximately 1 week after the time of hatching. The decrease in endogenous cortisol content seen 2 weeks after hatching, and the decrease in the magnitude of the stress response seen 4 weeks after hatching may be comparable to developmental events documented in mammals where corticosteroid synthesis is inhibited to neutralize possible detrimental effects of these hormones during critical periods of development.

  10. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response.

    PubMed

    Horváth, Vivien; Merenciano, Miriam; González, Josefa

    2017-11-01

    A relationship between transposable elements (TEs) and the eukaryotic stress response was suggested in the first publications describing TEs. Since then, it has often been assumed that TEs are activated by stress, and that this activation is often beneficial for the organism. In recent years, the availability of new high-throughput experimental techniques has allowed further interrogation of the relationship between TEs and stress. By reviewing the recent literature, we conclude that although there is evidence for a beneficial effect of TE activation under stress conditions, the relationship between TEs and the eukaryotic stress response is quite complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Are karrikins involved in plant abiotic stress responses?

    PubMed

    Li, Weiqiang; Tran, Lam-Son Phan

    2015-09-01

    Recent reports have shown that strigolactones play a positive role in plant responses to drought and salt stress through MAX2 (More Axillary Growth 2). Increasing evidence suggests that MAX2 is also involved in karrikin signaling, raising the question whether karrikins play any role in plant adaptation to abiotic stresses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  13. Boechera Species Exhibit Species-Specific Responses to Combined Heat and High Light Stress

    PubMed Central

    Gallas, Genna; Waters, Elizabeth R.

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species. PMID:26030823

  14. Stretching the Stress Boundary: Linking Air Pollution Health Effects to a Neurohormonal Stress Response

    EPA Science Inventory

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer’s and diabetes. A neurohormonal stress response (referred here as a systemic response produced by activation ...

  15. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    PubMed

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  16. Viscoelastic Lithosphere Response and Stress Memory of Tectonic Force History (Invited)

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.

    2009-12-01

    While great attention is often paid to the details of creep deformation mechanisms, brittle failure and their compositional controls when predicting the response of lithosphere to tectonic forces, the lithosphere’s elastic properties are usually neglected; a viscous rheology alone is often used to predict the resulting distribution of stress with depth or to determine lithosphere strength. While this may simplify geodynamic modelling of lithosphere response to tectonic processes, the omission of the elastic properties can often give misleading or false predictions. The addition of the elastic properties of lithosphere material in the form of a visco-elastic rheology results is a fundamentally different lithosphere response. This difference can be illustrated by examining the application of horizontal tectonic force to a section of lithosphere incorporating the brittle-visco-elastic response of each infinitesimal lithosphere layer with temperature and stress dependent viscous rheology. The transient response of a visco-elastic lithosphere to a constant applied tectonic force and the resulting distribution of stress with depth are substantially different from that predicted by a viscous lithosphere model, with the same lithosphere composition and temperature structure, subjected to a constant lateral strain rate. For visco-elastic lithosphere subject to an applied horizontal tectonic force, viscous creep in the lower crust and mantle leads to stress decay in these regions and to stress amplification in the upper lithosphere through stress redistribution. Cooling of lithosphere with a visco-elastic rheology results in thermal stresses which, as a consequence of stress dissipation by creep and brittle failure, results in a complex and sometimes counter-intuitive distribution of stress with depth. This can be most clearly illustrated for the cooling of oceanic lithosphere, however similar or more complex behaviour can be expected to occur for continental lithosphere

  17. Does spending time outdoors reduce stress? A review of real-time stress response to outdoor environments

    Treesearch

    Michelle C. Kondo; Sara F. Jacoby; Eugenia C. South

    2018-01-01

    Everyday environmental conditions impact human health. One mechanism underlying this relationship is the experience of stress. Through systematic review of published literature, we explore how stress has been measured in real-time non-laboratory studies of stress responses to deliberate exposure to outdoor environments. The types of exposures evaluated in this review...

  18. Cloning, production, and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans.

    PubMed

    Borrero, Juan; Kunze, Gotthard; Jiménez, Juan J; Böer, Erik; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2012-08-01

    The bacteriocin enterocin A (EntA) produced by Enterococcus faecium T136 has been successfully cloned and produced by the yeasts Pichia pastoris X-33EA, Kluyveromyces lactis GG799EA, Hansenula polymorpha KL8-1EA, and Arxula adeninivorans G1212EA. Moreover, P. pastoris X-33EA and K. lactis GG799EA produced EntA in larger amounts and with higher antimicrobial and specific antimicrobial activities than the EntA produced by E. faecium T136.

  19. Qualitative Development of the PROMIS® Pediatric Stress Response Item Banks

    PubMed Central

    Gardner, William; Pajer, Kathleen; Riley, Anne W.; Forrest, Christopher B.

    2013-01-01

    Objective To describe the qualitative development of the Patient-Reported Outcome Measurement Information System (PROMIS®) Pediatric Stress Response item banks. Methods Stress response concepts were specified through a literature review and interviews with content experts, children, and parents. A library comprising 2,677 items derived from 71 instruments was developed. Items were classified into conceptual categories; new items were written and redundant items were removed. Items were then revised based on cognitive interviews (n = 39 children), readability analyses, and translatability reviews. Results 2 pediatric Stress Response sub-domains were identified: somatic experiences (43 items) and psychological experiences (64 items). Final item pools cover the full range of children’s stress experiences. Items are comprehensible among children aged ≥8 years and ready for translation. Conclusions Child- and parent-report versions of the item banks assess children’s somatic and psychological states when demands tax their adaptive capabilities. PMID:23124904

  20. Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses

    PubMed Central

    Yang, Shihui; Pan, Chongle; Tschaplinski, Timothy J.; Hurst, Gregory B.; Engle, Nancy L.; Zhou, Wen; Dam, PhuongAn; Xu, Ying; Rodriguez, Miguel; Dice, Lezlee; Johnson, Courtney M.; Davison, Brian H.; Brown, Steven D.

    2013-01-01

    Background Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have not been elucidated fully. Methodology/Principal Findings In this study, ethanol stress responses were investigated using systems biology approaches. Medium supplementation with an initial 47 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. Conclusions Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated “omics” approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress. PMID:23874800